2011-08-19 Andrew Stubbs <ams@codesourcery.com>
[official-gcc.git] / gcc / resource.c
blob838011121134af858ffa05c3ff966de673f0568e
1 /* Definitions for computing resource usage of specific insns.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
3 2009, 2010 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "diagnostic-core.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "hard-reg-set.h"
29 #include "function.h"
30 #include "regs.h"
31 #include "flags.h"
32 #include "output.h"
33 #include "resource.h"
34 #include "except.h"
35 #include "insn-attr.h"
36 #include "params.h"
37 #include "df.h"
39 /* This structure is used to record liveness information at the targets or
40 fallthrough insns of branches. We will most likely need the information
41 at targets again, so save them in a hash table rather than recomputing them
42 each time. */
44 struct target_info
46 int uid; /* INSN_UID of target. */
47 struct target_info *next; /* Next info for same hash bucket. */
48 HARD_REG_SET live_regs; /* Registers live at target. */
49 int block; /* Basic block number containing target. */
50 int bb_tick; /* Generation count of basic block info. */
53 #define TARGET_HASH_PRIME 257
55 /* Indicates what resources are required at the beginning of the epilogue. */
56 static struct resources start_of_epilogue_needs;
58 /* Indicates what resources are required at function end. */
59 static struct resources end_of_function_needs;
61 /* Define the hash table itself. */
62 static struct target_info **target_hash_table = NULL;
64 /* For each basic block, we maintain a generation number of its basic
65 block info, which is updated each time we move an insn from the
66 target of a jump. This is the generation number indexed by block
67 number. */
69 static int *bb_ticks;
71 /* Marks registers possibly live at the current place being scanned by
72 mark_target_live_regs. Also used by update_live_status. */
74 static HARD_REG_SET current_live_regs;
76 /* Marks registers for which we have seen a REG_DEAD note but no assignment.
77 Also only used by the next two functions. */
79 static HARD_REG_SET pending_dead_regs;
81 static void update_live_status (rtx, const_rtx, void *);
82 static int find_basic_block (rtx, int);
83 static rtx next_insn_no_annul (rtx);
84 static rtx find_dead_or_set_registers (rtx, struct resources*,
85 rtx*, int, struct resources,
86 struct resources);
88 /* Utility function called from mark_target_live_regs via note_stores.
89 It deadens any CLOBBERed registers and livens any SET registers. */
91 static void
92 update_live_status (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
94 int first_regno, last_regno;
95 int i;
97 if (!REG_P (dest)
98 && (GET_CODE (dest) != SUBREG || !REG_P (SUBREG_REG (dest))))
99 return;
101 if (GET_CODE (dest) == SUBREG)
103 first_regno = subreg_regno (dest);
104 last_regno = first_regno + subreg_nregs (dest);
107 else
109 first_regno = REGNO (dest);
110 last_regno = END_HARD_REGNO (dest);
113 if (GET_CODE (x) == CLOBBER)
114 for (i = first_regno; i < last_regno; i++)
115 CLEAR_HARD_REG_BIT (current_live_regs, i);
116 else
117 for (i = first_regno; i < last_regno; i++)
119 SET_HARD_REG_BIT (current_live_regs, i);
120 CLEAR_HARD_REG_BIT (pending_dead_regs, i);
124 /* Find the number of the basic block with correct live register
125 information that starts closest to INSN. Return -1 if we couldn't
126 find such a basic block or the beginning is more than
127 SEARCH_LIMIT instructions before INSN. Use SEARCH_LIMIT = -1 for
128 an unlimited search.
130 The delay slot filling code destroys the control-flow graph so,
131 instead of finding the basic block containing INSN, we search
132 backwards toward a BARRIER where the live register information is
133 correct. */
135 static int
136 find_basic_block (rtx insn, int search_limit)
138 /* Scan backwards to the previous BARRIER. Then see if we can find a
139 label that starts a basic block. Return the basic block number. */
140 for (insn = prev_nonnote_insn (insn);
141 insn && !BARRIER_P (insn) && search_limit != 0;
142 insn = prev_nonnote_insn (insn), --search_limit)
145 /* The closest BARRIER is too far away. */
146 if (search_limit == 0)
147 return -1;
149 /* The start of the function. */
150 else if (insn == 0)
151 return ENTRY_BLOCK_PTR->next_bb->index;
153 /* See if any of the upcoming CODE_LABELs start a basic block. If we reach
154 anything other than a CODE_LABEL or note, we can't find this code. */
155 for (insn = next_nonnote_insn (insn);
156 insn && LABEL_P (insn);
157 insn = next_nonnote_insn (insn))
158 if (BLOCK_FOR_INSN (insn))
159 return BLOCK_FOR_INSN (insn)->index;
161 return -1;
164 /* Similar to next_insn, but ignores insns in the delay slots of
165 an annulled branch. */
167 static rtx
168 next_insn_no_annul (rtx insn)
170 if (insn)
172 /* If INSN is an annulled branch, skip any insns from the target
