Introduce ORIGINAL_REGNO macro
[official-gcc.git] / gcc / regclass.c
blob078bf9ecf56458e52e8f73086c35bc34f29419ba
1 /* Compute register class preferences for pseudo-registers.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996
3 1997, 1998, 1999, 2000 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
23 /* This file contains two passes of the compiler: reg_scan and reg_class.
24 It also defines some tables of information about the hardware registers
25 and a function init_reg_sets to initialize the tables. */
27 #include "config.h"
28 #include "system.h"
29 #include "rtl.h"
30 #include "tm_p.h"
31 #include "hard-reg-set.h"
32 #include "flags.h"
33 #include "basic-block.h"
34 #include "regs.h"
35 #include "function.h"
36 #include "insn-config.h"
37 #include "recog.h"
38 #include "reload.h"
39 #include "real.h"
40 #include "toplev.h"
41 #include "output.h"
42 #include "ggc.h"
44 #ifndef REGISTER_MOVE_COST
45 #define REGISTER_MOVE_COST(x, y) 2
46 #endif
48 static void init_reg_sets_1 PARAMS ((void));
49 static void init_reg_modes PARAMS ((void));
51 /* If we have auto-increment or auto-decrement and we can have secondary
52 reloads, we are not allowed to use classes requiring secondary
53 reloads for pseudos auto-incremented since reload can't handle it. */
55 #ifdef AUTO_INC_DEC
56 #if defined(SECONDARY_INPUT_RELOAD_CLASS) || defined(SECONDARY_OUTPUT_RELOAD_CLASS)
57 #define FORBIDDEN_INC_DEC_CLASSES
58 #endif
59 #endif
61 /* Register tables used by many passes. */
63 /* Indexed by hard register number, contains 1 for registers
64 that are fixed use (stack pointer, pc, frame pointer, etc.).
65 These are the registers that cannot be used to allocate
66 a pseudo reg for general use. */
68 char fixed_regs[FIRST_PSEUDO_REGISTER];
70 /* Same info as a HARD_REG_SET. */
72 HARD_REG_SET fixed_reg_set;
74 /* Data for initializing the above. */
76 static char initial_fixed_regs[] = FIXED_REGISTERS;
78 /* Indexed by hard register number, contains 1 for registers
79 that are fixed use or are clobbered by function calls.
80 These are the registers that cannot be used to allocate
81 a pseudo reg whose life crosses calls unless we are able
82 to save/restore them across the calls. */
84 char call_used_regs[FIRST_PSEUDO_REGISTER];
86 /* Same info as a HARD_REG_SET. */
88 HARD_REG_SET call_used_reg_set;
90 /* HARD_REG_SET of registers we want to avoid caller saving. */
91 HARD_REG_SET losing_caller_save_reg_set;
93 /* Data for initializing the above. */
95 static char initial_call_used_regs[] = CALL_USED_REGISTERS;
97 /* Indexed by hard register number, contains 1 for registers that are
98 fixed use or call used registers that cannot hold quantities across
99 calls even if we are willing to save and restore them. call fixed
100 registers are a subset of call used registers. */
102 char call_fixed_regs[FIRST_PSEUDO_REGISTER];
104 /* The same info as a HARD_REG_SET. */
106 HARD_REG_SET call_fixed_reg_set;
108 /* Number of non-fixed registers. */
110 int n_non_fixed_regs;
112 /* Indexed by hard register number, contains 1 for registers
113 that are being used for global register decls.
114 These must be exempt from ordinary flow analysis
115 and are also considered fixed. */
117 char global_regs[FIRST_PSEUDO_REGISTER];
119 /* Table of register numbers in the order in which to try to use them. */
120 #ifdef REG_ALLOC_ORDER
121 int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
123 /* The inverse of reg_alloc_order. */
124 int inv_reg_alloc_order[FIRST_PSEUDO_REGISTER];
125 #endif
127 /* For each reg class, a HARD_REG_SET saying which registers are in it. */
129 HARD_REG_SET reg_class_contents[N_REG_CLASSES];
131 /* The same information, but as an array of unsigned ints. We copy from
132 these unsigned ints to the table above. We do this so the tm.h files
133 do not have to be aware of the wordsize for machines with <= 64 regs. */
135 #define N_REG_INTS \
136 ((FIRST_PSEUDO_REGISTER + (HOST_BITS_PER_INT - 1)) / HOST_BITS_PER_INT)
138 static unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
139 = REG_CLASS_CONTENTS;
141 /* For each reg class, number of regs it contains. */
143 unsigned int reg_class_size[N_REG_CLASSES];
145 /* For each reg class, table listing all the containing classes. */
147 enum reg_class reg_class_superclasses[N_REG_CLASSES][N_REG_CLASSES];
149 /* For each reg class, table listing all the classes contained in it. */
151 enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
153 /* For each pair of reg classes,
154 a largest reg class contained in their union. */
156 enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
158 /* For each pair of reg classes,
159 the smallest reg class containing their union. */
161 enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
163 /* Array containing all of the register names. Unless
164 DEBUG_REGISTER_NAMES is defined, use the copy in print-rtl.c. */
166 #ifdef DEBUG_REGISTER_NAMES
167 const char * reg_names[] = REGISTER_NAMES;
168 #endif
170 /* For each hard register, the widest mode object that it can contain.
171 This will be a MODE_INT mode if the register can hold integers. Otherwise
172 it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
173 register. */
175 enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
177 /* Maximum cost of moving from a register in one class to a register in
178 another class. Based on REGISTER_MOVE_COST. */
180 static int move_cost[N_REG_CLASSES][N_REG_CLASSES];
182 /* Similar, but here we don't have to move if the first index is a subset
183 of the second so in that case the cost is zero. */
185 static int may_move_in_cost[N_REG_CLASSES][N_REG_CLASSES];
187 /* Similar, but here we don't have to move if the first index is a superset
188 of the second so in that case the cost is zero. */
190 static int may_move_out_cost[N_REG_CLASSES][N_REG_CLASSES];
192 #ifdef FORBIDDEN_INC_DEC_CLASSES
194 /* These are the classes that regs which are auto-incremented or decremented
195 cannot be put in. */
197 static int forbidden_inc_dec_class[N_REG_CLASSES];
199 /* Indexed by n, is non-zero if (REG n) is used in an auto-inc or auto-dec
200 context. */
202 static char *in_inc_dec;
204 #endif /* FORBIDDEN_INC_DEC_CLASSES */
206 #ifdef CLASS_CANNOT_CHANGE_MODE
208 /* These are the classes containing only registers that can be used in
209 a SUBREG expression that changes the mode of the register in some
210 way that is illegal. */
212 static int class_can_change_mode[N_REG_CLASSES];
214 /* Registers, including pseudos, which change modes in some way that
215 is illegal. */
217 static regset reg_changes_mode;
219 #endif /* CLASS_CANNOT_CHANGE_MODE */
221 #ifdef HAVE_SECONDARY_RELOADS
223 /* Sample MEM values for use by memory_move_secondary_cost. */
225 static rtx top_of_stack[MAX_MACHINE_MODE];
227 #endif /* HAVE_SECONDARY_RELOADS */
229 /* Linked list of reg_info structures allocated for reg_n_info array.
230 Grouping all of the allocated structures together in one lump
231 means only one call to bzero to clear them, rather than n smaller
232 calls. */
233 struct reg_info_data {
234 struct reg_info_data *next; /* next set of reg_info structures */
235 size_t min_index; /* minimum index # */
236 size_t max_index; /* maximum index # */
237 char used_p; /* non-zero if this has been used previously */
238 reg_info data[1]; /* beginning of the reg_info data */
241 static struct reg_info_data *reg_info_head;
243 /* No more global register variables may be declared; true once
244 regclass has been initialized. */
246 static int no_global_reg_vars = 0;
249 /* Function called only once to initialize the above data on reg usage.
250 Once this is done, various switches may override. */
252 void
253 init_reg_sets ()
255 register int i, j;
257 /* First copy the register information from the initial int form into
258 the regsets. */
260 for (i = 0; i < N_REG_CLASSES; i++)
262 CLEAR_HARD_REG_SET (reg_class_contents[i]);
264 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
265 if (int_reg_class_contents[i][j / HOST_BITS_PER_INT]
266 & ((unsigned) 1 << (j % HOST_BITS_PER_INT)))
267 SET_HARD_REG_BIT (reg_class_contents[i], j);
270 memcpy (fixed_regs, initial_fixed_regs, sizeof fixed_regs);
271 memcpy (call_used_regs, initial_call_used_regs, sizeof call_used_regs);
272 memset (global_regs, 0, sizeof global_regs);
274 /* Do any additional initialization regsets may need */
275 INIT_ONCE_REG_SET ();
277 #ifdef REG_ALLOC_ORDER
278 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
279 inv_reg_alloc_order[reg_alloc_order[i]] = i;
280 #endif
283 /* After switches have been processed, which perhaps alter
284 `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
286 static void
287 init_reg_sets_1 ()
289 register unsigned int i, j;
291 /* This macro allows the fixed or call-used registers
292 and the register classes to depend on target flags. */
294 #ifdef CONDITIONAL_REGISTER_USAGE
295 CONDITIONAL_REGISTER_USAGE;
296 #endif
298 /* Compute number of hard regs in each class. */
300 memset ((char *) reg_class_size, 0, sizeof reg_class_size);
301 for (i = 0; i < N_REG_CLASSES; i++)
302 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
303 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
304 reg_class_size[i]++;
306 /* Initialize the table of subunions.
