Introduce ORIGINAL_REGNO macro
[official-gcc.git] / gcc / except.c
blobc1dd0cbbe326c65de2540e16bd2397da5255270d
1 /* Implements exception handling.
2 Copyright (C) 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000 Free Software Foundation, Inc.
4 Contributed by Mike Stump <mrs@cygnus.com>.
6 This file is part of GNU CC.
8 GNU CC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
13 GNU CC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU CC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
24 /* An exception is an event that can be signaled from within a
25 function. This event can then be "caught" or "trapped" by the
26 callers of this function. This potentially allows program flow to
27 be transferred to any arbitrary code associated with a function call
28 several levels up the stack.
30 The intended use for this mechanism is for signaling "exceptional
31 events" in an out-of-band fashion, hence its name. The C++ language
32 (and many other OO-styled or functional languages) practically
33 requires such a mechanism, as otherwise it becomes very difficult
34 or even impossible to signal failure conditions in complex
35 situations. The traditional C++ example is when an error occurs in
36 the process of constructing an object; without such a mechanism, it
37 is impossible to signal that the error occurs without adding global
38 state variables and error checks around every object construction.
40 The act of causing this event to occur is referred to as "throwing
41 an exception". (Alternate terms include "raising an exception" or
42 "signaling an exception".) The term "throw" is used because control
43 is returned to the callers of the function that is signaling the
44 exception, and thus there is the concept of "throwing" the
45 exception up the call stack.
47 There are two major codegen options for exception handling. The
48 flag -fsjlj-exceptions can be used to select the setjmp/longjmp
49 approach, which is the default. -fno-sjlj-exceptions can be used to
50 get the PC range table approach. While this is a compile time
51 flag, an entire application must be compiled with the same codegen
52 option. The first is a PC range table approach, the second is a
53 setjmp/longjmp based scheme. We will first discuss the PC range
54 table approach, after that, we will discuss the setjmp/longjmp
55 based approach.
57 It is appropriate to speak of the "context of a throw". This
58 context refers to the address where the exception is thrown from,
59 and is used to determine which exception region will handle the
60 exception.
62 Regions of code within a function can be marked such that if it
63 contains the context of a throw, control will be passed to a
64 designated "exception handler". These areas are known as "exception
65 regions". Exception regions cannot overlap, but they can be nested
66 to any arbitrary depth. Also, exception regions cannot cross
67 function boundaries.
69 Exception handlers can either be specified by the user (which we
70 will call a "user-defined handler") or generated by the compiler
71 (which we will designate as a "cleanup"). Cleanups are used to
72 perform tasks such as destruction of objects allocated on the
73 stack.
75 In the current implementation, cleanups are handled by allocating an
76 exception region for the area that the cleanup is designated for,
77 and the handler for the region performs the cleanup and then
78 rethrows the exception to the outer exception region. From the
79 standpoint of the current implementation, there is little
80 distinction made between a cleanup and a user-defined handler, and
81 the phrase "exception handler" can be used to refer to either one
82 equally well. (The section "Future Directions" below discusses how
83 this will change).
85 Each object file that is compiled with exception handling contains
86 a static array of exception handlers named __EXCEPTION_TABLE__.
87 Each entry contains the starting and ending addresses of the
88 exception region, and the address of the handler designated for
89 that region.
91 If the target does not use the DWARF 2 frame unwind information, at
92 program startup each object file invokes a function named
93 __register_exceptions with the address of its local
94 __EXCEPTION_TABLE__. __register_exceptions is defined in libgcc2.c, and
95 is responsible for recording all of the exception regions into one list
96 (which is kept in a static variable named exception_table_list).
98 On targets that support crtstuff.c, the unwind information
99 is stored in a section named .eh_frame and the information for the
100 entire shared object or program is registered with a call to
101 __register_frame_info. On other targets, the information for each
102 translation unit is registered from the file generated by collect2.
103 __register_frame_info is defined in frame.c, and is responsible for
104 recording all of the unwind regions into one list (which is kept in a
105 static variable named unwind_table_list).
107 The function __throw is actually responsible for doing the
108 throw. On machines that have unwind info support, __throw is generated
109 by code in libgcc2.c, otherwise __throw is generated on a
110 per-object-file basis for each source file compiled with
111 -fexceptions by the C++ frontend. Before __throw is invoked,
112 the current context of the throw needs to be placed in the global
113 variable __eh_pc.
115 __throw attempts to find the appropriate exception handler for the
116 PC value stored in __eh_pc by calling __find_first_exception_table_match
117 (which is defined in libgcc2.c). If __find_first_exception_table_match
118 finds a relevant handler, __throw transfers control directly to it.
120 If a handler for the context being thrown from can't be found, __throw
121 walks (see Walking the stack below) the stack up the dynamic call chain to
122 continue searching for an appropriate exception handler based upon the
123 caller of the function it last sought a exception handler for. It stops
124 then either an exception handler is found, or when the top of the
125 call chain is reached.
127 If no handler is found, an external library function named
128 __terminate is called. If a handler is found, then we restart
129 our search for a handler at the end of the call chain, and repeat
130 the search process, but instead of just walking up the call chain,
131 we unwind the call chain as we walk up it.
133 Internal implementation details:
135 To associate a user-defined handler with a block of statements, the
136 function expand_start_try_stmts is used to mark the start of the
137 block of statements with which the handler is to be associated
138 (which is known as a "try block"). All statements that appear
139 afterwards will be associated with the try block.
141 A call to expand_start_all_catch marks the end of the try block,
142 and also marks the start of the "catch block" (the user-defined
143 handler) associated with the try block.
145 This user-defined handler will be invoked for *every* exception
146 thrown with the context of the try block. It is up to the handler
147 to decide whether or not it wishes to handle any given exception,
148 as there is currently no mechanism in this implementation for doing
149 this. (There are plans for conditionally processing an exception
150 based on its "type", which will provide a language-independent
151 mechanism).
153 If the handler chooses not to process the exception (perhaps by
154 looking at an "exception type" or some other additional data
155 supplied with the exception), it can fall through to the end of the
156 handler. expand_end_all_catch and expand_leftover_cleanups
157 add additional code to the end of each handler to take care of
158 rethrowing to the outer exception handler.
160 The handler also has the option to continue with "normal flow of
161 code", or in other words to resume executing at the statement
162 immediately after the end of the exception region. The variable
163 caught_return_label_stack contains a stack of labels, and jumping
164 to the topmost entry's label via expand_goto will resume normal
165 flow to the statement immediately after the end of the exception
166 region. If the handler falls through to the end, the exception will
167 be rethrown to the outer exception region.
169 The instructions for the catch block are kept as a separate
170 sequence, and will be emitted at the end of the function along with
171 the handlers specified via expand_eh_region_end. The end of the
172 catch block is marked with expand_end_all_catch.
174 Any data associated with the exception must currently be handled by
175 some external mechanism maintained in the frontend. For example,
176 the C++ exception mechanism passes an arbitrary value along with
177 the exception, and this is handled in the C++ frontend by using a
178 global variable to hold the value. (This will be changing in the
179 future.)
181 The mechanism in C++ for handling data associated with the
182 exception is clearly not thread-safe. For a thread-based
183 environment, another mechanism must be used (possibly using a
184 per-thread allocation mechanism if the size of the area that needs
185 to be allocated isn't known at compile time.)
187 Internally-generated exception regions (cleanups) are marked by
188 calling expand_eh_region_start to mark the start of the region,
189 and expand_eh_region_end (handler) is used to both designate the
190 end of the region and to associate a specified handler/cleanup with
191 the region. The rtl code in HANDLER will be invoked whenever an
192 exception occurs in the region between the calls to
193 expand_eh_region_start and expand_eh_region_end. After HANDLER is
194 executed, additional code is emitted to handle rethrowing the
195 exception to the outer exception handler. The code for HANDLER will
196 be emitted at the end of the function.
198 TARGET_EXPRs can also be used to designate exception regions. A
199 TARGET_EXPR gives an unwind-protect style interface commonly used
200 in functional languages such as LISP. The associated expression is
201 evaluated, and whether or not it (or any of the functions that it
202 calls) throws an exception, the protect expression is always
203 invoked. This implementation takes care of the details of
204 associating an exception table entry with the expression and
205 generating the necessary code (it actually emits the protect
206 expression twice, once for normal flow and once for the exception
207 case). As for the other handlers, the code for the exception case
208 will be emitted at the end of the function.
210 Cleanups can also be specified by using add_partial_entry (handler)
211 and end_protect_partials. add_partial_entry creates the start of
212 a new exception region; HANDLER will be invoked if an exception is
213 thrown with the context of the region between the calls to
214 add_partial_entry and end_protect_partials. end_protect_partials is
215 used to mark the end of these regions. add_partial_entry can be
216 called as many times as needed before calling end_protect_partials.
217 However, end_protect_partials should only be invoked once for each
218 group of calls to add_partial_entry as the entries are queued
219 and all of the outstanding entries are processed simultaneously
220 when end_protect_partials is invoked. Similarly to the other
221 handlers, the code for HANDLER will be emitted at the end of the
222 function.
224 The generated RTL for an exception region includes
225 NOTE_INSN_EH_REGION_BEG and NOTE_INSN_EH_REGION_END notes that mark
226 the start and end of the exception region. A unique label is also
227 generated at the start of the exception region, which is available
228 by looking at the ehstack variable. The topmost entry corresponds
229 to the current region.
231 In the current implementation, an exception can only be thrown from
232 a function call (since the mechanism used to actually throw an
233 exception involves calling __throw). If an exception region is
234 created but no function calls occur within that region, the region
235 can be safely optimized away (along with its exception handlers)
236 since no exceptions can ever be caught in that region. This
237 optimization is performed unless -fasynchronous-exceptions is
238 given. If the user wishes to throw from a signal handler, or other
239 asynchronous place, -fasynchronous-exceptions should be used when
240 compiling for maximally correct code, at the cost of additional
241 exception regions. Using -fasynchronous-exceptions only produces
242 code that is reasonably safe in such situations, but a correct
243 program cannot rely upon this working. It can be used in failsafe
244 code, where trying to continue on, and proceeding with potentially
245 incorrect results is better than halting the program.
248 Walking the stack:
250 The stack is walked by starting with a pointer to the current
251 frame, and finding the pointer to the callers frame. The unwind info
252 tells __throw how to find it.
254 Unwinding the stack:
256 When we use the term unwinding the stack, we mean undoing the
257 effects of the function prologue in a controlled fashion so that we
258 still have the flow of control. Otherwise, we could just return
259 (jump to the normal end of function epilogue).
261 This is done in __throw in libgcc2.c when we know that a handler exists
262 in a frame higher up the call stack than its immediate caller.
264 To unwind, we find the unwind data associated with the frame, if any.
265 If we don't find any, we call the library routine __terminate. If we do
266 find it, we use the information to copy the saved register values from
267 that frame into the register save area in the frame for __throw, return
268 into a stub which updates the stack pointer, and jump to the handler.
269 The normal function epilogue for __throw handles restoring the saved
270 values into registers.
272 When unwinding, we use this method if we know it will
273 work (if DWARF2_UNWIND_INFO is defined). Otherwise, we know that
274 an inline unwinder will have been emitted for any function that
275 __unwind_function cannot unwind. The inline unwinder appears as a
276 normal exception handler for the entire function, for any function
277 that we know cannot be unwound by __unwind_function. We inform the
278 compiler of whether a function can be unwound with
279 __unwind_function by having DOESNT_NEED_UNWINDER evaluate to true
280 when the unwinder isn't needed. __unwind_function is used as an
281 action of last resort. If no other method can be used for
282 unwinding, __unwind_function is used. If it cannot unwind, it
283 should call __terminate.
285 By default, if the target-specific backend doesn't supply a definition
286 for __unwind_function and doesn't support DWARF2_UNWIND_INFO, inlined
287 unwinders will be used instead. The main tradeoff here is in text space
288 utilization. Obviously, if inline unwinders have to be generated
289 repeatedly, this uses much more space than if a single routine is used.
291 However, it is simply not possible on some platforms to write a
292 generalized routine for doing stack unwinding without having some
293 form of additional data associated with each function. The current
294 implementation can encode this data in the form of additional
295 machine instructions or as static data in tabular form. The later
296 is called the unwind data.
298 The backend macro DOESNT_NEED_UNWINDER is used to conditionalize whether
299 or not per-function unwinders are needed. If DOESNT_NEED_UNWINDER is
300 defined and has a non-zero value, a per-function unwinder is not emitted
301 for the current function. If the static unwind data is supported, then
302 a per-function unwinder is not emitted.
