1 /* Optimize jump instructions, for GNU compiler.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This is the pathetic reminder of old fame of the jump-optimization pass
21 of the compiler. Now it contains basically a set of utility functions to
24 Each CODE_LABEL has a count of the times it is used
25 stored in the LABEL_NUSES internal field, and each JUMP_INSN
26 has one label that it refers to stored in the
27 JUMP_LABEL internal field. With this we can detect labels that
28 become unused because of the deletion of all the jumps that
29 formerly used them. The JUMP_LABEL info is sometimes looked
30 at by later passes. For return insns, it contains either a
31 RETURN or a SIMPLE_RETURN rtx.
33 The subroutines redirect_jump and invert_jump are used
34 from other passes as well. */
38 #include "coretypes.h"
43 #include "hard-reg-set.h"
45 #include "insn-config.h"
46 #include "insn-attr.h"
50 #include "dominance.h"
53 #include "basic-block.h"
66 #include "diagnostic-core.h"
68 #include "tree-pass.h"
72 /* Optimize jump y; x: ... y: jumpif... x?
73 Don't know if it is worth bothering with. */
74 /* Optimize two cases of conditional jump to conditional jump?
75 This can never delete any instruction or make anything dead,
76 or even change what is live at any point.
77 So perhaps let combiner do it. */
79 static void init_label_info (rtx_insn
*);
80 static void mark_all_labels (rtx_insn
*);
81 static void mark_jump_label_1 (rtx
, rtx_insn
*, bool, bool);
82 static void mark_jump_label_asm (rtx
, rtx_insn
*);
83 static void redirect_exp_1 (rtx
*, rtx
, rtx
, rtx
);
84 static int invert_exp_1 (rtx
, rtx
);
86 /* Worker for rebuild_jump_labels and rebuild_jump_labels_chain. */
88 rebuild_jump_labels_1 (rtx_insn
*f
, bool count_forced
)
92 timevar_push (TV_REBUILD_JUMP
);
96 /* Keep track of labels used from static data; we don't track them
97 closely enough to delete them here, so make sure their reference
98 count doesn't drop to zero. */
101 for (insn
= forced_labels
; insn
; insn
= insn
->next ())
102 if (LABEL_P (insn
->insn ()))
103 LABEL_NUSES (insn
->insn ())++;
104 timevar_pop (TV_REBUILD_JUMP
);
107 /* This function rebuilds the JUMP_LABEL field and REG_LABEL_TARGET
108 notes in jumping insns and REG_LABEL_OPERAND notes in non-jumping
109 instructions and jumping insns that have labels as operands
110 (e.g. cbranchsi4). */
112 rebuild_jump_labels (rtx_insn
*f
)
114 rebuild_jump_labels_1 (f
, true);
117 /* This function is like rebuild_jump_labels, but doesn't run over
118 forced_labels. It can be used on insn chains that aren't the
119 main function chain. */
121 rebuild_jump_labels_chain (rtx_insn
*chain
)
123 rebuild_jump_labels_1 (chain
, false);
126 /* Some old code expects exactly one BARRIER as the NEXT_INSN of a
127 non-fallthru insn. This is not generally true, as multiple barriers
128 may have crept in, or the BARRIER may be separated from the last
129 real insn by one or more NOTEs.
131 This simple pass moves barriers and removes duplicates so that the
135 cleanup_barriers (void)
138 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
140 if (BARRIER_P (insn
))
142 rtx_insn
*prev
= prev_nonnote_insn (insn
);
148 /* Make sure we do not split a call and its corresponding
149 CALL_ARG_LOCATION note. */
150 rtx_insn
*next
= NEXT_INSN (prev
);
153 && NOTE_KIND (next
) == NOTE_INSN_CALL_ARG_LOCATION
)
157 if (BARRIER_P (prev
))
159 else if (prev
!= PREV_INSN (insn
))
161 basic_block bb
= BLOCK_FOR_INSN (prev
);
162 rtx_insn
*end
= PREV_INSN (insn
);
163 reorder_insns_nobb (insn
, insn
, prev
);
166 /* If the backend called in machine reorg compute_bb_for_insn
167 and didn't free_bb_for_insn again, preserve basic block
168 boundaries. Move the end of basic block to PREV since
169 it is followed by a barrier now, and clear BLOCK_FOR_INSN
170 on the following notes.
171 ??? Maybe the proper solution for the targets that have
172 cfg around after machine reorg is not to run cleanup_barriers
177 prev
= NEXT_INSN (prev
);
178 if (prev
!= insn
&& BLOCK_FOR_INSN (prev
) == bb
)
179 BLOCK_FOR_INSN (prev
) = NULL
;
191 const pass_data pass_data_cleanup_barriers
=
194 "barriers", /* name */
195 OPTGROUP_NONE
, /* optinfo_flags */
197 0, /* properties_required */
198 0, /* properties_provided */
199 0, /* properties_destroyed */
200 0, /* todo_flags_start */
201 0, /* todo_flags_finish */
204 class pass_cleanup_barriers
: public rtl_opt_pass
207 pass_cleanup_barriers (gcc::context
*ctxt
)
208 : rtl_opt_pass (pass_data_cleanup_barriers
, ctxt
)
211 /* opt_pass methods: */
212 virtual unsigned int execute (function
*) { return cleanup_barriers (); }
214 }; // class pass_cleanup_barriers
219 make_pass_cleanup_barriers (gcc::context
*ctxt
)
221 return new pass_cleanup_barriers (ctxt
);
225 /* Initialize LABEL_NUSES and JUMP_LABEL fields, add REG_LABEL_TARGET
226 for remaining targets for JUMP_P. Delete any REG_LABEL_OPERAND
227 notes whose labels don't occur in the insn any more. */
230 init_label_info (rtx_insn
*f
)
234 for (insn
= f
; insn
; insn
= NEXT_INSN (insn
))
237 LABEL_NUSES (insn
) = (LABEL_PRESERVE_P (insn
) != 0);
239 /* REG_LABEL_TARGET notes (including the JUMP_LABEL field) are
240 sticky and not reset here; that way we won't lose association
241 with a label when e.g. the source for a target register
242 disappears out of reach for targets that may use jump-target
243 registers. Jump transformations are supposed to transform
244 any REG_LABEL_TARGET notes. The target label reference in a
245 branch may disappear from the branch (and from the
246 instruction before it) for other reasons, like register
253 for (note
= REG_NOTES (insn
); note
; note
= next
)
255 next
= XEXP (note
, 1);
256 if (REG_NOTE_KIND (note
) == REG_LABEL_OPERAND
257 && ! reg_mentioned_p (XEXP (note
, 0), PATTERN (insn
)))
258 remove_note (insn
, note
);
264 /* A subroutine of mark_all_labels. Trivially propagate a simple label
265 load into a jump_insn that uses it. */
268 maybe_propagate_label_ref (rtx_insn
*jump_insn
, rtx_insn
*prev_nonjump_insn
)
270 rtx label_note
, pc
, pc_src
;
272 pc
= pc_set (jump_insn
);
273 pc_src
= pc
!= NULL
? SET_SRC (pc
) : NULL
;
274 label_note
= find_reg_note (prev_nonjump_insn
, REG_LABEL_OPERAND
, NULL
);
276 /* If the previous non-jump insn sets something to a label,
277 something that this jump insn uses, make that label the primary
278 target of this insn if we don't yet have any. That previous
279 insn must be a single_set and not refer to more than one label.