307 reg_class_subunion[I][J] gets the largest-numbered reg-class
308 that is contained in the union of classes I and J. */
310 for (i = 0; i < N_REG_CLASSES; i++)
312 for (j = 0; j < N_REG_CLASSES; j++)
314 #ifdef HARD_REG_SET
315 register /* Declare it register if it's a scalar. */
316 #endif
317 HARD_REG_SET c;
318 register int k;
320 COPY_HARD_REG_SET (c, reg_class_contents[i]);
321 IOR_HARD_REG_SET (c, reg_class_contents[j]);
322 for (k = 0; k < N_REG_CLASSES; k++)
324 GO_IF_HARD_REG_SUBSET (reg_class_contents[k], c,
325 subclass1);
326 continue;
328 subclass1:
329 /* keep the largest subclass */ /* SPEE 900308 */
330 GO_IF_HARD_REG_SUBSET (reg_class_contents[k],
331 reg_class_contents[(int) reg_class_subunion[i][j]],
332 subclass2);
333 reg_class_subunion[i][j] = (enum reg_class) k;
334 subclass2:
340 /* Initialize the table of superunions.
341 reg_class_superunion[I][J] gets the smallest-numbered reg-class
342 containing the union of classes I and J. */
344 for (i = 0; i < N_REG_CLASSES; i++)
346 for (j = 0; j < N_REG_CLASSES; j++)
348 #ifdef HARD_REG_SET
349 register /* Declare it register if it's a scalar. */
350 #endif
351 HARD_REG_SET c;
352 register int k;
354 COPY_HARD_REG_SET (c, reg_class_contents[i]);
355 IOR_HARD_REG_SET (c, reg_class_contents[j]);
356 for (k = 0; k < N_REG_CLASSES; k++)
357 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[k], superclass);
359 superclass:
360 reg_class_superunion[i][j] = (enum reg_class) k;
364 /* Initialize the tables of subclasses and superclasses of each reg class.
365 First clear the whole table, then add the elements as they are found. */
367 for (i = 0; i < N_REG_CLASSES; i++)
369 for (j = 0; j < N_REG_CLASSES; j++)
371 reg_class_superclasses[i][j] = LIM_REG_CLASSES;
372 reg_class_subclasses[i][j] = LIM_REG_CLASSES;
376 for (i = 0; i < N_REG_CLASSES; i++)
378 if (i == (int) NO_REGS)
379 continue;
381 for (j = i + 1; j < N_REG_CLASSES; j++)
383 enum reg_class *p;
385 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], reg_class_contents[j],
386 subclass);
387 continue;
388 subclass:
389 /* Reg class I is a subclass of J.
390 Add J to the table of superclasses of I. */
391 p = &reg_class_superclasses[i][0];
392 while (*p != LIM_REG_CLASSES) p++;
393 *p = (enum reg_class) j;
394 /* Add I to the table of superclasses of J. */
395 p = &reg_class_subclasses[j][0];
396 while (*p != LIM_REG_CLASSES) p++;
397 *p = (enum reg_class) i;
401 /* Initialize "constant" tables. */
403 CLEAR_HARD_REG_SET (fixed_reg_set);
404 CLEAR_HARD_REG_SET (call_used_reg_set);
405 CLEAR_HARD_REG_SET (call_fixed_reg_set);
407 memcpy (call_fixed_regs, fixed_regs, sizeof call_fixed_regs);
409 n_non_fixed_regs = 0;
411 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
413 if (fixed_regs[i])
414 SET_HARD_REG_BIT (fixed_reg_set, i);
415 else
416 n_non_fixed_regs++;
418 if (call_used_regs[i])
419 SET_HARD_REG_BIT (call_used_reg_set, i);
420 if (call_fixed_regs[i])
421 SET_HARD_REG_BIT (call_fixed_reg_set, i);
422 if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (i)))
423 SET_HARD_REG_BIT (losing_caller_save_reg_set, i);
426 /* Initialize the move cost table. Find every subset of each class
427 and take the maximum cost of moving any subset to any other. */
429 for (i = 0; i < N_REG_CLASSES; i++)
430 for (j = 0; j < N_REG_CLASSES; j++)
432 int cost = i == j ? 2 : REGISTER_MOVE_COST (i, j);
433 enum reg_class *p1, *p2;
435 for (p2 = &reg_class_subclasses[j][0]; *p2 != LIM_REG_CLASSES; p2++)
436 if (*p2 != i)
437 cost = MAX (cost, REGISTER_MOVE_COST (i, *p2));
439 for (p1 = &reg_class_subclasses[i][0]; *p1 != LIM_REG_CLASSES; p1++)
441 if (*p1 != j)
442 cost = MAX (cost, REGISTER_MOVE_COST (*p1, j));
444 for (p2 = &reg_class_subclasses[j][0];
445 *p2 != LIM_REG_CLASSES; p2++)
446 if (*p1 != *p2)
447 cost = MAX (cost, REGISTER_MOVE_COST (*p1, *p2));
450 move_cost[i][j] = cost;
452 if (reg_class_subset_p (i, j))
453 may_move_in_cost[i][j] = 0;
454 else
455 may_move_in_cost[i][j] = cost;
457 if (reg_class_subset_p (j, i))
458 may_move_out_cost[i][j] = 0;
459 else
460 may_move_out_cost[i][j] = cost;
463 #ifdef CLASS_CANNOT_CHANGE_MODE
465 HARD_REG_SET c;
466 COMPL_HARD_REG_SET (c, reg_class_contents[CLASS_CANNOT_CHANGE_MODE]);
468 for (i = 0; i < N_REG_CLASSES; i++)
470 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], c, ok_class);
471 class_can_change_mode [i] = 0;
472 continue;
473 ok_class:
474 class_can_change_mode [i] = 1;
477 #endif /* CLASS_CANNOT_CHANGE_MODE */
480 /* Compute the table of register modes.
481 These values are used to record death information for individual registers
482 (as opposed to a multi-register mode). */
484 static void
485 init_reg_modes ()
487 register int i;
489 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
491 reg_raw_mode[i] = choose_hard_reg_mode (i, 1);
493 /* If we couldn't find a valid mode, just use the previous mode.
494 ??? One situation in which we need to do this is on the mips where
495 HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2. Ideally we'd like
496 to use DF mode for the even registers and VOIDmode for the odd
497 (for the cpu models where the odd ones are inaccessible). */
498 if (reg_raw_mode[i] == VOIDmode)
499 reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
503 /* Finish initializing the register sets and
504 initialize the register modes. */
506 void
507 init_regs ()
509 /* This finishes what was started by init_reg_sets, but couldn't be done
510 until after register usage was specified. */
511 init_reg_sets_1 ();
513 init_reg_modes ();
515 #ifdef HAVE_SECONDARY_RELOADS
517 /* Make some fake stack-frame MEM references for use in
518 memory_move_secondary_cost. */
519 int i;
521 for (i = 0; i < MAX_MACHINE_MODE; i++)
522 top_of_stack[i] = gen_rtx_MEM (i, stack_pointer_rtx);
523 ggc_add_rtx_root (top_of_stack, MAX_MACHINE_MODE);
525 #endif
528 #ifdef HAVE_SECONDARY_RELOADS
530 /* Compute extra cost of moving registers to/from memory due to reloads.
531 Only needed if secondary reloads are required for memory moves. */
534 memory_move_secondary_cost (mode, class, in)
535 enum machine_mode mode;
536 enum reg_class class;
537 int in;
539 enum reg_class altclass;
540 int partial_cost = 0;
541 /* We need a memory reference to feed to SECONDARY... macros. */
542 /* mem may be unused even if the SECONDARY_ macros are defined. */
543 rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
546 if (in)
548 #ifdef SECONDARY_INPUT_RELOAD_CLASS
549 altclass = SECONDARY_INPUT_RELOAD_CLASS (class, mode, mem);
550 #else
551 altclass = NO_REGS;
552 #endif
554 else
556 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
557 altclass = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, mem);
558 #else
559 altclass = NO_REGS;
560 #endif
563 if (altclass == NO_REGS)
564 return 0;
566 if (in)
567 partial_cost = REGISTER_MOVE_COST (altclass, class);
568 else
569 partial_cost = REGISTER_MOVE_COST (class, altclass);
571 if (class == altclass)
572 /* This isn't simply a copy-to-temporary situation. Can't guess
573 what it is, so MEMORY_MOVE_COST really ought not to be calling
574 here in that case.
576 I'm tempted to put in an abort here, but returning this will
577 probably only give poor estimates, which is what we would've
578 had before this code anyways. */
579 return partial_cost;
581 /* Check if the secondary reload register will also need a
582 secondary reload. */
583 return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
585 #endif
587 /* Return a machine mode that is legitimate for hard reg REGNO and large
588 enough to save nregs. If we can't find one, return VOIDmode. */
590 enum machine_mode
591 choose_hard_reg_mode (regno, nregs)
592 unsigned int regno ATTRIBUTE_UNUSED;
593 unsigned int nregs;
595 enum machine_mode found_mode = VOIDmode, mode;
597 /* We first look for the largest integer mode that can be validly
598 held in REGNO. If none, we look for the largest floating-point mode.
599 If we still didn't find a valid mode, try CCmode. */
601 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
602 mode != VOIDmode;
603 mode = GET_MODE_WIDER_MODE (mode))
604 if (HARD_REGNO_NREGS (regno, mode) == nregs
605 && HARD_REGNO_MODE_OK (regno, mode))
606 found_mode = mode;
608 if (found_mode != VOIDmode)
609 return found_mode;
611 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
612 mode != VOIDmode;
613 mode = GET_MODE_WIDER_MODE (mode))
614 if (HARD_REGNO_NREGS (regno, mode) == nregs
615 && HARD_REGNO_MODE_OK (regno, mode))
616 found_mode = mode;
618 if (found_mode != VOIDmode)
619 return found_mode;
621 /* Iterate over all of the CCmodes. */
622 for (mode = CCmode; mode < NUM_MACHINE_MODES; ++mode)
623 if (HARD_REGNO_NREGS (regno, mode) == nregs
624 && HARD_REGNO_MODE_OK (regno, mode))
625 return mode;
627 /* We can't find a mode valid for this register. */
628 return VOIDmode;
631 /* Specify the usage characteristics of the register named NAME.
