2011-08-19 Andrew Stubbs <ams@codesourcery.com>
[official-gcc.git] / gcc / ifcvt.c
blobcf3d245e707467374f556def9d7b8a9dfb1696b7
1 /* If-conversion support.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2010,
3 2011
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
16 License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
27 #include "rtl.h"
28 #include "regs.h"
29 #include "function.h"
30 #include "flags.h"
31 #include "insn-config.h"
32 #include "recog.h"
33 #include "except.h"
34 #include "hard-reg-set.h"
35 #include "basic-block.h"
36 #include "expr.h"
37 #include "output.h"
38 #include "optabs.h"
39 #include "diagnostic-core.h"
40 #include "tm_p.h"
41 #include "cfgloop.h"
42 #include "target.h"
43 #include "timevar.h"
44 #include "tree-pass.h"
45 #include "df.h"
46 #include "vec.h"
47 #include "vecprim.h"
48 #include "dbgcnt.h"
50 #ifndef HAVE_conditional_move
51 #define HAVE_conditional_move 0
52 #endif
53 #ifndef HAVE_incscc
54 #define HAVE_incscc 0
55 #endif
56 #ifndef HAVE_decscc
57 #define HAVE_decscc 0
58 #endif
59 #ifndef HAVE_trap
60 #define HAVE_trap 0
61 #endif
63 #ifndef MAX_CONDITIONAL_EXECUTE
64 #define MAX_CONDITIONAL_EXECUTE \
65 (BRANCH_COST (optimize_function_for_speed_p (cfun), false) \
66 + 1)
67 #endif
69 #define IFCVT_MULTIPLE_DUMPS 1
71 #define NULL_BLOCK ((basic_block) NULL)
73 /* # of IF-THEN or IF-THEN-ELSE blocks we looked at */
74 static int num_possible_if_blocks;
76 /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
77 execution. */
78 static int num_updated_if_blocks;
80 /* # of changes made. */
81 static int num_true_changes;
83 /* Whether conditional execution changes were made. */
84 static int cond_exec_changed_p;
86 /* Forward references. */
87 static int count_bb_insns (const_basic_block);
88 static bool cheap_bb_rtx_cost_p (const_basic_block, int);
89 static rtx first_active_insn (basic_block);
90 static rtx last_active_insn (basic_block, int);
91 static rtx find_active_insn_before (basic_block, rtx);
92 static rtx find_active_insn_after (basic_block, rtx);
93 static basic_block block_fallthru (basic_block);
94 static int cond_exec_process_insns (ce_if_block_t *, rtx, rtx, rtx, rtx, int);
95 static rtx cond_exec_get_condition (rtx);
96 static rtx noce_get_condition (rtx, rtx *, bool);
97 static int noce_operand_ok (const_rtx);
98 static void merge_if_block (ce_if_block_t *);
99 static int find_cond_trap (basic_block, edge, edge);
100 static basic_block find_if_header (basic_block, int);
101 static int block_jumps_and_fallthru_p (basic_block, basic_block);
102 static int noce_find_if_block (basic_block, edge, edge, int);
103 static int cond_exec_find_if_block (ce_if_block_t *);
104 static int find_if_case_1 (basic_block, edge, edge);
105 static int find_if_case_2 (basic_block, edge, edge);
106 static int dead_or_predicable (basic_block, basic_block, basic_block,
107 edge, int);
108 static void noce_emit_move_insn (rtx, rtx);
109 static rtx block_has_only_trap (basic_block);
111 /* Count the number of non-jump active insns in BB. */
113 static int
114 count_bb_insns (const_basic_block bb)
116 int count = 0;
117 rtx insn = BB_HEAD (bb);
119 while (1)
121 if (CALL_P (insn) || NONJUMP_INSN_P (insn))
122 count++;
124 if (insn == BB_END (bb))
125 break;
126 insn = NEXT_INSN (insn);
129 return count;
132 /* Determine whether the total insn_rtx_cost on non-jump insns in
133 basic block BB is less than MAX_COST. This function returns
134 false if the cost of any instruction could not be estimated. */
136 static bool
137 cheap_bb_rtx_cost_p (const_basic_block bb, int max_cost)
139 int count = 0;
140 rtx insn = BB_HEAD (bb);
141 bool speed = optimize_bb_for_speed_p (bb);
143 while (1)
145 if (NONJUMP_INSN_P (insn))
147 int cost = insn_rtx_cost (PATTERN (insn), speed);
148 if (cost == 0)
149 return false;
151 /* If this instruction is the load or set of a "stack" register,
152 such as a floating point register on x87, then the cost of
153 speculatively executing this insn may need to include
154 the additional cost of popping its result off of the
155 register stack. Unfortunately, correctly recognizing and
156 accounting for this additional overhead is tricky, so for
157 now we simply prohibit such speculative execution. */
158 #ifdef STACK_REGS
160 rtx set = single_set (insn);
161 if (set && STACK_REG_P (SET_DEST (set)))
162 return false;
164 #endif
166 count += cost;
167 if (count >= max_cost)
168 return false;
170 else if (CALL_P (insn))
171 return false;
173 if (insn == BB_END (bb))
174 break;
175 insn = NEXT_INSN (insn);
178 return true;
181 /* Return the first non-jump active insn in the basic block. */
183 static rtx
184 first_active_insn (basic_block bb)
186 rtx insn = BB_HEAD (bb);
188 if (LABEL_P (insn))
190 if (insn == BB_END (bb))
191 return NULL_RTX;
192 insn = NEXT_INSN (insn);
195 while (NOTE_P (insn) || DEBUG_INSN_P (insn))
197 if (insn == BB_END (bb))
198 return NULL_RTX;
199 insn = NEXT_INSN (insn);
202 if (JUMP_P (insn))
203 return NULL_RTX;
205 return insn;
208 /* Return the last non-jump active (non-jump) insn in the basic block. */
210 static rtx
211 last_active_insn (basic_block bb, int skip_use_p)
213 rtx insn = BB_END (bb);
214 rtx head = BB_HEAD (bb);
216 while (NOTE_P (insn)
217 || JUMP_P (insn)
218 || DEBUG_INSN_P (insn)
219 || (skip_use_p
220 && NONJUMP_INSN_P (insn)
221 && GET_CODE (PATTERN (insn)) == USE))
223 if (insn == head)
224 return NULL_RTX;
225 insn = PREV_INSN (insn);
228 if (LABEL_P (insn))
229 return NULL_RTX;
231 return insn;
234 /* Return the active insn before INSN inside basic block CURR_BB. */
236 static rtx
237 find_active_insn_before (basic_block curr_bb, rtx insn)
239 if (!insn || insn == BB_HEAD (curr_bb))
240 return NULL_RTX;
242 while ((insn = PREV_INSN (insn)) != NULL_RTX)
244 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
245 break;
247 /* No other active insn all the way to the start of the basic block. */
248 if (insn == BB_HEAD (curr_bb))
249 return NULL_RTX;
252 return insn;
255 /* Return the active insn after INSN inside basic block CURR_BB. */
257 static rtx
258 find_active_insn_after (basic_block curr_bb, rtx insn)
260 if (!insn || insn == BB_END (curr_bb))
261 return NULL_RTX;
263 while ((insn = NEXT_INSN (insn)) != NULL_RTX)
265 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
266 break;
268 /* No other active insn all the way to the end of the basic block. */
269 if (insn == BB_END (curr_bb))
270 return NULL_RTX;
273 return insn;
276 /* Return the basic block reached by falling though the basic block BB. */
278 static basic_block
279 block_fallthru (basic_block bb)
281 edge e = find_fallthru_edge (bb->succs);
283 return (e) ? e->dest : NULL_BLOCK;
286 /* Go through a bunch of insns, converting them to conditional
287 execution format if possible. Return TRUE if all of the non-note
288 insns were processed. */
290 static int
291 cond_exec_process_insns (ce_if_block_t *ce_info ATTRIBUTE_UNUSED,
292 /* if block information */rtx start,
293 /* first insn to look at */rtx end,
294 /* last insn to look at */rtx test,
295 /* conditional execution test */rtx prob_val,
296 /* probability of branch taken. */int mod_ok)
298 int must_be_last = FALSE;
299 rtx insn;
300 rtx xtest;
301 rtx pattern;
303 if (!start || !end)
304 return FALSE;
306 for (insn = start; ; insn = NEXT_INSN (insn))
308 /* dwarf2out can't cope with conditional prologues. */
309 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
310 return FALSE;
312 if (NOTE_P (insn) || DEBUG_INSN_P (insn))
313 goto insn_done;
315 gcc_assert(NONJUMP_INSN_P (insn) || CALL_P (insn));
317 /* Remove USE insns that get in the way. */
318 if (reload_completed && GET_CODE (PATTERN (insn)) == USE)
320 /* ??? Ug. Actually unlinking the thing is problematic,
321 given what we'd have to coordinate with our callers. */
322 SET_INSN_DELETED (insn);
323 goto insn_done;
326 /* Last insn wasn't last? */
327 if (must_be_last)
328 return FALSE;
330 if (modified_in_p (test, insn))
332 if (!mod_ok)
333 return FALSE;
334 must_be_last = TRUE;
337 /* Now build the conditional form of the instruction. */
338 pattern = PATTERN (insn);
339 xtest = copy_rtx (test);
341 /* If this is already a COND_EXEC, rewrite the test to be an AND of the
342 two conditions. */
343 if (GET_CODE (pattern) == COND_EXEC)
345 if (GET_MODE (xtest) != GET_MODE (COND_EXEC_TEST (pattern)))
346 return FALSE;
348 xtest = gen_rtx_AND (GET_MODE (xtest), xtest,
349 COND_EXEC_TEST (pattern));
350 pattern = COND_EXEC_CODE (pattern);
353 pattern = gen_rtx_COND_EXEC (VOIDmode, xtest, pattern);
355 /* If the machine needs to modify the insn being conditionally executed,
356 say for example to force a constant integer operand into a temp
357 register, do so here. */
358 #ifdef IFCVT_MODIFY_INSN
359 IFCVT_MODIFY_INSN (ce_info, pattern, insn);
360 if (! pattern)
361 return FALSE;
362 #endif
364 validate_change (insn, &PATTERN (insn), pattern, 1);
366 if (CALL_P (insn) && prob_val)
367 validate_change (insn, &REG_NOTES (insn),
368 alloc_EXPR_LIST (REG_BR_PROB, prob_val,
369 REG_NOTES (insn)), 1);
371 insn_done:
372 if (insn == end)
373 break;
376 return TRUE;
379 /* Return the condition for a jump. Do not do any special processing. */
381 static rtx
382 cond_exec_get_condition (rtx jump)
384 rtx test_if, cond;
386 if (any_condjump_p (jump))
387 test_if = SET_SRC (pc_set (jump));
388 else
389 return NULL_RTX;
390 cond = XEXP (test_if, 0);
392 /* If this branches to JUMP_LABEL when the condition is false,
393 reverse the condition. */
394 if (GET_CODE (XEXP (test_if, 2)) == LABEL_REF
395 && XEXP (XEXP (test_if, 2), 0) == JUMP_LABEL (jump))
397 enum rtx_code rev = reversed_comparison_code (cond, jump);
398 if (rev == UNKNOWN)
399 return NULL_RTX;
401 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
402 XEXP (cond, 1));
405 return cond;
408 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
409 to conditional execution. Return TRUE if we were successful at
410 converting the block. */
412 static int
413 cond_exec_process_if_block (ce_if_block_t * ce_info,
414 /* if block information */int do_multiple_p)
416 basic_block test_bb = ce_info->test_bb; /* last test block */
417 basic_block then_bb = ce_info->then_bb; /* THEN */
418 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
419 rtx test_expr; /* expression in IF_THEN_ELSE that is tested */
420 rtx then_start; /* first insn in THEN block */
421 rtx then_end; /* last insn + 1 in THEN block */
422 rtx else_start = NULL_RTX; /* first insn in ELSE block or NULL */
423 rtx else_end = NULL_RTX; /* last insn + 1 in ELSE block */
424 int max; /* max # of insns to convert. */
425 int then_mod_ok; /* whether conditional mods are ok in THEN */
426 rtx true_expr; /* test for else block insns */
427 rtx false_expr; /* test for then block insns */
428 rtx true_prob_val; /* probability of else block */
429 rtx false_prob_val; /* probability of then block */
430 rtx then_last_head = NULL_RTX; /* Last match at the head of THEN */
431 rtx else_last_head = NULL_RTX; /* Last match at the head of ELSE */
432 rtx then_first_tail = NULL_RTX; /* First match at the tail of THEN */
433 rtx else_first_tail = NULL_RTX; /* First match at the tail of ELSE */
434 int then_n_insns, else_n_insns, n_insns;
435 enum rtx_code false_code;
437 /* If test is comprised of && or || elements, and we've failed at handling
438 all of them together, just use the last test if it is the special case of
439 && elements without an ELSE block. */
440 if (!do_multiple_p && ce_info->num_multiple_test_blocks)
442 if (else_bb || ! ce_info->and_and_p)
443 return FALSE;
445 ce_info->test_bb = test_bb = ce_info->last_test_bb;
446 ce_info->num_multiple_test_blocks = 0;
447 ce_info->num_and_and_blocks = 0;
448 ce_info->num_or_or_blocks = 0;
451 /* Find the conditional jump to the ELSE or JOIN part, and isolate
452 the test. */
453 test_expr = cond_exec_get_condition (BB_END (test_bb));
454 if (! test_expr)
455 return FALSE;
457 /* If the conditional jump is more than just a conditional jump,
458 then we can not do conditional execution conversion on this block. */
459 if (! onlyjump_p (BB_END (test_bb)))
460 return FALSE;
462 /* Collect the bounds of where we're to search, skipping any labels, jumps
463 and notes at the beginning and end of the block. Then count the total
464 number of insns and see if it is small enough to convert. */
465 then_start = first_active_insn (then_bb);
466 then_end = last_active_insn (then_bb, TRUE);
467 then_n_insns = ce_info->num_then_insns = count_bb_insns (then_bb);
468 n_insns = then_n_insns;
469 max = MAX_CONDITIONAL_EXECUTE;
471 if (else_bb)
473 int n_matching;
475 max *= 2;
476 else_start = first_active_insn (else_bb);
477 else_end = last_active_insn (else_bb, TRUE);
478 else_n_insns = ce_info->num_else_insns = count_bb_insns (else_bb);
479 n_insns += else_n_insns;
481 /* Look for matching sequences at the head and tail of the two blocks,
482 and limit the range of insns to be converted if possible. */
483 n_matching = flow_find_cross_jump (then_bb, else_bb,
484 &then_first_tail, &else_first_tail,
485 NULL);
486 if (then_first_tail == BB_HEAD (then_bb))
487 then_start = then_end = NULL_RTX;
488 if (else_first_tail == BB_HEAD (else_bb))
489 else_start = else_end = NULL_RTX;
491 if (n_matching > 0)
493 if (then_end)
494 then_end = find_active_insn_before (then_bb, then_first_tail);
495 if (else_end)
496 else_end = find_active_insn_before (else_bb, else_first_tail);
497 n_insns -= 2 * n_matching;
500 if (then_start && else_start)
502 int longest_match = MIN (then_n_insns - n_matching,
503 else_n_insns - n_matching);
504 n_matching
505 = flow_find_head_matching_sequence (then_bb, else_bb,
506 &then_last_head,
507 &else_last_head,
508 longest_match);
510 if (n_matching > 0)
512 rtx insn;
514 /* We won't pass the insns in the head sequence to
515 cond_exec_process_insns, so we need to test them here
516 to make sure that they don't clobber the condition. */
517 for (insn = BB_HEAD (then_bb);
518 insn != NEXT_INSN (then_last_head);
519 insn = NEXT_INSN (insn))
520 if (!LABEL_P (insn) && !NOTE_P (insn)
521 && !DEBUG_INSN_P (insn)
522 && modified_in_p (test_expr, insn))
523 return FALSE;
526 if (then_last_head == then_end)
527 then_start = then_end = NULL_RTX;
528 if (else_last_head == else_end)
529 else_start = else_end = NULL_RTX;
531 if (n_matching > 0)
533 if (then_start)
534 then_start = find_active_insn_after (then_bb, then_last_head);
535 if (else_start)
536 else_start = find_active_insn_after (else_bb, else_last_head);
537 n_insns -= 2 * n_matching;
542 if (n_insns > max)
543 return FALSE;
545 /* Map test_expr/test_jump into the appropriate MD tests to use on
546 the conditionally executed code. */
548 true_expr = test_expr;
550 false_code = reversed_comparison_code (true_expr, BB_END (test_bb));
551 if (false_code != UNKNOWN)
552 false_expr = gen_rtx_fmt_ee (false_code, GET_MODE (true_expr),
553 XEXP (true_expr, 0), XEXP (true_expr, 1));
554 else
555 false_expr = NULL_RTX;
557 #ifdef IFCVT_MODIFY_TESTS
558 /* If the machine description needs to modify the tests, such as setting a
559 conditional execution register from a comparison, it can do so here. */
560 IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr);
562 /* See if the conversion failed. */
563 if (!true_expr || !false_expr)
564 goto fail;
565 #endif
567 true_prob_val = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
568 if (true_prob_val)
570 true_prob_val = XEXP (true_prob_val, 0);
571 false_prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (true_prob_val));
573 else
574 false_prob_val = NULL_RTX;
576 /* If we have && or || tests, do them here. These tests are in the adjacent
577 blocks after the first block containing the test. */
578 if (ce_info->num_multiple_test_blocks > 0)
580 basic_block bb = test_bb;
581 basic_block last_test_bb = ce_info->last_test_bb;
583 if (! false_expr)
584 goto fail;
588 rtx start, end;
589 rtx t, f;
590 enum rtx_code f_code;
592 bb = block_fallthru (bb);
593 start = first_active_insn (bb);
594 end = last_active_insn (bb, TRUE);
595 if (start
596 && ! cond_exec_process_insns (ce_info, start, end, false_expr,
597 false_prob_val, FALSE))
598 goto fail;
600 /* If the conditional jump is more than just a conditional jump, then
601 we can not do conditional execution conversion on this block. */
602 if (! onlyjump_p (BB_END (bb)))
603 goto fail;
605 /* Find the conditional jump and isolate the test. */
606 t = cond_exec_get_condition (BB_END (bb));
607 if (! t)
608 goto fail;
610 f_code = reversed_comparison_code (t, BB_END (bb));
611 if (f_code == UNKNOWN)
612 goto fail;
614 f = gen_rtx_fmt_ee (f_code, GET_MODE (t), XEXP (t, 0), XEXP (t, 1));
615 if (ce_info->and_and_p)
617 t = gen_rtx_AND (GET_MODE (t), true_expr, t);
618 f = gen_rtx_IOR (GET_MODE (t), false_expr, f);
620 else
622 t = gen_rtx_IOR (GET_MODE (t), true_expr, t);
623 f = gen_rtx_AND (GET_MODE (t), false_expr, f);
626 /* If the machine description needs to modify the tests, such as
627 setting a conditional execution register from a comparison, it can
628 do so here. */
629 #ifdef IFCVT_MODIFY_MULTIPLE_TESTS
630 IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, t, f);
632 /* See if the conversion failed. */
633 if (!t || !f)
634 goto fail;
635 #endif
637 true_expr = t;
638 false_expr = f;
640 while (bb != last_test_bb);
643 /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
644 on then THEN block. */
645 then_mod_ok = (else_bb == NULL_BLOCK);
647 /* Go through the THEN and ELSE blocks converting the insns if possible
648 to conditional execution. */
650 if (then_end
651 && (! false_expr
652 || ! cond_exec_process_insns (ce_info, then_start, then_end,
653 false_expr, false_prob_val,
654 then_mod_ok)))
655 goto fail;
657 if (else_bb && else_end
658 && ! cond_exec_process_insns (ce_info, else_start, else_end,
659 true_expr, true_prob_val, TRUE))
660 goto fail;
662 /* If we cannot apply the changes, fail. Do not go through the normal fail
663 processing, since apply_change_group will call cancel_changes. */
664 if (! apply_change_group ())
666 #ifdef IFCVT_MODIFY_CANCEL
667 /* Cancel any machine dependent changes. */
668 IFCVT_MODIFY_CANCEL (ce_info);
669 #endif
670 return FALSE;
673 #ifdef IFCVT_MODIFY_FINAL
674 /* Do any machine dependent final modifications. */
675 IFCVT_MODIFY_FINAL (ce_info);
676 #endif
678 /* Conversion succeeded. */
679 if (dump_file)
680 fprintf (dump_file, "%d insn%s converted to conditional execution.\n",
681 n_insns, (n_insns == 1) ? " was" : "s were");
683 /* Merge the blocks! If we had matching sequences, make sure to delete one
684 copy at the appropriate location first: delete the copy in the THEN branch
685 for a tail sequence so that the remaining one is executed last for both
686 branches, and delete the copy in the ELSE branch for a head sequence so
687 that the remaining one is executed first for both branches. */
688 if (then_first_tail)
690 rtx from = then_first_tail;
691 if (!INSN_P (from))
692 from = find_active_insn_after (then_bb, from);
693 delete_insn_chain (from, BB_END (then_bb), false);
695 if (else_last_head)
696 delete_insn_chain (first_active_insn (else_bb), else_last_head, false);
698 merge_if_block (ce_info);
699 cond_exec_changed_p = TRUE;
700 return TRUE;
702 fail:
703 #ifdef IFCVT_MODIFY_CANCEL
704 /* Cancel any machine dependent changes. */
705 IFCVT_MODIFY_CANCEL (ce_info);
706 #endif
708 cancel_changes (0);
709 return FALSE;
712 /* Used by noce_process_if_block to communicate with its subroutines.
