* recog.c (asm_operand_ok): Allow float CONST_VECTORs for 'F'.
[official-gcc.git] / gcc / reload.c
blob41d671d3146769d0f92a66e600b40781fce3151d
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file contains subroutines used only from the file reload1.c.
23 It knows how to scan one insn for operands and values
24 that need to be copied into registers to make valid code.
25 It also finds other operands and values which are valid
26 but for which equivalent values in registers exist and
27 ought to be used instead.
29 Before processing the first insn of the function, call `init_reload'.
31 To scan an insn, call `find_reloads'. This does two things:
32 1. sets up tables describing which values must be reloaded
33 for this insn, and what kind of hard regs they must be reloaded into;
34 2. optionally record the locations where those values appear in
35 the data, so they can be replaced properly later.
36 This is done only if the second arg to `find_reloads' is nonzero.
38 The third arg to `find_reloads' specifies the number of levels
39 of indirect addressing supported by the machine. If it is zero,
40 indirect addressing is not valid. If it is one, (MEM (REG n))
41 is valid even if (REG n) did not get a hard register; if it is two,
42 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
43 hard register, and similarly for higher values.
45 Then you must choose the hard regs to reload those pseudo regs into,
46 and generate appropriate load insns before this insn and perhaps
47 also store insns after this insn. Set up the array `reload_reg_rtx'
48 to contain the REG rtx's for the registers you used. In some
49 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
50 for certain reloads. Then that tells you which register to use,
51 so you do not need to allocate one. But you still do need to add extra
52 instructions to copy the value into and out of that register.
54 Finally you must call `subst_reloads' to substitute the reload reg rtx's
55 into the locations already recorded.
57 NOTE SIDE EFFECTS:
59 find_reloads can alter the operands of the instruction it is called on.
61 1. Two operands of any sort may be interchanged, if they are in a
62 commutative instruction.
63 This happens only if find_reloads thinks the instruction will compile
64 better that way.
66 2. Pseudo-registers that are equivalent to constants are replaced
67 with those constants if they are not in hard registers.
69 1 happens every time find_reloads is called.
70 2 happens only when REPLACE is 1, which is only when
71 actually doing the reloads, not when just counting them.
73 Using a reload register for several reloads in one insn:
75 When an insn has reloads, it is considered as having three parts:
76 the input reloads, the insn itself after reloading, and the output reloads.
77 Reloads of values used in memory addresses are often needed for only one part.
79 When this is so, reload_when_needed records which part needs the reload.
80 Two reloads for different parts of the insn can share the same reload
81 register.
83 When a reload is used for addresses in multiple parts, or when it is
84 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
85 a register with any other reload. */
87 #define REG_OK_STRICT
89 #include "config.h"
90 #include "system.h"
91 #include "rtl.h"
92 #include "tm_p.h"
93 #include "insn-config.h"
94 #include "expr.h"
95 #include "optabs.h"
96 #include "recog.h"
97 #include "reload.h"
98 #include "regs.h"
99 #include "hard-reg-set.h"
100 #include "flags.h"
101 #include "real.h"
102 #include "output.h"
103 #include "function.h"
104 #include "toplev.h"
106 #ifndef REGISTER_MOVE_COST
107 #define REGISTER_MOVE_COST(m, x, y) 2
108 #endif
110 #ifndef REGNO_MODE_OK_FOR_BASE_P
111 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) REGNO_OK_FOR_BASE_P (REGNO)
112 #endif
114 #ifndef REG_MODE_OK_FOR_BASE_P
115 #define REG_MODE_OK_FOR_BASE_P(REGNO, MODE) REG_OK_FOR_BASE_P (REGNO)
116 #endif
118 /* All reloads of the current insn are recorded here. See reload.h for
119 comments. */
120 int n_reloads;
121 struct reload rld[MAX_RELOADS];
123 /* All the "earlyclobber" operands of the current insn
124 are recorded here. */
125 int n_earlyclobbers;
126 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
128 int reload_n_operands;
130 /* Replacing reloads.
132 If `replace_reloads' is nonzero, then as each reload is recorded
133 an entry is made for it in the table `replacements'.
134 Then later `subst_reloads' can look through that table and
135 perform all the replacements needed. */
137 /* Nonzero means record the places to replace. */
138 static int replace_reloads;
140 /* Each replacement is recorded with a structure like this. */
141 struct replacement
143 rtx *where; /* Location to store in */
144 rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
145 a SUBREG; 0 otherwise. */
146 int what; /* which reload this is for */
147 enum machine_mode mode; /* mode it must have */
150 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
152 /* Number of replacements currently recorded. */
153 static int n_replacements;
155 /* Used to track what is modified by an operand. */
156 struct decomposition
158 int reg_flag; /* Nonzero if referencing a register. */
159 int safe; /* Nonzero if this can't conflict with anything. */
160 rtx base; /* Base address for MEM. */
161 HOST_WIDE_INT start; /* Starting offset or register number. */
162 HOST_WIDE_INT end; /* Ending offset or register number. */
165 #ifdef SECONDARY_MEMORY_NEEDED
167 /* Save MEMs needed to copy from one class of registers to another. One MEM
168 is used per mode, but normally only one or two modes are ever used.
170 We keep two versions, before and after register elimination. The one
171 after register elimination is record separately for each operand. This
172 is done in case the address is not valid to be sure that we separately
173 reload each. */
175 static rtx secondary_memlocs[NUM_MACHINE_MODES];
176 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
177 #endif
179 /* The instruction we are doing reloads for;
180 so we can test whether a register dies in it. */
181 static rtx this_insn;
183 /* Nonzero if this instruction is a user-specified asm with operands. */
184 static int this_insn_is_asm;
186 /* If hard_regs_live_known is nonzero,
187 we can tell which hard regs are currently live,
188 at least enough to succeed in choosing dummy reloads. */
189 static int hard_regs_live_known;
191 /* Indexed by hard reg number,
192 element is nonnegative if hard reg has been spilled.
193 This vector is passed to `find_reloads' as an argument
194 and is not changed here. */
195 static short *static_reload_reg_p;
197 /* Set to 1 in subst_reg_equivs if it changes anything. */
198 static int subst_reg_equivs_changed;
200 /* On return from push_reload, holds the reload-number for the OUT
201 operand, which can be different for that from the input operand. */
202 static int output_reloadnum;
204 /* Compare two RTX's. */
205 #define MATCHES(x, y) \
206 (x == y || (x != 0 && (GET_CODE (x) == REG \
207 ? GET_CODE (y) == REG && REGNO (x) == REGNO (y) \
208 : rtx_equal_p (x, y) && ! side_effects_p (x))))
210 /* Indicates if two reloads purposes are for similar enough things that we
211 can merge their reloads. */
212 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
213 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
214 || ((when1) == (when2) && (op1) == (op2)) \
215 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
216 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
217 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
218 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
219 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
221 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
222 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
223 ((when1) != (when2) \
224 || ! ((op1) == (op2) \
225 || (when1) == RELOAD_FOR_INPUT \
226 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
227 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
229 /* If we are going to reload an address, compute the reload type to
230 use. */
231 #define ADDR_TYPE(type) \
232 ((type) == RELOAD_FOR_INPUT_ADDRESS \
233 ? RELOAD_FOR_INPADDR_ADDRESS \
234 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
235 ? RELOAD_FOR_OUTADDR_ADDRESS \
236 : (type)))
238 #ifdef HAVE_SECONDARY_RELOADS
239 static int push_secondary_reload PARAMS ((int, rtx, int, int, enum reg_class,
240 enum machine_mode, enum reload_type,
241 enum insn_code *));
242 #endif
243 static enum reg_class find_valid_class PARAMS ((enum machine_mode, int,
244 unsigned int));
245 static int reload_inner_reg_of_subreg PARAMS ((rtx, enum machine_mode));
246 static void push_replacement PARAMS ((rtx *, int, enum machine_mode));
247 static void combine_reloads PARAMS ((void));
248 static int find_reusable_reload PARAMS ((rtx *, rtx, enum reg_class,
249 enum reload_type, int, int));
250 static rtx find_dummy_reload PARAMS ((rtx, rtx, rtx *, rtx *,
251 enum machine_mode, enum machine_mode,
252 enum reg_class, int, int));
253 static int hard_reg_set_here_p PARAMS ((unsigned int, unsigned int, rtx));
254 static struct decomposition decompose PARAMS ((rtx));
255 static int immune_p PARAMS ((rtx, rtx, struct decomposition));
256 static int alternative_allows_memconst PARAMS ((const char *, int));
257 static rtx find_reloads_toplev PARAMS ((rtx, int, enum reload_type, int,
258 int, rtx, int *));
259 static rtx make_memloc PARAMS ((rtx, int));
260 static int find_reloads_address PARAMS ((enum machine_mode, rtx *, rtx, rtx *,
261 int, enum reload_type, int, rtx));
262 static rtx subst_reg_equivs PARAMS ((rtx, rtx));
263 static rtx subst_indexed_address PARAMS ((rtx));
264 static void update_auto_inc_notes PARAMS ((rtx, int, int));
265 static int find_reloads_address_1 PARAMS ((enum machine_mode, rtx, int, rtx *,
266 int, enum reload_type,int, rtx));
267 static void find_reloads_address_part PARAMS ((rtx, rtx *, enum reg_class,
268 enum machine_mode, int,
269 enum reload_type, int));
270 static rtx find_reloads_subreg_address PARAMS ((rtx, int, int,
271 enum reload_type, int, rtx));
272 static void copy_replacements_1 PARAMS ((rtx *, rtx *, int));
273 static int find_inc_amount PARAMS ((rtx, rtx));
275 #ifdef HAVE_SECONDARY_RELOADS
277 /* Determine if any secondary reloads are needed for loading (if IN_P is
278 non-zero) or storing (if IN_P is zero) X to or from a reload register of
279 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
280 are needed, push them.
282 Return the reload number of the secondary reload we made, or -1 if
283 we didn't need one. *PICODE is set to the insn_code to use if we do
284 need a secondary reload. */
286 static int
287 push_secondary_reload (in_p, x, opnum, optional, reload_class, reload_mode,
288 type, picode)
289 int in_p;
290 rtx x;
291 int opnum;
292 int optional;
293 enum reg_class reload_class;
294 enum machine_mode reload_mode;
295 enum reload_type type;
296 enum insn_code *picode;
298 enum reg_class class = NO_REGS;
299 enum machine_mode mode = reload_mode;
300 enum insn_code icode = CODE_FOR_nothing;
301 enum reg_class t_class = NO_REGS;
302 enum machine_mode t_mode = VOIDmode;
303 enum insn_code t_icode = CODE_FOR_nothing;
304 enum reload_type secondary_type;
305 int s_reload, t_reload = -1;
307 if (type == RELOAD_FOR_INPUT_ADDRESS
308 || type == RELOAD_FOR_OUTPUT_ADDRESS
309 || type == RELOAD_FOR_INPADDR_ADDRESS
310 || type == RELOAD_FOR_OUTADDR_ADDRESS)
311 secondary_type = type;
312 else
313 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
315 *picode = CODE_FOR_nothing;
317 /* If X is a paradoxical SUBREG, use the inner value to determine both the
318 mode and object being reloaded. */
319 if (GET_CODE (x) == SUBREG
320 && (GET_MODE_SIZE (GET_MODE (x))
321 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
323 x = SUBREG_REG (x);
324 reload_mode = GET_MODE (x);
327 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
328 is still a pseudo-register by now, it *must* have an equivalent MEM
329 but we don't want to assume that), use that equivalent when seeing if
330 a secondary reload is needed since whether or not a reload is needed
331 might be sensitive to the form of the MEM. */
333 if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
334 && reg_equiv_mem[REGNO (x)] != 0)
335 x = reg_equiv_mem[REGNO (x)];
337 #ifdef SECONDARY_INPUT_RELOAD_CLASS
338 if (in_p)
339 class = SECONDARY_INPUT_RELOAD_CLASS (reload_class, reload_mode, x);
340 #endif
342 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
343 if (! in_p)
344 class = SECONDARY_OUTPUT_RELOAD_CLASS (reload_class, reload_mode, x);
345 #endif
347 /* If we don't need any secondary registers, done. */
348 if (class == NO_REGS)
349 return -1;
351 /* Get a possible insn to use. If the predicate doesn't accept X, don't
352 use the insn. */
354 icode = (in_p ? reload_in_optab[(int) reload_mode]
355 : reload_out_optab[(int) reload_mode]);
357 if (icode != CODE_FOR_nothing
358 && insn_data[(int) icode].operand[in_p].predicate
359 && (! (insn_data[(int) icode].operand[in_p].predicate) (x, reload_mode)))
360 icode = CODE_FOR_nothing;
362 /* If we will be using an insn, see if it can directly handle the reload
363 register we will be using. If it can, the secondary reload is for a
364 scratch register. If it can't, we will use the secondary reload for
365 an intermediate register and require a tertiary reload for the scratch
366 register. */
368 if (icode != CODE_FOR_nothing)
370 /* If IN_P is non-zero, the reload register will be the output in
371 operand 0. If IN_P is zero, the reload register will be the input
372 in operand 1. Outputs should have an initial "=", which we must
373 skip. */
375 enum reg_class insn_class;
377 if (insn_data[(int) icode].operand[!in_p].constraint[0] == 0)
378 insn_class = ALL_REGS;
379 else
381 char insn_letter
382 = insn_data[(int) icode].operand[!in_p].constraint[in_p];
383 insn_class
384 = (insn_letter == 'r' ? GENERAL_REGS
385 : REG_CLASS_FROM_LETTER ((unsigned char) insn_letter));
387 if (insn_class == NO_REGS)
388 abort ();
389 if (in_p
390 && insn_data[(int) icode].operand[!in_p].constraint[0] != '=')
391 abort ();
394 /* The scratch register's constraint must start with "=&". */
395 if (insn_data[(int) icode].operand[2].constraint[0] != '='
396 || insn_data[(int) icode].operand[2].constraint[1] != '&')
397 abort ();
399 if (reg_class_subset_p (reload_class, insn_class))
400 mode = insn_data[(int) icode].operand[2].mode;
401 else
403 char t_letter = insn_data[(int) icode].operand[2].constraint[2];
404 class = insn_class;
405 t_mode = insn_data[(int) icode].operand[2].mode;
406 t_class = (t_letter == 'r' ? GENERAL_REGS
407 : REG_CLASS_FROM_LETTER ((unsigned char) t_letter));
408 t_icode = icode;
409 icode = CODE_FOR_nothing;
413 /* This case isn't valid, so fail. Reload is allowed to use the same
414 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
415 in the case of a secondary register, we actually need two different
416 registers for correct code. We fail here to prevent the possibility of
417 silently generating incorrect code later.
419 The convention is that secondary input reloads are valid only if the
420 secondary_class is different from class. If you have such a case, you
421 can not use secondary reloads, you must work around the problem some
422 other way.
424 Allow this when a reload_in/out pattern is being used. I.e. assume
425 that the generated code handles this case. */
427 if (in_p && class == reload_class && icode == CODE_FOR_nothing
428 && t_icode == CODE_FOR_nothing)
429 abort ();
431 /* If we need a tertiary reload, see if we have one we can reuse or else
432 make a new one. */
434 if (t_class != NO_REGS)
436 for (t_reload = 0; t_reload < n_reloads; t_reload++)
437 if (rld[t_reload].secondary_p
438 && (reg_class_subset_p (t_class, rld[t_reload].class)
439 || reg_class_subset_p (rld[t_reload].class, t_class))
440 && ((in_p && rld[t_reload].inmode == t_mode)
441 || (! in_p && rld[t_reload].outmode == t_mode))
442 && ((in_p && (rld[t_reload].secondary_in_icode
443 == CODE_FOR_nothing))
444 || (! in_p &&(rld[t_reload].secondary_out_icode
445 == CODE_FOR_nothing)))
446 && (reg_class_size[(int) t_class] == 1 || SMALL_REGISTER_CLASSES)
447 && MERGABLE_RELOADS (secondary_type,
448 rld[t_reload].when_needed,
449 opnum, rld[t_reload].opnum))
451 if (in_p)
452 rld[t_reload].inmode = t_mode;
453 if (! in_p)
454 rld[t_reload].outmode = t_mode;
456 if (reg_class_subset_p (t_class, rld[t_reload].class))
457 rld[t_reload].class = t_class;
459 rld[t_reload].opnum = MIN (rld[t_reload].opnum, opnum);
460 rld[t_reload].optional &= optional;
461 rld[t_reload].secondary_p = 1;
462 if (MERGE_TO_OTHER (secondary_type, rld[t_reload].when_needed,
463 opnum, rld[t_reload].opnum))
464 rld[t_reload].when_needed = RELOAD_OTHER;
467 if (t_reload == n_reloads)
469 /* We need to make a new tertiary reload for this register class. */
470 rld[t_reload].in = rld[t_reload].out = 0;
471 rld[t_reload].class = t_class;
472 rld[t_reload].inmode = in_p ? t_mode : VOIDmode;
473 rld[t_reload].outmode = ! in_p ? t_mode : VOIDmode;
474 rld[t_reload].reg_rtx = 0;
475 rld[t_reload].optional = optional;
476 rld[t_reload].inc = 0;
477 /* Maybe we could combine these, but it seems too tricky. */
478 rld[t_reload].nocombine = 1;
479 rld[t_reload].in_reg = 0;
480 rld[t_reload].out_reg = 0;
481 rld[t_reload].opnum = opnum;
482 rld[t_reload].when_needed = secondary_type;
483 rld[t_reload].secondary_in_reload = -1;
484 rld[t_reload].secondary_out_reload = -1;
485 rld[t_reload].secondary_in_icode = CODE_FOR_nothing;
486 rld[t_reload].secondary_out_icode = CODE_FOR_nothing;
487 rld[t_reload].secondary_p = 1;
489 n_reloads++;
493 /* See if we can reuse an existing secondary reload. */
494 for (s_reload = 0; s_reload < n_reloads; s_reload++)
495 if (rld[s_reload].secondary_p
496 && (reg_class_subset_p (class, rld[s_reload].class)
497 || reg_class_subset_p (rld[s_reload].class, class))
498 && ((in_p && rld[s_reload].inmode == mode)
499 || (! in_p && rld[s_reload].outmode == mode))
500 && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
501 || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
502 && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
503 || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
504 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
505 && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
506 opnum, rld[s_reload].opnum))
508 if (in_p)
509 rld[s_reload].inmode = mode;
510 if (! in_p)
511 rld[s_reload].outmode = mode;
513 if (reg_class_subset_p (class, rld[s_reload].class))
514 rld[s_reload].class = class;
516 rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
517 rld[s_reload].optional &= optional;
518 rld[s_reload].secondary_p = 1;
519 if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
520 opnum, rld[s_reload].opnum))
521 rld[s_reload].when_needed = RELOAD_OTHER;
524 if (s_reload == n_reloads)
526 #ifdef SECONDARY_MEMORY_NEEDED
527 /* If we need a memory location to copy between the two reload regs,
528 set it up now. Note that we do the input case before making
529 the reload and the output case after. This is due to the
530 way reloads are output. */
532 if (in_p && icode == CODE_FOR_nothing
533 && SECONDARY_MEMORY_NEEDED (class, reload_class, mode))
535 get_secondary_mem (x, reload_mode, opnum, type);
537 /* We may have just added new reloads. Make sure we add
538 the new reload at the end. */
539 s_reload = n_reloads;
541 #endif
543 /* We need to make a new secondary reload for this register class. */
544 rld[s_reload].in = rld[s_reload].out = 0;
545 rld[s_reload].class = class;
547 rld[s_reload].inmode = in_p ? mode : VOIDmode;
548 rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
549 rld[s_reload].reg_rtx = 0;
550 rld[s_reload].optional = optional;
551 rld[s_reload].inc = 0;
552 /* Maybe we could combine these, but it seems too tricky. */
553 rld[s_reload].nocombine = 1;
554 rld[s_reload].in_reg = 0;
555 rld[s_reload].out_reg = 0;
556 rld[s_reload].opnum = opnum;
557 rld[s_reload].when_needed = secondary_type;
558 rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
559 rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
560 rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
561 rld[s_reload].secondary_out_icode
562 = ! in_p ? t_icode : CODE_FOR_nothing;
563 rld[s_reload].secondary_p = 1;
565 n_reloads++;
567 #ifdef SECONDARY_MEMORY_NEEDED
568 if (! in_p && icode == CODE_FOR_nothing
569 && SECONDARY_MEMORY_NEEDED (reload_class, class, mode))
570 get_secondary_mem (x, mode, opnum, type);
571 #endif
574 *picode = icode;
575 return s_reload;
577 #endif /* HAVE_SECONDARY_RELOADS */
579 #ifdef SECONDARY_MEMORY_NEEDED
581 /* Return a memory location that will be used to copy X in mode MODE.
582 If we haven't already made a location for this mode in this insn,
583 call find_reloads_address on the location being returned. */
586 get_secondary_mem (x, mode, opnum, type)
587 rtx x ATTRIBUTE_UNUSED;
588 enum machine_mode mode;
589 int opnum;
590 enum reload_type type;
592 rtx loc;
593 int mem_valid;
595 /* By default, if MODE is narrower than a word, widen it to a word.
596 This is required because most machines that require these memory
597 locations do not support short load and stores from all registers
598 (e.g., FP registers). */
600 #ifdef SECONDARY_MEMORY_NEEDED_MODE
601 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
602 #else
603 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
604 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
605 #endif
607 /* If we already have made a MEM for this operand in MODE, return it. */
608 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
609 return secondary_memlocs_elim[(int) mode][opnum];
611 /* If this is the first time we've tried to get a MEM for this mode,
612 allocate a new one. `something_changed' in reload will get set
613 by noticing that the frame size has changed. */
615 if (secondary_memlocs[(int) mode] == 0)
617 #ifdef SECONDARY_MEMORY_NEEDED_RTX
618 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
619 #else
620 secondary_memlocs[(int) mode]
621 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
622 #endif
625 /* Get a version of the address doing any eliminations needed. If that
626 didn't give us a new MEM, make a new one if it isn't valid. */
628 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
629 mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
631 if (! mem_valid && loc == secondary_memlocs[(int) mode])
632 loc = copy_rtx (loc);
634 /* The only time the call below will do anything is if the stack
635 offset is too large. In that case IND_LEVELS doesn't matter, so we
636 can just pass a zero. Adjust the type to be the address of the
637 corresponding object. If the address was valid, save the eliminated
638 address. If it wasn't valid, we need to make a reload each time, so
639 don't save it. */
641 if (! mem_valid)
643 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
644 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
645 : RELOAD_OTHER);
647 find_reloads_address (mode, &loc, XEXP (loc, 0), &XEXP (loc, 0),
648 opnum, type, 0, 0);
651 secondary_memlocs_elim[(int) mode][opnum] = loc;
652 return loc;
655 /* Clear any secondary memory locations we've made. */
657 void
658 clear_secondary_mem ()
660 memset ((char *) secondary_memlocs, 0, sizeof secondary_memlocs);
662 #endif /* SECONDARY_MEMORY_NEEDED */
664 /* Find the largest class for which every register number plus N is valid in
665 M1 (if in range) and is cheap to move into REGNO.
666 Abort if no such class exists. */
668 static enum reg_class
669 find_valid_class (m1, n, dest_regno)
670 enum machine_mode m1 ATTRIBUTE_UNUSED;
671 int n;
672 unsigned int dest_regno;
674 int best_cost = -1;
675 int class;
676 int regno;
677 enum reg_class best_class = NO_REGS;
678 enum reg_class dest_class = REGNO_REG_CLASS (dest_regno);
679 unsigned int best_size = 0;
680 int cost;
682 for (class = 1; class < N_REG_CLASSES; class++)
684 int bad = 0;
685 for (regno = 0; regno < FIRST_PSEUDO_REGISTER && ! bad; regno++)
686 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
687 && TEST_HARD_REG_BIT (reg_class_contents[class], regno + n)
688 && ! HARD_REGNO_MODE_OK (regno + n, m1))
689 bad = 1;
691 if (bad)
692 continue;
693 cost = REGISTER_MOVE_COST (m1, class, dest_class);
695 if ((reg_class_size[class] > best_size
696 && (best_cost < 0 || best_cost >= cost))
697 || best_cost > cost)
699 best_class = class;
700 best_size = reg_class_size[class];
701 best_cost = REGISTER_MOVE_COST (m1, class, dest_class);
705 if (best_size == 0)
706 abort ();
708 return best_class;
711 /* Return the number of a previously made reload that can be combined with
712 a new one, or n_reloads if none of the existing reloads can be used.
713 OUT, CLASS, TYPE and OPNUM are the same arguments as passed to
714 push_reload, they determine the kind of the new reload that we try to
715 combine. P_IN points to the corresponding value of IN, which can be
716 modified by this function.
717 DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
719 static int
720 find_reusable_reload (p_in, out, class, type, opnum, dont_share)
721 rtx *p_in, out;
722 enum reg_class class;
723 enum reload_type type;
724 int opnum, dont_share;
726 rtx in = *p_in;
727 int i;
728 /* We can't merge two reloads if the output of either one is
729 earlyclobbered. */
731 if (earlyclobber_operand_p (out))
732 return n_reloads;
734 /* We can use an existing reload if the class is right
735 and at least one of IN and OUT is a match
736 and the other is at worst neutral.
737 (A zero compared against anything is neutral.)
739 If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
740 for the same thing since that can cause us to need more reload registers
741 than we otherwise would. */
743 for (i = 0; i < n_reloads; i++)
744 if ((reg_class_subset_p (class, rld[i].class)
745 || reg_class_subset_p (rld[i].class, class))
746 /* If the existing reload has a register, it must fit our class. */
747 && (rld[i].reg_rtx == 0
748 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
749 true_regnum (rld[i].reg_rtx)))
750 && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
751 && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
752 || (out != 0 && MATCHES (rld[i].out, out)
753 && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
754 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
755 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
756 && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
757 return i;
759 /* Reloading a plain reg for input can match a reload to postincrement
760 that reg, since the postincrement's value is the right value.
761 Likewise, it can match a preincrement reload, since we regard
762 the preincrementation as happening before any ref in this insn
763 to that register. */
764 for (i = 0; i < n_reloads; i++)
765 if ((reg_class_subset_p (class, rld[i].class)
766 || reg_class_subset_p (rld[i].class, class))
767 /* If the existing reload has a register, it must fit our
768 class. */
769 && (rld[i].reg_rtx == 0
770 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
771 true_regnum (rld[i].reg_rtx)))
772 && out == 0 && rld[i].out == 0 && rld[i].in != 0
773 && ((GET_CODE (in) == REG
774 && GET_RTX_CLASS (GET_CODE (rld[i].in)) == 'a'
775 && MATCHES (XEXP (rld[i].in, 0), in))
776 || (GET_CODE (rld[i].in) == REG
777 && GET_RTX_CLASS (GET_CODE (in)) == 'a'
778 && MATCHES (XEXP (in, 0), rld[i].in)))
779 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
780 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
781 && MERGABLE_RELOADS (type, rld[i].when_needed,
782 opnum, rld[i].opnum))
784 /* Make sure reload_in ultimately has the increment,
785 not the plain register. */
786 if (GET_CODE (in) == REG)
787 *p_in = rld[i].in;
788 return i;
790 return n_reloads;
793 /* Return nonzero if X is a SUBREG which will require reloading of its
794 SUBREG_REG expression. */
796 static int
797 reload_inner_reg_of_subreg (x, mode)
798 rtx x;
799 enum machine_mode mode;
801 rtx inner;
803 /* Only SUBREGs are problematical. */
804 if (GET_CODE (x) != SUBREG)
805 return 0;
807 inner = SUBREG_REG (x);
809 /* If INNER is a constant or PLUS, then INNER must be reloaded. */
810 if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
811 return 1;
813 /* If INNER is not a hard register, then INNER will not need to
814 be reloaded. */
815 if (GET_CODE (inner) != REG
816 || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
817 return 0;
819 /* If INNER is not ok for MODE, then INNER will need reloading. */
820 if (! HARD_REGNO_MODE_OK (subreg_regno (x), mode))
821 return 1;
823 /* If the outer part is a word or smaller, INNER larger than a
824 word and the number of regs for INNER is not the same as the
825 number of words in INNER, then INNER will need reloading. */
826 return (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
827 && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
828 && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
829 != HARD_REGNO_NREGS (REGNO (inner), GET_MODE (inner))));
832 /* Record one reload that needs to be performed.