304 On some platforms it is possible that neither __unwind_function
305 nor inlined unwinders are available. For these platforms it is not
306 possible to throw through a function call, and abort will be
307 invoked instead of performing the throw.
309 The reason the unwind data may be needed is that on some platforms
310 the order and types of data stored on the stack can vary depending
311 on the type of function, its arguments and returned values, and the
312 compilation options used (optimization versus non-optimization,
313 -fomit-frame-pointer, processor variations, etc).
315 Unfortunately, this also means that throwing through functions that
316 aren't compiled with exception handling support will still not be
317 possible on some platforms. This problem is currently being
318 investigated, but no solutions have been found that do not imply
319 some unacceptable performance penalties.
321 Future directions:
323 Currently __throw makes no differentiation between cleanups and
324 user-defined exception regions. While this makes the implementation
325 simple, it also implies that it is impossible to determine if a
326 user-defined exception handler exists for a given exception without
327 completely unwinding the stack in the process. This is undesirable
328 from the standpoint of debugging, as ideally it would be possible
329 to trap unhandled exceptions in the debugger before the process of
330 unwinding has even started.
332 This problem can be solved by marking user-defined handlers in a
333 special way (probably by adding additional bits to exception_table_list).
334 A two-pass scheme could then be used by __throw to iterate
335 through the table. The first pass would search for a relevant
336 user-defined handler for the current context of the throw, and if
337 one is found, the second pass would then invoke all needed cleanups
338 before jumping to the user-defined handler.
340 Many languages (including C++ and Ada) make execution of a
341 user-defined handler conditional on the "type" of the exception
342 thrown. (The type of the exception is actually the type of the data
343 that is thrown with the exception.) It will thus be necessary for
344 __throw to be able to determine if a given user-defined
345 exception handler will actually be executed, given the type of
346 exception.
348 One scheme is to add additional information to exception_table_list
349 as to the types of exceptions accepted by each handler. __throw
350 can do the type comparisons and then determine if the handler is
351 actually going to be executed.
353 There is currently no significant level of debugging support
354 available, other than to place a breakpoint on __throw. While
355 this is sufficient in most cases, it would be helpful to be able to
356 know where a given exception was going to be thrown to before it is
357 actually thrown, and to be able to choose between stopping before
358 every exception region (including cleanups), or just user-defined
359 exception regions. This should be possible to do in the two-pass
360 scheme by adding additional labels to __throw for appropriate
361 breakpoints, and additional debugger commands could be added to
362 query various state variables to determine what actions are to be
363 performed next.
365 Another major problem that is being worked on is the issue with stack
366 unwinding on various platforms. Currently the only platforms that have
367 support for the generation of a generic unwinder are the SPARC and MIPS.
368 All other ports require per-function unwinders, which produce large
369 amounts of code bloat.
371 For setjmp/longjmp based exception handling, some of the details
372 are as above, but there are some additional details. This section
373 discusses the details.
375 We don't use NOTE_INSN_EH_REGION_{BEG,END} pairs. We don't
376 optimize EH regions yet. We don't have to worry about machine
377 specific issues with unwinding the stack, as we rely upon longjmp
378 for all the machine specific details. There is no variable context
379 of a throw, just the one implied by the dynamic handler stack
380 pointed to by the dynamic handler chain. There is no exception
381 table, and no calls to __register_exceptions. __sjthrow is used
382 instead of __throw, and it works by using the dynamic handler
383 chain, and longjmp. -fasynchronous-exceptions has no effect, as
384 the elimination of trivial exception regions is not yet performed.
386 A frontend can set protect_cleanup_actions_with_terminate when all
387 the cleanup actions should be protected with an EH region that
388 calls terminate when an unhandled exception is throw. C++ does
389 this, Ada does not. */
392 #include "config.h"
393 #include "defaults.h"
394 #include "eh-common.h"
395 #include "system.h"
396 #include "rtl.h"
397 #include "tree.h"
398 #include "flags.h"
399 #include "except.h"
400 #include "function.h"
401 #include "insn-flags.h"
402 #include "expr.h"
403 #include "insn-codes.h"
404 #include "regs.h"
405 #include "hard-reg-set.h"
406 #include "insn-config.h"
407 #include "recog.h"
408 #include "output.h"
409 #include "toplev.h"
410 #include "intl.h"
411 #include "obstack.h"
412 #include "ggc.h"
413 #include "tm_p.h"
415 /* One to use setjmp/longjmp method of generating code for exception
416 handling. */
418 int exceptions_via_longjmp = 2;
420 /* One to enable asynchronous exception support. */
422 int asynchronous_exceptions = 0;
424 /* One to protect cleanup actions with a handler that calls
425 __terminate, zero otherwise. */
427 int protect_cleanup_actions_with_terminate;
429 /* A list of labels used for exception handlers. Created by
430 find_exception_handler_labels for the optimization passes. */
432 rtx exception_handler_labels;
434 /* Keeps track of the label used as the context of a throw to rethrow an
435 exception to the outer exception region. */
437 struct label_node *outer_context_label_stack = NULL;
439 /* Pseudos used to hold exception return data in the interim between
440 __builtin_eh_return and the end of the function. */
442 static rtx eh_return_context;
443 static rtx eh_return_stack_adjust;
444 static rtx eh_return_handler;
446 /* This is used for targets which can call rethrow with an offset instead
447 of an address. This is subtracted from the rethrow label we are
448 interested in. */
450 static rtx first_rethrow_symbol = NULL_RTX;
451 static rtx final_rethrow = NULL_RTX;
452 static rtx last_rethrow_symbol = NULL_RTX;
455 /* Prototypes for local functions. */
457 static void push_eh_entry PARAMS ((struct eh_stack *));
458 static struct eh_entry * pop_eh_entry PARAMS ((struct eh_stack *));
459 static void enqueue_eh_entry PARAMS ((struct eh_queue *, struct eh_entry *));
460 static struct eh_entry * dequeue_eh_entry PARAMS ((struct eh_queue *));
461 static rtx call_get_eh_context PARAMS ((void));
462 static void start_dynamic_cleanup PARAMS ((tree, tree));
463 static void start_dynamic_handler PARAMS ((void));
464 static void expand_rethrow PARAMS ((rtx));
465 static void output_exception_table_entry PARAMS ((FILE *, int));
466 static rtx scan_region PARAMS ((rtx, int, int *));
467 static void eh_regs PARAMS ((rtx *, rtx *, rtx *, int));
468 static void set_insn_eh_region PARAMS ((rtx *, int));
469 #ifdef DONT_USE_BUILTIN_SETJMP
470 static void jumpif_rtx PARAMS ((rtx, rtx));
471 #endif
472 static void find_exception_handler_labels_1 PARAMS ((rtx));
473 static void mark_eh_node PARAMS ((struct eh_node *));
474 static void mark_eh_stack PARAMS ((struct eh_stack *));
475 static void mark_eh_queue PARAMS ((struct eh_queue *));
476 static void mark_tree_label_node PARAMS ((struct label_node *));
477 static void mark_func_eh_entry PARAMS ((void *));
478 static rtx create_rethrow_ref PARAMS ((int));
479 static void push_entry PARAMS ((struct eh_stack *, struct eh_entry*));
480 static void receive_exception_label PARAMS ((rtx));
481 static int new_eh_region_entry PARAMS ((int, rtx));
482 static int find_func_region PARAMS ((int));
483 static int find_func_region_from_symbol PARAMS ((rtx));
484 static void clear_function_eh_region PARAMS ((void));
485 static void process_nestinfo PARAMS ((int, eh_nesting_info *, int *));
486 rtx expand_builtin_return_addr PARAMS ((enum built_in_function, int, rtx));
487 static void emit_cleanup_handler PARAMS ((struct eh_entry *));
488 static int eh_region_from_symbol PARAMS ((rtx));
491 /* Various support routines to manipulate the various data structures
492 used by the exception handling code. */
494 extern struct obstack permanent_obstack;
496 /* Generate a SYMBOL_REF for rethrow to use */
498 static rtx
499 create_rethrow_ref (region_num)
500 int region_num;
502 rtx def;
503 const char *ptr;
504 char buf[60];
506 ASM_GENERATE_INTERNAL_LABEL (buf, "LRTH", region_num);
507 ptr = ggc_strdup (buf);
508 def = gen_rtx_SYMBOL_REF (Pmode, ptr);
509 SYMBOL_REF_NEED_ADJUST (def) = 1;
511 return def;
514 /* Push a label entry onto the given STACK. */
516 void
517 push_label_entry (stack, rlabel, tlabel)
518 struct label_node **stack;
519 rtx rlabel;
520 tree tlabel;
522 struct label_node *newnode
523 = (struct label_node *) xmalloc (sizeof (struct label_node));
525 if (rlabel)
526 newnode->u.rlabel = rlabel;
527 else
528 newnode->u.tlabel = tlabel;
529 newnode->chain = *stack;
530 *stack = newnode;
533 /* Pop a label entry from the given STACK. */
536 pop_label_entry (stack)
537 struct label_node **stack;
539 rtx label;
540 struct label_node *tempnode;
542 if (! *stack)
543 return NULL_RTX;
545 tempnode = *stack;
546 label = tempnode->u.rlabel;
547 *stack = (*stack)->chain;
548 free (tempnode);
550 return label;
553 /* Return the top element of the given STACK. */
555 tree
556 top_label_entry (stack)
557 struct label_node **stack;
559 if (! *stack)
560 return NULL_TREE;
562 return (*stack)->u.tlabel;
565 /* Get an exception label. */
568 gen_exception_label ()
570 rtx lab;
571 lab = gen_label_rtx ();
572 return lab;
575 /* Push a new eh_node entry onto STACK. */
577 static void
578 push_eh_entry (stack)
579 struct eh_stack *stack;
581 struct eh_node *node = (struct eh_node *) xmalloc (sizeof (struct eh_node));
582 struct eh_entry *entry = (struct eh_entry *) xmalloc (sizeof (struct eh_entry));
584 rtx rlab = gen_exception_label ();
585 entry->finalization = NULL_TREE;
586 entry->label_used = 0;
587 entry->exception_handler_label = rlab;
588 entry->false_label = NULL_RTX;
589 if (! flag_new_exceptions)
590 entry->outer_context = gen_label_rtx ();
591 else
592 entry->outer_context = create_rethrow_ref (CODE_LABEL_NUMBER (rlab));
593 entry->rethrow_label = entry->outer_context;
594 entry->goto_entry_p = 0;
596 node->entry = entry;
597 node->chain = stack->top;
598 stack->top = node;
601 /* Push an existing entry onto a stack. */
603 static void
604 push_entry (stack, entry)
605 struct eh_stack *stack;
606 struct eh_entry *entry;
608 struct eh_node *node = (struct eh_node *) xmalloc (sizeof (struct eh_node));
609 node->entry = entry;
610 node->chain = stack->top;
611 stack->top = node;
614 /* Pop an entry from the given STACK. */
616 static struct eh_entry *
617 pop_eh_entry (stack)
618 struct eh_stack *stack;
620 struct eh_node *tempnode;
621 struct eh_entry *tempentry;
623 tempnode = stack->top;
624 tempentry = tempnode->entry;
625 stack->top = stack->top->chain;
626 free (tempnode);
628 return tempentry;
631 /* Enqueue an ENTRY onto the given QUEUE. */
633 static void
634 enqueue_eh_entry (queue, entry)
635 struct eh_queue *queue;
636 struct eh_entry *entry;
638 struct eh_node *node = (struct eh_node *) xmalloc (sizeof (struct eh_node));
640 node->entry = entry;
641 node->chain = NULL;
643 if (queue->head == NULL)
644 queue->head = node;
645 else
646 queue->tail->chain = node;
647 queue->tail = node;
650 /* Dequeue an entry from the given QUEUE. */
652 static struct eh_entry *
653 dequeue_eh_entry (queue)
654 struct eh_queue *queue;
656 struct eh_node *tempnode;
657 struct eh_entry *tempentry;
659 if (queue->head == NULL)
660 return NULL;
662 tempnode = queue->head;
663 queue->head = queue->head->chain;
665 tempentry = tempnode->entry;
666 free (tempnode);
668 return tempentry;
671 static void
672 receive_exception_label (handler_label)
673 rtx handler_label;
675 rtx around_label = NULL_RTX;
677 if (! flag_new_exceptions || exceptions_via_longjmp)
679 around_label = gen_label_rtx ();
680 emit_jump (around_label);
681 emit_barrier ();
684 emit_label (handler_label);
686 if (! exceptions_via_longjmp)
688 #ifdef HAVE_exception_receiver
689 if (HAVE_exception_receiver)
690 emit_insn (gen_exception_receiver ());
691 else