173 of the branch. */
174 if (INSN_P (insn)
175 && INSN_ANNULLED_BRANCH_P (insn)
176 && NEXT_INSN (PREV_INSN (insn)) != insn)
178 rtx next = NEXT_INSN (insn);
179 enum rtx_code code = GET_CODE (next);
181 while ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
182 && INSN_FROM_TARGET_P (next))
184 insn = next;
185 next = NEXT_INSN (insn);
186 code = GET_CODE (next);
190 insn = NEXT_INSN (insn);
191 if (insn && NONJUMP_INSN_P (insn)
192 && GET_CODE (PATTERN (insn)) == SEQUENCE)
193 insn = XVECEXP (PATTERN (insn), 0, 0);
196 return insn;
199 /* Given X, some rtl, and RES, a pointer to a `struct resource', mark
200 which resources are referenced by the insn. If INCLUDE_DELAYED_EFFECTS
201 is TRUE, resources used by the called routine will be included for
202 CALL_INSNs. */
204 void
205 mark_referenced_resources (rtx x, struct resources *res,
206 bool include_delayed_effects)
208 enum rtx_code code = GET_CODE (x);
209 int i, j;
210 unsigned int r;
211 const char *format_ptr;
213 /* Handle leaf items for which we set resource flags. Also, special-case
214 CALL, SET and CLOBBER operators. */
215 switch (code)
217 case CONST:
218 case CONST_INT:
219 case CONST_DOUBLE:
220 case CONST_FIXED:
221 case CONST_VECTOR:
222 case PC:
223 case SYMBOL_REF:
224 case LABEL_REF:
225 return;
227 case SUBREG:
228 if (!REG_P (SUBREG_REG (x)))
229 mark_referenced_resources (SUBREG_REG (x), res, false);
230 else
232 unsigned int regno = subreg_regno (x);
233 unsigned int last_regno = regno + subreg_nregs (x);
235 gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
236 for (r = regno; r < last_regno; r++)
237 SET_HARD_REG_BIT (res->regs, r);
239 return;
241 case REG:
242 gcc_assert (HARD_REGISTER_P (x));
243 add_to_hard_reg_set (&res->regs, GET_MODE (x), REGNO (x));
244 return;
246 case MEM:
247 /* If this memory shouldn't change, it really isn't referencing
248 memory. */
249 if (MEM_READONLY_P (x))
250 res->unch_memory = 1;
251 else
252 res->memory = 1;
253 res->volatil |= MEM_VOLATILE_P (x);
255 /* Mark registers used to access memory. */
256 mark_referenced_resources (XEXP (x, 0), res, false);
257 return;
259 case CC0:
260 res->cc = 1;
261 return;
263 case UNSPEC_VOLATILE:
264 case TRAP_IF:
265 case ASM_INPUT:
266 /* Traditional asm's are always volatile. */
267 res->volatil = 1;
268 break;
270 case ASM_OPERANDS:
271 res->volatil |= MEM_VOLATILE_P (x);
273 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
274 We can not just fall through here since then we would be confused
275 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
276 traditional asms unlike their normal usage. */
278 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
279 mark_referenced_resources (ASM_OPERANDS_INPUT (x, i), res, false);
280 return;
282 case CALL:
283 /* The first operand will be a (MEM (xxx)) but doesn't really reference
284 memory. The second operand may be referenced, though. */
285 mark_referenced_resources (XEXP (XEXP (x, 0), 0), res, false);
286 mark_referenced_resources (XEXP (x, 1), res, false);
287 return;
289 case SET:
290 /* Usually, the first operand of SET is set, not referenced. But
291 registers used to access memory are referenced. SET_DEST is
292 also referenced if it is a ZERO_EXTRACT. */
294 mark_referenced_resources (SET_SRC (x), res, false);
296 x = SET_DEST (x);
297 if (GET_CODE (x) == ZERO_EXTRACT
298 || GET_CODE (x) == STRICT_LOW_PART)
299 mark_referenced_resources (x, res, false);
300 else if (GET_CODE (x) == SUBREG)
301 x = SUBREG_REG (x);
302 if (MEM_P (x))
303 mark_referenced_resources (XEXP (x, 0), res, false);
304 return;
306 case CLOBBER:
307 return;
309 case CALL_INSN:
310 if (include_delayed_effects)
312 /* A CALL references memory, the frame pointer if it exists, the
313 stack pointer, any global registers and any registers given in
314 USE insns immediately in front of the CALL.
316 However, we may have moved some of the parameter loading insns
317 into the delay slot of this CALL. If so, the USE's for them
318 don't count and should be skipped. */
319 rtx insn = PREV_INSN (x);
320 rtx sequence = 0;
321 int seq_size = 0;
322 int i;
324 /* If we are part of a delay slot sequence, point at the SEQUENCE. */
325 if (NEXT_INSN (insn) != x)
327 sequence = PATTERN (NEXT_INSN (insn));
328 seq_size = XVECLEN (sequence, 0);
329 gcc_assert (GET_CODE (sequence) == SEQUENCE);
332 res->memory = 1;
333 SET_HARD_REG_BIT (res->regs, STACK_POINTER_REGNUM);
334 if (frame_pointer_needed)
336 SET_HARD_REG_BIT (res->regs, FRAME_POINTER_REGNUM);
337 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
338 SET_HARD_REG_BIT (res->regs, HARD_FRAME_POINTER_REGNUM);
339 #endif
342 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
343 if (global_regs[i])
344 SET_HARD_REG_BIT (res->regs, i);
346 /* Check for a REG_SETJMP. If it exists, then we must
347 assume that this call can need any register.