833 IN is an rtx saying where the data are to be found before this instruction.
834 OUT says where they must be stored after the instruction.
835 (IN is zero for data not read, and OUT is zero for data not written.)
836 INLOC and OUTLOC point to the places in the instructions where
837 IN and OUT were found.
838 If IN and OUT are both non-zero, it means the same register must be used
839 to reload both IN and OUT.
841 CLASS is a register class required for the reloaded data.
842 INMODE is the machine mode that the instruction requires
843 for the reg that replaces IN and OUTMODE is likewise for OUT.
845 If IN is zero, then OUT's location and mode should be passed as
846 INLOC and INMODE.
848 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
850 OPTIONAL nonzero means this reload does not need to be performed:
851 it can be discarded if that is more convenient.
853 OPNUM and TYPE say what the purpose of this reload is.
855 The return value is the reload-number for this reload.
857 If both IN and OUT are nonzero, in some rare cases we might
858 want to make two separate reloads. (Actually we never do this now.)
859 Therefore, the reload-number for OUT is stored in
860 output_reloadnum when we return; the return value applies to IN.
861 Usually (presently always), when IN and OUT are nonzero,
862 the two reload-numbers are equal, but the caller should be careful to
863 distinguish them. */
866 push_reload (in, out, inloc, outloc, class,
867 inmode, outmode, strict_low, optional, opnum, type)
868 rtx in, out;
869 rtx *inloc, *outloc;
870 enum reg_class class;
871 enum machine_mode inmode, outmode;
872 int strict_low;
873 int optional;
874 int opnum;
875 enum reload_type type;
877 int i;
878 int dont_share = 0;
879 int dont_remove_subreg = 0;
880 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
881 int secondary_in_reload = -1, secondary_out_reload = -1;
882 enum insn_code secondary_in_icode = CODE_FOR_nothing;
883 enum insn_code secondary_out_icode = CODE_FOR_nothing;
885 /* INMODE and/or OUTMODE could be VOIDmode if no mode
886 has been specified for the operand. In that case,
887 use the operand's mode as the mode to reload. */
888 if (inmode == VOIDmode && in != 0)
889 inmode = GET_MODE (in);
890 if (outmode == VOIDmode && out != 0)
891 outmode = GET_MODE (out);
893 /* If IN is a pseudo register everywhere-equivalent to a constant, and
894 it is not in a hard register, reload straight from the constant,
895 since we want to get rid of such pseudo registers.
896 Often this is done earlier, but not always in find_reloads_address. */
897 if (in != 0 && GET_CODE (in) == REG)
899 int regno = REGNO (in);
901 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
902 && reg_equiv_constant[regno] != 0)
903 in = reg_equiv_constant[regno];
906 /* Likewise for OUT. Of course, OUT will never be equivalent to
907 an actual constant, but it might be equivalent to a memory location
908 (in the case of a parameter). */
909 if (out != 0 && GET_CODE (out) == REG)
911 int regno = REGNO (out);
913 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
914 && reg_equiv_constant[regno] != 0)
915 out = reg_equiv_constant[regno];
918 /* If we have a read-write operand with an address side-effect,
919 change either IN or OUT so the side-effect happens only once. */
920 if (in != 0 && out != 0 && GET_CODE (in) == MEM && rtx_equal_p (in, out))
921 switch (GET_CODE (XEXP (in, 0)))
923 case POST_INC: case POST_DEC: case POST_MODIFY:
924 in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
925 break;
927 case PRE_INC: case PRE_DEC: case PRE_MODIFY:
928 out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
929 break;
931 default:
932 break;
935 /* If we are reloading a (SUBREG constant ...), really reload just the
936 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
937 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
938 a pseudo and hence will become a MEM) with M1 wider than M2 and the
939 register is a pseudo, also reload the inside expression.
940 For machines that extend byte loads, do this for any SUBREG of a pseudo
941 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
942 M2 is an integral mode that gets extended when loaded.
943 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
944 either M1 is not valid for R or M2 is wider than a word but we only
945 need one word to store an M2-sized quantity in R.
946 (However, if OUT is nonzero, we need to reload the reg *and*
947 the subreg, so do nothing here, and let following statement handle it.)
949 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
950 we can't handle it here because CONST_INT does not indicate a mode.
952 Similarly, we must reload the inside expression if we have a
953 STRICT_LOW_PART (presumably, in == out in the cas).
955 Also reload the inner expression if it does not require a secondary
956 reload but the SUBREG does.
958 Finally, reload the inner expression if it is a register that is in
959 the class whose registers cannot be referenced in a different size
960 and M1 is not the same size as M2. If subreg_lowpart_p is false, we
961 cannot reload just the inside since we might end up with the wrong
962 register class. But if it is inside a STRICT_LOW_PART, we have
963 no choice, so we hope we do get the right register class there. */
965 if (in != 0 && GET_CODE (in) == SUBREG
966 && (subreg_lowpart_p (in) || strict_low)
967 #ifdef CLASS_CANNOT_CHANGE_MODE
968 && (class != CLASS_CANNOT_CHANGE_MODE
969 || ! CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (in)), inmode))
970 #endif
971 && (CONSTANT_P (SUBREG_REG (in))
972 || GET_CODE (SUBREG_REG (in)) == PLUS
973 || strict_low
974 || (((GET_CODE (SUBREG_REG (in)) == REG
975 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
976 || GET_CODE (SUBREG_REG (in)) == MEM)
977 && ((GET_MODE_SIZE (inmode)
978 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
979 #ifdef LOAD_EXTEND_OP
980 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
981 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
982 <= UNITS_PER_WORD)
983 && (GET_MODE_SIZE (inmode)
984 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
985 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
986 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != NIL)
987 #endif
988 #ifdef WORD_REGISTER_OPERATIONS
989 || ((GET_MODE_SIZE (inmode)
990 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
991 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
992 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
993 / UNITS_PER_WORD)))
994 #endif
996 || (GET_CODE (SUBREG_REG (in)) == REG
997 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
998 /* The case where out is nonzero
999 is handled differently in the following statement. */
1000 && (out == 0 || subreg_lowpart_p (in))
1001 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1002 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1003 > UNITS_PER_WORD)
1004 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1005 / UNITS_PER_WORD)
1006 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (in)),
1007 GET_MODE (SUBREG_REG (in)))))
1008 || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
1009 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1010 || (SECONDARY_INPUT_RELOAD_CLASS (class, inmode, in) != NO_REGS
1011 && (SECONDARY_INPUT_RELOAD_CLASS (class,
1012 GET_MODE (SUBREG_REG (in)),
1013 SUBREG_REG (in))
1014 == NO_REGS))
1015 #endif
1016 #ifdef CLASS_CANNOT_CHANGE_MODE
1017 || (GET_CODE (SUBREG_REG (in)) == REG
1018 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1019 && (TEST_HARD_REG_BIT
1020 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
1021 REGNO (SUBREG_REG (in))))
1022 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (in)),
1023 inmode))
1024 #endif
1027 in_subreg_loc = inloc;
1028 inloc = &SUBREG_REG (in);
1029 in = *inloc;
1030 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1031 if (GET_CODE (in) == MEM)
1032 /* This is supposed to happen only for paradoxical subregs made by
1033 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
1034 if (GET_MODE_SIZE (GET_MODE (in)) > GET_MODE_SIZE (inmode))
1035 abort ();
1036 #endif
1037 inmode = GET_MODE (in);
1040 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1041 either M1 is not valid for R or M2 is wider than a word but we only
1042 need one word to store an M2-sized quantity in R.
1044 However, we must reload the inner reg *as well as* the subreg in
1045 that case. */
1047 /* Similar issue for (SUBREG constant ...) if it was not handled by the
1048 code above. This can happen if SUBREG_BYTE != 0. */
1050 if (in != 0 && reload_inner_reg_of_subreg (in, inmode))
1052 enum reg_class in_class = class;
1054 if (GET_CODE (SUBREG_REG (in)) == REG)
1055 in_class
1056 = find_valid_class (inmode,
1057 subreg_regno_offset (REGNO (SUBREG_REG (in)),
1058 GET_MODE (SUBREG_REG (in)),
1059 SUBREG_BYTE (in),
1060 GET_MODE (in)),
1061 REGNO (SUBREG_REG (in)));
1063 /* This relies on the fact that emit_reload_insns outputs the
1064 instructions for input reloads of type RELOAD_OTHER in the same
1065 order as the reloads. Thus if the outer reload is also of type
1066 RELOAD_OTHER, we are guaranteed that this inner reload will be
1067 output before the outer reload. */
1068 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
1069 in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
1070 dont_remove_subreg = 1;
1073 /* Similarly for paradoxical and problematical SUBREGs on the output.
1074 Note that there is no reason we need worry about the previous value
1075 of SUBREG_REG (out); even if wider than out,
1076 storing in a subreg is entitled to clobber it all
1077 (except in the case of STRICT_LOW_PART,
1078 and in that case the constraint should label it input-output.) */
1079 if (out != 0 && GET_CODE (out) == SUBREG
1080 && (subreg_lowpart_p (out) || strict_low)
1081 #ifdef CLASS_CANNOT_CHANGE_MODE
1082 && (class != CLASS_CANNOT_CHANGE_MODE
1083 || ! CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (out)),
1084 outmode))
1085 #endif
1086 && (CONSTANT_P (SUBREG_REG (out))
1087 || strict_low
1088 || (((GET_CODE (SUBREG_REG (out)) == REG
1089 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1090 || GET_CODE (SUBREG_REG (out)) == MEM)
1091 && ((GET_MODE_SIZE (outmode)
1092 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1093 #ifdef WORD_REGISTER_OPERATIONS
1094 || ((GET_MODE_SIZE (outmode)
1095 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1096 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1097 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1098 / UNITS_PER_WORD)))
1099 #endif
1101 || (GET_CODE (SUBREG_REG (out)) == REG
1102 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1103 && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1104 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1105 > UNITS_PER_WORD)
1106 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1107 / UNITS_PER_WORD)
1108 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (out)),
1109 GET_MODE (SUBREG_REG (out)))))
1110 || ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode)))
1111 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1112 || (SECONDARY_OUTPUT_RELOAD_CLASS (class, outmode, out) != NO_REGS
1113 && (SECONDARY_OUTPUT_RELOAD_CLASS (class,
1114 GET_MODE (SUBREG_REG (out)),
1115 SUBREG_REG (out))
1116 == NO_REGS))
1117 #endif
1118 #ifdef CLASS_CANNOT_CHANGE_MODE
1119 || (GET_CODE (SUBREG_REG (out)) == REG
1120 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1121 && (TEST_HARD_REG_BIT
1122 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
1123 REGNO (SUBREG_REG (out))))
1124 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (out)),
1125 outmode))
1126 #endif
1129 out_subreg_loc = outloc;
1130 outloc = &SUBREG_REG (out);
1131 out = *outloc;
1132 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1133 if (GET_CODE (out) == MEM
1134 && GET_MODE_SIZE (GET_MODE (out)) > GET_MODE_SIZE (outmode))
1135 abort ();
1136 #endif
1137 outmode = GET_MODE (out);
1140 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1141 either M1 is not valid for R or M2 is wider than a word but we only
1142 need one word to store an M2-sized quantity in R.
1144 However, we must reload the inner reg *as well as* the subreg in
1145 that case. In this case, the inner reg is an in-out reload. */
1147 if (out != 0 && reload_inner_reg_of_subreg (out, outmode))
1149 /* This relies on the fact that emit_reload_insns outputs the
1150 instructions for output reloads of type RELOAD_OTHER in reverse
1151 order of the reloads. Thus if the outer reload is also of type
1152 RELOAD_OTHER, we are guaranteed that this inner reload will be
1153 output after the outer reload. */
1154 dont_remove_subreg = 1;
1155 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1156 &SUBREG_REG (out),
1157 find_valid_class (outmode,
1158 subreg_regno_offset (REGNO (SUBREG_REG (out)),
1159 GET_MODE (SUBREG_REG (out)),
1160 SUBREG_BYTE (out),
1161 GET_MODE (out)),
1162 REGNO (SUBREG_REG (out))),
1163 VOIDmode, VOIDmode, 0, 0,
1164 opnum, RELOAD_OTHER);
1167 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1168 if (in != 0 && out != 0 && GET_CODE (out) == MEM
1169 && (GET_CODE (in) == REG || GET_CODE (in) == MEM)
1170 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1171 dont_share = 1;
1173 /* If IN is a SUBREG of a hard register, make a new REG. This
1174 simplifies some of the cases below. */
1176 if (in != 0 && GET_CODE (in) == SUBREG && GET_CODE (SUBREG_REG (in)) == REG
1177 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1178 && ! dont_remove_subreg)
1179 in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
1181 /* Similarly for OUT. */
1182 if (out != 0 && GET_CODE (out) == SUBREG
1183 && GET_CODE (SUBREG_REG (out)) == REG
1184 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1185 && ! dont_remove_subreg)
1186 out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
1188 /* Narrow down the class of register wanted if that is
1189 desirable on this machine for efficiency. */
1190 if (in != 0)
1191 class = PREFERRED_RELOAD_CLASS (in, class);
1193 /* Output reloads may need analogous treatment, different in detail. */
1194 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
1195 if (out != 0)
1196 class = PREFERRED_OUTPUT_RELOAD_CLASS (out, class);
1197 #endif
1199 /* Make sure we use a class that can handle the actual pseudo
1200 inside any subreg. For example, on the 386, QImode regs
1201 can appear within SImode subregs. Although GENERAL_REGS
1202 can handle SImode, QImode needs a smaller class. */
1203 #ifdef LIMIT_RELOAD_CLASS
1204 if (in_subreg_loc)
1205 class = LIMIT_RELOAD_CLASS (inmode, class);
1206 else if (in != 0 && GET_CODE (in) == SUBREG)
1207 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), class);
1209 if (out_subreg_loc)
1210 class = LIMIT_RELOAD_CLASS (outmode, class);
1211 if (out != 0 && GET_CODE (out) == SUBREG)
1212 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), class);
1213 #endif
1215 /* Verify that this class is at least possible for the mode that
1216 is specified. */
1217 if (this_insn_is_asm)
1219 enum machine_mode mode;
1220 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1221 mode = inmode;
1222 else
1223 mode = outmode;
1224 if (mode == VOIDmode)
1226 error_for_asm (this_insn, "cannot reload integer constant operand in `asm'");
1227 mode = word_mode;
1228 if (in != 0)
1229 inmode = word_mode;
1230 if (out != 0)
1231 outmode = word_mode;
1233 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1234 if (HARD_REGNO_MODE_OK (i, mode)
1235 && TEST_HARD_REG_BIT (reg_class_contents[(int) class], i))
1237 int nregs = HARD_REGNO_NREGS (i, mode);
1239 int j;
1240 for (j = 1; j < nregs; j++)
1241 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class], i + j))
1242 break;
1243 if (j == nregs)
1244 break;
1246 if (i == FIRST_PSEUDO_REGISTER)
1248 error_for_asm (this_insn, "impossible register constraint in `asm'");
1249 class = ALL_REGS;
1253 /* Optional output reloads are always OK even if we have no register class,
1254 since the function of these reloads is only to have spill_reg_store etc.
1255 set, so that the storing insn can be deleted later. */
1256 if (class == NO_REGS
1257 && (optional == 0 || type != RELOAD_FOR_OUTPUT))
1258 abort ();
1260 i = find_reusable_reload (&in, out, class, type, opnum, dont_share);
1262 if (i == n_reloads)
1264 /* See if we need a secondary reload register to move between CLASS
1265 and IN or CLASS and OUT. Get the icode and push any required reloads
1266 needed for each of them if so. */
1268 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1269 if (in != 0)
1270 secondary_in_reload
1271 = push_secondary_reload (1, in, opnum, optional, class, inmode, type,
1272 &secondary_in_icode);
1273 #endif
1275 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1276 if (out != 0 && GET_CODE (out) != SCRATCH)
1277 secondary_out_reload
1278 = push_secondary_reload (0, out, opnum, optional, class, outmode,
1279 type, &secondary_out_icode);
1280 #endif
1282 /* We found no existing reload suitable for re-use.
1283 So add an additional reload. */
1285 #ifdef SECONDARY_MEMORY_NEEDED
1286 /* If a memory location is needed for the copy, make one. */
1287 if (in != 0 && GET_CODE (in) == REG
1288 && REGNO (in) < FIRST_PSEUDO_REGISTER
1289 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (in)),
1290 class, inmode))
1291 get_secondary_mem (in, inmode, opnum, type);
1292 #endif
1294 i = n_reloads;
1295 rld[i].in = in;
1296 rld[i].out = out;
1297 rld[i].class = class;
1298 rld[i].inmode = inmode;
1299 rld[i].outmode = outmode;
1300 rld[i].reg_rtx = 0;
1301 rld[i].optional = optional;
1302 rld[i].inc = 0;
1303 rld[i].nocombine = 0;
1304 rld[i].in_reg = inloc ? *inloc : 0;
1305 rld[i].out_reg = outloc ? *outloc : 0;
1306 rld[i].opnum = opnum;
1307 rld[i].when_needed = type;
1308 rld[i].secondary_in_reload = secondary_in_reload;
1309 rld[i].secondary_out_reload = secondary_out_reload;
1310 rld[i].secondary_in_icode = secondary_in_icode;
1311 rld[i].secondary_out_icode = secondary_out_icode;
1312 rld[i].secondary_p = 0;
1314 n_reloads++;
1316 #ifdef SECONDARY_MEMORY_NEEDED
1317 if (out != 0 && GET_CODE (out) == REG
1318 && REGNO (out) < FIRST_PSEUDO_REGISTER
1319 && SECONDARY_MEMORY_NEEDED (class, REGNO_REG_CLASS (REGNO (out)),
1320 outmode))
1321 get_secondary_mem (out, outmode, opnum, type);
1322 #endif
1324 else
1326 /* We are reusing an existing reload,
1327 but we may have additional information for it.
1328 For example, we may now have both IN and OUT
1329 while the old one may have just one of them. */
1331 /* The modes can be different. If they are, we want to reload in
1332 the larger mode, so that the value is valid for both modes. */
1333 if (inmode != VOIDmode
1334 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
1335 rld[i].inmode = inmode;
1336 if (outmode != VOIDmode
1337 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
1338 rld[i].outmode = outmode;
1339 if (in != 0)
1341 rtx in_reg = inloc ? *inloc : 0;
1342 /* If we merge reloads for two distinct rtl expressions that
1343 are identical in content, there might be duplicate address
1344 reloads. Remove the extra set now, so that if we later find
1345 that we can inherit this reload, we can get rid of the
1346 address reloads altogether.
1348 Do not do this if both reloads are optional since the result
1349 would be an optional reload which could potentially leave
1350 unresolved address replacements.
1352 It is not sufficient to call transfer_replacements since
1353 choose_reload_regs will remove the replacements for address
1354 reloads of inherited reloads which results in the same
1355 problem. */
1356 if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1357 && ! (rld[i].optional && optional))
1359 /* We must keep the address reload with the lower operand
1360 number alive. */
1361 if (opnum > rld[i].opnum)
1363 remove_address_replacements (in);
1364 in = rld[i].in;
1365 in_reg = rld[i].in_reg;
1367 else
1368 remove_address_replacements (rld[i].in);
1370 rld[i].in = in;
1371 rld[i].in_reg = in_reg;
1373 if (out != 0)
1375 rld[i].out = out;
1376 rld[i].out_reg = outloc ? *outloc : 0;
1378 if (reg_class_subset_p (class, rld[i].class))
1379 rld[i].class = class;
1380 rld[i].optional &= optional;
1381 if (MERGE_TO_OTHER (type, rld[i].when_needed,
1382 opnum, rld[i].opnum))
1383 rld[i].when_needed = RELOAD_OTHER;
1384 rld[i].opnum = MIN (rld[i].opnum, opnum);
1387 /* If the ostensible rtx being reloaded differs from the rtx found
1388 in the location to substitute, this reload is not safe to combine
1389 because we cannot reliably tell whether it appears in the insn. */
1391 if (in != 0 && in != *inloc)
1392 rld[i].nocombine = 1;
1394 #if 0
1395 /* This was replaced by changes in find_reloads_address_1 and the new
1396 function inc_for_reload, which go with a new meaning of reload_inc. */
1398 /* If this is an IN/OUT reload in an insn that sets the CC,
1399 it must be for an autoincrement. It doesn't work to store
1400 the incremented value after the insn because that would clobber the CC.
1401 So we must do the increment of the value reloaded from,
1402 increment it, store it back, then decrement again. */
1403 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1405 out = 0;
1406 rld[i].out = 0;
1407 rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1408 /* If we did not find a nonzero amount-to-increment-by,
1409 that contradicts the belief that IN is being incremented
1410 in an address in this insn. */
1411 if (rld[i].inc == 0)
1412 abort ();
1414 #endif
1416 /* If we will replace IN and OUT with the reload-reg,
1417 record where they are located so that substitution need
1418 not do a tree walk. */
1420 if (replace_reloads)
1422 if (inloc != 0)
1424 struct replacement *r = &replacements[n_replacements++];
1425 r->what = i;
1426 r->subreg_loc = in_subreg_loc;
1427 r->where = inloc;
1428 r->mode = inmode;
1430 if (outloc != 0 && outloc != inloc)
1432 struct replacement *r = &replacements[n_replacements++];
1433 r->what = i;
1434 r->where = outloc;
1435 r->subreg_loc = out_subreg_loc;
1436 r->mode = outmode;
1440 /* If this reload is just being introduced and it has both
1441 an incoming quantity and an outgoing quantity that are
1442 supposed to be made to match, see if either one of the two
1443 can serve as the place to reload into.
1445 If one of them is acceptable, set rld[i].reg_rtx
1446 to that one. */
1448 if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1450 rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1451 inmode, outmode,
1452 rld[i].class, i,
1453 earlyclobber_operand_p (out));
1455 /* If the outgoing register already contains the same value
1456 as the incoming one, we can dispense with loading it.
1457 The easiest way to tell the caller that is to give a phony
1458 value for the incoming operand (same as outgoing one). */
1459 if (rld[i].reg_rtx == out
1460 && (GET_CODE (in) == REG || CONSTANT_P (in))
1461 && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
1462 static_reload_reg_p, i, inmode))
1463 rld[i].in = out;
1466 /* If this is an input reload and the operand contains a register that
1467 dies in this insn and is used nowhere else, see if it is the right class
1468 to be used for this reload. Use it if so. (This occurs most commonly
1469 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1470 this if it is also an output reload that mentions the register unless
1471 the output is a SUBREG that clobbers an entire register.
1473 Note that the operand might be one of the spill regs, if it is a
1474 pseudo reg and we are in a block where spilling has not taken place.
1475 But if there is no spilling in this block, that is OK.
1476 An explicitly used hard reg cannot be a spill reg. */
1478 if (rld[i].reg_rtx == 0 && in != 0)
1480 rtx note;
1481 int regno;
1482 enum machine_mode rel_mode = inmode;
1484 if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
1485 rel_mode = outmode;
1487 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1488 if (REG_NOTE_KIND (note) == REG_DEAD
1489 && GET_CODE (XEXP (note, 0)) == REG
1490 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1491 && reg_mentioned_p (XEXP (note, 0), in)
1492 && ! refers_to_regno_for_reload_p (regno,
1493 (regno
1494 + HARD_REGNO_NREGS (regno,
1495 rel_mode)),
1496 PATTERN (this_insn), inloc)
1497 /* If this is also an output reload, IN cannot be used as
1498 the reload register if it is set in this insn unless IN
1499 is also OUT. */
1500 && (out == 0 || in == out
1501 || ! hard_reg_set_here_p (regno,
1502 (regno
1503 + HARD_REGNO_NREGS (regno,
1504 rel_mode)),
1505 PATTERN (this_insn)))
1506 /* ??? Why is this code so different from the previous?
1507 Is there any simple coherent way to describe the two together?
1508 What's going on here. */
1509 && (in != out
1510 || (GET_CODE (in) == SUBREG
1511 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1512 / UNITS_PER_WORD)
1513 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1514 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1515 /* Make sure the operand fits in the reg that dies. */
1516 && (GET_MODE_SIZE (rel_mode)
1517 <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1518 && HARD_REGNO_MODE_OK (regno, inmode)
1519 && HARD_REGNO_MODE_OK (regno, outmode))
1521 unsigned int offs;
1522 unsigned int nregs = MAX (HARD_REGNO_NREGS (regno, inmode),
1523 HARD_REGNO_NREGS (regno, outmode));
1525 for (offs = 0; offs < nregs; offs++)
1526 if (fixed_regs[regno + offs]
1527 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1528 regno + offs))
1529 break;
1531 if (offs == nregs)
1533 rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1534 break;
1539 if (out)
1540 output_reloadnum = i;
1542 return i;
1545 /* Record an additional place we must replace a value
1546 for which we have already recorded a reload.
1547 RELOADNUM is the value returned by push_reload
1548 when the reload was recorded.
1549 This is used in insn patterns that use match_dup. */
1551 static void
1552 push_replacement (loc, reloadnum, mode)
1553 rtx *loc;
1554 int reloadnum;
1555 enum machine_mode mode;
1557 if (replace_reloads)
1559 struct replacement *r = &replacements[n_replacements++];
1560 r->what = reloadnum;
1561 r->where = loc;
1562 r->subreg_loc = 0;
1563 r->mode = mode;
1567 /* Transfer all replacements that used to be in reload FROM to be in
1568 reload TO. */
1570 void
1571 transfer_replacements (to, from)
1572 int to, from;
1574 int i;
1576 for (i = 0; i < n_replacements; i++)
1577 if (replacements[i].what == from)
1578 replacements[i].what = to;
1581 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1582 or a subpart of it. If we have any replacements registered for IN_RTX,
1583 cancel the reloads that were supposed to load them.
1584 Return non-zero if we canceled any reloads. */
1586 remove_address_replacements (in_rtx)
1587 rtx in_rtx;
1589 int i, j;
1590 char reload_flags[MAX_RELOADS];
1591 int something_changed = 0;
1593 memset (reload_flags, 0, sizeof reload_flags);
1594 for (i = 0, j = 0; i < n_replacements; i++)
1596 if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1597 reload_flags[replacements[i].what] |= 1;
1598 else
1600 replacements[j++] = replacements[i];
1601 reload_flags[replacements[i].what] |= 2;
1604 /* Note that the following store must be done before the recursive calls. */
1605 n_replacements = j;
1607 for (i = n_reloads - 1; i >= 0; i--)
1609 if (reload_flags[i] == 1)
1611 deallocate_reload_reg (i);
1612 remove_address_replacements (rld[i].in);
1613 rld[i].in = 0;
1614 something_changed = 1;
1617 return something_changed;
1620 /* If there is only one output reload, and it is not for an earlyclobber
1621 operand, try to combine it with a (logically unrelated) input reload
1622 to reduce the number of reload registers needed.
1624 This is safe if the input reload does not appear in
1625 the value being output-reloaded, because this implies
1626 it is not needed any more once the original insn completes.