692 #endif
693 #ifdef HAVE_nonlocal_goto_receiver
694 if (HAVE_nonlocal_goto_receiver)
695 emit_insn (gen_nonlocal_goto_receiver ());
696 else
697 #endif
698 { /* Nothing */ }
700 else
702 #ifndef DONT_USE_BUILTIN_SETJMP
703 expand_builtin_setjmp_receiver (handler_label);
704 #endif
707 if (around_label)
708 emit_label (around_label);
712 struct func_eh_entry
714 int range_number; /* EH region number from EH NOTE insn's. */
715 rtx rethrow_label; /* Label for rethrow. */
716 int rethrow_ref; /* Is rethrow_label referenced? */
717 int emitted; /* 1 if this entry has been emitted in assembly file. */
718 struct handler_info *handlers;
722 /* table of function eh regions */
723 static struct func_eh_entry *function_eh_regions = NULL;
724 static int num_func_eh_entries = 0;
725 static int current_func_eh_entry = 0;
727 #define SIZE_FUNC_EH(X) (sizeof (struct func_eh_entry) * X)
729 /* Add a new eh_entry for this function. The number returned is an
730 number which uniquely identifies this exception range. */
732 static int
733 new_eh_region_entry (note_eh_region, rethrow)
734 int note_eh_region;
735 rtx rethrow;
737 if (current_func_eh_entry == num_func_eh_entries)
739 if (num_func_eh_entries == 0)
741 function_eh_regions =
742 (struct func_eh_entry *) xmalloc (SIZE_FUNC_EH (50));
743 num_func_eh_entries = 50;
745 else
747 num_func_eh_entries = num_func_eh_entries * 3 / 2;
748 function_eh_regions = (struct func_eh_entry *)
749 xrealloc (function_eh_regions, SIZE_FUNC_EH (num_func_eh_entries));
752 function_eh_regions[current_func_eh_entry].range_number = note_eh_region;
753 if (rethrow == NULL_RTX)
754 function_eh_regions[current_func_eh_entry].rethrow_label =
755 create_rethrow_ref (note_eh_region);
756 else
757 function_eh_regions[current_func_eh_entry].rethrow_label = rethrow;
758 function_eh_regions[current_func_eh_entry].handlers = NULL;
759 function_eh_regions[current_func_eh_entry].emitted = 0;
761 return current_func_eh_entry++;
764 /* Add new handler information to an exception range. The first parameter
765 specifies the range number (returned from new_eh_entry()). The second
766 parameter specifies the handler. By default the handler is inserted at
767 the end of the list. A handler list may contain only ONE NULL_TREE
768 typeinfo entry. Regardless where it is positioned, a NULL_TREE entry
769 is always output as the LAST handler in the exception table for a region. */
771 void
772 add_new_handler (region, newhandler)
773 int region;
774 struct handler_info *newhandler;
776 struct handler_info *last;
778 /* If find_func_region returns -1, callers might attempt to pass us
779 this region number. If that happens, something has gone wrong;
780 -1 is never a valid region. */
781 if (region == -1)
782 abort ();
784 newhandler->next = NULL;
785 last = function_eh_regions[region].handlers;
786 if (last == NULL)
787 function_eh_regions[region].handlers = newhandler;
788 else
790 for ( ; ; last = last->next)
792 if (last->type_info == CATCH_ALL_TYPE)
793 pedwarn ("additional handler after ...");
794 if (last->next == NULL)
795 break;
797 last->next = newhandler;
801 /* Remove a handler label. The handler label is being deleted, so all
802 regions which reference this handler should have it removed from their
803 list of possible handlers. Any region which has the final handler
804 removed can be deleted. */
806 void remove_handler (removing_label)
807 rtx removing_label;
809 struct handler_info *handler, *last;
810 int x;
811 for (x = 0 ; x < current_func_eh_entry; ++x)
813 last = NULL;
814 handler = function_eh_regions[x].handlers;
815 for ( ; handler; last = handler, handler = handler->next)
816 if (handler->handler_label == removing_label)
818 if (last)
820 last->next = handler->next;
821 handler = last;
823 else
824 function_eh_regions[x].handlers = handler->next;
829 /* This function will return a malloc'd pointer to an array of
830 void pointer representing the runtime match values that
831 currently exist in all regions. */
833 int
834 find_all_handler_type_matches (array)
835 void ***array;
837 struct handler_info *handler, *last;
838 int x,y;
839 void *val;
840 void **ptr;
841 int max_ptr;
842 int n_ptr = 0;
844 *array = NULL;
846 if (!doing_eh (0) || ! flag_new_exceptions)
847 return 0;
849 max_ptr = 100;
850 ptr = (void **) xmalloc (max_ptr * sizeof (void *));
852 for (x = 0 ; x < current_func_eh_entry; x++)
854 last = NULL;
855 handler = function_eh_regions[x].handlers;
856 for ( ; handler; last = handler, handler = handler->next)
858 val = handler->type_info;
859 if (val != NULL && val != CATCH_ALL_TYPE)
861 /* See if this match value has already been found. */
862 for (y = 0; y < n_ptr; y++)
863 if (ptr[y] == val)
864 break;
866 /* If we break early, we already found this value. */
867 if (y < n_ptr)
868 continue;
870 /* Do we need to allocate more space? */
871 if (n_ptr >= max_ptr)
873 max_ptr += max_ptr / 2;
874 ptr = (void **) xrealloc (ptr, max_ptr * sizeof (void *));
876 ptr[n_ptr] = val;
877 n_ptr++;
882 if (n_ptr == 0)
884 free (ptr);
885 ptr = NULL;
887 *array = ptr;
888 return n_ptr;
891 /* Create a new handler structure initialized with the handler label and
892 typeinfo fields passed in. */
894 struct handler_info *
895 get_new_handler (handler, typeinfo)
896 rtx handler;
897 void *typeinfo;
899 struct handler_info* ptr;
900 ptr = (struct handler_info *) xmalloc (sizeof (struct handler_info));
901 ptr->handler_label = handler;
902 ptr->handler_number = CODE_LABEL_NUMBER (handler);
903 ptr->type_info = typeinfo;
904 ptr->next = NULL;
906 return ptr;
911 /* Find the index in function_eh_regions associated with a NOTE region. If
912 the region cannot be found, a -1 is returned. */
914 static int
915 find_func_region (insn_region)
916 int insn_region;
918 int x;
919 for (x = 0; x < current_func_eh_entry; x++)
920 if (function_eh_regions[x].range_number == insn_region)
921 return x;
923 return -1;
926 /* Get a pointer to the first handler in an exception region's list. */
928 struct handler_info *
929 get_first_handler (region)
930 int region;
932 int r = find_func_region (region);
933 if (r == -1)
934 abort ();
935 return function_eh_regions[r].handlers;
938 /* Clean out the function_eh_region table and free all memory */
940 static void
941 clear_function_eh_region ()
943 int x;
944 struct handler_info *ptr, *next;
945 for (x = 0; x < current_func_eh_entry; x++)
946 for (ptr = function_eh_regions[x].handlers; ptr != NULL; ptr = next)
948 next = ptr->next;
949 free (ptr);
951 if (function_eh_regions)
952 free (function_eh_regions);
953 num_func_eh_entries = 0;
954 current_func_eh_entry = 0;
957 /* Make a duplicate of an exception region by copying all the handlers
958 for an exception region. Return the new handler index. The final
959 parameter is a routine which maps old labels to new ones. */
961 int
962 duplicate_eh_handlers (old_note_eh_region, new_note_eh_region, map)
963 int old_note_eh_region, new_note_eh_region;
964 rtx (*map) PARAMS ((rtx));
966 struct handler_info *ptr, *new_ptr;
967 int new_region, region;
969 region = find_func_region (old_note_eh_region);
970 if (region == -1)
971 fatal ("Cannot duplicate non-existant exception region.");
973 /* duplicate_eh_handlers may have been called during a symbol remap. */
974 new_region = find_func_region (new_note_eh_region);
975 if (new_region != -1)
976 return (new_region);
978 new_region = new_eh_region_entry (new_note_eh_region, NULL_RTX);
980 ptr = function_eh_regions[region].handlers;
982 for ( ; ptr; ptr = ptr->next)
984 new_ptr = get_new_handler (map (ptr->handler_label), ptr->type_info);
985 add_new_handler (new_region, new_ptr);
988 return new_region;
992 /* Given a rethrow symbol, find the EH region number this is for. */
994 static int
995 eh_region_from_symbol (sym)
996 rtx sym;
998 int x;
999 if (sym == last_rethrow_symbol)
1000 return 1;
1001 for (x = 0; x < current_func_eh_entry; x++)
1002 if (function_eh_regions[x].rethrow_label == sym)
1003 return function_eh_regions[x].range_number;
1004 return -1;
1007 /* Like find_func_region, but using the rethrow symbol for the region
1008 rather than the region number itself. */
1010 static int
1011 find_func_region_from_symbol (sym)
1012 rtx sym;
1014 return find_func_region (eh_region_from_symbol (sym));
1017 /* When inlining/unrolling, we have to map the symbols passed to
1018 __rethrow as well. This performs the remap. If a symbol isn't foiund,
1019 the original one is returned. This is not an efficient routine,
1020 so don't call it on everything!! */
1022 rtx
1023 rethrow_symbol_map (sym, map)
1024 rtx sym;
1025 rtx (*map) PARAMS ((rtx));
1027 int x, y;
1029 if (! flag_new_exceptions)
1030 return sym;
1032 for (x = 0; x < current_func_eh_entry; x++)
1033 if (function_eh_regions[x].rethrow_label == sym)
1035 /* We've found the original region, now lets determine which region
1036 this now maps to. */
1037 rtx l1 = function_eh_regions[x].handlers->handler_label;
1038 rtx l2 = map (l1);
1039 y = CODE_LABEL_NUMBER (l2); /* This is the new region number */
1040 x = find_func_region (y); /* Get the new permanent region */
1041 if (x == -1) /* Hmm, Doesn't exist yet */
1043 x = duplicate_eh_handlers (CODE_LABEL_NUMBER (l1), y, map);
1044 /* Since we're mapping it, it must be used. */
1045 function_eh_regions[x].rethrow_ref = 1;
1047 return function_eh_regions[x].rethrow_label;
1049 return sym;
1052 /* Returns nonzero if the rethrow label for REGION is referenced
1053 somewhere (i.e. we rethrow out of REGION or some other region
1054 masquerading as REGION). */
1056 int
1057 rethrow_used (region)
1058 int region;
1060 if (flag_new_exceptions)
1062 int ret = function_eh_regions[find_func_region (region)].rethrow_ref;
1063 return ret;
1065 return 0;
1069 /* Routine to see if exception handling is turned on.
1070 DO_WARN is non-zero if we want to inform the user that exception
1071 handling is turned off.
1073 This is used to ensure that -fexceptions has been specified if the
1074 compiler tries to use any exception-specific functions. */
1077 doing_eh (do_warn)
1078 int do_warn;
1080 if (! flag_exceptions)
1082 static int warned = 0;
1083 if (! warned && do_warn)
1085 error ("exception handling disabled, use -fexceptions to enable");
1086 warned = 1;
1088 return 0;
1090 return 1;
1093 /* Given a return address in ADDR, determine the address we should use
1094 to find the corresponding EH region. */
1097 eh_outer_context (addr)
1098 rtx addr;
1100 /* First mask out any unwanted bits. */
1101 #ifdef MASK_RETURN_ADDR
1102 expand_and (addr, MASK_RETURN_ADDR, addr);
1103 #endif
1105 /* Then adjust to find the real return address. */
1106 #if defined (RETURN_ADDR_OFFSET)
1107 addr = plus_constant (addr, RETURN_ADDR_OFFSET);
1108 #endif
1110 return addr;
1113 /* Start a new exception region for a region of code that has a
1114 cleanup action and push the HANDLER for the region onto
1115 protect_list. All of the regions created with add_partial_entry
1116 will be ended when end_protect_partials is invoked. */
1118 void
1119 add_partial_entry (handler)
1120 tree handler;
1122 expand_eh_region_start ();
1124 /* Because this is a cleanup action, we may have to protect the handler
1125 with __terminate. */
1126 handler = protect_with_terminate (handler);
1128 /* For backwards compatibility, we allow callers to omit calls to
1129 begin_protect_partials for the outermost region. So, we must
1130 explicitly do so here. */
1131 if (!protect_list)
1132 begin_protect_partials ();
1134 /* Add this entry to the front of the list. */
1135 TREE_VALUE (protect_list)
1136 = tree_cons (NULL_TREE, handler, TREE_VALUE (protect_list));
1139 /* Emit code to get EH context to current function. */
1141 static rtx
1142 call_get_eh_context ()
1144 static tree fn;
1145 tree expr;
1147 if (fn == NULL_TREE)
1149 tree fntype;
1150 fn = get_identifier ("__get_eh_context");
1151 fntype = build_pointer_type (build_pointer_type
1152 (build_pointer_type (void_type_node)));
1153 fntype = build_function_type (fntype, NULL_TREE);
1154 fn = build_decl (FUNCTION_DECL, fn, fntype);
1155 DECL_EXTERNAL (fn) = 1;
1156 TREE_PUBLIC (fn) = 1;
1157 DECL_ARTIFICIAL (fn) = 1;
1158 TREE_READONLY (fn) = 1;
1159 make_decl_rtl (fn, NULL_PTR, 1);
1160 assemble_external (fn);
1162 ggc_add_tree_root (&fn, 1);
1165 expr = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn);
1166 expr = build (CALL_EXPR, TREE_TYPE (TREE_TYPE (fn)),
1167 expr, NULL_TREE, NULL_TREE);
1168 TREE_SIDE_EFFECTS (expr) = 1;
1170 return copy_to_reg (expand_expr (expr, NULL_RTX, VOIDmode, 0));
1173 /* Get a reference to the EH context.