349 This is done to be more conservative about how we handle setjmp.
350 We assume that they both use and set all registers. Using all
351 registers ensures that a register will not be considered dead
352 just because it crosses a setjmp call. A register should be
353 considered dead only if the setjmp call returns nonzero. */
354 if (find_reg_note (x, REG_SETJMP, NULL))
355 SET_HARD_REG_SET (res->regs);
358 rtx link;
360 for (link = CALL_INSN_FUNCTION_USAGE (x);
361 link;
362 link = XEXP (link, 1))
363 if (GET_CODE (XEXP (link, 0)) == USE)
365 for (i = 1; i < seq_size; i++)
367 rtx slot_pat = PATTERN (XVECEXP (sequence, 0, i));
368 if (GET_CODE (slot_pat) == SET
369 && rtx_equal_p (SET_DEST (slot_pat),
370 XEXP (XEXP (link, 0), 0)))
371 break;
373 if (i >= seq_size)
374 mark_referenced_resources (XEXP (XEXP (link, 0), 0),
375 res, false);
380 /* ... fall through to other INSN processing ... */
382 case INSN:
383 case JUMP_INSN:
385 #ifdef INSN_REFERENCES_ARE_DELAYED
386 if (! include_delayed_effects
387 && INSN_REFERENCES_ARE_DELAYED (x))
388 return;
389 #endif
391 /* No special processing, just speed up. */
392 mark_referenced_resources (PATTERN (x), res, include_delayed_effects);
393 return;
395 default:
396 break;
399 /* Process each sub-expression and flag what it needs. */
400 format_ptr = GET_RTX_FORMAT (code);
401 for (i = 0; i < GET_RTX_LENGTH (code); i++)
402 switch (*format_ptr++)
404 case 'e':
405 mark_referenced_resources (XEXP (x, i), res, include_delayed_effects);
406 break;
408 case 'E':
409 for (j = 0; j < XVECLEN (x, i); j++)
410 mark_referenced_resources (XVECEXP (x, i, j), res,
411 include_delayed_effects);
412 break;
416 /* A subroutine of mark_target_live_regs. Search forward from TARGET
417 looking for registers that are set before they are used. These are dead.
418 Stop after passing a few conditional jumps, and/or a small
419 number of unconditional branches. */
421 static rtx
422 find_dead_or_set_registers (rtx target, struct resources *res,
423 rtx *jump_target, int jump_count,
424 struct resources set, struct resources needed)
426 HARD_REG_SET scratch;
427 rtx insn, next;
428 rtx jump_insn = 0;
429 int i;
431 for (insn = target; insn; insn = next)
433 rtx this_jump_insn = insn;
435 next = NEXT_INSN (insn);
437 /* If this instruction can throw an exception, then we don't
438 know where we might end up next. That means that we have to
439 assume that whatever we have already marked as live really is
440 live. */
441 if (can_throw_internal (insn))
442 break;
444 switch (GET_CODE (insn))
446 case CODE_LABEL:
447 /* After a label, any pending dead registers that weren't yet
448 used can be made dead. */
449 AND_COMPL_HARD_REG_SET (pending_dead_regs, needed.regs);
450 AND_COMPL_HARD_REG_SET (res->regs, pending_dead_regs);
451 CLEAR_HARD_REG_SET (pending_dead_regs);
453 continue;
455 case BARRIER:
456 case NOTE:
457 continue;
459 case INSN:
460 if (GET_CODE (PATTERN (insn)) == USE)
462 /* If INSN is a USE made by update_block, we care about the
463 underlying insn. Any registers set by the underlying insn
464 are live since the insn is being done somewhere else. */
465 if (INSN_P (XEXP (PATTERN (insn), 0)))
466 mark_set_resources (XEXP (PATTERN (insn), 0), res, 0,
467 MARK_SRC_DEST_CALL);
469 /* All other USE insns are to be ignored. */
470 continue;
472 else if (GET_CODE (PATTERN (insn)) == CLOBBER)
473 continue;
474 else if (GET_CODE (PATTERN (insn)) == SEQUENCE)
476 /* An unconditional jump can be used to fill the delay slot
477 of a call, so search for a JUMP_INSN in any position. */
478 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
480 this_jump_insn = XVECEXP (PATTERN (insn), 0, i);
481 if (JUMP_P (this_jump_insn))
482 break;
486 default:
487 break;
490 if (JUMP_P (this_jump_insn))
492 if (jump_count++ < 10)
494 if (any_uncondjump_p (this_jump_insn)
495 || GET_CODE (PATTERN (this_jump_insn)) == RETURN)
497 next = JUMP_LABEL (this_jump_insn);
498 if (ANY_RETURN_P (next))
499 next = NULL_RTX;
500 if (jump_insn == 0)
502 jump_insn = insn;
503 if (jump_target)
504 *jump_target = JUMP_LABEL (this_jump_insn);
507 else if (any_condjump_p (this_jump_insn))
509 struct resources target_set, target_res;
510 struct resources fallthrough_res;
512 /* We can handle conditional branches here by following
513 both paths, and then IOR the results of the two paths
514 together, which will give us registers that are dead
515 on both paths. Since this is expensive, we give it
516 a much higher cost than unconditional branches. The
517 cost was chosen so that we will follow at most 1
518 conditional branch. */
520 jump_count += 4;