1628 If that doesn't work, see we can use any of the registers that
1629 die in this insn as a reload register. We can if it is of the right
1630 class and does not appear in the value being output-reloaded. */
1632 static void
1633 combine_reloads ()
1635 int i;
1636 int output_reload = -1;
1637 int secondary_out = -1;
1638 rtx note;
1640 /* Find the output reload; return unless there is exactly one
1641 and that one is mandatory. */
1643 for (i = 0; i < n_reloads; i++)
1644 if (rld[i].out != 0)
1646 if (output_reload >= 0)
1647 return;
1648 output_reload = i;
1651 if (output_reload < 0 || rld[output_reload].optional)
1652 return;
1654 /* An input-output reload isn't combinable. */
1656 if (rld[output_reload].in != 0)
1657 return;
1659 /* If this reload is for an earlyclobber operand, we can't do anything. */
1660 if (earlyclobber_operand_p (rld[output_reload].out))
1661 return;
1663 /* If there is a reload for part of the address of this operand, we would
1664 need to chnage it to RELOAD_FOR_OTHER_ADDRESS. But that would extend
1665 its life to the point where doing this combine would not lower the
1666 number of spill registers needed. */
1667 for (i = 0; i < n_reloads; i++)
1668 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
1669 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
1670 && rld[i].opnum == rld[output_reload].opnum)
1671 return;
1673 /* Check each input reload; can we combine it? */
1675 for (i = 0; i < n_reloads; i++)
1676 if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1677 /* Life span of this reload must not extend past main insn. */
1678 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1679 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1680 && rld[i].when_needed != RELOAD_OTHER
1681 && (CLASS_MAX_NREGS (rld[i].class, rld[i].inmode)
1682 == CLASS_MAX_NREGS (rld[output_reload].class,
1683 rld[output_reload].outmode))
1684 && rld[i].inc == 0
1685 && rld[i].reg_rtx == 0
1686 #ifdef SECONDARY_MEMORY_NEEDED
1687 /* Don't combine two reloads with different secondary
1688 memory locations. */
1689 && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1690 || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1691 || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1692 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1693 #endif
1694 && (SMALL_REGISTER_CLASSES
1695 ? (rld[i].class == rld[output_reload].class)
1696 : (reg_class_subset_p (rld[i].class,
1697 rld[output_reload].class)
1698 || reg_class_subset_p (rld[output_reload].class,
1699 rld[i].class)))
1700 && (MATCHES (rld[i].in, rld[output_reload].out)
1701 /* Args reversed because the first arg seems to be
1702 the one that we imagine being modified
1703 while the second is the one that might be affected. */
1704 || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1705 rld[i].in)
1706 /* However, if the input is a register that appears inside
1707 the output, then we also can't share.
1708 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1709 If the same reload reg is used for both reg 69 and the
1710 result to be stored in memory, then that result
1711 will clobber the address of the memory ref. */
1712 && ! (GET_CODE (rld[i].in) == REG
1713 && reg_overlap_mentioned_for_reload_p (rld[i].in,
1714 rld[output_reload].out))))
1715 && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode)
1716 && (reg_class_size[(int) rld[i].class]
1717 || SMALL_REGISTER_CLASSES)
1718 /* We will allow making things slightly worse by combining an
1719 input and an output, but no worse than that. */
1720 && (rld[i].when_needed == RELOAD_FOR_INPUT
1721 || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1723 int j;
1725 /* We have found a reload to combine with! */
1726 rld[i].out = rld[output_reload].out;
1727 rld[i].out_reg = rld[output_reload].out_reg;
1728 rld[i].outmode = rld[output_reload].outmode;
1729 /* Mark the old output reload as inoperative. */
1730 rld[output_reload].out = 0;
1731 /* The combined reload is needed for the entire insn. */
1732 rld[i].when_needed = RELOAD_OTHER;
1733 /* If the output reload had a secondary reload, copy it. */
1734 if (rld[output_reload].secondary_out_reload != -1)
1736 rld[i].secondary_out_reload
1737 = rld[output_reload].secondary_out_reload;
1738 rld[i].secondary_out_icode
1739 = rld[output_reload].secondary_out_icode;
1742 #ifdef SECONDARY_MEMORY_NEEDED
1743 /* Copy any secondary MEM. */
1744 if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1745 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1746 = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1747 #endif
1748 /* If required, minimize the register class. */
1749 if (reg_class_subset_p (rld[output_reload].class,
1750 rld[i].class))
1751 rld[i].class = rld[output_reload].class;
1753 /* Transfer all replacements from the old reload to the combined. */
1754 for (j = 0; j < n_replacements; j++)
1755 if (replacements[j].what == output_reload)
1756 replacements[j].what = i;
1758 return;
1761 /* If this insn has only one operand that is modified or written (assumed
1762 to be the first), it must be the one corresponding to this reload. It
1763 is safe to use anything that dies in this insn for that output provided
1764 that it does not occur in the output (we already know it isn't an
1765 earlyclobber. If this is an asm insn, give up. */
1767 if (INSN_CODE (this_insn) == -1)
1768 return;
1770 for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1771 if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1772 || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1773 return;
1775 /* See if some hard register that dies in this insn and is not used in
1776 the output is the right class. Only works if the register we pick
1777 up can fully hold our output reload. */
1778 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1779 if (REG_NOTE_KIND (note) == REG_DEAD
1780 && GET_CODE (XEXP (note, 0)) == REG
1781 && ! reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1782 rld[output_reload].out)
1783 && REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1784 && HARD_REGNO_MODE_OK (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1785 && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].class],
1786 REGNO (XEXP (note, 0)))
1787 && (HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1788 <= HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), GET_MODE (XEXP (note, 0))))
1789 /* Ensure that a secondary or tertiary reload for this output
1790 won't want this register. */
1791 && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1792 || (! (TEST_HARD_REG_BIT
1793 (reg_class_contents[(int) rld[secondary_out].class],
1794 REGNO (XEXP (note, 0))))
1795 && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1796 || ! (TEST_HARD_REG_BIT
1797 (reg_class_contents[(int) rld[secondary_out].class],
1798 REGNO (XEXP (note, 0)))))))
1799 && ! fixed_regs[REGNO (XEXP (note, 0))])
1801 rld[output_reload].reg_rtx
1802 = gen_rtx_REG (rld[output_reload].outmode,
1803 REGNO (XEXP (note, 0)));
1804 return;
1808 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1809 See if one of IN and OUT is a register that may be used;
1810 this is desirable since a spill-register won't be needed.
1811 If so, return the register rtx that proves acceptable.
1813 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1814 CLASS is the register class required for the reload.
1816 If FOR_REAL is >= 0, it is the number of the reload,
1817 and in some cases when it can be discovered that OUT doesn't need
1818 to be computed, clear out rld[FOR_REAL].out.
1820 If FOR_REAL is -1, this should not be done, because this call
1821 is just to see if a register can be found, not to find and install it.
1823 EARLYCLOBBER is non-zero if OUT is an earlyclobber operand. This
1824 puts an additional constraint on being able to use IN for OUT since
1825 IN must not appear elsewhere in the insn (it is assumed that IN itself
1826 is safe from the earlyclobber). */
1828 static rtx
1829 find_dummy_reload (real_in, real_out, inloc, outloc,
1830 inmode, outmode, class, for_real, earlyclobber)
1831 rtx real_in, real_out;
1832 rtx *inloc, *outloc;
1833 enum machine_mode inmode, outmode;
1834 enum reg_class class;
1835 int for_real;
1836 int earlyclobber;
1838 rtx in = real_in;
1839 rtx out = real_out;
1840 int in_offset = 0;
1841 int out_offset = 0;
1842 rtx value = 0;
1844 /* If operands exceed a word, we can't use either of them
1845 unless they have the same size. */
1846 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1847 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1848 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1849 return 0;
1851 /* Note that {in,out}_offset are needed only when 'in' or 'out'
1852 respectively refers to a hard register. */
1854 /* Find the inside of any subregs. */
1855 while (GET_CODE (out) == SUBREG)
1857 if (GET_CODE (SUBREG_REG (out)) == REG
1858 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
1859 out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
1860 GET_MODE (SUBREG_REG (out)),
1861 SUBREG_BYTE (out),
1862 GET_MODE (out));
1863 out = SUBREG_REG (out);
1865 while (GET_CODE (in) == SUBREG)
1867 if (GET_CODE (SUBREG_REG (in)) == REG
1868 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
1869 in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
1870 GET_MODE (SUBREG_REG (in)),
1871 SUBREG_BYTE (in),
1872 GET_MODE (in));
1873 in = SUBREG_REG (in);
1876 /* Narrow down the reg class, the same way push_reload will;
1877 otherwise we might find a dummy now, but push_reload won't. */
1878 class = PREFERRED_RELOAD_CLASS (in, class);
1880 /* See if OUT will do. */
1881 if (GET_CODE (out) == REG
1882 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1884 unsigned int regno = REGNO (out) + out_offset;
1885 unsigned int nwords = HARD_REGNO_NREGS (regno, outmode);
1886 rtx saved_rtx;
1888 /* When we consider whether the insn uses OUT,
1889 ignore references within IN. They don't prevent us
1890 from copying IN into OUT, because those refs would
1891 move into the insn that reloads IN.
1893 However, we only ignore IN in its role as this reload.
1894 If the insn uses IN elsewhere and it contains OUT,
1895 that counts. We can't be sure it's the "same" operand
1896 so it might not go through this reload. */
1897 saved_rtx = *inloc;
1898 *inloc = const0_rtx;
1900 if (regno < FIRST_PSEUDO_REGISTER
1901 && HARD_REGNO_MODE_OK (regno, outmode)
1902 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1903 PATTERN (this_insn), outloc))
1905 unsigned int i;
1907 for (i = 0; i < nwords; i++)
1908 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1909 regno + i))
1910 break;
1912 if (i == nwords)
1914 if (GET_CODE (real_out) == REG)
1915 value = real_out;
1916 else
1917 value = gen_rtx_REG (outmode, regno);
1921 *inloc = saved_rtx;
1924 /* Consider using IN if OUT was not acceptable
1925 or if OUT dies in this insn (like the quotient in a divmod insn).
1926 We can't use IN unless it is dies in this insn,
1927 which means we must know accurately which hard regs are live.
1928 Also, the result can't go in IN if IN is used within OUT,
1929 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
1930 if (hard_regs_live_known
1931 && GET_CODE (in) == REG
1932 && REGNO (in) < FIRST_PSEUDO_REGISTER
1933 && (value == 0
1934 || find_reg_note (this_insn, REG_UNUSED, real_out))
1935 && find_reg_note (this_insn, REG_DEAD, real_in)
1936 && !fixed_regs[REGNO (in)]
1937 && HARD_REGNO_MODE_OK (REGNO (in),
1938 /* The only case where out and real_out might
1939 have different modes is where real_out
1940 is a subreg, and in that case, out
1941 has a real mode. */
1942 (GET_MODE (out) != VOIDmode
1943 ? GET_MODE (out) : outmode)))
1945 unsigned int regno = REGNO (in) + in_offset;
1946 unsigned int nwords = HARD_REGNO_NREGS (regno, inmode);
1948 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
1949 && ! hard_reg_set_here_p (regno, regno + nwords,
1950 PATTERN (this_insn))
1951 && (! earlyclobber
1952 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
1953 PATTERN (this_insn), inloc)))
1955 unsigned int i;
1957 for (i = 0; i < nwords; i++)
1958 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1959 regno + i))
1960 break;
1962 if (i == nwords)
1964 /* If we were going to use OUT as the reload reg
1965 and changed our mind, it means OUT is a dummy that
1966 dies here. So don't bother copying value to it. */
1967 if (for_real >= 0 && value == real_out)
1968 rld[for_real].out = 0;
1969 if (GET_CODE (real_in) == REG)
1970 value = real_in;
1971 else
1972 value = gen_rtx_REG (inmode, regno);
1977 return value;
1980 /* This page contains subroutines used mainly for determining
1981 whether the IN or an OUT of a reload can serve as the
1982 reload register. */
1984 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
1987 earlyclobber_operand_p (x)
1988 rtx x;
1990 int i;
1992 for (i = 0; i < n_earlyclobbers; i++)
1993 if (reload_earlyclobbers[i] == x)
1994 return 1;
1996 return 0;
1999 /* Return 1 if expression X alters a hard reg in the range
2000 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
2001 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
2002 X should be the body of an instruction. */
2004 static int
2005 hard_reg_set_here_p (beg_regno, end_regno, x)
2006 unsigned int beg_regno, end_regno;
2007 rtx x;
2009 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2011 rtx op0 = SET_DEST (x);
2013 while (GET_CODE (op0) == SUBREG)
2014 op0 = SUBREG_REG (op0);
2015 if (GET_CODE (op0) == REG)
2017 unsigned int r = REGNO (op0);
2019 /* See if this reg overlaps range under consideration. */
2020 if (r < end_regno
2021 && r + HARD_REGNO_NREGS (r, GET_MODE (op0)) > beg_regno)
2022 return 1;
2025 else if (GET_CODE (x) == PARALLEL)
2027 int i = XVECLEN (x, 0) - 1;
2029 for (; i >= 0; i--)
2030 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
2031 return 1;
2034 return 0;
2037 /* Return 1 if ADDR is a valid memory address for mode MODE,
2038 and check that each pseudo reg has the proper kind of
2039 hard reg. */
2042 strict_memory_address_p (mode, addr)
2043 enum machine_mode mode ATTRIBUTE_UNUSED;
2044 rtx addr;
2046 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2047 return 0;
2049 win:
2050 return 1;
2053 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2054 if they are the same hard reg, and has special hacks for
2055 autoincrement and autodecrement.
2056 This is specifically intended for find_reloads to use
2057 in determining whether two operands match.
2058 X is the operand whose number is the lower of the two.
2060 The value is 2 if Y contains a pre-increment that matches
2061 a non-incrementing address in X. */
2063 /* ??? To be completely correct, we should arrange to pass
2064 for X the output operand and for Y the input operand.
2065 For now, we assume that the output operand has the lower number
2066 because that is natural in (SET output (... input ...)). */
2069 operands_match_p (x, y)
2070 rtx x, y;
2072 int i;
2073 RTX_CODE code = GET_CODE (x);
2074 const char *fmt;
2075 int success_2;
2077 if (x == y)
2078 return 1;
2079 if ((code == REG || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
2080 && (GET_CODE (y) == REG || (GET_CODE (y) == SUBREG
2081 && GET_CODE (SUBREG_REG (y)) == REG)))
2083 int j;
2085 if (code == SUBREG)
2087 i = REGNO (SUBREG_REG (x));
2088 if (i >= FIRST_PSEUDO_REGISTER)
2089 goto slow;
2090 i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
2091 GET_MODE (SUBREG_REG (x)),
2092 SUBREG_BYTE (x),
2093 GET_MODE (x));
2095 else
2096 i = REGNO (x);
2098 if (GET_CODE (y) == SUBREG)
2100 j = REGNO (SUBREG_REG (y));
2101 if (j >= FIRST_PSEUDO_REGISTER)
2102 goto slow;
2103 j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
2104 GET_MODE (SUBREG_REG (y)),
2105 SUBREG_BYTE (y),
2106 GET_MODE (y));
2108 else
2109 j = REGNO (y);
2111 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
2112 multiple hard register group, so that for example (reg:DI 0) and
2113 (reg:SI 1) will be considered the same register. */
2114 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2115 && i < FIRST_PSEUDO_REGISTER)
2116 i += (GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD) - 1;
2117 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
2118 && j < FIRST_PSEUDO_REGISTER)
2119 j += (GET_MODE_SIZE (GET_MODE (y)) / UNITS_PER_WORD) - 1;
2121 return i == j;
2123 /* If two operands must match, because they are really a single
2124 operand of an assembler insn, then two postincrements are invalid
2125 because the assembler insn would increment only once.
2126 On the other hand, an postincrement matches ordinary indexing
2127 if the postincrement is the output operand. */
2128 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
2129 return operands_match_p (XEXP (x, 0), y);
2130 /* Two preincrements are invalid
2131 because the assembler insn would increment only once.
2132 On the other hand, an preincrement matches ordinary indexing
2133 if the preincrement is the input operand.
2134 In this case, return 2, since some callers need to do special
2135 things when this happens. */
2136 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2137 || GET_CODE (y) == PRE_MODIFY)
2138 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2140 slow:
2142 /* Now we have disposed of all the cases
2143 in which different rtx codes can match. */
2144 if (code != GET_CODE (y))
2145 return 0;
2146 if (code == LABEL_REF)
2147 return XEXP (x, 0) == XEXP (y, 0);
2148 if (code == SYMBOL_REF)
2149 return XSTR (x, 0) == XSTR (y, 0);
2151 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2153 if (GET_MODE (x) != GET_MODE (y))
2154 return 0;
2156 /* Compare the elements. If any pair of corresponding elements
2157 fail to match, return 0 for the whole things. */
2159 success_2 = 0;
2160 fmt = GET_RTX_FORMAT (code);
2161 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2163 int val, j;
2164 switch (fmt[i])
2166 case 'w':
2167 if (XWINT (x, i) != XWINT (y, i))
2168 return 0;
2169 break;
2171 case 'i':
2172 if (XINT (x, i) != XINT (y, i))
2173 return 0;
2174 break;
2176 case 'e':
2177 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2178 if (val == 0)
2179 return 0;
2180 /* If any subexpression returns 2,
2181 we should return 2 if we are successful. */
2182 if (val == 2)
2183 success_2 = 1;
2184 break;
2186 case '0':
2187 break;
2189 case 'E':
2190 if (XVECLEN (x, i) != XVECLEN (y, i))
2191 return 0;
2192 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2194 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2195 if (val == 0)
2196 return 0;
2197 if (val == 2)
2198 success_2 = 1;
2200 break;
2202 /* It is believed that rtx's at this level will never
2203 contain anything but integers and other rtx's,
2204 except for within LABEL_REFs and SYMBOL_REFs. */
2205 default:
2206 abort ();
2209 return 1 + success_2;
2212 /* Describe the range of registers or memory referenced by X.
2213 If X is a register, set REG_FLAG and put the first register
2214 number into START and the last plus one into END.
2215 If X is a memory reference, put a base address into BASE
2216 and a range of integer offsets into START and END.
2217 If X is pushing on the stack, we can assume it causes no trouble,
2218 so we set the SAFE field. */
2220 static struct decomposition
2221 decompose (x)
2222 rtx x;
2224 struct decomposition val;
2225 int all_const = 0;
2227 val.reg_flag = 0;
2228 val.safe = 0;
2229 val.base = 0;
2230 if (GET_CODE (x) == MEM)
2232 rtx base = NULL_RTX, offset = 0;
2233 rtx addr = XEXP (x, 0);
2235 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2236 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2238 val.base = XEXP (addr, 0);
2239 val.start = -GET_MODE_SIZE (GET_MODE (x));
2240 val.end = GET_MODE_SIZE (GET_MODE (x));
2241 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2242 return val;
2245 if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2247 if (GET_CODE (XEXP (addr, 1)) == PLUS
2248 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2249 && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2251 val.base = XEXP (addr, 0);
2252 val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2253 val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
2254 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2255 return val;
2259 if (GET_CODE (addr) == CONST)
2261 addr = XEXP (addr, 0);
2262 all_const = 1;
2264 if (GET_CODE (addr) == PLUS)
2266 if (CONSTANT_P (XEXP (addr, 0)))
2268 base = XEXP (addr, 1);
2269 offset = XEXP (addr, 0);
2271 else if (CONSTANT_P (XEXP (addr, 1)))
2273 base = XEXP (addr, 0);
2274 offset = XEXP (addr, 1);
2278 if (offset == 0)
2280 base = addr;
2281 offset = const0_rtx;
2283 if (GET_CODE (offset) == CONST)
2284 offset = XEXP (offset, 0);
2285 if (GET_CODE (offset) == PLUS)
2287 if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
2289 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2290 offset = XEXP (offset, 0);
2292 else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
2294 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2295 offset = XEXP (offset, 1);
2297 else
2299 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2300 offset = const0_rtx;
2303 else if (GET_CODE (offset) != CONST_INT)
2305 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2306 offset = const0_rtx;
2309 if (all_const && GET_CODE (base) == PLUS)
2310 base = gen_rtx_CONST (GET_MODE (base), base);
2312 if (GET_CODE (offset) != CONST_INT)
2313 abort ();
2315 val.start = INTVAL (offset);
2316 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2317 val.base = base;
2318 return val;
2320 else if (GET_CODE (x) == REG)
2322 val.reg_flag = 1;
2323 val.start = true_regnum (x);
2324 if (val.start < 0)
2326 /* A pseudo with no hard reg. */
2327 val.start = REGNO (x);
2328 val.end = val.start + 1;
2330 else
2331 /* A hard reg. */
2332 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2334 else if (GET_CODE (x) == SUBREG)
2336 if (GET_CODE (SUBREG_REG (x)) != REG)
2337 /* This could be more precise, but it's good enough. */
2338 return decompose (SUBREG_REG (x));
2339 val.reg_flag = 1;
2340 val.start = true_regnum (x);
2341 if (val.start < 0)
2342 return decompose (SUBREG_REG (x));
2343 else
2344 /* A hard reg. */
2345 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2347 else if (CONSTANT_P (x)
2348 /* This hasn't been assigned yet, so it can't conflict yet. */
2349 || GET_CODE (x) == SCRATCH)
2350 val.safe = 1;
2351 else
2352 abort ();
2353 return val;
2356 /* Return 1 if altering Y will not modify the value of X.
2357 Y is also described by YDATA, which should be decompose (Y). */
2359 static int
2360 immune_p (x, y, ydata)
2361 rtx x, y;
2362 struct decomposition ydata;
2364 struct decomposition xdata;
2366 if (ydata.reg_flag)
2367 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*) 0);
2368 if (ydata.safe)
2369 return 1;
2371 if (GET_CODE (y) != MEM)
2372 abort ();
2373 /* If Y is memory and X is not, Y can't affect X. */
2374 if (GET_CODE (x) != MEM)
2375 return 1;
2377 xdata = decompose (x);
2379 if (! rtx_equal_p (xdata.base, ydata.base))
2381 /* If bases are distinct symbolic constants, there is no overlap. */
2382 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2383 return 1;
2384 /* Constants and stack slots never overlap. */
2385 if (CONSTANT_P (xdata.base)
2386 && (ydata.base == frame_pointer_rtx
2387 || ydata.base == hard_frame_pointer_rtx
2388 || ydata.base == stack_pointer_rtx))
2389 return 1;
2390 if (CONSTANT_P (ydata.base)
2391 && (xdata.base == frame_pointer_rtx
2392 || xdata.base == hard_frame_pointer_rtx
2393 || xdata.base == stack_pointer_rtx))
2394 return 1;
2395 /* If either base is variable, we don't know anything. */
2396 return 0;
2399 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2402 /* Similar, but calls decompose. */
2405 safe_from_earlyclobber (op, clobber)
2406 rtx op, clobber;
2408 struct decomposition early_data;
2410 early_data = decompose (clobber);
2411 return immune_p (op, clobber, early_data);
2414 /* Main entry point of this file: search the body of INSN
2415 for values that need reloading and record them with push_reload.
2416 REPLACE nonzero means record also where the values occur
2417 so that subst_reloads can be used.
2419 IND_LEVELS says how many levels of indirection are supported by this
2420 machine; a value of zero means that a memory reference is not a valid
2421 memory address.
2423 LIVE_KNOWN says we have valid information about which hard
2424 regs are live at each point in the program; this is true when
2425 we are called from global_alloc but false when stupid register
2426 allocation has been done.
2428 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2429 which is nonnegative if the reg has been commandeered for reloading into.
2430 It is copied into STATIC_RELOAD_REG_P and referenced from there
2431 by various subroutines.
2433 Return TRUE if some operands need to be changed, because of swapping
2434 commutative operands, reg_equiv_address substitution, or whatever. */
2437 find_reloads (insn, replace, ind_levels, live_known, reload_reg_p)
2438 rtx insn;
2439 int replace, ind_levels;
2440 int live_known;
2441 short *reload_reg_p;
2443 int insn_code_number;
2444 int i, j;
2445 int noperands;
2446 /* These start out as the constraints for the insn
2447 and they are chewed up as we consider alternatives. */
2448 char *constraints[MAX_RECOG_OPERANDS];
2449 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2450 a register. */
2451 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2452 char pref_or_nothing[MAX_RECOG_OPERANDS];
2453 /* Nonzero for a MEM operand whose entire address needs a reload. */
2454 int address_reloaded[MAX_RECOG_OPERANDS];
2455 /* Value of enum reload_type to use for operand. */
2456 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2457 /* Value of enum reload_type to use within address of operand. */
2458 enum reload_type address_type[MAX_RECOG_OPERANDS];
2459 /* Save the usage of each operand. */
2460 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2461 int no_input_reloads = 0, no_output_reloads = 0;
2462 int n_alternatives;
2463 int this_alternative[MAX_RECOG_OPERANDS];
2464 char this_alternative_match_win[MAX_RECOG_OPERANDS];
2465 char this_alternative_win[MAX_RECOG_OPERANDS];
2466 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2467 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2468 int this_alternative_matches[MAX_RECOG_OPERANDS];
2469 int swapped;
2470 int goal_alternative[MAX_RECOG_OPERANDS];
2471 int this_alternative_number;
2472 int goal_alternative_number = 0;
2473 int operand_reloadnum[MAX_RECOG_OPERANDS];
2474 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2475 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2476 char goal_alternative_match_win[MAX_RECOG_OPERANDS];
2477 char goal_alternative_win[MAX_RECOG_OPERANDS];
2478 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2479 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2480 int goal_alternative_swapped;
2481 int best;
2482 int commutative;
2483 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2484 rtx substed_operand[MAX_RECOG_OPERANDS];
2485 rtx body = PATTERN (insn);
2486 rtx set = single_set (insn);
2487 int goal_earlyclobber = 0, this_earlyclobber;
2488 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2489 int retval = 0;
2491 this_insn = insn;
2492 n_reloads = 0;
2493 n_replacements = 0;
2494 n_earlyclobbers = 0;
2495 replace_reloads = replace;
2496 hard_regs_live_known = live_known;
2497 static_reload_reg_p = reload_reg_p;
2499 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2500 neither are insns that SET cc0. Insns that use CC0 are not allowed
2501 to have any input reloads. */
2502 if (GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == CALL_INSN)
2503 no_output_reloads = 1;
2505 #ifdef HAVE_cc0
2506 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2507 no_input_reloads = 1;
2508 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2509 no_output_reloads = 1;
2510 #endif
2512 #ifdef SECONDARY_MEMORY_NEEDED
2513 /* The eliminated forms of any secondary memory locations are per-insn, so
2514 clear them out here. */
2516 memset ((char *) secondary_memlocs_elim, 0, sizeof secondary_memlocs_elim);
2517 #endif
2519 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2520 is cheap to move between them. If it is not, there may not be an insn
2521 to do the copy, so we may need a reload. */
2522 if (GET_CODE (body) == SET
2523 && GET_CODE (SET_DEST (body)) == REG
2524 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2525 && GET_CODE (SET_SRC (body)) == REG
2526 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2527 && REGISTER_MOVE_COST (GET_MODE (SET_SRC (body)),
2528 REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2529 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2530 return 0;
2532 extract_insn (insn);
2534 noperands = reload_n_operands = recog_data.n_operands;
2535 n_alternatives = recog_data.n_alternatives;
2537 /* Just return "no reloads" if insn has no operands with constraints. */
2538 if (noperands == 0 || n_alternatives == 0)
2539 return 0;
2541 insn_code_number = INSN_CODE (insn);
2542 this_insn_is_asm = insn_code_number < 0;
2544 memcpy (operand_mode, recog_data.operand_mode,
2545 noperands * sizeof (enum machine_mode));
2546 memcpy (constraints, recog_data.constraints, noperands * sizeof (char *));
2548 commutative = -1;
2550 /* If we will need to know, later, whether some pair of operands
2551 are the same, we must compare them now and save the result.
2552 Reloading the base and index registers will clobber them
2553 and afterward they will fail to match. */
2555 for (i = 0; i < noperands; i++)
2557 char *p;
2558 int c;
2560 substed_operand[i] = recog_data.operand[i];
2561 p = constraints[i];
2563 modified[i] = RELOAD_READ;
2565 /* Scan this operand's constraint to see if it is an output operand,
2566 an in-out operand, is commutative, or should match another. */
2568 while ((c = *p++))
2570 if (c == '=')
2571 modified[i] = RELOAD_WRITE;
2572 else if (c == '+')
2573 modified[i] = RELOAD_READ_WRITE;
2574 else if (c == '%')
2576 /* The last operand should not be marked commutative. */
2577 if (i == noperands - 1)
2578 abort ();
2580 commutative = i;
2582 else if (ISDIGIT (c))
2584 c = strtoul (p - 1, &p, 10);
2586 operands_match[c][i]
2587 = operands_match_p (recog_data.operand[c],
2588 recog_data.operand[i]);
2590 /* An operand may not match itself. */
2591 if (c == i)
2592 abort ();
2594 /* If C can be commuted with C+1, and C might need to match I,
2595 then C+1 might also need to match I. */
2596 if (commutative >= 0)
2598 if (c == commutative || c == commutative + 1)
2600 int other = c + (c == commutative ? 1 : -1);
2601 operands_match[other][i]
2602 = operands_match_p (recog_data.operand[other],
2603 recog_data.operand[i]);
2605 if (i == commutative || i == commutative + 1)
2607 int other = i + (i == commutative ? 1 : -1);
2608 operands_match[c][other]
2609 = operands_match_p (recog_data.operand[c],
2610 recog_data.operand[other]);
2612 /* Note that C is supposed to be less than I.