1174 We will only generate a register for the current function EH context here,
1175 and emit a USE insn to mark that this is a EH context register.
1177 Later, emit_eh_context will emit needed call to __get_eh_context
1178 in libgcc2, and copy the value to the register we have generated. */
1181 get_eh_context ()
1183 if (current_function_ehc == 0)
1185 rtx insn;
1187 current_function_ehc = gen_reg_rtx (Pmode);
1189 insn = gen_rtx_USE (GET_MODE (current_function_ehc),
1190 current_function_ehc);
1191 insn = emit_insn_before (insn, get_first_nonparm_insn ());
1193 REG_NOTES (insn)
1194 = gen_rtx_EXPR_LIST (REG_EH_CONTEXT, current_function_ehc,
1195 REG_NOTES (insn));
1197 return current_function_ehc;
1200 /* Get a reference to the dynamic handler chain. It points to the
1201 pointer to the next element in the dynamic handler chain. It ends
1202 when there are no more elements in the dynamic handler chain, when
1203 the value is &top_elt from libgcc2.c. Immediately after the
1204 pointer, is an area suitable for setjmp/longjmp when
1205 DONT_USE_BUILTIN_SETJMP is defined, and an area suitable for
1206 __builtin_setjmp/__builtin_longjmp when DONT_USE_BUILTIN_SETJMP
1207 isn't defined. */
1210 get_dynamic_handler_chain ()
1212 rtx ehc, dhc, result;
1214 ehc = get_eh_context ();
1216 /* This is the offset of dynamic_handler_chain in the eh_context struct
1217 declared in eh-common.h. If its location is change, change this offset */
1218 dhc = plus_constant (ehc, POINTER_SIZE / BITS_PER_UNIT);
1220 result = copy_to_reg (dhc);
1222 /* We don't want a copy of the dcc, but rather, the single dcc. */
1223 return gen_rtx_MEM (Pmode, result);
1226 /* Get a reference to the dynamic cleanup chain. It points to the
1227 pointer to the next element in the dynamic cleanup chain.
1228 Immediately after the pointer, are two Pmode variables, one for a
1229 pointer to a function that performs the cleanup action, and the
1230 second, the argument to pass to that function. */
1233 get_dynamic_cleanup_chain ()
1235 rtx dhc, dcc, result;
1237 dhc = get_dynamic_handler_chain ();
1238 dcc = plus_constant (dhc, POINTER_SIZE / BITS_PER_UNIT);
1240 result = copy_to_reg (dcc);
1242 /* We don't want a copy of the dcc, but rather, the single dcc. */
1243 return gen_rtx_MEM (Pmode, result);
1246 #ifdef DONT_USE_BUILTIN_SETJMP
1247 /* Generate code to evaluate X and jump to LABEL if the value is nonzero.
1248 LABEL is an rtx of code CODE_LABEL, in this function. */
1250 static void
1251 jumpif_rtx (x, label)
1252 rtx x;
1253 rtx label;
1255 jumpif (make_tree (type_for_mode (GET_MODE (x), 0), x), label);
1257 #endif
1259 /* Start a dynamic cleanup on the EH runtime dynamic cleanup stack.
1260 We just need to create an element for the cleanup list, and push it
1261 into the chain.
1263 A dynamic cleanup is a cleanup action implied by the presence of an
1264 element on the EH runtime dynamic cleanup stack that is to be
1265 performed when an exception is thrown. The cleanup action is
1266 performed by __sjthrow when an exception is thrown. Only certain
1267 actions can be optimized into dynamic cleanup actions. For the
1268 restrictions on what actions can be performed using this routine,
1269 see expand_eh_region_start_tree. */
1271 static void
1272 start_dynamic_cleanup (func, arg)
1273 tree func;
1274 tree arg;
1276 rtx dcc;
1277 rtx new_func, new_arg;
1278 rtx x, buf;
1279 int size;
1281 /* We allocate enough room for a pointer to the function, and
1282 one argument. */
1283 size = 2;
1285 /* XXX, FIXME: The stack space allocated this way is too long lived,
1286 but there is no allocation routine that allocates at the level of
1287 the last binding contour. */
1288 buf = assign_stack_local (BLKmode,
1289 GET_MODE_SIZE (Pmode)*(size+1),
1292 buf = change_address (buf, Pmode, NULL_RTX);
1294 /* Store dcc into the first word of the newly allocated buffer. */
1296 dcc = get_dynamic_cleanup_chain ();
1297 emit_move_insn (buf, dcc);
1299 /* Store func and arg into the cleanup list element. */
1301 new_func = gen_rtx_MEM (Pmode, plus_constant (XEXP (buf, 0),
1302 GET_MODE_SIZE (Pmode)));
1303 new_arg = gen_rtx_MEM (Pmode, plus_constant (XEXP (buf, 0),
1304 GET_MODE_SIZE (Pmode)*2));
1305 x = expand_expr (func, new_func, Pmode, 0);
1306 if (x != new_func)
1307 emit_move_insn (new_func, x);
1309 x = expand_expr (arg, new_arg, Pmode, 0);
1310 if (x != new_arg)
1311 emit_move_insn (new_arg, x);
1313 /* Update the cleanup chain. */
1315 x = force_operand (XEXP (buf, 0), dcc);
1316 if (x != dcc)
1317 emit_move_insn (dcc, x);
1320 /* Emit RTL to start a dynamic handler on the EH runtime dynamic
1321 handler stack. This should only be used by expand_eh_region_start
1322 or expand_eh_region_start_tree. */
1324 static void
1325 start_dynamic_handler ()
1327 rtx dhc, dcc;
1328 rtx arg, buf;
1329 int size;
1331 #ifndef DONT_USE_BUILTIN_SETJMP
1332 /* The number of Pmode words for the setjmp buffer, when using the
1333 builtin setjmp/longjmp, see expand_builtin, case BUILT_IN_LONGJMP. */
1334 /* We use 2 words here before calling expand_builtin_setjmp.
1335 expand_builtin_setjmp uses 2 words, and then calls emit_stack_save.
1336 emit_stack_save needs space of size STACK_SAVEAREA_MODE (SAVE_NONLOCAL).
1337 Subtract one, because the assign_stack_local call below adds 1. */
1338 size = (2 + 2 + (GET_MODE_SIZE (STACK_SAVEAREA_MODE (SAVE_NONLOCAL))
1339 / GET_MODE_SIZE (Pmode))
1340 - 1);
1341 #else
1342 #ifdef JMP_BUF_SIZE
1343 size = JMP_BUF_SIZE;
1344 #else
1345 /* Should be large enough for most systems, if it is not,
1346 JMP_BUF_SIZE should be defined with the proper value. It will
1347 also tend to be larger than necessary for most systems, a more
1348 optimal port will define JMP_BUF_SIZE. */
1349 size = FIRST_PSEUDO_REGISTER+2;
1350 #endif
1351 #endif
1352 /* XXX, FIXME: The stack space allocated this way is too long lived,
1353 but there is no allocation routine that allocates at the level of
1354 the last binding contour. */
1355 arg = assign_stack_local (BLKmode,
1356 GET_MODE_SIZE (Pmode)*(size+1),
1359 arg = change_address (arg, Pmode, NULL_RTX);
1361 /* Store dhc into the first word of the newly allocated buffer. */
1363 dhc = get_dynamic_handler_chain ();
1364 dcc = gen_rtx_MEM (Pmode, plus_constant (XEXP (arg, 0),
1365 GET_MODE_SIZE (Pmode)));
1366 emit_move_insn (arg, dhc);
1368 /* Zero out the start of the cleanup chain. */
1369 emit_move_insn (dcc, const0_rtx);
1371 /* The jmpbuf starts two words into the area allocated. */
1372 buf = plus_constant (XEXP (arg, 0), GET_MODE_SIZE (Pmode)*2);
1374 #ifdef DONT_USE_BUILTIN_SETJMP
1376 rtx x;
1377 x = emit_library_call_value (setjmp_libfunc, NULL_RTX, LCT_CONST,
1378 TYPE_MODE (integer_type_node), 1,
1379 buf, Pmode);
1380 /* If we come back here for a catch, transfer control to the handler. */
1381 jumpif_rtx (x, ehstack.top->entry->exception_handler_label);
1383 #else
1384 expand_builtin_setjmp_setup (buf,
1385 ehstack.top->entry->exception_handler_label);
1386 #endif
1388 /* We are committed to this, so update the handler chain. */
1390 emit_move_insn (dhc, force_operand (XEXP (arg, 0), NULL_RTX));
1393 /* Start an exception handling region for the given cleanup action.
1394 All instructions emitted after this point are considered to be part
1395 of the region until expand_eh_region_end is invoked. CLEANUP is
1396 the cleanup action to perform. The return value is true if the
1397 exception region was optimized away. If that case,
1398 expand_eh_region_end does not need to be called for this cleanup,
1399 nor should it be.
1401 This routine notices one particular common case in C++ code
1402 generation, and optimizes it so as to not need the exception
1403 region. It works by creating a dynamic cleanup action, instead of
1404 a using an exception region. */
1407 expand_eh_region_start_tree (decl, cleanup)
1408 tree decl;
1409 tree cleanup;
1411 /* This is the old code. */
1412 if (! doing_eh (0))
1413 return 0;
1415 /* The optimization only applies to actions protected with
1416 terminate, and only applies if we are using the setjmp/longjmp
1417 codegen method. */
1418 if (exceptions_via_longjmp
1419 && protect_cleanup_actions_with_terminate)
1421 tree func, arg;
1422 tree args;
1424 /* Ignore any UNSAVE_EXPR. */
1425 if (TREE_CODE (cleanup) == UNSAVE_EXPR)
1426 cleanup = TREE_OPERAND (cleanup, 0);
1428 /* Further, it only applies if the action is a call, if there
1429 are 2 arguments, and if the second argument is 2. */
1431 if (TREE_CODE (cleanup) == CALL_EXPR
1432 && (args = TREE_OPERAND (cleanup, 1))
1433 && (func = TREE_OPERAND (cleanup, 0))
1434 && (arg = TREE_VALUE (args))
1435 && (args = TREE_CHAIN (args))
1437 /* is the second argument 2? */
1438 && TREE_CODE (TREE_VALUE (args)) == INTEGER_CST
1439 && compare_tree_int (TREE_VALUE (args), 2) == 0
1441 /* Make sure there are no other arguments. */
1442 && TREE_CHAIN (args) == NULL_TREE)
1444 /* Arrange for returns and gotos to pop the entry we make on the
1445 dynamic cleanup stack. */
1446 expand_dcc_cleanup (decl);
1447 start_dynamic_cleanup (func, arg);
1448 return 1;
1452 expand_eh_region_start_for_decl (decl);
1453 ehstack.top->entry->finalization = cleanup;
1455 return 0;
1458 /* Just like expand_eh_region_start, except if a cleanup action is
1459 entered on the cleanup chain, the TREE_PURPOSE of the element put
1460 on the chain is DECL. DECL should be the associated VAR_DECL, if
1461 any, otherwise it should be NULL_TREE. */
1463 void
1464 expand_eh_region_start_for_decl (decl)
1465 tree decl;
1467 rtx note;
1469 /* This is the old code. */
1470 if (! doing_eh (0))
1471 return;
1473 /* We need a new block to record the start and end of the
1474 dynamic handler chain. We also want to prevent jumping into
1475 a try block. */
1476 expand_start_bindings (2);
1478 /* But we don't need or want a new temporary level. */
1479 pop_temp_slots ();
1481 /* Mark this block as created by expand_eh_region_start. This
1482 is so that we can pop the block with expand_end_bindings
1483 automatically. */
1484 mark_block_as_eh_region ();
1486 if (exceptions_via_longjmp)
1488 /* Arrange for returns and gotos to pop the entry we make on the
1489 dynamic handler stack. */
1490 expand_dhc_cleanup (decl);
1493 push_eh_entry (&ehstack);
1494 note = emit_note (NULL_PTR, NOTE_INSN_EH_REGION_BEG);
1495 NOTE_EH_HANDLER (note)
1496 = CODE_LABEL_NUMBER (ehstack.top->entry->exception_handler_label);
1497 if (exceptions_via_longjmp)
1498 start_dynamic_handler ();
1501 /* Start an exception handling region. All instructions emitted after
1502 this point are considered to be part of the region until
1503 expand_eh_region_end is invoked. */
1505 void
1506 expand_eh_region_start ()
1508 expand_eh_region_start_for_decl (NULL_TREE);
1511 /* End an exception handling region. The information about the region
1512 is found on the top of ehstack.