714 The subroutines know that A and B may be evaluated freely. They
715 know that X is a register. They should insert new instructions
716 before cond_earliest. */
718 struct noce_if_info
720 /* The basic blocks that make up the IF-THEN-{ELSE-,}JOIN block. */
721 basic_block test_bb, then_bb, else_bb, join_bb;
723 /* The jump that ends TEST_BB. */
724 rtx jump;
726 /* The jump condition. */
727 rtx cond;
729 /* New insns should be inserted before this one. */
730 rtx cond_earliest;
732 /* Insns in the THEN and ELSE block. There is always just this
733 one insns in those blocks. The insns are single_set insns.
734 If there was no ELSE block, INSN_B is the last insn before
735 COND_EARLIEST, or NULL_RTX. In the former case, the insn
736 operands are still valid, as if INSN_B was moved down below
737 the jump. */
738 rtx insn_a, insn_b;
740 /* The SET_SRC of INSN_A and INSN_B. */
741 rtx a, b;
743 /* The SET_DEST of INSN_A. */
744 rtx x;
746 /* True if this if block is not canonical. In the canonical form of
747 if blocks, the THEN_BB is the block reached via the fallthru edge
748 from TEST_BB. For the noce transformations, we allow the symmetric
749 form as well. */
750 bool then_else_reversed;
752 /* Estimated cost of the particular branch instruction. */
753 int branch_cost;
756 static rtx noce_emit_store_flag (struct noce_if_info *, rtx, int, int);
757 static int noce_try_move (struct noce_if_info *);
758 static int noce_try_store_flag (struct noce_if_info *);
759 static int noce_try_addcc (struct noce_if_info *);
760 static int noce_try_store_flag_constants (struct noce_if_info *);
761 static int noce_try_store_flag_mask (struct noce_if_info *);
762 static rtx noce_emit_cmove (struct noce_if_info *, rtx, enum rtx_code, rtx,
763 rtx, rtx, rtx);
764 static int noce_try_cmove (struct noce_if_info *);
765 static int noce_try_cmove_arith (struct noce_if_info *);
766 static rtx noce_get_alt_condition (struct noce_if_info *, rtx, rtx *);
767 static int noce_try_minmax (struct noce_if_info *);
768 static int noce_try_abs (struct noce_if_info *);
769 static int noce_try_sign_mask (struct noce_if_info *);
771 /* Helper function for noce_try_store_flag*. */
773 static rtx
774 noce_emit_store_flag (struct noce_if_info *if_info, rtx x, int reversep,
775 int normalize)
777 rtx cond = if_info->cond;
778 int cond_complex;
779 enum rtx_code code;
781 cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode)
782 || ! general_operand (XEXP (cond, 1), VOIDmode));
784 /* If earliest == jump, or when the condition is complex, try to
785 build the store_flag insn directly. */
787 if (cond_complex)
789 rtx set = pc_set (if_info->jump);
790 cond = XEXP (SET_SRC (set), 0);
791 if (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
792 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump))
793 reversep = !reversep;
794 if (if_info->then_else_reversed)
795 reversep = !reversep;
798 if (reversep)
799 code = reversed_comparison_code (cond, if_info->jump);
800 else
801 code = GET_CODE (cond);
803 if ((if_info->cond_earliest == if_info->jump || cond_complex)
804 && (normalize == 0 || STORE_FLAG_VALUE == normalize))
806 rtx tmp;
808 tmp = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0),
809 XEXP (cond, 1));
810 tmp = gen_rtx_SET (VOIDmode, x, tmp);
812 start_sequence ();
813 tmp = emit_insn (tmp);
815 if (recog_memoized (tmp) >= 0)
817 tmp = get_insns ();
818 end_sequence ();
819 emit_insn (tmp);
821 if_info->cond_earliest = if_info->jump;
823 return x;
826 end_sequence ();
829 /* Don't even try if the comparison operands or the mode of X are weird. */
830 if (cond_complex || !SCALAR_INT_MODE_P (GET_MODE (x)))
831 return NULL_RTX;
833 return emit_store_flag (x, code, XEXP (cond, 0),
834 XEXP (cond, 1), VOIDmode,
835 (code == LTU || code == LEU
836 || code == GEU || code == GTU), normalize);
839 /* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
840 X is the destination/target and Y is the value to copy. */
842 static void
843 noce_emit_move_insn (rtx x, rtx y)
845 enum machine_mode outmode;
846 rtx outer, inner;
847 int bitpos;
849 if (GET_CODE (x) != STRICT_LOW_PART)
851 rtx seq, insn, target;
852 optab ot;
854 start_sequence ();
855 /* Check that the SET_SRC is reasonable before calling emit_move_insn,
856 otherwise construct a suitable SET pattern ourselves. */
857 insn = (OBJECT_P (y) || CONSTANT_P (y) || GET_CODE (y) == SUBREG)
858 ? emit_move_insn (x, y)
859 : emit_insn (gen_rtx_SET (VOIDmode, x, y));
860 seq = get_insns ();
861 end_sequence ();
863 if (recog_memoized (insn) <= 0)
865 if (GET_CODE (x) == ZERO_EXTRACT)
867 rtx op = XEXP (x, 0);
868 unsigned HOST_WIDE_INT size = INTVAL (XEXP (x, 1));
869 unsigned HOST_WIDE_INT start = INTVAL (XEXP (x, 2));
871 /* store_bit_field expects START to be relative to
872 BYTES_BIG_ENDIAN and adjusts this value for machines with
873 BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN. In order to be able to
874 invoke store_bit_field again it is necessary to have the START
875 value from the first call. */
876 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
878 if (MEM_P (op))
879 start = BITS_PER_UNIT - start - size;
880 else
882 gcc_assert (REG_P (op));
883 start = BITS_PER_WORD - start - size;
887 gcc_assert (start < (MEM_P (op) ? BITS_PER_UNIT : BITS_PER_WORD));
888 store_bit_field (op, size, start, 0, 0, GET_MODE (x), y);
889 return;
892 switch (GET_RTX_CLASS (GET_CODE (y)))
894 case RTX_UNARY:
895 ot = code_to_optab[GET_CODE (y)];
896 if (ot)
898 start_sequence ();
899 target = expand_unop (GET_MODE (y), ot, XEXP (y, 0), x, 0);
900 if (target != NULL_RTX)
902 if (target != x)
903 emit_move_insn (x, target);
904 seq = get_insns ();
906 end_sequence ();
908 break;
910 case RTX_BIN_ARITH:
911 case RTX_COMM_ARITH:
912 ot = code_to_optab[GET_CODE (y)];
913 if (ot)
915 start_sequence ();
916 target = expand_binop (GET_MODE (y), ot,
917 XEXP (y, 0), XEXP (y, 1),
918 x, 0, OPTAB_DIRECT);
919 if (target != NULL_RTX)
921 if (target != x)
922 emit_move_insn (x, target);
923 seq = get_insns ();
925 end_sequence ();
927 break;
929 default:
930 break;
934 emit_insn (seq);
935 return;
938 outer = XEXP (x, 0);
939 inner = XEXP (outer, 0);
940 outmode = GET_MODE (outer);
941 bitpos = SUBREG_BYTE (outer) * BITS_PER_UNIT;
942 store_bit_field (inner, GET_MODE_BITSIZE (outmode), bitpos,
943 0, 0, outmode, y);
946 /* Return sequence of instructions generated by if conversion. This
947 function calls end_sequence() to end the current stream, ensures
948 that are instructions are unshared, recognizable non-jump insns.
949 On failure, this function returns a NULL_RTX. */
951 static rtx
952 end_ifcvt_sequence (struct noce_if_info *if_info)
954 rtx insn;
955 rtx seq = get_insns ();
957 set_used_flags (if_info->x);
958 set_used_flags (if_info->cond);
959 unshare_all_rtl_in_chain (seq);
960 end_sequence ();
962 /* Make sure that all of the instructions emitted are recognizable,
963 and that we haven't introduced a new jump instruction.
964 As an exercise for the reader, build a general mechanism that
965 allows proper placement of required clobbers. */
966 for (insn = seq; insn; insn = NEXT_INSN (insn))
967 if (JUMP_P (insn)
968 || recog_memoized (insn) == -1)
969 return NULL_RTX;
971 return seq;
974 /* Convert "if (a != b) x = a; else x = b" into "x = a" and
975 "if (a == b) x = a; else x = b" into "x = b". */
977 static int
978 noce_try_move (struct noce_if_info *if_info)
980 rtx cond = if_info->cond;
981 enum rtx_code code = GET_CODE (cond);
982 rtx y, seq;
984 if (code != NE && code != EQ)
985 return FALSE;
987 /* This optimization isn't valid if either A or B could be a NaN
988 or a signed zero. */
989 if (HONOR_NANS (GET_MODE (if_info->x))
990 || HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
991 return FALSE;
993 /* Check whether the operands of the comparison are A and in
994 either order. */
995 if ((rtx_equal_p (if_info->a, XEXP (cond, 0))
996 && rtx_equal_p (if_info->b, XEXP (cond, 1)))
997 || (rtx_equal_p (if_info->a, XEXP (cond, 1))
998 && rtx_equal_p (if_info->b, XEXP (cond, 0))))
1000 y = (code == EQ) ? if_info->a : if_info->b;
1002 /* Avoid generating the move if the source is the destination. */
1003 if (! rtx_equal_p (if_info->x, y))
1005 start_sequence ();
1006 noce_emit_move_insn (if_info->x, y);
1007 seq = end_ifcvt_sequence (if_info);
1008 if (!seq)
1009 return FALSE;
1011 emit_insn_before_setloc (seq, if_info->jump,
1012 INSN_LOCATOR (if_info->insn_a));
1014 return TRUE;
1016 return FALSE;
1019 /* Convert "if (test) x = 1; else x = 0".
