2011-08-19 Andrew Stubbs <ams@codesourcery.com>
[official-gcc.git] / gcc / modulo-sched.c
bloba12200c170122616e14b211eccbb4ef5470bcb39
1 /* Swing Modulo Scheduling implementation.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4 Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "diagnostic-core.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "hard-reg-set.h"
31 #include "regs.h"
32 #include "function.h"
33 #include "flags.h"
34 #include "insn-config.h"
35 #include "insn-attr.h"
36 #include "except.h"
37 #include "recog.h"
38 #include "sched-int.h"
39 #include "target.h"
40 #include "cfglayout.h"
41 #include "cfgloop.h"
42 #include "cfghooks.h"
43 #include "expr.h"
44 #include "params.h"
45 #include "gcov-io.h"
46 #include "ddg.h"
47 #include "timevar.h"
48 #include "tree-pass.h"
49 #include "dbgcnt.h"
50 #include "df.h"
52 #ifdef INSN_SCHEDULING
54 /* This file contains the implementation of the Swing Modulo Scheduler,
55 described in the following references:
56 [1] J. Llosa, A. Gonzalez, E. Ayguade, M. Valero., and J. Eckhardt.
57 Lifetime--sensitive modulo scheduling in a production environment.
58 IEEE Trans. on Comps., 50(3), March 2001
59 [2] J. Llosa, A. Gonzalez, E. Ayguade, and M. Valero.
60 Swing Modulo Scheduling: A Lifetime Sensitive Approach.
61 PACT '96 , pages 80-87, October 1996 (Boston - Massachusetts - USA).
63 The basic structure is:
64 1. Build a data-dependence graph (DDG) for each loop.
65 2. Use the DDG to order the insns of a loop (not in topological order
66 necessarily, but rather) trying to place each insn after all its
67 predecessors _or_ after all its successors.
68 3. Compute MII: a lower bound on the number of cycles to schedule the loop.
69 4. Use the ordering to perform list-scheduling of the loop:
70 1. Set II = MII. We will try to schedule the loop within II cycles.
71 2. Try to schedule the insns one by one according to the ordering.
72 For each insn compute an interval of cycles by considering already-
73 scheduled preds and succs (and associated latencies); try to place
74 the insn in the cycles of this window checking for potential
75 resource conflicts (using the DFA interface).
76 Note: this is different from the cycle-scheduling of schedule_insns;
77 here the insns are not scheduled monotonically top-down (nor bottom-
78 up).
79 3. If failed in scheduling all insns - bump II++ and try again, unless
80 II reaches an upper bound MaxII, in which case report failure.
81 5. If we succeeded in scheduling the loop within II cycles, we now
82 generate prolog and epilog, decrease the counter of the loop, and
83 perform modulo variable expansion for live ranges that span more than
84 II cycles (i.e. use register copies to prevent a def from overwriting
85 itself before reaching the use).
87 SMS works with countable loops (1) whose control part can be easily
88 decoupled from the rest of the loop and (2) whose loop count can
89 be easily adjusted. This is because we peel a constant number of
90 iterations into a prologue and epilogue for which we want to avoid
91 emitting the control part, and a kernel which is to iterate that
92 constant number of iterations less than the original loop. So the
93 control part should be a set of insns clearly identified and having
94 its own iv, not otherwise used in the loop (at-least for now), which
95 initializes a register before the loop to the number of iterations.
96 Currently SMS relies on the do-loop pattern to recognize such loops,
97 where (1) the control part comprises of all insns defining and/or
98 using a certain 'count' register and (2) the loop count can be
99 adjusted by modifying this register prior to the loop.
100 TODO: Rely on cfgloop analysis instead. */
102 /* This page defines partial-schedule structures and functions for
103 modulo scheduling. */
105 typedef struct partial_schedule *partial_schedule_ptr;
106 typedef struct ps_insn *ps_insn_ptr;
108 /* The minimum (absolute) cycle that a node of ps was scheduled in. */
109 #define PS_MIN_CYCLE(ps) (((partial_schedule_ptr)(ps))->min_cycle)
111 /* The maximum (absolute) cycle that a node of ps was scheduled in. */
112 #define PS_MAX_CYCLE(ps) (((partial_schedule_ptr)(ps))->max_cycle)
114 /* Perform signed modulo, always returning a non-negative value. */
115 #define SMODULO(x,y) ((x) % (y) < 0 ? ((x) % (y) + (y)) : (x) % (y))
117 /* The number of different iterations the nodes in ps span, assuming
118 the stage boundaries are placed efficiently. */
119 #define CALC_STAGE_COUNT(max_cycle,min_cycle,ii) ((max_cycle - min_cycle \
120 + 1 + ii - 1) / ii)
121 /* The stage count of ps. */
122 #define PS_STAGE_COUNT(ps) (((partial_schedule_ptr)(ps))->stage_count)
124 /* A single instruction in the partial schedule. */
125 struct ps_insn
127 /* The corresponding DDG_NODE. */
128 ddg_node_ptr node;
130 /* The (absolute) cycle in which the PS instruction is scheduled.
131 Same as SCHED_TIME (node). */
132 int cycle;
134 /* The next/prev PS_INSN in the same row. */
135 ps_insn_ptr next_in_row,
136 prev_in_row;
140 /* Holds the partial schedule as an array of II rows. Each entry of the
141 array points to a linked list of PS_INSNs, which represents the
142 instructions that are scheduled for that row. */
143 struct partial_schedule
145 int ii; /* Number of rows in the partial schedule. */
146 int history; /* Threshold for conflict checking using DFA. */
148 /* rows[i] points to linked list of insns scheduled in row i (0<=i<ii). */
149 ps_insn_ptr *rows;
151 /* rows_length[i] holds the number of instructions in the row.
152 It is used only (as an optimization) to back off quickly from
153 trying to schedule a node in a full row; that is, to avoid running
154 through futile DFA state transitions. */
155 int *rows_length;
157 /* The earliest absolute cycle of an insn in the partial schedule. */
158 int min_cycle;
160 /* The latest absolute cycle of an insn in the partial schedule. */
161 int max_cycle;
163 ddg_ptr g; /* The DDG of the insns in the partial schedule. */
165 int stage_count; /* The stage count of the partial schedule. */
168 /* We use this to record all the register replacements we do in
169 the kernel so we can undo SMS if it is not profitable. */
170 struct undo_replace_buff_elem
172 rtx insn;
173 rtx orig_reg;
174 rtx new_reg;
175 struct undo_replace_buff_elem *next;
180 static partial_schedule_ptr create_partial_schedule (int ii, ddg_ptr, int history);
181 static void free_partial_schedule (partial_schedule_ptr);
182 static void reset_partial_schedule (partial_schedule_ptr, int new_ii);
183 void print_partial_schedule (partial_schedule_ptr, FILE *);
184 static void verify_partial_schedule (partial_schedule_ptr, sbitmap);
185 static ps_insn_ptr ps_add_node_check_conflicts (partial_schedule_ptr,
186 ddg_node_ptr node, int cycle,
187 sbitmap must_precede,
188 sbitmap must_follow);
189 static void rotate_partial_schedule (partial_schedule_ptr, int);
190 void set_row_column_for_ps (partial_schedule_ptr);
191 static void ps_insert_empty_row (partial_schedule_ptr, int, sbitmap);
192 static int compute_split_row (sbitmap, int, int, int, ddg_node_ptr);
195 /* This page defines constants and structures for the modulo scheduling
196 driver. */
198 static int sms_order_nodes (ddg_ptr, int, int *, int *);
199 static void set_node_sched_params (ddg_ptr);
200 static partial_schedule_ptr sms_schedule_by_order (ddg_ptr, int, int, int *);
201 static void permute_partial_schedule (partial_schedule_ptr, rtx);
202 static void generate_prolog_epilog (partial_schedule_ptr, struct loop *,
203 rtx, rtx);
204 static void duplicate_insns_of_cycles (partial_schedule_ptr,
205 int, int, int, rtx);
206 static int calculate_stage_count (partial_schedule_ptr, int);
207 static void calculate_must_precede_follow (ddg_node_ptr, int, int,
208 int, int, sbitmap, sbitmap, sbitmap);
209 static int get_sched_window (partial_schedule_ptr, ddg_node_ptr,
210 sbitmap, int, int *, int *, int *);
211 static bool try_scheduling_node_in_cycle (partial_schedule_ptr, ddg_node_ptr,
212 int, int, sbitmap, int *, sbitmap,
213 sbitmap);
214 static bool remove_node_from_ps (partial_schedule_ptr, ps_insn_ptr);
216 #define SCHED_ASAP(x) (((node_sched_params_ptr)(x)->aux.info)->asap)
217 #define SCHED_TIME(x) (((node_sched_params_ptr)(x)->aux.info)->time)
218 #define SCHED_FIRST_REG_MOVE(x) \
219 (((node_sched_params_ptr)(x)->aux.info)->first_reg_move)
220 #define SCHED_NREG_MOVES(x) \
221 (((node_sched_params_ptr)(x)->aux.info)->nreg_moves)
222 #define SCHED_ROW(x) (((node_sched_params_ptr)(x)->aux.info)->row)
223 #define SCHED_STAGE(x) (((node_sched_params_ptr)(x)->aux.info)->stage)
224 #define SCHED_COLUMN(x) (((node_sched_params_ptr)(x)->aux.info)->column)
226 /* The scheduling parameters held for each node. */
227 typedef struct node_sched_params
229 int asap; /* A lower-bound on the absolute scheduling cycle. */
230 int time; /* The absolute scheduling cycle (time >= asap). */
232 /* The following field (first_reg_move) is a pointer to the first
233 register-move instruction added to handle the modulo-variable-expansion
234 of the register defined by this node. This register-move copies the
235 original register defined by the node. */
236 rtx first_reg_move;
238 /* The number of register-move instructions added, immediately preceding
239 first_reg_move. */
240 int nreg_moves;
242 int row; /* Holds time % ii. */
243 int stage; /* Holds time / ii. */
245 /* The column of a node inside the ps. If nodes u, v are on the same row,
246 u will precede v if column (u) < column (v). */
247 int column;
248 } *node_sched_params_ptr;
251 /* The following three functions are copied from the current scheduler
252 code in order to use sched_analyze() for computing the dependencies.
253 They are used when initializing the sched_info structure. */
254 static const char *
255 sms_print_insn (const_rtx insn, int aligned ATTRIBUTE_UNUSED)
257 static char tmp[80];
259 sprintf (tmp, "i%4d", INSN_UID (insn));
260 return tmp;
263 static void
264 compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED,
265 regset used ATTRIBUTE_UNUSED)
269 static struct common_sched_info_def sms_common_sched_info;
271 static struct sched_deps_info_def sms_sched_deps_info =
273 compute_jump_reg_dependencies,
274 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
275 NULL,
276 0, 0, 0
279 static struct haifa_sched_info sms_sched_info =
281 NULL,
282 NULL,
283 NULL,
284 NULL,
285 NULL,
286 sms_print_insn,
287 NULL,
288 NULL, /* insn_finishes_block_p */
289 NULL, NULL,
290 NULL, NULL,
291 0, 0,
293 NULL, NULL, NULL, NULL,
294 NULL, NULL,
298 /* Given HEAD and TAIL which are the first and last insns in a loop;
299 return the register which controls the loop. Return zero if it has
300 more than one occurrence in the loop besides the control part or the
301 do-loop pattern is not of the form we expect. */
302 static rtx
303 doloop_register_get (rtx head ATTRIBUTE_UNUSED, rtx tail ATTRIBUTE_UNUSED)
305 #ifdef HAVE_doloop_end
306 rtx reg, condition, insn, first_insn_not_to_check;
308 if (!JUMP_P (tail))
309 return NULL_RTX;
311 /* TODO: Free SMS's dependence on doloop_condition_get. */
312 condition = doloop_condition_get (tail);
313 if (! condition)
314 return NULL_RTX;
316 if (REG_P (XEXP (condition, 0)))
317 reg = XEXP (condition, 0);
318 else if (GET_CODE (XEXP (condition, 0)) == PLUS
319 && REG_P (XEXP (XEXP (condition, 0), 0)))
320 reg = XEXP (XEXP (condition, 0), 0);
321 else
322 gcc_unreachable ();
324 /* Check that the COUNT_REG has no other occurrences in the loop
325 until the decrement. We assume the control part consists of
326 either a single (parallel) branch-on-count or a (non-parallel)
327 branch immediately preceded by a single (decrement) insn. */
328 first_insn_not_to_check = (GET_CODE (PATTERN (tail)) == PARALLEL ? tail
329 : prev_nondebug_insn (tail));
331 for (insn = head; insn != first_insn_not_to_check; insn = NEXT_INSN (insn))
332 if (!DEBUG_INSN_P (insn) && reg_mentioned_p (reg, insn))
334 if (dump_file)
336 fprintf (dump_file, "SMS count_reg found ");
337 print_rtl_single (dump_file, reg);
338 fprintf (dump_file, " outside control in insn:\n");
339 print_rtl_single (dump_file, insn);
342 return NULL_RTX;
345 return reg;
346 #else
347 return NULL_RTX;
348 #endif
351 /* Check if COUNT_REG is set to a constant in the PRE_HEADER block, so
352 that the number of iterations is a compile-time constant. If so,
353 return the rtx that sets COUNT_REG to a constant, and set COUNT to
354 this constant. Otherwise return 0. */
355 static rtx
356 const_iteration_count (rtx count_reg, basic_block pre_header,
357 HOST_WIDEST_INT * count)
359 rtx insn;
360 rtx head, tail;
362 if (! pre_header)
363 return NULL_RTX;
365 get_ebb_head_tail (pre_header, pre_header, &head, &tail);
367 for (insn = tail; insn != PREV_INSN (head); insn = PREV_INSN (insn))
368 if (NONDEBUG_INSN_P (insn) && single_set (insn) &&
369 rtx_equal_p (count_reg, SET_DEST (single_set (insn))))
371 rtx pat = single_set (insn);
373 if (CONST_INT_P (SET_SRC (pat)))
375 *count = INTVAL (SET_SRC (pat));
376 return insn;
379 return NULL_RTX;
382 return NULL_RTX;
385 /* A very simple resource-based lower bound on the initiation interval.