1514 HANDLER is either the cleanup for the exception region, or if we're
1515 marking the end of a try block, HANDLER is integer_zero_node.
1517 HANDLER will be transformed to rtl when expand_leftover_cleanups
1518 is invoked. */
1520 void
1521 expand_eh_region_end (handler)
1522 tree handler;
1524 struct eh_entry *entry;
1525 struct eh_node *node;
1526 rtx note;
1527 int ret, r;
1529 if (! doing_eh (0))
1530 return;
1532 entry = pop_eh_entry (&ehstack);
1534 note = emit_note (NULL_PTR, NOTE_INSN_EH_REGION_END);
1535 ret = NOTE_EH_HANDLER (note)
1536 = CODE_LABEL_NUMBER (entry->exception_handler_label);
1537 if (exceptions_via_longjmp == 0 && ! flag_new_exceptions
1538 /* We share outer_context between regions; only emit it once. */
1539 && INSN_UID (entry->outer_context) == 0)
1541 rtx label;
1543 label = gen_label_rtx ();
1544 emit_jump (label);
1546 /* Emit a label marking the end of this exception region that
1547 is used for rethrowing into the outer context. */
1548 emit_label (entry->outer_context);
1549 expand_internal_throw ();
1551 emit_label (label);
1554 entry->finalization = handler;
1556 /* create region entry in final exception table */
1557 r = new_eh_region_entry (NOTE_EH_HANDLER (note), entry->rethrow_label);
1559 enqueue_eh_entry (ehqueue, entry);
1561 /* If we have already started ending the bindings, don't recurse. */
1562 if (is_eh_region ())
1564 /* Because we don't need or want a new temporary level and
1565 because we didn't create one in expand_eh_region_start,
1566 create a fake one now to avoid removing one in
1567 expand_end_bindings. */
1568 push_temp_slots ();
1570 mark_block_as_not_eh_region ();
1572 expand_end_bindings (NULL_TREE, 0, 0);
1575 /* Go through the goto handlers in the queue, emitting their
1576 handlers if we now have enough information to do so. */
1577 for (node = ehqueue->head; node; node = node->chain)
1578 if (node->entry->goto_entry_p
1579 && node->entry->outer_context == entry->rethrow_label)
1580 emit_cleanup_handler (node->entry);
1582 /* We can't emit handlers for goto entries until their scopes are
1583 complete because we don't know where they need to rethrow to,
1584 yet. */
1585 if (entry->finalization != integer_zero_node
1586 && (!entry->goto_entry_p
1587 || find_func_region_from_symbol (entry->outer_context) != -1))
1588 emit_cleanup_handler (entry);
1591 /* End the EH region for a goto fixup. We only need them in the region-based
1592 EH scheme. */
1594 void
1595 expand_fixup_region_start ()
1597 if (! doing_eh (0) || exceptions_via_longjmp)
1598 return;
1600 expand_eh_region_start ();
1601 /* Mark this entry as the entry for a goto. */
1602 ehstack.top->entry->goto_entry_p = 1;
1605 /* End the EH region for a goto fixup. CLEANUP is the cleanup we just
1606 expanded; to avoid running it twice if it throws, we look through the
1607 ehqueue for a matching region and rethrow from its outer_context. */
1609 void
1610 expand_fixup_region_end (cleanup)
1611 tree cleanup;
1613 struct eh_node *node;
1614 int dont_issue;
1616 if (! doing_eh (0) || exceptions_via_longjmp)
1617 return;
1619 for (node = ehstack.top; node && node->entry->finalization != cleanup; )
1620 node = node->chain;
1621 if (node == 0)
1622 for (node = ehqueue->head; node && node->entry->finalization != cleanup; )
1623 node = node->chain;
1624 if (node == 0)
1625 abort ();
1627 /* If the outer context label has not been issued yet, we don't want
1628 to issue it as a part of this region, unless this is the
1629 correct region for the outer context. If we did, then the label for
1630 the outer context will be WITHIN the begin/end labels,
1631 and we could get an infinte loop when it tried to rethrow, or just
1632 generally incorrect execution following a throw. */
1634 if (flag_new_exceptions)
1635 dont_issue = 0;
1636 else
1637 dont_issue = ((INSN_UID (node->entry->outer_context) == 0)
1638 && (ehstack.top->entry != node->entry));
1640 ehstack.top->entry->outer_context = node->entry->outer_context;
1642 /* Since we are rethrowing to the OUTER region, we know we don't need
1643 a jump around sequence for this region, so we'll pretend the outer
1644 context label has been issued by setting INSN_UID to 1, then clearing
1645 it again afterwards. */
1647 if (dont_issue)
1648 INSN_UID (node->entry->outer_context) = 1;
1650 /* Just rethrow. size_zero_node is just a NOP. */
1651 expand_eh_region_end (size_zero_node);
1653 if (dont_issue)
1654 INSN_UID (node->entry->outer_context) = 0;
1657 /* If we are using the setjmp/longjmp EH codegen method, we emit a
1658 call to __sjthrow. Otherwise, we emit a call to __throw. */
1660 void
1661 emit_throw ()
1663 if (exceptions_via_longjmp)
1665 emit_library_call (sjthrow_libfunc, 0, VOIDmode, 0);
1667 else
1669 #ifdef JUMP_TO_THROW
1670 emit_indirect_jump (throw_libfunc);
1671 #else
1672 emit_library_call (throw_libfunc, 0, VOIDmode, 0);
1673 #endif
1675 emit_barrier ();
1678 /* Throw the current exception. If appropriate, this is done by jumping
1679 to the next handler. */
1681 void
1682 expand_internal_throw ()
1684 emit_throw ();
1687 /* Called from expand_exception_blocks and expand_end_catch_block to
1688 emit any pending handlers/cleanups queued from expand_eh_region_end. */
1690 void
1691 expand_leftover_cleanups ()
1693 struct eh_entry *entry;
1695 for (entry = dequeue_eh_entry (ehqueue);
1696 entry;
1697 entry = dequeue_eh_entry (ehqueue))
1699 /* A leftover try block. Shouldn't be one here. */
1700 if (entry->finalization == integer_zero_node)
1701 abort ();
1703 free (entry);
1707 /* Called at the start of a block of try statements. */
1708 void
1709 expand_start_try_stmts ()
1711 if (! doing_eh (1))
1712 return;
1714 expand_eh_region_start ();
1717 /* Called to begin a catch clause. The parameter is the object which
1718 will be passed to the runtime type check routine. */
1719 void
1720 start_catch_handler (rtime)
1721 tree rtime;
1723 rtx handler_label;
1724 int insn_region_num;
1725 int eh_region_entry;
1727 if (! doing_eh (1))
1728 return;
1730 handler_label = catchstack.top->entry->exception_handler_label;
1731 insn_region_num = CODE_LABEL_NUMBER (handler_label);
1732 eh_region_entry = find_func_region (insn_region_num);
1734 /* If we've already issued this label, pick a new one */
1735 if (catchstack.top->entry->label_used)
1736 handler_label = gen_exception_label ();
1737 else
1738 catchstack.top->entry->label_used = 1;
1740 receive_exception_label (handler_label);
1742 add_new_handler (eh_region_entry, get_new_handler (handler_label, rtime));
1744 if (flag_new_exceptions && ! exceptions_via_longjmp)
1745 return;
1747 /* Under the old mechanism, as well as setjmp/longjmp, we need to
1748 issue code to compare 'rtime' to the value in eh_info, via the
1749 matching function in eh_info. If its is false, we branch around
1750 the handler we are about to issue. */
1752 if (rtime != NULL_TREE && rtime != CATCH_ALL_TYPE)
1754 rtx call_rtx, rtime_address;
1756 if (catchstack.top->entry->false_label != NULL_RTX)
1758 error ("Never issued previous false_label");
1759 abort ();
1761 catchstack.top->entry->false_label = gen_exception_label ();
1763 rtime_address = expand_expr (rtime, NULL_RTX, Pmode, EXPAND_INITIALIZER);
1764 #ifdef POINTERS_EXTEND_UNSIGNED
1765 rtime_address = convert_memory_address (Pmode, rtime_address);
1766 #endif
1767 rtime_address = force_reg (Pmode, rtime_address);
1769 /* Now issue the call, and branch around handler if needed */
1770 call_rtx = emit_library_call_value (eh_rtime_match_libfunc, NULL_RTX,
1771 LCT_NORMAL,
1772 TYPE_MODE (integer_type_node),
1773 1, rtime_address, Pmode);
1775 /* Did the function return true? */
1776 emit_cmp_and_jump_insns (call_rtx, const0_rtx, EQ, NULL_RTX,
1777 GET_MODE (call_rtx), 0, 0,
1778 catchstack.top->entry->false_label);
1782 /* Called to end a catch clause. If we aren't using the new exception
1783 model tabel mechanism, we need to issue the branch-around label
1784 for the end of the catch block. */
1786 void
1787 end_catch_handler ()
1789 if (! doing_eh (1))
1790 return;
1792 if (flag_new_exceptions && ! exceptions_via_longjmp)
1794 emit_barrier ();
1795 return;
1798 /* A NULL label implies the catch clause was a catch all or cleanup */
1799 if (catchstack.top->entry->false_label == NULL_RTX)
1800 return;
1802 emit_label (catchstack.top->entry->false_label);
1803 catchstack.top->entry->false_label = NULL_RTX;
1806 /* Save away the current ehqueue. */
1808 void
1809 push_ehqueue ()
1811 struct eh_queue *q;
1812 q = (struct eh_queue *) xcalloc (1, sizeof (struct eh_queue));
1813 q->next = ehqueue;
1814 ehqueue = q;
1817 /* Restore a previously pushed ehqueue. */
1819 void
1820 pop_ehqueue ()
1822 struct eh_queue *q;
1823 expand_leftover_cleanups ();
1824 q = ehqueue->next;
1825 free (ehqueue);
1826 ehqueue = q;
1829 /* Emit the handler specified by ENTRY. */
1831 static void
1832 emit_cleanup_handler (entry)
1833 struct eh_entry *entry;
1835 rtx prev;
1836 rtx handler_insns;
1838 /* Since the cleanup could itself contain try-catch blocks, we
1839 squirrel away the current queue and replace it when we are done
1840 with this function. */
1841 push_ehqueue ();
1843 /* Put these handler instructions in a sequence. */
1844 do_pending_stack_adjust ();
1845 start_sequence ();
1847 /* Emit the label for the cleanup handler for this region, and
1848 expand the code for the handler.