280 The jump insn must not refer to other labels as jump targets
281 and must be a plain (set (pc) ...), maybe in a parallel, and
282 may refer to the item being set only directly or as one of the
283 arms in an IF_THEN_ELSE. */
285 if (label_note
!= NULL
&& pc_src
!= NULL
)
287 rtx label_set
= single_set (prev_nonjump_insn
);
288 rtx label_dest
= label_set
!= NULL
? SET_DEST (label_set
) : NULL
;
290 if (label_set
!= NULL
291 /* The source must be the direct LABEL_REF, not a
292 PLUS, UNSPEC, IF_THEN_ELSE etc. */
293 && GET_CODE (SET_SRC (label_set
)) == LABEL_REF
294 && (rtx_equal_p (label_dest
, pc_src
)
295 || (GET_CODE (pc_src
) == IF_THEN_ELSE
296 && (rtx_equal_p (label_dest
, XEXP (pc_src
, 1))
297 || rtx_equal_p (label_dest
, XEXP (pc_src
, 2))))))
299 /* The CODE_LABEL referred to in the note must be the
300 CODE_LABEL in the LABEL_REF of the "set". We can
301 conveniently use it for the marker function, which
302 requires a LABEL_REF wrapping. */
303 gcc_assert (XEXP (label_note
, 0) == LABEL_REF_LABEL (SET_SRC (label_set
)));
305 mark_jump_label_1 (label_set
, jump_insn
, false, true);
307 gcc_assert (JUMP_LABEL (jump_insn
) == XEXP (label_note
, 0));
312 /* Mark the label each jump jumps to.
313 Combine consecutive labels, and count uses of labels. */
316 mark_all_labels (rtx_insn
*f
)
320 if (current_ir_type () == IR_RTL_CFGLAYOUT
)
323 FOR_EACH_BB_FN (bb
, cfun
)
325 /* In cfglayout mode, we don't bother with trivial next-insn
326 propagation of LABEL_REFs into JUMP_LABEL. This will be
327 handled by other optimizers using better algorithms. */
328 FOR_BB_INSNS (bb
, insn
)
330 gcc_assert (! insn
->deleted ());
331 if (NONDEBUG_INSN_P (insn
))
332 mark_jump_label (PATTERN (insn
), insn
, 0);
335 /* In cfglayout mode, there may be non-insns between the
336 basic blocks. If those non-insns represent tablejump data,
337 they contain label references that we must record. */
338 for (insn
= BB_HEADER (bb
); insn
; insn
= NEXT_INSN (insn
))
339 if (JUMP_TABLE_DATA_P (insn
))
340 mark_jump_label (PATTERN (insn
), insn
, 0);
341 for (insn
= BB_FOOTER (bb
); insn
; insn
= NEXT_INSN (insn
))
342 if (JUMP_TABLE_DATA_P (insn
))
343 mark_jump_label (PATTERN (insn
), insn
, 0);
348 rtx_insn
*prev_nonjump_insn
= NULL
;
349 for (insn
= f
; insn
; insn
= NEXT_INSN (insn
))
351 if (insn
->deleted ())
353 else if (LABEL_P (insn
))
354 prev_nonjump_insn
= NULL
;
355 else if (JUMP_TABLE_DATA_P (insn
))
356 mark_jump_label (PATTERN (insn
), insn
, 0);
357 else if (NONDEBUG_INSN_P (insn
))
359 mark_jump_label (PATTERN (insn
), insn
, 0);
362 if (JUMP_LABEL (insn
) == NULL
&& prev_nonjump_insn
!= NULL
)
363 maybe_propagate_label_ref (insn
, prev_nonjump_insn
);
366 prev_nonjump_insn
= insn
;
372 /* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
373 of reversed comparison if it is possible to do so. Otherwise return UNKNOWN.
374 UNKNOWN may be returned in case we are having CC_MODE compare and we don't
375 know whether it's source is floating point or integer comparison. Machine
376 description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
377 to help this function avoid overhead in these cases. */
379 reversed_comparison_code_parts (enum rtx_code code
, const_rtx arg0
,
380 const_rtx arg1
, const_rtx insn
)
384 /* If this is not actually a comparison, we can't reverse it. */
385 if (GET_RTX_CLASS (code
) != RTX_COMPARE
386 && GET_RTX_CLASS (code
) != RTX_COMM_COMPARE
)
389 mode
= GET_MODE (arg0
);
390 if (mode
== VOIDmode
)
391 mode
= GET_MODE (arg1
);
393 /* First see if machine description supplies us way to reverse the
394 comparison. Give it priority over everything else to allow
395 machine description to do tricks. */
396 if (GET_MODE_CLASS (mode
) == MODE_CC
397 && REVERSIBLE_CC_MODE (mode
))
399 #ifdef REVERSE_CONDITION
400 return REVERSE_CONDITION (code
, mode
);
402 return reverse_condition (code
);
406 /* Try a few special cases based on the comparison code. */
415 /* It is always safe to reverse EQ and NE, even for the floating
416 point. Similarly the unsigned comparisons are never used for
417 floating point so we can reverse them in the default way. */
418 return reverse_condition (code
);
423 /* In case we already see unordered comparison, we can be sure to
424 be dealing with floating point so we don't need any more tests. */
425 return reverse_condition_maybe_unordered (code
);
430 /* We don't have safe way to reverse these yet. */
436 if (GET_MODE_CLASS (mode
) == MODE_CC
|| CC0_P (arg0
))
438 /* Try to search for the comparison to determine the real mode.