386 ??? Improve the accuracy of this bound by considering the
387 utilization of various units. */
388 static int
389 res_MII (ddg_ptr g)
391 if (targetm.sched.sms_res_mii)
392 return targetm.sched.sms_res_mii (g);
394 return ((g->num_nodes - g->num_debug) / issue_rate);
398 /* Points to the array that contains the sched data for each node. */
399 static node_sched_params_ptr node_sched_params;
401 /* Allocate sched_params for each node and initialize it. Assumes that
402 the aux field of each node contain the asap bound (computed earlier),
403 and copies it into the sched_params field. */
404 static void
405 set_node_sched_params (ddg_ptr g)
407 int i;
409 /* Allocate for each node in the DDG a place to hold the "sched_data". */
410 /* Initialize ASAP/ALAP/HIGHT to zero. */
411 node_sched_params = (node_sched_params_ptr)
412 xcalloc (g->num_nodes,
413 sizeof (struct node_sched_params));
415 /* Set the pointer of the general data of the node to point to the
416 appropriate sched_params structure. */
417 for (i = 0; i < g->num_nodes; i++)
419 /* Watch out for aliasing problems? */
420 node_sched_params[i].asap = g->nodes[i].aux.count;
421 g->nodes[i].aux.info = &node_sched_params[i];
425 static void
426 print_node_sched_params (FILE *file, int num_nodes, ddg_ptr g)
428 int i;
430 if (! file)
431 return;
432 for (i = 0; i < num_nodes; i++)
434 node_sched_params_ptr nsp = &node_sched_params[i];
435 rtx reg_move = nsp->first_reg_move;
436 int j;
438 fprintf (file, "Node = %d; INSN = %d\n", i,
439 (INSN_UID (g->nodes[i].insn)));
440 fprintf (file, " asap = %d:\n", nsp->asap);
441 fprintf (file, " time = %d:\n", nsp->time);
442 fprintf (file, " nreg_moves = %d:\n", nsp->nreg_moves);
443 for (j = 0; j < nsp->nreg_moves; j++)
445 fprintf (file, " reg_move = ");
446 print_rtl_single (file, reg_move);
447 reg_move = PREV_INSN (reg_move);
453 Breaking intra-loop register anti-dependences:
454 Each intra-loop register anti-dependence implies a cross-iteration true
455 dependence of distance 1. Therefore, we can remove such false dependencies
456 and figure out if the partial schedule broke them by checking if (for a
457 true-dependence of distance 1): SCHED_TIME (def) < SCHED_TIME (use) and
458 if so generate a register move. The number of such moves is equal to:
459 SCHED_TIME (use) - SCHED_TIME (def) { 0 broken
460 nreg_moves = ----------------------------------- + 1 - { dependence.
461 ii { 1 if not.
463 static struct undo_replace_buff_elem *
464 generate_reg_moves (partial_schedule_ptr ps, bool rescan)
466 ddg_ptr g = ps->g;
467 int ii = ps->ii;
468 int i;
469 struct undo_replace_buff_elem *reg_move_replaces = NULL;
471 for (i = 0; i < g->num_nodes; i++)
473 ddg_node_ptr u = &g->nodes[i];
474 ddg_edge_ptr e;
475 int nreg_moves = 0, i_reg_move;
476 sbitmap *uses_of_defs;
477 rtx last_reg_move;
478 rtx prev_reg, old_reg;
480 /* Compute the number of reg_moves needed for u, by looking at life
481 ranges started at u (excluding self-loops). */
482 for (e = u->out; e; e = e->next_out)
483 if (e->type == TRUE_DEP && e->dest != e->src)
485 int nreg_moves4e = (SCHED_TIME (e->dest) - SCHED_TIME (e->src)) / ii;
487 if (e->distance == 1)
488 nreg_moves4e = (SCHED_TIME (e->dest) - SCHED_TIME (e->src) + ii) / ii;
490 /* If dest precedes src in the schedule of the kernel, then dest
491 will read before src writes and we can save one reg_copy. */
492 if (SCHED_ROW (e->dest) == SCHED_ROW (e->src)
493 && SCHED_COLUMN (e->dest) < SCHED_COLUMN (e->src))
494 nreg_moves4e--;
496 nreg_moves = MAX (nreg_moves, nreg_moves4e);
499 if (nreg_moves == 0)
500 continue;
502 /* Every use of the register defined by node may require a different
503 copy of this register, depending on the time the use is scheduled.
504 Set a bitmap vector, telling which nodes use each copy of this
505 register. */
506 uses_of_defs = sbitmap_vector_alloc (nreg_moves, g->num_nodes);
507 sbitmap_vector_zero (uses_of_defs, nreg_moves);
508 for (e = u->out; e; e = e->next_out)
509 if (e->type == TRUE_DEP && e->dest != e->src)
511 int dest_copy = (SCHED_TIME (e->dest) - SCHED_TIME (e->src)) / ii;
513 if (e->distance == 1)
514 dest_copy = (SCHED_TIME (e->dest) - SCHED_TIME (e->src) + ii) / ii;
516 if (SCHED_ROW (e->dest) == SCHED_ROW (e->src)
517 && SCHED_COLUMN (e->dest) < SCHED_COLUMN (e->src))
518 dest_copy--;
520 if (dest_copy)
521 SET_BIT (uses_of_defs[dest_copy - 1], e->dest->cuid);
524 /* Now generate the reg_moves, attaching relevant uses to them. */
525 SCHED_NREG_MOVES (u) = nreg_moves;
526 old_reg = prev_reg = copy_rtx (SET_DEST (single_set (u->insn)));
527 /* Insert the reg-moves right before the notes which precede
528 the insn they relates to. */
529 last_reg_move = u->first_note;
531 for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
533 unsigned int i_use = 0;
534 rtx new_reg = gen_reg_rtx (GET_MODE (prev_reg));
535 rtx reg_move = gen_move_insn (new_reg, prev_reg);
536 sbitmap_iterator sbi;
538 add_insn_before (reg_move, last_reg_move, NULL);
539 last_reg_move = reg_move;
541 if (!SCHED_FIRST_REG_MOVE (u))
542 SCHED_FIRST_REG_MOVE (u) = reg_move;
544 EXECUTE_IF_SET_IN_SBITMAP (uses_of_defs[i_reg_move], 0, i_use, sbi)
546 struct undo_replace_buff_elem *rep;
548 rep = (struct undo_replace_buff_elem *)
549 xcalloc (1, sizeof (struct undo_replace_buff_elem));
550 rep->insn = g->nodes[i_use].insn;
551 rep->orig_reg = old_reg;
552 rep->new_reg = new_reg;
554 if (! reg_move_replaces)
555 reg_move_replaces = rep;
556 else
558 rep->next = reg_move_replaces;
559 reg_move_replaces = rep;
562 replace_rtx (g->nodes[i_use].insn, old_reg, new_reg);
563 if (rescan)
564 df_insn_rescan (g->nodes[i_use].insn);
567 prev_reg = new_reg;
569 sbitmap_vector_free (uses_of_defs);
571 return reg_move_replaces;
574 /* Free memory allocated for the undo buffer. */
575 static void
576 free_undo_replace_buff (struct undo_replace_buff_elem *reg_move_replaces)
579 while (reg_move_replaces)
581 struct undo_replace_buff_elem *rep = reg_move_replaces;
583 reg_move_replaces = reg_move_replaces->next;
584 free (rep);
588 /* Update the sched_params (time, row and stage) for node U using the II,
589 the CYCLE of U and MIN_CYCLE.
590 We're not simply taking the following
591 SCHED_STAGE (u) = CALC_STAGE_COUNT (SCHED_TIME (u), min_cycle, ii);
592 because the stages may not be aligned on cycle 0. */
593 static void
594 update_node_sched_params (ddg_node_ptr u, int ii, int cycle, int min_cycle)
596 int sc_until_cycle_zero;
597 int stage;
599 SCHED_TIME (u) = cycle;
600 SCHED_ROW (u) = SMODULO (cycle, ii);
602 /* The calculation of stage count is done adding the number
603 of stages before cycle zero and after cycle zero. */
604 sc_until_cycle_zero = CALC_STAGE_COUNT (-1, min_cycle, ii);
606 if (SCHED_TIME (u) < 0)
608 stage = CALC_STAGE_COUNT (-1, SCHED_TIME (u), ii);
609 SCHED_STAGE (u) = sc_until_cycle_zero - stage;
611 else
613 stage = CALC_STAGE_COUNT (SCHED_TIME (u), 0, ii);
614 SCHED_STAGE (u) = sc_until_cycle_zero + stage - 1;
618 /* Bump the SCHED_TIMEs of all nodes by AMOUNT. Set the values of
619 SCHED_ROW and SCHED_STAGE. Instruction scheduled on cycle AMOUNT
620 will move to cycle zero. */
621 static void
622 reset_sched_times (partial_schedule_ptr ps, int amount)
624 int row;
625 int ii = ps->ii;
626 ps_insn_ptr crr_insn;
628 for (row = 0; row < ii; row++)
629 for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
631 ddg_node_ptr u = crr_insn->node;
632 int normalized_time = SCHED_TIME (u) - amount;
633 int new_min_cycle = PS_MIN_CYCLE (ps) - amount;
635 if (dump_file)
637 /* Print the scheduling times after the rotation. */
638 fprintf (dump_file, "crr_insn->node=%d (insn id %d), "
639 "crr_insn->cycle=%d, min_cycle=%d", crr_insn->node->cuid,
640 INSN_UID (crr_insn->node->insn), normalized_time,
641 new_min_cycle);
642 if (JUMP_P (crr_insn->node->insn))
643 fprintf (dump_file, " (branch)");
644 fprintf (dump_file, "\n");
647 gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
648 gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
650 crr_insn->cycle = normalized_time;
651 update_node_sched_params (u, ii, normalized_time, new_min_cycle);
655 /* Set SCHED_COLUMN of each node according to its position in PS. */
656 static void
657 set_columns_for_ps (partial_schedule_ptr ps)
659 int row;
661 for (row = 0; row < ps->ii; row++)
663 ps_insn_ptr cur_insn = ps->rows[row];
664 int column = 0;
666 for (; cur_insn; cur_insn = cur_insn->next_in_row)
667 SCHED_COLUMN (cur_insn->node) = column++;
671 /* Permute the insns according to their order in PS, from row 0 to
672 row ii-1, and position them right before LAST. This schedules
673 the insns of the loop kernel. */
674 static void
675 permute_partial_schedule (partial_schedule_ptr ps, rtx last)
677 int ii = ps->ii;
678 int row;
679 ps_insn_ptr ps_ij;
681 for (row = 0; row < ii ; row++)
682 for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
683 if (PREV_INSN (last) != ps_ij->node->insn)
684 reorder_insns_nobb (ps_ij->node->first_note, ps_ij->node->insn,
685 PREV_INSN (last));
688 /* Set bitmaps TMP_FOLLOW and TMP_PRECEDE to MUST_FOLLOW and MUST_PRECEDE
689 respectively only if cycle C falls on the border of the scheduling
690 window boundaries marked by START and END cycles. STEP is the
691 direction of the window. */
692 static inline void
693 set_must_precede_follow (sbitmap *tmp_follow, sbitmap must_follow,
694 sbitmap *tmp_precede, sbitmap must_precede, int c,
695 int start, int end, int step)
697 *tmp_precede = NULL;
698 *tmp_follow = NULL;
700 if (c == start)
702 if (step == 1)
703 *tmp_precede = must_precede;
704 else /* step == -1. */
705 *tmp_follow = must_follow;
707 if (c == end - step)
709 if (step == 1)
710 *tmp_follow = must_follow;
711 else /* step == -1. */
712 *tmp_precede = must_precede;
717 /* Return True if the branch can be moved to row ii-1 while
718 normalizing the partial schedule PS to start from cycle zero and thus
719 optimize the SC. Otherwise return False. */
720 static bool
721 optimize_sc (partial_schedule_ptr ps, ddg_ptr g)
723 int amount = PS_MIN_CYCLE (ps);
724 sbitmap sched_nodes = sbitmap_alloc (g->num_nodes);
725 int start, end, step;
726 int ii = ps->ii;
727 bool ok = false;
728 int stage_count, stage_count_curr;
730 /* Compare the SC after normalization and SC after bringing the branch
731 to row ii-1. If they are equal just bail out. */
732 stage_count = calculate_stage_count (ps, amount);
733 stage_count_curr =
734 calculate_stage_count (ps, SCHED_TIME (g->closing_branch) - (ii - 1));
736 if (stage_count == stage_count_curr)
738 if (dump_file)
739 fprintf (dump_file, "SMS SC already optimized.\n");
741 ok = false;
742 goto clear;
745 if (dump_file)
747 fprintf (dump_file, "SMS Trying to optimize branch location\n");
748 fprintf (dump_file, "SMS partial schedule before trial:\n");
749 print_partial_schedule (ps, dump_file);
752 /* First, normalize the partial scheduling. */
753 reset_sched_times (ps, amount);
754 rotate_partial_schedule (ps, amount);
755 if (dump_file)
757 fprintf (dump_file,
758 "SMS partial schedule after normalization (ii, %d, SC %d):\n",
759 ii, stage_count);
760 print_partial_schedule (ps, dump_file);
763 if (SMODULO (SCHED_TIME (g->closing_branch), ii) == ii - 1)
765 ok = true;
766 goto clear;
769 sbitmap_ones (sched_nodes);
771 /* Calculate the new placement of the branch. It should be in row
772 ii-1 and fall into it's scheduling window. */
773 if (get_sched_window (ps, g->closing_branch, sched_nodes, ii, &start,
774 &step, &end) == 0)
776 bool success;
777 ps_insn_ptr next_ps_i;
778 int branch_cycle = SCHED_TIME (g->closing_branch);
779 int row = SMODULO (branch_cycle, ps->ii);
780 int num_splits = 0;
781 sbitmap must_precede, must_follow, tmp_precede, tmp_follow;
782 int c;
784 if (dump_file)
785 fprintf (dump_file, "\nTrying to schedule node %d "
786 "INSN = %d in (%d .. %d) step %d\n",
787 g->closing_branch->cuid,
788 (INSN_UID (g->closing_branch->insn)), start, end, step);
790 gcc_assert ((step > 0 && start < end) || (step < 0 && start > end));
791 if (step == 1)
793 c = start + ii - SMODULO (start, ii) - 1;
794 gcc_assert (c >= start);
795 if (c >= end)
797 ok = false;
798 if (dump_file)
799 fprintf (dump_file,
800 "SMS failed to schedule branch at cycle: %d\n", c);
801 goto clear;
804 else
806 c = start - SMODULO (start, ii) - 1;
807 gcc_assert (c <= start);
809 if (c <= end)
811 if (dump_file)
812 fprintf (dump_file,
813 "SMS failed to schedule branch at cycle: %d\n", c);
814 ok = false;
815 goto clear;
819 must_precede = sbitmap_alloc (g->num_nodes);
820 must_follow = sbitmap_alloc (g->num_nodes);
822 /* Try to schedule the branch is it's new cycle. */
823 calculate_must_precede_follow (g->closing_branch, start, end,
824 step, ii, sched_nodes,
825 must_precede, must_follow);
827 set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede,
828 must_precede, c, start, end, step);
830 /* Find the element in the partial schedule related to the closing
831 branch so we can remove it from it's current cycle. */
832 for (next_ps_i = ps->rows[row];
833 next_ps_i; next_ps_i = next_ps_i->next_in_row)
834 if (next_ps_i->node->cuid == g->closing_branch->cuid)
835 break;
837 gcc_assert (next_ps_i);
838 gcc_assert (remove_node_from_ps (ps, next_ps_i));
839 success =
840 try_scheduling_node_in_cycle (ps, g->closing_branch,
841 g->closing_branch->cuid, c,
842 sched_nodes, &num_splits,
843 tmp_precede, tmp_follow);
844 gcc_assert (num_splits == 0);
845 if (!success)
847 if (dump_file)
848 fprintf (dump_file,
849 "SMS failed to schedule branch at cycle: %d, "
850 "bringing it back to cycle %d\n", c, branch_cycle);
852 /* The branch was failed to be placed in row ii - 1.