521 if (jump_count >= 10)
522 break;
524 mark_referenced_resources (insn, &needed, true);
526 /* For an annulled branch, mark_set_resources ignores slots
527 filled by instructions from the target. This is correct
528 if the branch is not taken. Since we are following both
529 paths from the branch, we must also compute correct info
530 if the branch is taken. We do this by inverting all of
531 the INSN_FROM_TARGET_P bits, calling mark_set_resources,
532 and then inverting the INSN_FROM_TARGET_P bits again. */
534 if (GET_CODE (PATTERN (insn)) == SEQUENCE
535 && INSN_ANNULLED_BRANCH_P (this_jump_insn))
537 for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
538 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
539 = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
541 target_set = set;
542 mark_set_resources (insn, &target_set, 0,
543 MARK_SRC_DEST_CALL);
545 for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
546 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
547 = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
549 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
551 else
553 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
554 target_set = set;
557 target_res = *res;
558 COPY_HARD_REG_SET (scratch, target_set.regs);
559 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
560 AND_COMPL_HARD_REG_SET (target_res.regs, scratch);
562 fallthrough_res = *res;
563 COPY_HARD_REG_SET (scratch, set.regs);
564 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
565 AND_COMPL_HARD_REG_SET (fallthrough_res.regs, scratch);
567 if (!ANY_RETURN_P (JUMP_LABEL (this_jump_insn)))
568 find_dead_or_set_registers (JUMP_LABEL (this_jump_insn),
569 &target_res, 0, jump_count,
570 target_set, needed);
571 find_dead_or_set_registers (next,
572 &fallthrough_res, 0, jump_count,
573 set, needed);
574 IOR_HARD_REG_SET (fallthrough_res.regs, target_res.regs);
575 AND_HARD_REG_SET (res->regs, fallthrough_res.regs);
576 break;
578 else
579 break;
581 else
583 /* Don't try this optimization if we expired our jump count
584 above, since that would mean there may be an infinite loop
585 in the function being compiled. */
586 jump_insn = 0;
587 break;
591 mark_referenced_resources (insn, &needed, true);
592 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
594 COPY_HARD_REG_SET (scratch, set.regs);
595 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
596 AND_COMPL_HARD_REG_SET (res->regs, scratch);
599 return jump_insn;
602 /* Given X, a part of an insn, and a pointer to a `struct resource',
603 RES, indicate which resources are modified by the insn. If
604 MARK_TYPE is MARK_SRC_DEST_CALL, also mark resources potentially
605 set by the called routine.
607 If IN_DEST is nonzero, it means we are inside a SET. Otherwise,
608 objects are being referenced instead of set.
610 We never mark the insn as modifying the condition code unless it explicitly
611 SETs CC0 even though this is not totally correct. The reason for this is
612 that we require a SET of CC0 to immediately precede the reference to CC0.
613 So if some other insn sets CC0 as a side-effect, we know it cannot affect
614 our computation and thus may be placed in a delay slot. */
616 void
617 mark_set_resources (rtx x, struct resources *res, int in_dest,
618 enum mark_resource_type mark_type)
620 enum rtx_code code;
621 int i, j;
622 unsigned int r;
623 const char *format_ptr;
625 restart:
627 code = GET_CODE (x);
629 switch (code)
631 case NOTE:
632 case BARRIER:
633 case CODE_LABEL:
634 case USE:
635 case CONST_INT:
636 case CONST_DOUBLE:
637 case CONST_FIXED:
638 case CONST_VECTOR:
639 case LABEL_REF:
640 case SYMBOL_REF:
641 case CONST:
642 case PC:
643 /* These don't set any resources. */
644 return;
646 case CC0:
647 if (in_dest)
648 res->cc = 1;
649 return;
651 case CALL_INSN:
652 /* Called routine modifies the condition code, memory, any registers
653 that aren't saved across calls, global registers and anything
654 explicitly CLOBBERed immediately after the CALL_INSN. */
656 if (mark_type == MARK_SRC_DEST_CALL)
658 rtx link;
660 res->cc = res->memory = 1;
662 IOR_HARD_REG_SET (res->regs, regs_invalidated_by_call);
664 for (link = CALL_INSN_FUNCTION_USAGE (x);
665 link; link = XEXP (link, 1))
666 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
667 mark_set_resources (SET_DEST (XEXP (link, 0)), res, 1,
668 MARK_SRC_DEST);
670 /* Check for a REG_SETJMP. If it exists, then we must
671 assume that this call can clobber any register. */
672 if (find_reg_note (x, REG_SETJMP, NULL))
673 SET_HARD_REG_SET (res->regs);