632 It should be a fixed register if FIXED and a
633 call-used register if CALL_USED. */
635 void
636 fix_register (name, fixed, call_used)
637 const char *name;
638 int fixed, call_used;
640 int i;
642 /* Decode the name and update the primary form of
643 the register info. */
645 if ((i = decode_reg_name (name)) >= 0)
647 if ((i == STACK_POINTER_REGNUM
648 #ifdef HARD_FRAME_POINTER_REGNUM
649 || i == HARD_FRAME_POINTER_REGNUM
650 #else
651 || i == FRAME_POINTER_REGNUM
652 #endif
654 && (fixed == 0 || call_used == 0))
656 static const char * const what_option[2][2] = {
657 { "call-saved", "call-used" },
658 { "no-such-option", "fixed" }};
660 error ("can't use '%s' as a %s register", name,
661 what_option[fixed][call_used]);
663 else
665 fixed_regs[i] = fixed;
666 call_used_regs[i] = call_used;
669 else
671 warning ("unknown register name: %s", name);
675 /* Mark register number I as global. */
677 void
678 globalize_reg (i)
679 int i;
681 if (fixed_regs[i] == 0 && no_global_reg_vars)
682 error ("global register variable follows a function definition");
684 if (global_regs[i])
686 warning ("register used for two global register variables");
687 return;
690 if (call_used_regs[i] && ! fixed_regs[i])
691 warning ("call-clobbered register used for global register variable");
693 global_regs[i] = 1;
695 /* If already fixed, nothing else to do. */
696 if (fixed_regs[i])
697 return;
699 fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1;
700 n_non_fixed_regs--;
702 SET_HARD_REG_BIT (fixed_reg_set, i);
703 SET_HARD_REG_BIT (call_used_reg_set, i);
704 SET_HARD_REG_BIT (call_fixed_reg_set, i);
707 /* Now the data and code for the `regclass' pass, which happens
708 just before local-alloc. */
710 /* The `costs' struct records the cost of using a hard register of each class
711 and of using memory for each pseudo. We use this data to set up
712 register class preferences. */
714 struct costs
716 int cost[N_REG_CLASSES];
717 int mem_cost;
720 /* Structure used to record preferrences of given pseudo. */
721 struct reg_pref
723 /* (enum reg_class) prefclass is the preferred class. */
724 char prefclass;
726 /* altclass is a register class that we should use for allocating
727 pseudo if no register in the preferred class is available.
728 If no register in this class is available, memory is preferred.
730 It might appear to be more general to have a bitmask of classes here,
731 but since it is recommended that there be a class corresponding to the
732 union of most major pair of classes, that generality is not required. */
733 char altclass;
736 /* Record the cost of each class for each pseudo. */
738 static struct costs *costs;
740 /* Initialized once, and used to initialize cost values for each insn. */
742 static struct costs init_cost;
744 /* Record preferrences of each pseudo.
745 This is available after `regclass' is run. */
747 static struct reg_pref *reg_pref;
749 /* Allocated buffers for reg_pref. */
751 static struct reg_pref *reg_pref_buffer;
753 /* Account for the fact that insns within a loop are executed very commonly,
754 but don't keep doing this as loops go too deep. */
756 static int loop_cost;
758 static rtx scan_one_insn PARAMS ((rtx, int));
759 static void record_operand_costs PARAMS ((rtx, struct costs *, struct reg_pref *));
760 static void dump_regclass PARAMS ((FILE *));
761 static void record_reg_classes PARAMS ((int, int, rtx *, enum machine_mode *,
762 const char **, rtx,
763 struct costs *, struct reg_pref *));
764 static int copy_cost PARAMS ((rtx, enum machine_mode,
765 enum reg_class, int));
766 static void record_address_regs PARAMS ((rtx, enum reg_class, int));
767 #ifdef FORBIDDEN_INC_DEC_CLASSES
768 static int auto_inc_dec_reg_p PARAMS ((rtx, enum machine_mode));
769 #endif
770 static void reg_scan_mark_refs PARAMS ((rtx, rtx, int, unsigned int));
772 /* Return the reg_class in which pseudo reg number REGNO is best allocated.
773 This function is sometimes called before the info has been computed.
774 When that happens, just return GENERAL_REGS, which is innocuous. */
776 enum reg_class
777 reg_preferred_class (regno)
778 int regno;
780 if (reg_pref == 0)
781 return GENERAL_REGS;
782 return (enum reg_class) reg_pref[regno].prefclass;
785 enum reg_class
786 reg_alternate_class (regno)
787 int regno;
789 if (reg_pref == 0)
790 return ALL_REGS;
792 return (enum reg_class) reg_pref[regno].altclass;
795 /* Initialize some global data for this pass. */
797 void
798 regclass_init ()
800 int i;
802 init_cost.mem_cost = 10000;
803 for (i = 0; i < N_REG_CLASSES; i++)
804 init_cost.cost[i] = 10000;
806 /* This prevents dump_flow_info from losing if called
807 before regclass is run. */
808 reg_pref = NULL;
810 /* No more global register variables may be declared. */
811 no_global_reg_vars = 1;
814 /* Dump register costs. */
815 static void
816 dump_regclass (dump)
817 FILE *dump;
819 static const char *const reg_class_names[] = REG_CLASS_NAMES;
820 int i;
821 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
823 enum reg_class class;
824 if (REG_N_REFS (i))
826 fprintf (dump, " Register %i costs:", i);
827 for (class = 0; class < N_REG_CLASSES; class++)
828 fprintf (dump, " %s:%i", reg_class_names[(int) class],
829 costs[i].cost[class]);
830 fprintf (dump, " MEM:%i\n", costs[i].mem_cost);
836 /* Calculate the costs of insn operands. */
838 static void
839 record_operand_costs (insn, op_costs, reg_pref)
840 rtx insn;
841 struct costs *op_costs;
842 struct reg_pref *reg_pref;
844 const char *constraints[MAX_RECOG_OPERANDS];
845 enum machine_mode modes[MAX_RECOG_OPERANDS];
846 int i;
848 for (i = 0; i < recog_data.n_operands; i++)
850 constraints[i] = recog_data.constraints[i];
851 modes[i] = recog_data.operand_mode[i];
854 /* If we get here, we are set up to record the costs of all the
855 operands for this insn. Start by initializing the costs.
856 Then handle any address registers. Finally record the desired
857 classes for any pseudos, doing it twice if some pair of
858 operands are commutative. */
860 for (i = 0; i < recog_data.n_operands; i++)
862 op_costs[i] = init_cost;
864 if (GET_CODE (recog_data.operand[i]) == SUBREG)
866 rtx inner = SUBREG_REG (recog_data.operand[i]);
867 #ifdef CLASS_CANNOT_CHANGE_MODE
868 if (GET_CODE (inner) == REG
869 && CLASS_CANNOT_CHANGE_MODE_P (modes[i], GET_MODE (inner)))
870 SET_REGNO_REG_SET (reg_changes_mode, REGNO (inner));
871 #endif
872 recog_data.operand[i] = inner;
875 if (GET_CODE (recog_data.operand[i]) == MEM)
876 record_address_regs (XEXP (recog_data.operand[i], 0),
877 BASE_REG_CLASS, loop_cost * 2);
878 else if (constraints[i][0] == 'p')
879 record_address_regs (recog_data.operand[i],
880 BASE_REG_CLASS, loop_cost * 2);
883 /* Check for commutative in a separate loop so everything will
884 have been initialized. We must do this even if one operand
885 is a constant--see addsi3 in m68k.md. */
887 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
888 if (constraints[i][0] == '%')
890 const char *xconstraints[MAX_RECOG_OPERANDS];
891 int j;
893 /* Handle commutative operands by swapping the constraints.
894 We assume the modes are the same. */
896 for (j = 0; j < recog_data.n_operands; j++)
897 xconstraints[j] = constraints[j];
899 xconstraints[i] = constraints[i+1];
900 xconstraints[i+1] = constraints[i];
901 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
902 recog_data.operand, modes,
903 xconstraints, insn, op_costs, reg_pref);
906 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
907 recog_data.operand, modes,
908 constraints, insn, op_costs, reg_pref);
911 /* Subroutine of regclass, processes one insn INSN. Scan it and record each
912 time it would save code to put a certain register in a certain class.
913 PASS, when nonzero, inhibits some optimizations which need only be done
914 once.
915 Return the last insn processed, so that the scan can be continued from
916 there. */
918 static rtx
919 scan_one_insn (insn, pass)
920 rtx insn;
921 int pass;
923 enum rtx_code code = GET_CODE (insn);
924 enum rtx_code pat_code;
925 rtx set, note;
926 int i, j;
927 struct costs op_costs[MAX_RECOG_OPERANDS];
929 if (GET_RTX_CLASS (code) != 'i')
930 return insn;
932 pat_code = GET_CODE (PATTERN (insn));
933 if (pat_code == USE
934 || pat_code == CLOBBER
935 || pat_code == ASM_INPUT
936 || pat_code == ADDR_VEC
937 || pat_code == ADDR_DIFF_VEC)
938 return insn;
940 set = single_set (insn);
941 extract_insn (insn);
943 /* If this insn loads a parameter from its stack slot, then
944 it represents a savings, rather than a cost, if the
945 parameter is stored in memory. Record this fact. */
947 if (set != 0 && GET_CODE (SET_DEST (set)) == REG
948 && GET_CODE (SET_SRC (set)) == MEM
949 && (note = find_reg_note (insn, REG_EQUIV,
950 NULL_RTX)) != 0
951 && GET_CODE (XEXP (note, 0)) == MEM)
953 costs[REGNO (SET_DEST (set))].mem_cost
954 -= (MEMORY_MOVE_COST (GET_MODE (SET_DEST (set)),
955 GENERAL_REGS, 1)
956 * loop_cost);
957 record_address_regs (XEXP (SET_SRC (set), 0),
958 BASE_REG_CLASS, loop_cost * 2);
959 return insn;
962 /* Improve handling of two-address insns such as
963 (set X (ashift CONST Y)) where CONST must be made to
964 match X. Change it into two insns: (set X CONST)
965 (set X (ashift X Y)). If we left this for reloading, it
966 would probably get three insns because X and Y might go
967 in the same place. This prevents X and Y from receiving
968 the same hard reg.