439 This code is expensive, but with sane machine description it
440 will be never used, since REVERSIBLE_CC_MODE will return true
445 /* These CONST_CAST's are okay because prev_nonnote_insn just
446 returns its argument and we assign it to a const_rtx
448 for (rtx_insn
*prev
= prev_nonnote_insn (CONST_CAST_RTX (insn
));
449 prev
!= 0 && !LABEL_P (prev
);
450 prev
= prev_nonnote_insn (prev
))
452 const_rtx set
= set_of (arg0
, prev
);
453 if (set
&& GET_CODE (set
) == SET
454 && rtx_equal_p (SET_DEST (set
), arg0
))
456 rtx src
= SET_SRC (set
);
458 if (GET_CODE (src
) == COMPARE
)
460 rtx comparison
= src
;
461 arg0
= XEXP (src
, 0);
462 mode
= GET_MODE (arg0
);
463 if (mode
== VOIDmode
)
464 mode
= GET_MODE (XEXP (comparison
, 1));
467 /* We can get past reg-reg moves. This may be useful for model
468 of i387 comparisons that first move flag registers around. */
475 /* If register is clobbered in some ununderstandable way,
482 /* Test for an integer condition, or a floating-point comparison
483 in which NaNs can be ignored. */
484 if (CONST_INT_P (arg0
)
485 || (GET_MODE (arg0
) != VOIDmode
486 && GET_MODE_CLASS (mode
) != MODE_CC
487 && !HONOR_NANS (mode
)))
488 return reverse_condition (code
);
493 /* A wrapper around the previous function to take COMPARISON as rtx
494 expression. This simplifies many callers. */
496 reversed_comparison_code (const_rtx comparison
, const_rtx insn
)
498 if (!COMPARISON_P (comparison
))
500 return reversed_comparison_code_parts (GET_CODE (comparison
),
501 XEXP (comparison
, 0),
502 XEXP (comparison
, 1), insn
);
505 /* Return comparison with reversed code of EXP.
506 Return NULL_RTX in case we fail to do the reversal. */
508 reversed_comparison (const_rtx exp
, machine_mode mode
)
510 enum rtx_code reversed_code
= reversed_comparison_code (exp
, NULL_RTX
);
511 if (reversed_code
== UNKNOWN
)
514 return simplify_gen_relational (reversed_code
, mode
, VOIDmode
,
515 XEXP (exp
, 0), XEXP (exp
, 1));
519 /* Given an rtx-code for a comparison, return the code for the negated
520 comparison. If no such code exists, return UNKNOWN.
522 WATCH OUT! reverse_condition is not safe to use on a jump that might
523 be acting on the results of an IEEE floating point comparison, because
524 of the special treatment of non-signaling nans in comparisons.
525 Use reversed_comparison_code instead. */
528 reverse_condition (enum rtx_code code
)
570 /* Similar, but we're allowed to generate unordered comparisons, which
571 makes it safe for IEEE floating-point. Of course, we have to recognize
572 that the target will support them too... */
575 reverse_condition_maybe_unordered (enum rtx_code code
)
613 /* Similar, but return the code when two operands of a comparison are swapped.
614 This IS safe for IEEE floating-point. */
617 swap_condition (enum rtx_code code
)
659 /* Given a comparison CODE, return the corresponding unsigned comparison.
660 If CODE is an equality comparison or already an unsigned comparison,
664 unsigned_condition (enum rtx_code code
)
690 /* Similarly, return the signed version of a comparison. */
693 signed_condition (enum rtx_code code
)
719 /* Return nonzero if CODE1 is more strict than CODE2, i.e., if the
720 truth of CODE1 implies the truth of CODE2. */
723 comparison_dominates_p (enum rtx_code code1
, enum rtx_code code2
)
725 /* UNKNOWN comparison codes can happen as a result of trying to revert
727 They can't match anything, so we have to reject them here. */
728 if (code1
== UNKNOWN
|| code2
== UNKNOWN
)
737 if (code2
== UNLE
|| code2
== UNGE
)
742 if (code2
== LE
|| code2
== LEU
|| code2
== GE
|| code2
== GEU
748 if (code2
== UNLE
|| code2
== NE
)
753 if (code2
== LE
|| code2
== NE
|| code2
== ORDERED
|| code2
== LTGT
)
758 if (code2
== UNGE
|| code2
== NE
)
763 if (code2
== GE
|| code2
== NE
|| code2
== ORDERED
|| code2
== LTGT
)
769 if (code2
== ORDERED
)
774 if (code2
== NE
|| code2
== ORDERED
)
779 if (code2
== LEU
|| code2
== NE
)
784 if (code2
== GEU
|| code2
== NE
)
789 if (code2
== NE
|| code2
== UNEQ
|| code2
== UNLE
|| code2
== UNLT
790 || code2
== UNGE
|| code2
== UNGT
)
801 /* Return 1 if INSN is an unconditional jump and nothing else. */
804 simplejump_p (const rtx_insn
*insn
)
806 return (JUMP_P (insn
)
807 && GET_CODE (PATTERN (insn
)) == SET
808 && GET_CODE (SET_DEST (PATTERN (insn
))) == PC
809 && GET_CODE (SET_SRC (PATTERN (insn
))) == LABEL_REF
);
812 /* Return nonzero if INSN is a (possibly) conditional jump
815 Use of this function is deprecated, since we need to support combined
816 branch and compare insns. Use any_condjump_p instead whenever possible. */
819 condjump_p (const rtx_insn
*insn
)
821 const_rtx x
= PATTERN (insn