1850 Note that a catch region is handled as a side-effect here; for a
1851 try block, entry->finalization will contain integer_zero_node, so
1852 no code will be generated in the expand_expr call below. But, the
1853 label for the handler will still be emitted, so any code emitted
1854 after this point will end up being the handler. */
1856 receive_exception_label (entry->exception_handler_label);
1858 /* register a handler for this cleanup region */
1859 add_new_handler (find_func_region (CODE_LABEL_NUMBER (entry->exception_handler_label)),
1860 get_new_handler (entry->exception_handler_label, NULL));
1862 /* And now generate the insns for the cleanup handler. */
1863 expand_expr (entry->finalization, const0_rtx, VOIDmode, 0);
1865 prev = get_last_insn ();
1866 if (prev == NULL || GET_CODE (prev) != BARRIER)
1867 /* Code to throw out to outer context when we fall off end of the
1868 handler. We can't do this here for catch blocks, so it's done
1869 in expand_end_all_catch instead. */
1870 expand_rethrow (entry->outer_context);
1872 /* Finish this sequence. */
1873 do_pending_stack_adjust ();
1874 handler_insns = get_insns ();
1875 end_sequence ();
1877 /* And add it to the CATCH_CLAUSES. */
1878 push_to_full_sequence (catch_clauses, catch_clauses_last);
1879 emit_insns (handler_insns);
1880 end_full_sequence (&catch_clauses, &catch_clauses_last);
1882 /* Now we've left the handler. */
1883 pop_ehqueue ();
1886 /* Generate RTL for the start of a group of catch clauses.
1888 It is responsible for starting a new instruction sequence for the
1889 instructions in the catch block, and expanding the handlers for the
1890 internally-generated exception regions nested within the try block
1891 corresponding to this catch block. */
1893 void
1894 expand_start_all_catch ()
1896 struct eh_entry *entry;
1897 tree label;
1898 rtx outer_context;
1900 if (! doing_eh (1))
1901 return;
1903 outer_context = ehstack.top->entry->outer_context;
1905 /* End the try block. */
1906 expand_eh_region_end (integer_zero_node);
1908 emit_line_note (input_filename, lineno);
1909 label = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE);
1911 /* The label for the exception handling block that we will save.
1912 This is Lresume in the documentation. */
1913 expand_label (label);
1915 /* Push the label that points to where normal flow is resumed onto
1916 the top of the label stack. */
1917 push_label_entry (&caught_return_label_stack, NULL_RTX, label);
1919 /* Start a new sequence for all the catch blocks. We will add this
1920 to the global sequence catch_clauses when we have completed all
1921 the handlers in this handler-seq. */
1922 start_sequence ();
1924 /* Throw away entries in the queue that we won't need anymore. We
1925 need entries for regions that have ended but to which there might
1926 still be gotos pending. */
1927 for (entry = dequeue_eh_entry (ehqueue);
1928 entry->finalization != integer_zero_node;
1929 entry = dequeue_eh_entry (ehqueue))
1930 free (entry);
1932 /* At this point, all the cleanups are done, and the ehqueue now has
1933 the current exception region at its head. We dequeue it, and put it
1934 on the catch stack. */
1935 push_entry (&catchstack, entry);
1937 /* If we are not doing setjmp/longjmp EH, because we are reordered
1938 out of line, we arrange to rethrow in the outer context. We need to
1939 do this because we are not physically within the region, if any, that
1940 logically contains this catch block. */
1941 if (! exceptions_via_longjmp)
1943 expand_eh_region_start ();
1944 ehstack.top->entry->outer_context = outer_context;
1949 /* Finish up the catch block. At this point all the insns for the
1950 catch clauses have already been generated, so we only have to add
1951 them to the catch_clauses list. We also want to make sure that if
1952 we fall off the end of the catch clauses that we rethrow to the
1953 outer EH region. */
1955 void
1956 expand_end_all_catch ()
1958 rtx new_catch_clause;
1959 struct eh_entry *entry;
1961 if (! doing_eh (1))
1962 return;
1964 /* Dequeue the current catch clause region. */
1965 entry = pop_eh_entry (&catchstack);
1966 free (entry);
1968 if (! exceptions_via_longjmp)
1970 rtx outer_context = ehstack.top->entry->outer_context;
1972 /* Finish the rethrow region. size_zero_node is just a NOP. */
1973 expand_eh_region_end (size_zero_node);
1974 /* New exceptions handling models will never have a fall through
1975 of a catch clause */
1976 if (!flag_new_exceptions)
1977 expand_rethrow (outer_context);
1979 else
1980 expand_rethrow (NULL_RTX);
1982 /* Code to throw out to outer context, if we fall off end of catch
1983 handlers. This is rethrow (Lresume, same id, same obj) in the
1984 documentation. We use Lresume because we know that it will throw
1985 to the correct context.
1987 In other words, if the catch handler doesn't exit or return, we
1988 do a "throw" (using the address of Lresume as the point being
1989 thrown from) so that the outer EH region can then try to process
1990 the exception. */
1992 /* Now we have the complete catch sequence. */
1993 new_catch_clause = get_insns ();
1994 end_sequence ();
1996 /* This level of catch blocks is done, so set up the successful
1997 catch jump label for the next layer of catch blocks. */
1998 pop_label_entry (&caught_return_label_stack);
1999 pop_label_entry (&outer_context_label_stack);
2001 /* Add the new sequence of catches to the main one for this function. */
2002 push_to_full_sequence (catch_clauses, catch_clauses_last);
2003 emit_insns (new_catch_clause);
2004 end_full_sequence (&catch_clauses, &catch_clauses_last);
2006 /* Here we fall through into the continuation code. */
2009 /* Rethrow from the outer context LABEL. */
2011 static void
2012 expand_rethrow (label)
2013 rtx label;
2015 if (exceptions_via_longjmp)
2016 emit_throw ();
2017 else
2018 if (flag_new_exceptions)
2020 rtx insn;
2021 int region;
2022 if (label == NULL_RTX)
2023 label = last_rethrow_symbol;
2024 emit_library_call (rethrow_libfunc, 0, VOIDmode, 1, label, Pmode);
2025 region = find_func_region (eh_region_from_symbol (label));
2026 /* If the region is -1, it doesn't exist yet. We shouldn't be
2027 trying to rethrow there yet. */
2028 if (region == -1)
2029 abort ();
2030 function_eh_regions[region].rethrow_ref = 1;
2032 /* Search backwards for the actual call insn. */
2033 insn = get_last_insn ();
2034 while (GET_CODE (insn) != CALL_INSN)
2035 insn = PREV_INSN (insn);
2036 delete_insns_since (insn);
2038 /* Mark the label/symbol on the call. */
2039 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EH_RETHROW, label,
2040 REG_NOTES (insn));
2041 emit_barrier ();
2043 else
2044 emit_jump (label);
2047 /* Begin a region that will contain entries created with
2048 add_partial_entry. */
2050 void
2051 begin_protect_partials ()
2053 /* Push room for a new list. */
2054 protect_list = tree_cons (NULL_TREE, NULL_TREE, protect_list);
2057 /* End all the pending exception regions on protect_list. The handlers
2058 will be emitted when expand_leftover_cleanups is invoked. */
2060 void
2061 end_protect_partials ()
2063 tree t;
2065 /* For backwards compatibility, we allow callers to omit the call to
2066 begin_protect_partials for the outermost region. So,
2067 PROTECT_LIST may be NULL. */
2068 if (!protect_list)
2069 return;
2071 /* End all the exception regions. */
2072 for (t = TREE_VALUE (protect_list); t; t = TREE_CHAIN (t))
2073 expand_eh_region_end (TREE_VALUE (t));
2075 /* Pop the topmost entry. */
2076 protect_list = TREE_CHAIN (protect_list);
2080 /* Arrange for __terminate to be called if there is an unhandled throw
2081 from within E. */
2083 tree
2084 protect_with_terminate (e)
2085 tree e;
2087 /* We only need to do this when using setjmp/longjmp EH and the
2088 language requires it, as otherwise we protect all of the handlers
2089 at once, if we need to. */
2090 if (exceptions_via_longjmp && protect_cleanup_actions_with_terminate)
2092 tree handler, result;
2094 handler = make_node (RTL_EXPR);
2095 TREE_TYPE (handler) = void_type_node;
2096 RTL_EXPR_RTL (handler) = const0_rtx;
2097 TREE_SIDE_EFFECTS (handler) = 1;
2098 start_sequence_for_rtl_expr (handler);
2100 emit_library_call (terminate_libfunc, 0, VOIDmode, 0);
2101 emit_barrier ();
2103 RTL_EXPR_SEQUENCE (handler) = get_insns ();
2104 end_sequence ();
2106 result = build (TRY_CATCH_EXPR, TREE_TYPE (e), e, handler);
2107 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2108 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2109 TREE_READONLY (result) = TREE_READONLY (e);
2111 e = result;
2114 return e;
2117 /* The exception table that we build that is used for looking up and
2118 dispatching exceptions, the current number of entries, and its
2119 maximum size before we have to extend it.
2121 The number in eh_table is the code label number of the exception
2122 handler for the region. This is added by add_eh_table_entry and
2123 used by output_exception_table_entry. */
2125 static int *eh_table = NULL;
2126 static int eh_table_size = 0;
2127 static int eh_table_max_size = 0;
2129 /* Note the need for an exception table entry for region N. If we
2130 don't need to output an explicit exception table, avoid all of the
2131 extra work.
2133 Called from final_scan_insn when a NOTE_INSN_EH_REGION_BEG is seen.
2134 (Or NOTE_INSN_EH_REGION_END sometimes)
2135 N is the NOTE_EH_HANDLER of the note, which comes from the code
2136 label number of the exception handler for the region. */
2138 void
2139 add_eh_table_entry (n)
2140 int n;
2142 #ifndef OMIT_EH_TABLE
2143 if (eh_table_size >= eh_table_max_size)
2145 if (eh_table)
2147 eh_table_max_size += eh_table_max_size>>1;
2149 if (eh_table_max_size < 0)
2150 abort ();
2152 eh_table = (int *) xrealloc (eh_table,
2153 eh_table_max_size * sizeof (int));
2155 else
2157 eh_table_max_size = 252;
2158 eh_table = (int *) xmalloc (eh_table_max_size * sizeof (int));
2161 eh_table[eh_table_size++] = n;
2163 if (flag_new_exceptions)
2165 /* We will output the exception table late in the compilation. That
2166 references type_info objects which should have already been output
2167 by that time. We explicitly mark those objects as being
2168 referenced now so we know to emit them. */
2169 struct handler_info *handler = get_first_handler (n);
2171 for (; handler; handler = handler->next)
2172 if (handler->type_info && handler->type_info != CATCH_ALL_TYPE)
2174 tree tinfo = (tree)handler->type_info;
2176 tinfo = TREE_OPERAND (tinfo, 0);
2177 TREE_SYMBOL_REFERENCED (DECL_ASSEMBLER_NAME (tinfo)) = 1;
2180 #endif
2183 /* Return a non-zero value if we need to output an exception table.
2185 On some platforms, we don't have to output a table explicitly.
2186 This routine doesn't mean we don't have one. */
2189 exception_table_p ()
2191 if (eh_table)
2192 return 1;
2194 return 0;
2197 /* Output the entry of the exception table corresponding to the
2198 exception region numbered N to file FILE.