853 Put it back in it's original place in the partial
854 schedualing. */
855 set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede,
856 must_precede, branch_cycle, start, end,
857 step);
858 success =
859 try_scheduling_node_in_cycle (ps, g->closing_branch,
860 g->closing_branch->cuid,
861 branch_cycle, sched_nodes,
862 &num_splits, tmp_precede,
863 tmp_follow);
864 gcc_assert (success && (num_splits == 0));
865 ok = false;
867 else
869 /* The branch is placed in row ii - 1. */
870 if (dump_file)
871 fprintf (dump_file,
872 "SMS success in moving branch to cycle %d\n", c);
874 update_node_sched_params (g->closing_branch, ii, c,
875 PS_MIN_CYCLE (ps));
876 ok = true;
879 free (must_precede);
880 free (must_follow);
883 clear:
884 free (sched_nodes);
885 return ok;
888 static void
889 duplicate_insns_of_cycles (partial_schedule_ptr ps, int from_stage,
890 int to_stage, int for_prolog, rtx count_reg)
892 int row;
893 ps_insn_ptr ps_ij;
895 for (row = 0; row < ps->ii; row++)
896 for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
898 ddg_node_ptr u_node = ps_ij->node;
899 int j, i_reg_moves;
900 rtx reg_move = NULL_RTX;
902 /* Do not duplicate any insn which refers to count_reg as it
903 belongs to the control part.
904 The closing branch is scheduled as well and thus should
905 be ignored.
906 TODO: This should be done by analyzing the control part of
907 the loop. */
908 if (reg_mentioned_p (count_reg, u_node->insn)
909 || JUMP_P (ps_ij->node->insn))
910 continue;
912 if (for_prolog)
914 /* SCHED_STAGE (u_node) >= from_stage == 0. Generate increasing
915 number of reg_moves starting with the second occurrence of
916 u_node, which is generated if its SCHED_STAGE <= to_stage. */
917 i_reg_moves = to_stage - SCHED_STAGE (u_node) + 1;
918 i_reg_moves = MAX (i_reg_moves, 0);
919 i_reg_moves = MIN (i_reg_moves, SCHED_NREG_MOVES (u_node));
921 /* The reg_moves start from the *first* reg_move backwards. */
922 if (i_reg_moves)
924 reg_move = SCHED_FIRST_REG_MOVE (u_node);
925 for (j = 1; j < i_reg_moves; j++)
926 reg_move = PREV_INSN (reg_move);
929 else /* It's for the epilog. */
931 /* SCHED_STAGE (u_node) <= to_stage. Generate all reg_moves,
932 starting to decrease one stage after u_node no longer occurs;
933 that is, generate all reg_moves until
934 SCHED_STAGE (u_node) == from_stage - 1. */
935 i_reg_moves = SCHED_NREG_MOVES (u_node)
936 - (from_stage - SCHED_STAGE (u_node) - 1);
937 i_reg_moves = MAX (i_reg_moves, 0);
938 i_reg_moves = MIN (i_reg_moves, SCHED_NREG_MOVES (u_node));
940 /* The reg_moves start from the *last* reg_move forwards. */
941 if (i_reg_moves)
943 reg_move = SCHED_FIRST_REG_MOVE (u_node);
944 for (j = 1; j < SCHED_NREG_MOVES (u_node); j++)
945 reg_move = PREV_INSN (reg_move);
949 for (j = 0; j < i_reg_moves; j++, reg_move = NEXT_INSN (reg_move))
950 emit_insn (copy_rtx (PATTERN (reg_move)));
951 if (SCHED_STAGE (u_node) >= from_stage
952 && SCHED_STAGE (u_node) <= to_stage)
953 duplicate_insn_chain (u_node->first_note, u_node->insn);
958 /* Generate the instructions (including reg_moves) for prolog & epilog. */
959 static void
960 generate_prolog_epilog (partial_schedule_ptr ps, struct loop *loop,
961 rtx count_reg, rtx count_init)
963 int i;
964 int last_stage = PS_STAGE_COUNT (ps) - 1;
965 edge e;
967 /* Generate the prolog, inserting its insns on the loop-entry edge. */
968 start_sequence ();
970 if (!count_init)
972 /* Generate instructions at the beginning of the prolog to
973 adjust the loop count by STAGE_COUNT. If loop count is constant
974 (count_init), this constant is adjusted by STAGE_COUNT in
975 generate_prolog_epilog function. */
976 rtx sub_reg = NULL_RTX;
978 sub_reg = expand_simple_binop (GET_MODE (count_reg), MINUS,
979 count_reg, GEN_INT (last_stage),
980 count_reg, 1, OPTAB_DIRECT);
981 gcc_assert (REG_P (sub_reg));
982 if (REGNO (sub_reg) != REGNO (count_reg))
983 emit_move_insn (count_reg, sub_reg);
986 for (i = 0; i < last_stage; i++)
987 duplicate_insns_of_cycles (ps, 0, i, 1, count_reg);
989 /* Put the prolog on the entry edge. */
990 e = loop_preheader_edge (loop);
991 split_edge_and_insert (e, get_insns ());
993 end_sequence ();
995 /* Generate the epilog, inserting its insns on the loop-exit edge. */
996 start_sequence ();
998 for (i = 0; i < last_stage; i++)
999 duplicate_insns_of_cycles (ps, i + 1, last_stage, 0, count_reg);
1001 /* Put the epilogue on the exit edge. */
1002 gcc_assert (single_exit (loop));
1003 e = single_exit (loop);
1004 split_edge_and_insert (e, get_insns ());
1005 end_sequence ();
1008 /* Return true if all the BBs of the loop are empty except the
1009 loop header. */
1010 static bool
1011 loop_single_full_bb_p (struct loop *loop)
1013 unsigned i;
1014 basic_block *bbs = get_loop_body (loop);
1016 for (i = 0; i < loop->num_nodes ; i++)
1018 rtx head, tail;
1019 bool empty_bb = true;
1021 if (bbs[i] == loop->header)
1022 continue;
1024 /* Make sure that basic blocks other than the header
1025 have only notes labels or jumps. */
1026 get_ebb_head_tail (bbs[i], bbs[i], &head, &tail);
1027 for (; head != NEXT_INSN (tail); head = NEXT_INSN (head))
1029 if (NOTE_P (head) || LABEL_P (head)
1030 || (INSN_P (head) && (DEBUG_INSN_P (head) || JUMP_P (head))))
1031 continue;
1032 empty_bb = false;
1033 break;
1036 if (! empty_bb)
1038 free (bbs);
1039 return false;
1042 free (bbs);
1043 return true;
1046 /* A simple loop from SMS point of view; it is a loop that is composed of
1047 either a single basic block or two BBs - a header and a latch. */
1048 #define SIMPLE_SMS_LOOP_P(loop) ((loop->num_nodes < 3 ) \
1049 && (EDGE_COUNT (loop->latch->preds) == 1) \
1050 && (EDGE_COUNT (loop->latch->succs) == 1))
1052 /* Return true if the loop is in its canonical form and false if not.
1053 i.e. SIMPLE_SMS_LOOP_P and have one preheader block, and single exit. */
1054 static bool
1055 loop_canon_p (struct loop *loop)
1058 if (loop->inner || !loop_outer (loop))
1060 if (dump_file)
1061 fprintf (dump_file, "SMS loop inner or !loop_outer\n");
1062 return false;
1065 if (!single_exit (loop))
1067 if (dump_file)
1069 rtx insn = BB_END (loop->header);
1071 fprintf (dump_file, "SMS loop many exits ");
1072 fprintf (dump_file, " %s %d (file, line)\n",
1073 insn_file (insn), insn_line (insn));
1075 return false;
1078 if (! SIMPLE_SMS_LOOP_P (loop) && ! loop_single_full_bb_p (loop))
1080 if (dump_file)
1082 rtx insn = BB_END (loop->header);
1084 fprintf (dump_file, "SMS loop many BBs. ");
1085 fprintf (dump_file, " %s %d (file, line)\n",
1086 insn_file (insn), insn_line (insn));
1088 return false;
1091 return true;
1094 /* If there are more than one entry for the loop,
1095 make it one by splitting the first entry edge and
1096 redirecting the others to the new BB. */
1097 static void
1098 canon_loop (struct loop *loop)
1100 edge e;
1101 edge_iterator i;
1103 /* Avoid annoying special cases of edges going to exit
1104 block. */
1105 FOR_EACH_EDGE (e, i, EXIT_BLOCK_PTR->preds)
1106 if ((e->flags & EDGE_FALLTHRU) && (EDGE_COUNT (e->src->succs) > 1))
1107 split_edge (e);
1109 if (loop->latch == loop->header
1110 || EDGE_COUNT (loop->latch->succs) > 1)
1112 FOR_EACH_EDGE (e, i, loop->header->preds)
1113 if (e->src == loop->latch)
1114 break;
1115 split_edge (e);
1119 /* Setup infos. */
1120 static void
1121 setup_sched_infos (void)
1123 memcpy (&sms_common_sched_info, &haifa_common_sched_info,
1124 sizeof (sms_common_sched_info));
1125 sms_common_sched_info.sched_pass_id = SCHED_SMS_PASS;
1126 common_sched_info = &sms_common_sched_info;
1128 sched_deps_info = &sms_sched_deps_info;
1129 current_sched_info = &sms_sched_info;
1132 /* Probability in % that the sms-ed loop rolls enough so that optimized
1133 version may be entered. Just a guess. */
1134 #define PROB_SMS_ENOUGH_ITERATIONS 80
1136 /* Used to calculate the upper bound of ii. */
1137 #define MAXII_FACTOR 2
1139 /* Main entry point, perform SMS scheduling on the loops of the function
1140 that consist of single basic blocks. */
1141 static void
1142 sms_schedule (void)
1144 rtx insn;
1145 ddg_ptr *g_arr, g;
1146 int * node_order;
1147 int maxii, max_asap;
1148 loop_iterator li;
1149 partial_schedule_ptr ps;
1150 basic_block bb = NULL;
1151 struct loop *loop;
1152 basic_block condition_bb = NULL;
1153 edge latch_edge;
1154 gcov_type trip_count = 0;
1156 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
1157 | LOOPS_HAVE_RECORDED_EXITS);
1158 if (number_of_loops () <= 1)
1160 loop_optimizer_finalize ();
1161 return; /* There are no loops to schedule. */
1164 /* Initialize issue_rate. */
1165 if (targetm.sched.issue_rate)
1167 int temp = reload_completed;
1169 reload_completed = 1;
1170 issue_rate = targetm.sched.issue_rate ();
1171 reload_completed = temp;
1173 else
1174 issue_rate = 1;
1176 /* Initialize the scheduler. */
1177 setup_sched_infos ();
1178 haifa_sched_init ();
1180 /* Allocate memory to hold the DDG array one entry for each loop.