);
823 if (GET_CODE (x
) != SET
824 || GET_CODE (SET_DEST (x
)) != PC
)
828 if (GET_CODE (x
) == LABEL_REF
)
831 return (GET_CODE (x
) == IF_THEN_ELSE
832 && ((GET_CODE (XEXP (x
, 2)) == PC
833 && (GET_CODE (XEXP (x
, 1)) == LABEL_REF
834 || ANY_RETURN_P (XEXP (x
, 1))))
835 || (GET_CODE (XEXP (x
, 1)) == PC
836 && (GET_CODE (XEXP (x
, 2)) == LABEL_REF
837 || ANY_RETURN_P (XEXP (x
, 2))))));
840 /* Return nonzero if INSN is a (possibly) conditional jump inside a
843 Use this function is deprecated, since we need to support combined
844 branch and compare insns. Use any_condjump_p instead whenever possible. */
847 condjump_in_parallel_p (const rtx_insn
*insn
)
849 const_rtx x
= PATTERN (insn
);
851 if (GET_CODE (x
) != PARALLEL
)
854 x
= XVECEXP (x
, 0, 0);
856 if (GET_CODE (x
) != SET
)
858 if (GET_CODE (SET_DEST (x
)) != PC
)
860 if (GET_CODE (SET_SRC (x
)) == LABEL_REF
)
862 if (GET_CODE (SET_SRC (x
)) != IF_THEN_ELSE
)
864 if (XEXP (SET_SRC (x
), 2) == pc_rtx
865 && (GET_CODE (XEXP (SET_SRC (x
), 1)) == LABEL_REF
866 || ANY_RETURN_P (XEXP (SET_SRC (x
), 1))))
868 if (XEXP (SET_SRC (x
), 1) == pc_rtx
869 && (GET_CODE (XEXP (SET_SRC (x
), 2)) == LABEL_REF
870 || ANY_RETURN_P (XEXP (SET_SRC (x
), 2))))
875 /* Return set of PC, otherwise NULL. */
878 pc_set (const rtx_insn
*insn
)
883 pat
= PATTERN (insn
);
885 /* The set is allowed to appear either as the insn pattern or
886 the first set in a PARALLEL. */
887 if (GET_CODE (pat
) == PARALLEL
)
888 pat
= XVECEXP (pat
, 0, 0);
889 if (GET_CODE (pat
) == SET
&& GET_CODE (SET_DEST (pat
)) == PC
)
895 /* Return true when insn is an unconditional direct jump,
896 possibly bundled inside a PARALLEL. */
899 any_uncondjump_p (const rtx_insn
*insn
)
901 const_rtx x
= pc_set (insn
);
904 if (GET_CODE (SET_SRC (x
)) != LABEL_REF
)
906 if (find_reg_note (insn
, REG_NON_LOCAL_GOTO
, NULL_RTX
))
911 /* Return true when insn is a conditional jump. This function works for
912 instructions containing PC sets in PARALLELs. The instruction may have
913 various other effects so before removing the jump you must verify
916 Note that unlike condjump_p it returns false for unconditional jumps. */
919 any_condjump_p (const rtx_insn
*insn
)
921 const_rtx x
= pc_set (insn
);
926 if (GET_CODE (SET_SRC (x
)) != IF_THEN_ELSE
)
929 a
= GET_CODE (XEXP (SET_SRC (x
), 1));
930 b
= GET_CODE (XEXP (SET_SRC (x
), 2));
932 return ((b
== PC
&& (a
== LABEL_REF
|| a
== RETURN
|| a
== SIMPLE_RETURN
))
934 && (b
== LABEL_REF
|| b
== RETURN
|| b
== SIMPLE_RETURN
)));
937 /* Return the label of a conditional jump. */
940 condjump_label (const rtx_insn
*insn
)
942 rtx x
= pc_set (insn
);
947 if (GET_CODE (x
) == LABEL_REF
)
949 if (GET_CODE (x
) != IF_THEN_ELSE
)
951 if (XEXP (x
, 2) == pc_rtx
&& GET_CODE (XEXP (x
, 1)) == LABEL_REF
)
953 if (XEXP (x
, 1) == pc_rtx
&& GET_CODE (XEXP (x
, 2)) == LABEL_REF
)
958 /* Return TRUE if INSN is a return jump. */
961 returnjump_p (const rtx_insn
*insn
)
965 subrtx_iterator::array_type array
;
966 FOR_EACH_SUBRTX (iter
, array
, PATTERN (insn
), NONCONST
)
969 switch (GET_CODE (x
))
977 if (SET_IS_RETURN_P (x
))
989 /* Return true if INSN is a (possibly conditional) return insn. */
992 eh_returnjump_p (rtx_insn
*insn
)
996 subrtx_iterator::array_type array
;
997 FOR_EACH_SUBRTX (iter
, array
, PATTERN (insn
), NONCONST
)
998 if (GET_CODE (*iter
) == EH_RETURN
)
1004 /* Return true if INSN is a jump that only transfers control and
1008 onlyjump_p (const rtx_insn
*insn
)
1015 set
= single_set (insn
);
1018 if (GET_CODE (SET_DEST (set
)) != PC
)
1020 if (side_effects_p (SET_SRC (set
)))
1026 /* Return true iff INSN is a jump and its JUMP_LABEL is a label, not
1027 NULL or a return. */
1029 jump_to_label_p (const rtx_insn
*insn
)
1031 return (JUMP_P (insn
)
1032 && JUMP_LABEL (insn
) != NULL
&& !ANY_RETURN_P (JUMP_LABEL (insn
)));
1035 /* Return nonzero if X is an RTX that only sets the condition codes
1036 and has no side effects. */
1039 only_sets_cc0_p (const_rtx x
)
1047 return sets_cc0_p (x
) == 1 && ! side_effects_p (x
);
1050 /* Return 1 if X is an RTX that does nothing but set the condition codes
1051 and CLOBBER or USE registers.
1052 Return -1 if X does explicitly set the condition codes,
1053 but also does other things. */
1056 sets_cc0_p (const_rtx x
)
1064 if (GET_CODE (x
) == SET
&& SET_DEST (x
) == cc0_rtx
)
1066 if (GET_CODE (x
) == PARALLEL
)
1070 int other_things
= 0;
1071 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
1073 if (GET_CODE (XVECEXP (x
, 0, i
)) == SET
1074 && SET_DEST (XVECEXP (x
, 0, i
)) == cc0_rtx
)
1076 else if (GET_CODE (XVECEXP (x
, 0, i
)) == SET
)
1079 return ! sets_cc0
? 0 : other_things
? -1 : 1;