2200 N is the code label number corresponding to the handler of the
2201 region. */
2203 static void
2204 output_exception_table_entry (file, n)
2205 FILE *file;
2206 int n;
2208 char buf[256];
2209 rtx sym;
2210 struct handler_info *handler = get_first_handler (n);
2211 int index = find_func_region (n);
2212 rtx rethrow;
2214 /* Form and emit the rethrow label, if needed */
2215 if (flag_new_exceptions
2216 && (handler || function_eh_regions[index].rethrow_ref))
2217 rethrow = function_eh_regions[index].rethrow_label;
2218 else
2219 rethrow = NULL_RTX;
2221 if (function_eh_regions[index].emitted)
2222 return;
2223 function_eh_regions[index].emitted = 1;
2225 for ( ; handler != NULL || rethrow != NULL_RTX; handler = handler->next)
2227 /* rethrow label should indicate the LAST entry for a region */
2228 if (rethrow != NULL_RTX && (handler == NULL || handler->next == NULL))
2230 ASM_GENERATE_INTERNAL_LABEL (buf, "LRTH", n);
2231 assemble_eh_label(buf);
2232 rethrow = NULL_RTX;
2235 ASM_GENERATE_INTERNAL_LABEL (buf, "LEHB", n);
2236 sym = gen_rtx_SYMBOL_REF (Pmode, buf);
2237 assemble_eh_integer (sym, POINTER_SIZE / BITS_PER_UNIT, 1);
2239 ASM_GENERATE_INTERNAL_LABEL (buf, "LEHE", n);
2240 sym = gen_rtx_SYMBOL_REF (Pmode, buf);
2241 assemble_eh_integer (sym, POINTER_SIZE / BITS_PER_UNIT, 1);
2243 if (handler == NULL)
2244 assemble_eh_integer (GEN_INT (0), POINTER_SIZE / BITS_PER_UNIT, 1);
2245 else
2247 ASM_GENERATE_INTERNAL_LABEL (buf, "L", handler->handler_number);
2248 sym = gen_rtx_SYMBOL_REF (Pmode, buf);
2249 assemble_eh_integer (sym, POINTER_SIZE / BITS_PER_UNIT, 1);
2252 if (flag_new_exceptions)
2254 if (handler == NULL || handler->type_info == NULL)
2255 assemble_eh_integer (const0_rtx, POINTER_SIZE / BITS_PER_UNIT, 1);
2256 else
2257 if (handler->type_info == CATCH_ALL_TYPE)
2258 assemble_eh_integer (GEN_INT (CATCH_ALL_TYPE),
2259 POINTER_SIZE / BITS_PER_UNIT, 1);
2260 else
2261 output_constant ((tree)(handler->type_info),
2262 POINTER_SIZE / BITS_PER_UNIT);
2264 putc ('\n', file); /* blank line */
2265 /* We only output the first label under the old scheme */
2266 if (! flag_new_exceptions || handler == NULL)
2267 break;
2271 /* Output the exception table if we have and need one. */
2273 static short language_code = 0;
2274 static short version_code = 0;
2276 /* This routine will set the language code for exceptions. */
2277 void
2278 set_exception_lang_code (code)
2279 int code;
2281 language_code = code;
2284 /* This routine will set the language version code for exceptions. */
2285 void
2286 set_exception_version_code (code)
2287 int code;
2289 version_code = code;
2292 /* Free the EH table structures. */
2293 void
2294 free_exception_table ()
2296 if (eh_table)
2297 free (eh_table);
2298 clear_function_eh_region ();
2301 /* Output the common content of an exception table. */
2302 void
2303 output_exception_table_data ()
2305 int i;
2306 char buf[256];
2307 extern FILE *asm_out_file;
2309 if (flag_new_exceptions)
2311 assemble_eh_integer (GEN_INT (NEW_EH_RUNTIME),
2312 POINTER_SIZE / BITS_PER_UNIT, 1);
2313 assemble_eh_integer (GEN_INT (language_code), 2 , 1);
2314 assemble_eh_integer (GEN_INT (version_code), 2 , 1);
2316 /* Add enough padding to make sure table aligns on a pointer boundry. */
2317 i = GET_MODE_ALIGNMENT (ptr_mode) / BITS_PER_UNIT - 4;
2318 for ( ; i < 0; i = i + GET_MODE_ALIGNMENT (ptr_mode) / BITS_PER_UNIT)
2320 if (i != 0)
2321 assemble_eh_integer (const0_rtx, i , 1);
2323 /* Generate the label for offset calculations on rethrows. */
2324 ASM_GENERATE_INTERNAL_LABEL (buf, "LRTH", 0);
2325 assemble_eh_label(buf);
2328 for (i = 0; i < eh_table_size; ++i)
2329 output_exception_table_entry (asm_out_file, eh_table[i]);
2333 /* Output an exception table for the entire compilation unit. */
2334 void
2335 output_exception_table ()
2337 char buf[256];
2338 extern FILE *asm_out_file;
2340 if (! doing_eh (0) || ! eh_table)
2341 return;
2343 exception_section ();
2345 /* Beginning marker for table. */
2346 assemble_eh_align (GET_MODE_ALIGNMENT (ptr_mode));
2347 assemble_eh_label ("__EXCEPTION_TABLE__");
2349 output_exception_table_data ();
2351 /* Ending marker for table. */
2352 /* Generate the label for end of table. */
2353 ASM_GENERATE_INTERNAL_LABEL (buf, "LRTH", CODE_LABEL_NUMBER (final_rethrow));
2354 assemble_eh_label(buf);
2355 assemble_eh_integer (constm1_rtx, POINTER_SIZE / BITS_PER_UNIT, 1);
2357 /* For binary compatibility, the old __throw checked the second
2358 position for a -1, so we should output at least 2 -1's */
2359 if (! flag_new_exceptions)
2360 assemble_eh_integer (constm1_rtx, POINTER_SIZE / BITS_PER_UNIT, 1);
2362 putc ('\n', asm_out_file); /* blank line */
2365 /* Used by the ia64 unwind format to output data for an individual
2366 function. */
2367 void
2368 output_function_exception_table ()
2370 extern FILE *asm_out_file;
2372 if (! doing_eh (0) || ! eh_table)
2373 return;
2375 #ifdef HANDLER_SECTION
2376 HANDLER_SECTION;
2377 #endif
2379 output_exception_table_data ();
2381 /* Ending marker for table. */
2382 assemble_eh_integer (constm1_rtx, POINTER_SIZE / BITS_PER_UNIT, 1);
2384 putc ('\n', asm_out_file); /* blank line */
2388 /* Emit code to get EH context.
2390 We have to scan thru the code to find possible EH context registers.
2391 Inlined functions may use it too, and thus we'll have to be able
2392 to change them too.
2394 This is done only if using exceptions_via_longjmp. */
2396 void
2397 emit_eh_context ()
2399 rtx insn;
2400 rtx ehc = 0;
2402 if (! doing_eh (0))
2403 return;
2405 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2406 if (GET_CODE (insn) == INSN
2407 && GET_CODE (PATTERN (insn)) == USE)
2409 rtx reg = find_reg_note (insn, REG_EH_CONTEXT, 0);
2410 if (reg)
2412 rtx insns;
2414 start_sequence ();
2416 /* If this is the first use insn, emit the call here. This
2417 will always be at the top of our function, because if
2418 expand_inline_function notices a REG_EH_CONTEXT note, it
2419 adds a use insn to this function as well. */
2420 if (ehc == 0)
2421 ehc = call_get_eh_context ();
2423 emit_move_insn (XEXP (reg, 0), ehc);
2424 insns = get_insns ();
2425 end_sequence ();
2427 emit_insns_before (insns, insn);
2432 /* Scan the insn chain F and build a list of handler labels. The
2433 resulting list is placed in the global variable exception_handler_labels. */
2435 static void
2436 find_exception_handler_labels_1 (f)
2437 rtx f;
2439 rtx insn;
2441 /* For each start of a region, add its label to the list. */
2443 for (insn = f; insn; insn = NEXT_INSN (insn))
2445 struct handler_info* ptr;
2446 if (GET_CODE (insn) == NOTE
2447 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
2449 ptr = get_first_handler (NOTE_EH_HANDLER (insn));
2450 for ( ; ptr; ptr = ptr->next)
2452 /* make sure label isn't in the list already */
2453 rtx x;
2454 for (x = exception_handler_labels; x; x = XEXP (x, 1))
2455 if (XEXP (x, 0) == ptr->handler_label)
2456 break;
2457 if (! x)
2458 exception_handler_labels = gen_rtx_EXPR_LIST (VOIDmode,
2459 ptr->handler_label, exception_handler_labels);
2462 else if (GET_CODE (insn) == CALL_INSN
2463 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
2465 find_exception_handler_labels_1 (XEXP (PATTERN (insn), 0));
2466 find_exception_handler_labels_1 (XEXP (PATTERN (insn), 1));
2467 find_exception_handler_labels_1 (XEXP (PATTERN (insn), 2));
2472 /* Scan the current insns and build a list of handler labels. The
2473 resulting list is placed in the global variable exception_handler_labels.
2475 It is called after the last exception handling region is added to
2476 the current function (when the rtl is almost all built for the
2477 current function) and before the jump optimization pass. */
2478 void
2479 find_exception_handler_labels ()
2481 exception_handler_labels = NULL_RTX;
2483 /* If we aren't doing exception handling, there isn't much to check. */
2484 if (! doing_eh (0))
2485 return;
2487 find_exception_handler_labels_1 (get_insns ());
2490 /* Return a value of 1 if the parameter label number is an exception handler
2491 label. Return 0 otherwise. */
2494 is_exception_handler_label (lab)
2495 int lab;
2497 rtx x;
2498 for (x = exception_handler_labels ; x ; x = XEXP (x, 1))
2499 if (lab == CODE_LABEL_NUMBER (XEXP (x, 0)))
2500 return 1;
2501 return 0;
2504 /* Perform sanity checking on the exception_handler_labels list.
2506 Can be called after find_exception_handler_labels is called to
2507 build the list of exception handlers for the current function and
2508 before we finish processing the current function. */
2510 void
2511 check_exception_handler_labels ()
2513 rtx insn, insn2;
2515 /* If we aren't doing exception handling, there isn't much to check. */
2516 if (! doing_eh (0))
2517 return;
2519 /* Make sure there is no more than 1 copy of a label */
2520 for (insn = exception_handler_labels; insn; insn = XEXP (insn, 1))
2522 int count = 0;
2523 for (insn2 = exception_handler_labels; insn2; insn2 = XEXP (insn2, 1))
2524 if (XEXP (insn, 0) == XEXP (insn2, 0))
2525 count++;
2526 if (count != 1)
2527 warning ("Counted %d copies of EH region %d in list.\n", count,
2528 CODE_LABEL_NUMBER (insn));
2533 /* Mark the children of NODE for GC. */
2535 static void
2536 mark_eh_node (node)
2537 struct eh_node *node;
2539 while (node)
2541 if (node->entry)
2543 ggc_mark_rtx (node->entry->outer_context);
2544 ggc_mark_rtx (node->entry->exception_handler_label);
2545 ggc_mark_tree (node->entry->finalization);
2546 ggc_mark_rtx (node->entry->false_label);
2547 ggc_mark_rtx (node->entry->rethrow_label);
2549 node = node ->chain;
2553 /* Mark S for GC. */
2555 static void
2556 mark_eh_stack (s)
2557 struct eh_stack *s;
2559 if (s)
2560 mark_eh_node (s->top);
2563 /* Mark Q for GC. */
2565 static void
2566 mark_eh_queue (q)
2567 struct eh_queue *q;
2569 while (q)
2571 mark_eh_node (q->head);
2572 q = q->next;
2576 /* Mark NODE for GC. A label_node contains a union containing either
2577 a tree or an rtx. This label_node will contain a tree. */
2579 static void
2580 mark_tree_label_node (node)
2581 struct label_node *node;
2583 while (node)
2585 ggc_mark_tree (node->u.tlabel);
2586 node = node->chain;
2590 /* Mark EH for GC. */
2592 void
2593 mark_eh_status (eh)
2594 struct eh_status *eh;
2596 if (eh == 0)
2597 return;
2599 mark_eh_stack (&eh->x_ehstack);
2600 mark_eh_stack (&eh->x_catchstack);
2601 mark_eh_queue (eh->x_ehqueue);
2602 ggc_mark_rtx (eh->x_catch_clauses);
2604 if (lang_mark_false_label_stack)
2605 (*lang_mark_false_label_stack) (eh->x_false_label_stack);
2606 mark_tree_label_node (eh->x_caught_return_label_stack);
2608 ggc_mark_tree (eh->x_protect_list);
2609 ggc_mark_rtx (eh->ehc);
2610 ggc_mark_rtx (eh->x_eh_return_stub_label);
2613 /* Mark ARG (which is really a struct func_eh_entry**) for GC. */
2615 static void
2616 mark_func_eh_entry (arg)
2617 void *arg;
2619 struct func_eh_entry *fee;
2620 struct handler_info *h;
2621 int i;
2623 fee = *((struct func_eh_entry **) arg);
2625 for (i = 0; i < current_func_eh_entry; ++i)
2627 ggc_mark_rtx (fee->rethrow_label);
2628 for (h = fee->handlers; h; h = h->next)
2630 ggc_mark_rtx (h->handler_label);
2631 if (h->type_info != CATCH_ALL_TYPE)
2632 ggc_mark_tree ((tree) h->type_info);
2635 /* Skip to the next entry in the array. */
2636 ++fee;
2640 /* This group of functions initializes the exception handling data
2641 structures at the start of the compilation, initializes the data
2642 structures at the start of a function, and saves and restores the
2643 exception handling data structures for the start/end of a nested
2644 function. */
2646 /* Toplevel initialization for EH things. */
2648 void
2649 init_eh ()
2651 first_rethrow_symbol = create_rethrow_ref (0);
2652 final_rethrow = gen_exception_label ();
2653 last_rethrow_symbol = create_rethrow_ref (CODE_LABEL_NUMBER (final_rethrow));
2655 ggc_add_rtx_root (&exception_handler_labels, 1);
2656 ggc_add_rtx_root (&eh_return_context, 1);
2657 ggc_add_rtx_root (&eh_return_stack_adjust, 1);
2658 ggc_add_rtx_root (&eh_return_handler, 1);
2659 ggc_add_rtx_root (&first_rethrow_symbol, 1);
2660 ggc_add_rtx_root (&final_rethrow, 1);
2661 ggc_add_rtx_root (&last_rethrow_symbol, 1);
2662 ggc_add_root (&function_eh_regions, 1, sizeof (function_eh_regions),
2663 mark_func_eh_entry);
2666 /* Initialize the per-function EH information. */
2668 void
2669 init_eh_for_function ()
2671 cfun->eh = (struct eh_status *) xcalloc (1, sizeof (struct eh_status));
2672 ehqueue = (struct eh_queue *) xcalloc (1, sizeof (struct eh_queue));
2673 eh_return_context = NULL_RTX;
2674 eh_return_stack_adjust = NULL_RTX;
2675 eh_return_handler = NULL_RTX;
2678 void
2679 free_eh_status (f)
2680 struct function *f;
2682 free (f->eh->x_ehqueue);
2683 free (f->eh);
2684 f->eh = NULL;
2687 /* This section is for the exception handling specific optimization
2688 pass. */
2690 /* Determine if the given INSN can throw an exception. */
2693 can_throw (insn)
2694 rtx insn;
2696 if (GET_CODE (insn) == INSN
2697 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2698 insn = XVECEXP (PATTERN (insn), 0, 0);
2700 /* Calls can always potentially throw exceptions, unless they have
2701 a REG_EH_REGION note with a value of 0 or less. */
2702 if (GET_CODE (insn) == CALL_INSN)
2704 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
2705 if (!note || INTVAL (XEXP (note, 0)) > 0)
2706 return 1;
2709 if (asynchronous_exceptions)
2711 /* If we wanted asynchronous exceptions, then everything but NOTEs
2712 and CODE_LABELs could throw. */
2713 if (GET_CODE (insn) != NOTE && GET_CODE (insn) != CODE_LABEL)
2714 return 1;
2717 return 0;
2720 /* Return nonzero if nothing in this function can throw. */
2723 nothrow_function_p ()
2725 rtx insn;
2727 if (! flag_exceptions)
2728 return 1;
2730 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2731 if (can_throw (insn))
2732 return 0;
2733 for (insn = current_function_epilogue_delay_list; insn;
2734 insn = XEXP (insn, 1))
2735 if (can_throw (insn))
2736 return 0;
2738 return 1;
2741 /* Scan a exception region looking for the matching end and then
2742 remove it if possible. INSN is the start of the region, N is the
2743 region number, and DELETE_OUTER is to note if anything in this
2744 region can throw.