1181 We use loop->num as index into this array. */
1182 g_arr = XCNEWVEC (ddg_ptr, number_of_loops ());
1184 if (dump_file)
1186 fprintf (dump_file, "\n\nSMS analysis phase\n");
1187 fprintf (dump_file, "===================\n\n");
1190 /* Build DDGs for all the relevant loops and hold them in G_ARR
1191 indexed by the loop index. */
1192 FOR_EACH_LOOP (li, loop, 0)
1194 rtx head, tail;
1195 rtx count_reg;
1197 /* For debugging. */
1198 if (dbg_cnt (sms_sched_loop) == false)
1200 if (dump_file)
1201 fprintf (dump_file, "SMS reached max limit... \n");
1203 break;
1206 if (dump_file)
1208 rtx insn = BB_END (loop->header);
1210 fprintf (dump_file, "SMS loop num: %d, file: %s, line: %d\n",
1211 loop->num, insn_file (insn), insn_line (insn));
1215 if (! loop_canon_p (loop))
1216 continue;
1218 if (! loop_single_full_bb_p (loop))
1220 if (dump_file)
1221 fprintf (dump_file, "SMS not loop_single_full_bb_p\n");
1222 continue;
1225 bb = loop->header;
1227 get_ebb_head_tail (bb, bb, &head, &tail);
1228 latch_edge = loop_latch_edge (loop);
1229 gcc_assert (single_exit (loop));
1230 if (single_exit (loop)->count)
1231 trip_count = latch_edge->count / single_exit (loop)->count;
1233 /* Perform SMS only on loops that their average count is above threshold. */
1235 if ( latch_edge->count
1236 && (latch_edge->count < single_exit (loop)->count * SMS_LOOP_AVERAGE_COUNT_THRESHOLD))
1238 if (dump_file)
1240 fprintf (dump_file, " %s %d (file, line)\n",
1241 insn_file (tail), insn_line (tail));
1242 fprintf (dump_file, "SMS single-bb-loop\n");
1243 if (profile_info && flag_branch_probabilities)
1245 fprintf (dump_file, "SMS loop-count ");
1246 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
1247 (HOST_WIDEST_INT) bb->count);
1248 fprintf (dump_file, "\n");
1249 fprintf (dump_file, "SMS trip-count ");
1250 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
1251 (HOST_WIDEST_INT) trip_count);
1252 fprintf (dump_file, "\n");
1253 fprintf (dump_file, "SMS profile-sum-max ");
1254 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
1255 (HOST_WIDEST_INT) profile_info->sum_max);
1256 fprintf (dump_file, "\n");
1259 continue;
1262 /* Make sure this is a doloop. */
1263 if ( !(count_reg = doloop_register_get (head, tail)))
1265 if (dump_file)
1266 fprintf (dump_file, "SMS doloop_register_get failed\n");
1267 continue;
1270 /* Don't handle BBs with calls or barriers or auto-increment insns
1271 (to avoid creating invalid reg-moves for the auto-increment insns),
1272 or !single_set with the exception of instructions that include
1273 count_reg---these instructions are part of the control part
1274 that do-loop recognizes.
1275 ??? Should handle auto-increment insns.
1276 ??? Should handle insns defining subregs. */
1277 for (insn = head; insn != NEXT_INSN (tail); insn = NEXT_INSN (insn))
1279 rtx set;
1281 if (CALL_P (insn)
1282 || BARRIER_P (insn)
1283 || (NONDEBUG_INSN_P (insn) && !JUMP_P (insn)
1284 && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE
1285 && !reg_mentioned_p (count_reg, insn))
1286 || (FIND_REG_INC_NOTE (insn, NULL_RTX) != 0)
1287 || (INSN_P (insn) && (set = single_set (insn))
1288 && GET_CODE (SET_DEST (set)) == SUBREG))
1289 break;
1292 if (insn != NEXT_INSN (tail))
1294 if (dump_file)
1296 if (CALL_P (insn))
1297 fprintf (dump_file, "SMS loop-with-call\n");
1298 else if (BARRIER_P (insn))
1299 fprintf (dump_file, "SMS loop-with-barrier\n");
1300 else if (FIND_REG_INC_NOTE (insn, NULL_RTX) != 0)
1301 fprintf (dump_file, "SMS reg inc\n");
1302 else if ((NONDEBUG_INSN_P (insn) && !JUMP_P (insn)
1303 && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE))
1304 fprintf (dump_file, "SMS loop-with-not-single-set\n");
1305 else
1306 fprintf (dump_file, "SMS loop with subreg in lhs\n");
1307 print_rtl_single (dump_file, insn);
1310 continue;
1313 /* Always schedule the closing branch with the rest of the
1314 instructions. The branch is rotated to be in row ii-1 at the
1315 end of the scheduling procedure to make sure it's the last
1316 instruction in the iteration. */
1317 if (! (g = create_ddg (bb, 1)))
1319 if (dump_file)
1320 fprintf (dump_file, "SMS create_ddg failed\n");
1321 continue;
1324 g_arr[loop->num] = g;
1325 if (dump_file)
1326 fprintf (dump_file, "...OK\n");
1329 if (dump_file)
1331 fprintf (dump_file, "\nSMS transformation phase\n");
1332 fprintf (dump_file, "=========================\n\n");
1335 /* We don't want to perform SMS on new loops - created by versioning. */
1336 FOR_EACH_LOOP (li, loop, 0)
1338 rtx head, tail;
1339 rtx count_reg, count_init;
1340 int mii, rec_mii;
1341 unsigned stage_count = 0;
1342 HOST_WIDEST_INT loop_count = 0;
1343 bool opt_sc_p = false;
1345 if (! (g = g_arr[loop->num]))
1346 continue;
1348 if (dump_file)
1350 rtx insn = BB_END (loop->header);
1352 fprintf (dump_file, "SMS loop num: %d, file: %s, line: %d\n",
1353 loop->num, insn_file (insn), insn_line (insn));
1355 print_ddg (dump_file, g);
1358 get_ebb_head_tail (loop->header, loop->header, &head, &tail);
1360 latch_edge = loop_latch_edge (loop);
1361 gcc_assert (single_exit (loop));
1362 if (single_exit (loop)->count)
1363 trip_count = latch_edge->count / single_exit (loop)->count;
1365 if (dump_file)
1367 fprintf (dump_file, " %s %d (file, line)\n",
1368 insn_file (tail), insn_line (tail));
1369 fprintf (dump_file, "SMS single-bb-loop\n");
1370 if (profile_info && flag_branch_probabilities)
1372 fprintf (dump_file, "SMS loop-count ");
1373 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
1374 (HOST_WIDEST_INT) bb->count);
1375 fprintf (dump_file, "\n");
1376 fprintf (dump_file, "SMS profile-sum-max ");
1377 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
1378 (HOST_WIDEST_INT) profile_info->sum_max);
1379 fprintf (dump_file, "\n");
1381 fprintf (dump_file, "SMS doloop\n");
1382 fprintf (dump_file, "SMS built-ddg %d\n", g->num_nodes);
1383 fprintf (dump_file, "SMS num-loads %d\n", g->num_loads);
1384 fprintf (dump_file, "SMS num-stores %d\n", g->num_stores);
1388 /* In case of th loop have doloop register it gets special
1389 handling. */
1390 count_init = NULL_RTX;
1391 if ((count_reg = doloop_register_get (head, tail)))
1393 basic_block pre_header;
1395 pre_header = loop_preheader_edge (loop)->src;
1396 count_init = const_iteration_count (count_reg, pre_header,
1397 &loop_count);
1399 gcc_assert (count_reg);
1401 if (dump_file && count_init)
1403 fprintf (dump_file, "SMS const-doloop ");
1404 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
1405 loop_count);
1406 fprintf (dump_file, "\n");
1409 node_order = XNEWVEC (int, g->num_nodes);
1411 mii = 1; /* Need to pass some estimate of mii. */
1412 rec_mii = sms_order_nodes (g, mii, node_order, &max_asap);
1413 mii = MAX (res_MII (g), rec_mii);
1414 maxii = MAX (max_asap, MAXII_FACTOR * mii);
1416 if (dump_file)
1417 fprintf (dump_file, "SMS iis %d %d %d (rec_mii, mii, maxii)\n",
1418 rec_mii, mii, maxii);
1420 /* After sms_order_nodes and before sms_schedule_by_order, to copy over
1421 ASAP. */
1422 set_node_sched_params (g);
1424 ps = sms_schedule_by_order (g, mii, maxii, node_order);
1426 if (ps)
1428 /* Try to achieve optimized SC by normalizing the partial
1429 schedule (having the cycles start from cycle zero).
1430 The branch location must be placed in row ii-1 in the
1431 final scheduling. If failed, shift all instructions to
1432 position the branch in row ii-1. */
1433 opt_sc_p = optimize_sc (ps, g);
1434 if (opt_sc_p)
1435 stage_count = calculate_stage_count (ps, 0);
1436 else
1438 /* Bring the branch to cycle ii-1. */
1439 int amount = SCHED_TIME (g->closing_branch) - (ps->ii - 1);
1441 if (dump_file)
1442 fprintf (dump_file, "SMS schedule branch at cycle ii-1\n");
1444 stage_count = calculate_stage_count (ps, amount);
1447 gcc_assert (stage_count >= 1);
1448 PS_STAGE_COUNT (ps) = stage_count;
1451 /* The default value of PARAM_SMS_MIN_SC is 2 as stage count of
1452 1 means that there is no interleaving between iterations thus
1453 we let the scheduling passes do the job in this case. */
1454 if (stage_count < (unsigned) PARAM_VALUE (PARAM_SMS_MIN_SC)
1455 || (count_init && (loop_count <= stage_count))
1456 || (flag_branch_probabilities && (trip_count <= stage_count)))
1458 if (dump_file)
1460 fprintf (dump_file, "SMS failed... \n");
1461 fprintf (dump_file, "SMS sched-failed (stage-count=%d, loop-count=", stage_count);
1462 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, loop_count);
1463 fprintf (dump_file, ", trip-count=");
1464 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, trip_count);
1465 fprintf (dump_file, ")\n");
1468 else
1470 struct undo_replace_buff_elem *reg_move_replaces;
1472 if (!opt_sc_p)
1474 /* Rotate the partial schedule to have the branch in row ii-1. */
1475 int amount = SCHED_TIME (g->closing_branch) - (ps->ii - 1);
1477 reset_sched_times (ps, amount);
1478 rotate_partial_schedule (ps, amount);
1481 set_columns_for_ps (ps);
1483 canon_loop (loop);
1485 if (dump_file)
1487 fprintf (dump_file,
1488 "SMS succeeded %d %d (with ii, sc)\n", ps->ii,
1489 stage_count);
1490 print_partial_schedule (ps, dump_file);
1493 /* case the BCT count is not known , Do loop-versioning */
1494 if (count_reg && ! count_init)
1496 rtx comp_rtx = gen_rtx_fmt_ee (GT, VOIDmode, count_reg,
1497 GEN_INT(stage_count));
1498 unsigned prob = (PROB_SMS_ENOUGH_ITERATIONS
1499 * REG_BR_PROB_BASE) / 100;
1501 loop_version (loop, comp_rtx, &condition_bb,
1502 prob, prob, REG_BR_PROB_BASE - prob,
1503 true);
1506 /* Set new iteration count of loop kernel. */
1507 if (count_reg && count_init)
1508 SET_SRC (single_set (count_init)) = GEN_INT (loop_count
1509 - stage_count + 1);
1511 /* Now apply the scheduled kernel to the RTL of the loop. */
1512 permute_partial_schedule (ps, g->closing_branch->first_note);
1514 /* Mark this loop as software pipelined so the later
1515 scheduling passes doesn't touch it. */
1516 if (! flag_resched_modulo_sched)
1517 g->bb->flags |= BB_DISABLE_SCHEDULE;
1518 /* The life-info is not valid any more. */
1519 df_set_bb_dirty (g->bb);
1521 reg_move_replaces = generate_reg_moves (ps, true);
1522 if (dump_file)
1523 print_node_sched_params (dump_file, g->num_nodes, g);
1524 /* Generate prolog and epilog. */
1525 generate_prolog_epilog (ps, loop, count_reg, count_init);
1527 free_undo_replace_buff (reg_move_replaces);
1530 free_partial_schedule (ps);
1531 free (node_sched_params);
1532 free (node_order);
1533 free_ddg (g);
1536 free (g_arr);
1538 /* Release scheduler data, needed until now because of DFA. */
1539 haifa_sched_finish ();
1540 loop_optimizer_finalize ();
1543 /* The SMS scheduling algorithm itself
1544 -----------------------------------
1545 Input: 'O' an ordered list of insns of a loop.
1546 Output: A scheduling of the loop - kernel, prolog, and epilogue.
1548 'Q' is the empty Set
1549 'PS' is the partial schedule; it holds the currently scheduled nodes with
1550 their cycle/slot.
1551 'PSP' previously scheduled predecessors.
1552 'PSS' previously scheduled successors.
1553 't(u)' the cycle where u is scheduled.
1554 'l(u)' is the latency of u.
1555 'd(v,u)' is the dependence distance from v to u.
1556 'ASAP(u)' the earliest time at which u could be scheduled as computed in
1557 the node ordering phase.
1558 'check_hardware_resources_conflicts(u, PS, c)'
1559 run a trace around cycle/slot through DFA model
1560 to check resource conflicts involving instruction u
1561 at cycle c given the partial schedule PS.
1562 'add_to_partial_schedule_at_time(u, PS, c)'
1563 Add the node/instruction u to the partial schedule
1564 PS at time c.
1565 'calculate_register_pressure(PS)'
1566 Given a schedule of instructions, calculate the register
1567 pressure it implies. One implementation could be the
1568 maximum number of overlapping live ranges.
1569 'maxRP' The maximum allowed register pressure, it is usually derived from the number
1570 registers available in the hardware.
1572 1. II = MII.