676 /* ... and also what its RTL says it modifies, if anything. */
678 case JUMP_INSN:
679 case INSN:
681 /* An insn consisting of just a CLOBBER (or USE) is just for flow
682 and doesn't actually do anything, so we ignore it. */
684 #ifdef INSN_SETS_ARE_DELAYED
685 if (mark_type != MARK_SRC_DEST_CALL
686 && INSN_SETS_ARE_DELAYED (x))
687 return;
688 #endif
690 x = PATTERN (x);
691 if (GET_CODE (x) != USE && GET_CODE (x) != CLOBBER)
692 goto restart;
693 return;
695 case SET:
696 /* If the source of a SET is a CALL, this is actually done by
697 the called routine. So only include it if we are to include the
698 effects of the calling routine. */
700 mark_set_resources (SET_DEST (x), res,
701 (mark_type == MARK_SRC_DEST_CALL
702 || GET_CODE (SET_SRC (x)) != CALL),
703 mark_type);
705 mark_set_resources (SET_SRC (x), res, 0, MARK_SRC_DEST);
706 return;
708 case CLOBBER:
709 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
710 return;
712 case SEQUENCE:
713 for (i = 0; i < XVECLEN (x, 0); i++)
714 if (! (INSN_ANNULLED_BRANCH_P (XVECEXP (x, 0, 0))
715 && INSN_FROM_TARGET_P (XVECEXP (x, 0, i))))
716 mark_set_resources (XVECEXP (x, 0, i), res, 0, mark_type);
717 return;
719 case POST_INC:
720 case PRE_INC:
721 case POST_DEC:
722 case PRE_DEC:
723 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
724 return;
726 case PRE_MODIFY:
727 case POST_MODIFY:
728 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
729 mark_set_resources (XEXP (XEXP (x, 1), 0), res, 0, MARK_SRC_DEST);
730 mark_set_resources (XEXP (XEXP (x, 1), 1), res, 0, MARK_SRC_DEST);
731 return;
733 case SIGN_EXTRACT:
734 case ZERO_EXTRACT:
735 mark_set_resources (XEXP (x, 0), res, in_dest, MARK_SRC_DEST);
736 mark_set_resources (XEXP (x, 1), res, 0, MARK_SRC_DEST);
737 mark_set_resources (XEXP (x, 2), res, 0, MARK_SRC_DEST);
738 return;
740 case MEM:
741 if (in_dest)
743 res->memory = 1;
744 res->unch_memory |= MEM_READONLY_P (x);
745 res->volatil |= MEM_VOLATILE_P (x);
748 mark_set_resources (XEXP (x, 0), res, 0, MARK_SRC_DEST);
749 return;
751 case SUBREG:
752 if (in_dest)
754 if (!REG_P (SUBREG_REG (x)))
755 mark_set_resources (SUBREG_REG (x), res, in_dest, mark_type);
756 else
758 unsigned int regno = subreg_regno (x);
759 unsigned int last_regno = regno + subreg_nregs (x);
761 gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
762 for (r = regno; r < last_regno; r++)
763 SET_HARD_REG_BIT (res->regs, r);
766 return;
768 case REG:
769 if (in_dest)
771 gcc_assert (HARD_REGISTER_P (x));
772 add_to_hard_reg_set (&res->regs, GET_MODE (x), REGNO (x));
774 return;
776 case UNSPEC_VOLATILE:
777 case ASM_INPUT:
778 /* Traditional asm's are always volatile. */
779 res->volatil = 1;
780 return;
782 case TRAP_IF:
783 res->volatil = 1;
784 break;
786 case ASM_OPERANDS:
787 res->volatil |= MEM_VOLATILE_P (x);
789 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
790 We can not just fall through here since then we would be confused
791 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
792 traditional asms unlike their normal usage. */
794 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
795 mark_set_resources (ASM_OPERANDS_INPUT (x, i), res, in_dest,
796 MARK_SRC_DEST);
797 return;
799 default:
800 break;
803 /* Process each sub-expression and flag what it needs. */
804 format_ptr = GET_RTX_FORMAT (code);
805 for (i = 0; i < GET_RTX_LENGTH (code); i++)
806 switch (*format_ptr++)
808 case 'e':
809 mark_set_resources (XEXP (x, i), res, in_dest, mark_type);
810 break;
812 case 'E':
813 for (j = 0; j < XVECLEN (x, i); j++)
814 mark_set_resources (XVECEXP (x, i, j), res, in_dest, mark_type);
815 break;
819 /* Return TRUE if INSN is a return, possibly with a filled delay slot. */
821 static bool
822 return_insn_p (const_rtx insn)
824 if (JUMP_P (insn) && GET_CODE (PATTERN (insn)) == RETURN)
825 return true;
827 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
828 return return_insn_p (XVECEXP (PATTERN (insn), 0, 0));
830 return false;
833 /* Set the resources that are live at TARGET.
835 If TARGET is zero, we refer to the end of the current function and can
836 return our precomputed value.
838 Otherwise, we try to find out what is live by consulting the basic block
839 information. This is tricky, because we must consider the actions of
840 reload and jump optimization, which occur after the basic block information
841 has been computed.
843 Accordingly, we proceed as follows::
845 We find the previous BARRIER and look at all immediately following labels
846 (with no intervening active insns) to see if any of them start a basic
847 block. If we hit the start of the function first, we use block 0.