2613 No need to consider altering both C and I because in
2614 that case we would alter one into the other. */
2620 /* Examine each operand that is a memory reference or memory address
2621 and reload parts of the addresses into index registers.
2622 Also here any references to pseudo regs that didn't get hard regs
2623 but are equivalent to constants get replaced in the insn itself
2624 with those constants. Nobody will ever see them again.
2626 Finally, set up the preferred classes of each operand. */
2628 for (i = 0; i < noperands; i++)
2630 RTX_CODE code = GET_CODE (recog_data.operand[i]);
2632 address_reloaded[i] = 0;
2633 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2634 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2635 : RELOAD_OTHER);
2636 address_type[i]
2637 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2638 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2639 : RELOAD_OTHER);
2641 if (*constraints[i] == 0)
2642 /* Ignore things like match_operator operands. */
2644 else if (constraints[i][0] == 'p')
2646 find_reloads_address (VOIDmode, (rtx*) 0,
2647 recog_data.operand[i],
2648 recog_data.operand_loc[i],
2649 i, operand_type[i], ind_levels, insn);
2651 /* If we now have a simple operand where we used to have a
2652 PLUS or MULT, re-recognize and try again. */
2653 if ((GET_RTX_CLASS (GET_CODE (*recog_data.operand_loc[i])) == 'o'
2654 || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2655 && (GET_CODE (recog_data.operand[i]) == MULT
2656 || GET_CODE (recog_data.operand[i]) == PLUS))
2658 INSN_CODE (insn) = -1;
2659 retval = find_reloads (insn, replace, ind_levels, live_known,
2660 reload_reg_p);
2661 return retval;
2664 recog_data.operand[i] = *recog_data.operand_loc[i];
2665 substed_operand[i] = recog_data.operand[i];
2667 else if (code == MEM)
2669 address_reloaded[i]
2670 = find_reloads_address (GET_MODE (recog_data.operand[i]),
2671 recog_data.operand_loc[i],
2672 XEXP (recog_data.operand[i], 0),
2673 &XEXP (recog_data.operand[i], 0),
2674 i, address_type[i], ind_levels, insn);
2675 recog_data.operand[i] = *recog_data.operand_loc[i];
2676 substed_operand[i] = recog_data.operand[i];
2678 else if (code == SUBREG)
2680 rtx reg = SUBREG_REG (recog_data.operand[i]);
2681 rtx op
2682 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2683 ind_levels,
2684 set != 0
2685 && &SET_DEST (set) == recog_data.operand_loc[i],
2686 insn,
2687 &address_reloaded[i]);
2689 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2690 that didn't get a hard register, emit a USE with a REG_EQUAL
2691 note in front so that we might inherit a previous, possibly
2692 wider reload. */
2694 if (replace
2695 && GET_CODE (op) == MEM
2696 && GET_CODE (reg) == REG
2697 && (GET_MODE_SIZE (GET_MODE (reg))
2698 >= GET_MODE_SIZE (GET_MODE (op))))
2699 set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
2700 insn),
2701 REG_EQUAL, reg_equiv_memory_loc[REGNO (reg)]);
2703 substed_operand[i] = recog_data.operand[i] = op;
2705 else if (code == PLUS || GET_RTX_CLASS (code) == '1')
2706 /* We can get a PLUS as an "operand" as a result of register
2707 elimination. See eliminate_regs and gen_reload. We handle
2708 a unary operator by reloading the operand. */
2709 substed_operand[i] = recog_data.operand[i]
2710 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2711 ind_levels, 0, insn,
2712 &address_reloaded[i]);
2713 else if (code == REG)
2715 /* This is equivalent to calling find_reloads_toplev.
2716 The code is duplicated for speed.
2717 When we find a pseudo always equivalent to a constant,
2718 we replace it by the constant. We must be sure, however,
2719 that we don't try to replace it in the insn in which it
2720 is being set. */
2721 int regno = REGNO (recog_data.operand[i]);
2722 if (reg_equiv_constant[regno] != 0
2723 && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2725 /* Record the existing mode so that the check if constants are
2726 allowed will work when operand_mode isn't specified. */
2728 if (operand_mode[i] == VOIDmode)
2729 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2731 substed_operand[i] = recog_data.operand[i]
2732 = reg_equiv_constant[regno];
2734 if (reg_equiv_memory_loc[regno] != 0
2735 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
2736 /* We need not give a valid is_set_dest argument since the case
2737 of a constant equivalence was checked above. */
2738 substed_operand[i] = recog_data.operand[i]
2739 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2740 ind_levels, 0, insn,
2741 &address_reloaded[i]);
2743 /* If the operand is still a register (we didn't replace it with an
2744 equivalent), get the preferred class to reload it into. */
2745 code = GET_CODE (recog_data.operand[i]);
2746 preferred_class[i]
2747 = ((code == REG && REGNO (recog_data.operand[i])
2748 >= FIRST_PSEUDO_REGISTER)
2749 ? reg_preferred_class (REGNO (recog_data.operand[i]))
2750 : NO_REGS);
2751 pref_or_nothing[i]
2752 = (code == REG
2753 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2754 && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2757 /* If this is simply a copy from operand 1 to operand 0, merge the
2758 preferred classes for the operands. */
2759 if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2760 && recog_data.operand[1] == SET_SRC (set))
2762 preferred_class[0] = preferred_class[1]
2763 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2764 pref_or_nothing[0] |= pref_or_nothing[1];
2765 pref_or_nothing[1] |= pref_or_nothing[0];
2768 /* Now see what we need for pseudo-regs that didn't get hard regs
2769 or got the wrong kind of hard reg. For this, we must consider
2770 all the operands together against the register constraints. */
2772 best = MAX_RECOG_OPERANDS * 2 + 600;
2774 swapped = 0;
2775 goal_alternative_swapped = 0;
2776 try_swapped:
2778 /* The constraints are made of several alternatives.
2779 Each operand's constraint looks like foo,bar,... with commas
2780 separating the alternatives. The first alternatives for all
2781 operands go together, the second alternatives go together, etc.
2783 First loop over alternatives. */
2785 for (this_alternative_number = 0;
2786 this_alternative_number < n_alternatives;
2787 this_alternative_number++)
2789 /* Loop over operands for one constraint alternative. */
2790 /* LOSERS counts those that don't fit this alternative
2791 and would require loading. */
2792 int losers = 0;
2793 /* BAD is set to 1 if it some operand can't fit this alternative
2794 even after reloading. */
2795 int bad = 0;
2796 /* REJECT is a count of how undesirable this alternative says it is
2797 if any reloading is required. If the alternative matches exactly
2798 then REJECT is ignored, but otherwise it gets this much
2799 counted against it in addition to the reloading needed. Each
2800 ? counts three times here since we want the disparaging caused by
2801 a bad register class to only count 1/3 as much. */
2802 int reject = 0;
2804 this_earlyclobber = 0;
2806 for (i = 0; i < noperands; i++)
2808 char *p = constraints[i];
2809 int win = 0;
2810 int did_match = 0;
2811 /* 0 => this operand can be reloaded somehow for this alternative. */
2812 int badop = 1;
2813 /* 0 => this operand can be reloaded if the alternative allows regs. */
2814 int winreg = 0;
2815 int c;
2816 rtx operand = recog_data.operand[i];
2817 int offset = 0;
2818 /* Nonzero means this is a MEM that must be reloaded into a reg
2819 regardless of what the constraint says. */
2820 int force_reload = 0;
2821 int offmemok = 0;
2822 /* Nonzero if a constant forced into memory would be OK for this
2823 operand. */
2824 int constmemok = 0;
2825 int earlyclobber = 0;
2827 /* If the predicate accepts a unary operator, it means that
2828 we need to reload the operand, but do not do this for
2829 match_operator and friends. */
2830 if (GET_RTX_CLASS (GET_CODE (operand)) == '1' && *p != 0)
2831 operand = XEXP (operand, 0);
2833 /* If the operand is a SUBREG, extract
2834 the REG or MEM (or maybe even a constant) within.
2835 (Constants can occur as a result of reg_equiv_constant.) */
2837 while (GET_CODE (operand) == SUBREG)
2839 /* Offset only matters when operand is a REG and
2840 it is a hard reg. This is because it is passed
2841 to reg_fits_class_p if it is a REG and all pseudos
2842 return 0 from that function. */
2843 if (GET_CODE (SUBREG_REG (operand)) == REG
2844 && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
2846 offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
2847 GET_MODE (SUBREG_REG (operand)),
2848 SUBREG_BYTE (operand),
2849 GET_MODE (operand));
2851 operand = SUBREG_REG (operand);
2852 /* Force reload if this is a constant or PLUS or if there may
2853 be a problem accessing OPERAND in the outer mode. */
2854 if (CONSTANT_P (operand)
2855 || GET_CODE (operand) == PLUS
2856 /* We must force a reload of paradoxical SUBREGs
2857 of a MEM because the alignment of the inner value
2858 may not be enough to do the outer reference. On
2859 big-endian machines, it may also reference outside
2860 the object.
2862 On machines that extend byte operations and we have a
2863 SUBREG where both the inner and outer modes are no wider
2864 than a word and the inner mode is narrower, is integral,
2865 and gets extended when loaded from memory, combine.c has
2866 made assumptions about the behavior of the machine in such
2867 register access. If the data is, in fact, in memory we
2868 must always load using the size assumed to be in the
2869 register and let the insn do the different-sized
2870 accesses.
2872 This is doubly true if WORD_REGISTER_OPERATIONS. In
2873 this case eliminate_regs has left non-paradoxical
2874 subregs for push_reloads to see. Make sure it does
2875 by forcing the reload.
2877 ??? When is it right at this stage to have a subreg
2878 of a mem that is _not_ to be handled specialy? IMO
2879 those should have been reduced to just a mem. */
2880 || ((GET_CODE (operand) == MEM
2881 || (GET_CODE (operand)== REG
2882 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
2883 #ifndef WORD_REGISTER_OPERATIONS
2884 && (((GET_MODE_BITSIZE (GET_MODE (operand))
2885 < BIGGEST_ALIGNMENT)
2886 && (GET_MODE_SIZE (operand_mode[i])
2887 > GET_MODE_SIZE (GET_MODE (operand))))
2888 || (GET_CODE (operand) == MEM && BYTES_BIG_ENDIAN)
2889 #ifdef LOAD_EXTEND_OP
2890 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2891 && (GET_MODE_SIZE (GET_MODE (operand))
2892 <= UNITS_PER_WORD)
2893 && (GET_MODE_SIZE (operand_mode[i])
2894 > GET_MODE_SIZE (GET_MODE (operand)))
2895 && INTEGRAL_MODE_P (GET_MODE (operand))
2896 && LOAD_EXTEND_OP (GET_MODE (operand)) != NIL)
2897 #endif
2899 #endif
2901 /* This following hunk of code should no longer be
2902 needed at all with SUBREG_BYTE. If you need this
2903 code back, please explain to me why so I can
2904 fix the real problem. -DaveM */
2905 #if 0
2906 /* Subreg of a hard reg which can't handle the subreg's mode
2907 or which would handle that mode in the wrong number of
2908 registers for subregging to work. */
2909 || (GET_CODE (operand) == REG
2910 && REGNO (operand) < FIRST_PSEUDO_REGISTER
2911 && ((GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2912 && (GET_MODE_SIZE (GET_MODE (operand))
2913 > UNITS_PER_WORD)
2914 && ((GET_MODE_SIZE (GET_MODE (operand))
2915 / UNITS_PER_WORD)
2916 != HARD_REGNO_NREGS (REGNO (operand),
2917 GET_MODE (operand))))
2918 || ! HARD_REGNO_MODE_OK (REGNO (operand) + offset,
2919 operand_mode[i])))
2920 #endif
2922 force_reload = 1;
2925 this_alternative[i] = (int) NO_REGS;
2926 this_alternative_win[i] = 0;
2927 this_alternative_match_win[i] = 0;
2928 this_alternative_offmemok[i] = 0;
2929 this_alternative_earlyclobber[i] = 0;
2930 this_alternative_matches[i] = -1;
2932 /* An empty constraint or empty alternative
2933 allows anything which matched the pattern. */
2934 if (*p == 0 || *p == ',')
2935 win = 1, badop = 0;
2937 /* Scan this alternative's specs for this operand;
2938 set WIN if the operand fits any letter in this alternative.
2939 Otherwise, clear BADOP if this operand could
2940 fit some letter after reloads,
2941 or set WINREG if this operand could fit after reloads
2942 provided the constraint allows some registers. */
2944 while (*p && (c = *p++) != ',')
2945 switch (c)
2947 case '=': case '+': case '*':
2948 break;
2950 case '%':
2951 /* The last operand should not be marked commutative. */
2952 if (i != noperands - 1)
2953 commutative = i;
2954 break;
2956 case '?':
2957 reject += 6;
2958 break;
2960 case '!':
2961 reject = 600;
2962 break;
2964 case '#':
2965 /* Ignore rest of this alternative as far as
2966 reloading is concerned. */
2967 while (*p && *p != ',')
2968 p++;
2969 break;
2971 case '0': case '1': case '2': case '3': case '4':
2972 case '5': case '6': case '7': case '8': case '9':
2973 c = strtoul (p - 1, &p, 10);
2975 this_alternative_matches[i] = c;
2976 /* We are supposed to match a previous operand.
2977 If we do, we win if that one did.
2978 If we do not, count both of the operands as losers.
2979 (This is too conservative, since most of the time
2980 only a single reload insn will be needed to make
2981 the two operands win. As a result, this alternative
2982 may be rejected when it is actually desirable.) */
2983 if ((swapped && (c != commutative || i != commutative + 1))
2984 /* If we are matching as if two operands were swapped,
2985 also pretend that operands_match had been computed
2986 with swapped.
2987 But if I is the second of those and C is the first,
2988 don't exchange them, because operands_match is valid
2989 only on one side of its diagonal. */
2990 ? (operands_match
2991 [(c == commutative || c == commutative + 1)
2992 ? 2 * commutative + 1 - c : c]
2993 [(i == commutative || i == commutative + 1)
2994 ? 2 * commutative + 1 - i : i])
2995 : operands_match[c][i])
2997 /* If we are matching a non-offsettable address where an
2998 offsettable address was expected, then we must reject
2999 this combination, because we can't reload it. */
3000 if (this_alternative_offmemok[c]
3001 && GET_CODE (recog_data.operand[c]) == MEM
3002 && this_alternative[c] == (int) NO_REGS
3003 && ! this_alternative_win[c])
3004 bad = 1;
3006 did_match = this_alternative_win[c];
3008 else
3010 /* Operands don't match. */
3011 rtx value;
3012 /* Retroactively mark the operand we had to match
3013 as a loser, if it wasn't already. */
3014 if (this_alternative_win[c])
3015 losers++;
3016 this_alternative_win[c] = 0;
3017 if (this_alternative[c] == (int) NO_REGS)
3018 bad = 1;
3019 /* But count the pair only once in the total badness of
3020 this alternative, if the pair can be a dummy reload. */
3021 value
3022 = find_dummy_reload (recog_data.operand[i],
3023 recog_data.operand[c],
3024 recog_data.operand_loc[i],
3025 recog_data.operand_loc[c],
3026 operand_mode[i], operand_mode[c],
3027 this_alternative[c], -1,
3028 this_alternative_earlyclobber[c]);
3030 if (value != 0)
3031 losers--;
3033 /* This can be fixed with reloads if the operand
3034 we are supposed to match can be fixed with reloads. */
3035 badop = 0;
3036 this_alternative[i] = this_alternative[c];
3038 /* If we have to reload this operand and some previous
3039 operand also had to match the same thing as this
3040 operand, we don't know how to do that. So reject this
3041 alternative. */
3042 if (! did_match || force_reload)
3043 for (j = 0; j < i; j++)
3044 if (this_alternative_matches[j]
3045 == this_alternative_matches[i])
3046 badop = 1;
3047 break;
3049 case 'p':
3050 /* All necessary reloads for an address_operand
3051 were handled in find_reloads_address. */
3052 this_alternative[i] = (int) MODE_BASE_REG_CLASS (VOIDmode);
3053 win = 1;
3054 badop = 0;
3055 break;
3057 case 'm':
3058 if (force_reload)
3059 break;
3060 if (GET_CODE (operand) == MEM
3061 || (GET_CODE (operand) == REG
3062 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3063 && reg_renumber[REGNO (operand)] < 0))
3064 win = 1;
3065 if (CONSTANT_P (operand)
3066 /* force_const_mem does not accept HIGH. */
3067 && GET_CODE (operand) != HIGH)
3068 badop = 0;
3069 constmemok = 1;
3070 break;
3072 case '<':
3073 if (GET_CODE (operand) == MEM
3074 && ! address_reloaded[i]
3075 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3076 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3077 win = 1;
3078 break;
3080 case '>':
3081 if (GET_CODE (operand) == MEM
3082 && ! address_reloaded[i]
3083 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3084 || GET_CODE (XEXP (operand, 0)) == POST_INC))
3085 win = 1;
3086 break;
3088 /* Memory operand whose address is not offsettable. */
3089 case 'V':
3090 if (force_reload)
3091 break;
3092 if (GET_CODE (operand) == MEM
3093 && ! (ind_levels ? offsettable_memref_p (operand)
3094 : offsettable_nonstrict_memref_p (operand))
3095 /* Certain mem addresses will become offsettable
3096 after they themselves are reloaded. This is important;
3097 we don't want our own handling of unoffsettables
3098 to override the handling of reg_equiv_address. */
3099 && !(GET_CODE (XEXP (operand, 0)) == REG
3100 && (ind_levels == 0
3101 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
3102 win = 1;
3103 break;
3105 /* Memory operand whose address is offsettable. */
3106 case 'o':
3107 if (force_reload)
3108 break;
3109 if ((GET_CODE (operand) == MEM
3110 /* If IND_LEVELS, find_reloads_address won't reload a
3111 pseudo that didn't get a hard reg, so we have to
3112 reject that case. */
3113 && ((ind_levels ? offsettable_memref_p (operand)
3114 : offsettable_nonstrict_memref_p (operand))
3115 /* A reloaded address is offsettable because it is now
3116 just a simple register indirect. */
3117 || address_reloaded[i]))
3118 || (GET_CODE (operand) == REG
3119 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3120 && reg_renumber[REGNO (operand)] < 0
3121 /* If reg_equiv_address is nonzero, we will be
3122 loading it into a register; hence it will be
3123 offsettable, but we cannot say that reg_equiv_mem
3124 is offsettable without checking. */
3125 && ((reg_equiv_mem[REGNO (operand)] != 0
3126 && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
3127 || (reg_equiv_address[REGNO (operand)] != 0))))
3128 win = 1;
3129 /* force_const_mem does not accept HIGH. */
3130 if ((CONSTANT_P (operand) && GET_CODE (operand) != HIGH)
3131 || GET_CODE (operand) == MEM)
3132 badop = 0;
3133 constmemok = 1;
3134 offmemok = 1;
3135 break;
3137 case '&':
3138 /* Output operand that is stored before the need for the
3139 input operands (and their index registers) is over. */
3140 earlyclobber = 1, this_earlyclobber = 1;
3141 break;
3143 case 'E':
3144 case 'F':
3145 if (GET_CODE (operand) == CONST_DOUBLE
3146 || (GET_CODE (operand) == CONST_VECTOR
3147 && (GET_MODE_CLASS (GET_MODE (operand))
3148 == MODE_VECTOR_FLOAT)))
3149 win = 1;
3150 break;
3152 case 'G':
3153 case 'H':
3154 if (GET_CODE (operand) == CONST_DOUBLE
3155 && CONST_DOUBLE_OK_FOR_LETTER_P (operand, c))
3156 win = 1;
3157 break;
3159 case 's':
3160 if (GET_CODE (operand) == CONST_INT
3161 || (GET_CODE (operand) == CONST_DOUBLE
3162 && GET_MODE (operand) == VOIDmode))
3163 break;
3164 case 'i':
3165 if (CONSTANT_P (operand)
3166 #ifdef LEGITIMATE_PIC_OPERAND_P
3167 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand))
3168 #endif
3170 win = 1;
3171 break;
3173 case 'n':
3174 if (GET_CODE (operand) == CONST_INT
3175 || (GET_CODE (operand) == CONST_DOUBLE
3176 && GET_MODE (operand) == VOIDmode))
3177 win = 1;
3178 break;
3180 case 'I':
3181 case 'J':
3182 case 'K':
3183 case 'L':
3184 case 'M':
3185 case 'N':
3186 case 'O':
3187 case 'P':
3188 if (GET_CODE (operand) == CONST_INT
3189 && CONST_OK_FOR_LETTER_P (INTVAL (operand), c))
3190 win = 1;
3191 break;
3193 case 'X':
3194 win = 1;
3195 break;
3197 case 'g':
3198 if (! force_reload
3199 /* A PLUS is never a valid operand, but reload can make
3200 it from a register when eliminating registers. */
3201 && GET_CODE (operand) != PLUS
3202 /* A SCRATCH is not a valid operand. */
3203 && GET_CODE (operand) != SCRATCH
3204 #ifdef LEGITIMATE_PIC_OPERAND_P
3205 && (! CONSTANT_P (operand)
3206 || ! flag_pic
3207 || LEGITIMATE_PIC_OPERAND_P (operand))
3208 #endif
3209 && (GENERAL_REGS == ALL_REGS
3210 || GET_CODE (operand) != REG
3211 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3212 && reg_renumber[REGNO (operand)] < 0)))
3213 win = 1;
3214 /* Drop through into 'r' case. */
3216 case 'r':
3217 this_alternative[i]
3218 = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3219 goto reg;
3221 default:
3222 if (REG_CLASS_FROM_LETTER (c) == NO_REGS)
3224 #ifdef EXTRA_CONSTRAINT
3225 if (EXTRA_CONSTRAINT (operand, c))
3226 win = 1;
3227 #endif
3228 break;
3231 this_alternative[i]
3232 = (int) reg_class_subunion[this_alternative[i]][(int) REG_CLASS_FROM_LETTER (c)];
3233 reg:
3234 if (GET_MODE (operand) == BLKmode)
3235 break;
3236 winreg = 1;
3237 if (GET_CODE (operand) == REG
3238 && reg_fits_class_p (operand, this_alternative[i],
3239 offset, GET_MODE (recog_data.operand[i])))
3240 win = 1;
3241 break;
3244 constraints[i] = p;
3246 /* If this operand could be handled with a reg,
3247 and some reg is allowed, then this operand can be handled. */
3248 if (winreg && this_alternative[i] != (int) NO_REGS)
3249 badop = 0;
3251 /* Record which operands fit this alternative. */
3252 this_alternative_earlyclobber[i] = earlyclobber;
3253 if (win && ! force_reload)
3254 this_alternative_win[i] = 1;
3255 else if (did_match && ! force_reload)
3256 this_alternative_match_win[i] = 1;
3257 else
3259 int const_to_mem = 0;
3261 this_alternative_offmemok[i] = offmemok;
3262 losers++;
3263 if (badop)
3264 bad = 1;
3265 /* Alternative loses if it has no regs for a reg operand. */
3266 if (GET_CODE (operand) == REG
3267 && this_alternative[i] == (int) NO_REGS
3268 && this_alternative_matches[i] < 0)
3269 bad = 1;
3271 /* If this is a constant that is reloaded into the desired
3272 class by copying it to memory first, count that as another
3273 reload. This is consistent with other code and is
3274 required to avoid choosing another alternative when
3275 the constant is moved into memory by this function on
3276 an early reload pass. Note that the test here is
3277 precisely the same as in the code below that calls
3278 force_const_mem. */
3279 if (CONSTANT_P (operand)
3280 /* force_const_mem does not accept HIGH. */
3281 && GET_CODE (operand) != HIGH
3282 && ((PREFERRED_RELOAD_CLASS (operand,
3283 (enum reg_class) this_alternative[i])
3284 == NO_REGS)
3285 || no_input_reloads)
3286 && operand_mode[i] != VOIDmode)
3288 const_to_mem = 1;
3289 if (this_alternative[i] != (int) NO_REGS)
3290 losers++;
3293 /* If we can't reload this value at all, reject this
3294 alternative. Note that we could also lose due to
3295 LIMIT_RELOAD_RELOAD_CLASS, but we don't check that
3296 here. */
3298 if (! CONSTANT_P (operand)
3299 && (enum reg_class) this_alternative[i] != NO_REGS
3300 && (PREFERRED_RELOAD_CLASS (operand,
3301 (enum reg_class) this_alternative[i])
3302 == NO_REGS))
3303 bad = 1;
3305 /* Alternative loses if it requires a type of reload not
3306 permitted for this insn. We can always reload SCRATCH
3307 and objects with a REG_UNUSED note. */
3308 else if (GET_CODE (operand) != SCRATCH
3309 && modified[i] != RELOAD_READ && no_output_reloads
3310 && ! find_reg_note (insn, REG_UNUSED, operand))
3311 bad = 1;
3312 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3313 && ! const_to_mem)
3314 bad = 1;
3316 /* We prefer to reload pseudos over reloading other things,
3317 since such reloads may be able to be eliminated later.
3318 If we are reloading a SCRATCH, we won't be generating any
3319 insns, just using a register, so it is also preferred.
3320 So bump REJECT in other cases. Don't do this in the
3321 case where we are forcing a constant into memory and
3322 it will then win since we don't want to have a different
3323 alternative match then. */
3324 if (! (GET_CODE (operand) == REG
3325 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3326 && GET_CODE (operand) != SCRATCH
3327 && ! (const_to_mem && constmemok))
3328 reject += 2;
3330 /* Input reloads can be inherited more often than output
3331 reloads can be removed, so penalize output reloads. */
3332 if (operand_type[i] != RELOAD_FOR_INPUT
3333 && GET_CODE (operand) != SCRATCH)
3334 reject++;
3337 /* If this operand is a pseudo register that didn't get a hard
3338 reg and this alternative accepts some register, see if the
3339 class that we want is a subset of the preferred class for this
3340 register. If not, but it intersects that class, use the
3341 preferred class instead. If it does not intersect the preferred
3342 class, show that usage of this alternative should be discouraged;
3343 it will be discouraged more still if the register is `preferred
3344 or nothing'. We do this because it increases the chance of
3345 reusing our spill register in a later insn and avoiding a pair
3346 of memory stores and loads.
3348 Don't bother with this if this alternative will accept this
3349 operand.
3351 Don't do this for a multiword operand, since it is only a
3352 small win and has the risk of requiring more spill registers,
3353 which could cause a large loss.