970 We can only do this if the modes of operands 0 and 1
971 (which might not be the same) are tieable and we only need
972 do this during our first pass. */
974 if (pass == 0 && optimize
975 && recog_data.n_operands >= 3
976 && recog_data.constraints[1][0] == '0'
977 && recog_data.constraints[1][1] == 0
978 && CONSTANT_P (recog_data.operand[1])
979 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[1])
980 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[2])
981 && GET_CODE (recog_data.operand[0]) == REG
982 && MODES_TIEABLE_P (GET_MODE (recog_data.operand[0]),
983 recog_data.operand_mode[1]))
985 rtx previnsn = prev_real_insn (insn);
986 rtx dest
987 = gen_lowpart (recog_data.operand_mode[1],
988 recog_data.operand[0]);
989 rtx newinsn
990 = emit_insn_before (gen_move_insn (dest, recog_data.operand[1]), insn);
992 /* If this insn was the start of a basic block,
993 include the new insn in that block.
994 We need not check for code_label here;
995 while a basic block can start with a code_label,
996 INSN could not be at the beginning of that block. */
997 if (previnsn == 0 || GET_CODE (previnsn) == JUMP_INSN)
999 int b;
1000 for (b = 0; b < n_basic_blocks; b++)
1001 if (insn == BLOCK_HEAD (b))
1002 BLOCK_HEAD (b) = newinsn;
1005 /* This makes one more setting of new insns's dest. */
1006 REG_N_SETS (REGNO (recog_data.operand[0]))++;
1008 *recog_data.operand_loc[1] = recog_data.operand[0];
1009 for (i = recog_data.n_dups - 1; i >= 0; i--)
1010 if (recog_data.dup_num[i] == 1)
1011 *recog_data.dup_loc[i] = recog_data.operand[0];
1013 return PREV_INSN (newinsn);
1016 record_operand_costs (insn, op_costs, reg_pref);
1018 /* Now add the cost for each operand to the total costs for
1019 its register. */
1021 for (i = 0; i < recog_data.n_operands; i++)
1022 if (GET_CODE (recog_data.operand[i]) == REG
1023 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
1025 int regno = REGNO (recog_data.operand[i]);
1026 struct costs *p = &costs[regno], *q = &op_costs[i];
1028 p->mem_cost += q->mem_cost * loop_cost;
1029 for (j = 0; j < N_REG_CLASSES; j++)
1030 p->cost[j] += q->cost[j] * loop_cost;
1033 return insn;
1036 /* This is a pass of the compiler that scans all instructions
1037 and calculates the preferred class for each pseudo-register.
1038 This information can be accessed later by calling `reg_preferred_class'.
1039 This pass comes just before local register allocation. */
1041 void
1042 regclass (f, nregs, dump)
1043 rtx f;
1044 int nregs;
1045 FILE *dump;
1047 register rtx insn;
1048 register int i;
1049 int pass;
1051 init_recog ();
1053 costs = (struct costs *) xmalloc (nregs * sizeof (struct costs));
1055 #ifdef CLASS_CANNOT_CHANGE_MODE
1056 reg_changes_mode = BITMAP_XMALLOC();
1057 #endif
1059 #ifdef FORBIDDEN_INC_DEC_CLASSES
1061 in_inc_dec = (char *) xmalloc (nregs);
1063 /* Initialize information about which register classes can be used for
1064 pseudos that are auto-incremented or auto-decremented. It would
1065 seem better to put this in init_reg_sets, but we need to be able
1066 to allocate rtx, which we can't do that early. */
1068 for (i = 0; i < N_REG_CLASSES; i++)
1070 rtx r = gen_rtx_REG (VOIDmode, 0);
1071 enum machine_mode m;
1072 register int j;
1074 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1075 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
1077 REGNO (r) = j;
1079 for (m = VOIDmode; (int) m < (int) MAX_MACHINE_MODE;
1080 m = (enum machine_mode) ((int) m + 1))
1081 if (HARD_REGNO_MODE_OK (j, m))
1083 PUT_MODE (r, m);
1085 /* If a register is not directly suitable for an
1086 auto-increment or decrement addressing mode and
1087 requires secondary reloads, disallow its class from
1088 being used in such addresses. */
1090 if ((0
1091 #ifdef SECONDARY_RELOAD_CLASS
1092 || (SECONDARY_RELOAD_CLASS (BASE_REG_CLASS, m, r)
1093 != NO_REGS)
1094 #else
1095 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1096 || (SECONDARY_INPUT_RELOAD_CLASS (BASE_REG_CLASS, m, r)
1097 != NO_REGS)
1098 #endif
1099 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1100 || (SECONDARY_OUTPUT_RELOAD_CLASS (BASE_REG_CLASS, m, r)
1101 != NO_REGS)
1102 #endif
1103 #endif
1105 && ! auto_inc_dec_reg_p (r, m))
1106 forbidden_inc_dec_class[i] = 1;
1110 #endif /* FORBIDDEN_INC_DEC_CLASSES */
1112 /* Normally we scan the insns once and determine the best class to use for
1113 each register. However, if -fexpensive_optimizations are on, we do so
1114 twice, the second time using the tentative best classes to guide the
1115 selection. */
1117 for (pass = 0; pass <= flag_expensive_optimizations; pass++)
1119 int index;
1121 if (dump)
1122 fprintf (dump, "\n\nPass %i\n\n",pass);
1123 /* Zero out our accumulation of the cost of each class for each reg. */
1125 memset ((char *) costs, 0, nregs * sizeof (struct costs));
1127 #ifdef FORBIDDEN_INC_DEC_CLASSES
1128 memset (in_inc_dec, 0, nregs);
1129 #endif
1131 /* Scan the instructions and record each time it would
1132 save code to put a certain register in a certain class. */
1134 if (!optimize)
1136 loop_cost = 1;
1137 for (insn = f; insn; insn = NEXT_INSN (insn))
1138 insn = scan_one_insn (insn, pass);
1140 else
1141 for (index = 0; index < n_basic_blocks; index++)
1143 basic_block bb = BASIC_BLOCK (index);
1145 /* Show that an insn inside a loop is likely to be executed three
1146 times more than insns outside a loop. This is much more
1147 aggressive than the assumptions made elsewhere and is being
1148 tried as an experiment. */
1149 if (optimize_size)
1150 loop_cost = 1;
1151 else
1152 loop_cost = 1 << (2 * MIN (bb->loop_depth, 5));
1153 for (insn = bb->head; ; insn = NEXT_INSN (insn))
1155 insn = scan_one_insn (insn, pass);
1156 if (insn == bb->end)
1157 break;
1161 /* Now for each register look at how desirable each class is
1162 and find which class is preferred. Store that in
1163 `prefclass'. Record in `altclass' the largest register
1164 class any of whose registers is better than memory. */
1166 if (pass == 0)
1167 reg_pref = reg_pref_buffer;
1169 if (dump)
1171 dump_regclass (dump);
1172 fprintf (dump,"\n");
1174 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
1176 register int best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1177 enum reg_class best = ALL_REGS, alt = NO_REGS;
1178 /* This is an enum reg_class, but we call it an int
1179 to save lots of casts. */
1180 register int class;
1181 register struct costs *p = &costs[i];
1183 /* In non-optimizing compilation REG_N_REFS is not initialized
1184 yet. */
1185 if (optimize && !REG_N_REFS (i))
1186 continue;
1188 for (class = (int) ALL_REGS - 1; class > 0; class--)
1190 /* Ignore classes that are too small for this operand or
1191 invalid for a operand that was auto-incremented. */
1192 if (CLASS_MAX_NREGS (class, PSEUDO_REGNO_MODE (i))
1193 > reg_class_size[class]
1194 #ifdef FORBIDDEN_INC_DEC_CLASSES
1195 || (in_inc_dec[i] && forbidden_inc_dec_class[class])
1196 #endif
1197 #ifdef CLASS_CANNOT_CHANGE_MODE
1198 || (REGNO_REG_SET_P (reg_changes_mode, i)
1199 && ! class_can_change_mode [class])
1200 #endif
1203 else if (p->cost[class] < best_cost)
1205 best_cost = p->cost[class];
1206 best = (enum reg_class) class;
1208 else if (p->cost[class] == best_cost)
1209 best = reg_class_subunion[(int)best][class];
1212 /* Record the alternate register class; i.e., a class for which
1213 every register in it is better than using memory. If adding a
1214 class would make a smaller class (i.e., no union of just those
1215 classes exists), skip that class. The major unions of classes
1216 should be provided as a register class. Don't do this if we
1217 will be doing it again later. */
1219 if ((pass == 1 || dump) || ! flag_expensive_optimizations)
1220 for (class = 0; class < N_REG_CLASSES; class++)
1221 if (p->cost[class] < p->mem_cost
1222 && (reg_class_size[(int) reg_class_subunion[(int) alt][class]]
1223 > reg_class_size[(int) alt])
1224 #ifdef FORBIDDEN_INC_DEC_CLASSES
1225 && ! (in_inc_dec[i] && forbidden_inc_dec_class[class])
1226 #endif
1227 #ifdef CLASS_CANNOT_CHANGE_MODE
1228 && ! (REGNO_REG_SET_P (reg_changes_mode, i)
1229 && ! class_can_change_mode [class])
1230 #endif
1232 alt = reg_class_subunion[(int) alt][class];
1234 /* If we don't add any classes, nothing to try. */
1235 if (alt == best)
1236 alt = NO_REGS;
1238 if (dump
1239 && (reg_pref[i].prefclass != (int) best
1240 || reg_pref[i].altclass != (int) alt))
1242 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1243 fprintf (dump, " Register %i", i);
1244 if (alt == ALL_REGS || best == ALL_REGS)
1245 fprintf (dump, " pref %s\n", reg_class_names[(int) best]);
1246 else if (alt == NO_REGS)
1247 fprintf (dump, " pref %s or none\n", reg_class_names[(int) best]);
1248 else
1249 fprintf (dump, " pref %s, else %s\n",
1250 reg_class_names[(int) best],
1251 reg_class_names[(int) alt]);
1254 /* We cast to (int) because (char) hits bugs in some compilers. */
1255 reg_pref[i].prefclass = (int) best;
1256 reg_pref[i].altclass = (int) alt;
1260 #ifdef FORBIDDEN_INC_DEC_CLASSES
1261 free (in_inc_dec);
1262 #endif
1263 #ifdef CLASS_CANNOT_CHANGE_MODE
1264 BITMAP_XFREE (reg_changes_mode);
1265 #endif
1266 free (costs);
1269 /* Record the cost of using memory or registers of various classes for
1270 the operands in INSN.