849 Once we have found a basic block and a corresponding first insn, we can
850 accurately compute the live status (by starting at a label following a
851 BARRIER, we are immune to actions taken by reload and jump.) Then we
852 scan all insns between that point and our target. For each CLOBBER (or
853 for call-clobbered regs when we pass a CALL_INSN), mark the appropriate
854 registers are dead. For a SET, mark them as live.
856 We have to be careful when using REG_DEAD notes because they are not
857 updated by such things as find_equiv_reg. So keep track of registers
858 marked as dead that haven't been assigned to, and mark them dead at the
859 next CODE_LABEL since reload and jump won't propagate values across labels.
861 If we cannot find the start of a basic block (should be a very rare
862 case, if it can happen at all), mark everything as potentially live.
864 Next, scan forward from TARGET looking for things set or clobbered
865 before they are used. These are not live.
867 Because we can be called many times on the same target, save our results
868 in a hash table indexed by INSN_UID. This is only done if the function
869 init_resource_info () was invoked before we are called. */
871 void
872 mark_target_live_regs (rtx insns, rtx target, struct resources *res)
874 int b = -1;
875 unsigned int i;
876 struct target_info *tinfo = NULL;
877 rtx insn;
878 rtx jump_insn = 0;
879 rtx jump_target;
880 HARD_REG_SET scratch;
881 struct resources set, needed;
883 /* Handle end of function. */
884 if (target == 0 || ANY_RETURN_P (target))
886 *res = end_of_function_needs;
887 return;
890 /* Handle return insn. */
891 else if (return_insn_p (target))
893 *res = end_of_function_needs;
894 mark_referenced_resources (target, res, false);
895 return;
898 /* We have to assume memory is needed, but the CC isn't. */
899 res->memory = 1;
900 res->volatil = res->unch_memory = 0;
901 res->cc = 0;
903 /* See if we have computed this value already. */
904 if (target_hash_table != NULL)
906 for (tinfo = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
907 tinfo; tinfo = tinfo->next)
908 if (tinfo->uid == INSN_UID (target))
909 break;
911 /* Start by getting the basic block number. If we have saved
912 information, we can get it from there unless the insn at the
913 start of the basic block has been deleted. */
914 if (tinfo && tinfo->block != -1
915 && ! INSN_DELETED_P (BB_HEAD (BASIC_BLOCK (tinfo->block))))
916 b = tinfo->block;
919 if (b == -1)
920 b = find_basic_block (target, MAX_DELAY_SLOT_LIVE_SEARCH);
922 if (target_hash_table != NULL)
924 if (tinfo)
926 /* If the information is up-to-date, use it. Otherwise, we will
927 update it below. */
928 if (b == tinfo->block && b != -1 && tinfo->bb_tick == bb_ticks[b])
930 COPY_HARD_REG_SET (res->regs, tinfo->live_regs);
931 return;
934 else
936 /* Allocate a place to put our results and chain it into the
937 hash table. */
938 tinfo = XNEW (struct target_info);
939 tinfo->uid = INSN_UID (target);
940 tinfo->block = b;
941 tinfo->next
942 = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
943 target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME] = tinfo;
947 CLEAR_HARD_REG_SET (pending_dead_regs);
949 /* If we found a basic block, get the live registers from it and update
950 them with anything set or killed between its start and the insn before
951 TARGET; this custom life analysis is really about registers so we need
952 to use the LR problem. Otherwise, we must assume everything is live. */
953 if (b != -1)
955 regset regs_live = DF_LR_IN (BASIC_BLOCK (b));
956 rtx start_insn, stop_insn;
958 /* Compute hard regs live at start of block. */
959 REG_SET_TO_HARD_REG_SET (current_live_regs, regs_live);
961 /* Get starting and ending insn, handling the case where each might
962 be a SEQUENCE. */
963 start_insn = (b == ENTRY_BLOCK_PTR->next_bb->index ?