1084 /* Find all CODE_LABELs referred to in X, and increment their use
1085 counts. If INSN is a JUMP_INSN and there is at least one
1086 CODE_LABEL referenced in INSN as a jump target, then store the last
1087 one in JUMP_LABEL (INSN). For a tablejump, this must be the label
1088 for the ADDR_VEC. Store any other jump targets as REG_LABEL_TARGET
1089 notes. If INSN is an INSN or a CALL_INSN or non-target operands of
1090 a JUMP_INSN, and there is at least one CODE_LABEL referenced in
1091 INSN, add a REG_LABEL_OPERAND note containing that label to INSN.
1092 For returnjumps, the JUMP_LABEL will also be set as appropriate.
1094 Note that two labels separated by a loop-beginning note
1095 must be kept distinct if we have not yet done loop-optimization,
1096 because the gap between them is where loop-optimize
1097 will want to move invariant code to. CROSS_JUMP tells us
1098 that loop-optimization is done with. */
1101 mark_jump_label (rtx x
, rtx_insn
*insn
, int in_mem
)
1103 rtx asmop
= extract_asm_operands (x
);
1105 mark_jump_label_asm (asmop
, insn
);
1107 mark_jump_label_1 (x
, insn
, in_mem
!= 0,
1108 (insn
!= NULL
&& x
== PATTERN (insn
) && JUMP_P (insn
)));
1111 /* Worker function for mark_jump_label. IN_MEM is TRUE when X occurs
1112 within a (MEM ...). IS_TARGET is TRUE when X is to be treated as a
1113 jump-target; when the JUMP_LABEL field of INSN should be set or a
1114 REG_LABEL_TARGET note should be added, not a REG_LABEL_OPERAND
1118 mark_jump_label_1 (rtx x
, rtx_insn
*insn
, bool in_mem
, bool is_target
)
1120 RTX_CODE code
= GET_CODE (x
);
1137 gcc_assert (JUMP_LABEL (insn
) == NULL
|| JUMP_LABEL (insn
) == x
);
1138 JUMP_LABEL (insn
) = x
;
1148 rtx_sequence
*seq
= as_a
<rtx_sequence
*> (x
);
1149 for (i
= 0; i
< seq
->len (); i
++)
1150 mark_jump_label (PATTERN (seq
->insn (i
)),
1159 /* If this is a constant-pool reference, see if it is a label. */
1160 if (CONSTANT_POOL_ADDRESS_P (x
))
1161 mark_jump_label_1 (get_pool_constant (x
), insn
, in_mem
, is_target
);
1164 /* Handle operands in the condition of an if-then-else as for a
1169 mark_jump_label_1 (XEXP (x
, 0), insn
, in_mem
, false);
1170 mark_jump_label_1 (XEXP (x
, 1), insn
, in_mem
, true);
1171 mark_jump_label_1 (XEXP (x
, 2), insn
, in_mem
, true);
1176 rtx label
= LABEL_REF_LABEL (x
);
1178 /* Ignore remaining references to unreachable labels that
1179 have been deleted. */
1181 && NOTE_KIND (label
) == NOTE_INSN_DELETED_LABEL
)
1184 gcc_assert (LABEL_P (label
));
1186 /* Ignore references to labels of containing functions. */
1187 if (LABEL_REF_NONLOCAL_P (x
))
1190 LABEL_REF_LABEL (x
) = label
;
1191 if (! insn
|| ! insn
->deleted ())
1192 ++LABEL_NUSES (label
);
1197 /* Do not change a previous setting of JUMP_LABEL. If the
1198 JUMP_LABEL slot is occupied by a different label,
1199 create a note for this label. */
1200 && (JUMP_LABEL (insn
) == NULL
|| JUMP_LABEL (insn
) == label
))
1201 JUMP_LABEL (insn
) = label
;
1205 = is_target
? REG_LABEL_TARGET
: REG_LABEL_OPERAND
;
1207 /* Add a REG_LABEL_OPERAND or REG_LABEL_TARGET note
1208 for LABEL unless there already is one. All uses of
1209 a label, except for the primary target of a jump,
1210 must have such a note. */
1211 if (! find_reg_note (insn
, kind
, label
))
1212 add_reg_note (insn
, kind
, label
);
1218 /* Do walk the labels in a vector, but not the first operand of an
1219 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
1222 if (! insn
->deleted ())
1224 int eltnum
= code
== ADDR_DIFF_VEC
? 1 : 0;
1226 for (i
= 0; i
< XVECLEN (x
, eltnum
); i
++)
1227 mark_jump_label_1 (XVECEXP (x
, eltnum
, i
), NULL
, in_mem
,
1236 fmt
= GET_RTX_FORMAT (code
);
1238 /* The primary target of a tablejump is the label of the ADDR_VEC,
1239 which is canonically mentioned *last* in the insn. To get it
1240 marked as JUMP_LABEL, we iterate over items in reverse order. */
1241 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1244 mark_jump_label_1 (XEXP (x
, i
), insn
, in_mem
, is_target
);
1245 else if (fmt
[i
] == 'E')
1249 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1250 mark_jump_label_1 (XVECEXP (x
, i
, j
), insn
, in_mem
,
1256 /* Worker function for mark_jump_label. Handle asm insns specially.
1257 In particular, output operands need not be considered so we can
1258 avoid re-scanning the replicated asm_operand. Also, the asm_labels
1259 need to be considered targets. */
1262 mark_jump_label_asm (rtx asmop
, rtx_insn
*insn
)
1266 for (i
= ASM_OPERANDS_INPUT_LENGTH (asmop
) - 1; i
>= 0; --i
)
1267 mark_jump_label_1 (ASM_OPERANDS_INPUT (asmop
, i
), insn
, false, false);
1269 for (i
= ASM_OPERANDS_LABEL_LENGTH (asmop
) - 1; i
>= 0; --i
)
1270 mark_jump_label_1 (ASM_OPERANDS_LABEL (asmop
, i
), insn
, false, true);
1273 /* Delete insn INSN from the chain of insns and update label ref counts
1274 and delete insns now unreachable.
1276 Returns the first insn after INSN that was not deleted.
1278 Usage of this instruction is deprecated. Use delete_insn instead and
1279 subsequent cfg_cleanup pass to delete unreachable code if needed. */
1282 delete_related_insns (rtx uncast_insn
)
1284 rtx_insn
*insn
= as_a
<rtx_insn
*> (uncast_insn
);
1285 int was_code_label
= (LABEL_P (insn
));
1287 rtx_insn
*next
= NEXT_INSN (insn
), *prev
= PREV_INSN (insn
);
1289 while (next
&& next
->deleted ())
1290 next
= NEXT_INSN (next
);
1292 /* This insn is already deleted => return first following nondeleted. */
1293 if (insn
->deleted ())
1298 /* If instruction is followed by a barrier,
1299 delete the barrier too. */
1301 if (next
!= 0 && BARRIER_P (next
))
1304 /* If this is a call, then we have to remove the var tracking note
1305 for the call arguments. */
1308 || (NONJUMP_INSN_P (insn
)
1309 && GET_CODE (PATTERN (insn
)) == SEQUENCE
1310 && CALL_P (XVECEXP (PATTERN (insn
), 0, 0))))
1314 for (p
= next
&& next
->deleted () ? NEXT_INSN (next
) : next
;
1317 if (NOTE_KIND (p
) == NOTE_INSN_CALL_ARG_LOCATION
)
1324 /* If deleting a jump, decrement the count of the label,
1325 and delete the label if it is now unused. */
1327 if (jump_to_label_p (insn
))
1329 rtx lab
= JUMP_LABEL (insn
);
1330 rtx_jump_table_data
*lab_next
;
1332 if (LABEL_NUSES (lab
) == 0)
1333 /* This can delete NEXT or PREV,
1334 either directly if NEXT is JUMP_LABEL (INSN),
1335 or indirectly through more levels of jumps. */
1336 delete_related_insns (lab
);
1337 else if (tablejump_p (insn
, NULL
, &lab_next
))
1339 /* If we're deleting the tablejump, delete the dispatch table.