3355 Don't do this if the preferred class has only one register
3356 because we might otherwise exhaust the class. */
3358 if (! win && ! did_match
3359 && this_alternative[i] != (int) NO_REGS
3360 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3361 && reg_class_size[(int) preferred_class[i]] > 1)
3363 if (! reg_class_subset_p (this_alternative[i],
3364 preferred_class[i]))
3366 /* Since we don't have a way of forming the intersection,
3367 we just do something special if the preferred class
3368 is a subset of the class we have; that's the most
3369 common case anyway. */
3370 if (reg_class_subset_p (preferred_class[i],
3371 this_alternative[i]))
3372 this_alternative[i] = (int) preferred_class[i];
3373 else
3374 reject += (2 + 2 * pref_or_nothing[i]);
3379 /* Now see if any output operands that are marked "earlyclobber"
3380 in this alternative conflict with any input operands
3381 or any memory addresses. */
3383 for (i = 0; i < noperands; i++)
3384 if (this_alternative_earlyclobber[i]
3385 && (this_alternative_win[i] || this_alternative_match_win[i]))
3387 struct decomposition early_data;
3389 early_data = decompose (recog_data.operand[i]);
3391 if (modified[i] == RELOAD_READ)
3392 abort ();
3394 if (this_alternative[i] == NO_REGS)
3396 this_alternative_earlyclobber[i] = 0;
3397 if (this_insn_is_asm)
3398 error_for_asm (this_insn,
3399 "`&' constraint used with no register class");
3400 else
3401 abort ();
3404 for (j = 0; j < noperands; j++)
3405 /* Is this an input operand or a memory ref? */
3406 if ((GET_CODE (recog_data.operand[j]) == MEM
3407 || modified[j] != RELOAD_WRITE)
3408 && j != i
3409 /* Ignore things like match_operator operands. */
3410 && *recog_data.constraints[j] != 0
3411 /* Don't count an input operand that is constrained to match
3412 the early clobber operand. */
3413 && ! (this_alternative_matches[j] == i
3414 && rtx_equal_p (recog_data.operand[i],
3415 recog_data.operand[j]))
3416 /* Is it altered by storing the earlyclobber operand? */
3417 && !immune_p (recog_data.operand[j], recog_data.operand[i],
3418 early_data))
3420 /* If the output is in a single-reg class,
3421 it's costly to reload it, so reload the input instead. */
3422 if (reg_class_size[this_alternative[i]] == 1
3423 && (GET_CODE (recog_data.operand[j]) == REG
3424 || GET_CODE (recog_data.operand[j]) == SUBREG))
3426 losers++;
3427 this_alternative_win[j] = 0;
3428 this_alternative_match_win[j] = 0;
3430 else
3431 break;
3433 /* If an earlyclobber operand conflicts with something,
3434 it must be reloaded, so request this and count the cost. */
3435 if (j != noperands)
3437 losers++;
3438 this_alternative_win[i] = 0;
3439 this_alternative_match_win[j] = 0;
3440 for (j = 0; j < noperands; j++)
3441 if (this_alternative_matches[j] == i
3442 && this_alternative_match_win[j])
3444 this_alternative_win[j] = 0;
3445 this_alternative_match_win[j] = 0;
3446 losers++;
3451 /* If one alternative accepts all the operands, no reload required,
3452 choose that alternative; don't consider the remaining ones. */
3453 if (losers == 0)
3455 /* Unswap these so that they are never swapped at `finish'. */
3456 if (commutative >= 0)
3458 recog_data.operand[commutative] = substed_operand[commutative];
3459 recog_data.operand[commutative + 1]
3460 = substed_operand[commutative + 1];
3462 for (i = 0; i < noperands; i++)
3464 goal_alternative_win[i] = this_alternative_win[i];
3465 goal_alternative_match_win[i] = this_alternative_match_win[i];
3466 goal_alternative[i] = this_alternative[i];
3467 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3468 goal_alternative_matches[i] = this_alternative_matches[i];
3469 goal_alternative_earlyclobber[i]
3470 = this_alternative_earlyclobber[i];
3472 goal_alternative_number = this_alternative_number;
3473 goal_alternative_swapped = swapped;
3474 goal_earlyclobber = this_earlyclobber;
3475 goto finish;
3478 /* REJECT, set by the ! and ? constraint characters and when a register
3479 would be reloaded into a non-preferred class, discourages the use of
3480 this alternative for a reload goal. REJECT is incremented by six
3481 for each ? and two for each non-preferred class. */
3482 losers = losers * 6 + reject;
3484 /* If this alternative can be made to work by reloading,
3485 and it needs less reloading than the others checked so far,
3486 record it as the chosen goal for reloading. */
3487 if (! bad && best > losers)
3489 for (i = 0; i < noperands; i++)
3491 goal_alternative[i] = this_alternative[i];
3492 goal_alternative_win[i] = this_alternative_win[i];
3493 goal_alternative_match_win[i] = this_alternative_match_win[i];
3494 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3495 goal_alternative_matches[i] = this_alternative_matches[i];
3496 goal_alternative_earlyclobber[i]
3497 = this_alternative_earlyclobber[i];
3499 goal_alternative_swapped = swapped;
3500 best = losers;
3501 goal_alternative_number = this_alternative_number;
3502 goal_earlyclobber = this_earlyclobber;
3506 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3507 then we need to try each alternative twice,
3508 the second time matching those two operands
3509 as if we had exchanged them.
3510 To do this, really exchange them in operands.
3512 If we have just tried the alternatives the second time,
3513 return operands to normal and drop through. */
3515 if (commutative >= 0)
3517 swapped = !swapped;
3518 if (swapped)
3520 enum reg_class tclass;
3521 int t;
3523 recog_data.operand[commutative] = substed_operand[commutative + 1];
3524 recog_data.operand[commutative + 1] = substed_operand[commutative];
3525 /* Swap the duplicates too. */
3526 for (i = 0; i < recog_data.n_dups; i++)
3527 if (recog_data.dup_num[i] == commutative
3528 || recog_data.dup_num[i] == commutative + 1)
3529 *recog_data.dup_loc[i]
3530 = recog_data.operand[(int) recog_data.dup_num[i]];
3532 tclass = preferred_class[commutative];
3533 preferred_class[commutative] = preferred_class[commutative + 1];
3534 preferred_class[commutative + 1] = tclass;
3536 t = pref_or_nothing[commutative];
3537 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3538 pref_or_nothing[commutative + 1] = t;
3540 memcpy (constraints, recog_data.constraints,
3541 noperands * sizeof (char *));
3542 goto try_swapped;
3544 else
3546 recog_data.operand[commutative] = substed_operand[commutative];
3547 recog_data.operand[commutative + 1]
3548 = substed_operand[commutative + 1];
3549 /* Unswap the duplicates too. */
3550 for (i = 0; i < recog_data.n_dups; i++)
3551 if (recog_data.dup_num[i] == commutative
3552 || recog_data.dup_num[i] == commutative + 1)
3553 *recog_data.dup_loc[i]
3554 = recog_data.operand[(int) recog_data.dup_num[i]];
3558 /* The operands don't meet the constraints.
3559 goal_alternative describes the alternative
3560 that we could reach by reloading the fewest operands.
3561 Reload so as to fit it. */
3563 if (best == MAX_RECOG_OPERANDS * 2 + 600)
3565 /* No alternative works with reloads?? */
3566 if (insn_code_number >= 0)
3567 fatal_insn ("unable to generate reloads for:", insn);
3568 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3569 /* Avoid further trouble with this insn. */
3570 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3571 n_reloads = 0;
3572 return 0;
3575 /* Jump to `finish' from above if all operands are valid already.
3576 In that case, goal_alternative_win is all 1. */
3577 finish:
3579 /* Right now, for any pair of operands I and J that are required to match,
3580 with I < J,
3581 goal_alternative_matches[J] is I.
3582 Set up goal_alternative_matched as the inverse function:
3583 goal_alternative_matched[I] = J. */
3585 for (i = 0; i < noperands; i++)
3586 goal_alternative_matched[i] = -1;
3588 for (i = 0; i < noperands; i++)
3589 if (! goal_alternative_win[i]
3590 && goal_alternative_matches[i] >= 0)
3591 goal_alternative_matched[goal_alternative_matches[i]] = i;
3593 for (i = 0; i < noperands; i++)
3594 goal_alternative_win[i] |= goal_alternative_match_win[i];
3596 /* If the best alternative is with operands 1 and 2 swapped,
3597 consider them swapped before reporting the reloads. Update the
3598 operand numbers of any reloads already pushed. */
3600 if (goal_alternative_swapped)
3602 rtx tem;
3604 tem = substed_operand[commutative];
3605 substed_operand[commutative] = substed_operand[commutative + 1];
3606 substed_operand[commutative + 1] = tem;
3607 tem = recog_data.operand[commutative];
3608 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
3609 recog_data.operand[commutative + 1] = tem;
3610 tem = *recog_data.operand_loc[commutative];
3611 *recog_data.operand_loc[commutative]
3612 = *recog_data.operand_loc[commutative + 1];
3613 *recog_data.operand_loc[commutative + 1] = tem;
3615 for (i = 0; i < n_reloads; i++)
3617 if (rld[i].opnum == commutative)
3618 rld[i].opnum = commutative + 1;
3619 else if (rld[i].opnum == commutative + 1)
3620 rld[i].opnum = commutative;
3624 for (i = 0; i < noperands; i++)
3626 operand_reloadnum[i] = -1;
3628 /* If this is an earlyclobber operand, we need to widen the scope.
3629 The reload must remain valid from the start of the insn being
3630 reloaded until after the operand is stored into its destination.
3631 We approximate this with RELOAD_OTHER even though we know that we
3632 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3634 One special case that is worth checking is when we have an
3635 output that is earlyclobber but isn't used past the insn (typically
3636 a SCRATCH). In this case, we only need have the reload live
3637 through the insn itself, but not for any of our input or output
3638 reloads.
3639 But we must not accidentally narrow the scope of an existing
3640 RELOAD_OTHER reload - leave these alone.
3642 In any case, anything needed to address this operand can remain
3643 however they were previously categorized. */
3645 if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3646 operand_type[i]
3647 = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3648 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3651 /* Any constants that aren't allowed and can't be reloaded
3652 into registers are here changed into memory references. */
3653 for (i = 0; i < noperands; i++)
3654 if (! goal_alternative_win[i]
3655 && CONSTANT_P (recog_data.operand[i])
3656 /* force_const_mem does not accept HIGH. */
3657 && GET_CODE (recog_data.operand[i]) != HIGH
3658 && ((PREFERRED_RELOAD_CLASS (recog_data.operand[i],
3659 (enum reg_class) goal_alternative[i])
3660 == NO_REGS)
3661 || no_input_reloads)
3662 && operand_mode[i] != VOIDmode)
3664 substed_operand[i] = recog_data.operand[i]
3665 = find_reloads_toplev (force_const_mem (operand_mode[i],
3666 recog_data.operand[i]),
3667 i, address_type[i], ind_levels, 0, insn,
3668 NULL);
3669 if (alternative_allows_memconst (recog_data.constraints[i],
3670 goal_alternative_number))
3671 goal_alternative_win[i] = 1;
3674 /* Record the values of the earlyclobber operands for the caller. */
3675 if (goal_earlyclobber)
3676 for (i = 0; i < noperands; i++)
3677 if (goal_alternative_earlyclobber[i])
3678 reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
3680 /* Now record reloads for all the operands that need them. */
3681 for (i = 0; i < noperands; i++)
3682 if (! goal_alternative_win[i])
3684 /* Operands that match previous ones have already been handled. */
3685 if (goal_alternative_matches[i] >= 0)
3687 /* Handle an operand with a nonoffsettable address
3688 appearing where an offsettable address will do
3689 by reloading the address into a base register.
3691 ??? We can also do this when the operand is a register and
3692 reg_equiv_mem is not offsettable, but this is a bit tricky,
3693 so we don't bother with it. It may not be worth doing. */
3694 else if (goal_alternative_matched[i] == -1
3695 && goal_alternative_offmemok[i]
3696 && GET_CODE (recog_data.operand[i]) == MEM)
3698 operand_reloadnum[i]
3699 = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
3700 &XEXP (recog_data.operand[i], 0), (rtx*) 0,
3701 MODE_BASE_REG_CLASS (VOIDmode),
3702 GET_MODE (XEXP (recog_data.operand[i], 0)),
3703 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
3704 rld[operand_reloadnum[i]].inc
3705 = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
3707 /* If this operand is an output, we will have made any
3708 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3709 now we are treating part of the operand as an input, so
3710 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
3712 if (modified[i] == RELOAD_WRITE)
3714 for (j = 0; j < n_reloads; j++)
3716 if (rld[j].opnum == i)
3718 if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
3719 rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
3720 else if (rld[j].when_needed
3721 == RELOAD_FOR_OUTADDR_ADDRESS)
3722 rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
3727 else if (goal_alternative_matched[i] == -1)
3729 operand_reloadnum[i]
3730 = push_reload ((modified[i] != RELOAD_WRITE
3731 ? recog_data.operand[i] : 0),
3732 (modified[i] != RELOAD_READ
3733 ? recog_data.operand[i] : 0),
3734 (modified[i] != RELOAD_WRITE
3735 ? recog_data.operand_loc[i] : 0),
3736 (modified[i] != RELOAD_READ
3737 ? recog_data.operand_loc[i] : 0),
3738 (enum reg_class) goal_alternative[i],
3739 (modified[i] == RELOAD_WRITE
3740 ? VOIDmode : operand_mode[i]),
3741 (modified[i] == RELOAD_READ
3742 ? VOIDmode : operand_mode[i]),
3743 (insn_code_number < 0 ? 0
3744 : insn_data[insn_code_number].operand[i].strict_low),
3745 0, i, operand_type[i]);
3747 /* In a matching pair of operands, one must be input only
3748 and the other must be output only.
3749 Pass the input operand as IN and the other as OUT. */
3750 else if (modified[i] == RELOAD_READ
3751 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
3753 operand_reloadnum[i]
3754 = push_reload (recog_data.operand[i],
3755 recog_data.operand[goal_alternative_matched[i]],
3756 recog_data.operand_loc[i],
3757 recog_data.operand_loc[goal_alternative_matched[i]],
3758 (enum reg_class) goal_alternative[i],
3759 operand_mode[i],
3760 operand_mode[goal_alternative_matched[i]],
3761 0, 0, i, RELOAD_OTHER);
3762 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
3764 else if (modified[i] == RELOAD_WRITE
3765 && modified[goal_alternative_matched[i]] == RELOAD_READ)
3767 operand_reloadnum[goal_alternative_matched[i]]
3768 = push_reload (recog_data.operand[goal_alternative_matched[i]],
3769 recog_data.operand[i],
3770 recog_data.operand_loc[goal_alternative_matched[i]],
3771 recog_data.operand_loc[i],
3772 (enum reg_class) goal_alternative[i],
3773 operand_mode[goal_alternative_matched[i]],
3774 operand_mode[i],
3775 0, 0, i, RELOAD_OTHER);
3776 operand_reloadnum[i] = output_reloadnum;
3778 else if (insn_code_number >= 0)
3779 abort ();
3780 else
3782 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3783 /* Avoid further trouble with this insn. */
3784 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3785 n_reloads = 0;
3786 return 0;
3789 else if (goal_alternative_matched[i] < 0
3790 && goal_alternative_matches[i] < 0
3791 && optimize)
3793 /* For each non-matching operand that's a MEM or a pseudo-register
3794 that didn't get a hard register, make an optional reload.
3795 This may get done even if the insn needs no reloads otherwise. */
3797 rtx operand = recog_data.operand[i];
3799 while (GET_CODE (operand) == SUBREG)
3800 operand = SUBREG_REG (operand);
3801 if ((GET_CODE (operand) == MEM
3802 || (GET_CODE (operand) == REG
3803 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3804 /* If this is only for an output, the optional reload would not
3805 actually cause us to use a register now, just note that
3806 something is stored here. */
3807 && ((enum reg_class) goal_alternative[i] != NO_REGS
3808 || modified[i] == RELOAD_WRITE)
3809 && ! no_input_reloads
3810 /* An optional output reload might allow to delete INSN later.
3811 We mustn't make in-out reloads on insns that are not permitted
3812 output reloads.
3813 If this is an asm, we can't delete it; we must not even call
3814 push_reload for an optional output reload in this case,
3815 because we can't be sure that the constraint allows a register,
3816 and push_reload verifies the constraints for asms. */
3817 && (modified[i] == RELOAD_READ
3818 || (! no_output_reloads && ! this_insn_is_asm)))
3819 operand_reloadnum[i]
3820 = push_reload ((modified[i] != RELOAD_WRITE
3821 ? recog_data.operand[i] : 0),
3822 (modified[i] != RELOAD_READ
3823 ? recog_data.operand[i] : 0),
3824 (modified[i] != RELOAD_WRITE
3825 ? recog_data.operand_loc[i] : 0),
3826 (modified[i] != RELOAD_READ
3827 ? recog_data.operand_loc[i] : 0),
3828 (enum reg_class) goal_alternative[i],
3829 (modified[i] == RELOAD_WRITE
3830 ? VOIDmode : operand_mode[i]),
3831 (modified[i] == RELOAD_READ
3832 ? VOIDmode : operand_mode[i]),
3833 (insn_code_number < 0 ? 0
3834 : insn_data[insn_code_number].operand[i].strict_low),
3835 1, i, operand_type[i]);
3836 /* If a memory reference remains (either as a MEM or a pseudo that
3837 did not get a hard register), yet we can't make an optional
3838 reload, check if this is actually a pseudo register reference;
3839 we then need to emit a USE and/or a CLOBBER so that reload
3840 inheritance will do the right thing. */
3841 else if (replace
3842 && (GET_CODE (operand) == MEM
3843 || (GET_CODE (operand) == REG
3844 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3845 && reg_renumber [REGNO (operand)] < 0)))
3847 operand = *recog_data.operand_loc[i];
3849 while (GET_CODE (operand) == SUBREG)
3850 operand = SUBREG_REG (operand);
3851 if (GET_CODE (operand) == REG)
3853 if (modified[i] != RELOAD_WRITE)
3854 /* We mark the USE with QImode so that we recognize
3855 it as one that can be safely deleted at the end
3856 of reload. */
3857 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
3858 insn), QImode);
3859 if (modified[i] != RELOAD_READ)
3860 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, operand), insn);
3864 else if (goal_alternative_matches[i] >= 0
3865 && goal_alternative_win[goal_alternative_matches[i]]
3866 && modified[i] == RELOAD_READ
3867 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
3868 && ! no_input_reloads && ! no_output_reloads
3869 && optimize)
3871 /* Similarly, make an optional reload for a pair of matching
3872 objects that are in MEM or a pseudo that didn't get a hard reg. */
3874 rtx operand = recog_data.operand[i];
3876 while (GET_CODE (operand) == SUBREG)
3877 operand = SUBREG_REG (operand);
3878 if ((GET_CODE (operand) == MEM
3879 || (GET_CODE (operand) == REG
3880 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3881 && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
3882 != NO_REGS))
3883 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
3884 = push_reload (recog_data.operand[goal_alternative_matches[i]],
3885 recog_data.operand[i],
3886 recog_data.operand_loc[goal_alternative_matches[i]],
3887 recog_data.operand_loc[i],
3888 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
3889 operand_mode[goal_alternative_matches[i]],
3890 operand_mode[i],
3891 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
3894 /* Perform whatever substitutions on the operands we are supposed
3895 to make due to commutativity or replacement of registers
3896 with equivalent constants or memory slots. */
3898 for (i = 0; i < noperands; i++)
3900 /* We only do this on the last pass through reload, because it is
3901 possible for some data (like reg_equiv_address) to be changed during
3902 later passes. Moreover, we loose the opportunity to get a useful
3903 reload_{in,out}_reg when we do these replacements. */
3905 if (replace)
3907 rtx substitution = substed_operand[i];
3909 *recog_data.operand_loc[i] = substitution;
3911 /* If we're replacing an operand with a LABEL_REF, we need
3912 to make sure that there's a REG_LABEL note attached to
3913 this instruction. */
3914 if (GET_CODE (insn) != JUMP_INSN
3915 && GET_CODE (substitution) == LABEL_REF
3916 && !find_reg_note (insn, REG_LABEL, XEXP (substitution, 0)))
3917 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
3918 XEXP (substitution, 0),
3919 REG_NOTES (insn));
3921 else
3922 retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
3925 /* If this insn pattern contains any MATCH_DUP's, make sure that
3926 they will be substituted if the operands they match are substituted.
3927 Also do now any substitutions we already did on the operands.
3929 Don't do this if we aren't making replacements because we might be
3930 propagating things allocated by frame pointer elimination into places
3931 it doesn't expect. */
3933 if (insn_code_number >= 0 && replace)
3934 for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
3936 int opno = recog_data.dup_num[i];
3937 *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
3938 if (operand_reloadnum[opno] >= 0)
3939 push_replacement (recog_data.dup_loc[i], operand_reloadnum[opno],
3940 insn_data[insn_code_number].operand[opno].mode);
3943 #if 0
3944 /* This loses because reloading of prior insns can invalidate the equivalence
3945 (or at least find_equiv_reg isn't smart enough to find it any more),
3946 causing this insn to need more reload regs than it needed before.
3947 It may be too late to make the reload regs available.
3948 Now this optimization is done safely in choose_reload_regs. */
3950 /* For each reload of a reg into some other class of reg,
3951 search for an existing equivalent reg (same value now) in the right class.
3952 We can use it as long as we don't need to change its contents. */
3953 for (i = 0; i < n_reloads; i++)
3954 if (rld[i].reg_rtx == 0
3955 && rld[i].in != 0
3956 && GET_CODE (rld[i].in) == REG
3957 && rld[i].out == 0)
3959 rld[i].reg_rtx
3960 = find_equiv_reg (rld[i].in, insn, rld[i].class, -1,
3961 static_reload_reg_p, 0, rld[i].inmode);
3962 /* Prevent generation of insn to load the value
3963 because the one we found already has the value. */
3964 if (rld[i].reg_rtx)
3965 rld[i].in = rld[i].reg_rtx;
3967 #endif
3969 /* Perhaps an output reload can be combined with another
3970 to reduce needs by one. */
3971 if (!goal_earlyclobber)
3972 combine_reloads ();
3974 /* If we have a pair of reloads for parts of an address, they are reloading
3975 the same object, the operands themselves were not reloaded, and they
3976 are for two operands that are supposed to match, merge the reloads and
3977 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
3979 for (i = 0; i < n_reloads; i++)
3981 int k;
3983 for (j = i + 1; j < n_reloads; j++)
3984 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
3985 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
3986 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
3987 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
3988 && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
3989 || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
3990 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
3991 || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
3992 && rtx_equal_p (rld[i].in, rld[j].in)
3993 && (operand_reloadnum[rld[i].opnum] < 0
3994 || rld[operand_reloadnum[rld[i].opnum]].optional)
3995 && (operand_reloadnum[rld[j].opnum] < 0
3996 || rld[operand_reloadnum[rld[j].opnum]].optional)
3997 && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
3998 || (goal_alternative_matches[rld[j].opnum]
3999 == rld[i].opnum)))
4001 for (k = 0; k < n_replacements; k++)
4002 if (replacements[k].what == j)
4003 replacements[k].what = i;
4005 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4006 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4007 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4008 else
4009 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4010 rld[j].in = 0;
4014 /* Scan all the reloads and update their type.
4015 If a reload is for the address of an operand and we didn't reload
4016 that operand, change the type. Similarly, change the operand number
4017 of a reload when two operands match. If a reload is optional, treat it
4018 as though the operand isn't reloaded.
4020 ??? This latter case is somewhat odd because if we do the optional
4021 reload, it means the object is hanging around. Thus we need only
4022 do the address reload if the optional reload was NOT done.
4024 Change secondary reloads to be the address type of their operand, not
4025 the normal type.
4027 If an operand's reload is now RELOAD_OTHER, change any
4028 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
4029 RELOAD_FOR_OTHER_ADDRESS. */
4031 for (i = 0; i < n_reloads; i++)
4033 if (rld[i].secondary_p
4034 && rld[i].when_needed == operand_type[rld[i].opnum])
4035 rld[i].when_needed = address_type[rld[i].opnum];
4037 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4038 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4039 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4040 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4041 && (operand_reloadnum[rld[i].opnum] < 0
4042 || rld[operand_reloadnum[rld[i].opnum]].optional))
4044 /* If we have a secondary reload to go along with this reload,
4045 change its type to RELOAD_FOR_OPADDR_ADDR. */
4047 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4048 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4049 && rld[i].secondary_in_reload != -1)
4051 int secondary_in_reload = rld[i].secondary_in_reload;
4053 rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4055 /* If there's a tertiary reload we have to change it also. */
4056 if (secondary_in_reload > 0
4057 && rld[secondary_in_reload].secondary_in_reload != -1)
4058 rld[rld[secondary_in_reload].secondary_in_reload].when_needed
4059 = RELOAD_FOR_OPADDR_ADDR;
4062 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4063 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4064 && rld[i].secondary_out_reload != -1)
4066 int secondary_out_reload = rld[i].secondary_out_reload;
4068 rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4070 /* If there's a tertiary reload we have to change it also. */
4071 if (secondary_out_reload
4072 && rld[secondary_out_reload].secondary_out_reload != -1)
4073 rld[rld[secondary_out_reload].secondary_out_reload].when_needed
4074 = RELOAD_FOR_OPADDR_ADDR;
4077 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4078 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4079 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4080 else
4081 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4084 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4085 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4086 && operand_reloadnum[rld[i].opnum] >= 0
4087 && (rld[operand_reloadnum[rld[i].opnum]].when_needed
4088 == RELOAD_OTHER))
4089 rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4091 if (goal_alternative_matches[rld[i].opnum] >= 0)
4092 rld[i].opnum = goal_alternative_matches[rld[i].opnum];
4095 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4096 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4097 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4099 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4100 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
4101 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4102 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4103 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4104 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4105 This is complicated by the fact that a single operand can have more
4106 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
4107 choose_reload_regs without affecting code quality, and cases that
4108 actually fail are extremely rare, so it turns out to be better to fix
4109 the problem here by not generating cases that choose_reload_regs will
4110 fail for. */
4111 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4112 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4113 a single operand.
4114 We can reduce the register pressure by exploiting that a
4115 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4116 does not conflict with any of them, if it is only used for the first of
4117 the RELOAD_FOR_X_ADDRESS reloads. */
4119 int first_op_addr_num = -2;
4120 int first_inpaddr_num[MAX_RECOG_OPERANDS];
4121 int first_outpaddr_num[MAX_RECOG_OPERANDS];
4122 int need_change = 0;
4123 /* We use last_op_addr_reload and the contents of the above arrays
4124 first as flags - -2 means no instance encountered, -1 means exactly
4125 one instance encountered.
4126 If more than one instance has been encountered, we store the reload
4127 number of the first reload of the kind in question; reload numbers
4128 are known to be non-negative. */
4129 for (i = 0; i < noperands; i++)
4130 first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4131 for (i = n_reloads - 1; i >= 0; i--)
4133 switch (rld[i].when_needed)
4135 case RELOAD_FOR_OPERAND_ADDRESS:
4136 if (++first_op_addr_num >= 0)
4138 first_op_addr_num = i;
4139 need_change = 1;
4141 break;
4142 case RELOAD_FOR_INPUT_ADDRESS:
4143 if (++first_inpaddr_num[rld[i].opnum] >= 0)
4145 first_inpaddr_num[rld[i].opnum] = i;
4146 need_change = 1;
4148 break;
4149 case RELOAD_FOR_OUTPUT_ADDRESS:
4150 if (++first_outpaddr_num[rld[i].opnum] >= 0)
4152 first_outpaddr_num[rld[i].opnum] = i;
4153 need_change = 1;
4155 break;
4156 default:
4157 break;
4161 if (need_change)
4163 for (i = 0; i < n_reloads; i++)
4165 int first_num;
4166 enum reload_type type;
4168 switch (rld[i].when_needed)
4170 case RELOAD_FOR_OPADDR_ADDR:
4171 first_num = first_op_addr_num;
4172 type = RELOAD_FOR_OPERAND_ADDRESS;
4173 break;
4174 case RELOAD_FOR_INPADDR_ADDRESS:
4175 first_num = first_inpaddr_num[rld[i].opnum];
4176 type = RELOAD_FOR_INPUT_ADDRESS;
4177 break;
4178 case RELOAD_FOR_OUTADDR_ADDRESS:
4179 first_num = first_outpaddr_num[rld[i].opnum];
4180 type = RELOAD_FOR_OUTPUT_ADDRESS;
4181 break;
4182 default:
4183 continue;
4185 if (first_num < 0)
4186 continue;
4187 else if (i > first_num)
4188 rld[i].when_needed = type;
4189 else
4191 /* Check if the only TYPE reload that uses reload I is
4192 reload FIRST_NUM. */
4193 for (j = n_reloads - 1; j > first_num; j--)
4195 if (rld[j].when_needed == type
4196 && (rld[i].secondary_p
4197 ? rld[j].secondary_in_reload == i
4198 : reg_mentioned_p (rld[i].in, rld[j].in)))
4200 rld[i].when_needed = type;
4201 break;
4209 /* See if we have any reloads that are now allowed to be merged
4210 because we've changed when the reload is needed to
4211 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4212 check for the most common cases. */
4214 for (i = 0; i < n_reloads; i++)
4215 if (rld[i].in != 0 && rld[i].out == 0
4216 && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4217 || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4218 || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4219 for (j = 0; j < n_reloads; j++)
4220 if (i != j && rld[j].in != 0 && rld[j].out == 0
4221 && rld[j].when_needed == rld[i].when_needed
4222 && MATCHES (rld[i].in, rld[j].in)
4223 && rld[i].class == rld[j].class
4224 && !rld[i].nocombine && !rld[j].nocombine
4225 && rld[i].reg_rtx == rld[j].reg_rtx)
4227 rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4228 transfer_replacements (i, j);
4229 rld[j].in = 0;
4232 #ifdef HAVE_cc0
4233 /* If we made any reloads for addresses, see if they violate a
4234 "no input reloads" requirement for this insn. But loads that we
4235 do after the insn (such as for output addresses) are fine. */
4236 if (no_input_reloads)
4237 for (i = 0; i < n_reloads; i++)
4238 if (rld[i].in != 0
4239 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
4240 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS)
4241 abort ();
4242 #endif
4244 /* Compute reload_mode and reload_nregs. */
4245 for (i = 0; i < n_reloads; i++)
4247 rld[i].mode
4248 = (rld[i].inmode == VOIDmode
4249 || (GET_MODE_SIZE (rld[i].outmode)
4250 > GET_MODE_SIZE (rld[i].inmode)))
4251 ? rld[i].outmode : rld[i].inmode;
4253 rld[i].nregs = CLASS_MAX_NREGS (rld[i].class, rld[i].mode);
4256 /* Special case a simple move with an input reload and a
4257 destination of a hard reg, if the hard reg is ok, use it. */
4258 for (i = 0; i < n_reloads; i++)
4259 if (rld[i].when_needed == RELOAD_FOR_INPUT
4260 && GET_CODE (PATTERN (insn)) == SET
4261 && GET_CODE (SET_DEST (PATTERN (insn))) == REG
4262 && SET_SRC (PATTERN (insn)) == rld[i].in)
4264 rtx dest = SET_DEST (PATTERN (insn));
4265 unsigned int regno = REGNO (dest);
4267 if (regno < FIRST_PSEUDO_REGISTER
4268 && TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno)
4269 && HARD_REGNO_MODE_OK (regno, rld[i].mode))
4270 rld[i].reg_rtx = dest;
4273 return retval;
4276 /* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
4277 accepts a memory operand with constant address. */
4279 static int
4280 alternative_allows_memconst (constraint, altnum)
4281 const char *constraint;
4282 int altnum;
4284 int c;
4285 /* Skip alternatives before the one requested. */
4286 while (altnum > 0)
4288 while (*constraint++ != ',');
4289 altnum--;
4291 /* Scan the requested alternative for 'm' or 'o'.