1021 Only try 0 and STORE_FLAG_VALUE here. Other combinations will be
1022 tried in noce_try_store_flag_constants after noce_try_cmove has had
1023 a go at the conversion. */
1025 static int
1026 noce_try_store_flag (struct noce_if_info *if_info)
1028 int reversep;
1029 rtx target, seq;
1031 if (CONST_INT_P (if_info->b)
1032 && INTVAL (if_info->b) == STORE_FLAG_VALUE
1033 && if_info->a == const0_rtx)
1034 reversep = 0;
1035 else if (if_info->b == const0_rtx
1036 && CONST_INT_P (if_info->a)
1037 && INTVAL (if_info->a) == STORE_FLAG_VALUE
1038 && (reversed_comparison_code (if_info->cond, if_info->jump)
1039 != UNKNOWN))
1040 reversep = 1;
1041 else
1042 return FALSE;
1044 start_sequence ();
1046 target = noce_emit_store_flag (if_info, if_info->x, reversep, 0);
1047 if (target)
1049 if (target != if_info->x)
1050 noce_emit_move_insn (if_info->x, target);
1052 seq = end_ifcvt_sequence (if_info);
1053 if (! seq)
1054 return FALSE;
1056 emit_insn_before_setloc (seq, if_info->jump,
1057 INSN_LOCATOR (if_info->insn_a));
1058 return TRUE;
1060 else
1062 end_sequence ();
1063 return FALSE;
1067 /* Convert "if (test) x = a; else x = b", for A and B constant. */
1069 static int
1070 noce_try_store_flag_constants (struct noce_if_info *if_info)
1072 rtx target, seq;
1073 int reversep;
1074 HOST_WIDE_INT itrue, ifalse, diff, tmp;
1075 int normalize, can_reverse;
1076 enum machine_mode mode;
1078 if (CONST_INT_P (if_info->a)
1079 && CONST_INT_P (if_info->b))
1081 mode = GET_MODE (if_info->x);
1082 ifalse = INTVAL (if_info->a);
1083 itrue = INTVAL (if_info->b);
1085 /* Make sure we can represent the difference between the two values. */
1086 if ((itrue - ifalse > 0)
1087 != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
1088 return FALSE;
1090 diff = trunc_int_for_mode (itrue - ifalse, mode);
1092 can_reverse = (reversed_comparison_code (if_info->cond, if_info->jump)
1093 != UNKNOWN);
1095 reversep = 0;
1096 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1097 normalize = 0;
1098 else if (ifalse == 0 && exact_log2 (itrue) >= 0
1099 && (STORE_FLAG_VALUE == 1
1100 || if_info->branch_cost >= 2))
1101 normalize = 1;
1102 else if (itrue == 0 && exact_log2 (ifalse) >= 0 && can_reverse
1103 && (STORE_FLAG_VALUE == 1 || if_info->branch_cost >= 2))
1104 normalize = 1, reversep = 1;
1105 else if (itrue == -1
1106 && (STORE_FLAG_VALUE == -1
1107 || if_info->branch_cost >= 2))
1108 normalize = -1;
1109 else if (ifalse == -1 && can_reverse
1110 && (STORE_FLAG_VALUE == -1 || if_info->branch_cost >= 2))
1111 normalize = -1, reversep = 1;
1112 else if ((if_info->branch_cost >= 2 && STORE_FLAG_VALUE == -1)
1113 || if_info->branch_cost >= 3)
1114 normalize = -1;
1115 else
1116 return FALSE;
1118 if (reversep)
1120 tmp = itrue; itrue = ifalse; ifalse = tmp;
1121 diff = trunc_int_for_mode (-diff, mode);
1124 start_sequence ();
1125 target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize);
1126 if (! target)
1128 end_sequence ();
1129 return FALSE;
1132 /* if (test) x = 3; else x = 4;
1133 => x = 3 + (test == 0); */
1134 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1136 target = expand_simple_binop (mode,
1137 (diff == STORE_FLAG_VALUE
1138 ? PLUS : MINUS),
1139 GEN_INT (ifalse), target, if_info->x, 0,
1140 OPTAB_WIDEN);
1143 /* if (test) x = 8; else x = 0;
1144 => x = (test != 0) << 3; */
1145 else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0)
1147 target = expand_simple_binop (mode, ASHIFT,
1148 target, GEN_INT (tmp), if_info->x, 0,
1149 OPTAB_WIDEN);
1152 /* if (test) x = -1; else x = b;
1153 => x = -(test != 0) | b; */
1154 else if (itrue == -1)
1156 target = expand_simple_binop (mode, IOR,
1157 target, GEN_INT (ifalse), if_info->x, 0,
1158 OPTAB_WIDEN);
1161 /* if (test) x = a; else x = b;
1162 => x = (-(test != 0) & (b - a)) + a; */
1163 else
1165 target = expand_simple_binop (mode, AND,
1166 target, GEN_INT (diff), if_info->x, 0,
1167 OPTAB_WIDEN);
1168 if (target)
1169 target = expand_simple_binop (mode, PLUS,
1170 target, GEN_INT (ifalse),
1171 if_info->x, 0, OPTAB_WIDEN);
1174 if (! target)
1176 end_sequence ();
1177 return FALSE;
1180 if (target != if_info->x)
1181 noce_emit_move_insn (if_info->x, target);
1183 seq = end_ifcvt_sequence (if_info);
1184 if (!seq)
1185 return FALSE;
1187 emit_insn_before_setloc (seq, if_info->jump,
1188 INSN_LOCATOR (if_info->insn_a));
1189 return TRUE;
1192 return FALSE;
1195 /* Convert "if (test) foo++" into "foo += (test != 0)", and
1196 similarly for "foo--". */
1198 static int
1199 noce_try_addcc (struct noce_if_info *if_info)
1201 rtx target, seq;
1202 int subtract, normalize;
1204 if (GET_CODE (if_info->a) == PLUS
1205 && rtx_equal_p (XEXP (if_info->a, 0), if_info->b)
1206 && (reversed_comparison_code (if_info->cond, if_info->jump)
1207 != UNKNOWN))
1209 rtx cond = if_info->cond;
1210 enum rtx_code code = reversed_comparison_code (cond, if_info->jump);
1212 /* First try to use addcc pattern. */
1213 if (general_operand (XEXP (cond, 0), VOIDmode)
1214 && general_operand (XEXP (cond, 1), VOIDmode))
1216 start_sequence ();
1217 target = emit_conditional_add (if_info->x, code,
1218 XEXP (cond, 0),
1219 XEXP (cond, 1),
1220 VOIDmode,
1221 if_info->b,
1222 XEXP (if_info->a, 1),
1223 GET_MODE (if_info->x),
1224 (code == LTU || code == GEU
1225 || code == LEU || code == GTU));
1226 if (target)
1228 if (target != if_info->x)
1229 noce_emit_move_insn (if_info->x, target);
1231 seq = end_ifcvt_sequence (if_info);
1232 if (!seq)
1233 return FALSE;
1235 emit_insn_before_setloc (seq, if_info->jump,
1236 INSN_LOCATOR (if_info->insn_a));
1237 return TRUE;
1239 end_sequence ();
1242 /* If that fails, construct conditional increment or decrement using
1243 setcc. */
1244 if (if_info->branch_cost >= 2
1245 && (XEXP (if_info->a, 1) == const1_rtx
1246 || XEXP (if_info->a, 1) == constm1_rtx))
1248 start_sequence ();
1249 if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1250 subtract = 0, normalize = 0;
1251 else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1252 subtract = 1, normalize = 0;
1253 else
1254 subtract = 0, normalize = INTVAL (XEXP (if_info->a, 1));
1257 target = noce_emit_store_flag (if_info,
1258 gen_reg_rtx (GET_MODE (if_info->x)),
1259 1, normalize);
1261 if (target)
1262 target = expand_simple_binop (GET_MODE (if_info->x),
1263 subtract ? MINUS : PLUS,
1264 if_info->b, target, if_info->x,
1265 0, OPTAB_WIDEN);
1266 if (target)
1268 if (target != if_info->x)
1269 noce_emit_move_insn (if_info->x, target);
1271 seq = end_ifcvt_sequence (if_info);
1272 if (!seq)
1273 return FALSE;
1275 emit_insn_before_setloc (seq, if_info->jump,
1276 INSN_LOCATOR (if_info->insn_a));
1277 return TRUE;
1279 end_sequence ();
1283 return FALSE;
1286 /* Convert "if (test) x = 0;" to "x &= -(test == 0);" */
1288 static int
1289 noce_try_store_flag_mask (struct noce_if_info *if_info)
1291 rtx target, seq;
1292 int reversep;
1294 reversep = 0;
1295 if ((if_info->branch_cost >= 2
1296 || STORE_FLAG_VALUE == -1)
1297 && ((if_info->a == const0_rtx
1298 && rtx_equal_p (if_info->b, if_info->x))
1299 || ((reversep = (reversed_comparison_code (if_info->cond,
1300 if_info->jump)
1301 != UNKNOWN))
1302 && if_info->b == const0_rtx
1303 && rtx_equal_p (if_info->a, if_info->x))))
1305 start_sequence ();
1306 target = noce_emit_store_flag (if_info,
1307 gen_reg_rtx (GET_MODE (if_info->x)),
1308 reversep, -1);
1309 if (target)
1310 target = expand_simple_binop (GET_MODE (if_info->x), AND,
1311 if_info->x,
1312 target, if_info->x, 0,
1313 OPTAB_WIDEN);
1315 if (target)
1317 if (target != if_info->x)
1318 noce_emit_move_insn (if_info->x, target);
1320 seq = end_ifcvt_sequence (if_info);
1321 if (!seq)
1322 return FALSE;
1324 emit_insn_before_setloc (seq, if_info->jump,
1325 INSN_LOCATOR (if_info->insn_a));
1326 return TRUE;
1329 end_sequence ();
1332 return FALSE;
1335 /* Helper function for noce_try_cmove and noce_try_cmove_arith. */
1337 static rtx
1338 noce_emit_cmove (struct noce_if_info *if_info, rtx x, enum rtx_code code,
1339 rtx cmp_a, rtx cmp_b, rtx vfalse, rtx vtrue)
1341 rtx target ATTRIBUTE_UNUSED;
1342 int unsignedp ATTRIBUTE_UNUSED;
1344 /* If earliest == jump, try to build the cmove insn directly.
1345 This is helpful when combine has created some complex condition
1346 (like for alpha's cmovlbs) that we can't hope to regenerate
1347 through the normal interface. */
1349 if (if_info->cond_earliest == if_info->jump)
1351 rtx tmp;
1353 tmp = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b);
1354 tmp = gen_rtx_IF_THEN_ELSE (GET_MODE (x), tmp, vtrue, vfalse);
1355 tmp = gen_rtx_SET (VOIDmode, x, tmp);
1357 start_sequence ();
1358 tmp = emit_insn (tmp);
1360 if (recog_memoized (tmp) >= 0)
1362 tmp = get_insns ();
1363 end_sequence ();
1364 emit_insn (tmp);
1366 return x;
1369 end_sequence ();
1372 /* Don't even try if the comparison operands are weird. */
1373 if (! general_operand (cmp_a, GET_MODE (cmp_a))
1374 || ! general_operand (cmp_b, GET_MODE (cmp_b)))
1375 return NULL_RTX;
1377 #if HAVE_conditional_move
1378 unsignedp = (code == LTU || code == GEU
1379 || code == LEU || code == GTU);
1381 target = emit_conditional_move (x, code, cmp_a, cmp_b, VOIDmode,
1382 vtrue, vfalse, GET_MODE (x),
1383 unsignedp);
1384 if (target)
1385 return target;
1387 /* We might be faced with a situation like:
1389 x = (reg:M TARGET)
1390 vtrue = (subreg:M (reg:N VTRUE) BYTE)
1391 vfalse = (subreg:M (reg:N VFALSE) BYTE)
1393 We can't do a conditional move in mode M, but it's possible that we
1394 could do a conditional move in mode N instead and take a subreg of
1395 the result.
1397 If we can't create new pseudos, though, don't bother. */
1398 if (reload_completed)
1399 return NULL_RTX;
1401 if (GET_CODE (vtrue) == SUBREG && GET_CODE (vfalse) == SUBREG)
1403 rtx reg_vtrue = SUBREG_REG (vtrue);
1404 rtx reg_vfalse = SUBREG_REG (vfalse);
1405 unsigned int byte_vtrue = SUBREG_BYTE (vtrue);
1406 unsigned int byte_vfalse = SUBREG_BYTE (vfalse);
1407 rtx promoted_target;
1409 if (GET_MODE (reg_vtrue) != GET_MODE (reg_vfalse)
1410 || byte_vtrue != byte_vfalse
1411 || (SUBREG_PROMOTED_VAR_P (vtrue)
1412 != SUBREG_PROMOTED_VAR_P (vfalse))
1413 || (SUBREG_PROMOTED_UNSIGNED_P (vtrue)
1414 != SUBREG_PROMOTED_UNSIGNED_P (vfalse)))
1415 return NULL_RTX;
1417 promoted_target = gen_reg_rtx (GET_MODE (reg_vtrue));
1419 target = emit_conditional_move (promoted_target, code, cmp_a, cmp_b,
1420 VOIDmode, reg_vtrue, reg_vfalse,
1421 GET_MODE (reg_vtrue), unsignedp);
1422 /* Nope, couldn't do it in that mode either. */
1423 if (!target)
1424 return NULL_RTX;
1426 target = gen_rtx_SUBREG (GET_MODE (vtrue), promoted_target, byte_vtrue);
1427 SUBREG_PROMOTED_VAR_P (target) = SUBREG_PROMOTED_VAR_P (vtrue);
1428 SUBREG_PROMOTED_UNSIGNED_SET (target, SUBREG_PROMOTED_UNSIGNED_P (vtrue));
1429 emit_move_insn (x, target);
1430 return x;
1432 else
1433 return NULL_RTX;
1434 #else
1435 /* We'll never get here, as noce_process_if_block doesn't call the
1436 functions involved. Ifdef code, however, should be discouraged
1437 because it leads to typos in the code not selected. However,
1438 emit_conditional_move won't exist either. */
1439 return NULL_RTX;
1440 #endif
1443 /* Try only simple constants and registers here. More complex cases
1444 are handled in noce_try_cmove_arith after noce_try_store_flag_arith
1445 has had a go at it. */
1447 static int
1448 noce_try_cmove (struct noce_if_info *if_info)
1450 enum rtx_code code;
1451 rtx target, seq;
1453 if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode))
1454 && (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode)))
1456 start_sequence ();
1458 code = GET_CODE (if_info->cond);
1459 target = noce_emit_cmove (if_info, if_info->x, code,
1460 XEXP (if_info->cond, 0),
1461 XEXP (if_info->cond, 1),
1462 if_info->a, if_info->b);
1464 if (target)
1466 if (target != if_info->x)
1467 noce_emit_move_insn (if_info->x, target);
1469 seq = end_ifcvt_sequence (if_info);
1470 if (!seq)
1471 return FALSE;
1473 emit_insn_before_setloc (seq, if_info->jump,
1474 INSN_LOCATOR (if_info->insn_a));
1475 return TRUE;
1477 else
1479 end_sequence ();
1480 return FALSE;
1484 return FALSE;
1487 /* Try more complex cases involving conditional_move. */
1489 static int
1490 noce_try_cmove_arith (struct noce_if_info *if_info)
1492 rtx a = if_info->a;
1493 rtx b = if_info->b;
1494 rtx x = if_info->x;
1495 rtx orig_a, orig_b;
1496 rtx insn_a, insn_b;
1497 rtx tmp, target;
1498 int is_mem = 0;
1499 int insn_cost;
1500 enum rtx_code code;
1502 /* A conditional move from two memory sources is equivalent to a
1503 conditional on their addresses followed by a load. Don't do this
1504 early because it'll screw alias analysis. Note that we've
1505 already checked for no side effects. */
1506 /* ??? FIXME: Magic number 5. */
1507 if (cse_not_expected
1508 && MEM_P (a) && MEM_P (b)
1509 && MEM_ADDR_SPACE (a) == MEM_ADDR_SPACE (b)
1510 && if_info->branch_cost >= 5)
1512 enum machine_mode address_mode
1513 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (a));
1515 a = XEXP (a, 0);
1516 b = XEXP (b, 0);
1517 x = gen_reg_rtx (address_mode);
1518 is_mem = 1;
1521 /* ??? We could handle this if we knew that a load from A or B could
1522 not fault. This is also true if we've already loaded
1523 from the address along the path from ENTRY. */
1524 else if (may_trap_p (a) || may_trap_p (b))
1525 return FALSE;
1527 /* if (test) x = a + b; else x = c - d;
1528 => y = a + b;
1529 x = c - d;
1530 if (test)
1531 x = y;
1534 code = GET_CODE (if_info->cond);
1535 insn_a = if_info->insn_a;
1536 insn_b = if_info->insn_b;
1538 /* Total insn_rtx_cost should be smaller than branch cost. Exit
1539 if insn_rtx_cost can't be estimated. */
1540 if (insn_a)
1542 insn_cost
1543 = insn_rtx_cost (PATTERN (insn_a),
1544 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_a)));
1545 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (if_info->branch_cost))
1546 return FALSE;
1548 else
1549 insn_cost = 0;
1551 if (insn_b)
1553 insn_cost
1554 += insn_rtx_cost (PATTERN (insn_b),
1555 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_b)));
1556 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (if_info->branch_cost))
1557 return FALSE;
1560 /* Possibly rearrange operands to make things come out more natural. */
1561 if (reversed_comparison_code (if_info->cond, if_info->jump) != UNKNOWN)
1563 int reversep = 0;
1564 if (rtx_equal_p (b, x))
1565 reversep = 1;
1566 else if (general_operand (b, GET_MODE (b)))
1567 reversep = 1;
1569 if (reversep)
1571 code = reversed_comparison_code (if_info->cond, if_info->jump);
1572 tmp = a, a = b, b = tmp;
1573 tmp = insn_a, insn_a = insn_b, insn_b = tmp;
1577 start_sequence ();
1579 orig_a = a;
1580 orig_b = b;
1582 /* If either operand is complex, load it into a register first.
1583 The best way to do this is to copy the original insn. In this
1584 way we preserve any clobbers etc that the insn may have had.
1585 This is of course not possible in the IS_MEM case. */
1586 if (! general_operand (a, GET_MODE (a)))
1588 rtx set;
1590 if (is_mem)
1592 tmp = gen_reg_rtx (GET_MODE (a));
1593 tmp = emit_insn (gen_rtx_SET (VOIDmode, tmp, a));
1595 else if (! insn_a)
1596 goto end_seq_and_fail;
1597 else
1599 a = gen_reg_rtx (GET_MODE (a));
1600 tmp = copy_rtx (insn_a);
1601 set = single_set (tmp);
1602 SET_DEST (set) = a;
1603 tmp = emit_insn (PATTERN (tmp));
1605 if (recog_memoized (tmp) < 0)
1606 goto end_seq_and_fail;
1608 if (! general_operand (b, GET_MODE (b)))
1610 rtx set, last;
1612 if (is_mem)
1614 tmp = gen_reg_rtx (GET_MODE (b));
1615 tmp = gen_rtx_SET (VOIDmode, tmp, b);
1617 else if (! insn_b)
1618 goto end_seq_and_fail;
1619 else
1621 b = gen_reg_rtx (GET_MODE (b));
1622 tmp = copy_rtx (insn_b);
1623 set = single_set (tmp);
1624 SET_DEST (set) = b;
1625 tmp = PATTERN (tmp);
1628 /* If insn to set up A clobbers any registers B depends on, try to
1629 swap insn that sets up A with the one that sets up B. If even
1630 that doesn't help, punt. */
1631 last = get_last_insn ();
1632 if (last && modified_in_p (orig_b, last))
1634 tmp = emit_insn_before (tmp, get_insns ());
1635 if (modified_in_p (orig_a, tmp))
1636 goto end_seq_and_fail;
1638 else
1639 tmp = emit_insn (tmp);
1641 if (recog_memoized (tmp) < 0)
1642 goto end_seq_and_fail;
1645 target = noce_emit_cmove (if_info, x, code, XEXP (if_info->cond, 0),
1646 XEXP (if_info->cond, 1), a, b);
1648 if (! target)
1649 goto end_seq_and_fail;
1651 /* If we're handling a memory for above, emit the load now. */
1652 if (is_mem)
1654 tmp = gen_rtx_MEM (GET_MODE (if_info->x), target);
1656 /* Copy over flags as appropriate. */
1657 if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b))
1658 MEM_VOLATILE_P (tmp) = 1;
1659 if (MEM_IN_STRUCT_P (if_info->a) && MEM_IN_STRUCT_P (if_info->b))
1660 MEM_IN_STRUCT_P (tmp) = 1;
1661 if (MEM_SCALAR_P (if_info->a) && MEM_SCALAR_P (if_info->b))
1662 MEM_SCALAR_P (tmp) = 1;
1663 if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b))
1664 set_mem_alias_set (tmp, MEM_ALIAS_SET (if_info->a));
1665 set_mem_align (tmp,
1666 MIN (MEM_ALIGN (if_info->a), MEM_ALIGN (if_info->b)));
1668 gcc_assert (MEM_ADDR_SPACE (if_info->a) == MEM_ADDR_SPACE (if_info->b));
1669 set_mem_addr_space (tmp, MEM_ADDR_SPACE (if_info->a));
1671 noce_emit_move_insn (if_info->x, tmp);
1673 else if (target != x)
1674 noce_emit_move_insn (x, target);
1676 tmp = end_ifcvt_sequence (if_info);
1677 if (!tmp)
1678 return FALSE;
1680 emit_insn_before_setloc (tmp, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1681 return TRUE;
1683 end_seq_and_fail:
1684 end_sequence ();
1685 return FALSE;
1688 /* For most cases, the simplified condition we found is the best
1689 choice, but this is not the case for the min/max/abs transforms.