964 insns : BB_HEAD (BASIC_BLOCK (b)));
965 stop_insn = target;
967 if (NONJUMP_INSN_P (start_insn)
968 && GET_CODE (PATTERN (start_insn)) == SEQUENCE)
969 start_insn = XVECEXP (PATTERN (start_insn), 0, 0);
971 if (NONJUMP_INSN_P (stop_insn)
972 && GET_CODE (PATTERN (stop_insn)) == SEQUENCE)
973 stop_insn = next_insn (PREV_INSN (stop_insn));
975 for (insn = start_insn; insn != stop_insn;
976 insn = next_insn_no_annul (insn))
978 rtx link;
979 rtx real_insn = insn;
980 enum rtx_code code = GET_CODE (insn);
982 if (DEBUG_INSN_P (insn))
983 continue;
985 /* If this insn is from the target of a branch, it isn't going to
986 be used in the sequel. If it is used in both cases, this
987 test will not be true. */
988 if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
989 && INSN_FROM_TARGET_P (insn))
990 continue;
992 /* If this insn is a USE made by update_block, we care about the
993 underlying insn. */
994 if (code == INSN && GET_CODE (PATTERN (insn)) == USE
995 && INSN_P (XEXP (PATTERN (insn), 0)))
996 real_insn = XEXP (PATTERN (insn), 0);
998 if (CALL_P (real_insn))
1000 /* CALL clobbers all call-used regs that aren't fixed except
1001 sp, ap, and fp. Do this before setting the result of the
1002 call live. */
1003 AND_COMPL_HARD_REG_SET (current_live_regs,
1004 regs_invalidated_by_call);
1006 /* A CALL_INSN sets any global register live, since it may
1007 have been modified by the call. */
1008 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1009 if (global_regs[i])
1010 SET_HARD_REG_BIT (current_live_regs, i);
1013 /* Mark anything killed in an insn to be deadened at the next
1014 label. Ignore USE insns; the only REG_DEAD notes will be for
1015 parameters. But they might be early. A CALL_INSN will usually
1016 clobber registers used for parameters. It isn't worth bothering
1017 with the unlikely case when it won't. */
1018 if ((NONJUMP_INSN_P (real_insn)
1019 && GET_CODE (PATTERN (real_insn)) != USE
1020 && GET_CODE (PATTERN (real_insn)) != CLOBBER)
1021 || JUMP_P (real_insn)
1022 || CALL_P (real_insn))
1024 for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
1025 if (REG_NOTE_KIND (link) == REG_DEAD
1026 && REG_P (XEXP (link, 0))
1027 && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
1028 add_to_hard_reg_set (&pending_dead_regs,
1029 GET_MODE (XEXP (link, 0)),
1030 REGNO (XEXP (link, 0)));
1032 note_stores (PATTERN (real_insn), update_live_status, NULL);
1034 /* If any registers were unused after this insn, kill them.
1035 These notes will always be accurate. */
1036 for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
1037 if (REG_NOTE_KIND (link) == REG_UNUSED
1038 && REG_P (XEXP (link, 0))
1039 && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
1040 remove_from_hard_reg_set (&current_live_regs,
1041 GET_MODE (XEXP (link, 0)),
1042 REGNO (XEXP (link, 0)));
1045 else if (LABEL_P (real_insn))
1047 basic_block bb;
1049 /* A label clobbers the pending dead registers since neither
1050 reload nor jump will propagate a value across a label. */
1051 AND_COMPL_HARD_REG_SET (current_live_regs, pending_dead_regs);
1052 CLEAR_HARD_REG_SET (pending_dead_regs);
1054 /* We must conservatively assume that all registers that used
1055 to be live here still are. The fallthrough edge may have
1056 left a live register uninitialized. */
1057 bb = BLOCK_FOR_INSN (real_insn);
1058 if (bb)
1060 HARD_REG_SET extra_live;
1062 REG_SET_TO_HARD_REG_SET (extra_live, DF_LR_IN (bb));
1063 IOR_HARD_REG_SET (current_live_regs, extra_live);
1067 /* The beginning of the epilogue corresponds to the end of the
1068 RTL chain when there are no epilogue insns. Certain resources
1069 are implicitly required at that point. */
1070 else if (NOTE_P (real_insn)
1071 && NOTE_KIND (real_insn) == NOTE_INSN_EPILOGUE_BEG)
1072 IOR_HARD_REG_SET (current_live_regs, start_of_epilogue_needs.regs);
1075 COPY_HARD_REG_SET (res->regs, current_live_regs);
1076 if (tinfo != NULL)
1078 tinfo->block = b;
1079 tinfo->bb_tick = bb_ticks[b];
1082 else
1083 /* We didn't find the start of a basic block. Assume everything
1084 in use. This should happen only extremely rarely. */
1085 SET_HARD_REG_SET (res->regs);
1087 CLEAR_RESOURCE (&set);
1088 CLEAR_RESOURCE (&needed);
1090 jump_insn = find_dead_or_set_registers (target, res, &jump_target, 0,
1091 set, needed);
1093 /* If we hit an unconditional branch, we have another way of finding out
1094 what is live: we can see what is live at the branch target and include
1095 anything used but not set before the branch. We add the live
1096 resources found using the test below to those found until now. */
1098 if (jump_insn)
1100 struct resources new_resources;
1101 rtx stop_insn = next_active_insn (jump_insn);
1103 if (!ANY_RETURN_P (jump_target))
1104 jump_target = next_active_insn (jump_target);
1105 mark_target_live_regs (insns, jump_target, &new_resources);
1106 CLEAR_RESOURCE (&set);
1107 CLEAR_RESOURCE (&needed);
1109 /* Include JUMP_INSN in the needed registers. */
1110 for (insn = target; insn != stop_insn; insn = next_active_insn (insn))
1112 mark_referenced_resources (insn, &needed, true);
1114 COPY_HARD_REG_SET (scratch, needed.regs);
1115 AND_COMPL_HARD_REG_SET (scratch, set.regs);
1116 IOR_HARD_REG_SET (new_resources.regs, scratch);
1118 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
1121 IOR_HARD_REG_SET (res->regs, new_resources.regs);
1124 if (tinfo != NULL)
1126 COPY_HARD_REG_SET (tinfo->live_regs, res->regs);
1130 /* Initialize the resources required by mark_target_live_regs ().