4292 If one of them is present, this alternative accepts memory constants. */
4293 while ((c = *constraint++) && c != ',' && c != '#')
4294 if (c == 'm' || c == 'o')
4295 return 1;
4296 return 0;
4299 /* Scan X for memory references and scan the addresses for reloading.
4300 Also checks for references to "constant" regs that we want to eliminate
4301 and replaces them with the values they stand for.
4302 We may alter X destructively if it contains a reference to such.
4303 If X is just a constant reg, we return the equivalent value
4304 instead of X.
4306 IND_LEVELS says how many levels of indirect addressing this machine
4307 supports.
4309 OPNUM and TYPE identify the purpose of the reload.
4311 IS_SET_DEST is true if X is the destination of a SET, which is not
4312 appropriate to be replaced by a constant.
4314 INSN, if nonzero, is the insn in which we do the reload. It is used
4315 to determine if we may generate output reloads, and where to put USEs
4316 for pseudos that we have to replace with stack slots.
4318 ADDRESS_RELOADED. If nonzero, is a pointer to where we put the
4319 result of find_reloads_address. */
4321 static rtx
4322 find_reloads_toplev (x, opnum, type, ind_levels, is_set_dest, insn,
4323 address_reloaded)
4324 rtx x;
4325 int opnum;
4326 enum reload_type type;
4327 int ind_levels;
4328 int is_set_dest;
4329 rtx insn;
4330 int *address_reloaded;
4332 RTX_CODE code = GET_CODE (x);
4334 const char *fmt = GET_RTX_FORMAT (code);
4335 int i;
4336 int copied;
4338 if (code == REG)
4340 /* This code is duplicated for speed in find_reloads. */
4341 int regno = REGNO (x);
4342 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4343 x = reg_equiv_constant[regno];
4344 #if 0
4345 /* This creates (subreg (mem...)) which would cause an unnecessary
4346 reload of the mem. */
4347 else if (reg_equiv_mem[regno] != 0)
4348 x = reg_equiv_mem[regno];
4349 #endif
4350 else if (reg_equiv_memory_loc[regno]
4351 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
4353 rtx mem = make_memloc (x, regno);
4354 if (reg_equiv_address[regno]
4355 || ! rtx_equal_p (mem, reg_equiv_mem[regno]))
4357 /* If this is not a toplevel operand, find_reloads doesn't see
4358 this substitution. We have to emit a USE of the pseudo so
4359 that delete_output_reload can see it. */
4360 if (replace_reloads && recog_data.operand[opnum] != x)
4361 /* We mark the USE with QImode so that we recognize it
4362 as one that can be safely deleted at the end of
4363 reload. */
4364 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
4365 QImode);
4366 x = mem;
4367 i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4368 opnum, type, ind_levels, insn);
4369 if (address_reloaded)
4370 *address_reloaded = i;
4373 return x;
4375 if (code == MEM)
4377 rtx tem = x;
4379 i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4380 opnum, type, ind_levels, insn);
4381 if (address_reloaded)
4382 *address_reloaded = i;
4384 return tem;
4387 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG)
4389 /* Check for SUBREG containing a REG that's equivalent to a constant.
4390 If the constant has a known value, truncate it right now.
4391 Similarly if we are extracting a single-word of a multi-word
4392 constant. If the constant is symbolic, allow it to be substituted
4393 normally. push_reload will strip the subreg later. If the
4394 constant is VOIDmode, abort because we will lose the mode of
4395 the register (this should never happen because one of the cases
4396 above should handle it). */
4398 int regno = REGNO (SUBREG_REG (x));
4399 rtx tem;
4401 if (subreg_lowpart_p (x)
4402 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4403 && reg_equiv_constant[regno] != 0
4404 && (tem = gen_lowpart_common (GET_MODE (x),
4405 reg_equiv_constant[regno])) != 0)
4406 return tem;
4408 if (GET_MODE_BITSIZE (GET_MODE (x)) == BITS_PER_WORD
4409 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4410 && reg_equiv_constant[regno] != 0)
4412 tem =
4413 simplify_gen_subreg (GET_MODE (x), reg_equiv_constant[regno],
4414 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
4415 if (!tem)
4416 abort ();
4417 return tem;
4420 /* If the subreg contains a reg that will be converted to a mem,
4421 convert the subreg to a narrower memref now.
4422 Otherwise, we would get (subreg (mem ...) ...),
4423 which would force reload of the mem.
4425 We also need to do this if there is an equivalent MEM that is
4426 not offsettable. In that case, alter_subreg would produce an
4427 invalid address on big-endian machines.
4429 For machines that extend byte loads, we must not reload using
4430 a wider mode if we have a paradoxical SUBREG. find_reloads will
4431 force a reload in that case. So we should not do anything here. */
4433 else if (regno >= FIRST_PSEUDO_REGISTER
4434 #ifdef LOAD_EXTEND_OP
4435 && (GET_MODE_SIZE (GET_MODE (x))
4436 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4437 #endif
4438 && (reg_equiv_address[regno] != 0
4439 || (reg_equiv_mem[regno] != 0
4440 && (! strict_memory_address_p (GET_MODE (x),
4441 XEXP (reg_equiv_mem[regno], 0))
4442 || ! offsettable_memref_p (reg_equiv_mem[regno])
4443 || num_not_at_initial_offset))))
4444 x = find_reloads_subreg_address (x, 1, opnum, type, ind_levels,
4445 insn);
4448 for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4450 if (fmt[i] == 'e')
4452 rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4453 ind_levels, is_set_dest, insn,
4454 address_reloaded);
4455 /* If we have replaced a reg with it's equivalent memory loc -
4456 that can still be handled here e.g. if it's in a paradoxical
4457 subreg - we must make the change in a copy, rather than using
4458 a destructive change. This way, find_reloads can still elect
4459 not to do the change. */
4460 if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4462 x = shallow_copy_rtx (x);
4463 copied = 1;
4465 XEXP (x, i) = new_part;
4468 return x;
4471 /* Return a mem ref for the memory equivalent of reg REGNO.
4472 This mem ref is not shared with anything. */
4474 static rtx
4475 make_memloc (ad, regno)
4476 rtx ad;
4477 int regno;
4479 /* We must rerun eliminate_regs, in case the elimination
4480 offsets have changed. */
4481 rtx tem
4482 = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0, NULL_RTX), 0);
4484 /* If TEM might contain a pseudo, we must copy it to avoid
4485 modifying it when we do the substitution for the reload. */
4486 if (rtx_varies_p (tem, 0))
4487 tem = copy_rtx (tem);
4489 tem = replace_equiv_address_nv (reg_equiv_memory_loc[regno], tem);
4490 tem = adjust_address_nv (tem, GET_MODE (ad), 0);
4492 /* Copy the result if it's still the same as the equivalence, to avoid
4493 modifying it when we do the substitution for the reload. */
4494 if (tem == reg_equiv_memory_loc[regno])
4495 tem = copy_rtx (tem);
4496 return tem;
4499 /* Record all reloads needed for handling memory address AD
4500 which appears in *LOC in a memory reference to mode MODE
4501 which itself is found in location *MEMREFLOC.
4502 Note that we take shortcuts assuming that no multi-reg machine mode
4503 occurs as part of an address.
4505 OPNUM and TYPE specify the purpose of this reload.
4507 IND_LEVELS says how many levels of indirect addressing this machine
4508 supports.
4510 INSN, if nonzero, is the insn in which we do the reload. It is used
4511 to determine if we may generate output reloads, and where to put USEs
4512 for pseudos that we have to replace with stack slots.
4514 Value is nonzero if this address is reloaded or replaced as a whole.
4515 This is interesting to the caller if the address is an autoincrement.
4517 Note that there is no verification that the address will be valid after
4518 this routine does its work. Instead, we rely on the fact that the address
4519 was valid when reload started. So we need only undo things that reload
4520 could have broken. These are wrong register types, pseudos not allocated
4521 to a hard register, and frame pointer elimination. */
4523 static int
4524 find_reloads_address (mode, memrefloc, ad, loc, opnum, type, ind_levels, insn)
4525 enum machine_mode mode;
4526 rtx *memrefloc;
4527 rtx ad;
4528 rtx *loc;
4529 int opnum;
4530 enum reload_type type;
4531 int ind_levels;
4532 rtx insn;
4534 int regno;
4535 int removed_and = 0;
4536 rtx tem;
4538 /* If the address is a register, see if it is a legitimate address and
4539 reload if not. We first handle the cases where we need not reload
4540 or where we must reload in a non-standard way. */
4542 if (GET_CODE (ad) == REG)
4544 regno = REGNO (ad);
4546 /* If the register is equivalent to an invariant expression, substitute
4547 the invariant, and eliminate any eliminable register references. */
4548 tem = reg_equiv_constant[regno];
4549 if (tem != 0
4550 && (tem = eliminate_regs (tem, mode, insn))
4551 && strict_memory_address_p (mode, tem))
4553 *loc = ad = tem;
4554 return 0;
4557 tem = reg_equiv_memory_loc[regno];
4558 if (tem != 0)
4560 if (reg_equiv_address[regno] != 0 || num_not_at_initial_offset)
4562 tem = make_memloc (ad, regno);
4563 if (! strict_memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
4565 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4566 &XEXP (tem, 0), opnum,
4567 ADDR_TYPE (type), ind_levels, insn);
4569 /* We can avoid a reload if the register's equivalent memory
4570 expression is valid as an indirect memory address.
4571 But not all addresses are valid in a mem used as an indirect
4572 address: only reg or reg+constant. */
4574 if (ind_levels > 0
4575 && strict_memory_address_p (mode, tem)
4576 && (GET_CODE (XEXP (tem, 0)) == REG
4577 || (GET_CODE (XEXP (tem, 0)) == PLUS
4578 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == REG
4579 && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4581 /* TEM is not the same as what we'll be replacing the
4582 pseudo with after reload, put a USE in front of INSN
4583 in the final reload pass. */
4584 if (replace_reloads
4585 && num_not_at_initial_offset
4586 && ! rtx_equal_p (tem, reg_equiv_mem[regno]))
4588 *loc = tem;
4589 /* We mark the USE with QImode so that we
4590 recognize it as one that can be safely
4591 deleted at the end of reload. */
4592 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
4593 insn), QImode);
4595 /* This doesn't really count as replacing the address
4596 as a whole, since it is still a memory access. */
4598 return 0;
4600 ad = tem;
4604 /* The only remaining case where we can avoid a reload is if this is a
4605 hard register that is valid as a base register and which is not the
4606 subject of a CLOBBER in this insn. */
4608 else if (regno < FIRST_PSEUDO_REGISTER
4609 && REGNO_MODE_OK_FOR_BASE_P (regno, mode)
4610 && ! regno_clobbered_p (regno, this_insn, mode, 0))
4611 return 0;
4613 /* If we do not have one of the cases above, we must do the reload. */
4614 push_reload (ad, NULL_RTX, loc, (rtx*) 0, MODE_BASE_REG_CLASS (mode),
4615 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4616 return 1;
4619 if (strict_memory_address_p (mode, ad))
4621 /* The address appears valid, so reloads are not needed.
4622 But the address may contain an eliminable register.
4623 This can happen because a machine with indirect addressing
4624 may consider a pseudo register by itself a valid address even when
4625 it has failed to get a hard reg.
4626 So do a tree-walk to find and eliminate all such regs. */
4628 /* But first quickly dispose of a common case. */
4629 if (GET_CODE (ad) == PLUS
4630 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4631 && GET_CODE (XEXP (ad, 0)) == REG
4632 && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
4633 return 0;
4635 subst_reg_equivs_changed = 0;
4636 *loc = subst_reg_equivs (ad, insn);
4638 if (! subst_reg_equivs_changed)
4639 return 0;
4641 /* Check result for validity after substitution. */
4642 if (strict_memory_address_p (mode, ad))
4643 return 0;
4646 #ifdef LEGITIMIZE_RELOAD_ADDRESS
4649 if (memrefloc)
4651 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
4652 ind_levels, win);
4654 break;
4655 win:
4656 *memrefloc = copy_rtx (*memrefloc);
4657 XEXP (*memrefloc, 0) = ad;
4658 move_replacements (&ad, &XEXP (*memrefloc, 0));
4659 return 1;
4661 while (0);
4662 #endif
4664 /* The address is not valid. We have to figure out why. First see if
4665 we have an outer AND and remove it if so. Then analyze what's inside. */
4667 if (GET_CODE (ad) == AND)
4669 removed_and = 1;
4670 loc = &XEXP (ad, 0);
4671 ad = *loc;
4674 /* One possibility for why the address is invalid is that it is itself
4675 a MEM. This can happen when the frame pointer is being eliminated, a
4676 pseudo is not allocated to a hard register, and the offset between the
4677 frame and stack pointers is not its initial value. In that case the
4678 pseudo will have been replaced by a MEM referring to the
4679 stack pointer. */
4680 if (GET_CODE (ad) == MEM)
4682 /* First ensure that the address in this MEM is valid. Then, unless
4683 indirect addresses are valid, reload the MEM into a register. */
4684 tem = ad;
4685 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
4686 opnum, ADDR_TYPE (type),
4687 ind_levels == 0 ? 0 : ind_levels - 1, insn);
4689 /* If tem was changed, then we must create a new memory reference to
4690 hold it and store it back into memrefloc. */
4691 if (tem != ad && memrefloc)
4693 *memrefloc = copy_rtx (*memrefloc);
4694 copy_replacements (tem, XEXP (*memrefloc, 0));
4695 loc = &XEXP (*memrefloc, 0);
4696 if (removed_and)
4697 loc = &XEXP (*loc, 0);
4700 /* Check similar cases as for indirect addresses as above except
4701 that we can allow pseudos and a MEM since they should have been
4702 taken care of above. */
4704 if (ind_levels == 0
4705 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
4706 || GET_CODE (XEXP (tem, 0)) == MEM
4707 || ! (GET_CODE (XEXP (tem, 0)) == REG
4708 || (GET_CODE (XEXP (tem, 0)) == PLUS
4709 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == REG
4710 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
4712 /* Must use TEM here, not AD, since it is the one that will
4713 have any subexpressions reloaded, if needed. */
4714 push_reload (tem, NULL_RTX, loc, (rtx*) 0,
4715 MODE_BASE_REG_CLASS (mode), GET_MODE (tem),
4716 VOIDmode, 0,
4717 0, opnum, type);
4718 return ! removed_and;
4720 else
4721 return 0;
4724 /* If we have address of a stack slot but it's not valid because the
4725 displacement is too large, compute the sum in a register.
4726 Handle all base registers here, not just fp/ap/sp, because on some
4727 targets (namely SH) we can also get too large displacements from
4728 big-endian corrections. */
4729 else if (GET_CODE (ad) == PLUS
4730 && GET_CODE (XEXP (ad, 0)) == REG
4731 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
4732 && REG_MODE_OK_FOR_BASE_P (XEXP (ad, 0), mode)
4733 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4735 /* Unshare the MEM rtx so we can safely alter it. */
4736 if (memrefloc)
4738 *memrefloc = copy_rtx (*memrefloc);
4739 loc = &XEXP (*memrefloc, 0);
4740 if (removed_and)
4741 loc = &XEXP (*loc, 0);
4744 if (double_reg_address_ok)
4746 /* Unshare the sum as well. */
4747 *loc = ad = copy_rtx (ad);
4749 /* Reload the displacement into an index reg.
4750 We assume the frame pointer or arg pointer is a base reg. */
4751 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4752 INDEX_REG_CLASS, GET_MODE (ad), opnum,
4753 type, ind_levels);
4754 return 0;
4756 else
4758 /* If the sum of two regs is not necessarily valid,
4759 reload the sum into a base reg.
4760 That will at least work. */
4761 find_reloads_address_part (ad, loc, MODE_BASE_REG_CLASS (mode),
4762 Pmode, opnum, type, ind_levels);
4764 return ! removed_and;
4767 /* If we have an indexed stack slot, there are three possible reasons why
4768 it might be invalid: The index might need to be reloaded, the address
4769 might have been made by frame pointer elimination and hence have a
4770 constant out of range, or both reasons might apply.
4772 We can easily check for an index needing reload, but even if that is the
4773 case, we might also have an invalid constant. To avoid making the
4774 conservative assumption and requiring two reloads, we see if this address
4775 is valid when not interpreted strictly. If it is, the only problem is
4776 that the index needs a reload and find_reloads_address_1 will take care
4777 of it.
4779 If we decide to do something here, it must be that
4780 `double_reg_address_ok' is true and that this address rtl was made by
4781 eliminate_regs. We generate a reload of the fp/sp/ap + constant and
4782 rework the sum so that the reload register will be added to the index.
4783 This is safe because we know the address isn't shared.
4785 We check for fp/ap/sp as both the first and second operand of the
4786 innermost PLUS. */
4788 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4789 && GET_CODE (XEXP (ad, 0)) == PLUS
4790 && (XEXP (XEXP (ad, 0), 0) == frame_pointer_rtx
4791 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4792 || XEXP (XEXP (ad, 0), 0) == hard_frame_pointer_rtx
4793 #endif
4794 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4795 || XEXP (XEXP (ad, 0), 0) == arg_pointer_rtx
4796 #endif
4797 || XEXP (XEXP (ad, 0), 0) == stack_pointer_rtx)
4798 && ! memory_address_p (mode, ad))
4800 *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4801 plus_constant (XEXP (XEXP (ad, 0), 0),
4802 INTVAL (XEXP (ad, 1))),
4803 XEXP (XEXP (ad, 0), 1));
4804 find_reloads_address_part (XEXP (ad, 0), &XEXP (ad, 0),
4805 MODE_BASE_REG_CLASS (mode),
4806 GET_MODE (ad), opnum, type, ind_levels);
4807 find_reloads_address_1 (mode, XEXP (ad, 1), 1, &XEXP (ad, 1), opnum,
4808 type, 0, insn);
4810 return 0;
4813 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4814 && GET_CODE (XEXP (ad, 0)) == PLUS
4815 && (XEXP (XEXP (ad, 0), 1) == frame_pointer_rtx
4816 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
4817 || XEXP (XEXP (ad, 0), 1) == hard_frame_pointer_rtx
4818 #endif
4819 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4820 || XEXP (XEXP (ad, 0), 1) == arg_pointer_rtx
4821 #endif
4822 || XEXP (XEXP (ad, 0), 1) == stack_pointer_rtx)
4823 && ! memory_address_p (mode, ad))
4825 *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4826 XEXP (XEXP (ad, 0), 0),
4827 plus_constant (XEXP (XEXP (ad, 0), 1),
4828 INTVAL (XEXP (ad, 1))));
4829 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4830 MODE_BASE_REG_CLASS (mode),
4831 GET_MODE (ad), opnum, type, ind_levels);
4832 find_reloads_address_1 (mode, XEXP (ad, 0), 1, &XEXP (ad, 0), opnum,
4833 type, 0, insn);
4835 return 0;
4838 /* See if address becomes valid when an eliminable register
4839 in a sum is replaced. */
4841 tem = ad;
4842 if (GET_CODE (ad) == PLUS)
4843 tem = subst_indexed_address (ad);
4844 if (tem != ad && strict_memory_address_p (mode, tem))
4846 /* Ok, we win that way. Replace any additional eliminable
4847 registers. */
4849 subst_reg_equivs_changed = 0;
4850 tem = subst_reg_equivs (tem, insn);
4852 /* Make sure that didn't make the address invalid again. */
4854 if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
4856 *loc = tem;
4857 return 0;
4861 /* If constants aren't valid addresses, reload the constant address
4862 into a register. */
4863 if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
4865 /* If AD is an address in the constant pool, the MEM rtx may be shared.
4866 Unshare it so we can safely alter it. */
4867 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
4868 && CONSTANT_POOL_ADDRESS_P (ad))
4870 *memrefloc = copy_rtx (*memrefloc);
4871 loc = &XEXP (*memrefloc, 0);
4872 if (removed_and)
4873 loc = &XEXP (*loc, 0);
4876 find_reloads_address_part (ad, loc, MODE_BASE_REG_CLASS (mode),
4877 Pmode, opnum, type, ind_levels);
4878 return ! removed_and;
4881 return find_reloads_address_1 (mode, ad, 0, loc, opnum, type, ind_levels,
4882 insn);
4885 /* Find all pseudo regs appearing in AD
4886 that are eliminable in favor of equivalent values
4887 and do not have hard regs; replace them by their equivalents.
4888 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
4889 front of it for pseudos that we have to replace with stack slots. */
4891 static rtx
4892 subst_reg_equivs (ad, insn)
4893 rtx ad;
4894 rtx insn;
4896 RTX_CODE code = GET_CODE (ad);
4897 int i;
4898 const char *fmt;
4900 switch (code)
4902 case HIGH:
4903 case CONST_INT:
4904 case CONST:
4905 case CONST_DOUBLE:
4906 case CONST_VECTOR:
4907 case SYMBOL_REF:
4908 case LABEL_REF:
4909 case PC:
4910 case CC0:
4911 return ad;
4913 case REG:
4915 int regno = REGNO (ad);
4917 if (reg_equiv_constant[regno] != 0)
4919 subst_reg_equivs_changed = 1;
4920 return reg_equiv_constant[regno];
4922 if (reg_equiv_memory_loc[regno] && num_not_at_initial_offset)
4924 rtx mem = make_memloc (ad, regno);
4925 if (! rtx_equal_p (mem, reg_equiv_mem[regno]))
4927 subst_reg_equivs_changed = 1;
4928 /* We mark the USE with QImode so that we recognize it
4929 as one that can be safely deleted at the end of
4930 reload. */
4931 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
4932 QImode);
4933 return mem;
4937 return ad;
4939 case PLUS:
4940 /* Quickly dispose of a common case. */
4941 if (XEXP (ad, 0) == frame_pointer_rtx
4942 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4943 return ad;
4944 break;
4946 default:
4947 break;
4950 fmt = GET_RTX_FORMAT (code);
4951 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4952 if (fmt[i] == 'e')
4953 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
4954 return ad;
4957 /* Compute the sum of X and Y, making canonicalizations assumed in an
4958 address, namely: sum constant integers, surround the sum of two
4959 constants with a CONST, put the constant as the second operand, and
4960 group the constant on the outermost sum.
4962 This routine assumes both inputs are already in canonical form. */
4965 form_sum (x, y)
4966 rtx x, y;
4968 rtx tem;
4969 enum machine_mode mode = GET_MODE (x);
4971 if (mode == VOIDmode)
4972 mode = GET_MODE (y);
4974 if (mode == VOIDmode)
4975 mode = Pmode;
4977 if (GET_CODE (x) == CONST_INT)
4978 return plus_constant (y, INTVAL (x));
4979 else if (GET_CODE (y) == CONST_INT)
4980 return plus_constant (x, INTVAL (y));
4981 else if (CONSTANT_P (x))
4982 tem = x, x = y, y = tem;
4984 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
4985 return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
4987 /* Note that if the operands of Y are specified in the opposite
4988 order in the recursive calls below, infinite recursion will occur. */
4989 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
4990 return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
4992 /* If both constant, encapsulate sum. Otherwise, just form sum. A
4993 constant will have been placed second. */
4994 if (CONSTANT_P (x) && CONSTANT_P (y))
4996 if (GET_CODE (x) == CONST)
4997 x = XEXP (x, 0);
4998 if (GET_CODE (y) == CONST)
4999 y = XEXP (y, 0);
5001 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
5004 return gen_rtx_PLUS (mode, x, y);
5007 /* If ADDR is a sum containing a pseudo register that should be
5008 replaced with a constant (from reg_equiv_constant),
5009 return the result of doing so, and also apply the associative
5010 law so that the result is more likely to be a valid address.
5011 (But it is not guaranteed to be one.)
5013 Note that at most one register is replaced, even if more are
5014 replaceable. Also, we try to put the result into a canonical form
5015 so it is more likely to be a valid address.
5017 In all other cases, return ADDR. */
5019 static rtx
5020 subst_indexed_address (addr)
5021 rtx addr;
5023 rtx op0 = 0, op1 = 0, op2 = 0;
5024 rtx tem;
5025 int regno;
5027 if (GET_CODE (addr) == PLUS)
5029 /* Try to find a register to replace. */
5030 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5031 if (GET_CODE (op0) == REG
5032 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5033 && reg_renumber[regno] < 0
5034 && reg_equiv_constant[regno] != 0)
5035 op0 = reg_equiv_constant[regno];
5036 else if (GET_CODE (op1) == REG
5037 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5038 && reg_renumber[regno] < 0
5039 && reg_equiv_constant[regno] != 0)
5040 op1 = reg_equiv_constant[regno];
5041 else if (GET_CODE (op0) == PLUS
5042 && (tem = subst_indexed_address (op0)) != op0)
5043 op0 = tem;
5044 else if (GET_CODE (op1) == PLUS
5045 && (tem = subst_indexed_address (op1)) != op1)
5046 op1 = tem;
5047 else
5048 return addr;
5050 /* Pick out up to three things to add. */
5051 if (GET_CODE (op1) == PLUS)
5052 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5053 else if (GET_CODE (op0) == PLUS)
5054 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5056 /* Compute the sum. */
5057 if (op2 != 0)
5058 op1 = form_sum (op1, op2);
5059 if (op1 != 0)
5060 op0 = form_sum (op0, op1);
5062 return op0;
5064 return addr;
5067 /* Update the REG_INC notes for an insn. It updates all REG_INC
5068 notes for the instruction which refer to REGNO the to refer
5069 to the reload number.