1272 N_ALTS is the number of alternatives.
1274 N_OPS is the number of operands.
1276 OPS is an array of the operands.
1278 MODES are the modes of the operands, in case any are VOIDmode.
1280 CONSTRAINTS are the constraints to use for the operands. This array
1281 is modified by this procedure.
1283 This procedure works alternative by alternative. For each alternative
1284 we assume that we will be able to allocate all pseudos to their ideal
1285 register class and calculate the cost of using that alternative. Then
1286 we compute for each operand that is a pseudo-register, the cost of
1287 having the pseudo allocated to each register class and using it in that
1288 alternative. To this cost is added the cost of the alternative.
1290 The cost of each class for this insn is its lowest cost among all the
1291 alternatives. */
1293 static void
1294 record_reg_classes (n_alts, n_ops, ops, modes,
1295 constraints, insn, op_costs, reg_pref)
1296 int n_alts;
1297 int n_ops;
1298 rtx *ops;
1299 enum machine_mode *modes;
1300 const char **constraints;
1301 rtx insn;
1302 struct costs *op_costs;
1303 struct reg_pref *reg_pref;
1305 int alt;
1306 int i, j;
1307 rtx set;
1309 /* Process each alternative, each time minimizing an operand's cost with
1310 the cost for each operand in that alternative. */
1312 for (alt = 0; alt < n_alts; alt++)
1314 struct costs this_op_costs[MAX_RECOG_OPERANDS];
1315 int alt_fail = 0;
1316 int alt_cost = 0;
1317 enum reg_class classes[MAX_RECOG_OPERANDS];
1318 int allows_mem[MAX_RECOG_OPERANDS];
1319 int class;
1321 for (i = 0; i < n_ops; i++)
1323 const char *p = constraints[i];
1324 rtx op = ops[i];
1325 enum machine_mode mode = modes[i];
1326 int allows_addr = 0;
1327 int win = 0;
1328 unsigned char c;
1330 /* Initially show we know nothing about the register class. */
1331 classes[i] = NO_REGS;
1332 allows_mem[i] = 0;
1334 /* If this operand has no constraints at all, we can conclude
1335 nothing about it since anything is valid. */
1337 if (*p == 0)
1339 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1340 memset ((char *) &this_op_costs[i], 0, sizeof this_op_costs[i]);
1342 continue;
1345 /* If this alternative is only relevant when this operand
1346 matches a previous operand, we do different things depending
1347 on whether this operand is a pseudo-reg or not. We must process
1348 any modifiers for the operand before we can make this test. */
1350 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
1351 p++;
1353 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
1355 /* Copy class and whether memory is allowed from the matching
1356 alternative. Then perform any needed cost computations
1357 and/or adjustments. */
1358 j = p[0] - '0';
1359 classes[i] = classes[j];
1360 allows_mem[i] = allows_mem[j];
1362 if (GET_CODE (op) != REG || REGNO (op) < FIRST_PSEUDO_REGISTER)
1364 /* If this matches the other operand, we have no added
1365 cost and we win. */
1366 if (rtx_equal_p (ops[j], op))
1367 win = 1;
1369 /* If we can put the other operand into a register, add to
1370 the cost of this alternative the cost to copy this
1371 operand to the register used for the other operand. */
1373 else if (classes[j] != NO_REGS)
1374 alt_cost += copy_cost (op, mode, classes[j], 1), win = 1;
1376 else if (GET_CODE (ops[j]) != REG
1377 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
1379 /* This op is a pseudo but the one it matches is not. */
1381 /* If we can't put the other operand into a register, this
1382 alternative can't be used. */
1384 if (classes[j] == NO_REGS)
1385 alt_fail = 1;
1387 /* Otherwise, add to the cost of this alternative the cost
1388 to copy the other operand to the register used for this
1389 operand. */
1391 else
1392 alt_cost += copy_cost (ops[j], mode, classes[j], 1);
1394 else
1396 /* The costs of this operand are not the same as the other
1397 operand since move costs are not symmetric. Moreover,
1398 if we cannot tie them, this alternative needs to do a
1399 copy, which is one instruction. */
1401 struct costs *pp = &this_op_costs[i];
1403 for (class = 0; class < N_REG_CLASSES; class++)
1404 pp->cost[class]
1405 = ((recog_data.operand_type[i] != OP_OUT
1406 ? may_move_in_cost[class][(int) classes[i]]
1407 : 0)
1408 + (recog_data.operand_type[i] != OP_IN
1409 ? may_move_out_cost[(int) classes[i]][class]
1410 : 0));
1412 /* If the alternative actually allows memory, make things
1413 a bit cheaper since we won't need an extra insn to
1414 load it. */
1416 pp->mem_cost
1417 = ((recog_data.operand_type[i] != OP_IN
1418 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1419 : 0)
1420 + (recog_data.operand_type[i] != OP_OUT
1421 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1422 : 0) - allows_mem[i]);
1424 /* If we have assigned a class to this register in our
1425 first pass, add a cost to this alternative corresponding
1426 to what we would add if this register were not in the
1427 appropriate class. */
1429 if (reg_pref)
1430 alt_cost
1431 += (may_move_in_cost[(unsigned char) reg_pref[REGNO (op)].prefclass]
1432 [(int) classes[i]]);
1434 if (REGNO (ops[i]) != REGNO (ops[j])
1435 && ! find_reg_note (insn, REG_DEAD, op))
1436 alt_cost += 2;
1438 /* This is in place of ordinary cost computation
1439 for this operand, so skip to the end of the
1440 alternative (should be just one character). */
1441 while (*p && *p++ != ',')
1444 constraints[i] = p;
1445 continue;
1449 /* Scan all the constraint letters. See if the operand matches
1450 any of the constraints. Collect the valid register classes
1451 and see if this operand accepts memory. */
1453 while (*p && (c = *p++) != ',')
1454 switch (c)
1456 case '*':
1457 /* Ignore the next letter for this pass. */
1458 p++;
1459 break;
1461 case '?':
1462 alt_cost += 2;
1463 case '!': case '#': case '&':
1464 case '0': case '1': case '2': case '3': case '4':
1465 case '5': case '6': case '7': case '8': case '9':
1466 break;
1468 case 'p':
1469 allows_addr = 1;
1470 win = address_operand (op, GET_MODE (op));
1471 /* We know this operand is an address, so we want it to be
1472 allocated to a register that can be the base of an
1473 address, ie BASE_REG_CLASS. */
1474 classes[i]
1475 = reg_class_subunion[(int) classes[i]]
1476 [(int) BASE_REG_CLASS];
1477 break;
1479 case 'm': case 'o': case 'V':
1480 /* It doesn't seem worth distinguishing between offsettable
1481 and non-offsettable addresses here. */
1482 allows_mem[i] = 1;
1483 if (GET_CODE (op) == MEM)
1484 win = 1;
1485 break;
1487 case '<':
1488 if (GET_CODE (op) == MEM
1489 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
1490 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1491 win = 1;
1492 break;
1494 case '>':
1495 if (GET_CODE (op) == MEM
1496 && (GET_CODE (XEXP (op, 0)) == PRE_INC
1497 || GET_CODE (XEXP (op, 0)) == POST_INC))
1498 win = 1;
1499 break;
1501 case 'E':
1502 #ifndef REAL_ARITHMETIC
1503 /* Match any floating double constant, but only if
1504 we can examine the bits of it reliably. */
1505 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
1506 || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
1507 && GET_MODE (op) != VOIDmode && ! flag_pretend_float)
1508 break;
1509 #endif
1510 if (GET_CODE (op) == CONST_DOUBLE)
1511 win = 1;
1512 break;
1514 case 'F':
1515 if (GET_CODE (op) == CONST_DOUBLE)
1516 win = 1;
1517 break;
1519 case 'G':
1520 case 'H':
1521 if (GET_CODE (op) == CONST_DOUBLE
1522 && CONST_DOUBLE_OK_FOR_LETTER_P (op, c))
1523 win = 1;
1524 break;
1526 case 's':
1527 if (GET_CODE (op) == CONST_INT
1528 || (GET_CODE (op) == CONST_DOUBLE
1529 && GET_MODE (op) == VOIDmode))
1530 break;
1531 case 'i':
1532 if (CONSTANT_P (op)
1533 #ifdef LEGITIMATE_PIC_OPERAND_P
1534 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1535 #endif
1537 win = 1;
1538 break;
1540 case 'n':
1541 if (GET_CODE (op) == CONST_INT
1542 || (GET_CODE (op) == CONST_DOUBLE
1543 && GET_MODE (op) == VOIDmode))
1544 win = 1;
1545 break;
1547 case 'I':
1548 case 'J':
1549 case 'K':
1550 case 'L':
1551 case 'M':
1552 case 'N':
1553 case 'O':
1554 case 'P':
1555 if (GET_CODE (op) == CONST_INT
1556 && CONST_OK_FOR_LETTER_P (INTVAL (op), c))
1557 win = 1;
1558 break;
1560 case 'X':
1561 win = 1;
1562 break;
1564 case 'g':
1565 if (GET_CODE (op) == MEM
1566 || (CONSTANT_P (op)
1567 #ifdef LEGITIMATE_PIC_OPERAND_P
1568 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1569 #endif
1571 win = 1;
1572 allows_mem[i] = 1;
1573 case 'r':
1574 classes[i]
1575 = reg_class_subunion[(int) classes[i]][(int) GENERAL_REGS];
1576 break;
1578 default:
1579 if (REG_CLASS_FROM_LETTER (c) != NO_REGS)
1580 classes[i]
1581 = reg_class_subunion[(int) classes[i]]
1582 [(int) REG_CLASS_FROM_LETTER (c)];
1583 #ifdef EXTRA_CONSTRAINT
1584 else if (EXTRA_CONSTRAINT (op, c))
1585 win = 1;
1586 #endif
1587 break;
1590 constraints[i] = p;
1592 /* How we account for this operand now depends on whether it is a
1593 pseudo register or not. If it is, we first check if any
1594 register classes are valid. If not, we ignore this alternative,
1595 since we want to assume that all pseudos get allocated for
1596 register preferencing. If some register class is valid, compute
1597 the costs of moving the pseudo into that class. */
1599 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1601 if (classes[i] == NO_REGS)
1603 /* We must always fail if the operand is a REG, but
1604 we did not find a suitable class.