1340 We may not be able to kill the label immediately preceding
1341 just yet, as it might be referenced in code leading up to
1343 delete_related_insns (lab_next
);
1347 /* Likewise if we're deleting a dispatch table. */
1349 if (rtx_jump_table_data
*table
= dyn_cast
<rtx_jump_table_data
*> (insn
))
1351 rtvec labels
= table
->get_labels ();
1353 int len
= GET_NUM_ELEM (labels
);
1355 for (i
= 0; i
< len
; i
++)
1356 if (LABEL_NUSES (XEXP (RTVEC_ELT (labels
, i
), 0)) == 0)
1357 delete_related_insns (XEXP (RTVEC_ELT (labels
, i
), 0));
1358 while (next
&& next
->deleted ())
1359 next
= NEXT_INSN (next
);
1363 /* Likewise for any JUMP_P / INSN / CALL_INSN with a
1364 REG_LABEL_OPERAND or REG_LABEL_TARGET note. */
1366 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
1367 if ((REG_NOTE_KIND (note
) == REG_LABEL_OPERAND
1368 || REG_NOTE_KIND (note
) == REG_LABEL_TARGET
)
1369 /* This could also be a NOTE_INSN_DELETED_LABEL note. */
1370 && LABEL_P (XEXP (note
, 0)))
1371 if (LABEL_NUSES (XEXP (note
, 0)) == 0)
1372 delete_related_insns (XEXP (note
, 0));
1374 while (prev
&& (prev
->deleted () || NOTE_P (prev
)))
1375 prev
= PREV_INSN (prev
);
1377 /* If INSN was a label and a dispatch table follows it,
1378 delete the dispatch table. The tablejump must have gone already.
1379 It isn't useful to fall through into a table. */
1382 && NEXT_INSN (insn
) != 0
1383 && JUMP_TABLE_DATA_P (NEXT_INSN (insn
)))
1384 next
= delete_related_insns (NEXT_INSN (insn
));
1386 /* If INSN was a label, delete insns following it if now unreachable. */
1388 if (was_code_label
&& prev
&& BARRIER_P (prev
))
1393 code
= GET_CODE (next
);
1395 next
= NEXT_INSN (next
);
1396 /* Keep going past other deleted labels to delete what follows. */
1397 else if (code
== CODE_LABEL
&& next
->deleted ())
1398 next
= NEXT_INSN (next
);
1399 /* Keep the (use (insn))s created by dbr_schedule, which needs
1400 them in order to track liveness relative to a previous
1402 else if (INSN_P (next
)
1403 && GET_CODE (PATTERN (next
)) == USE
1404 && INSN_P (XEXP (PATTERN (next
), 0)))
1405 next
= NEXT_INSN (next
);
1406 else if (code
== BARRIER
|| INSN_P (next
))
1407 /* Note: if this deletes a jump, it can cause more
1408 deletion of unreachable code, after a different label.
1409 As long as the value from this recursive call is correct,
1410 this invocation functions correctly. */
1411 next
= delete_related_insns (next
);
1417 /* I feel a little doubtful about this loop,
1418 but I see no clean and sure alternative way
1419 to find the first insn after INSN that is not now deleted.
1420 I hope this works. */
1421 while (next
&& next
->deleted ())
1422 next
= NEXT_INSN (next
);
1426 /* Delete a range of insns from FROM to TO, inclusive.
1427 This is for the sake of peephole optimization, so assume
1428 that whatever these insns do will still be done by a new
1429 peephole insn that will replace them. */
1432 delete_for_peephole (rtx_insn
*from
, rtx_insn
*to
)
1434 rtx_insn
*insn
= from
;
1438 rtx_insn
*next
= NEXT_INSN (insn
);
1439 rtx_insn
*prev
= PREV_INSN (insn
);
1443 insn
->set_deleted();
1445 /* Patch this insn out of the chain. */
1446 /* We don't do this all at once, because we
1447 must preserve all NOTEs. */
1449 SET_NEXT_INSN (prev
) = next
;
1452 SET_PREV_INSN (next
) = prev
;
1460 /* Note that if TO is an unconditional jump
1461 we *do not* delete the BARRIER that follows,
1462 since the peephole that replaces this sequence
1463 is also an unconditional jump in that case. */
1466 /* A helper function for redirect_exp_1; examines its input X and returns
1467 either a LABEL_REF around a label, or a RETURN if X was NULL. */
1469 redirect_target (rtx x
)
1473 if (!ANY_RETURN_P (x
))
1474 return gen_rtx_LABEL_REF (Pmode
, x
);
1478 /* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
1479 NLABEL as a return. Accrue modifications into the change group. */
1482 redirect_exp_1 (rtx
*loc
, rtx olabel
, rtx nlabel
, rtx insn
)
1485 RTX_CODE code
= GET_CODE (x
);
1489 if ((code
== LABEL_REF
&& LABEL_REF_LABEL (x
) == olabel
)
1492 x
= redirect_target (nlabel
);
1493 if (GET_CODE (x
) == LABEL_REF
&& loc
== &PATTERN (insn
))
1494 x
= gen_rtx_SET (pc_rtx
, x
);
1495 validate_change (insn
, loc
, x
, 1);
1499 if (code
== SET
&& SET_DEST (x
) == pc_rtx
1500 && ANY_RETURN_P (nlabel
)
1501 && GET_CODE (SET_SRC (x
)) == LABEL_REF
1502 && LABEL_REF_LABEL (SET_SRC (x
)) == olabel
)
1504 validate_change (insn
, loc
, nlabel
, 1);
1508 if (code
== IF_THEN_ELSE
)
1510 /* Skip the condition of an IF_THEN_ELSE. We only want to
1511 change jump destinations, not eventual label comparisons. */
1512 redirect_exp_1 (&XEXP (x
, 1), olabel
, nlabel
, insn
);
1513 redirect_exp_1 (&XEXP (x
, 2), olabel
, nlabel
, insn
);
1517 fmt
= GET_RTX_FORMAT (code
);
1518 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1521 redirect_exp_1 (&XEXP (x
, i
), olabel
, nlabel
, insn
);
1522 else if (fmt
[i
] == 'E')
1525 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1526 redirect_exp_1 (&XVECEXP (x
, i
, j
), olabel
, nlabel
, insn
);
1531 /* Make JUMP go to NLABEL instead of where it jumps now. Accrue
1532 the modifications into the change group. Return false if we did
1533 not see how to do that. */
1536 redirect_jump_1 (rtx_insn
*jump
, rtx nlabel
)
1538 int ochanges
= num_validated_changes ();
1541 gcc_assert (nlabel
!= NULL_RTX
);
1542 asmop
= extract_asm_operands (PATTERN (jump
));
1547 gcc_assert (ASM_OPERANDS_LABEL_LENGTH (asmop
) == 1);
1548 loc
= &ASM_OPERANDS_LABEL (asmop
, 0);
1550 else if (GET_CODE (PATTERN (jump
)) == PARALLEL
)
1551 loc
= &XVECEXP (PATTERN (jump
), 0, 0);
1553 loc
= &PATTERN (jump
);
1555 redirect_exp_1 (loc
, JUMP_LABEL (jump
), nlabel
, jump
);
1556 return num_validated_changes () > ochanges
;
1559 /* Make JUMP go to NLABEL instead of where it jumps now. If the old
1560 jump target label is unused as a result, it and the code following
1563 Normally, NLABEL will be a label, but it may also be a RETURN rtx;
1564 in that case we are to turn the jump into a (possibly conditional)
1567 The return value will be 1 if the change was made, 0 if it wasn't
1568 (this can only occur when trying to produce return insns). */
1571 redirect_jump (rtx_jump_insn
*jump
, rtx nlabel
, int delete_unused
)
1573 rtx olabel
= jump
->jump_label ();
1577 /* If there is no label, we are asked to redirect to the EXIT block.