1573 2. PS = empty list
1574 3. for each node u in O in pre-computed order
1575 4. if (PSP(u) != Q && PSS(u) == Q) then
1576 5. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
1577 6. start = Early_start; end = Early_start + II - 1; step = 1
1578 11. else if (PSP(u) == Q && PSS(u) != Q) then
1579 12. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
1580 13. start = Late_start; end = Late_start - II + 1; step = -1
1581 14. else if (PSP(u) != Q && PSS(u) != Q) then
1582 15. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
1583 16. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
1584 17. start = Early_start;
1585 18. end = min(Early_start + II - 1 , Late_start);
1586 19. step = 1
1587 20. else "if (PSP(u) == Q && PSS(u) == Q)"
1588 21. start = ASAP(u); end = start + II - 1; step = 1
1589 22. endif
1591 23. success = false
1592 24. for (c = start ; c != end ; c += step)
1593 25. if check_hardware_resources_conflicts(u, PS, c) then
1594 26. add_to_partial_schedule_at_time(u, PS, c)
1595 27. success = true
1596 28. break
1597 29. endif
1598 30. endfor
1599 31. if (success == false) then
1600 32. II = II + 1
1601 33. if (II > maxII) then
1602 34. finish - failed to schedule
1603 35. endif
1604 36. goto 2.
1605 37. endif
1606 38. endfor
1607 39. if (calculate_register_pressure(PS) > maxRP) then
1608 40. goto 32.
1609 41. endif
1610 42. compute epilogue & prologue
1611 43. finish - succeeded to schedule
1614 /* A limit on the number of cycles that resource conflicts can span. ??? Should
1615 be provided by DFA, and be dependent on the type of insn scheduled. Currently
1616 set to 0 to save compile time. */
1617 #define DFA_HISTORY SMS_DFA_HISTORY
1619 /* A threshold for the number of repeated unsuccessful attempts to insert
1620 an empty row, before we flush the partial schedule and start over. */
1621 #define MAX_SPLIT_NUM 10
1622 /* Given the partial schedule PS, this function calculates and returns the
1623 cycles in which we can schedule the node with the given index I.
1624 NOTE: Here we do the backtracking in SMS, in some special cases. We have
1625 noticed that there are several cases in which we fail to SMS the loop
1626 because the sched window of a node is empty due to tight data-deps. In
1627 such cases we want to unschedule some of the predecessors/successors
1628 until we get non-empty scheduling window. It returns -1 if the
1629 scheduling window is empty and zero otherwise. */
1631 static int
1632 get_sched_window (partial_schedule_ptr ps, ddg_node_ptr u_node,
1633 sbitmap sched_nodes, int ii, int *start_p, int *step_p,
1634 int *end_p)
1636 int start, step, end;
1637 int early_start, late_start;
1638 ddg_edge_ptr e;
1639 sbitmap psp = sbitmap_alloc (ps->g->num_nodes);
1640 sbitmap pss = sbitmap_alloc (ps->g->num_nodes);
1641 sbitmap u_node_preds = NODE_PREDECESSORS (u_node);
1642 sbitmap u_node_succs = NODE_SUCCESSORS (u_node);
1643 int psp_not_empty;
1644 int pss_not_empty;
1645 int count_preds;
1646 int count_succs;
1648 /* 1. compute sched window for u (start, end, step). */
1649 sbitmap_zero (psp);
1650 sbitmap_zero (pss);
1651 psp_not_empty = sbitmap_a_and_b_cg (psp, u_node_preds, sched_nodes);
1652 pss_not_empty = sbitmap_a_and_b_cg (pss, u_node_succs, sched_nodes);
1654 /* We first compute a forward range (start <= end), then decide whether
1655 to reverse it. */
1656 early_start = INT_MIN;
1657 late_start = INT_MAX;
1658 start = INT_MIN;
1659 end = INT_MAX;
1660 step = 1;
1662 count_preds = 0;
1663 count_succs = 0;
1665 if (dump_file && (psp_not_empty || pss_not_empty))
1667 fprintf (dump_file, "\nAnalyzing dependencies for node %d (INSN %d)"
1668 "; ii = %d\n\n", u_node->cuid, INSN_UID (u_node->insn), ii);
1669 fprintf (dump_file, "%11s %11s %11s %11s %5s\n",
1670 "start", "early start", "late start", "end", "time");
1671 fprintf (dump_file, "=========== =========== =========== ==========="
1672 " =====\n");
1674 /* Calculate early_start and limit end. Both bounds are inclusive. */
1675 if (psp_not_empty)
1676 for (e = u_node->in; e != 0; e = e->next_in)
1678 ddg_node_ptr v_node = e->src;
1680 if (TEST_BIT (sched_nodes, v_node->cuid))
1682 int p_st = SCHED_TIME (v_node);
1683 int earliest = p_st + e->latency - (e->distance * ii);
1684 int latest = (e->data_type == MEM_DEP ? p_st + ii - 1 : INT_MAX);
1686 if (dump_file)
1688 fprintf (dump_file, "%11s %11d %11s %11d %5d",
1689 "", earliest, "", latest, p_st);
1690 print_ddg_edge (dump_file, e);
1691 fprintf (dump_file, "\n");
1694 early_start = MAX (early_start, earliest);
1695 end = MIN (end, latest);
1697 if (e->type == TRUE_DEP && e->data_type == REG_DEP)
1698 count_preds++;
1702 /* Calculate late_start and limit start. Both bounds are inclusive. */
1703 if (pss_not_empty)
1704 for (e = u_node->out; e != 0; e = e->next_out)
1706 ddg_node_ptr v_node = e->dest;
1708 if (TEST_BIT (sched_nodes, v_node->cuid))
1710 int s_st = SCHED_TIME (v_node);
1711 int earliest = (e->data_type == MEM_DEP ? s_st - ii + 1 : INT_MIN);
1712 int latest = s_st - e->latency + (e->distance * ii);
1714 if (dump_file)
1716 fprintf (dump_file, "%11d %11s %11d %11s %5d",
1717 earliest, "", latest, "", s_st);
1718 print_ddg_edge (dump_file, e);
1719 fprintf (dump_file, "\n");
1722 start = MAX (start, earliest);
1723 late_start = MIN (late_start, latest);
1725 if (e->type == TRUE_DEP && e->data_type == REG_DEP)
1726 count_succs++;
1730 if (dump_file && (psp_not_empty || pss_not_empty))
1732 fprintf (dump_file, "----------- ----------- ----------- -----------"
1733 " -----\n");
1734 fprintf (dump_file, "%11d %11d %11d %11d %5s %s\n",
1735 start, early_start, late_start, end, "",
1736 "(max, max, min, min)");
1739 /* Get a target scheduling window no bigger than ii. */
1740 if (early_start == INT_MIN && late_start == INT_MAX)
1741 early_start = SCHED_ASAP (u_node);
1742 else if (early_start == INT_MIN)
1743 early_start = late_start - (ii - 1);
1744 late_start = MIN (late_start, early_start + (ii - 1));
1746 /* Apply memory dependence limits. */
1747 start = MAX (start, early_start);
1748 end = MIN (end, late_start);
1750 if (dump_file && (psp_not_empty || pss_not_empty))
1751 fprintf (dump_file, "%11s %11d %11d %11s %5s final window\n",
1752 "", start, end, "", "");
1754 /* If there are at least as many successors as predecessors, schedule the
1755 node close to its successors. */
1756 if (pss_not_empty && count_succs >= count_preds)
1758 int tmp = end;
1759 end = start;
1760 start = tmp;
1761 step = -1;
1764 /* Now that we've finalized the window, make END an exclusive rather
1765 than an inclusive bound. */
1766 end += step;
1768 *start_p = start;
1769 *step_p = step;
1770 *end_p = end;
1771 sbitmap_free (psp);
1772 sbitmap_free (pss);
1774 if ((start >= end && step == 1) || (start <= end && step == -1))
1776 if (dump_file)
1777 fprintf (dump_file, "\nEmpty window: start=%d, end=%d, step=%d\n",
1778 start, end, step);
1779 return -1;
1782 return 0;
1785 /* Calculate MUST_PRECEDE/MUST_FOLLOW bitmaps of U_NODE; which is the
1786 node currently been scheduled. At the end of the calculation
1787 MUST_PRECEDE/MUST_FOLLOW contains all predecessors/successors of
1788 U_NODE which are (1) already scheduled in the first/last row of
1789 U_NODE's scheduling window, (2) whose dependence inequality with U
1790 becomes an equality when U is scheduled in this same row, and (3)
1791 whose dependence latency is zero.
1793 The first and last rows are calculated using the following parameters:
1794 START/END rows - The cycles that begins/ends the traversal on the window;
1795 searching for an empty cycle to schedule U_NODE.
1796 STEP - The direction in which we traverse the window.
1797 II - The initiation interval. */
1799 static void
1800 calculate_must_precede_follow (ddg_node_ptr u_node, int start, int end,
1801 int step, int ii, sbitmap sched_nodes,
1802 sbitmap must_precede, sbitmap must_follow)
1804 ddg_edge_ptr e;
1805 int first_cycle_in_window, last_cycle_in_window;
1807 gcc_assert (must_precede && must_follow);
1809 /* Consider the following scheduling window:
1810 {first_cycle_in_window, first_cycle_in_window+1, ...,
1811 last_cycle_in_window}. If step is 1 then the following will be
1812 the order we traverse the window: {start=first_cycle_in_window,
1813 first_cycle_in_window+1, ..., end=last_cycle_in_window+1},
1814 or {start=last_cycle_in_window, last_cycle_in_window-1, ...,
1815 end=first_cycle_in_window-1} if step is -1. */
1816 first_cycle_in_window = (step == 1) ? start : end - step;
1817 last_cycle_in_window = (step == 1) ? end - step : start;
1819 sbitmap_zero (must_precede);
1820 sbitmap_zero (must_follow);
1822 if (dump_file)
1823 fprintf (dump_file, "\nmust_precede: ");
1825 /* Instead of checking if:
1826 (SMODULO (SCHED_TIME (e->src), ii) == first_row_in_window)
1827 && ((SCHED_TIME (e->src) + e->latency - (e->distance * ii)) ==
1828 first_cycle_in_window)
1829 && e->latency == 0
1830 we use the fact that latency is non-negative:
1831 SCHED_TIME (e->src) - (e->distance * ii) <=
1832 SCHED_TIME (e->src) + e->latency - (e->distance * ii)) <=
1833 first_cycle_in_window
1834 and check only if
1835 SCHED_TIME (e->src) - (e->distance * ii) == first_cycle_in_window */
1836 for (e = u_node->in; e != 0; e = e->next_in)
1837 if (TEST_BIT (sched_nodes, e->src->cuid)
1838 && ((SCHED_TIME (e->src) - (e->distance * ii)) ==
1839 first_cycle_in_window))
1841 if (dump_file)
1842 fprintf (dump_file, "%d ", e->src->cuid);
1844 SET_BIT (must_precede, e->src->cuid);
1847 if (dump_file)
1848 fprintf (dump_file, "\nmust_follow: ");
1850 /* Instead of checking if:
1851 (SMODULO (SCHED_TIME (e->dest), ii) == last_row_in_window)
1852 && ((SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) ==
1853 last_cycle_in_window)
1854 && e->latency == 0
1855 we use the fact that latency is non-negative:
1856 SCHED_TIME (e->dest) + (e->distance * ii) >=
1857 SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) >=
1858 last_cycle_in_window
1859 and check only if
1860 SCHED_TIME (e->dest) + (e->distance * ii) == last_cycle_in_window */
1861 for (e = u_node->out; e != 0; e = e->next_out)
1862 if (TEST_BIT (sched_nodes, e->dest->cuid)
1863 && ((SCHED_TIME (e->dest) + (e->distance * ii)) ==
1864 last_cycle_in_window))
1866 if (dump_file)
1867 fprintf (dump_file, "%d ", e->dest->cuid);
1869 SET_BIT (must_follow, e->dest->cuid);
1872 if (dump_file)
1873 fprintf (dump_file, "\n");
1876 /* Return 1 if U_NODE can be scheduled in CYCLE. Use the following
1877 parameters to decide if that's possible:
1878 PS - The partial schedule.
1879 U - The serial number of U_NODE.
1880 NUM_SPLITS - The number of row splits made so far.
1881 MUST_PRECEDE - The nodes that must precede U_NODE. (only valid at
1882 the first row of the scheduling window)
1883 MUST_FOLLOW - The nodes that must follow U_NODE. (only valid at the
1884 last row of the scheduling window) */
1886 static bool
1887 try_scheduling_node_in_cycle (partial_schedule_ptr ps, ddg_node_ptr u_node,
1888 int u, int cycle, sbitmap sched_nodes,
1889 int *num_splits, sbitmap must_precede,
1890 sbitmap must_follow)
1892 ps_insn_ptr psi;
1893 bool success = 0;
1895 verify_partial_schedule (ps, sched_nodes);
1896 psi = ps_add_node_check_conflicts (ps, u_node, cycle,
1897 must_precede, must_follow);
1898 if (psi)
1900 SCHED_TIME (u_node) = cycle;
1901 SET_BIT (sched_nodes, u);
1902 success = 1;
1903 *num_splits = 0;
1904 if (dump_file)
1905 fprintf (dump_file, "Scheduled w/o split in %d\n", cycle);
1909 return success;
1912 /* This function implements the scheduling algorithm for SMS according to the
1913 above algorithm. */
1914 static partial_schedule_ptr
1915 sms_schedule_by_order (ddg_ptr g, int mii, int maxii, int *nodes_order)
1917 int ii = mii;
1918 int i, c, success, num_splits = 0;
1919 int flush_and_start_over = true;
1920 int num_nodes = g->num_nodes;
1921 int start, end, step; /* Place together into one struct? */
1922 sbitmap sched_nodes = sbitmap_alloc (num_nodes);
1923 sbitmap must_precede = sbitmap_alloc (num_nodes);
1924 sbitmap must_follow = sbitmap_alloc (num_nodes);
1925 sbitmap tobe_scheduled = sbitmap_alloc (num_nodes);
1927 partial_schedule_ptr ps = create_partial_schedule (ii, g, DFA_HISTORY);
1929 sbitmap_ones (tobe_scheduled);
1930 sbitmap_zero (sched_nodes);
1932 while (flush_and_start_over && (ii < maxii))
1935 if (dump_file)
1936 fprintf (dump_file, "Starting with ii=%d\n", ii);
1937 flush_and_start_over = false;
1938 sbitmap_zero (sched_nodes);
1940 for (i = 0; i < num_nodes; i++)
1942 int u = nodes_order[i];
1943 ddg_node_ptr u_node = &ps->g->nodes[u];
1944 rtx insn = u_node->insn;
1946 if (!NONDEBUG_INSN_P (insn))
1948 RESET_BIT (tobe_scheduled, u);
1949 continue;
1952 if (TEST_BIT (sched_nodes, u))
1953 continue;
1955 /* Try to get non-empty scheduling window. */
1956 success = 0;
1957 if (get_sched_window (ps, u_node, sched_nodes, ii, &start,
1958 &step, &end) == 0)
1960 if (dump_file)
1961 fprintf (dump_file, "\nTrying to schedule node %d "
1962 "INSN = %d in (%d .. %d) step %d\n", u, (INSN_UID
1963 (g->nodes[u].insn)), start, end, step);
1965 gcc_assert ((step > 0 && start < end)
1966 || (step < 0 && start > end));
1968 calculate_must_precede_follow (u_node, start, end, step, ii,
1969 sched_nodes, must_precede,
1970 must_follow);
1972 for (c = start; c != end; c += step)
1974 sbitmap tmp_precede, tmp_follow;
1976 set_must_precede_follow (&tmp_follow, must_follow,
1977 &tmp_precede, must_precede,
1978 c, start, end, step);
1979 success =
1980 try_scheduling_node_in_cycle (ps, u_node, u, c,
1981 sched_nodes,
1982 &num_splits, tmp_precede,
1983 tmp_follow);
1984 if (success)
1985 break;
1988 verify_partial_schedule (ps, sched_nodes);
1990 if (!success)
1992 int split_row;
1994 if (ii++ == maxii)
1995 break;
1997 if (num_splits >= MAX_SPLIT_NUM)
1999 num_splits = 0;
2000 flush_and_start_over = true;
2001 verify_partial_schedule (ps, sched_nodes);
2002 reset_partial_schedule (ps, ii);
2003 verify_partial_schedule (ps, sched_nodes);
2004 break;
2007 num_splits++;
2008 /* The scheduling window is exclusive of 'end'
2009 whereas compute_split_window() expects an inclusive,
2010 ordered range. */
2011 if (step == 1)
2012 split_row = compute_split_row (sched_nodes, start, end - 1,
2013 ps->ii, u_node);
2014 else
2015 split_row = compute_split_row (sched_nodes, end + 1, start,
2016 ps->ii, u_node);
2018 ps_insert_empty_row (ps, split_row, sched_nodes);
2019 i--; /* Go back and retry node i. */
2021 if (dump_file)
2022 fprintf (dump_file, "num_splits=%d\n", num_splits);
2025 /* ??? If (success), check register pressure estimates. */
2026 } /* Continue with next node. */
2027 } /* While flush_and_start_over. */
2028 if (ii >= maxii)
2030 free_partial_schedule (ps);
2031 ps = NULL;
2033 else
2034 gcc_assert (sbitmap_equal (tobe_scheduled, sched_nodes));
2036 sbitmap_free (sched_nodes);
2037 sbitmap_free (must_precede);
2038 sbitmap_free (must_follow);
2039 sbitmap_free (tobe_scheduled);
2041 return ps;
2044 /* This function inserts a new empty row into PS at the position
2045 according to SPLITROW, keeping all already scheduled instructions
2046 intact and updating their SCHED_TIME and cycle accordingly. */
2047 static void
2048 ps_insert_empty_row (partial_schedule_ptr ps, int split_row,
2049 sbitmap sched_nodes)
2051 ps_insn_ptr crr_insn;
2052 ps_insn_ptr *rows_new;
2053 int ii = ps->ii;
2054 int new_ii = ii + 1;
2055 int row;
2056 int *rows_length_new;
2058 verify_partial_schedule (ps, sched_nodes);
2060 /* We normalize sched_time and rotate ps to have only non-negative sched
2061 times, for simplicity of updating cycles after inserting new row. */
2062 split_row -= ps->min_cycle;
2063 split_row = SMODULO (split_row, ii);
2064 if (dump_file)
2065 fprintf (dump_file, "split_row=%d\n", split_row);
2067 reset_sched_times (ps, PS_MIN_CYCLE (ps));
2068 rotate_partial_schedule (ps, PS_MIN_CYCLE (ps));
2070 rows_new = (ps_insn_ptr *) xcalloc (new_ii, sizeof (ps_insn_ptr));
2071 rows_length_new = (int *) xcalloc (new_ii, sizeof (int));
2072 for (row = 0; row < split_row; row++)
2074 rows_new[row] = ps->rows[row];
2075 rows_length_new[row] = ps->rows_length[row];
2076 ps->rows[row] = NULL;
2077 for (crr_insn = rows_new[row];
2078 crr_insn; crr_insn = crr_insn->next_in_row)
2080 ddg_node_ptr u = crr_insn->node;
2081 int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii);
2083 SCHED_TIME (u) = new_time;
2084 crr_insn->cycle = new_time;
2085 SCHED_ROW (u) = new_time % new_ii;
2086 SCHED_STAGE (u) = new_time / new_ii;
2091 rows_new[split_row] = NULL;
2093 for (row = split_row; row < ii; row++)
2095 rows_new[row + 1] = ps->rows[row];
2096 rows_length_new[row + 1] = ps->rows_length[row];
2097 ps->rows[row] = NULL;
2098 for (crr_insn = rows_new[row + 1];
2099 crr_insn; crr_insn = crr_insn->next_in_row)
2101 ddg_node_ptr u = crr_insn->node;
2102 int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii) + 1;
2104 SCHED_TIME (u) = new_time;
2105 crr_insn->cycle = new_time;
2106 SCHED_ROW (u) = new_time % new_ii;
2107 SCHED_STAGE (u) = new_time / new_ii;
2111 /* Updating ps. */
2112 ps->min_cycle = ps->min_cycle + ps->min_cycle / ii
2113 + (SMODULO (ps->min_cycle, ii) >= split_row ? 1 : 0);
2114 ps->max_cycle = ps->max_cycle + ps->max_cycle / ii
2115 + (SMODULO (ps->max_cycle, ii) >= split_row ? 1 : 0);
2116 free (ps->rows);
2117 ps->rows = rows_new;
2118 free (ps->rows_length);
2119 ps->rows_length = rows_length_new;
2120 ps->ii = new_ii;
2121 gcc_assert (ps->min_cycle >= 0);
2123 verify_partial_schedule (ps, sched_nodes);
2125 if (dump_file)
2126 fprintf (dump_file, "min_cycle=%d, max_cycle=%d\n", ps->min_cycle,
2127 ps->max_cycle);
2130 /* Given U_NODE which is the node that failed to be scheduled; LOW and
2131 UP which are the boundaries of it's scheduling window; compute using
2132 SCHED_NODES and II a row in the partial schedule that can be split
2133 which will separate a critical predecessor from a critical successor
2134 thereby expanding the window, and return it. */
2135 static int
2136 compute_split_row (sbitmap sched_nodes, int low, int up, int ii,
2137 ddg_node_ptr u_node)
2139 ddg_edge_ptr e;
2140 int lower = INT_MIN, upper = INT_MAX;
2141 ddg_node_ptr crit_pred = NULL;
2142 ddg_node_ptr crit_succ = NULL;
2143 int crit_cycle;
2145 for (e = u_node->in; e != 0; e = e->next_in)
2147 ddg_node_ptr v_node = e->src;
2149 if (TEST_BIT (sched_nodes, v_node->cuid)
2150 && (low == SCHED_TIME (v_node) + e->latency - (e->distance * ii)))
2151 if (SCHED_TIME (v_node) > lower)
2153 crit_pred = v_node;
2154 lower = SCHED_TIME (v_node);
2158 if (crit_pred != NULL)
2160 crit_cycle = SCHED_TIME (crit_pred) + 1;
2161 return SMODULO (crit_cycle, ii);
2164 for (e = u_node->out; e != 0; e = e->next_out)
2166 ddg_node_ptr v_node = e->dest;
2167 if (TEST_BIT (sched_nodes, v_node->cuid)
2168 && (up == SCHED_TIME (v_node) - e->latency + (e->distance * ii)))
2169 if (SCHED_TIME (v_node) < upper)
2171 crit_succ = v_node;
2172 upper = SCHED_TIME (v_node);
2176 if (crit_succ != NULL)
2178 crit_cycle = SCHED_TIME (crit_succ);
2179 return SMODULO (crit_cycle, ii);
2182 if (dump_file)
2183 fprintf (dump_file, "Both crit_pred and crit_succ are NULL\n");
2185 return SMODULO ((low + up + 1) / 2, ii);
2188 static void
2189 verify_partial_schedule (partial_schedule_ptr ps, sbitmap sched_nodes)
2191 int row;
2192 ps_insn_ptr crr_insn;
2194 for (row = 0; row < ps->ii; row++)
2196 int length = 0;
2198 for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
2200 ddg_node_ptr u = crr_insn->node;
2202 length++;
2203 gcc_assert (TEST_BIT (sched_nodes, u->cuid));
2204 /* ??? Test also that all nodes of sched_nodes are in ps, perhaps by
2205 popcount (sched_nodes) == number of insns in ps. */
2206 gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
2207 gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
2210 gcc_assert (ps->rows_length[row] == length);
2215 /* This page implements the algorithm for ordering the nodes of a DDG
2216 for modulo scheduling, activated through the
2217 "int sms_order_nodes (ddg_ptr, int mii, int * result)" API. */
2219 #define ORDER_PARAMS(x) ((struct node_order_params *) (x)->aux.info)
2220 #define ASAP(x) (ORDER_PARAMS ((x))->asap)
2221 #define ALAP(x) (ORDER_PARAMS ((x))->alap)
2222 #define HEIGHT(x) (ORDER_PARAMS ((x))->height)
2223 #define MOB(x) (ALAP ((x)) - ASAP ((x)))
2224 #define DEPTH(x) (ASAP ((x)))
2226 typedef struct node_order_params * nopa;
2228 static void order_nodes_of_sccs (ddg_all_sccs_ptr, int * result);
2229 static int order_nodes_in_scc (ddg_ptr, sbitmap, sbitmap, int*, int);
2230 static nopa calculate_order_params (ddg_ptr, int, int *);
2231 static int find_max_asap (ddg_ptr, sbitmap);
2232 static int find_max_hv_min_mob (ddg_ptr, sbitmap);
2233 static int find_max_dv_min_mob (ddg_ptr, sbitmap);
2235 enum sms_direction {BOTTOMUP, TOPDOWN};
2237 struct node_order_params
2239 int asap;
2240 int alap;
2241 int height;
2244 /* Check if NODE_ORDER contains a permutation of 0 .. NUM_NODES-1. */
2245 static void
2246 check_nodes_order (int *node_order, int num_nodes)
2248 int i;
2249 sbitmap tmp = sbitmap_alloc (num_nodes);
2251 sbitmap_zero (tmp);
2253 if (dump_file)
2254 fprintf (dump_file, "SMS final nodes order: \n");
2256 for (i = 0; i < num_nodes; i++)
2258 int u = node_order[i];
2260 if (dump_file)
2261 fprintf (dump_file, "%d ", u);
2262 gcc_assert (u < num_nodes && u >= 0 && !TEST_BIT (tmp, u));
2264 SET_BIT (tmp, u);
2267 if (dump_file)
2268 fprintf (dump_file, "\n");
2270 sbitmap_free (tmp);
2273 /* Order the nodes of G for scheduling and pass the result in
2274 NODE_ORDER. Also set aux.count of each node to ASAP.
2275 Put maximal ASAP to PMAX_ASAP. Return the recMII for the given DDG. */
2276 static int
2277 sms_order_nodes (ddg_ptr g, int mii, int * node_order, int *pmax_asap)
2279 int i;
2280 int rec_mii = 0;
2281 ddg_all_sccs_ptr sccs = create_ddg_all_sccs (g);
2283 nopa nops = calculate_order_params (g, mii, pmax_asap);
2285 if (dump_file)
2286 print_sccs (dump_file, sccs, g);
2288 order_nodes_of_sccs (sccs, node_order);
2290 if (sccs->num_sccs > 0)
2291 /* First SCC has the largest recurrence_length. */
2292 rec_mii = sccs->sccs[0]->recurrence_length;
2294 /* Save ASAP before destroying node_order_params. */
2295 for (i = 0; i < g->num_nodes; i++)
2297 ddg_node_ptr v = &g->nodes[i];
2298 v->aux.count = ASAP (v);
2301 free (nops);
2302 free_ddg_all_sccs (sccs);
2303 check_nodes_order (node_order, g->num_nodes);
2305 return rec_mii;
2308 static void
2309 order_nodes_of_sccs (ddg_all_sccs_ptr all_sccs, int * node_order)
2311 int i, pos = 0;
2312 ddg_ptr g = all_sccs->ddg;
2313 int num_nodes = g->num_nodes;
2314 sbitmap prev_sccs = sbitmap_alloc (num_nodes);
2315 sbitmap on_path = sbitmap_alloc (num_nodes);
2316 sbitmap tmp = sbitmap_alloc (num_nodes);
2317 sbitmap ones = sbitmap_alloc (num_nodes);
2319 sbitmap_zero (prev_sccs);
2320 sbitmap_ones (ones);
2322 /* Perform the node ordering starting from the SCC with the highest recMII.