1606 Otherwise we may perform an uninitialized read
1607 from this_op_costs after the `continue' statement
1608 below. */
1609 alt_fail = 1;
1611 else
1613 struct costs *pp = &this_op_costs[i];
1615 for (class = 0; class < N_REG_CLASSES; class++)
1616 pp->cost[class]
1617 = ((recog_data.operand_type[i] != OP_OUT
1618 ? may_move_in_cost[class][(int) classes[i]]
1619 : 0)
1620 + (recog_data.operand_type[i] != OP_IN
1621 ? may_move_out_cost[(int) classes[i]][class]
1622 : 0));
1624 /* If the alternative actually allows memory, make things
1625 a bit cheaper since we won't need an extra insn to
1626 load it. */
1628 pp->mem_cost
1629 = ((recog_data.operand_type[i] != OP_IN
1630 ? MEMORY_MOVE_COST (mode, classes[i], 0)
1631 : 0)
1632 + (recog_data.operand_type[i] != OP_OUT
1633 ? MEMORY_MOVE_COST (mode, classes[i], 1)
1634 : 0) - allows_mem[i]);
1636 /* If we have assigned a class to this register in our
1637 first pass, add a cost to this alternative corresponding
1638 to what we would add if this register were not in the
1639 appropriate class. */
1641 if (reg_pref)
1642 alt_cost
1643 += (may_move_in_cost[(unsigned char) reg_pref[REGNO (op)].prefclass]
1644 [(int) classes[i]]);
1648 /* Otherwise, if this alternative wins, either because we
1649 have already determined that or if we have a hard register of
1650 the proper class, there is no cost for this alternative. */
1652 else if (win
1653 || (GET_CODE (op) == REG
1654 && reg_fits_class_p (op, classes[i], 0, GET_MODE (op))))
1657 /* If registers are valid, the cost of this alternative includes
1658 copying the object to and/or from a register. */
1660 else if (classes[i] != NO_REGS)
1662 if (recog_data.operand_type[i] != OP_OUT)
1663 alt_cost += copy_cost (op, mode, classes[i], 1);
1665 if (recog_data.operand_type[i] != OP_IN)
1666 alt_cost += copy_cost (op, mode, classes[i], 0);
1669 /* The only other way this alternative can be used is if this is a
1670 constant that could be placed into memory. */
1672 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
1673 alt_cost += MEMORY_MOVE_COST (mode, classes[i], 1);
1674 else
1675 alt_fail = 1;
1678 if (alt_fail)
1679 continue;
1681 /* Finally, update the costs with the information we've calculated
1682 about this alternative. */
1684 for (i = 0; i < n_ops; i++)
1685 if (GET_CODE (ops[i]) == REG
1686 && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1688 struct costs *pp = &op_costs[i], *qq = &this_op_costs[i];
1689 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
1691 pp->mem_cost = MIN (pp->mem_cost,
1692 (qq->mem_cost + alt_cost) * scale);
1694 for (class = 0; class < N_REG_CLASSES; class++)
1695 pp->cost[class] = MIN (pp->cost[class],
1696 (qq->cost[class] + alt_cost) * scale);
1700 /* If this insn is a single set copying operand 1 to operand 0
1701 and one operand is a pseudo with the other a hard reg or a pseudo
1702 that prefers a register that is in its own register class then
1703 we may want to adjust the cost of that register class to -1.
1705 Avoid the adjustment if the source does not die to avoid stressing of
1706 register allocator by preferrencing two coliding registers into single
1707 class.
1709 Also avoid the adjustment if a copy between registers of the class
1710 is expensive (ten times the cost of a default copy is considered
1711 arbitrarily expensive). This avoids losing when the preferred class
1712 is very expensive as the source of a copy instruction. */
1714 if ((set = single_set (insn)) != 0
1715 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
1716 && GET_CODE (ops[0]) == REG && GET_CODE (ops[1]) == REG
1717 && find_regno_note (insn, REG_DEAD, REGNO (ops[1])))
1718 for (i = 0; i <= 1; i++)
1719 if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1721 unsigned int regno = REGNO (ops[!i]);
1722 enum machine_mode mode = GET_MODE (ops[!i]);
1723 int class;
1724 unsigned int nr;
1726 if (regno >= FIRST_PSEUDO_REGISTER && reg_pref != 0)
1728 enum reg_class pref = reg_pref[regno].prefclass;
1730 if ((reg_class_size[(unsigned char) pref]
1731 == CLASS_MAX_NREGS (pref, mode))
1732 && REGISTER_MOVE_COST (pref, pref) < 10 * 2)
1733 op_costs[i].cost[(unsigned char) pref] = -1;
1735 else if (regno < FIRST_PSEUDO_REGISTER)
1736 for (class = 0; class < N_REG_CLASSES; class++)
1737 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
1738 && reg_class_size[class] == CLASS_MAX_NREGS (class, mode))
1740 if (reg_class_size[class] == 1)
1741 op_costs[i].cost[class] = -1;
1742 else
1744 for (nr = 0; nr < HARD_REGNO_NREGS (regno, mode); nr++)
1746 if (! TEST_HARD_REG_BIT (reg_class_contents[class],
1747 regno + nr))
1748 break;
1751 if (nr == HARD_REGNO_NREGS (regno,mode))
1752 op_costs[i].cost[class] = -1;
1758 /* Compute the cost of loading X into (if TO_P is non-zero) or from (if
1759 TO_P is zero) a register of class CLASS in mode MODE.
1761 X must not be a pseudo. */
1763 static int
1764 copy_cost (x, mode, class, to_p)
1765 rtx x;
1766 enum machine_mode mode ATTRIBUTE_UNUSED;
1767 enum reg_class class;
1768 int to_p ATTRIBUTE_UNUSED;
1770 #ifdef HAVE_SECONDARY_RELOADS
1771 enum reg_class secondary_class = NO_REGS;
1772 #endif
1774 /* If X is a SCRATCH, there is actually nothing to move since we are
1775 assuming optimal allocation. */
1777 if (GET_CODE (x) == SCRATCH)
1778 return 0;
1780 /* Get the class we will actually use for a reload. */
1781 class = PREFERRED_RELOAD_CLASS (x, class);
1783 #ifdef HAVE_SECONDARY_RELOADS
1784 /* If we need a secondary reload (we assume here that we are using
1785 the secondary reload as an intermediate, not a scratch register), the
1786 cost is that to load the input into the intermediate register, then
1787 to copy them. We use a special value of TO_P to avoid recursion. */
1789 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1790 if (to_p == 1)
1791 secondary_class = SECONDARY_INPUT_RELOAD_CLASS (class, mode, x);
1792 #endif
1794 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1795 if (! to_p)
1796 secondary_class = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, x);
1797 #endif
1799 if (secondary_class != NO_REGS)
1800 return (move_cost[(int) secondary_class][(int) class]
1801 + copy_cost (x, mode, secondary_class, 2));
1802 #endif /* HAVE_SECONDARY_RELOADS */
1804 /* For memory, use the memory move cost, for (hard) registers, use the
1805 cost to move between the register classes, and use 2 for everything
1806 else (constants). */
1808 if (GET_CODE (x) == MEM || class == NO_REGS)
1809 return MEMORY_MOVE_COST (mode, class, to_p);
1811 else if (GET_CODE (x) == REG)
1812 return move_cost[(int) REGNO_REG_CLASS (REGNO (x))][(int) class];
1814 else
1815 /* If this is a constant, we may eventually want to call rtx_cost here. */
1816 return COSTS_N_INSNS (1);
1819 /* Record the pseudo registers we must reload into hard registers
1820 in a subexpression of a memory address, X.
1822 CLASS is the class that the register needs to be in and is either
1823 BASE_REG_CLASS or INDEX_REG_CLASS.
1825 SCALE is twice the amount to multiply the cost by (it is twice so we
1826 can represent half-cost adjustments). */
1828 static void
1829 record_address_regs (x, class, scale)
1830 rtx x;
1831 enum reg_class class;
1832 int scale;
1834 register enum rtx_code code = GET_CODE (x);
1836 switch (code)
1838 case CONST_INT:
1839 case CONST:
1840 case CC0:
1841 case PC:
1842 case SYMBOL_REF:
1843 case LABEL_REF:
1844 return;
1846 case PLUS:
1847 /* When we have an address that is a sum,
1848 we must determine whether registers are "base" or "index" regs.