5071 INSN is the insn for which any REG_INC notes need updating.
5073 REGNO is the register number which has been reloaded.
5075 RELOADNUM is the reload number. */
5077 static void
5078 update_auto_inc_notes (insn, regno, reloadnum)
5079 rtx insn ATTRIBUTE_UNUSED;
5080 int regno ATTRIBUTE_UNUSED;
5081 int reloadnum ATTRIBUTE_UNUSED;
5083 #ifdef AUTO_INC_DEC
5084 rtx link;
5086 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5087 if (REG_NOTE_KIND (link) == REG_INC
5088 && REGNO (XEXP (link, 0)) == regno)
5089 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5090 #endif
5093 /* Record the pseudo registers we must reload into hard registers in a
5094 subexpression of a would-be memory address, X referring to a value
5095 in mode MODE. (This function is not called if the address we find
5096 is strictly valid.)
5098 CONTEXT = 1 means we are considering regs as index regs,
5099 = 0 means we are considering them as base regs.
5101 OPNUM and TYPE specify the purpose of any reloads made.
5103 IND_LEVELS says how many levels of indirect addressing are
5104 supported at this point in the address.
5106 INSN, if nonzero, is the insn in which we do the reload. It is used
5107 to determine if we may generate output reloads.
5109 We return nonzero if X, as a whole, is reloaded or replaced. */
5111 /* Note that we take shortcuts assuming that no multi-reg machine mode
5112 occurs as part of an address.
5113 Also, this is not fully machine-customizable; it works for machines
5114 such as VAXen and 68000's and 32000's, but other possible machines
5115 could have addressing modes that this does not handle right. */
5117 static int
5118 find_reloads_address_1 (mode, x, context, loc, opnum, type, ind_levels, insn)
5119 enum machine_mode mode;
5120 rtx x;
5121 int context;
5122 rtx *loc;
5123 int opnum;
5124 enum reload_type type;
5125 int ind_levels;
5126 rtx insn;
5128 RTX_CODE code = GET_CODE (x);
5130 switch (code)
5132 case PLUS:
5134 rtx orig_op0 = XEXP (x, 0);
5135 rtx orig_op1 = XEXP (x, 1);
5136 RTX_CODE code0 = GET_CODE (orig_op0);
5137 RTX_CODE code1 = GET_CODE (orig_op1);
5138 rtx op0 = orig_op0;
5139 rtx op1 = orig_op1;
5141 if (GET_CODE (op0) == SUBREG)
5143 op0 = SUBREG_REG (op0);
5144 code0 = GET_CODE (op0);
5145 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5146 op0 = gen_rtx_REG (word_mode,
5147 (REGNO (op0) +
5148 subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
5149 GET_MODE (SUBREG_REG (orig_op0)),
5150 SUBREG_BYTE (orig_op0),
5151 GET_MODE (orig_op0))));
5154 if (GET_CODE (op1) == SUBREG)
5156 op1 = SUBREG_REG (op1);
5157 code1 = GET_CODE (op1);
5158 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5159 /* ??? Why is this given op1's mode and above for
5160 ??? op0 SUBREGs we use word_mode? */
5161 op1 = gen_rtx_REG (GET_MODE (op1),
5162 (REGNO (op1) +
5163 subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5164 GET_MODE (SUBREG_REG (orig_op1)),
5165 SUBREG_BYTE (orig_op1),
5166 GET_MODE (orig_op1))));
5169 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5170 || code0 == ZERO_EXTEND || code1 == MEM)
5172 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5173 type, ind_levels, insn);
5174 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5175 type, ind_levels, insn);
5178 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5179 || code1 == ZERO_EXTEND || code0 == MEM)
5181 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5182 type, ind_levels, insn);
5183 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5184 type, ind_levels, insn);
5187 else if (code0 == CONST_INT || code0 == CONST
5188 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5189 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5190 type, ind_levels, insn);
5192 else if (code1 == CONST_INT || code1 == CONST
5193 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5194 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5195 type, ind_levels, insn);
5197 else if (code0 == REG && code1 == REG)
5199 if (REG_OK_FOR_INDEX_P (op0)
5200 && REG_MODE_OK_FOR_BASE_P (op1, mode))
5201 return 0;
5202 else if (REG_OK_FOR_INDEX_P (op1)
5203 && REG_MODE_OK_FOR_BASE_P (op0, mode))
5204 return 0;
5205 else if (REG_MODE_OK_FOR_BASE_P (op1, mode))
5206 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5207 type, ind_levels, insn);
5208 else if (REG_MODE_OK_FOR_BASE_P (op0, mode))
5209 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5210 type, ind_levels, insn);
5211 else if (REG_OK_FOR_INDEX_P (op1))
5212 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5213 type, ind_levels, insn);
5214 else if (REG_OK_FOR_INDEX_P (op0))
5215 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5216 type, ind_levels, insn);
5217 else
5219 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5220 type, ind_levels, insn);
5221 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5222 type, ind_levels, insn);
5226 else if (code0 == REG)
5228 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5229 type, ind_levels, insn);
5230 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5231 type, ind_levels, insn);
5234 else if (code1 == REG)
5236 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5237 type, ind_levels, insn);
5238 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5239 type, ind_levels, insn);
5243 return 0;
5245 case POST_MODIFY:
5246 case PRE_MODIFY:
5248 rtx op0 = XEXP (x, 0);
5249 rtx op1 = XEXP (x, 1);
5251 if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5252 return 0;
5254 /* Currently, we only support {PRE,POST}_MODIFY constructs
5255 where a base register is {inc,dec}remented by the contents
5256 of another register or by a constant value. Thus, these
5257 operands must match. */
5258 if (op0 != XEXP (op1, 0))
5259 abort ();
5261 /* Require index register (or constant). Let's just handle the
5262 register case in the meantime... If the target allows
5263 auto-modify by a constant then we could try replacing a pseudo
5264 register with its equivalent constant where applicable. */
5265 if (REG_P (XEXP (op1, 1)))
5266 if (!REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5267 find_reloads_address_1 (mode, XEXP (op1, 1), 1, &XEXP (op1, 1),
5268 opnum, type, ind_levels, insn);
5270 if (REG_P (XEXP (op1, 0)))
5272 int regno = REGNO (XEXP (op1, 0));
5273 int reloadnum;
5275 /* A register that is incremented cannot be constant! */
5276 if (regno >= FIRST_PSEUDO_REGISTER
5277 && reg_equiv_constant[regno] != 0)
5278 abort ();
5280 /* Handle a register that is equivalent to a memory location
5281 which cannot be addressed directly. */
5282 if (reg_equiv_memory_loc[regno] != 0
5283 && (reg_equiv_address[regno] != 0
5284 || num_not_at_initial_offset))
5286 rtx tem = make_memloc (XEXP (x, 0), regno);
5288 if (reg_equiv_address[regno]
5289 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5291 /* First reload the memory location's address.
5292 We can't use ADDR_TYPE (type) here, because we need to
5293 write back the value after reading it, hence we actually
5294 need two registers. */
5295 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5296 &XEXP (tem, 0), opnum,
5297 RELOAD_OTHER,
5298 ind_levels, insn);
5300 /* Then reload the memory location into a base
5301 register. */
5302 reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5303 &XEXP (op1, 0),
5304 MODE_BASE_REG_CLASS (mode),
5305 GET_MODE (x), GET_MODE (x), 0,
5306 0, opnum, RELOAD_OTHER);
5308 update_auto_inc_notes (this_insn, regno, reloadnum);
5309 return 0;
5313 if (reg_renumber[regno] >= 0)
5314 regno = reg_renumber[regno];
5316 /* We require a base register here... */
5317 if (!REGNO_MODE_OK_FOR_BASE_P (regno, GET_MODE (x)))
5319 reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5320 &XEXP (op1, 0), &XEXP (x, 0),
5321 MODE_BASE_REG_CLASS (mode),
5322 GET_MODE (x), GET_MODE (x), 0, 0,
5323 opnum, RELOAD_OTHER);
5325 update_auto_inc_notes (this_insn, regno, reloadnum);
5326 return 0;
5329 else
5330 abort ();
5332 return 0;
5334 case POST_INC:
5335 case POST_DEC:
5336 case PRE_INC:
5337 case PRE_DEC:
5338 if (GET_CODE (XEXP (x, 0)) == REG)
5340 int regno = REGNO (XEXP (x, 0));
5341 int value = 0;
5342 rtx x_orig = x;
5344 /* A register that is incremented cannot be constant! */
5345 if (regno >= FIRST_PSEUDO_REGISTER
5346 && reg_equiv_constant[regno] != 0)
5347 abort ();
5349 /* Handle a register that is equivalent to a memory location
5350 which cannot be addressed directly. */
5351 if (reg_equiv_memory_loc[regno] != 0
5352 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5354 rtx tem = make_memloc (XEXP (x, 0), regno);
5355 if (reg_equiv_address[regno]
5356 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5358 /* First reload the memory location's address.
5359 We can't use ADDR_TYPE (type) here, because we need to
5360 write back the value after reading it, hence we actually
5361 need two registers. */
5362 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5363 &XEXP (tem, 0), opnum, type,
5364 ind_levels, insn);
5365 /* Put this inside a new increment-expression. */
5366 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5367 /* Proceed to reload that, as if it contained a register. */
5371 /* If we have a hard register that is ok as an index,
5372 don't make a reload. If an autoincrement of a nice register
5373 isn't "valid", it must be that no autoincrement is "valid".
5374 If that is true and something made an autoincrement anyway,
5375 this must be a special context where one is allowed.
5376 (For example, a "push" instruction.)
5377 We can't improve this address, so leave it alone. */
5379 /* Otherwise, reload the autoincrement into a suitable hard reg
5380 and record how much to increment by. */
5382 if (reg_renumber[regno] >= 0)
5383 regno = reg_renumber[regno];
5384 if ((regno >= FIRST_PSEUDO_REGISTER
5385 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5386 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5388 int reloadnum;
5390 /* If we can output the register afterwards, do so, this
5391 saves the extra update.
5392 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5393 CALL_INSN - and it does not set CC0.
5394 But don't do this if we cannot directly address the
5395 memory location, since this will make it harder to
5396 reuse address reloads, and increases register pressure.
5397 Also don't do this if we can probably update x directly. */
5398 rtx equiv = (GET_CODE (XEXP (x, 0)) == MEM
5399 ? XEXP (x, 0)
5400 : reg_equiv_mem[regno]);
5401 int icode = (int) add_optab->handlers[(int) Pmode].insn_code;
5402 if (insn && GET_CODE (insn) == INSN && equiv
5403 && memory_operand (equiv, GET_MODE (equiv))
5404 #ifdef HAVE_cc0
5405 && ! sets_cc0_p (PATTERN (insn))
5406 #endif
5407 && ! (icode != CODE_FOR_nothing
5408 && ((*insn_data[icode].operand[0].predicate)
5409 (equiv, Pmode))
5410 && ((*insn_data[icode].operand[1].predicate)
5411 (equiv, Pmode))))
5413 /* We use the original pseudo for loc, so that
5414 emit_reload_insns() knows which pseudo this
5415 reload refers to and updates the pseudo rtx, not
5416 its equivalent memory location, as well as the
5417 corresponding entry in reg_last_reload_reg. */
5418 loc = &XEXP (x_orig, 0);
5419 x = XEXP (x, 0);
5420 reloadnum
5421 = push_reload (x, x, loc, loc,
5422 (context ? INDEX_REG_CLASS :
5423 MODE_BASE_REG_CLASS (mode)),
5424 GET_MODE (x), GET_MODE (x), 0, 0,
5425 opnum, RELOAD_OTHER);
5427 else
5429 reloadnum
5430 = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5431 (context ? INDEX_REG_CLASS :
5432 MODE_BASE_REG_CLASS (mode)),
5433 GET_MODE (x), GET_MODE (x), 0, 0,
5434 opnum, type);
5435 rld[reloadnum].inc
5436 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5438 value = 1;
5441 update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5442 reloadnum);
5444 return value;
5447 else if (GET_CODE (XEXP (x, 0)) == MEM)
5449 /* This is probably the result of a substitution, by eliminate_regs,
5450 of an equivalent address for a pseudo that was not allocated to a
5451 hard register. Verify that the specified address is valid and
5452 reload it into a register. */
5453 /* Variable `tem' might or might not be used in FIND_REG_INC_NOTE. */
5454 rtx tem ATTRIBUTE_UNUSED = XEXP (x, 0);
5455 rtx link;
5456 int reloadnum;
5458 /* Since we know we are going to reload this item, don't decrement
5459 for the indirection level.
5461 Note that this is actually conservative: it would be slightly
5462 more efficient to use the value of SPILL_INDIRECT_LEVELS from
5463 reload1.c here. */
5464 /* We can't use ADDR_TYPE (type) here, because we need to
5465 write back the value after reading it, hence we actually
5466 need two registers. */
5467 find_reloads_address (GET_MODE (x), &XEXP (x, 0),
5468 XEXP (XEXP (x, 0), 0), &XEXP (XEXP (x, 0), 0),
5469 opnum, type, ind_levels, insn);
5471 reloadnum = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5472 (context ? INDEX_REG_CLASS :
5473 MODE_BASE_REG_CLASS (mode)),
5474 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5475 rld[reloadnum].inc
5476 = find_inc_amount (PATTERN (this_insn), XEXP (x, 0));
5478 link = FIND_REG_INC_NOTE (this_insn, tem);
5479 if (link != 0)
5480 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5482 return 1;
5484 return 0;
5486 case MEM:
5487 /* This is probably the result of a substitution, by eliminate_regs, of
5488 an equivalent address for a pseudo that was not allocated to a hard
5489 register. Verify that the specified address is valid and reload it
5490 into a register.
5492 Since we know we are going to reload this item, don't decrement for
5493 the indirection level.
5495 Note that this is actually conservative: it would be slightly more
5496 efficient to use the value of SPILL_INDIRECT_LEVELS from
5497 reload1.c here. */
5499 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5500 opnum, ADDR_TYPE (type), ind_levels, insn);
5501 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5502 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5503 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5504 return 1;
5506 case REG:
5508 int regno = REGNO (x);
5510 if (reg_equiv_constant[regno] != 0)
5512 find_reloads_address_part (reg_equiv_constant[regno], loc,
5513 (context ? INDEX_REG_CLASS :
5514 MODE_BASE_REG_CLASS (mode)),
5515 GET_MODE (x), opnum, type, ind_levels);
5516 return 1;
5519 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5520 that feeds this insn. */
5521 if (reg_equiv_mem[regno] != 0)
5523 push_reload (reg_equiv_mem[regno], NULL_RTX, loc, (rtx*) 0,
5524 (context ? INDEX_REG_CLASS :
5525 MODE_BASE_REG_CLASS (mode)),
5526 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5527 return 1;
5529 #endif
5531 if (reg_equiv_memory_loc[regno]
5532 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5534 rtx tem = make_memloc (x, regno);
5535 if (reg_equiv_address[regno] != 0
5536 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5538 x = tem;
5539 find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
5540 &XEXP (x, 0), opnum, ADDR_TYPE (type),
5541 ind_levels, insn);
5545 if (reg_renumber[regno] >= 0)
5546 regno = reg_renumber[regno];
5548 if ((regno >= FIRST_PSEUDO_REGISTER
5549 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5550 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5552 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5553 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5554 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5555 return 1;
5558 /* If a register appearing in an address is the subject of a CLOBBER
5559 in this insn, reload it into some other register to be safe.
5560 The CLOBBER is supposed to make the register unavailable
5561 from before this insn to after it. */
5562 if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
5564 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5565 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5566 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5567 return 1;
5570 return 0;
5572 case SUBREG:
5573 if (GET_CODE (SUBREG_REG (x)) == REG)
5575 /* If this is a SUBREG of a hard register and the resulting register
5576 is of the wrong class, reload the whole SUBREG. This avoids
5577 needless copies if SUBREG_REG is multi-word. */
5578 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5580 int regno = subreg_regno (x);
5582 if (! (context ? REGNO_OK_FOR_INDEX_P (regno)
5583 : REGNO_MODE_OK_FOR_BASE_P (regno, mode)))
5585 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5586 (context ? INDEX_REG_CLASS :
5587 MODE_BASE_REG_CLASS (mode)),
5588 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5589 return 1;
5592 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
5593 is larger than the class size, then reload the whole SUBREG. */
5594 else
5596 enum reg_class class = (context ? INDEX_REG_CLASS
5597 : MODE_BASE_REG_CLASS (mode));
5598 if (CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x)))
5599 > reg_class_size[class])
5601 x = find_reloads_subreg_address (x, 0, opnum, type,
5602 ind_levels, insn);
5603 push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5604 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5605 return 1;
5609 break;
5611 default:
5612 break;
5616 const char *fmt = GET_RTX_FORMAT (code);
5617 int i;
5619 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5621 if (fmt[i] == 'e')
5622 find_reloads_address_1 (mode, XEXP (x, i), context, &XEXP (x, i),
5623 opnum, type, ind_levels, insn);
5627 return 0;
5630 /* X, which is found at *LOC, is a part of an address that needs to be
5631 reloaded into a register of class CLASS. If X is a constant, or if
5632 X is a PLUS that contains a constant, check that the constant is a
5633 legitimate operand and that we are supposed to be able to load
5634 it into the register.
5636 If not, force the constant into memory and reload the MEM instead.
5638 MODE is the mode to use, in case X is an integer constant.
5640 OPNUM and TYPE describe the purpose of any reloads made.
5642 IND_LEVELS says how many levels of indirect addressing this machine
5643 supports. */
5645 static void
5646 find_reloads_address_part (x, loc, class, mode, opnum, type, ind_levels)
5647 rtx x;
5648 rtx *loc;
5649 enum reg_class class;
5650 enum machine_mode mode;
5651 int opnum;
5652 enum reload_type type;
5653 int ind_levels;
5655 if (CONSTANT_P (x)
5656 && (! LEGITIMATE_CONSTANT_P (x)
5657 || PREFERRED_RELOAD_CLASS (x, class) == NO_REGS))
5659 rtx tem;
5661 tem = x = force_const_mem (mode, x);
5662 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5663 opnum, type, ind_levels, 0);
5666 else if (GET_CODE (x) == PLUS
5667 && CONSTANT_P (XEXP (x, 1))
5668 && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
5669 || PREFERRED_RELOAD_CLASS (XEXP (x, 1), class) == NO_REGS))
5671 rtx tem;
5673 tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
5674 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
5675 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5676 opnum, type, ind_levels, 0);
5679 push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5680 mode, VOIDmode, 0, 0, opnum, type);
5683 /* X, a subreg of a pseudo, is a part of an address that needs to be
5684 reloaded.
5686 If the pseudo is equivalent to a memory location that cannot be directly
5687 addressed, make the necessary address reloads.
5689 If address reloads have been necessary, or if the address is changed
5690 by register elimination, return the rtx of the memory location;
5691 otherwise, return X.
5693 If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
5694 memory location.
5696 OPNUM and TYPE identify the purpose of the reload.
5698 IND_LEVELS says how many levels of indirect addressing are
5699 supported at this point in the address.
5701 INSN, if nonzero, is the insn in which we do the reload. It is used
5702 to determine where to put USEs for pseudos that we have to replace with
5703 stack slots. */
5705 static rtx
5706 find_reloads_subreg_address (x, force_replace, opnum, type,
5707 ind_levels, insn)
5708 rtx x;
5709 int force_replace;
5710 int opnum;
5711 enum reload_type type;
5712 int ind_levels;
5713 rtx insn;
5715 int regno = REGNO (SUBREG_REG (x));
5717 if (reg_equiv_memory_loc[regno])
5719 /* If the address is not directly addressable, or if the address is not
5720 offsettable, then it must be replaced. */
5721 if (! force_replace
5722 && (reg_equiv_address[regno]
5723 || ! offsettable_memref_p (reg_equiv_mem[regno])))
5724 force_replace = 1;
5726 if (force_replace || num_not_at_initial_offset)
5728 rtx tem = make_memloc (SUBREG_REG (x), regno);
5730 /* If the address changes because of register elimination, then
5731 it must be replaced. */
5732 if (force_replace
5733 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5735 int offset = SUBREG_BYTE (x);
5736 unsigned outer_size = GET_MODE_SIZE (GET_MODE (x));
5737 unsigned inner_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
5739 XEXP (tem, 0) = plus_constant (XEXP (tem, 0), offset);
5740 PUT_MODE (tem, GET_MODE (x));
5742 /* If this was a paradoxical subreg that we replaced, the
5743 resulting memory must be sufficiently aligned to allow
5744 us to widen the mode of the memory. */
5745 if (outer_size > inner_size && STRICT_ALIGNMENT)
5747 rtx base;
5749 base = XEXP (tem, 0);
5750 if (GET_CODE (base) == PLUS)
5752 if (GET_CODE (XEXP (base, 1)) == CONST_INT
5753 && INTVAL (XEXP (base, 1)) % outer_size != 0)
5754 return x;
5755 base = XEXP (base, 0);
5757 if (GET_CODE (base) != REG
5758 || (REGNO_POINTER_ALIGN (REGNO (base))
5759 < outer_size * BITS_PER_UNIT))
5760 return x;
5763 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5764 &XEXP (tem, 0), opnum, ADDR_TYPE (type),
5765 ind_levels, insn);
5767 /* If this is not a toplevel operand, find_reloads doesn't see
5768 this substitution. We have to emit a USE of the pseudo so
5769 that delete_output_reload can see it. */
5770 if (replace_reloads && recog_data.operand[opnum] != x)
5771 /* We mark the USE with QImode so that we recognize it
5772 as one that can be safely deleted at the end of
5773 reload. */
5774 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode,
5775 SUBREG_REG (x)),
5776 insn), QImode);
5777 x = tem;
5781 return x;
5784 /* Substitute into the current INSN the registers into which we have reloaded
5785 the things that need reloading. The array `replacements'
5786 contains the locations of all pointers that must be changed
5787 and says what to replace them with.
5789 Return the rtx that X translates into; usually X, but modified. */
5791 void
5792 subst_reloads (insn)
5793 rtx insn;
5795 int i;
5797 for (i = 0; i < n_replacements; i++)
5799 struct replacement *r = &replacements[i];
5800 rtx reloadreg = rld[r->what].reg_rtx;
5801 if (reloadreg)
5803 #ifdef ENABLE_CHECKING
5804 /* Internal consistency test. Check that we don't modify
5805 anything in the equivalence arrays. Whenever something from
5806 those arrays needs to be reloaded, it must be unshared before
5807 being substituted into; the equivalence must not be modified.
5808 Otherwise, if the equivalence is used after that, it will
5809 have been modified, and the thing substituted (probably a
5810 register) is likely overwritten and not a usable equivalence. */
5811 int check_regno;
5813 for (check_regno = 0; check_regno < max_regno; check_regno++)
5815 #define CHECK_MODF(ARRAY) \
5816 if (ARRAY[check_regno] \
5817 && loc_mentioned_in_p (r->where, \
5818 ARRAY[check_regno])) \
5819 abort ()
5821 CHECK_MODF (reg_equiv_constant);
5822 CHECK_MODF (reg_equiv_memory_loc);
5823 CHECK_MODF (reg_equiv_address);
5824 CHECK_MODF (reg_equiv_mem);
5825 #undef CHECK_MODF
5827 #endif /* ENABLE_CHECKING */
5829 /* If we're replacing a LABEL_REF with a register, add a
5830 REG_LABEL note to indicate to flow which label this
5831 register refers to. */
5832 if (GET_CODE (*r->where) == LABEL_REF
5833 && GET_CODE (insn) == JUMP_INSN)
5834 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
5835 XEXP (*r->where, 0),
5836 REG_NOTES (insn));
5838 /* Encapsulate RELOADREG so its machine mode matches what
5839 used to be there. Note that gen_lowpart_common will
5840 do the wrong thing if RELOADREG is multi-word. RELOADREG
5841 will always be a REG here. */
5842 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
5843 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
5845 /* If we are putting this into a SUBREG and RELOADREG is a
5846 SUBREG, we would be making nested SUBREGs, so we have to fix
5847 this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
5849 if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
5851 if (GET_MODE (*r->subreg_loc)
5852 == GET_MODE (SUBREG_REG (reloadreg)))
5853 *r->subreg_loc = SUBREG_REG (reloadreg);
5854 else
5856 int final_offset =
5857 SUBREG_BYTE (*r->subreg_loc) + SUBREG_BYTE (reloadreg);
5859 /* When working with SUBREGs the rule is that the byte
5860 offset must be a multiple of the SUBREG's mode. */
5861 final_offset = (final_offset /
5862 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
5863 final_offset = (final_offset *
5864 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
5866 *r->where = SUBREG_REG (reloadreg);
5867 SUBREG_BYTE (*r->subreg_loc) = final_offset;
5870 else
5871 *r->where = reloadreg;
5873 /* If reload got no reg and isn't optional, something's wrong. */
5874 else if (! rld[r->what].optional)
5875 abort ();
5879 /* Make a copy of any replacements being done into X and move those
5880 copies to locations in Y, a copy of X. */
5882 void
5883 copy_replacements (x, y)
5884 rtx x, y;
5886 /* We can't support X being a SUBREG because we might then need to know its
5887 location if something inside it was replaced. */
5888 if (GET_CODE (x) == SUBREG)
5889 abort ();
5891 copy_replacements_1 (&x, &y, n_replacements);
5894 static void
5895 copy_replacements_1 (px, py, orig_replacements)
5896 rtx *px;
5897 rtx *py;
5898 int orig_replacements;
5900 int i, j;
5901 rtx x, y;
5902 struct replacement *r;
5903 enum rtx_code code;
5904 const char *fmt;
5906 for (j = 0; j < orig_replacements; j++)
5908 if (replacements[j].subreg_loc == px)
5910 r = &replacements[n_replacements++];
5911 r->where = replacements[j].where;
5912 r->subreg_loc = py;
5913 r->what = replacements[j].what;
5914 r->mode = replacements[j].mode;
5916 else if (replacements[j].where == px)
5918 r = &replacements[n_replacements++];
5919 r->where = py;
5920 r->subreg_loc = 0;
5921 r->what = replacements[j].what;
5922 r->mode = replacements[j].mode;
5926 x = *px;
5927 y = *py;
5928 code = GET_CODE (x);
5929 fmt = GET_RTX_FORMAT (code);
5931 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5933 if (fmt[i] == 'e')
5934 copy_replacements_1 (&XEXP (x, i), &XEXP (y, i), orig_replacements);
5935 else if (fmt[i] == 'E')
5936 for (j = XVECLEN (x, i); --j >= 0; )
5937 copy_replacements_1 (&XVECEXP (x, i, j), &XVECEXP (y, i, j),
5938 orig_replacements);
5942 /* Change any replacements being done to *X to be done to *Y */
5944 void
5945 move_replacements (x, y)
5946 rtx *x;
5947 rtx *y;
5949 int i;
5951 for (i = 0; i < n_replacements; i++)
5952 if (replacements[i].subreg_loc == x)
5953 replacements[i].subreg_loc = y;
5954 else if (replacements[i].where == x)
5956 replacements[i].where = y;
5957 replacements[i].subreg_loc = 0;
5961 /* If LOC was scheduled to be replaced by something, return the replacement.
5962 Otherwise, return *LOC. */
5965 find_replacement (loc)
5966 rtx *loc;
5968 struct replacement *r;
5970 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
5972 rtx reloadreg = rld[r->what].reg_rtx;
5974 if (reloadreg && r->where == loc)
5976 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
5977 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
5979 return reloadreg;
5981 else if (reloadreg && r->subreg_loc == loc)
5983 /* RELOADREG must be either a REG or a SUBREG.
5985 ??? Is it actually still ever a SUBREG? If so, why? */
5987 if (GET_CODE (reloadreg) == REG)
5988 return gen_rtx_REG (GET_MODE (*loc),
5989 (REGNO (reloadreg) +
5990 subreg_regno_offset (REGNO (SUBREG_REG (*loc)),
5991 GET_MODE (SUBREG_REG (*loc)),
5992 SUBREG_BYTE (*loc),
5993 GET_MODE (*loc))));
5994 else if (GET_MODE (reloadreg) == GET_MODE (*loc))
5995 return reloadreg;
5996 else
5998 int final_offset = SUBREG_BYTE (reloadreg) + SUBREG_BYTE (*loc);
6000 /* When working with SUBREGs the rule is that the byte
6001 offset must be a multiple of the SUBREG's mode. */
6002 final_offset = (final_offset / GET_MODE_SIZE (GET_MODE (*loc)));
6003 final_offset = (final_offset * GET_MODE_SIZE (GET_MODE (*loc)));
6004 return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
6005 final_offset);
6010 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
6011 what's inside and make a new rtl if so. */
6012 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
6013 || GET_CODE (*loc) == MULT)
6015 rtx x = find_replacement (&XEXP (*loc, 0));
6016 rtx y = find_replacement (&XEXP (*loc, 1));
6018 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
6019 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
6022 return *loc;
6025 /* Return nonzero if register in range [REGNO, ENDREGNO)
6026 appears either explicitly or implicitly in X
6027 other than being stored into (except for earlyclobber operands).