2323 For each SCC order the nodes according to their ASAP/ALAP/HEIGHT etc. */
2324 for (i = 0; i < all_sccs->num_sccs; i++)
2326 ddg_scc_ptr scc = all_sccs->sccs[i];
2328 /* Add nodes on paths from previous SCCs to the current SCC. */
2329 find_nodes_on_paths (on_path, g, prev_sccs, scc->nodes);
2330 sbitmap_a_or_b (tmp, scc->nodes, on_path);
2332 /* Add nodes on paths from the current SCC to previous SCCs. */
2333 find_nodes_on_paths (on_path, g, scc->nodes, prev_sccs);
2334 sbitmap_a_or_b (tmp, tmp, on_path);
2336 /* Remove nodes of previous SCCs from current extended SCC. */
2337 sbitmap_difference (tmp, tmp, prev_sccs);
2339 pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
2340 /* Above call to order_nodes_in_scc updated prev_sccs |= tmp. */
2343 /* Handle the remaining nodes that do not belong to any scc. Each call
2344 to order_nodes_in_scc handles a single connected component. */
2345 while (pos < g->num_nodes)
2347 sbitmap_difference (tmp, ones, prev_sccs);
2348 pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
2350 sbitmap_free (prev_sccs);
2351 sbitmap_free (on_path);
2352 sbitmap_free (tmp);
2353 sbitmap_free (ones);
2356 /* MII is needed if we consider backarcs (that do not close recursive cycles). */
2357 static struct node_order_params *
2358 calculate_order_params (ddg_ptr g, int mii ATTRIBUTE_UNUSED, int *pmax_asap)
2360 int u;
2361 int max_asap;
2362 int num_nodes = g->num_nodes;
2363 ddg_edge_ptr e;
2364 /* Allocate a place to hold ordering params for each node in the DDG. */
2365 nopa node_order_params_arr;
2367 /* Initialize of ASAP/ALAP/HEIGHT to zero. */
2368 node_order_params_arr = (nopa) xcalloc (num_nodes,
2369 sizeof (struct node_order_params));
2371 /* Set the aux pointer of each node to point to its order_params structure. */
2372 for (u = 0; u < num_nodes; u++)
2373 g->nodes[u].aux.info = &node_order_params_arr[u];
2375 /* Disregarding a backarc from each recursive cycle to obtain a DAG,
2376 calculate ASAP, ALAP, mobility, distance, and height for each node
2377 in the dependence (direct acyclic) graph. */
2379 /* We assume that the nodes in the array are in topological order. */
2381 max_asap = 0;
2382 for (u = 0; u < num_nodes; u++)
2384 ddg_node_ptr u_node = &g->nodes[u];
2386 ASAP (u_node) = 0;
2387 for (e = u_node->in; e; e = e->next_in)
2388 if (e->distance == 0)
2389 ASAP (u_node) = MAX (ASAP (u_node),
2390 ASAP (e->src) + e->latency);
2391 max_asap = MAX (max_asap, ASAP (u_node));
2394 for (u = num_nodes - 1; u > -1; u--)
2396 ddg_node_ptr u_node = &g->nodes[u];
2398 ALAP (u_node) = max_asap;
2399 HEIGHT (u_node) = 0;
2400 for (e = u_node->out; e; e = e->next_out)
2401 if (e->distance == 0)
2403 ALAP (u_node) = MIN (ALAP (u_node),
2404 ALAP (e->dest) - e->latency);
2405 HEIGHT (u_node) = MAX (HEIGHT (u_node),
2406 HEIGHT (e->dest) + e->latency);
2409 if (dump_file)
2411 fprintf (dump_file, "\nOrder params\n");
2412 for (u = 0; u < num_nodes; u++)
2414 ddg_node_ptr u_node = &g->nodes[u];
2416 fprintf (dump_file, "node %d, ASAP: %d, ALAP: %d, HEIGHT: %d\n", u,
2417 ASAP (u_node), ALAP (u_node), HEIGHT (u_node));
2421 *pmax_asap = max_asap;
2422 return node_order_params_arr;
2425 static int
2426 find_max_asap (ddg_ptr g, sbitmap nodes)
2428 unsigned int u = 0;
2429 int max_asap = -1;
2430 int result = -1;
2431 sbitmap_iterator sbi;
2433 EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u, sbi)
2435 ddg_node_ptr u_node = &g->nodes[u];
2437 if (max_asap < ASAP (u_node))
2439 max_asap = ASAP (u_node);
2440 result = u;
2443 return result;
2446 static int
2447 find_max_hv_min_mob (ddg_ptr g, sbitmap nodes)
2449 unsigned int u = 0;
2450 int max_hv = -1;
2451 int min_mob = INT_MAX;
2452 int result = -1;
2453 sbitmap_iterator sbi;
2455 EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u, sbi)
2457 ddg_node_ptr u_node = &g->nodes[u];
2459 if (max_hv < HEIGHT (u_node))
2461 max_hv = HEIGHT (u_node);
2462 min_mob = MOB (u_node);
2463 result = u;
2465 else if ((max_hv == HEIGHT (u_node))
2466 && (min_mob > MOB (u_node)))
2468 min_mob = MOB (u_node);
2469 result = u;
2472 return result;
2475 static int
2476 find_max_dv_min_mob (ddg_ptr g, sbitmap nodes)
2478 unsigned int u = 0;
2479 int max_dv = -1;
2480 int min_mob = INT_MAX;
2481 int result = -1;
2482 sbitmap_iterator sbi;
2484 EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u, sbi)
2486 ddg_node_ptr u_node = &g->nodes[u];
2488 if (max_dv < DEPTH (u_node))
2490 max_dv = DEPTH (u_node);
2491 min_mob = MOB (u_node);
2492 result = u;
2494 else if ((max_dv == DEPTH (u_node))
2495 && (min_mob > MOB (u_node)))
2497 min_mob = MOB (u_node);
2498 result = u;
2501 return result;
2504 /* Places the nodes of SCC into the NODE_ORDER array starting
2505 at position POS, according to the SMS ordering algorithm.
2506 NODES_ORDERED (in&out parameter) holds the bitset of all nodes in
2507 the NODE_ORDER array, starting from position zero. */
2508 static int
2509 order_nodes_in_scc (ddg_ptr g, sbitmap nodes_ordered, sbitmap scc,
2510 int * node_order, int pos)
2512 enum sms_direction dir;
2513 int num_nodes = g->num_nodes;
2514 sbitmap workset = sbitmap_alloc (num_nodes);
2515 sbitmap tmp = sbitmap_alloc (num_nodes);
2516 sbitmap zero_bitmap = sbitmap_alloc (num_nodes);
2517 sbitmap predecessors = sbitmap_alloc (num_nodes);
2518 sbitmap successors = sbitmap_alloc (num_nodes);
2520 sbitmap_zero (predecessors);
2521 find_predecessors (predecessors, g, nodes_ordered);
2523 sbitmap_zero (successors);
2524 find_successors (successors, g, nodes_ordered);
2526 sbitmap_zero (tmp);
2527 if (sbitmap_a_and_b_cg (tmp, predecessors, scc))
2529 sbitmap_copy (workset, tmp);
2530 dir = BOTTOMUP;
2532 else if (sbitmap_a_and_b_cg (tmp, successors, scc))
2534 sbitmap_copy (workset, tmp);
2535 dir = TOPDOWN;
2537 else
2539 int u;
2541 sbitmap_zero (workset);
2542 if ((u = find_max_asap (g, scc)) >= 0)
2543 SET_BIT (workset, u);
2544 dir = BOTTOMUP;
2547 sbitmap_zero (zero_bitmap);
2548 while (!sbitmap_equal (workset, zero_bitmap))
2550 int v;
2551 ddg_node_ptr v_node;
2552 sbitmap v_node_preds;
2553 sbitmap v_node_succs;
2555 if (dir == TOPDOWN)
2557 while (!sbitmap_equal (workset, zero_bitmap))
2559 v = find_max_hv_min_mob (g, workset);
2560 v_node = &g->nodes[v];
2561 node_order[pos++] = v;
2562 v_node_succs = NODE_SUCCESSORS (v_node);
2563 sbitmap_a_and_b (tmp, v_node_succs, scc);
2565 /* Don't consider the already ordered successors again. */
2566 sbitmap_difference (tmp, tmp, nodes_ordered);
2567 sbitmap_a_or_b (workset, workset, tmp);
2568 RESET_BIT (workset, v);
2569 SET_BIT (nodes_ordered, v);
2571 dir = BOTTOMUP;
2572 sbitmap_zero (predecessors);
2573 find_predecessors (predecessors, g, nodes_ordered);
2574 sbitmap_a_and_b (workset, predecessors, scc);
2576 else
2578 while (!sbitmap_equal (workset, zero_bitmap))
2580 v = find_max_dv_min_mob (g, workset);
2581 v_node = &g->nodes[v];
2582 node_order[pos++] = v;
2583 v_node_preds = NODE_PREDECESSORS (v_node);
2584 sbitmap_a_and_b (tmp, v_node_preds, scc);
2586 /* Don't consider the already ordered predecessors again. */
2587 sbitmap_difference (tmp, tmp, nodes_ordered);
2588 sbitmap_a_or_b (workset, workset, tmp);
2589 RESET_BIT (workset, v);
2590 SET_BIT (nodes_ordered, v);
2592 dir = TOPDOWN;
2593 sbitmap_zero (successors);
2594 find_successors (successors, g, nodes_ordered);
2595 sbitmap_a_and_b (workset, successors, scc);
2598 sbitmap_free (tmp);
2599 sbitmap_free (workset);
2600 sbitmap_free (zero_bitmap);
2601 sbitmap_free (predecessors);
2602 sbitmap_free (successors);
2603 return pos;
2607 /* This page contains functions for manipulating partial-schedules during
2608 modulo scheduling. */
2610 /* Create a partial schedule and allocate a memory to hold II rows. */
2612 static partial_schedule_ptr
2613 create_partial_schedule (int ii, ddg_ptr g, int history)
2615 partial_schedule_ptr ps = XNEW (struct partial_schedule);
2616 ps->rows = (ps_insn_ptr *) xcalloc (ii, sizeof (ps_insn_ptr));
2617 ps->rows_length = (int *) xcalloc (ii, sizeof (int));
2618 ps->ii = ii;
2619 ps->history = history;
2620 ps->min_cycle = INT_MAX;
2621 ps->max_cycle = INT_MIN;
2622 ps->g = g;
2624 return ps;
2627 /* Free the PS_INSNs in rows array of the given partial schedule.