1578 When before the epilogue is emitted, return/simple_return cannot be
1579 created so we return 0 immediately. After the epilogue is emitted,
1580 we always expect a label, either a non-null label, or a
1581 return/simple_return RTX. */
1583 if (!epilogue_completed
)
1588 if (nlabel
== olabel
)
1591 if (! redirect_jump_1 (jump
, nlabel
) || ! apply_change_group ())
1594 redirect_jump_2 (jump
, olabel
, nlabel
, delete_unused
, 0);
1598 /* Fix up JUMP_LABEL and label ref counts after OLABEL has been replaced with
1600 If DELETE_UNUSED is positive, delete related insn to OLABEL if its ref
1601 count has dropped to zero. */
1603 redirect_jump_2 (rtx_jump_insn
*jump
, rtx olabel
, rtx nlabel
, int delete_unused
,
1608 gcc_assert (JUMP_LABEL (jump
) == olabel
);
1610 /* Negative DELETE_UNUSED used to be used to signalize behavior on
1611 moving FUNCTION_END note. Just sanity check that no user still worry
1613 gcc_assert (delete_unused
>= 0);
1614 JUMP_LABEL (jump
) = nlabel
;
1615 if (!ANY_RETURN_P (nlabel
))
1616 ++LABEL_NUSES (nlabel
);
1618 /* Update labels in any REG_EQUAL note. */
1619 if ((note
= find_reg_note (jump
, REG_EQUAL
, NULL_RTX
)) != NULL_RTX
)
1621 if (ANY_RETURN_P (nlabel
)
1622 || (invert
&& !invert_exp_1 (XEXP (note
, 0), jump
)))
1623 remove_note (jump
, note
);
1626 redirect_exp_1 (&XEXP (note
, 0), olabel
, nlabel
, jump
);
1627 confirm_change_group ();
1631 /* Handle the case where we had a conditional crossing jump to a return
1632 label and are now changing it into a direct conditional return.
1633 The jump is no longer crossing in that case. */
1634 if (ANY_RETURN_P (nlabel
))
1635 CROSSING_JUMP_P (jump
) = 0;
1637 if (!ANY_RETURN_P (olabel
)
1638 && --LABEL_NUSES (olabel
) == 0 && delete_unused
> 0
1639 /* Undefined labels will remain outside the insn stream. */
1640 && INSN_UID (olabel
))
1641 delete_related_insns (olabel
);
1643 invert_br_probabilities (jump
);
1646 /* Invert the jump condition X contained in jump insn INSN. Accrue the
1647 modifications into the change group. Return nonzero for success. */
1649 invert_exp_1 (rtx x
, rtx insn
)
1651 RTX_CODE code
= GET_CODE (x
);
1653 if (code
== IF_THEN_ELSE
)
1655 rtx comp
= XEXP (x
, 0);
1657 enum rtx_code reversed_code
;
1659 /* We can do this in two ways: The preferable way, which can only
1660 be done if this is not an integer comparison, is to reverse
1661 the comparison code. Otherwise, swap the THEN-part and ELSE-part
1662 of the IF_THEN_ELSE. If we can't do either, fail. */
1664 reversed_code
= reversed_comparison_code (comp
, insn
);
1666 if (reversed_code
!= UNKNOWN
)
1668 validate_change (insn
, &XEXP (x
, 0),
1669 gen_rtx_fmt_ee (reversed_code
,
1670 GET_MODE (comp
), XEXP (comp
, 0),
1677 validate_change (insn
, &XEXP (x
, 1), XEXP (x
, 2), 1);
1678 validate_change (insn
, &XEXP (x
, 2), tem
, 1);
1685 /* Invert the condition of the jump JUMP, and make it jump to label
1686 NLABEL instead of where it jumps now. Accrue changes into the
1687 change group. Return false if we didn't see how to perform the
1688 inversion and redirection. */
1691 invert_jump_1 (rtx_jump_insn
*jump
, rtx nlabel
)
1693 rtx x
= pc_set (jump
);
1697 ochanges
= num_validated_changes ();
1700 ok
= invert_exp_1 (SET_SRC (x
), jump
);
1703 if (num_validated_changes () == ochanges
)
1706 /* redirect_jump_1 will fail of nlabel == olabel, and the current use is
1707 in Pmode, so checking this is not merely an optimization. */
1708 return nlabel
== JUMP_LABEL (jump
) || redirect_jump_1 (jump
, nlabel
);
1711 /* Invert the condition of the jump JUMP, and make it jump to label
1712 NLABEL instead of where it jumps now. Return true if successful. */
1715 invert_jump (rtx_jump_insn
*jump
, rtx nlabel
, int delete_unused
)
1717 rtx olabel
= JUMP_LABEL (jump
);
1719 if (invert_jump_1 (jump
, nlabel
) && apply_change_group ())
1721 redirect_jump_2 (jump
, olabel
, nlabel
, delete_unused
, 1);
1729 /* Like rtx_equal_p except that it considers two REGs as equal
1730 if they renumber to the same value and considers two commutative
1731 operations to be the same if the order of the operands has been
1735 rtx_renumbered_equal_p (const_rtx x
, const_rtx y
)
1738 const enum rtx_code code
= GET_CODE (x
);
1744 if ((code
== REG
|| (code
== SUBREG
&& REG_P (SUBREG_REG (x
))))
1745 && (REG_P (y
) || (GET_CODE (y
) == SUBREG
1746 && REG_P (SUBREG_REG (y
)))))
1748 int reg_x
= -1, reg_y
= -1;
1749 int byte_x
= 0, byte_y
= 0;