6029 References contained within the substructure at LOC do not count.
6030 LOC may be zero, meaning don't ignore anything.
6032 This is similar to refers_to_regno_p in rtlanal.c except that we
6033 look at equivalences for pseudos that didn't get hard registers. */
6036 refers_to_regno_for_reload_p (regno, endregno, x, loc)
6037 unsigned int regno, endregno;
6038 rtx x;
6039 rtx *loc;
6041 int i;
6042 unsigned int r;
6043 RTX_CODE code;
6044 const char *fmt;
6046 if (x == 0)
6047 return 0;
6049 repeat:
6050 code = GET_CODE (x);
6052 switch (code)
6054 case REG:
6055 r = REGNO (x);
6057 /* If this is a pseudo, a hard register must not have been allocated.
6058 X must therefore either be a constant or be in memory. */
6059 if (r >= FIRST_PSEUDO_REGISTER)
6061 if (reg_equiv_memory_loc[r])
6062 return refers_to_regno_for_reload_p (regno, endregno,
6063 reg_equiv_memory_loc[r],
6064 (rtx*) 0);
6066 if (reg_equiv_constant[r])
6067 return 0;
6069 abort ();
6072 return (endregno > r
6073 && regno < r + (r < FIRST_PSEUDO_REGISTER
6074 ? HARD_REGNO_NREGS (r, GET_MODE (x))
6075 : 1));
6077 case SUBREG:
6078 /* If this is a SUBREG of a hard reg, we can see exactly which
6079 registers are being modified. Otherwise, handle normally. */
6080 if (GET_CODE (SUBREG_REG (x)) == REG
6081 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6083 unsigned int inner_regno = subreg_regno (x);
6084 unsigned int inner_endregno
6085 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
6086 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
6088 return endregno > inner_regno && regno < inner_endregno;
6090 break;
6092 case CLOBBER:
6093 case SET:
6094 if (&SET_DEST (x) != loc
6095 /* Note setting a SUBREG counts as referring to the REG it is in for
6096 a pseudo but not for hard registers since we can
6097 treat each word individually. */
6098 && ((GET_CODE (SET_DEST (x)) == SUBREG
6099 && loc != &SUBREG_REG (SET_DEST (x))
6100 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
6101 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6102 && refers_to_regno_for_reload_p (regno, endregno,
6103 SUBREG_REG (SET_DEST (x)),
6104 loc))
6105 /* If the output is an earlyclobber operand, this is
6106 a conflict. */
6107 || ((GET_CODE (SET_DEST (x)) != REG
6108 || earlyclobber_operand_p (SET_DEST (x)))
6109 && refers_to_regno_for_reload_p (regno, endregno,
6110 SET_DEST (x), loc))))
6111 return 1;
6113 if (code == CLOBBER || loc == &SET_SRC (x))
6114 return 0;
6115 x = SET_SRC (x);
6116 goto repeat;
6118 default:
6119 break;
6122 /* X does not match, so try its subexpressions. */
6124 fmt = GET_RTX_FORMAT (code);
6125 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6127 if (fmt[i] == 'e' && loc != &XEXP (x, i))
6129 if (i == 0)
6131 x = XEXP (x, 0);
6132 goto repeat;
6134 else
6135 if (refers_to_regno_for_reload_p (regno, endregno,
6136 XEXP (x, i), loc))
6137 return 1;
6139 else if (fmt[i] == 'E')
6141 int j;
6142 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6143 if (loc != &XVECEXP (x, i, j)
6144 && refers_to_regno_for_reload_p (regno, endregno,
6145 XVECEXP (x, i, j), loc))
6146 return 1;
6149 return 0;
6152 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
6153 we check if any register number in X conflicts with the relevant register
6154 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
6155 contains a MEM (we don't bother checking for memory addresses that can't
6156 conflict because we expect this to be a rare case.
6158 This function is similar to reg_overlap_mentioned_p in rtlanal.c except
6159 that we look at equivalences for pseudos that didn't get hard registers. */
6162 reg_overlap_mentioned_for_reload_p (x, in)
6163 rtx x, in;
6165 int regno, endregno;
6167 /* Overly conservative. */
6168 if (GET_CODE (x) == STRICT_LOW_PART
6169 || GET_RTX_CLASS (GET_CODE (x)) == 'a')
6170 x = XEXP (x, 0);
6172 /* If either argument is a constant, then modifying X can not affect IN. */
6173 if (CONSTANT_P (x) || CONSTANT_P (in))
6174 return 0;
6175 else if (GET_CODE (x) == SUBREG)
6177 regno = REGNO (SUBREG_REG (x));
6178 if (regno < FIRST_PSEUDO_REGISTER)
6179 regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6180 GET_MODE (SUBREG_REG (x)),
6181 SUBREG_BYTE (x),
6182 GET_MODE (x));
6184 else if (GET_CODE (x) == REG)
6186 regno = REGNO (x);
6188 /* If this is a pseudo, it must not have been assigned a hard register.
6189 Therefore, it must either be in memory or be a constant. */
6191 if (regno >= FIRST_PSEUDO_REGISTER)
6193 if (reg_equiv_memory_loc[regno])
6194 return refers_to_mem_for_reload_p (in);
6195 else if (reg_equiv_constant[regno])
6196 return 0;
6197 abort ();
6200 else if (GET_CODE (x) == MEM)
6201 return refers_to_mem_for_reload_p (in);
6202 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6203 || GET_CODE (x) == CC0)
6204 return reg_mentioned_p (x, in);
6205 else if (GET_CODE (x) == PLUS)
6206 return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
6207 || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
6208 else
6209 abort ();
6211 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6212 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
6214 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6217 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
6218 registers. */
6221 refers_to_mem_for_reload_p (x)
6222 rtx x;
6224 const char *fmt;
6225 int i;
6227 if (GET_CODE (x) == MEM)
6228 return 1;
6230 if (GET_CODE (x) == REG)
6231 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6232 && reg_equiv_memory_loc[REGNO (x)]);
6234 fmt = GET_RTX_FORMAT (GET_CODE (x));
6235 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6236 if (fmt[i] == 'e'
6237 && (GET_CODE (XEXP (x, i)) == MEM
6238 || refers_to_mem_for_reload_p (XEXP (x, i))))
6239 return 1;
6241 return 0;
6244 /* Check the insns before INSN to see if there is a suitable register
6245 containing the same value as GOAL.
6246 If OTHER is -1, look for a register in class CLASS.
6247 Otherwise, just see if register number OTHER shares GOAL's value.
6249 Return an rtx for the register found, or zero if none is found.
6251 If RELOAD_REG_P is (short *)1,
6252 we reject any hard reg that appears in reload_reg_rtx
6253 because such a hard reg is also needed coming into this insn.
6255 If RELOAD_REG_P is any other nonzero value,
6256 it is a vector indexed by hard reg number
6257 and we reject any hard reg whose element in the vector is nonnegative
6258 as well as any that appears in reload_reg_rtx.
6260 If GOAL is zero, then GOALREG is a register number; we look
6261 for an equivalent for that register.
6263 MODE is the machine mode of the value we want an equivalence for.
6264 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6266 This function is used by jump.c as well as in the reload pass.
6268 If GOAL is the sum of the stack pointer and a constant, we treat it
6269 as if it were a constant except that sp is required to be unchanging. */
6272 find_equiv_reg (goal, insn, class, other, reload_reg_p, goalreg, mode)
6273 rtx goal;
6274 rtx insn;
6275 enum reg_class class;
6276 int other;
6277 short *reload_reg_p;
6278 int goalreg;
6279 enum machine_mode mode;
6281 rtx p = insn;
6282 rtx goaltry, valtry, value, where;
6283 rtx pat;
6284 int regno = -1;
6285 int valueno;
6286 int goal_mem = 0;
6287 int goal_const = 0;
6288 int goal_mem_addr_varies = 0;
6289 int need_stable_sp = 0;
6290 int nregs;
6291 int valuenregs;
6293 if (goal == 0)
6294 regno = goalreg;
6295 else if (GET_CODE (goal) == REG)
6296 regno = REGNO (goal);
6297 else if (GET_CODE (goal) == MEM)
6299 enum rtx_code code = GET_CODE (XEXP (goal, 0));
6300 if (MEM_VOLATILE_P (goal))
6301 return 0;
6302 if (flag_float_store && GET_MODE_CLASS (GET_MODE (goal)) == MODE_FLOAT)
6303 return 0;
6304 /* An address with side effects must be reexecuted. */
6305 switch (code)
6307 case POST_INC:
6308 case PRE_INC:
6309 case POST_DEC:
6310 case PRE_DEC:
6311 case POST_MODIFY:
6312 case PRE_MODIFY:
6313 return 0;
6314 default:
6315 break;
6317 goal_mem = 1;
6319 else if (CONSTANT_P (goal))
6320 goal_const = 1;
6321 else if (GET_CODE (goal) == PLUS
6322 && XEXP (goal, 0) == stack_pointer_rtx
6323 && CONSTANT_P (XEXP (goal, 1)))
6324 goal_const = need_stable_sp = 1;
6325 else if (GET_CODE (goal) == PLUS
6326 && XEXP (goal, 0) == frame_pointer_rtx
6327 && CONSTANT_P (XEXP (goal, 1)))
6328 goal_const = 1;
6329 else
6330 return 0;
6332 /* Scan insns back from INSN, looking for one that copies
6333 a value into or out of GOAL.
6334 Stop and give up if we reach a label. */
6336 while (1)
6338 p = PREV_INSN (p);
6339 if (p == 0 || GET_CODE (p) == CODE_LABEL)
6340 return 0;
6342 if (GET_CODE (p) == INSN
6343 /* If we don't want spill regs ... */
6344 && (! (reload_reg_p != 0
6345 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6346 /* ... then ignore insns introduced by reload; they aren't
6347 useful and can cause results in reload_as_needed to be
6348 different from what they were when calculating the need for
6349 spills. If we notice an input-reload insn here, we will
6350 reject it below, but it might hide a usable equivalent.
6351 That makes bad code. It may even abort: perhaps no reg was
6352 spilled for this insn because it was assumed we would find
6353 that equivalent. */
6354 || INSN_UID (p) < reload_first_uid))
6356 rtx tem;
6357 pat = single_set (p);
6359 /* First check for something that sets some reg equal to GOAL. */
6360 if (pat != 0
6361 && ((regno >= 0
6362 && true_regnum (SET_SRC (pat)) == regno
6363 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6365 (regno >= 0
6366 && true_regnum (SET_DEST (pat)) == regno
6367 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6369 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6370 /* When looking for stack pointer + const,
6371 make sure we don't use a stack adjust. */
6372 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6373 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6374 || (goal_mem
6375 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6376 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6377 || (goal_mem
6378 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6379 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6380 /* If we are looking for a constant,
6381 and something equivalent to that constant was copied
6382 into a reg, we can use that reg. */
6383 || (goal_const && REG_NOTES (p) != 0
6384 && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6385 && ((rtx_equal_p (XEXP (tem, 0), goal)
6386 && (valueno
6387 = true_regnum (valtry = SET_DEST (pat))) >= 0)
6388 || (GET_CODE (SET_DEST (pat)) == REG
6389 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6390 && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6391 == MODE_FLOAT)
6392 && GET_CODE (goal) == CONST_INT
6393 && 0 != (goaltry
6394 = operand_subword (XEXP (tem, 0), 0, 0,
6395 VOIDmode))
6396 && rtx_equal_p (goal, goaltry)
6397 && (valtry
6398 = operand_subword (SET_DEST (pat), 0, 0,
6399 VOIDmode))
6400 && (valueno = true_regnum (valtry)) >= 0)))
6401 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6402 NULL_RTX))
6403 && GET_CODE (SET_DEST (pat)) == REG
6404 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6405 && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6406 == MODE_FLOAT)
6407 && GET_CODE (goal) == CONST_INT
6408 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6409 VOIDmode))
6410 && rtx_equal_p (goal, goaltry)
6411 && (valtry
6412 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6413 && (valueno = true_regnum (valtry)) >= 0)))
6415 if (other >= 0)
6417 if (valueno != other)
6418 continue;
6420 else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6421 continue;
6422 else
6424 int i;
6426 for (i = HARD_REGNO_NREGS (valueno, mode) - 1; i >= 0; i--)
6427 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
6428 valueno + i))
6429 break;
6430 if (i >= 0)
6431 continue;
6433 value = valtry;
6434 where = p;
6435 break;
6440 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6441 (or copying VALUE into GOAL, if GOAL is also a register).
6442 Now verify that VALUE is really valid. */
6444 /* VALUENO is the register number of VALUE; a hard register. */
6446 /* Don't try to re-use something that is killed in this insn. We want
6447 to be able to trust REG_UNUSED notes. */
6448 if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
6449 return 0;
6451 /* If we propose to get the value from the stack pointer or if GOAL is
6452 a MEM based on the stack pointer, we need a stable SP. */
6453 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6454 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6455 goal)))
6456 need_stable_sp = 1;
6458 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6459 if (GET_MODE (value) != mode)
6460 return 0;
6462 /* Reject VALUE if it was loaded from GOAL
6463 and is also a register that appears in the address of GOAL. */
6465 if (goal_mem && value == SET_DEST (single_set (where))
6466 && refers_to_regno_for_reload_p (valueno,
6467 (valueno
6468 + HARD_REGNO_NREGS (valueno, mode)),
6469 goal, (rtx*) 0))
6470 return 0;
6472 /* Reject registers that overlap GOAL. */
6474 if (!goal_mem && !goal_const
6475 && regno + (int) HARD_REGNO_NREGS (regno, mode) > valueno
6476 && regno < valueno + (int) HARD_REGNO_NREGS (valueno, mode))
6477 return 0;
6479 nregs = HARD_REGNO_NREGS (regno, mode);
6480 valuenregs = HARD_REGNO_NREGS (valueno, mode);
6482 /* Reject VALUE if it is one of the regs reserved for reloads.
6483 Reload1 knows how to reuse them anyway, and it would get
6484 confused if we allocated one without its knowledge.
6485 (Now that insns introduced by reload are ignored above,
6486 this case shouldn't happen, but I'm not positive.) */
6488 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6490 int i;
6491 for (i = 0; i < valuenregs; ++i)
6492 if (reload_reg_p[valueno + i] >= 0)
6493 return 0;
6496 /* Reject VALUE if it is a register being used for an input reload
6497 even if it is not one of those reserved. */
6499 if (reload_reg_p != 0)
6501 int i;
6502 for (i = 0; i < n_reloads; i++)
6503 if (rld[i].reg_rtx != 0 && rld[i].in)
6505 int regno1 = REGNO (rld[i].reg_rtx);
6506 int nregs1 = HARD_REGNO_NREGS (regno1,
6507 GET_MODE (rld[i].reg_rtx));
6508 if (regno1 < valueno + valuenregs
6509 && regno1 + nregs1 > valueno)
6510 return 0;
6514 if (goal_mem)
6515 /* We must treat frame pointer as varying here,
6516 since it can vary--in a nonlocal goto as generated by expand_goto. */
6517 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6519 /* Now verify that the values of GOAL and VALUE remain unaltered
6520 until INSN is reached. */
6522 p = insn;
6523 while (1)
6525 p = PREV_INSN (p);
6526 if (p == where)
6527 return value;
6529 /* Don't trust the conversion past a function call
6530 if either of the two is in a call-clobbered register, or memory. */
6531 if (GET_CODE (p) == CALL_INSN)
6533 int i;
6535 if (goal_mem || need_stable_sp)
6536 return 0;
6538 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6539 for (i = 0; i < nregs; ++i)
6540 if (call_used_regs[regno + i])
6541 return 0;
6543 if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
6544 for (i = 0; i < valuenregs; ++i)
6545 if (call_used_regs[valueno + i])
6546 return 0;
6547 #ifdef NON_SAVING_SETJMP
6548 if (NON_SAVING_SETJMP && find_reg_note (p, REG_SETJMP, NULL))
6549 return 0;
6550 #endif
6553 if (INSN_P (p))
6555 pat = PATTERN (p);
6557 /* Watch out for unspec_volatile, and volatile asms. */
6558 if (volatile_insn_p (pat))
6559 return 0;
6561 /* If this insn P stores in either GOAL or VALUE, return 0.
6562 If GOAL is a memory ref and this insn writes memory, return 0.
6563 If GOAL is a memory ref and its address is not constant,
6564 and this insn P changes a register used in GOAL, return 0. */
6566 if (GET_CODE (pat) == COND_EXEC)
6567 pat = COND_EXEC_CODE (pat);
6568 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
6570 rtx dest = SET_DEST (pat);
6571 while (GET_CODE (dest) == SUBREG
6572 || GET_CODE (dest) == ZERO_EXTRACT
6573 || GET_CODE (dest) == SIGN_EXTRACT
6574 || GET_CODE (dest) == STRICT_LOW_PART)
6575 dest = XEXP (dest, 0);
6576 if (GET_CODE (dest) == REG)
6578 int xregno = REGNO (dest);
6579 int xnregs;
6580 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6581 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6582 else
6583 xnregs = 1;
6584 if (xregno < regno + nregs && xregno + xnregs > regno)
6585 return 0;
6586 if (xregno < valueno + valuenregs
6587 && xregno + xnregs > valueno)
6588 return 0;
6589 if (goal_mem_addr_varies
6590 && reg_overlap_mentioned_for_reload_p (dest, goal))
6591 return 0;
6592 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6593 return 0;
6595 else if (goal_mem && GET_CODE (dest) == MEM
6596 && ! push_operand (dest, GET_MODE (dest)))
6597 return 0;
6598 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
6599 && reg_equiv_memory_loc[regno] != 0)
6600 return 0;
6601 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
6602 return 0;
6604 else if (GET_CODE (pat) == PARALLEL)
6606 int i;
6607 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
6609 rtx v1 = XVECEXP (pat, 0, i);
6610 if (GET_CODE (v1) == COND_EXEC)
6611 v1 = COND_EXEC_CODE (v1);
6612 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
6614 rtx dest = SET_DEST (v1);
6615 while (GET_CODE (dest) == SUBREG
6616 || GET_CODE (dest) == ZERO_EXTRACT
6617 || GET_CODE (dest) == SIGN_EXTRACT
6618 || GET_CODE (dest) == STRICT_LOW_PART)
6619 dest = XEXP (dest, 0);
6620 if (GET_CODE (dest) == REG)
6622 int xregno = REGNO (dest);
6623 int xnregs;
6624 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6625 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6626 else
6627 xnregs = 1;
6628 if (xregno < regno + nregs
6629 && xregno + xnregs > regno)
6630 return 0;
6631 if (xregno < valueno + valuenregs
6632 && xregno + xnregs > valueno)
6633 return 0;
6634 if (goal_mem_addr_varies
6635 && reg_overlap_mentioned_for_reload_p (dest,
6636 goal))
6637 return 0;
6638 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6639 return 0;
6641 else if (goal_mem && GET_CODE (dest) == MEM
6642 && ! push_operand (dest, GET_MODE (dest)))
6643 return 0;
6644 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
6645 && reg_equiv_memory_loc[regno] != 0)
6646 return 0;
6647 else if (need_stable_sp
6648 && push_operand (dest, GET_MODE (dest)))
6649 return 0;
6654 if (GET_CODE (p) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (p))
6656 rtx link;
6658 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
6659 link = XEXP (link, 1))
6661 pat = XEXP (link, 0);
6662 if (GET_CODE (pat) == CLOBBER)
6664 rtx dest = SET_DEST (pat);
6666 if (GET_CODE (dest) == REG)
6668 int xregno = REGNO (dest);
6669 int xnregs
6670 = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6672 if (xregno < regno + nregs
6673 && xregno + xnregs > regno)
6674 return 0;
6675 else if (xregno < valueno + valuenregs
6676 && xregno + xnregs > valueno)
6677 return 0;
6678 else if (goal_mem_addr_varies
6679 && reg_overlap_mentioned_for_reload_p (dest,
6680 goal))
6681 return 0;
6684 else if (goal_mem && GET_CODE (dest) == MEM
6685 && ! push_operand (dest, GET_MODE (dest)))
6686 return 0;
6687 else if (need_stable_sp
6688 && push_operand (dest, GET_MODE (dest)))
6689 return 0;
6694 #ifdef AUTO_INC_DEC
6695 /* If this insn auto-increments or auto-decrements
6696 either regno or valueno, return 0 now.
6697 If GOAL is a memory ref and its address is not constant,
6698 and this insn P increments a register used in GOAL, return 0. */
6700 rtx link;
6702 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
6703 if (REG_NOTE_KIND (link) == REG_INC
6704 && GET_CODE (XEXP (link, 0)) == REG)
6706 int incno = REGNO (XEXP (link, 0));
6707 if (incno < regno + nregs && incno >= regno)
6708 return 0;
6709 if (incno < valueno + valuenregs && incno >= valueno)
6710 return 0;
6711 if (goal_mem_addr_varies
6712 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
6713 goal))
6714 return 0;
6717 #endif
6722 /* Find a place where INCED appears in an increment or decrement operator
6723 within X, and return the amount INCED is incremented or decremented by.
6724 The value is always positive. */
6726 static int
6727 find_inc_amount (x, inced)
6728 rtx x, inced;
6730 enum rtx_code code = GET_CODE (x);
6731 const char *fmt;
6732 int i;
6734 if (code == MEM)
6736 rtx addr = XEXP (x, 0);
6737 if ((GET_CODE (addr) == PRE_DEC
6738 || GET_CODE (addr) == POST_DEC
6739 || GET_CODE (addr) == PRE_INC
6740 || GET_CODE (addr) == POST_INC)
6741 && XEXP (addr, 0) == inced)
6742 return GET_MODE_SIZE (GET_MODE (x));
6743 else if ((GET_CODE (addr) == PRE_MODIFY
6744 || GET_CODE (addr) == POST_MODIFY)
6745 && GET_CODE (XEXP (addr, 1)) == PLUS
6746 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
6747 && XEXP (addr, 0) == inced
6748 && GET_CODE (XEXP (XEXP (addr, 1), 1)) == CONST_INT)
6750 i = INTVAL (XEXP (XEXP (addr, 1), 1));
6751 return i < 0 ? -i : i;
6755 fmt = GET_RTX_FORMAT (code);
6756 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6758 if (fmt[i] == 'e')
6760 int tem = find_inc_amount (XEXP (x, i), inced);
6761 if (tem != 0)
6762 return tem;
6764 if (fmt[i] == 'E')
6766 int j;
6767 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6769 int tem = find_inc_amount (XVECEXP (x, i, j), inced);
6770 if (tem != 0)
6771 return tem;
6776 return 0;
6779 /* Return 1 if register REGNO is the subject of a clobber in insn INSN.
6780 If SETS is nonzero, also consider SETs. */
6783 regno_clobbered_p (regno, insn, mode, sets)
6784 unsigned int regno;
6785 rtx insn;
6786 enum machine_mode mode;
6787 int sets;
6789 unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
6790 unsigned int endregno = regno + nregs;
6792 if ((GET_CODE (PATTERN (insn)) == CLOBBER
6793 || (sets && GET_CODE (PATTERN (insn)) == SET))
6794 && GET_CODE (XEXP (PATTERN (insn), 0)) == REG)
6796 unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
6798 return test >= regno && test < endregno;
6801 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6803 int i = XVECLEN (PATTERN (insn), 0) - 1;
6805 for (; i >= 0; i--)
6807 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6808 if ((GET_CODE (elt) == CLOBBER
6809 || (sets && GET_CODE (PATTERN (insn)) == SET))
6810 && GET_CODE (XEXP (elt, 0)) == REG)
6812 unsigned int test = REGNO (XEXP (elt, 0));
6814 if (test >= regno && test < endregno)
6815 return 1;
6820 return 0;
6823 static const char *const reload_when_needed_name[] =
6825 "RELOAD_FOR_INPUT",
6826 "RELOAD_FOR_OUTPUT",
6827 "RELOAD_FOR_INSN",
6828 "RELOAD_FOR_INPUT_ADDRESS",
6829 "RELOAD_FOR_INPADDR_ADDRESS",
6830 "RELOAD_FOR_OUTPUT_ADDRESS",
6831 "RELOAD_FOR_OUTADDR_ADDRESS",
6832 "RELOAD_FOR_OPERAND_ADDRESS",
6833 "RELOAD_FOR_OPADDR_ADDR",
6834 "RELOAD_OTHER",
6835 "RELOAD_FOR_OTHER_ADDRESS"
6838 static const char * const reg_class_names[] = REG_CLASS_NAMES;
6840 /* These functions are used to print the variables set by 'find_reloads' */
6842 void
6843 debug_reload_to_stream (f)
6844 FILE *f;
6846 int r;
6847 const char *prefix;
6849 if (! f)
6850 f = stderr;
6851 for (r = 0; r < n_reloads; r++)
6853 fprintf (f, "Reload %d: ", r);
6855 if (rld[r].in != 0)
6857 fprintf (f, "reload_in (%s) = ",
6858 GET_MODE_NAME (rld[r].inmode));
6859 print_inline_rtx (f, rld[r].in, 24);
6860 fprintf (f, "\n\t");
6863 if (rld[r].out != 0)
6865 fprintf (f, "reload_out (%s) = ",
6866 GET_MODE_NAME (rld[r].outmode));
6867 print_inline_rtx (f, rld[r].out, 24);
6868 fprintf (f, "\n\t");
6871 fprintf (f, "%s, ", reg_class_names[(int) rld[r].class]);
6873 fprintf (f, "%s (opnum = %d)",
6874 reload_when_needed_name[(int) rld[r].when_needed],
6875 rld[r].opnum);
6877 if (rld[r].optional)
6878 fprintf (f, ", optional");
6880 if (rld[r].nongroup)
6881 fprintf (f, ", nongroup");
6883 if (rld[r].inc != 0)
6884 fprintf (f, ", inc by %d", rld[r].inc);
6886 if (rld[r].nocombine)
6887 fprintf (f, ", can't combine");
6889 if (rld[r].secondary_p)
6890 fprintf (f, ", secondary_reload_p");
6892 if (rld[r].in_reg != 0)
6894 fprintf (f, "\n\treload_in_reg: ");
6895 print_inline_rtx (f, rld[r].in_reg, 24);
6898 if (rld[r].out_reg != 0)
6900 fprintf (f, "\n\treload_out_reg: ");
6901 print_inline_rtx (f, rld[r].out_reg, 24);
6904 if (rld[r].reg_rtx != 0)
6906 fprintf (f, "\n\treload_reg_rtx: ");
6907 print_inline_rtx (f, rld[r].reg_rtx, 24);
6910 prefix = "\n\t";
6911 if (rld[r].secondary_in_reload != -1)
6913 fprintf (f, "%ssecondary_in_reload = %d",
6914 prefix, rld[r].secondary_in_reload);
6915 prefix = ", ";
6918 if (rld[r].secondary_out_reload != -1)
6919 fprintf (f, "%ssecondary_out_reload = %d\n",
6920 prefix, rld[r].secondary_out_reload);
6922 prefix = "\n\t";
6923 if (rld[r].secondary_in_icode != CODE_FOR_nothing)
6925 fprintf (f, "%ssecondary_in_icode = %s", prefix,
6926 insn_data[rld[r].secondary_in_icode].name);
6927 prefix = ", ";
6930 if (rld[r].secondary_out_icode != CODE_FOR_nothing)
6931 fprintf (f, "%ssecondary_out_icode = %s", prefix,
6932 insn_data[rld[r].secondary_out_icode].name);
6934 fprintf (f, "\n");
6938 void
6939 debug_reload ()
6941 debug_reload_to_stream (stderr);