2628 ??? Consider caching the PS_INSN's. */
2629 static void
2630 free_ps_insns (partial_schedule_ptr ps)
2632 int i;
2634 for (i = 0; i < ps->ii; i++)
2636 while (ps->rows[i])
2638 ps_insn_ptr ps_insn = ps->rows[i]->next_in_row;
2640 free (ps->rows[i]);
2641 ps->rows[i] = ps_insn;
2643 ps->rows[i] = NULL;
2647 /* Free all the memory allocated to the partial schedule. */
2649 static void
2650 free_partial_schedule (partial_schedule_ptr ps)
2652 if (!ps)
2653 return;
2654 free_ps_insns (ps);
2655 free (ps->rows);
2656 free (ps->rows_length);
2657 free (ps);
2660 /* Clear the rows array with its PS_INSNs, and create a new one with
2661 NEW_II rows. */
2663 static void
2664 reset_partial_schedule (partial_schedule_ptr ps, int new_ii)
2666 if (!ps)
2667 return;
2668 free_ps_insns (ps);
2669 if (new_ii == ps->ii)
2670 return;
2671 ps->rows = (ps_insn_ptr *) xrealloc (ps->rows, new_ii
2672 * sizeof (ps_insn_ptr));
2673 memset (ps->rows, 0, new_ii * sizeof (ps_insn_ptr));
2674 ps->rows_length = (int *) xrealloc (ps->rows_length, new_ii * sizeof (int));
2675 memset (ps->rows_length, 0, new_ii * sizeof (int));
2676 ps->ii = new_ii;
2677 ps->min_cycle = INT_MAX;
2678 ps->max_cycle = INT_MIN;
2681 /* Prints the partial schedule as an ii rows array, for each rows
2682 print the ids of the insns in it. */
2683 void
2684 print_partial_schedule (partial_schedule_ptr ps, FILE *dump)
2686 int i;
2688 for (i = 0; i < ps->ii; i++)
2690 ps_insn_ptr ps_i = ps->rows[i];
2692 fprintf (dump, "\n[ROW %d ]: ", i);
2693 while (ps_i)
2695 if (JUMP_P (ps_i->node->insn))
2696 fprintf (dump, "%d (branch), ",
2697 INSN_UID (ps_i->node->insn));
2698 else
2699 fprintf (dump, "%d, ",
2700 INSN_UID (ps_i->node->insn));
2702 ps_i = ps_i->next_in_row;
2707 /* Creates an object of PS_INSN and initializes it to the given parameters. */
2708 static ps_insn_ptr
2709 create_ps_insn (ddg_node_ptr node, int cycle)
2711 ps_insn_ptr ps_i = XNEW (struct ps_insn);
2713 ps_i->node = node;
2714 ps_i->next_in_row = NULL;
2715 ps_i->prev_in_row = NULL;
2716 ps_i->cycle = cycle;
2718 return ps_i;
2722 /* Removes the given PS_INSN from the partial schedule. Returns false if the
2723 node is not found in the partial schedule, else returns true. */
2724 static bool
2725 remove_node_from_ps (partial_schedule_ptr ps, ps_insn_ptr ps_i)
2727 int row;
2729 if (!ps || !ps_i)
2730 return false;
2732 row = SMODULO (ps_i->cycle, ps->ii);
2733 if (! ps_i->prev_in_row)
2735 if (ps_i != ps->rows[row])
2736 return false;
2738 ps->rows[row] = ps_i->next_in_row;
2739 if (ps->rows[row])
2740 ps->rows[row]->prev_in_row = NULL;
2742 else
2744 ps_i->prev_in_row->next_in_row = ps_i->next_in_row;
2745 if (ps_i->next_in_row)
2746 ps_i->next_in_row->prev_in_row = ps_i->prev_in_row;
2749 ps->rows_length[row] -= 1;
2750 free (ps_i);
2751 return true;
2754 /* Unlike what literature describes for modulo scheduling (which focuses
2755 on VLIW machines) the order of the instructions inside a cycle is
2756 important. Given the bitmaps MUST_FOLLOW and MUST_PRECEDE we know
2757 where the current instruction should go relative to the already
2758 scheduled instructions in the given cycle. Go over these
2759 instructions and find the first possible column to put it in. */
2760 static bool
2761 ps_insn_find_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
2762 sbitmap must_precede, sbitmap must_follow)
2764 ps_insn_ptr next_ps_i;
2765 ps_insn_ptr first_must_follow = NULL;
2766 ps_insn_ptr last_must_precede = NULL;
2767 ps_insn_ptr last_in_row = NULL;
2768 int row;
2770 if (! ps_i)
2771 return false;
2773 row = SMODULO (ps_i->cycle, ps->ii);
2775 /* Find the first must follow and the last must precede
2776 and insert the node immediately after the must precede
2777 but make sure that it there is no must follow after it. */
2778 for (next_ps_i = ps->rows[row];
2779 next_ps_i;
2780 next_ps_i = next_ps_i->next_in_row)
2782 if (must_follow && TEST_BIT (must_follow, next_ps_i->node->cuid)
2783 && ! first_must_follow)
2784 first_must_follow = next_ps_i;
2785 if (must_precede && TEST_BIT (must_precede, next_ps_i->node->cuid))
2787 /* If we have already met a node that must follow, then
2788 there is no possible column. */
2789 if (first_must_follow)
2790 return false;
2791 else
2792 last_must_precede = next_ps_i;
2794 /* The closing branch must be the last in the row. */
2795 if (must_precede
2796 && TEST_BIT (must_precede, next_ps_i->node->cuid)
2797 && JUMP_P (next_ps_i->node->insn))
2798 return false;
2800 last_in_row = next_ps_i;
2803 /* The closing branch is scheduled as well. Make sure there is no
2804 dependent instruction after it as the branch should be the last
2805 instruction in the row. */
2806 if (JUMP_P (ps_i->node->insn))
2808 if (first_must_follow)
2809 return false;
2810 if (last_in_row)
2812 /* Make the branch the last in the row. New instructions
2813 will be inserted at the beginning of the row or after the
2814 last must_precede instruction thus the branch is guaranteed
2815 to remain the last instruction in the row. */
2816 last_in_row->next_in_row = ps_i;
2817 ps_i->prev_in_row = last_in_row;
2818 ps_i->next_in_row = NULL;
2820 else
2821 ps->rows[row] = ps_i;
2822 return true;
2825 /* Now insert the node after INSERT_AFTER_PSI. */
2827 if (! last_must_precede)
2829 ps_i->next_in_row = ps->rows[row];
2830 ps_i->prev_in_row = NULL;
2831 if (ps_i->next_in_row)
2832 ps_i->next_in_row->prev_in_row = ps_i;
2833 ps->rows[row] = ps_i;
2835 else
2837 ps_i->next_in_row = last_must_precede->next_in_row;
2838 last_must_precede->next_in_row = ps_i;
2839 ps_i->prev_in_row = last_must_precede;
2840 if (ps_i->next_in_row)
2841 ps_i->next_in_row->prev_in_row = ps_i;
2844 return true;
2847 /* Advances the PS_INSN one column in its current row; returns false
2848 in failure and true in success. Bit N is set in MUST_FOLLOW if
2849 the node with cuid N must be come after the node pointed to by
2850 PS_I when scheduled in the same cycle. */
2851 static int
2852 ps_insn_advance_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
2853 sbitmap must_follow)
2855 ps_insn_ptr prev, next;
2856 int row;
2857 ddg_node_ptr next_node;
2859 if (!ps || !ps_i)
2860 return false;
2862 row = SMODULO (ps_i->cycle, ps->ii);
2864 if (! ps_i->next_in_row)
2865 return false;
2867 next_node = ps_i->next_in_row->node;
2869 /* Check if next_in_row is dependent on ps_i, both having same sched
2870 times (typically ANTI_DEP). If so, ps_i cannot skip over it. */
2871 if (must_follow && TEST_BIT (must_follow, next_node->cuid))
2872 return false;
2874 /* Advance PS_I over its next_in_row in the doubly linked list. */
2875 prev = ps_i->prev_in_row;
2876 next = ps_i->next_in_row;
2878 if (ps_i == ps->rows[row])
2879 ps->rows[row] = next;
2881 ps_i->next_in_row = next->next_in_row;
2883 if (next->next_in_row)
2884 next->next_in_row->prev_in_row = ps_i;
2886 next->next_in_row = ps_i;
2887 ps_i->prev_in_row = next;
2889 next->prev_in_row = prev;
2890 if (prev)
2891 prev->next_in_row = next;
2893 return true;
2896 /* Inserts a DDG_NODE to the given partial schedule at the given cycle.
2897 Returns 0 if this is not possible and a PS_INSN otherwise. Bit N is
2898 set in MUST_PRECEDE/MUST_FOLLOW if the node with cuid N must be come
2899 before/after (respectively) the node pointed to by PS_I when scheduled
2900 in the same cycle. */
2901 static ps_insn_ptr
2902 add_node_to_ps (partial_schedule_ptr ps, ddg_node_ptr node, int cycle,
2903 sbitmap must_precede, sbitmap must_follow)
2905 ps_insn_ptr ps_i;
2906 int row = SMODULO (cycle, ps->ii);
2908 if (ps->rows_length[row] >= issue_rate)
2909 return NULL;
2911 ps_i = create_ps_insn (node, cycle);
2913 /* Finds and inserts PS_I according to MUST_FOLLOW and
2914 MUST_PRECEDE. */
2915 if (! ps_insn_find_column (ps, ps_i, must_precede, must_follow))
2917 free (ps_i);
2918 return NULL;
2921 ps->rows_length[row] += 1;
2922 return ps_i;
2925 /* Advance time one cycle. Assumes DFA is being used. */
2926 static void
2927 advance_one_cycle (void)
2929 if (targetm.sched.dfa_pre_cycle_insn)
2930 state_transition (curr_state,
2931 targetm.sched.dfa_pre_cycle_insn ());
2933 state_transition (curr_state, NULL);
2935 if (targetm.sched.dfa_post_cycle_insn)
2936 state_transition (curr_state,
2937 targetm.sched.dfa_post_cycle_insn ());
2942 /* Checks if PS has resource conflicts according to DFA, starting from
2943 FROM cycle to TO cycle; returns true if there are conflicts and false
2944 if there are no conflicts. Assumes DFA is being used. */
2945 static int
2946 ps_has_conflicts (partial_schedule_ptr ps, int from, int to)
2948 int cycle;
2950 state_reset (curr_state);
2952 for (cycle = from; cycle <= to; cycle++)
2954 ps_insn_ptr crr_insn;
2955 /* Holds the remaining issue slots in the current row. */
2956 int can_issue_more = issue_rate;
2958 /* Walk through the DFA for the current row. */
2959 for (crr_insn = ps->rows[SMODULO (cycle, ps->ii)];
2960 crr_insn;
2961 crr_insn = crr_insn->next_in_row)
2963 rtx insn = crr_insn->node->insn;
2965 if (!NONDEBUG_INSN_P (insn))
2966 continue;
2968 /* Check if there is room for the current insn. */
2969 if (!can_issue_more || state_dead_lock_p (curr_state))
2970 return true;
2972 /* Update the DFA state and return with failure if the DFA found
2973 resource conflicts. */
2974 if (state_transition (curr_state, insn) >= 0)
2975 return true;
2977 if (targetm.sched.variable_issue)
2978 can_issue_more =
2979 targetm.sched.variable_issue (sched_dump, sched_verbose,
2980 insn, can_issue_more);
2981 /* A naked CLOBBER or USE generates no instruction, so don't
2982 let them consume issue slots. */
2983 else if (GET_CODE (PATTERN (insn)) != USE
2984 && GET_CODE (PATTERN (insn)) != CLOBBER)
2985 can_issue_more--;
2988 /* Advance the DFA to the next cycle. */
2989 advance_one_cycle ();
2991 return false;
2994 /* Checks if the given node causes resource conflicts when added to PS at
2995 cycle C. If not the node is added to PS and returned; otherwise zero
2996 is returned. Bit N is set in MUST_PRECEDE/MUST_FOLLOW if the node with
2997 cuid N must be come before/after (respectively) the node pointed to by
2998 PS_I when scheduled in the same cycle. */
2999 ps_insn_ptr
3000 ps_add_node_check_conflicts (partial_schedule_ptr ps, ddg_node_ptr n,
3001 int c, sbitmap must_precede,
3002 sbitmap must_follow)
3004 int has_conflicts = 0;
3005 ps_insn_ptr ps_i;
3007 /* First add the node to the PS, if this succeeds check for
3008 conflicts, trying different issue slots in the same row. */
3009 if (! (ps_i = add_node_to_ps (ps, n, c, must_precede, must_follow)))
3010 return NULL; /* Failed to insert the node at the given cycle. */
3012 has_conflicts = ps_has_conflicts (ps, c, c)
3013 || (ps->history > 0
3014 && ps_has_conflicts (ps,
3015 c - ps->history,
3016 c + ps->history));
3018 /* Try different issue slots to find one that the given node can be
3019 scheduled in without conflicts. */
3020 while (has_conflicts)
3022 if (! ps_insn_advance_column (ps, ps_i, must_follow))
3023 break;
3024 has_conflicts = ps_has_conflicts (ps, c, c)
3025 || (ps->history > 0
3026 && ps_has_conflicts (ps,
3027 c - ps->history,
3028 c + ps->history));
3031 if (has_conflicts)
3033 remove_node_from_ps (ps, ps_i);
3034 return NULL;
3037 ps->min_cycle = MIN (ps->min_cycle, c);
3038 ps->max_cycle = MAX (ps->max_cycle, c);
3039 return ps_i;
3042 /* Calculate the stage count of the partial schedule PS. The calculation
3043 takes into account the rotation amount passed in ROTATION_AMOUNT. */
3045 calculate_stage_count (partial_schedule_ptr ps, int rotation_amount)
3047 int new_min_cycle = PS_MIN_CYCLE (ps) - rotation_amount;
3048 int new_max_cycle = PS_MAX_CYCLE (ps) - rotation_amount;
3049 int stage_count = CALC_STAGE_COUNT (-1, new_min_cycle, ps->ii);
3051 /* The calculation of stage count is done adding the number of stages
3052 before cycle zero and after cycle zero. */
3053 stage_count += CALC_STAGE_COUNT (new_max_cycle, 0, ps->ii);
3055 return stage_count;
3058 /* Rotate the rows of PS such that insns scheduled at time
3059 START_CYCLE will appear in row 0. Updates max/min_cycles. */
3060 void
3061 rotate_partial_schedule (partial_schedule_ptr ps, int start_cycle)
3063 int i, row, backward_rotates;
3064 int last_row = ps->ii - 1;
3066 if (start_cycle == 0)
3067 return;
3069 backward_rotates = SMODULO (start_cycle, ps->ii);
3071 /* Revisit later and optimize this into a single loop. */
3072 for (i = 0; i < backward_rotates; i++)
3074 ps_insn_ptr first_row = ps->rows[0];
3075 int first_row_length = ps->rows_length[0];
3077 for (row = 0; row < last_row; row++)
3079 ps->rows[row] = ps->rows[row + 1];
3080 ps->rows_length[row] = ps->rows_length[row + 1];
3083 ps->rows[last_row] = first_row;
3084 ps->rows_length[last_row] = first_row_length;
3087 ps->max_cycle -= start_cycle;
3088 ps->min_cycle -= start_cycle;
3091 #endif /* INSN_SCHEDULING */
3093 static bool
3094 gate_handle_sms (void)
3096 return (optimize > 0 && flag_modulo_sched);
3100 /* Run instruction scheduler. */
3101 /* Perform SMS module scheduling. */
3102 static unsigned int
3103 rest_of_handle_sms (void)
3105 #ifdef INSN_SCHEDULING
3106 basic_block bb;
3108 /* Collect loop information to be used in SMS. */
3109 cfg_layout_initialize (0);
3110 sms_schedule ();
3112 /* Update the life information, because we add pseudos. */
3113 max_regno = max_reg_num ();
3115 /* Finalize layout changes. */
3116 FOR_EACH_BB (bb)
3117 if (bb->next_bb != EXIT_BLOCK_PTR)
3118 bb->aux = bb->next_bb;
3119 free_dominance_info (CDI_DOMINATORS);
3120 cfg_layout_finalize ();
3121 #endif /* INSN_SCHEDULING */
3122 return 0;
3125 struct rtl_opt_pass pass_sms =
3128 RTL_PASS,
3129 "sms", /* name */
3130 gate_handle_sms, /* gate */
3131 rest_of_handle_sms, /* execute */
3132 NULL, /* sub */
3133 NULL, /* next */
3134 0, /* static_pass_number */
3135 TV_SMS, /* tv_id */
3136 0, /* properties_required */
3137 0, /* properties_provided */
3138 0, /* properties_destroyed */
3139 0, /* todo_flags_start */
3140 TODO_df_finish
3141 | TODO_verify_flow
3142 | TODO_verify_rtl_sharing
3143 | TODO_ggc_collect /* todo_flags_finish */