1131 This should be invoked before the first call to mark_target_live_regs. */
1133 void
1134 init_resource_info (rtx epilogue_insn)
1136 int i;
1137 basic_block bb;
1139 /* Indicate what resources are required to be valid at the end of the current
1140 function. The condition code never is and memory always is. If the
1141 frame pointer is needed, it is and so is the stack pointer unless
1142 EXIT_IGNORE_STACK is nonzero. If the frame pointer is not needed, the
1143 stack pointer is. Registers used to return the function value are
1144 needed. Registers holding global variables are needed. */
1146 end_of_function_needs.cc = 0;
1147 end_of_function_needs.memory = 1;
1148 end_of_function_needs.unch_memory = 0;
1149 CLEAR_HARD_REG_SET (end_of_function_needs.regs);
1151 if (frame_pointer_needed)
1153 SET_HARD_REG_BIT (end_of_function_needs.regs, FRAME_POINTER_REGNUM);
1154 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1155 SET_HARD_REG_BIT (end_of_function_needs.regs, HARD_FRAME_POINTER_REGNUM);
1156 #endif
1157 if (! EXIT_IGNORE_STACK
1158 || current_function_sp_is_unchanging)
1159 SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
1161 else
1162 SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
1164 if (crtl->return_rtx != 0)
1165 mark_referenced_resources (crtl->return_rtx,
1166 &end_of_function_needs, true);
1168 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1169 if (global_regs[i]
1170 #ifdef EPILOGUE_USES
1171 || EPILOGUE_USES (i)
1172 #endif
1174 SET_HARD_REG_BIT (end_of_function_needs.regs, i);
1176 /* The registers required to be live at the end of the function are
1177 represented in the flow information as being dead just prior to
1178 reaching the end of the function. For example, the return of a value
1179 might be represented by a USE of the return register immediately
1180 followed by an unconditional jump to the return label where the
1181 return label is the end of the RTL chain. The end of the RTL chain
1182 is then taken to mean that the return register is live.
1184 This sequence is no longer maintained when epilogue instructions are
1185 added to the RTL chain. To reconstruct the original meaning, the
1186 start of the epilogue (NOTE_INSN_EPILOGUE_BEG) is regarded as the
1187 point where these registers become live (start_of_epilogue_needs).
1188 If epilogue instructions are present, the registers set by those
1189 instructions won't have been processed by flow. Thus, those
1190 registers are additionally required at the end of the RTL chain
1191 (end_of_function_needs). */
1193 start_of_epilogue_needs = end_of_function_needs;
1195 while ((epilogue_insn = next_nonnote_insn (epilogue_insn)))
1197 mark_set_resources (epilogue_insn, &end_of_function_needs, 0,
1198 MARK_SRC_DEST_CALL);
1199 if (return_insn_p (epilogue_insn))
1200 break;
1203 /* Allocate and initialize the tables used by mark_target_live_regs. */
1204 target_hash_table = XCNEWVEC (struct target_info *, TARGET_HASH_PRIME);
1205 bb_ticks = XCNEWVEC (int, last_basic_block);
1207 /* Set the BLOCK_FOR_INSN of each label that starts a basic block. */
1208 FOR_EACH_BB (bb)
1209 if (LABEL_P (BB_HEAD (bb)))
1210 BLOCK_FOR_INSN (BB_HEAD (bb)) = bb;
1213 /* Free up the resources allocated to mark_target_live_regs (). This
1214 should be invoked after the last call to mark_target_live_regs (). */
1216 void
1217 free_resource_info (void)
1219 basic_block bb;
1221 if (target_hash_table != NULL)
1223 int i;
1225 for (i = 0; i < TARGET_HASH_PRIME; ++i)
1227 struct target_info *ti = target_hash_table[i];
1229 while (ti)
1231 struct target_info *next = ti->next;
1232 free (ti);
1233 ti = next;
1237 free (target_hash_table);
1238 target_hash_table = NULL;
1241 if (bb_ticks != NULL)
1243 free (bb_ticks);
1244 bb_ticks = NULL;
1247 FOR_EACH_BB (bb)
1248 if (LABEL_P (BB_HEAD (bb)))
1249 BLOCK_FOR_INSN (BB_HEAD (bb)) = NULL;
1252 /* Clear any hashed information that we have stored for INSN. */
1254 void
1255 clear_hashed_info_for_insn (rtx insn)
1257 struct target_info *tinfo;
1259 if (target_hash_table != NULL)
1261 for (tinfo = target_hash_table[INSN_UID (insn) % TARGET_HASH_PRIME];
1262 tinfo; tinfo = tinfo->next)
1263 if (tinfo->uid == INSN_UID (insn))
1264 break;
1266 if (tinfo)
1267 tinfo->block = -1;
1271 /* Increment the tick count for the basic block that contains INSN. */
1273 void
1274 incr_ticks_for_insn (rtx insn)
1276 int b = find_basic_block (insn, MAX_DELAY_SLOT_LIVE_SEARCH);
1278 if (b != -1)
1279 bb_ticks[b]++;
1282 /* Add TRIAL to the set of resources used at the end of the current
1283 function. */
1284 void
1285 mark_end_of_function_resources (rtx trial, bool include_delayed_effects)
1287 mark_referenced_resources (trial, &end_of_function_needs,
1288 include_delayed_effects);