1690 For these we wish to know that it is A or B in the condition. */
1692 static rtx
1693 noce_get_alt_condition (struct noce_if_info *if_info, rtx target,
1694 rtx *earliest)
1696 rtx cond, set, insn;
1697 int reverse;
1699 /* If target is already mentioned in the known condition, return it. */
1700 if (reg_mentioned_p (target, if_info->cond))
1702 *earliest = if_info->cond_earliest;
1703 return if_info->cond;
1706 set = pc_set (if_info->jump);
1707 cond = XEXP (SET_SRC (set), 0);
1708 reverse
1709 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
1710 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump);
1711 if (if_info->then_else_reversed)
1712 reverse = !reverse;
1714 /* If we're looking for a constant, try to make the conditional
1715 have that constant in it. There are two reasons why it may
1716 not have the constant we want:
1718 1. GCC may have needed to put the constant in a register, because
1719 the target can't compare directly against that constant. For
1720 this case, we look for a SET immediately before the comparison
1721 that puts a constant in that register.
1723 2. GCC may have canonicalized the conditional, for example
1724 replacing "if x < 4" with "if x <= 3". We can undo that (or
1725 make equivalent types of changes) to get the constants we need
1726 if they're off by one in the right direction. */
1728 if (CONST_INT_P (target))
1730 enum rtx_code code = GET_CODE (if_info->cond);
1731 rtx op_a = XEXP (if_info->cond, 0);
1732 rtx op_b = XEXP (if_info->cond, 1);
1733 rtx prev_insn;
1735 /* First, look to see if we put a constant in a register. */
1736 prev_insn = prev_nonnote_insn (if_info->cond_earliest);
1737 if (prev_insn
1738 && BLOCK_FOR_INSN (prev_insn)
1739 == BLOCK_FOR_INSN (if_info->cond_earliest)
1740 && INSN_P (prev_insn)
1741 && GET_CODE (PATTERN (prev_insn)) == SET)
1743 rtx src = find_reg_equal_equiv_note (prev_insn);
1744 if (!src)
1745 src = SET_SRC (PATTERN (prev_insn));
1746 if (CONST_INT_P (src))
1748 if (rtx_equal_p (op_a, SET_DEST (PATTERN (prev_insn))))
1749 op_a = src;
1750 else if (rtx_equal_p (op_b, SET_DEST (PATTERN (prev_insn))))
1751 op_b = src;
1753 if (CONST_INT_P (op_a))
1755 rtx tmp = op_a;
1756 op_a = op_b;
1757 op_b = tmp;
1758 code = swap_condition (code);
1763 /* Now, look to see if we can get the right constant by
1764 adjusting the conditional. */
1765 if (CONST_INT_P (op_b))
1767 HOST_WIDE_INT desired_val = INTVAL (target);
1768 HOST_WIDE_INT actual_val = INTVAL (op_b);
1770 switch (code)
1772 case LT:
1773 if (actual_val == desired_val + 1)
1775 code = LE;
1776 op_b = GEN_INT (desired_val);
1778 break;
1779 case LE:
1780 if (actual_val == desired_val - 1)
1782 code = LT;
1783 op_b = GEN_INT (desired_val);
1785 break;
1786 case GT:
1787 if (actual_val == desired_val - 1)
1789 code = GE;
1790 op_b = GEN_INT (desired_val);
1792 break;
1793 case GE:
1794 if (actual_val == desired_val + 1)
1796 code = GT;
1797 op_b = GEN_INT (desired_val);
1799 break;
1800 default:
1801 break;
1805 /* If we made any changes, generate a new conditional that is
1806 equivalent to what we started with, but has the right
1807 constants in it. */
1808 if (code != GET_CODE (if_info->cond)
1809 || op_a != XEXP (if_info->cond, 0)
1810 || op_b != XEXP (if_info->cond, 1))
1812 cond = gen_rtx_fmt_ee (code, GET_MODE (cond), op_a, op_b);
1813 *earliest = if_info->cond_earliest;
1814 return cond;
1818 cond = canonicalize_condition (if_info->jump, cond, reverse,
1819 earliest, target, false, true);
1820 if (! cond || ! reg_mentioned_p (target, cond))
1821 return NULL;
1823 /* We almost certainly searched back to a different place.
1824 Need to re-verify correct lifetimes. */
1826 /* X may not be mentioned in the range (cond_earliest, jump]. */
1827 for (insn = if_info->jump; insn != *earliest; insn = PREV_INSN (insn))
1828 if (INSN_P (insn) && reg_overlap_mentioned_p (if_info->x, PATTERN (insn)))
1829 return NULL;
1831 /* A and B may not be modified in the range [cond_earliest, jump). */
1832 for (insn = *earliest; insn != if_info->jump; insn = NEXT_INSN (insn))
1833 if (INSN_P (insn)
1834 && (modified_in_p (if_info->a, insn)
1835 || modified_in_p (if_info->b, insn)))
1836 return NULL;
1838 return cond;
1841 /* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc. */
1843 static int
1844 noce_try_minmax (struct noce_if_info *if_info)
1846 rtx cond, earliest, target, seq;
1847 enum rtx_code code, op;
1848 int unsignedp;
1850 /* ??? Reject modes with NaNs or signed zeros since we don't know how
1851 they will be resolved with an SMIN/SMAX. It wouldn't be too hard
1852 to get the target to tell us... */
1853 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x))
1854 || HONOR_NANS (GET_MODE (if_info->x)))
1855 return FALSE;
1857 cond = noce_get_alt_condition (if_info, if_info->a, &earliest);
1858 if (!cond)
1859 return FALSE;
1861 /* Verify the condition is of the form we expect, and canonicalize
1862 the comparison code. */
1863 code = GET_CODE (cond);
1864 if (rtx_equal_p (XEXP (cond, 0), if_info->a))
1866 if (! rtx_equal_p (XEXP (cond, 1), if_info->b))
1867 return FALSE;
1869 else if (rtx_equal_p (XEXP (cond, 1), if_info->a))
1871 if (! rtx_equal_p (XEXP (cond, 0), if_info->b))
1872 return FALSE;
1873 code = swap_condition (code);
1875 else
1876 return FALSE;
1878 /* Determine what sort of operation this is. Note that the code is for
1879 a taken branch, so the code->operation mapping appears backwards. */
1880 switch (code)
1882 case LT:
1883 case LE:
1884 case UNLT:
1885 case UNLE:
1886 op = SMAX;
1887 unsignedp = 0;
1888 break;
1889 case GT:
1890 case GE:
1891 case UNGT:
1892 case UNGE:
1893 op = SMIN;
1894 unsignedp = 0;
1895 break;
1896 case LTU:
1897 case LEU:
1898 op = UMAX;
1899 unsignedp = 1;
1900 break;
1901 case GTU:
1902 case GEU:
1903 op = UMIN;
1904 unsignedp = 1;
1905 break;
1906 default:
1907 return FALSE;
1910 start_sequence ();
1912 target = expand_simple_binop (GET_MODE (if_info->x), op,
1913 if_info->a, if_info->b,
1914 if_info->x, unsignedp, OPTAB_WIDEN);
1915 if (! target)
1917 end_sequence ();
1918 return FALSE;
1920 if (target != if_info->x)
1921 noce_emit_move_insn (if_info->x, target);
1923 seq = end_ifcvt_sequence (if_info);
1924 if (!seq)
1925 return FALSE;
1927 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1928 if_info->cond = cond;
1929 if_info->cond_earliest = earliest;
1931 return TRUE;
1934 /* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);",
1935 "if (a < 0) x = ~a; else x = a;" to "x = one_cmpl_abs(a);",
1936 etc. */
1938 static int
1939 noce_try_abs (struct noce_if_info *if_info)
1941 rtx cond, earliest, target, seq, a, b, c;
1942 int negate;
1943 bool one_cmpl = false;
1945 /* Reject modes with signed zeros. */
1946 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
1947 return FALSE;
1949 /* Recognize A and B as constituting an ABS or NABS. The canonical
1950 form is a branch around the negation, taken when the object is the
1951 first operand of a comparison against 0 that evaluates to true. */
1952 a = if_info->a;
1953 b = if_info->b;
1954 if (GET_CODE (a) == NEG && rtx_equal_p (XEXP (a, 0), b))
1955 negate = 0;
1956 else if (GET_CODE (b) == NEG && rtx_equal_p (XEXP (b, 0), a))
1958 c = a; a = b; b = c;
1959 negate = 1;
1961 else if (GET_CODE (a) == NOT && rtx_equal_p (XEXP (a, 0), b))
1963 negate = 0;
1964 one_cmpl = true;
1966 else if (GET_CODE (b) == NOT && rtx_equal_p (XEXP (b, 0), a))
1968 c = a; a = b; b = c;
1969 negate = 1;
1970 one_cmpl = true;
1972 else
1973 return FALSE;
1975 cond = noce_get_alt_condition (if_info, b, &earliest);
1976 if (!cond)
1977 return FALSE;
1979 /* Verify the condition is of the form we expect. */
1980 if (rtx_equal_p (XEXP (cond, 0), b))
1981 c = XEXP (cond, 1);
1982 else if (rtx_equal_p (XEXP (cond, 1), b))
1984 c = XEXP (cond, 0);
1985 negate = !negate;
1987 else
1988 return FALSE;
1990 /* Verify that C is zero. Search one step backward for a
1991 REG_EQUAL note or a simple source if necessary. */
1992 if (REG_P (c))
1994 rtx set, insn = prev_nonnote_insn (earliest);
1995 if (insn
1996 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (earliest)
1997 && (set = single_set (insn))
1998 && rtx_equal_p (SET_DEST (set), c))
2000 rtx note = find_reg_equal_equiv_note (insn);
2001 if (note)
2002 c = XEXP (note, 0);
2003 else
2004 c = SET_SRC (set);
2006 else
2007 return FALSE;
2009 if (MEM_P (c)
2010 && GET_CODE (XEXP (c, 0)) == SYMBOL_REF
2011 && CONSTANT_POOL_ADDRESS_P (XEXP (c, 0)))
2012 c = get_pool_constant (XEXP (c, 0));
2014 /* Work around funny ideas get_condition has wrt canonicalization.
2015 Note that these rtx constants are known to be CONST_INT, and
2016 therefore imply integer comparisons. */
2017 if (c == constm1_rtx && GET_CODE (cond) == GT)
2019 else if (c == const1_rtx && GET_CODE (cond) == LT)
2021 else if (c != CONST0_RTX (GET_MODE (b)))
2022 return FALSE;
2024 /* Determine what sort of operation this is. */
2025 switch (GET_CODE (cond))
2027 case LT:
2028 case LE:
2029 case UNLT:
2030 case UNLE:
2031 negate = !negate;
2032 break;
2033 case GT:
2034 case GE:
2035 case UNGT:
2036 case UNGE:
2037 break;
2038 default:
2039 return FALSE;
2042 start_sequence ();
2043 if (one_cmpl)
2044 target = expand_one_cmpl_abs_nojump (GET_MODE (if_info->x), b,
2045 if_info->x);
2046 else
2047 target = expand_abs_nojump (GET_MODE (if_info->x), b, if_info->x, 1);
2049 /* ??? It's a quandary whether cmove would be better here, especially
2050 for integers. Perhaps combine will clean things up. */
2051 if (target && negate)
2053 if (one_cmpl)
2054 target = expand_simple_unop (GET_MODE (target), NOT, target,
2055 if_info->x, 0);
2056 else
2057 target = expand_simple_unop (GET_MODE (target), NEG, target,
2058 if_info->x, 0);
2061 if (! target)
2063 end_sequence ();
2064 return FALSE;
2067 if (target != if_info->x)
2068 noce_emit_move_insn (if_info->x, target);
2070 seq = end_ifcvt_sequence (if_info);
2071 if (!seq)
2072 return FALSE;
2074 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
2075 if_info->cond = cond;
2076 if_info->cond_earliest = earliest;
2078 return TRUE;
2081 /* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;". */
2083 static int
2084 noce_try_sign_mask (struct noce_if_info *if_info)
2086 rtx cond, t, m, c, seq;
2087 enum machine_mode mode;
2088 enum rtx_code code;
2089 bool t_unconditional;
2091 cond = if_info->cond;
2092 code = GET_CODE (cond);
2093 m = XEXP (cond, 0);
2094 c = XEXP (cond, 1);
2096 t = NULL_RTX;
2097 if (if_info->a == const0_rtx)
2099 if ((code == LT && c == const0_rtx)
2100 || (code == LE && c == constm1_rtx))
2101 t = if_info->b;
2103 else if (if_info->b == const0_rtx)
2105 if ((code == GE && c == const0_rtx)
2106 || (code == GT && c == constm1_rtx))
2107 t = if_info->a;
2110 if (! t || side_effects_p (t))
2111 return FALSE;
2113 /* We currently don't handle different modes. */
2114 mode = GET_MODE (t);
2115 if (GET_MODE (m) != mode)
2116 return FALSE;
2118 /* This is only profitable if T is unconditionally executed/evaluated in the
2119 original insn sequence or T is cheap. The former happens if B is the
2120 non-zero (T) value and if INSN_B was taken from TEST_BB, or there was no
2121 INSN_B which can happen for e.g. conditional stores to memory. For the
2122 cost computation use the block TEST_BB where the evaluation will end up
2123 after the transformation. */
2124 t_unconditional =
2125 (t == if_info->b
2126 && (if_info->insn_b == NULL_RTX
2127 || BLOCK_FOR_INSN (if_info->insn_b) == if_info->test_bb));
2128 if (!(t_unconditional
2129 || (set_src_cost (t, optimize_bb_for_speed_p (if_info->test_bb))
2130 < COSTS_N_INSNS (2))))
2131 return FALSE;
2133 start_sequence ();
2134 /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
2135 "(signed) m >> 31" directly. This benefits targets with specialized
2136 insns to obtain the signmask, but still uses ashr_optab otherwise. */
2137 m = emit_store_flag (gen_reg_rtx (mode), LT, m, const0_rtx, mode, 0, -1);
2138 t = m ? expand_binop (mode, and_optab, m, t, NULL_RTX, 0, OPTAB_DIRECT)
2139 : NULL_RTX;
2141 if (!t)
2143 end_sequence ();
2144 return FALSE;
2147 noce_emit_move_insn (if_info->x, t);
2149 seq = end_ifcvt_sequence (if_info);
2150 if (!seq)
2151 return FALSE;
2153 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
2154 return TRUE;
2158 /* Optimize away "if (x & C) x |= C" and similar bit manipulation
2159 transformations. */
2161 static int
2162 noce_try_bitop (struct noce_if_info *if_info)
2164 rtx cond, x, a, result, seq;
2165 enum machine_mode mode;
2166 enum rtx_code code;
2167 int bitnum;
2169 x = if_info->x;
2170 cond = if_info->cond;
2171 code = GET_CODE (cond);
2173 /* Check for no else condition. */
2174 if (! rtx_equal_p (x, if_info->b))
2175 return FALSE;
2177 /* Check for a suitable condition. */
2178 if (code != NE && code != EQ)
2179 return FALSE;
2180 if (XEXP (cond, 1) != const0_rtx)
2181 return FALSE;
2182 cond = XEXP (cond, 0);
2184 /* ??? We could also handle AND here. */
2185 if (GET_CODE (cond) == ZERO_EXTRACT)
2187 if (XEXP (cond, 1) != const1_rtx
2188 || !CONST_INT_P (XEXP (cond, 2))
2189 || ! rtx_equal_p (x, XEXP (cond, 0)))
2190 return FALSE;
2191 bitnum = INTVAL (XEXP (cond, 2));
2192 mode = GET_MODE (x);
2193 if (BITS_BIG_ENDIAN)
2194 bitnum = GET_MODE_BITSIZE (mode) - 1 - bitnum;
2195 if (bitnum < 0 || bitnum >= HOST_BITS_PER_WIDE_INT)
2196 return FALSE;
2198 else
2199 return FALSE;
2201 a = if_info->a;
2202 if (GET_CODE (a) == IOR || GET_CODE (a) == XOR)
2204 /* Check for "if (X & C) x = x op C". */
2205 if (! rtx_equal_p (x, XEXP (a, 0))
2206 || !CONST_INT_P (XEXP (a, 1))
2207 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2208 != (unsigned HOST_WIDE_INT) 1 << bitnum)
2209 return FALSE;
2211 /* if ((x & C) == 0) x |= C; is transformed to x |= C. */
2212 /* if ((x & C) != 0) x |= C; is transformed to nothing. */
2213 if (GET_CODE (a) == IOR)
2214 result = (code == NE) ? a : NULL_RTX;
2215 else if (code == NE)
2217 /* if ((x & C) == 0) x ^= C; is transformed to x |= C. */
2218 result = gen_int_mode ((HOST_WIDE_INT) 1 << bitnum, mode);
2219 result = simplify_gen_binary (IOR, mode, x, result);
2221 else
2223 /* if ((x & C) != 0) x ^= C; is transformed to x &= ~C. */
2224 result = gen_int_mode (~((HOST_WIDE_INT) 1 << bitnum), mode);
2225 result = simplify_gen_binary (AND, mode, x, result);
2228 else if (GET_CODE (a) == AND)
2230 /* Check for "if (X & C) x &= ~C". */
2231 if (! rtx_equal_p (x, XEXP (a, 0))
2232 || !CONST_INT_P (XEXP (a, 1))
2233 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2234 != (~((HOST_WIDE_INT) 1 << bitnum) & GET_MODE_MASK (mode)))
2235 return FALSE;
2237 /* if ((x & C) == 0) x &= ~C; is transformed to nothing. */
2238 /* if ((x & C) != 0) x &= ~C; is transformed to x &= ~C. */
2239 result = (code == EQ) ? a : NULL_RTX;
2241 else
2242 return FALSE;
2244 if (result)
2246 start_sequence ();
2247 noce_emit_move_insn (x, result);
2248 seq = end_ifcvt_sequence (if_info);
2249 if (!seq)
2250 return FALSE;
2252 emit_insn_before_setloc (seq, if_info->jump,
2253 INSN_LOCATOR (if_info->insn_a));
2255 return TRUE;
2259 /* Similar to get_condition, only the resulting condition must be
2260 valid at JUMP, instead of at EARLIEST.