1849 If there is a sum of two registers, we must choose one to be
1850 the "base". Luckily, we can use the REG_POINTER to make a good
1851 choice most of the time. We only need to do this on machines
1852 that can have two registers in an address and where the base
1853 and index register classes are different.
1855 ??? This code used to set REGNO_POINTER_FLAG in some cases, but
1856 that seems bogus since it should only be set when we are sure
1857 the register is being used as a pointer. */
1860 rtx arg0 = XEXP (x, 0);
1861 rtx arg1 = XEXP (x, 1);
1862 register enum rtx_code code0 = GET_CODE (arg0);
1863 register enum rtx_code code1 = GET_CODE (arg1);
1865 /* Look inside subregs. */
1866 if (code0 == SUBREG)
1867 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1868 if (code1 == SUBREG)
1869 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1871 /* If this machine only allows one register per address, it must
1872 be in the first operand. */
1874 if (MAX_REGS_PER_ADDRESS == 1)
1875 record_address_regs (arg0, class, scale);
1877 /* If index and base registers are the same on this machine, just
1878 record registers in any non-constant operands. We assume here,
1879 as well as in the tests below, that all addresses are in
1880 canonical form. */
1882 else if (INDEX_REG_CLASS == BASE_REG_CLASS)
1884 record_address_regs (arg0, class, scale);
1885 if (! CONSTANT_P (arg1))
1886 record_address_regs (arg1, class, scale);
1889 /* If the second operand is a constant integer, it doesn't change
1890 what class the first operand must be. */
1892 else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
1893 record_address_regs (arg0, class, scale);
1895 /* If the second operand is a symbolic constant, the first operand
1896 must be an index register. */
1898 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
1899 record_address_regs (arg0, INDEX_REG_CLASS, scale);
1901 /* If both operands are registers but one is already a hard register
1902 of index or base class, give the other the class that the hard
1903 register is not. */
1905 #ifdef REG_OK_FOR_BASE_P
1906 else if (code0 == REG && code1 == REG
1907 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
1908 && (REG_OK_FOR_BASE_P (arg0) || REG_OK_FOR_INDEX_P (arg0)))
1909 record_address_regs (arg1,
1910 REG_OK_FOR_BASE_P (arg0)
1911 ? INDEX_REG_CLASS : BASE_REG_CLASS,
1912 scale);
1913 else if (code0 == REG && code1 == REG
1914 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
1915 && (REG_OK_FOR_BASE_P (arg1) || REG_OK_FOR_INDEX_P (arg1)))
1916 record_address_regs (arg0,
1917 REG_OK_FOR_BASE_P (arg1)
1918 ? INDEX_REG_CLASS : BASE_REG_CLASS,
1919 scale);
1920 #endif
1922 /* If one operand is known to be a pointer, it must be the base
1923 with the other operand the index. Likewise if the other operand
1924 is a MULT. */
1926 else if ((code0 == REG && REG_POINTER (arg0))
1927 || code1 == MULT)
1929 record_address_regs (arg0, BASE_REG_CLASS, scale);
1930 record_address_regs (arg1, INDEX_REG_CLASS, scale);
1932 else if ((code1 == REG && REG_POINTER (arg1))
1933 || code0 == MULT)
1935 record_address_regs (arg0, INDEX_REG_CLASS, scale);
1936 record_address_regs (arg1, BASE_REG_CLASS, scale);
1939 /* Otherwise, count equal chances that each might be a base
1940 or index register. This case should be rare. */
1942 else
1944 record_address_regs (arg0, BASE_REG_CLASS, scale / 2);
1945 record_address_regs (arg0, INDEX_REG_CLASS, scale / 2);
1946 record_address_regs (arg1, BASE_REG_CLASS, scale / 2);
1947 record_address_regs (arg1, INDEX_REG_CLASS, scale / 2);
1950 break;
1952 /* Double the importance of a pseudo register that is incremented
1953 or decremented, since it would take two extra insns
1954 if it ends up in the wrong place. */
1955 case POST_MODIFY:
1956 case PRE_MODIFY:
1957 record_address_regs (XEXP (x, 0), BASE_REG_CLASS, 2 * scale);
1958 if (REG_P (XEXP (XEXP (x, 1), 1)))
1959 record_address_regs (XEXP (XEXP (x, 1), 1),
1960 INDEX_REG_CLASS, 2 * scale);
1961 break;
1963 case POST_INC:
1964 case PRE_INC:
1965 case POST_DEC:
1966 case PRE_DEC:
1967 /* Double the importance of a pseudo register that is incremented
1968 or decremented, since it would take two extra insns
1969 if it ends up in the wrong place. If the operand is a pseudo,
1970 show it is being used in an INC_DEC context. */
1972 #ifdef FORBIDDEN_INC_DEC_CLASSES
1973 if (GET_CODE (XEXP (x, 0)) == REG
1974 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
1975 in_inc_dec[REGNO (XEXP (x, 0))] = 1;
1976 #endif
1978 record_address_regs (XEXP (x, 0), class, 2 * scale);
1979 break;
1981 case REG:
1983 register struct costs *pp = &costs[REGNO (x)];
1984 register int i;
1986 pp->mem_cost += (MEMORY_MOVE_COST (Pmode, class, 1) * scale) / 2;
1988 for (i = 0; i < N_REG_CLASSES; i++)
1989 pp->cost[i] += (may_move_in_cost[i][(int) class] * scale) / 2;
1991 break;
1993 default:
1995 register const char *fmt = GET_RTX_FORMAT (code);
1996 register int i;
1997 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1998 if (fmt[i] == 'e')
1999 record_address_regs (XEXP (x, i), class, scale);
2004 #ifdef FORBIDDEN_INC_DEC_CLASSES
2006 /* Return 1 if REG is valid as an auto-increment memory reference
2007 to an object of MODE. */
2009 static int
2010 auto_inc_dec_reg_p (reg, mode)
2011 rtx reg;
2012 enum machine_mode mode;
2014 if (HAVE_POST_INCREMENT
2015 && memory_address_p (mode, gen_rtx_POST_INC (Pmode, reg)))
2016 return 1;
2018 if (HAVE_POST_DECREMENT
2019 && memory_address_p (mode, gen_rtx_POST_DEC (Pmode, reg)))
2020 return 1;
2022 if (HAVE_PRE_INCREMENT
2023 && memory_address_p (mode, gen_rtx_PRE_INC (Pmode, reg)))
2024 return 1;
2026 if (HAVE_PRE_DECREMENT
2027 && memory_address_p (mode, gen_rtx_PRE_DEC (Pmode, reg)))
2028 return 1;
2030 return 0;
2032 #endif
2034 static short *renumber;
2035 static size_t regno_allocated;
2036 static unsigned int reg_n_max;
2038 /* Allocate enough space to hold NUM_REGS registers for the tables used for
2039 reg_scan and flow_analysis that are indexed by the register number. If
2040 NEW_P is non zero, initialize all of the registers, otherwise only
2041 initialize the new registers allocated. The same table is kept from
2042 function to function, only reallocating it when we need more room. If
2043 RENUMBER_P is non zero, allocate the reg_renumber array also. */
2045 void
2046 allocate_reg_info (num_regs, new_p, renumber_p)
2047 size_t num_regs;
2048 int new_p;
2049 int renumber_p;
2051 size_t size_info;
2052 size_t size_renumber;
2053 size_t min = (new_p) ? 0 : reg_n_max;
2054 struct reg_info_data *reg_data;
2056 if (num_regs > regno_allocated)
2058 size_t old_allocated = regno_allocated;
2060 regno_allocated = num_regs + (num_regs / 20); /* add some slop space */
2061 size_renumber = regno_allocated * sizeof (short);
2063 if (!reg_n_info)
2065 VARRAY_REG_INIT (reg_n_info, regno_allocated, "reg_n_info");
2066 renumber = (short *) xmalloc (size_renumber);
2067 reg_pref_buffer = (struct reg_pref *) xmalloc (regno_allocated
2068 * sizeof (struct reg_pref));
2071 else
2073 VARRAY_GROW (reg_n_info, regno_allocated);
2075 if (new_p) /* if we're zapping everything, no need to realloc */
2077 free ((char *)renumber);
2078 free ((char *)reg_pref);
2079 renumber = (short *) xmalloc (size_renumber);
2080 reg_pref_buffer = (struct reg_pref *) xmalloc (regno_allocated
2081 * sizeof (struct reg_pref));
2084 else
2086 renumber = (short *) xrealloc ((char *)renumber, size_renumber);
2087 reg_pref_buffer = (struct reg_pref *) xrealloc ((char *)reg_pref_buffer,
2088 regno_allocated
2089 * sizeof (struct reg_pref));
2093 size_info = (regno_allocated - old_allocated) * sizeof (reg_info)
2094 + sizeof (struct reg_info_data) - sizeof (reg_info);
2095 reg_data = (struct reg_info_data *) xcalloc (size_info, 1);
2096 reg_data->min_index = old_allocated;
2097 reg_data->max_index = regno_allocated - 1;
2098 reg_data->next = reg_info_head;
2099 reg_info_head = reg_data;
2102 reg_n_max = num_regs;
2103 if (min < num_regs)
2105 /* Loop through each of the segments allocated for the actual
2106 reg_info pages, and set up the pointers, zero the pages, etc. */
2107 for (reg_data = reg_info_head;
2108 reg_data && reg_data->max_index >= min;
2109 reg_data = reg_data->next)
2111 size_t min_index = reg_data->min_index;
2112 size_t max_index = reg_data->max_index;
2113 size_t max = MIN (max_index, num_regs);
2114 size_t local_min = min - min_index;
2115 size_t i;
2117 if (reg_data->min_index > num_regs)
2118 continue;
2120 if (min < min_index)
2121 local_min = 0;
2122 if (!reg_data->used_p) /* page just allocated with calloc */
2123 reg_data->used_p = 1; /* no need to zero */
2124 else
2125 memset ((char *) &reg_data->data[local_min], 0,
2126 sizeof (reg_info) * (max - min_index - local_min + 1));
2128 for (i = min_index+local_min; i <= max; i++)
2130 VARRAY_REG (reg_n_info, i) = &reg_data->data[i-min_index];
2131 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
2132 renumber[i] = -1;
2133 reg_pref_buffer[i].prefclass = (char) NO_REGS;
2134 reg_pref_buffer[i].altclass = (char) NO_REGS;
2139 /* If {pref,alt}class have already been allocated, update the pointers to
2140 the newly realloced ones. */
2141 if (reg_pref)
2142 reg_pref = reg_pref_buffer;
2144 if (renumber_p)
2145 reg_renumber = renumber;
2147 /* Tell the regset code about the new number of registers */
2148 MAX_REGNO_REG_SET (num_regs, new_p, renumber_p);
2151 /* Free up the space allocated by allocate_reg_info. */
2152 void
2153 free_reg_info ()
2155 if (reg_n_info)
2157 struct reg_info_data *reg_data;
2158 struct reg_info_data *reg_next;
2160 VARRAY_FREE (reg_n_info);
2161 for (reg_data = reg_info_head; reg_data; reg_data = reg_next)
2163 reg_next = reg_data->next;
2164 free ((char *)reg_data);
2167 free (reg_pref_buffer);
2168 reg_pref_buffer = (struct reg_pref *)0;
2169 reg_info_head = (struct reg_info_data *)0;
2170 renumber = (short *)0;
2172 regno_allocated = 0;
2173 reg_n_max = 0;
2176 /* This is the `regscan' pass of the compiler, run just before cse
2177 and again just before loop.