1750 struct subreg_info info
;
1752 if (GET_MODE (x
) != GET_MODE (y
))
1755 /* If we haven't done any renumbering, don't
1756 make any assumptions. */
1757 if (reg_renumber
== 0)
1758 return rtx_equal_p (x
, y
);
1762 reg_x
= REGNO (SUBREG_REG (x
));
1763 byte_x
= SUBREG_BYTE (x
);
1765 if (reg_renumber
[reg_x
] >= 0)
1767 subreg_get_info (reg_renumber
[reg_x
],
1768 GET_MODE (SUBREG_REG (x
)), byte_x
,
1769 GET_MODE (x
), &info
);
1770 if (!info
.representable_p
)
1772 reg_x
= info
.offset
;
1779 if (reg_renumber
[reg_x
] >= 0)
1780 reg_x
= reg_renumber
[reg_x
];
1783 if (GET_CODE (y
) == SUBREG
)
1785 reg_y
= REGNO (SUBREG_REG (y
));
1786 byte_y
= SUBREG_BYTE (y
);
1788 if (reg_renumber
[reg_y
] >= 0)
1790 subreg_get_info (reg_renumber
[reg_y
],
1791 GET_MODE (SUBREG_REG (y
)), byte_y
,
1792 GET_MODE (y
), &info
);
1793 if (!info
.representable_p
)
1795 reg_y
= info
.offset
;
1802 if (reg_renumber
[reg_y
] >= 0)
1803 reg_y
= reg_renumber
[reg_y
];
1806 return reg_x
>= 0 && reg_x
== reg_y
&& byte_x
== byte_y
;
1809 /* Now we have disposed of all the cases
1810 in which different rtx codes can match. */
1811 if (code
!= GET_CODE (y
))
1824 /* We can't assume nonlocal labels have their following insns yet. */
1825 if (LABEL_REF_NONLOCAL_P (x
) || LABEL_REF_NONLOCAL_P (y
))
1826 return LABEL_REF_LABEL (x
) == LABEL_REF_LABEL (y
);
1828 /* Two label-refs are equivalent if they point at labels
1829 in the same position in the instruction stream. */
1830 return (next_real_insn (LABEL_REF_LABEL (x
))
1831 == next_real_insn (LABEL_REF_LABEL (y
)));
1834 return XSTR (x
, 0) == XSTR (y
, 0);
1837 /* If we didn't match EQ equality above, they aren't the same. */
1844 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1846 if (GET_MODE (x
) != GET_MODE (y
))
1849 /* MEMs referring to different address space are not equivalent. */
1850 if (code
== MEM
&& MEM_ADDR_SPACE (x
) != MEM_ADDR_SPACE (y
))
1853 /* For commutative operations, the RTX match if the operand match in any
1854 order. Also handle the simple binary and unary cases without a loop. */
1855 if (targetm
.commutative_p (x
, UNKNOWN
))
1856 return ((rtx_renumbered_equal_p (XEXP (x
, 0), XEXP (y
, 0))
1857 && rtx_renumbered_equal_p (XEXP (x
, 1), XEXP (y
, 1)))
1858 || (rtx_renumbered_equal_p (XEXP (x
, 0), XEXP (y
, 1))
1859 && rtx_renumbered_equal_p (XEXP (x
, 1), XEXP (y
, 0))));
1860 else if (NON_COMMUTATIVE_P (x
))
1861 return (rtx_renumbered_equal_p (XEXP (x
, 0), XEXP (y
, 0))
1862 && rtx_renumbered_equal_p (XEXP (x
, 1), XEXP (y
, 1)));
1863 else if (UNARY_P (x
))
1864 return rtx_renumbered_equal_p (XEXP (x
, 0), XEXP (y
, 0));
1866 /* Compare the elements. If any pair of corresponding elements
1867 fail to match, return 0 for the whole things. */
1869 fmt
= GET_RTX_FORMAT (code
);
1870 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1876 if (XWINT (x
, i
) != XWINT (y
, i
))
1881 if (XINT (x
, i
) != XINT (y
, i
))
1883 if (((code
== ASM_OPERANDS
&& i
== 6)
1884 || (code
== ASM_INPUT
&& i
== 1)))
1891 if (XTREE (x
, i
) != XTREE (y
, i
))
1896 if (strcmp (XSTR (x
, i
), XSTR (y
, i
)))
1901 if (! rtx_renumbered_equal_p (XEXP (x
, i
), XEXP (y
, i
)))
1906 if (XEXP (x
, i
) != XEXP (y
, i
))
1913 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
1915 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1916 if (!rtx_renumbered_equal_p (XVECEXP (x
, i
, j
), XVECEXP (y
, i
, j
)))
1927 /* If X is a hard register or equivalent to one or a subregister of one,
1928 return the hard register number. If X is a pseudo register that was not
1929 assigned a hard register, return the pseudo register number. Otherwise,
1930 return -1. Any rtx is valid for X. */
1933 true_regnum (const_rtx x
)
1937 if (REGNO (x
) >= FIRST_PSEUDO_REGISTER
1938 && (lra_in_progress
|| reg_renumber
[REGNO (x
)] >= 0))
1939 return reg_renumber
[REGNO (x
)];
1942 if (GET_CODE (x
) == SUBREG
)
1944 int base
= true_regnum (SUBREG_REG (x
));
1946 && base
< FIRST_PSEUDO_REGISTER
)
1948 struct subreg_info info
;
1950 subreg_get_info (lra_in_progress
1951 ? (unsigned) base
: REGNO (SUBREG_REG (x
)),
1952 GET_MODE (SUBREG_REG (x
)),
1953 SUBREG_BYTE (x
), GET_MODE (x
), &info
);
1955 if (info
.representable_p
)
1956 return base
+ info
.offset
;
1962 /* Return regno of the register REG and handle subregs too. */
1964 reg_or_subregno (const_rtx reg
)
1966 if (GET_CODE (reg
) == SUBREG
)
1967 reg
= SUBREG_REG (reg
);
1968 gcc_assert (REG_P (reg
));