2262 If THEN_ELSE_REVERSED is true, the fallthrough does not go to the
2263 THEN block of the caller, and we have to reverse the condition. */
2265 static rtx
2266 noce_get_condition (rtx jump, rtx *earliest, bool then_else_reversed)
2268 rtx cond, set, tmp;
2269 bool reverse;
2271 if (! any_condjump_p (jump))
2272 return NULL_RTX;
2274 set = pc_set (jump);
2276 /* If this branches to JUMP_LABEL when the condition is false,
2277 reverse the condition. */
2278 reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
2279 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump));
2281 /* We may have to reverse because the caller's if block is not canonical,
2282 i.e. the THEN block isn't the fallthrough block for the TEST block
2283 (see find_if_header). */
2284 if (then_else_reversed)
2285 reverse = !reverse;
2287 /* If the condition variable is a register and is MODE_INT, accept it. */
2289 cond = XEXP (SET_SRC (set), 0);
2290 tmp = XEXP (cond, 0);
2291 if (REG_P (tmp) && GET_MODE_CLASS (GET_MODE (tmp)) == MODE_INT)
2293 *earliest = jump;
2295 if (reverse)
2296 cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
2297 GET_MODE (cond), tmp, XEXP (cond, 1));
2298 return cond;
2301 /* Otherwise, fall back on canonicalize_condition to do the dirty
2302 work of manipulating MODE_CC values and COMPARE rtx codes. */
2303 tmp = canonicalize_condition (jump, cond, reverse, earliest,
2304 NULL_RTX, false, true);
2306 /* We don't handle side-effects in the condition, like handling
2307 REG_INC notes and making sure no duplicate conditions are emitted. */
2308 if (tmp != NULL_RTX && side_effects_p (tmp))
2309 return NULL_RTX;
2311 return tmp;
2314 /* Return true if OP is ok for if-then-else processing. */
2316 static int
2317 noce_operand_ok (const_rtx op)
2319 /* We special-case memories, so handle any of them with
2320 no address side effects. */
2321 if (MEM_P (op))
2322 return ! side_effects_p (XEXP (op, 0));
2324 if (side_effects_p (op))
2325 return FALSE;
2327 return ! may_trap_p (op);
2330 /* Return true if a write into MEM may trap or fault. */
2332 static bool
2333 noce_mem_write_may_trap_or_fault_p (const_rtx mem)
2335 rtx addr;
2337 if (MEM_READONLY_P (mem))
2338 return true;
2340 if (may_trap_or_fault_p (mem))
2341 return true;
2343 addr = XEXP (mem, 0);
2345 /* Call target hook to avoid the effects of -fpic etc.... */
2346 addr = targetm.delegitimize_address (addr);
2348 while (addr)
2349 switch (GET_CODE (addr))
2351 case CONST:
2352 case PRE_DEC:
2353 case PRE_INC:
2354 case POST_DEC:
2355 case POST_INC:
2356 case POST_MODIFY:
2357 addr = XEXP (addr, 0);
2358 break;
2359 case LO_SUM:
2360 case PRE_MODIFY:
2361 addr = XEXP (addr, 1);
2362 break;
2363 case PLUS:
2364 if (CONST_INT_P (XEXP (addr, 1)))
2365 addr = XEXP (addr, 0);
2366 else
2367 return false;
2368 break;
2369 case LABEL_REF:
2370 return true;
2371 case SYMBOL_REF:
2372 if (SYMBOL_REF_DECL (addr)
2373 && decl_readonly_section (SYMBOL_REF_DECL (addr), 0))
2374 return true;
2375 return false;
2376 default:
2377 return false;
2380 return false;
2383 /* Return whether we can use store speculation for MEM. TOP_BB is the
2384 basic block above the conditional block where we are considering
2385 doing the speculative store. We look for whether MEM is set
2386 unconditionally later in the function. */
2388 static bool
2389 noce_can_store_speculate_p (basic_block top_bb, const_rtx mem)
2391 basic_block dominator;
2393 for (dominator = get_immediate_dominator (CDI_POST_DOMINATORS, top_bb);
2394 dominator != NULL;
2395 dominator = get_immediate_dominator (CDI_POST_DOMINATORS, dominator))
2397 rtx insn;
2399 FOR_BB_INSNS (dominator, insn)
2401 /* If we see something that might be a memory barrier, we
2402 have to stop looking. Even if the MEM is set later in
2403 the function, we still don't want to set it
2404 unconditionally before the barrier. */
2405 if (INSN_P (insn)
2406 && (volatile_insn_p (PATTERN (insn))
2407 || (CALL_P (insn) && (!RTL_CONST_CALL_P (insn)))))
2408 return false;
2410 if (memory_modified_in_insn_p (mem, insn))
2411 return true;
2412 if (modified_in_p (XEXP (mem, 0), insn))
2413 return false;
2418 return false;
2421 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2422 it without using conditional execution. Return TRUE if we were successful
2423 at converting the block. */
2425 static int
2426 noce_process_if_block (struct noce_if_info *if_info)
2428 basic_block test_bb = if_info->test_bb; /* test block */
2429 basic_block then_bb = if_info->then_bb; /* THEN */
2430 basic_block else_bb = if_info->else_bb; /* ELSE or NULL */
2431 basic_block join_bb = if_info->join_bb; /* JOIN */
2432 rtx jump = if_info->jump;
2433 rtx cond = if_info->cond;
2434 rtx insn_a, insn_b;
2435 rtx set_a, set_b;
2436 rtx orig_x, x, a, b;
2438 /* We're looking for patterns of the form
2440 (1) if (...) x = a; else x = b;
2441 (2) x = b; if (...) x = a;
2442 (3) if (...) x = a; // as if with an initial x = x.
2444 The later patterns require jumps to be more expensive.
2446 ??? For future expansion, look for multiple X in such patterns. */
2448 /* Look for one of the potential sets. */
2449 insn_a = first_active_insn (then_bb);
2450 if (! insn_a
2451 || insn_a != last_active_insn (then_bb, FALSE)
2452 || (set_a = single_set (insn_a)) == NULL_RTX)
2453 return FALSE;
2455 x = SET_DEST (set_a);
2456 a = SET_SRC (set_a);
2458 /* Look for the other potential set. Make sure we've got equivalent
2459 destinations. */
2460 /* ??? This is overconservative. Storing to two different mems is
2461 as easy as conditionally computing the address. Storing to a
2462 single mem merely requires a scratch memory to use as one of the
2463 destination addresses; often the memory immediately below the
2464 stack pointer is available for this. */
2465 set_b = NULL_RTX;
2466 if (else_bb)
2468 insn_b = first_active_insn (else_bb);
2469 if (! insn_b
2470 || insn_b != last_active_insn (else_bb, FALSE)
2471 || (set_b = single_set (insn_b)) == NULL_RTX
2472 || ! rtx_equal_p (x, SET_DEST (set_b)))
2473 return FALSE;
2475 else
2477 insn_b = prev_nonnote_nondebug_insn (if_info->cond_earliest);
2478 /* We're going to be moving the evaluation of B down from above
2479 COND_EARLIEST to JUMP. Make sure the relevant data is still
2480 intact. */
2481 if (! insn_b
2482 || BLOCK_FOR_INSN (insn_b) != BLOCK_FOR_INSN (if_info->cond_earliest)
2483 || !NONJUMP_INSN_P (insn_b)
2484 || (set_b = single_set (insn_b)) == NULL_RTX
2485 || ! rtx_equal_p (x, SET_DEST (set_b))
2486 || ! noce_operand_ok (SET_SRC (set_b))
2487 || reg_overlap_mentioned_p (x, SET_SRC (set_b))
2488 || modified_between_p (SET_SRC (set_b), insn_b, jump)
2489 /* Likewise with X. In particular this can happen when
2490 noce_get_condition looks farther back in the instruction
2491 stream than one might expect. */
2492 || reg_overlap_mentioned_p (x, cond)
2493 || reg_overlap_mentioned_p (x, a)
2494 || modified_between_p (x, insn_b, jump))
2495 insn_b = set_b = NULL_RTX;
2498 /* If x has side effects then only the if-then-else form is safe to
2499 convert. But even in that case we would need to restore any notes
2500 (such as REG_INC) at then end. That can be tricky if
2501 noce_emit_move_insn expands to more than one insn, so disable the
2502 optimization entirely for now if there are side effects. */
2503 if (side_effects_p (x))
2504 return FALSE;
2506 b = (set_b ? SET_SRC (set_b) : x);
2508 /* Only operate on register destinations, and even then avoid extending
2509 the lifetime of hard registers on small register class machines. */
2510 orig_x = x;
2511 if (!REG_P (x)
2512 || (HARD_REGISTER_P (x)
2513 && targetm.small_register_classes_for_mode_p (GET_MODE (x))))
2515 if (GET_MODE (x) == BLKmode)
2516 return FALSE;
2518 if (GET_CODE (x) == ZERO_EXTRACT
2519 && (!CONST_INT_P (XEXP (x, 1))
2520 || !CONST_INT_P (XEXP (x, 2))))
2521 return FALSE;
2523 x = gen_reg_rtx (GET_MODE (GET_CODE (x) == STRICT_LOW_PART
2524 ? XEXP (x, 0) : x));
2527 /* Don't operate on sources that may trap or are volatile. */
2528 if (! noce_operand_ok (a) || ! noce_operand_ok (b))
2529 return FALSE;
2531 retry:
2532 /* Set up the info block for our subroutines. */
2533 if_info->insn_a = insn_a;
2534 if_info->insn_b = insn_b;
2535 if_info->x = x;
2536 if_info->a = a;
2537 if_info->b = b;
2539 /* Try optimizations in some approximation of a useful order. */
2540 /* ??? Should first look to see if X is live incoming at all. If it
2541 isn't, we don't need anything but an unconditional set. */
2543 /* Look and see if A and B are really the same. Avoid creating silly
2544 cmove constructs that no one will fix up later. */
2545 if (rtx_equal_p (a, b))
2547 /* If we have an INSN_B, we don't have to create any new rtl. Just
2548 move the instruction that we already have. If we don't have an
2549 INSN_B, that means that A == X, and we've got a noop move. In
2550 that case don't do anything and let the code below delete INSN_A. */
2551 if (insn_b && else_bb)
2553 rtx note;
2555 if (else_bb && insn_b == BB_END (else_bb))
2556 BB_END (else_bb) = PREV_INSN (insn_b);
2557 reorder_insns (insn_b, insn_b, PREV_INSN (jump));
2559 /* If there was a REG_EQUAL note, delete it since it may have been
2560 true due to this insn being after a jump. */
2561 if ((note = find_reg_note (insn_b, REG_EQUAL, NULL_RTX)) != 0)
2562 remove_note (insn_b, note);
2564 insn_b = NULL_RTX;
2566 /* If we have "x = b; if (...) x = a;", and x has side-effects, then
2567 x must be executed twice. */
2568 else if (insn_b && side_effects_p (orig_x))
2569 return FALSE;
2571 x = orig_x;
2572 goto success;
2575 if (!set_b && MEM_P (orig_x))
2577 /* Disallow the "if (...) x = a;" form (implicit "else x = x;")
2578 for optimizations if writing to x may trap or fault,
2579 i.e. it's a memory other than a static var or a stack slot,
2580 is misaligned on strict aligned machines or is read-only. If
2581 x is a read-only memory, then the program is valid only if we
2582 avoid the store into it. If there are stores on both the
2583 THEN and ELSE arms, then we can go ahead with the conversion;
2584 either the program is broken, or the condition is always
2585 false such that the other memory is selected. */
2586 if (noce_mem_write_may_trap_or_fault_p (orig_x))
2587 return FALSE;
2589 /* Avoid store speculation: given "if (...) x = a" where x is a
2590 MEM, we only want to do the store if x is always set
2591 somewhere in the function. This avoids cases like
2592 if (pthread_mutex_trylock(mutex))
2593 ++global_variable;
2594 where we only want global_variable to be changed if the mutex
2595 is held. FIXME: This should ideally be expressed directly in
2596 RTL somehow. */
2597 if (!noce_can_store_speculate_p (test_bb, orig_x))
2598 return FALSE;
2601 if (noce_try_move (if_info))
2602 goto success;
2603 if (noce_try_store_flag (if_info))
2604 goto success;
2605 if (noce_try_bitop (if_info))
2606 goto success;
2607 if (noce_try_minmax (if_info))
2608 goto success;
2609 if (noce_try_abs (if_info))
2610 goto success;
2611 if (HAVE_conditional_move
2612 && noce_try_cmove (if_info))
2613 goto success;
2614 if (! targetm.have_conditional_execution ())
2616 if (noce_try_store_flag_constants (if_info))
2617 goto success;
2618 if (noce_try_addcc (if_info))
2619 goto success;
2620 if (noce_try_store_flag_mask (if_info))
2621 goto success;
2622 if (HAVE_conditional_move
2623 && noce_try_cmove_arith (if_info))
2624 goto success;
2625 if (noce_try_sign_mask (if_info))
2626 goto success;
2629 if (!else_bb && set_b)
2631 insn_b = set_b = NULL_RTX;
2632 b = orig_x;
2633 goto retry;
2636 return FALSE;
2638 success:
2640 /* If we used a temporary, fix it up now. */
2641 if (orig_x != x)
2643 rtx seq;
2645 start_sequence ();
2646 noce_emit_move_insn (orig_x, x);
2647 seq = get_insns ();
2648 set_used_flags (orig_x);
2649 unshare_all_rtl_in_chain (seq);
2650 end_sequence ();
2652 emit_insn_before_setloc (seq, BB_END (test_bb), INSN_LOCATOR (insn_a));
2655 /* The original THEN and ELSE blocks may now be removed. The test block
2656 must now jump to the join block. If the test block and the join block
2657 can be merged, do so. */
2658 if (else_bb)
2660 delete_basic_block (else_bb);
2661 num_true_changes++;
2663 else
2664 remove_edge (find_edge (test_bb, join_bb));
2666 remove_edge (find_edge (then_bb, join_bb));
2667 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
2668 delete_basic_block (then_bb);
2669 num_true_changes++;
2671 if (can_merge_blocks_p (test_bb, join_bb))
2673 merge_blocks (test_bb, join_bb);
2674 num_true_changes++;
2677 num_updated_if_blocks++;
2678 return TRUE;
2681 /* Check whether a block is suitable for conditional move conversion.
2682 Every insn must be a simple set of a register to a constant or a
2683 register. For each assignment, store the value in the array VALS,
2684 indexed by register number, then store the register number in
2685 REGS. COND is the condition we will test. */
2687 static int
2688 check_cond_move_block (basic_block bb, rtx *vals, VEC (int, heap) **regs,
2689 rtx cond)
2691 rtx insn;
2693 /* We can only handle simple jumps at the end of the basic block.
2694 It is almost impossible to update the CFG otherwise. */
2695 insn = BB_END (bb);
2696 if (JUMP_P (insn) && !onlyjump_p (insn))
2697 return FALSE;
2699 FOR_BB_INSNS (bb, insn)
2701 rtx set, dest, src;
2703 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
2704 continue;
2705 set = single_set (insn);
2706 if (!set)
2707 return FALSE;
2709 dest = SET_DEST (set);
2710 src = SET_SRC (set);
2711 if (!REG_P (dest)
2712 || (HARD_REGISTER_P (dest)
2713 && targetm.small_register_classes_for_mode_p (GET_MODE (dest))))
2714 return FALSE;
2716 if (!CONSTANT_P (src) && !register_operand (src, VOIDmode))
2717 return FALSE;
2719 if (side_effects_p (src) || side_effects_p (dest))
2720 return FALSE;
2722 if (may_trap_p (src) || may_trap_p (dest))
2723 return FALSE;
2725 /* Don't try to handle this if the source register was
2726 modified earlier in the block. */
2727 if ((REG_P (src)
2728 && vals[REGNO (src)] != NULL)
2729 || (GET_CODE (src) == SUBREG && REG_P (SUBREG_REG (src))
2730 && vals[REGNO (SUBREG_REG (src))] != NULL))
2731 return FALSE;
2733 /* Don't try to handle this if the destination register was
2734 modified earlier in the block. */
2735 if (vals[REGNO (dest)] != NULL)
2736 return FALSE;
2738 /* Don't try to handle this if the condition uses the
2739 destination register. */
2740 if (reg_overlap_mentioned_p (dest, cond))
2741 return FALSE;
2743 /* Don't try to handle this if the source register is modified
2744 later in the block. */
2745 if (!CONSTANT_P (src)
2746 && modified_between_p (src, insn, NEXT_INSN (BB_END (bb))))
2747 return FALSE;
2749 vals[REGNO (dest)] = src;
2751 VEC_safe_push (int, heap, *regs, REGNO (dest));
2754 return TRUE;
2757 /* Given a basic block BB suitable for conditional move conversion,
2758 a condition COND, and arrays THEN_VALS and ELSE_VALS containing the
2759 register values depending on COND, emit the insns in the block as
2760 conditional moves. If ELSE_BLOCK is true, THEN_BB was already
2761 processed. The caller has started a sequence for the conversion.