2179 It finds the first and last use of each pseudo-register
2180 and records them in the vectors regno_first_uid, regno_last_uid
2181 and counts the number of sets in the vector reg_n_sets.
2183 REPEAT is nonzero the second time this is called. */
2185 /* Maximum number of parallel sets and clobbers in any insn in this fn.
2186 Always at least 3, since the combiner could put that many together
2187 and we want this to remain correct for all the remaining passes. */
2189 int max_parallel;
2191 void
2192 reg_scan (f, nregs, repeat)
2193 rtx f;
2194 unsigned int nregs;
2195 int repeat ATTRIBUTE_UNUSED;
2197 register rtx insn;
2199 allocate_reg_info (nregs, TRUE, FALSE);
2200 max_parallel = 3;
2202 for (insn = f; insn; insn = NEXT_INSN (insn))
2203 if (GET_CODE (insn) == INSN
2204 || GET_CODE (insn) == CALL_INSN
2205 || GET_CODE (insn) == JUMP_INSN)
2207 if (GET_CODE (PATTERN (insn)) == PARALLEL
2208 && XVECLEN (PATTERN (insn), 0) > max_parallel)
2209 max_parallel = XVECLEN (PATTERN (insn), 0);
2210 reg_scan_mark_refs (PATTERN (insn), insn, 0, 0);
2212 if (REG_NOTES (insn))
2213 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, 0);
2217 /* Update 'regscan' information by looking at the insns
2218 from FIRST to LAST. Some new REGs have been created,
2219 and any REG with number greater than OLD_MAX_REGNO is
2220 such a REG. We only update information for those. */
2222 void
2223 reg_scan_update (first, last, old_max_regno)
2224 rtx first;
2225 rtx last;
2226 unsigned int old_max_regno;
2228 register rtx insn;
2230 allocate_reg_info (max_reg_num (), FALSE, FALSE);
2232 for (insn = first; insn != last; insn = NEXT_INSN (insn))
2233 if (GET_CODE (insn) == INSN
2234 || GET_CODE (insn) == CALL_INSN
2235 || GET_CODE (insn) == JUMP_INSN)
2237 if (GET_CODE (PATTERN (insn)) == PARALLEL
2238 && XVECLEN (PATTERN (insn), 0) > max_parallel)
2239 max_parallel = XVECLEN (PATTERN (insn), 0);
2240 reg_scan_mark_refs (PATTERN (insn), insn, 0, old_max_regno);
2242 if (REG_NOTES (insn))
2243 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, old_max_regno);
2247 /* X is the expression to scan. INSN is the insn it appears in.
2248 NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
2249 We should only record information for REGs with numbers
2250 greater than or equal to MIN_REGNO. */
2252 static void
2253 reg_scan_mark_refs (x, insn, note_flag, min_regno)
2254 rtx x;
2255 rtx insn;
2256 int note_flag;
2257 unsigned int min_regno;
2259 register enum rtx_code code;
2260 register rtx dest;
2261 register rtx note;
2263 code = GET_CODE (x);
2264 switch (code)
2266 case CONST:
2267 case CONST_INT:
2268 case CONST_DOUBLE:
2269 case CC0:
2270 case PC:
2271 case SYMBOL_REF:
2272 case LABEL_REF:
2273 case ADDR_VEC:
2274 case ADDR_DIFF_VEC:
2275 return;
2277 case REG:
2279 unsigned int regno = REGNO (x);
2281 if (regno >= min_regno)
2283 REGNO_LAST_NOTE_UID (regno) = INSN_UID (insn);
2284 if (!note_flag)
2285 REGNO_LAST_UID (regno) = INSN_UID (insn);
2286 if (REGNO_FIRST_UID (regno) == 0)
2287 REGNO_FIRST_UID (regno) = INSN_UID (insn);
2290 break;
2292 case EXPR_LIST:
2293 if (XEXP (x, 0))
2294 reg_scan_mark_refs (XEXP (x, 0), insn, note_flag, min_regno);
2295 if (XEXP (x, 1))
2296 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2297 break;
2299 case INSN_LIST:
2300 if (XEXP (x, 1))
2301 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2302 break;
2304 case SET:
2305 /* Count a set of the destination if it is a register. */
2306 for (dest = SET_DEST (x);
2307 GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2308 || GET_CODE (dest) == ZERO_EXTEND;
2309 dest = XEXP (dest, 0))
2312 if (GET_CODE (dest) == REG
2313 && REGNO (dest) >= min_regno)
2314 REG_N_SETS (REGNO (dest))++;
2316 /* If this is setting a pseudo from another pseudo or the sum of a
2317 pseudo and a constant integer and the other pseudo is known to be
2318 a pointer, set the destination to be a pointer as well.
2320 Likewise if it is setting the destination from an address or from a
2321 value equivalent to an address or to the sum of an address and
2322 something else.
2324 But don't do any of this if the pseudo corresponds to a user
2325 variable since it should have already been set as a pointer based
2326 on the type. */
2328 if (GET_CODE (SET_DEST (x)) == REG
2329 && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
2330 && REGNO (SET_DEST (x)) >= min_regno
2331 /* If the destination pseudo is set more than once, then other
2332 sets might not be to a pointer value (consider access to a
2333 union in two threads of control in the presense of global
2334 optimizations). So only set REG_POINTER on the destination
2335 pseudo if this is the only set of that pseudo. */
2336 && REG_N_SETS (REGNO (SET_DEST (x))) == 1
2337 && ! REG_USERVAR_P (SET_DEST (x))
2338 && ! REG_POINTER (SET_DEST (x))
2339 && ((GET_CODE (SET_SRC (x)) == REG
2340 && REG_POINTER (SET_SRC (x)))
2341 || ((GET_CODE (SET_SRC (x)) == PLUS
2342 || GET_CODE (SET_SRC (x)) == LO_SUM)
2343 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2344 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
2345 && REG_POINTER (XEXP (SET_SRC (x), 0)))
2346 || GET_CODE (SET_SRC (x)) == CONST
2347 || GET_CODE (SET_SRC (x)) == SYMBOL_REF
2348 || GET_CODE (SET_SRC (x)) == LABEL_REF
2349 || (GET_CODE (SET_SRC (x)) == HIGH
2350 && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
2351 || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
2352 || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
2353 || ((GET_CODE (SET_SRC (x)) == PLUS
2354 || GET_CODE (SET_SRC (x)) == LO_SUM)
2355 && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
2356 || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
2357 || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
2358 || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2359 && (GET_CODE (XEXP (note, 0)) == CONST
2360 || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
2361 || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
2362 REG_POINTER (SET_DEST (x)) = 1;
2364 /* ... fall through ... */
2366 default:
2368 register const char *fmt = GET_RTX_FORMAT (code);
2369 register int i;
2370 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2372 if (fmt[i] == 'e')
2373 reg_scan_mark_refs (XEXP (x, i), insn, note_flag, min_regno);
2374 else if (fmt[i] == 'E' && XVEC (x, i) != 0)
2376 register int j;
2377 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2378 reg_scan_mark_refs (XVECEXP (x, i, j), insn, note_flag, min_regno);
2385 /* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
2386 is also in C2. */
2389 reg_class_subset_p (c1, c2)
2390 register enum reg_class c1;
2391 register enum reg_class c2;
2393 if (c1 == c2) return 1;
2395 if (c2 == ALL_REGS)
2396 win:
2397 return 1;
2398 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int)c1],
2399 reg_class_contents[(int)c2],
2400 win);
2401 return 0;
2404 /* Return nonzero if there is a register that is in both C1 and C2. */
2407 reg_classes_intersect_p (c1, c2)
2408 register enum reg_class c1;
2409 register enum reg_class c2;
2411 #ifdef HARD_REG_SET
2412 register
2413 #endif
2414 HARD_REG_SET c;
2416 if (c1 == c2) return 1;
2418 if (c1 == ALL_REGS || c2 == ALL_REGS)
2419 return 1;
2421 COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
2422 AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
2424 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[(int) NO_REGS], lose);
2425 return 1;
2427 lose:
2428 return 0;
2431 /* Release any memory allocated by register sets. */
2433 void
2434 regset_release_memory ()
2436 bitmap_release_memory ();