2762 Return true if successful, false if something goes wrong. */
2764 static bool
2765 cond_move_convert_if_block (struct noce_if_info *if_infop,
2766 basic_block bb, rtx cond,
2767 rtx *then_vals, rtx *else_vals,
2768 bool else_block_p)
2770 enum rtx_code code;
2771 rtx insn, cond_arg0, cond_arg1;
2773 code = GET_CODE (cond);
2774 cond_arg0 = XEXP (cond, 0);
2775 cond_arg1 = XEXP (cond, 1);
2777 FOR_BB_INSNS (bb, insn)
2779 rtx set, target, dest, t, e;
2780 unsigned int regno;
2782 /* ??? Maybe emit conditional debug insn? */
2783 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
2784 continue;
2785 set = single_set (insn);
2786 gcc_assert (set && REG_P (SET_DEST (set)));
2788 dest = SET_DEST (set);
2789 regno = REGNO (dest);
2791 t = then_vals[regno];
2792 e = else_vals[regno];
2794 if (else_block_p)
2796 /* If this register was set in the then block, we already
2797 handled this case there. */
2798 if (t)
2799 continue;
2800 t = dest;
2801 gcc_assert (e);
2803 else
2805 gcc_assert (t);
2806 if (!e)
2807 e = dest;
2810 target = noce_emit_cmove (if_infop, dest, code, cond_arg0, cond_arg1,
2811 t, e);
2812 if (!target)
2813 return false;
2815 if (target != dest)
2816 noce_emit_move_insn (dest, target);
2819 return true;
2822 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2823 it using only conditional moves. Return TRUE if we were successful at
2824 converting the block. */
2826 static int
2827 cond_move_process_if_block (struct noce_if_info *if_info)
2829 basic_block test_bb = if_info->test_bb;
2830 basic_block then_bb = if_info->then_bb;
2831 basic_block else_bb = if_info->else_bb;
2832 basic_block join_bb = if_info->join_bb;
2833 rtx jump = if_info->jump;
2834 rtx cond = if_info->cond;
2835 rtx seq, loc_insn;
2836 int max_reg, size, c, reg;
2837 rtx *then_vals;
2838 rtx *else_vals;
2839 VEC (int, heap) *then_regs = NULL;
2840 VEC (int, heap) *else_regs = NULL;
2841 unsigned int i;
2843 /* Build a mapping for each block to the value used for each
2844 register. */
2845 max_reg = max_reg_num ();
2846 size = (max_reg + 1) * sizeof (rtx);
2847 then_vals = (rtx *) alloca (size);
2848 else_vals = (rtx *) alloca (size);
2849 memset (then_vals, 0, size);
2850 memset (else_vals, 0, size);
2852 /* Make sure the blocks are suitable. */
2853 if (!check_cond_move_block (then_bb, then_vals, &then_regs, cond)
2854 || (else_bb
2855 && !check_cond_move_block (else_bb, else_vals, &else_regs, cond)))
2857 VEC_free (int, heap, then_regs);
2858 VEC_free (int, heap, else_regs);
2859 return FALSE;
2862 /* Make sure the blocks can be used together. If the same register
2863 is set in both blocks, and is not set to a constant in both
2864 cases, then both blocks must set it to the same register. We
2865 have already verified that if it is set to a register, that the
2866 source register does not change after the assignment. Also count
2867 the number of registers set in only one of the blocks. */
2868 c = 0;
2869 FOR_EACH_VEC_ELT (int, then_regs, i, reg)
2871 if (!then_vals[reg] && !else_vals[reg])
2872 continue;
2874 if (!else_vals[reg])
2875 ++c;
2876 else
2878 if (!CONSTANT_P (then_vals[reg])
2879 && !CONSTANT_P (else_vals[reg])
2880 && !rtx_equal_p (then_vals[reg], else_vals[reg]))
2882 VEC_free (int, heap, then_regs);
2883 VEC_free (int, heap, else_regs);
2884 return FALSE;
2889 /* Finish off c for MAX_CONDITIONAL_EXECUTE. */
2890 FOR_EACH_VEC_ELT (int, else_regs, i, reg)
2891 if (!then_vals[reg])
2892 ++c;
2894 /* Make sure it is reasonable to convert this block. What matters
2895 is the number of assignments currently made in only one of the
2896 branches, since if we convert we are going to always execute
2897 them. */
2898 if (c > MAX_CONDITIONAL_EXECUTE)
2900 VEC_free (int, heap, then_regs);
2901 VEC_free (int, heap, else_regs);
2902 return FALSE;
2905 /* Try to emit the conditional moves. First do the then block,
2906 then do anything left in the else blocks. */
2907 start_sequence ();
2908 if (!cond_move_convert_if_block (if_info, then_bb, cond,
2909 then_vals, else_vals, false)
2910 || (else_bb
2911 && !cond_move_convert_if_block (if_info, else_bb, cond,
2912 then_vals, else_vals, true)))
2914 end_sequence ();
2915 VEC_free (int, heap, then_regs);
2916 VEC_free (int, heap, else_regs);
2917 return FALSE;
2919 seq = end_ifcvt_sequence (if_info);
2920 if (!seq)
2922 VEC_free (int, heap, then_regs);
2923 VEC_free (int, heap, else_regs);
2924 return FALSE;
2927 loc_insn = first_active_insn (then_bb);
2928 if (!loc_insn)
2930 loc_insn = first_active_insn (else_bb);
2931 gcc_assert (loc_insn);
2933 emit_insn_before_setloc (seq, jump, INSN_LOCATOR (loc_insn));
2935 if (else_bb)
2937 delete_basic_block (else_bb);
2938 num_true_changes++;
2940 else
2941 remove_edge (find_edge (test_bb, join_bb));
2943 remove_edge (find_edge (then_bb, join_bb));
2944 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
2945 delete_basic_block (then_bb);
2946 num_true_changes++;
2948 if (can_merge_blocks_p (test_bb, join_bb))
2950 merge_blocks (test_bb, join_bb);
2951 num_true_changes++;
2954 num_updated_if_blocks++;
2956 VEC_free (int, heap, then_regs);
2957 VEC_free (int, heap, else_regs);
2958 return TRUE;
2962 /* Determine if a given basic block heads a simple IF-THEN-JOIN or an
2963 IF-THEN-ELSE-JOIN block.
2965 If so, we'll try to convert the insns to not require the branch,
2966 using only transformations that do not require conditional execution.
2968 Return TRUE if we were successful at converting the block. */
2970 static int
2971 noce_find_if_block (basic_block test_bb, edge then_edge, edge else_edge,
2972 int pass)
2974 basic_block then_bb, else_bb, join_bb;
2975 bool then_else_reversed = false;
2976 rtx jump, cond;
2977 rtx cond_earliest;
2978 struct noce_if_info if_info;
2980 /* We only ever should get here before reload. */
2981 gcc_assert (!reload_completed);
2983 /* Recognize an IF-THEN-ELSE-JOIN block. */
2984 if (single_pred_p (then_edge->dest)
2985 && single_succ_p (then_edge->dest)
2986 && single_pred_p (else_edge->dest)
2987 && single_succ_p (else_edge->dest)
2988 && single_succ (then_edge->dest) == single_succ (else_edge->dest))
2990 then_bb = then_edge->dest;
2991 else_bb = else_edge->dest;
2992 join_bb = single_succ (then_bb);
2994 /* Recognize an IF-THEN-JOIN block. */
2995 else if (single_pred_p (then_edge->dest)
2996 && single_succ_p (then_edge->dest)
2997 && single_succ (then_edge->dest) == else_edge->dest)
2999 then_bb = then_edge->dest;
3000 else_bb = NULL_BLOCK;
3001 join_bb = else_edge->dest;
3003 /* Recognize an IF-ELSE-JOIN block. We can have those because the order
3004 of basic blocks in cfglayout mode does not matter, so the fallthrough
3005 edge can go to any basic block (and not just to bb->next_bb, like in
3006 cfgrtl mode). */
3007 else if (single_pred_p (else_edge->dest)
3008 && single_succ_p (else_edge->dest)
3009 && single_succ (else_edge->dest) == then_edge->dest)
3011 /* The noce transformations do not apply to IF-ELSE-JOIN blocks.
3012 To make this work, we have to invert the THEN and ELSE blocks
3013 and reverse the jump condition. */
3014 then_bb = else_edge->dest;
3015 else_bb = NULL_BLOCK;
3016 join_bb = single_succ (then_bb);
3017 then_else_reversed = true;
3019 else
3020 /* Not a form we can handle. */
3021 return FALSE;
3023 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3024 if (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3025 return FALSE;
3026 if (else_bb
3027 && single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3028 return FALSE;
3030 num_possible_if_blocks++;
3032 if (dump_file)
3034 fprintf (dump_file,
3035 "\nIF-THEN%s-JOIN block found, pass %d, test %d, then %d",
3036 (else_bb) ? "-ELSE" : "",
3037 pass, test_bb->index, then_bb->index);
3039 if (else_bb)
3040 fprintf (dump_file, ", else %d", else_bb->index);
3042 fprintf (dump_file, ", join %d\n", join_bb->index);
3045 /* If the conditional jump is more than just a conditional
3046 jump, then we can not do if-conversion on this block. */
3047 jump = BB_END (test_bb);
3048 if (! onlyjump_p (jump))
3049 return FALSE;
3051 /* If this is not a standard conditional jump, we can't parse it. */
3052 cond = noce_get_condition (jump, &cond_earliest, then_else_reversed);
3053 if (!cond)
3054 return FALSE;
3056 /* We must be comparing objects whose modes imply the size. */
3057 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3058 return FALSE;
3060 /* Initialize an IF_INFO struct to pass around. */
3061 memset (&if_info, 0, sizeof if_info);
3062 if_info.test_bb = test_bb;
3063 if_info.then_bb = then_bb;
3064 if_info.else_bb = else_bb;
3065 if_info.join_bb = join_bb;
3066 if_info.cond = cond;
3067 if_info.cond_earliest = cond_earliest;
3068 if_info.jump = jump;
3069 if_info.then_else_reversed = then_else_reversed;
3070 if_info.branch_cost = BRANCH_COST (optimize_bb_for_speed_p (test_bb),
3071 predictable_edge_p (then_edge));
3073 /* Do the real work. */
3075 if (noce_process_if_block (&if_info))
3076 return TRUE;
3078 if (HAVE_conditional_move
3079 && cond_move_process_if_block (&if_info))
3080 return TRUE;
3082 return FALSE;
3086 /* Merge the blocks and mark for local life update. */
3088 static void
3089 merge_if_block (struct ce_if_block * ce_info)
3091 basic_block test_bb = ce_info->test_bb; /* last test block */
3092 basic_block then_bb = ce_info->then_bb; /* THEN */
3093 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
3094 basic_block join_bb = ce_info->join_bb; /* join block */
3095 basic_block combo_bb;
3097 /* All block merging is done into the lower block numbers. */
3099 combo_bb = test_bb;
3100 df_set_bb_dirty (test_bb);
3102 /* Merge any basic blocks to handle && and || subtests. Each of
3103 the blocks are on the fallthru path from the predecessor block. */
3104 if (ce_info->num_multiple_test_blocks > 0)
3106 basic_block bb = test_bb;
3107 basic_block last_test_bb = ce_info->last_test_bb;
3108 basic_block fallthru = block_fallthru (bb);
3112 bb = fallthru;
3113 fallthru = block_fallthru (bb);
3114 merge_blocks (combo_bb, bb);
3115 num_true_changes++;
3117 while (bb != last_test_bb);
3120 /* Merge TEST block into THEN block. Normally the THEN block won't have a
3121 label, but it might if there were || tests. That label's count should be
3122 zero, and it normally should be removed. */
3124 if (then_bb)
3126 merge_blocks (combo_bb, then_bb);
3127 num_true_changes++;
3130 /* The ELSE block, if it existed, had a label. That label count
3131 will almost always be zero, but odd things can happen when labels
3132 get their addresses taken. */
3133 if (else_bb)
3135 merge_blocks (combo_bb, else_bb);
3136 num_true_changes++;
3139 /* If there was no join block reported, that means it was not adjacent
3140 to the others, and so we cannot merge them. */
3142 if (! join_bb)
3144 rtx last = BB_END (combo_bb);
3146 /* The outgoing edge for the current COMBO block should already
3147 be correct. Verify this. */
3148 if (EDGE_COUNT (combo_bb->succs) == 0)
3149 gcc_assert (find_reg_note (last, REG_NORETURN, NULL)
3150 || (NONJUMP_INSN_P (last)
3151 && GET_CODE (PATTERN (last)) == TRAP_IF
3152 && (TRAP_CONDITION (PATTERN (last))
3153 == const_true_rtx)));
3155 else
3156 /* There should still be something at the end of the THEN or ELSE
3157 blocks taking us to our final destination. */
3158 gcc_assert (JUMP_P (last)
3159 || (EDGE_SUCC (combo_bb, 0)->dest == EXIT_BLOCK_PTR
3160 && CALL_P (last)
3161 && SIBLING_CALL_P (last))
3162 || ((EDGE_SUCC (combo_bb, 0)->flags & EDGE_EH)
3163 && can_throw_internal (last)));
3166 /* The JOIN block may have had quite a number of other predecessors too.
3167 Since we've already merged the TEST, THEN and ELSE blocks, we should
3168 have only one remaining edge from our if-then-else diamond. If there
3169 is more than one remaining edge, it must come from elsewhere. There
3170 may be zero incoming edges if the THEN block didn't actually join
3171 back up (as with a call to a non-return function). */
3172 else if (EDGE_COUNT (join_bb->preds) < 2
3173 && join_bb != EXIT_BLOCK_PTR)
3175 /* We can merge the JOIN cleanly and update the dataflow try
3176 again on this pass.*/
3177 merge_blocks (combo_bb, join_bb);
3178 num_true_changes++;
3180 else
3182 /* We cannot merge the JOIN. */
3184 /* The outgoing edge for the current COMBO block should already
3185 be correct. Verify this. */
3186 gcc_assert (single_succ_p (combo_bb)
3187 && single_succ (combo_bb) == join_bb);
3189 /* Remove the jump and cruft from the end of the COMBO block. */
3190 if (join_bb != EXIT_BLOCK_PTR)
3191 tidy_fallthru_edge (single_succ_edge (combo_bb));
3194 num_updated_if_blocks++;
3197 /* Find a block ending in a simple IF condition and try to transform it
3198 in some way. When converting a multi-block condition, put the new code
3199 in the first such block and delete the rest. Return a pointer to this
3200 first block if some transformation was done. Return NULL otherwise. */
3202 static basic_block
3203 find_if_header (basic_block test_bb, int pass)
3205 ce_if_block_t ce_info;
3206 edge then_edge;
3207 edge else_edge;
3209 /* The kind of block we're looking for has exactly two successors. */
3210 if (EDGE_COUNT (test_bb->succs) != 2)
3211 return NULL;
3213 then_edge = EDGE_SUCC (test_bb, 0);
3214 else_edge = EDGE_SUCC (test_bb, 1);
3216 if (df_get_bb_dirty (then_edge->dest))
3217 return NULL;
3218 if (df_get_bb_dirty (else_edge->dest))
3219 return NULL;
3221 /* Neither edge should be abnormal. */
3222 if ((then_edge->flags & EDGE_COMPLEX)
3223 || (else_edge->flags & EDGE_COMPLEX))
3224 return NULL;
3226 /* Nor exit the loop. */
3227 if ((then_edge->flags & EDGE_LOOP_EXIT)
3228 || (else_edge->flags & EDGE_LOOP_EXIT))
3229 return NULL;
3231 /* The THEN edge is canonically the one that falls through. */
3232 if (then_edge->flags & EDGE_FALLTHRU)
3234 else if (else_edge->flags & EDGE_FALLTHRU)
3236 edge e = else_edge;
3237 else_edge = then_edge;
3238 then_edge = e;
3240 else
3241 /* Otherwise this must be a multiway branch of some sort. */
3242 return NULL;
3244 memset (&ce_info, 0, sizeof (ce_info));
3245 ce_info.test_bb = test_bb;
3246 ce_info.then_bb = then_edge->dest;
3247 ce_info.else_bb = else_edge->dest;
3248 ce_info.pass = pass;
3250 #ifdef IFCVT_INIT_EXTRA_FIELDS
3251 IFCVT_INIT_EXTRA_FIELDS (&ce_info);
3252 #endif
3254 if (!reload_completed
3255 && noce_find_if_block (test_bb, then_edge, else_edge, pass))
3256 goto success;
3258 if (reload_completed
3259 && targetm.have_conditional_execution ()
3260 && cond_exec_find_if_block (&ce_info))
3261 goto success;
3263 if (HAVE_trap
3264 && optab_handler (ctrap_optab, word_mode) != CODE_FOR_nothing
3265 && find_cond_trap (test_bb, then_edge, else_edge))
3266 goto success;
3268 if (dom_info_state (CDI_POST_DOMINATORS) >= DOM_NO_FAST_QUERY
3269 && (reload_completed || !targetm.have_conditional_execution ()))
3271 if (find_if_case_1 (test_bb, then_edge, else_edge))
3272 goto success;
3273 if (find_if_case_2 (test_bb, then_edge, else_edge))
3274 goto success;
3277 return NULL;
3279 success:
3280 if (dump_file)
3281 fprintf (dump_file, "Conversion succeeded on pass %d.\n", pass);
3282 /* Set this so we continue looking. */
3283 cond_exec_changed_p = TRUE;
3284 return ce_info.test_bb;
3287 /* Return true if a block has two edges, one of which falls through to the next
3288 block, and the other jumps to a specific block, so that we can tell if the
3289 block is part of an && test or an || test. Returns either -1 or the number
3290 of non-note, non-jump, non-USE/CLOBBER insns in the block. */
3292 static int
3293 block_jumps_and_fallthru_p (basic_block cur_bb, basic_block target_bb)
3295 edge cur_edge;
3296 int fallthru_p = FALSE;
3297 int jump_p = FALSE;
3298 rtx insn;
3299 rtx end;
3300 int n_insns = 0;
3301 edge_iterator ei;
3303 if (!cur_bb || !target_bb)
3304 return -1;
3306 /* If no edges, obviously it doesn't jump or fallthru. */
3307 if (EDGE_COUNT (cur_bb->succs) == 0)
3308 return FALSE;
3310 FOR_EACH_EDGE (cur_edge, ei, cur_bb->succs)
3312 if (cur_edge->flags & EDGE_COMPLEX)
3313 /* Anything complex isn't what we want. */
3314 return -1;
3316 else if (cur_edge->flags & EDGE_FALLTHRU)
3317 fallthru_p = TRUE;
3319 else if (cur_edge->dest == target_bb)
3320 jump_p = TRUE;
3322 else
3323 return -1;
3326 if ((jump_p & fallthru_p) == 0)
3327 return -1;
3329 /* Don't allow calls in the block, since this is used to group && and ||
3330 together for conditional execution support. ??? we should support
3331 conditional execution support across calls for IA-64 some day, but
3332 for now it makes the code simpler. */
3333 end = BB_END (cur_bb);
3334 insn = BB_HEAD (cur_bb);
3336 while (insn != NULL_RTX)
3338 if (CALL_P (insn))
3339 return -1;
3341 if (INSN_P (insn)
3342 && !JUMP_P (insn)
3343 && !DEBUG_INSN_P (insn)
3344 && GET_CODE (PATTERN (insn)) != USE
3345 && GET_CODE (PATTERN (insn)) != CLOBBER)
3346 n_insns++;
3348 if (insn == end)
3349 break;
3351 insn = NEXT_INSN (insn);
3354 return n_insns;
3357 /* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
3358 block. If so, we'll try to convert the insns to not require the branch.
3359 Return TRUE if we were successful at converting the block. */
3361 static int
3362 cond_exec_find_if_block (struct ce_if_block * ce_info)
3364 basic_block test_bb = ce_info->test_bb;
3365 basic_block then_bb = ce_info->then_bb;
3366 basic_block else_bb = ce_info->else_bb;
3367 basic_block join_bb = NULL_BLOCK;
3368 edge cur_edge;
3369 basic_block next;
3370 edge_iterator ei;
3372 ce_info->last_test_bb = test_bb;
3374 /* We only ever should get here after reload,
3375 and if we have conditional execution. */
3376 gcc_assert (reload_completed && targetm.have_conditional_execution ());
3378 /* Discover if any fall through predecessors of the current test basic block
3379 were && tests (which jump to the else block) or || tests (which jump to
3380 the then block). */
3381 if (single_pred_p (test_bb)
3382 && single_pred_edge (test_bb)->flags == EDGE_FALLTHRU)
3384 basic_block bb = single_pred (test_bb);
3385 basic_block target_bb;
3386 int max_insns = MAX_CONDITIONAL_EXECUTE;
3387 int n_insns;
3389 /* Determine if the preceding block is an && or || block. */
3390 if ((n_insns = block_jumps_and_fallthru_p (bb, else_bb)) >= 0)
3392 ce_info->and_and_p = TRUE;
3393 target_bb = else_bb;
3395 else if ((n_insns = block_jumps_and_fallthru_p (bb, then_bb)) >= 0)
3397 ce_info->and_and_p = FALSE;
3398 target_bb = then_bb;
3400 else
3401 target_bb = NULL_BLOCK;
3403 if (target_bb && n_insns <= max_insns)
3405 int total_insns = 0;
3406 int blocks = 0;
3408 ce_info->last_test_bb = test_bb;
3410 /* Found at least one && or || block, look for more. */
3413 ce_info->test_bb = test_bb = bb;
3414 total_insns += n_insns;
3415 blocks++;
3417 if (!single_pred_p (bb))
3418 break;
3420 bb = single_pred (bb);
3421 n_insns = block_jumps_and_fallthru_p (bb, target_bb);
3423 while (n_insns >= 0 && (total_insns + n_insns) <= max_insns);
3425 ce_info->num_multiple_test_blocks = blocks;
3426 ce_info->num_multiple_test_insns = total_insns;
3428 if (ce_info->and_and_p)
3429 ce_info->num_and_and_blocks = blocks;
3430 else
3431 ce_info->num_or_or_blocks = blocks;
3435 /* The THEN block of an IF-THEN combo must have exactly one predecessor,
3436 other than any || blocks which jump to the THEN block. */
3437 if ((EDGE_COUNT (then_bb->preds) - ce_info->num_or_or_blocks) != 1)
3438 return FALSE;
3440 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3441 FOR_EACH_EDGE (cur_edge, ei, then_bb->preds)
3443 if (cur_edge->flags & EDGE_COMPLEX)
3444 return FALSE;
3447 FOR_EACH_EDGE (cur_edge, ei, else_bb->preds)
3449 if (cur_edge->flags & EDGE_COMPLEX)
3450 return FALSE;
3453 /* The THEN block of an IF-THEN combo must have zero or one successors. */
3454 if (EDGE_COUNT (then_bb->succs) > 0
3455 && (!single_succ_p (then_bb)
3456 || (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3457 || (epilogue_completed
3458 && tablejump_p (BB_END (then_bb), NULL, NULL))))
3459 return FALSE;
3461 /* If the THEN block has no successors, conditional execution can still
3462 make a conditional call. Don't do this unless the ELSE block has
3463 only one incoming edge -- the CFG manipulation is too ugly otherwise.
3464 Check for the last insn of the THEN block being an indirect jump, which
3465 is listed as not having any successors, but confuses the rest of the CE
3466 code processing. ??? we should fix this in the future. */
3467 if (EDGE_COUNT (then_bb->succs) == 0)
3469 if (single_pred_p (else_bb))
3471 rtx last_insn = BB_END (then_bb);
3473 while (last_insn
3474 && NOTE_P (last_insn)
3475 && last_insn != BB_HEAD (then_bb))
3476 last_insn = PREV_INSN (last_insn);
3478 if (last_insn
3479 && JUMP_P (last_insn)
3480 && ! simplejump_p (last_insn))
3481 return FALSE;
3483 join_bb = else_bb;
3484 else_bb = NULL_BLOCK;
3486 else
3487 return FALSE;
3490 /* If the THEN block's successor is the other edge out of the TEST block,
3491 then we have an IF-THEN combo without an ELSE. */
3492 else if (single_succ (then_bb) == else_bb)
3494 join_bb = else_bb;
3495 else_bb = NULL_BLOCK;
3498 /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
3499 has exactly one predecessor and one successor, and the outgoing edge
3500 is not complex, then we have an IF-THEN-ELSE combo. */
3501 else if (single_succ_p (else_bb)
3502 && single_succ (then_bb) == single_succ (else_bb)
3503 && single_pred_p (else_bb)
3504 && !(single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3505 && !(epilogue_completed
3506 && tablejump_p (BB_END (else_bb), NULL, NULL)))
3507 join_bb = single_succ (else_bb);
3509 /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination. */
3510 else
3511 return FALSE;
3513 num_possible_if_blocks++;
3515 if (dump_file)
3517 fprintf (dump_file,
3518 "\nIF-THEN%s block found, pass %d, start block %d "
3519 "[insn %d], then %d [%d]",
3520 (else_bb) ? "-ELSE" : "",
3521 ce_info->pass,
3522 test_bb->index,
3523 BB_HEAD (test_bb) ? (int)INSN_UID (BB_HEAD (test_bb)) : -1,
3524 then_bb->index,
3525 BB_HEAD (then_bb) ? (int)INSN_UID (BB_HEAD (then_bb)) : -1);
3527 if (else_bb)
3528 fprintf (dump_file, ", else %d [%d]",
3529 else_bb->index,
3530 BB_HEAD (else_bb) ? (int)INSN_UID (BB_HEAD (else_bb)) : -1);
3532 fprintf (dump_file, ", join %d [%d]",
3533 join_bb->index,
3534 BB_HEAD (join_bb) ? (int)INSN_UID (BB_HEAD (join_bb)) : -1);
3536 if (ce_info->num_multiple_test_blocks > 0)
3537 fprintf (dump_file, ", %d %s block%s last test %d [%d]",
3538 ce_info->num_multiple_test_blocks,
3539 (ce_info->and_and_p) ? "&&" : "||",
3540 (ce_info->num_multiple_test_blocks == 1) ? "" : "s",
3541 ce_info->last_test_bb->index,
3542 ((BB_HEAD (ce_info->last_test_bb))
3543 ? (int)INSN_UID (BB_HEAD (ce_info->last_test_bb))
3544 : -1));
3546 fputc ('\n', dump_file);
3549 /* Make sure IF, THEN, and ELSE, blocks are adjacent. Actually, we get the
3550 first condition for free, since we've already asserted that there's a
3551 fallthru edge from IF to THEN. Likewise for the && and || blocks, since
3552 we checked the FALLTHRU flag, those are already adjacent to the last IF
3553 block. */
3554 /* ??? As an enhancement, move the ELSE block. Have to deal with
3555 BLOCK notes, if by no other means than backing out the merge if they
3556 exist. Sticky enough I don't want to think about it now. */
3557 next = then_bb;
3558 if (else_bb && (next = next->next_bb) != else_bb)
3559 return FALSE;
3560 if ((next = next->next_bb) != join_bb && join_bb != EXIT_BLOCK_PTR)
3562 if (else_bb)
3563 join_bb = NULL;
3564 else
3565 return FALSE;
3568 /* Do the real work. */
3570 ce_info->else_bb = else_bb;
3571 ce_info->join_bb = join_bb;
3573 /* If we have && and || tests, try to first handle combining the && and ||
3574 tests into the conditional code, and if that fails, go back and handle
3575 it without the && and ||, which at present handles the && case if there
3576 was no ELSE block. */
3577 if (cond_exec_process_if_block (ce_info, TRUE))
3578 return TRUE;
3580 if (ce_info->num_multiple_test_blocks)
3582 cancel_changes (0);
3584 if (cond_exec_process_if_block (ce_info, FALSE))
3585 return TRUE;
3588 return FALSE;
3591 /* Convert a branch over a trap, or a branch
3592 to a trap, into a conditional trap. */
3594 static int
3595 find_cond_trap (basic_block test_bb, edge then_edge, edge else_edge)
3597 basic_block then_bb = then_edge->dest;
3598 basic_block else_bb = else_edge->dest;
3599 basic_block other_bb, trap_bb;
3600 rtx trap, jump, cond, cond_earliest, seq;
3601 enum rtx_code code;
3603 /* Locate the block with the trap instruction. */
3604 /* ??? While we look for no successors, we really ought to allow
3605 EH successors. Need to fix merge_if_block for that to work. */
3606 if ((trap = block_has_only_trap (then_bb)) != NULL)
3607 trap_bb = then_bb, other_bb = else_bb;
3608 else if ((trap = block_has_only_trap (else_bb)) != NULL)
3609 trap_bb = else_bb, other_bb = then_bb;
3610 else
3611 return FALSE;
3613 if (dump_file)
3615 fprintf (dump_file, "\nTRAP-IF block found, start %d, trap %d\n",
3616 test_bb->index, trap_bb->index);
3619 /* If this is not a standard conditional jump, we can't parse it. */
3620 jump = BB_END (test_bb);
3621 cond = noce_get_condition (jump, &cond_earliest, false);
3622 if (! cond)
3623 return FALSE;
3625 /* If the conditional jump is more than just a conditional jump, then
3626 we can not do if-conversion on this block. */
3627 if (! onlyjump_p (jump))
3628 return FALSE;
3630 /* We must be comparing objects whose modes imply the size. */
3631 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3632 return FALSE;
3634 /* Reverse the comparison code, if necessary. */
3635 code = GET_CODE (cond);
3636 if (then_bb == trap_bb)
3638 code = reversed_comparison_code (cond, jump);
3639 if (code == UNKNOWN)
3640 return FALSE;
3643 /* Attempt to generate the conditional trap. */
3644 seq = gen_cond_trap (code, copy_rtx (XEXP (cond, 0)),
3645 copy_rtx (XEXP (cond, 1)),
3646 TRAP_CODE (PATTERN (trap)));
3647 if (seq == NULL)
3648 return FALSE;
3650 /* Emit the new insns before cond_earliest. */
3651 emit_insn_before_setloc (seq, cond_earliest, INSN_LOCATOR (trap));
3653 /* Delete the trap block if possible. */
3654 remove_edge (trap_bb == then_bb ? then_edge : else_edge);
3655 df_set_bb_dirty (test_bb);
3656 df_set_bb_dirty (then_bb);
3657 df_set_bb_dirty (else_bb);
3659 if (EDGE_COUNT (trap_bb->preds) == 0)
3661 delete_basic_block (trap_bb);
3662 num_true_changes++;
3665 /* Wire together the blocks again. */
3666 if (current_ir_type () == IR_RTL_CFGLAYOUT)
3667 single_succ_edge (test_bb)->flags |= EDGE_FALLTHRU;
3668 else
3670 rtx lab, newjump;
3672 lab = JUMP_LABEL (jump);
3673 newjump = emit_jump_insn_after (gen_jump (lab), jump);
3674 LABEL_NUSES (lab) += 1;
3675 JUMP_LABEL (newjump) = lab;
3676 emit_barrier_after (newjump);
3678 delete_insn (jump);
3680 if (can_merge_blocks_p (test_bb, other_bb))
3682 merge_blocks (test_bb, other_bb);
3683 num_true_changes++;
3686 num_updated_if_blocks++;
3687 return TRUE;
3690 /* Subroutine of find_cond_trap: if BB contains only a trap insn,
3691 return it. */
3693 static rtx
3694 block_has_only_trap (basic_block bb)
3696 rtx trap;
3698 /* We're not the exit block. */
3699 if (bb == EXIT_BLOCK_PTR)
3700 return NULL_RTX;
3702 /* The block must have no successors. */
3703 if (EDGE_COUNT (bb->succs) > 0)
3704 return NULL_RTX;
3706 /* The only instruction in the THEN block must be the trap. */
3707 trap = first_active_insn (bb);
3708 if (! (trap == BB_END (bb)
3709 && GET_CODE (PATTERN (trap)) == TRAP_IF
3710 && TRAP_CONDITION (PATTERN (trap)) == const_true_rtx))
3711 return NULL_RTX;
3713 return trap;
3716 /* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
3717 transformable, but not necessarily the other. There need be no
3718 JOIN block.
3720 Return TRUE if we were successful at converting the block.
3722 Cases we'd like to look at:
3725 if (test) goto over; // x not live
3726 x = a;
3727 goto label;
3728 over:
3730 becomes
3732 x = a;
3733 if (! test) goto label;
3736 if (test) goto E; // x not live
3737 x = big();
3738 goto L;
3740 x = b;
3741 goto M;
3743 becomes
3745 x = b;
3746 if (test) goto M;
3747 x = big();
3748 goto L;
3750 (3) // This one's really only interesting for targets that can do
3751 // multiway branching, e.g. IA-64 BBB bundles. For other targets
3752 // it results in multiple branches on a cache line, which often
3753 // does not sit well with predictors.
3755 if (test1) goto E; // predicted not taken
3756 x = a;
3757 if (test2) goto F;
3760 x = b;
3763 becomes
3765 x = a;
3766 if (test1) goto E;
3767 if (test2) goto F;
3769 Notes:
3771 (A) Don't do (2) if the branch is predicted against the block we're
3772 eliminating. Do it anyway if we can eliminate a branch; this requires
3773 that the sole successor of the eliminated block postdominate the other
3774 side of the if.
3776 (B) With CE, on (3) we can steal from both sides of the if, creating
3778 if (test1) x = a;
3779 if (!test1) x = b;
3780 if (test1) goto J;
3781 if (test2) goto F;
3785 Again, this is most useful if J postdominates.
3787 (C) CE substitutes for helpful life information.
3789 (D) These heuristics need a lot of work. */
3791 /* Tests for case 1 above. */
3793 static int
3794 find_if_case_1 (basic_block test_bb, edge then_edge, edge else_edge)
3796 basic_block then_bb = then_edge->dest;
3797 basic_block else_bb = else_edge->dest;
3798 basic_block new_bb;
3799 int then_bb_index;
3801 /* If we are partitioning hot/cold basic blocks, we don't want to
3802 mess up unconditional or indirect jumps that cross between hot
3803 and cold sections.
3805 Basic block partitioning may result in some jumps that appear to
3806 be optimizable (or blocks that appear to be mergeable), but which really
3807 must be left untouched (they are required to make it safely across
3808 partition boundaries). See the comments at the top of
3809 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3811 if ((BB_END (then_bb)
3812 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
3813 || (BB_END (test_bb)
3814 && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
3815 || (BB_END (else_bb)
3816 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
3817 NULL_RTX)))
3818 return FALSE;
3820 /* THEN has one successor. */
3821 if (!single_succ_p (then_bb))
3822 return FALSE;
3824 /* THEN does not fall through, but is not strange either. */
3825 if (single_succ_edge (then_bb)->flags & (EDGE_COMPLEX | EDGE_FALLTHRU))
3826 return FALSE;
3828 /* THEN has one predecessor. */
3829 if (!single_pred_p (then_bb))
3830 return FALSE;
3832 /* THEN must do something. */
3833 if (forwarder_block_p (then_bb))
3834 return FALSE;
3836 num_possible_if_blocks++;
3837 if (dump_file)
3838 fprintf (dump_file,
3839 "\nIF-CASE-1 found, start %d, then %d\n",
3840 test_bb->index, then_bb->index);
3842 /* THEN is small. */
3843 if (! cheap_bb_rtx_cost_p (then_bb,
3844 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (then_edge->src),
3845 predictable_edge_p (then_edge)))))
3846 return FALSE;
3848 /* Registers set are dead, or are predicable. */
3849 if (! dead_or_predicable (test_bb, then_bb, else_bb,
3850 single_succ_edge (then_bb), 1))
3851 return FALSE;
3853 /* Conversion went ok, including moving the insns and fixing up the
3854 jump. Adjust the CFG to match. */
3856 /* We can avoid creating a new basic block if then_bb is immediately
3857 followed by else_bb, i.e. deleting then_bb allows test_bb to fall
3858 thru to else_bb. */
3860 if (then_bb->next_bb == else_bb
3861 && then_bb->prev_bb == test_bb
3862 && else_bb != EXIT_BLOCK_PTR)
3864 redirect_edge_succ (FALLTHRU_EDGE (test_bb), else_bb);
3865 new_bb = 0;
3867 else
3868 new_bb = redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb),
3869 else_bb);
3871 df_set_bb_dirty (test_bb);
3872 df_set_bb_dirty (else_bb);
3874 then_bb_index = then_bb->index;
3875 delete_basic_block (then_bb);
3877 /* Make rest of code believe that the newly created block is the THEN_BB
3878 block we removed. */
3879 if (new_bb)
3881 df_bb_replace (then_bb_index, new_bb);
3882 /* Since the fallthru edge was redirected from test_bb to new_bb,
3883 we need to ensure that new_bb is in the same partition as
3884 test bb (you can not fall through across section boundaries). */
3885 BB_COPY_PARTITION (new_bb, test_bb);
3888 num_true_changes++;
3889 num_updated_if_blocks++;
3891 return TRUE;
3894 /* Test for case 2 above. */
3896 static int
3897 find_if_case_2 (basic_block test_bb, edge then_edge, edge else_edge)
3899 basic_block then_bb = then_edge->dest;
3900 basic_block else_bb = else_edge->dest;
3901 edge else_succ;
3902 rtx note;
3904 /* If we are partitioning hot/cold basic blocks, we don't want to
3905 mess up unconditional or indirect jumps that cross between hot
3906 and cold sections.
3908 Basic block partitioning may result in some jumps that appear to
3909 be optimizable (or blocks that appear to be mergeable), but which really
3910 must be left untouched (they are required to make it safely across
3911 partition boundaries). See the comments at the top of
3912 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3914 if ((BB_END (then_bb)
3915 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
3916 || (BB_END (test_bb)
3917 && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
3918 || (BB_END (else_bb)
3919 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
3920 NULL_RTX)))
3921 return FALSE;
3923 /* ELSE has one successor. */
3924 if (!single_succ_p (else_bb))
3925 return FALSE;
3926 else
3927 else_succ = single_succ_edge (else_bb);
3929 /* ELSE outgoing edge is not complex. */
3930 if (else_succ->flags & EDGE_COMPLEX)
3931 return FALSE;
3933 /* ELSE has one predecessor. */
3934 if (!single_pred_p (else_bb))
3935 return FALSE;
3937 /* THEN is not EXIT. */
3938 if (then_bb->index < NUM_FIXED_BLOCKS)
3939 return FALSE;
3941 /* ELSE is predicted or SUCC(ELSE) postdominates THEN. */
3942 note = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
3943 if (note && INTVAL (XEXP (note, 0)) >= REG_BR_PROB_BASE / 2)
3945 else if (else_succ->dest->index < NUM_FIXED_BLOCKS
3946 || dominated_by_p (CDI_POST_DOMINATORS, then_bb,
3947 else_succ->dest))
3949 else
3950 return FALSE;
3952 num_possible_if_blocks++;
3953 if (dump_file)
3954 fprintf (dump_file,
3955 "\nIF-CASE-2 found, start %d, else %d\n",
3956 test_bb->index, else_bb->index);
3958 /* ELSE is small. */
3959 if (! cheap_bb_rtx_cost_p (else_bb,
3960 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (else_edge->src),
3961 predictable_edge_p (else_edge)))))
3962 return FALSE;
3964 /* Registers set are dead, or are predicable. */
3965 if (! dead_or_predicable (test_bb, else_bb, then_bb, else_succ, 0))
3966 return FALSE;
3968 /* Conversion went ok, including moving the insns and fixing up the
3969 jump. Adjust the CFG to match. */
3971 df_set_bb_dirty (test_bb);
3972 df_set_bb_dirty (then_bb);
3973 delete_basic_block (else_bb);
3975 num_true_changes++;
3976 num_updated_if_blocks++;
3978 /* ??? We may now fallthru from one of THEN's successors into a join
3979 block. Rerun cleanup_cfg? Examine things manually? Wait? */
3981 return TRUE;
3984 /* Used by the code above to perform the actual rtl transformations.
3985 Return TRUE if successful.
3987 TEST_BB is the block containing the conditional branch. MERGE_BB
3988 is the block containing the code to manipulate. DEST_EDGE is an
3989 edge representing a jump to the join block; after the conversion,
3990 TEST_BB should be branching to its destination.
3991 REVERSEP is true if the sense of the branch should be reversed. */
3993 static int
3994 dead_or_predicable (basic_block test_bb, basic_block merge_bb,
3995 basic_block other_bb, edge dest_edge, int reversep)
3997 basic_block new_dest = dest_edge->dest;
3998 rtx head, end, jump, earliest = NULL_RTX, old_dest;
3999 bitmap merge_set = NULL;
4000 /* Number of pending changes. */
4001 int n_validated_changes = 0;
4002 rtx new_dest_label = NULL_RTX;
4004 jump = BB_END (test_bb);
4006 /* Find the extent of the real code in the merge block. */
4007 head = BB_HEAD (merge_bb);
4008 end = BB_END (merge_bb);
4010 while (DEBUG_INSN_P (end) && end != head)
4011 end = PREV_INSN (end);
4013 /* If merge_bb ends with a tablejump, predicating/moving insn's
4014 into test_bb and then deleting merge_bb will result in the jumptable
4015 that follows merge_bb being removed along with merge_bb and then we
4016 get an unresolved reference to the jumptable. */
4017 if (tablejump_p (end, NULL, NULL))
4018 return FALSE;
4020 if (LABEL_P (head))
4021 head = NEXT_INSN (head);
4022 while (DEBUG_INSN_P (head) && head != end)
4023 head = NEXT_INSN (head);
4024 if (NOTE_P (head))
4026 if (head == end)
4028 head = end = NULL_RTX;
4029 goto no_body;
4031 head = NEXT_INSN (head);
4032 while (DEBUG_INSN_P (head) && head != end)
4033 head = NEXT_INSN (head);
4036 if (JUMP_P (end))
4038 if (head == end)
4040 head = end = NULL_RTX;
4041 goto no_body;
4043 end = PREV_INSN (end);
4044 while (DEBUG_INSN_P (end) && end != head)
4045 end = PREV_INSN (end);
4048 /* Disable handling dead code by conditional execution if the machine needs
4049 to do anything funny with the tests, etc. */
4050 #ifndef IFCVT_MODIFY_TESTS
4051 if (targetm.have_conditional_execution ())
4053 /* In the conditional execution case, we have things easy. We know
4054 the condition is reversible. We don't have to check life info
4055 because we're going to conditionally execute the code anyway.
4056 All that's left is making sure the insns involved can actually
4057 be predicated. */
4059 rtx cond, prob_val;
4061 cond = cond_exec_get_condition (jump);
4062 if (! cond)
4063 return FALSE;
4065 prob_val = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
4066 if (prob_val)
4067 prob_val = XEXP (prob_val, 0);
4069 if (reversep)
4071 enum rtx_code rev = reversed_comparison_code (cond, jump);
4072 if (rev == UNKNOWN)
4073 return FALSE;
4074 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
4075 XEXP (cond, 1));
4076 if (prob_val)
4077 prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (prob_val));
4080 if (cond_exec_process_insns (NULL, head, end, cond, prob_val, 0)
4081 && verify_changes (0))
4082 n_validated_changes = num_validated_changes ();
4083 else
4084 cancel_changes (0);
4086 earliest = jump;
4088 #endif
4090 /* If we allocated new pseudos (e.g. in the conditional move
4091 expander called from noce_emit_cmove), we must resize the
4092 array first. */
4093 if (max_regno < max_reg_num ())
4094 max_regno = max_reg_num ();
4096 /* Try the NCE path if the CE path did not result in any changes. */
4097 if (n_validated_changes == 0)
4099 rtx cond, insn;
4100 regset live;
4101 bool success;
4103 /* In the non-conditional execution case, we have to verify that there
4104 are no trapping operations, no calls, no references to memory, and
4105 that any registers modified are dead at the branch site. */
4107 if (!any_condjump_p (jump))
4108 return FALSE;
4110 /* Find the extent of the conditional. */
4111 cond = noce_get_condition (jump, &earliest, false);
4112 if (!cond)
4113 return FALSE;
4115 live = BITMAP_ALLOC (&reg_obstack);
4116 simulate_backwards_to_point (merge_bb, live, end);
4117 success = can_move_insns_across (head, end, earliest, jump,
4118 merge_bb, live,
4119 df_get_live_in (other_bb), NULL);
4120 BITMAP_FREE (live);
4121 if (!success)
4122 return FALSE;
4124 /* Collect the set of registers set in MERGE_BB. */
4125 merge_set = BITMAP_ALLOC (&reg_obstack);
4127 FOR_BB_INSNS (merge_bb, insn)
4128 if (NONDEBUG_INSN_P (insn))
4129 df_simulate_find_defs (insn, merge_set);
4132 no_body:
4133 /* We don't want to use normal invert_jump or redirect_jump because
4134 we don't want to delete_insn called. Also, we want to do our own
4135 change group management. */
4137 old_dest = JUMP_LABEL (jump);
4138 if (other_bb != new_dest)
4140 if (JUMP_P (BB_END (dest_edge->src)))
4141 new_dest_label = JUMP_LABEL (BB_END (dest_edge->src));
4142 else if (new_dest == EXIT_BLOCK_PTR)
4143 new_dest_label = ret_rtx;
4144 else
4145 new_dest_label = block_label (new_dest);
4147 if (reversep
4148 ? ! invert_jump_1 (jump, new_dest_label)
4149 : ! redirect_jump_1 (jump, new_dest_label))
4150 goto cancel;
4153 if (verify_changes (n_validated_changes))
4154 confirm_change_group ();
4155 else
4156 goto cancel;
4158 if (other_bb != new_dest)
4160 redirect_jump_2 (jump, old_dest, new_dest_label, 0, reversep);
4162 redirect_edge_succ (BRANCH_EDGE (test_bb), new_dest);
4163 if (reversep)
4165 gcov_type count, probability;
4166 count = BRANCH_EDGE (test_bb)->count;
4167 BRANCH_EDGE (test_bb)->count = FALLTHRU_EDGE (test_bb)->count;
4168 FALLTHRU_EDGE (test_bb)->count = count;
4169 probability = BRANCH_EDGE (test_bb)->probability;
4170 BRANCH_EDGE (test_bb)->probability
4171 = FALLTHRU_EDGE (test_bb)->probability;
4172 FALLTHRU_EDGE (test_bb)->probability = probability;
4173 update_br_prob_note (test_bb);
4177 /* Move the insns out of MERGE_BB to before the branch. */
4178 if (head != NULL)
4180 rtx insn;
4182 if (end == BB_END (merge_bb))
4183 BB_END (merge_bb) = PREV_INSN (head);
4185 /* PR 21767: when moving insns above a conditional branch, the REG_EQUAL
4186 notes being moved might become invalid. */
4187 insn = head;
4190 rtx note, set;
4192 if (! INSN_P (insn))
4193 continue;
4194 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
4195 if (! note)
4196 continue;
4197 set = single_set (insn);
4198 if (!set || !function_invariant_p (SET_SRC (set))
4199 || !function_invariant_p (XEXP (note, 0)))
4200 remove_note (insn, note);
4201 } while (insn != end && (insn = NEXT_INSN (insn)));
4203 /* PR46315: when moving insns above a conditional branch, the REG_EQUAL
4204 notes referring to the registers being set might become invalid. */
4205 if (merge_set)
4207 unsigned i;
4208 bitmap_iterator bi;
4210 EXECUTE_IF_SET_IN_BITMAP (merge_set, 0, i, bi)
4211 remove_reg_equal_equiv_notes_for_regno (i);
4213 BITMAP_FREE (merge_set);
4216 reorder_insns (head, end, PREV_INSN (earliest));
4219 /* Remove the jump and edge if we can. */
4220 if (other_bb == new_dest)
4222 delete_insn (jump);
4223 remove_edge (BRANCH_EDGE (test_bb));
4224 /* ??? Can't merge blocks here, as then_bb is still in use.
4225 At minimum, the merge will get done just before bb-reorder. */
4228 return TRUE;
4230 cancel:
4231 cancel_changes (0);
4233 if (merge_set)
4234 BITMAP_FREE (merge_set);
4236 return FALSE;
4239 /* Main entry point for all if-conversion. */
4241 static void
4242 if_convert (void)
4244 basic_block bb;
4245 int pass;
4247 if (optimize == 1)
4249 df_live_add_problem ();
4250 df_live_set_all_dirty ();
4253 num_possible_if_blocks = 0;
4254 num_updated_if_blocks = 0;
4255 num_true_changes = 0;
4257 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4258 mark_loop_exit_edges ();
4259 loop_optimizer_finalize ();
4260 free_dominance_info (CDI_DOMINATORS);
4262 /* Compute postdominators. */
4263 calculate_dominance_info (CDI_POST_DOMINATORS);
4265 df_set_flags (DF_LR_RUN_DCE);
4267 /* Go through each of the basic blocks looking for things to convert. If we
4268 have conditional execution, we make multiple passes to allow us to handle
4269 IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks. */
4270 pass = 0;
4273 df_analyze ();
4274 /* Only need to do dce on the first pass. */
4275 df_clear_flags (DF_LR_RUN_DCE);
4276 cond_exec_changed_p = FALSE;
4277 pass++;
4279 #ifdef IFCVT_MULTIPLE_DUMPS
4280 if (dump_file && pass > 1)
4281 fprintf (dump_file, "\n\n========== Pass %d ==========\n", pass);
4282 #endif
4284 FOR_EACH_BB (bb)
4286 basic_block new_bb;
4287 while (!df_get_bb_dirty (bb)
4288 && (new_bb = find_if_header (bb, pass)) != NULL)
4289 bb = new_bb;
4292 #ifdef IFCVT_MULTIPLE_DUMPS
4293 if (dump_file && cond_exec_changed_p)
4295 if (dump_flags & TDF_SLIM)
4296 print_rtl_slim_with_bb (dump_file, get_insns (), dump_flags);
4297 else
4298 print_rtl_with_bb (dump_file, get_insns ());
4300 #endif
4302 while (cond_exec_changed_p);
4304 #ifdef IFCVT_MULTIPLE_DUMPS
4305 if (dump_file)
4306 fprintf (dump_file, "\n\n========== no more changes\n");
4307 #endif
4309 free_dominance_info (CDI_POST_DOMINATORS);
4311 if (dump_file)
4312 fflush (dump_file);
4314 clear_aux_for_blocks ();
4316 /* If we allocated new pseudos, we must resize the array for sched1. */
4317 if (max_regno < max_reg_num ())
4318 max_regno = max_reg_num ();
4320 /* Write the final stats. */
4321 if (dump_file && num_possible_if_blocks > 0)
4323 fprintf (dump_file,
4324 "\n%d possible IF blocks searched.\n",
4325 num_possible_if_blocks);
4326 fprintf (dump_file,
4327 "%d IF blocks converted.\n",
4328 num_updated_if_blocks);
4329 fprintf (dump_file,
4330 "%d true changes made.\n\n\n",
4331 num_true_changes);
4334 if (optimize == 1)
4335 df_remove_problem (df_live);
4337 #ifdef ENABLE_CHECKING
4338 verify_flow_info ();
4339 #endif
4342 static bool
4343 gate_handle_if_conversion (void)
4345 return (optimize > 0)
4346 && dbg_cnt (if_conversion);
4349 /* If-conversion and CFG cleanup. */
4350 static unsigned int
4351 rest_of_handle_if_conversion (void)
4353 if (flag_if_conversion)
4355 if (dump_file)
4356 dump_flow_info (dump_file, dump_flags);
4357 cleanup_cfg (CLEANUP_EXPENSIVE);
4358 if_convert ();
4361 cleanup_cfg (0);
4362 return 0;
4365 struct rtl_opt_pass pass_rtl_ifcvt =
4368 RTL_PASS,
4369 "ce1", /* name */
4370 gate_handle_if_conversion, /* gate */
4371 rest_of_handle_if_conversion, /* execute */
4372 NULL, /* sub */
4373 NULL, /* next */
4374 0, /* static_pass_number */
4375 TV_IFCVT, /* tv_id */
4376 0, /* properties_required */
4377 0, /* properties_provided */
4378 0, /* properties_destroyed */
4379 0, /* todo_flags_start */
4380 TODO_df_finish | TODO_verify_rtl_sharing |
4381 0 /* todo_flags_finish */
4385 static bool
4386 gate_handle_if_after_combine (void)
4388 return optimize > 0 && flag_if_conversion
4389 && dbg_cnt (if_after_combine);
4393 /* Rerun if-conversion, as combine may have simplified things enough
4394 to now meet sequence length restrictions. */
4395 static unsigned int
4396 rest_of_handle_if_after_combine (void)
4398 if_convert ();
4399 return 0;
4402 struct rtl_opt_pass pass_if_after_combine =
4405 RTL_PASS,
4406 "ce2", /* name */
4407 gate_handle_if_after_combine, /* gate */
4408 rest_of_handle_if_after_combine, /* execute */
4409 NULL, /* sub */
4410 NULL, /* next */
4411 0, /* static_pass_number */
4412 TV_IFCVT, /* tv_id */
4413 0, /* properties_required */
4414 0, /* properties_provided */
4415 0, /* properties_destroyed */
4416 0, /* todo_flags_start */
4417 TODO_df_finish | TODO_verify_rtl_sharing |
4418 TODO_ggc_collect /* todo_flags_finish */
4423 static bool
4424 gate_handle_if_after_reload (void)
4426 return optimize > 0 && flag_if_conversion2
4427 && dbg_cnt (if_after_reload);
4430 static unsigned int
4431 rest_of_handle_if_after_reload (void)
4433 if_convert ();
4434 return 0;
4438 struct rtl_opt_pass pass_if_after_reload =
4441 RTL_PASS,
4442 "ce3", /* name */
4443 gate_handle_if_after_reload, /* gate */
4444 rest_of_handle_if_after_reload, /* execute */
4445 NULL, /* sub */
4446 NULL, /* next */
4447 0, /* static_pass_number */
4448 TV_IFCVT2, /* tv_id */
4449 0, /* properties_required */
4450 0, /* properties_provided */
4451 0, /* properties_destroyed */
4452 0, /* todo_flags_start */
4453 TODO_df_finish | TODO_verify_rtl_sharing |
4454 TODO_ggc_collect /* todo_flags_finish */