2746 Regions are removed if they cannot possibly catch an exception.
2747 This is determined by invoking can_throw on each insn within the
2748 region; if can_throw returns true for any of the instructions, the
2749 region can catch an exception, since there is an insn within the
2750 region that is capable of throwing an exception.
2752 Returns the NOTE_INSN_EH_REGION_END corresponding to this region, or
2753 calls abort if it can't find one.
2755 Can abort if INSN is not a NOTE_INSN_EH_REGION_BEGIN, or if N doesn't
2756 correspond to the region number, or if DELETE_OUTER is NULL. */
2758 static rtx
2759 scan_region (insn, n, delete_outer)
2760 rtx insn;
2761 int n;
2762 int *delete_outer;
2764 rtx start = insn;
2766 /* Assume we can delete the region. */
2767 int delete = 1;
2769 /* Can't delete something which is rethrown from. */
2770 if (rethrow_used (n))
2771 delete = 0;
2773 if (insn == NULL_RTX
2774 || GET_CODE (insn) != NOTE
2775 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_EH_REGION_BEG
2776 || NOTE_EH_HANDLER (insn) != n
2777 || delete_outer == NULL)
2778 abort ();
2780 insn = NEXT_INSN (insn);
2782 /* Look for the matching end. */
2783 while (! (GET_CODE (insn) == NOTE
2784 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END))
2786 /* If anything can throw, we can't remove the region. */
2787 if (delete && can_throw (insn))
2789 delete = 0;
2792 /* Watch out for and handle nested regions. */
2793 if (GET_CODE (insn) == NOTE
2794 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
2796 insn = scan_region (insn, NOTE_EH_HANDLER (insn), &delete);
2799 insn = NEXT_INSN (insn);
2802 /* The _BEG/_END NOTEs must match and nest. */
2803 if (NOTE_EH_HANDLER (insn) != n)
2804 abort ();
2806 /* If anything in this exception region can throw, we can throw. */
2807 if (! delete)
2808 *delete_outer = 0;
2809 else
2811 /* Delete the start and end of the region. */
2812 delete_insn (start);
2813 delete_insn (insn);
2815 /* We no longer removed labels here, since flow will now remove any
2816 handler which cannot be called any more. */
2818 #if 0
2819 /* Only do this part if we have built the exception handler
2820 labels. */
2821 if (exception_handler_labels)
2823 rtx x, *prev = &exception_handler_labels;
2825 /* Find it in the list of handlers. */
2826 for (x = exception_handler_labels; x; x = XEXP (x, 1))
2828 rtx label = XEXP (x, 0);
2829 if (CODE_LABEL_NUMBER (label) == n)
2831 /* If we are the last reference to the handler,
2832 delete it. */
2833 if (--LABEL_NUSES (label) == 0)
2834 delete_insn (label);
2836 if (optimize)
2838 /* Remove it from the list of exception handler
2839 labels, if we are optimizing. If we are not, then
2840 leave it in the list, as we are not really going to
2841 remove the region. */
2842 *prev = XEXP (x, 1);
2843 XEXP (x, 1) = 0;
2844 XEXP (x, 0) = 0;
2847 break;
2849 prev = &XEXP (x, 1);
2852 #endif
2854 return insn;
2857 /* Perform various interesting optimizations for exception handling
2858 code.
2860 We look for empty exception regions and make them go (away). The
2861 jump optimization code will remove the handler if nothing else uses
2862 it. */
2864 void
2865 exception_optimize ()
2867 rtx insn;
2868 int n;
2870 /* Remove empty regions. */
2871 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2873 if (GET_CODE (insn) == NOTE
2874 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
2876 /* Since scan_region will return the NOTE_INSN_EH_REGION_END
2877 insn, we will indirectly skip through all the insns
2878 inbetween. We are also guaranteed that the value of insn
2879 returned will be valid, as otherwise scan_region won't
2880 return. */
2881 insn = scan_region (insn, NOTE_EH_HANDLER (insn), &n);
2886 /* This function determines whether the rethrow labels for any of the
2887 exception regions in the current function are used or not, and set
2888 the reference flag according. */
2890 void
2891 update_rethrow_references ()
2893 rtx insn;
2894 int x, region;
2895 int *saw_region, *saw_rethrow;
2897 if (!flag_new_exceptions)
2898 return;
2900 saw_region = (int *) xcalloc (current_func_eh_entry, sizeof (int));
2901 saw_rethrow = (int *) xcalloc (current_func_eh_entry, sizeof (int));
2903 /* Determine what regions exist, and whether there are any rethrows
2904 from those regions or not. */
2905 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2906 if (GET_CODE (insn) == CALL_INSN)
2908 rtx note = find_reg_note (insn, REG_EH_RETHROW, NULL_RTX);
2909 if (note)
2911 region = eh_region_from_symbol (XEXP (note, 0));
2912 region = find_func_region (region);
2913 saw_rethrow[region] = 1;
2916 else
2917 if (GET_CODE (insn) == NOTE)
2919 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
2921 region = find_func_region (NOTE_EH_HANDLER (insn));
2922 saw_region[region] = 1;
2926 /* For any regions we did see, set the referenced flag. */
2927 for (x = 0; x < current_func_eh_entry; x++)
2928 if (saw_region[x])
2929 function_eh_regions[x].rethrow_ref = saw_rethrow[x];
2931 /* Clean up. */
2932 free (saw_region);
2933 free (saw_rethrow);
2936 /* Various hooks for the DWARF 2 __throw routine. */
2938 /* Do any necessary initialization to access arbitrary stack frames.
2939 On the SPARC, this means flushing the register windows. */
2941 void
2942 expand_builtin_unwind_init ()
2944 /* Set this so all the registers get saved in our frame; we need to be
2945 able to copy the saved values for any registers from frames we unwind. */
2946 current_function_has_nonlocal_label = 1;
2948 #ifdef SETUP_FRAME_ADDRESSES
2949 SETUP_FRAME_ADDRESSES ();
2950 #endif
2953 /* Given a value extracted from the return address register or stack slot,
2954 return the actual address encoded in that value. */
2957 expand_builtin_extract_return_addr (addr_tree)
2958 tree addr_tree;
2960 rtx addr = expand_expr (addr_tree, NULL_RTX, Pmode, 0);
2961 return eh_outer_context (addr);
2964 /* Given an actual address in addr_tree, do any necessary encoding
2965 and return the value to be stored in the return address register or
2966 stack slot so the epilogue will return to that address. */
2969 expand_builtin_frob_return_addr (addr_tree)
2970 tree addr_tree;
2972 rtx addr = expand_expr (addr_tree, NULL_RTX, Pmode, 0);
2973 #ifdef RETURN_ADDR_OFFSET
2974 addr = plus_constant (addr, -RETURN_ADDR_OFFSET);
2975 #endif
2976 return addr;
2979 /* Choose three registers for communication between the main body of
2980 __throw and the epilogue (or eh stub) and the exception handler.
2981 We must do this with hard registers because the epilogue itself
2982 will be generated after reload, at which point we may not reference
2983 pseudos at all.
2985 The first passes the exception context to the handler. For this
2986 we use the return value register for a void*.
2988 The second holds the stack pointer value to be restored. For this
2989 we use the static chain register if it exists, is different from
2990 the previous, and is call-clobbered; otherwise some arbitrary
2991 call-clobbered register.
2993 The third holds the address of the handler itself. Here we use
2994 some arbitrary call-clobbered register. */
2996 static void
2997 eh_regs (pcontext, psp, pra, outgoing)
2998 rtx *pcontext, *psp, *pra;
2999 int outgoing ATTRIBUTE_UNUSED;
3001 rtx rcontext, rsp, rra;
3002 unsigned int i;
3004 #ifdef FUNCTION_OUTGOING_VALUE
3005 if (outgoing)
3006 rcontext = FUNCTION_OUTGOING_VALUE (build_pointer_type (void_type_node),
3007 current_function_decl);
3008 else
3009 #endif
3010 rcontext = FUNCTION_VALUE (build_pointer_type (void_type_node),
3011 current_function_decl);
3013 #ifdef STATIC_CHAIN_REGNUM
3014 if (outgoing)
3015 rsp = static_chain_incoming_rtx;
3016 else
3017 rsp = static_chain_rtx;
3018 if (REGNO (rsp) == REGNO (rcontext)
3019 || ! call_used_regs [REGNO (rsp)])
3020 #endif /* STATIC_CHAIN_REGNUM */
3021 rsp = NULL_RTX;
3023 if (rsp == NULL_RTX)
3025 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
3026 if (call_used_regs[i] && ! fixed_regs[i] && i != REGNO (rcontext))
3027 break;
3028 if (i == FIRST_PSEUDO_REGISTER)
3029 abort();
3031 rsp = gen_rtx_REG (Pmode, i);
3034 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
3035 if (call_used_regs[i] && ! fixed_regs[i]
3036 && i != REGNO (rcontext) && i != REGNO (rsp))
3037 break;
3038 if (i == FIRST_PSEUDO_REGISTER)
3039 abort();
3041 rra = gen_rtx_REG (Pmode, i);
3043 *pcontext = rcontext;
3044 *psp = rsp;
3045 *pra = rra;
3048 /* Retrieve the register which contains the pointer to the eh_context
3049 structure set the __throw. */
3051 #if 0
3052 rtx
3053 get_reg_for_handler ()
3055 rtx reg1;
3056 reg1 = FUNCTION_VALUE (build_pointer_type (void_type_node),
3057 current_function_decl);
3058 return reg1;
3060 #endif
3062 /* Set up the epilogue with the magic bits we'll need to return to the
3063 exception handler. */
3065 void
3066 expand_builtin_eh_return (context, stack, handler)
3067 tree context, stack, handler;
3069 if (eh_return_context)
3070 error("Duplicate call to __builtin_eh_return");
3072 eh_return_context
3073 = copy_to_reg (expand_expr (context, NULL_RTX, VOIDmode, 0));
3074 eh_return_stack_adjust
3075 = copy_to_reg (expand_expr (stack, NULL_RTX, VOIDmode, 0));
3076 eh_return_handler
3077 = copy_to_reg (expand_expr (handler, NULL_RTX, VOIDmode, 0));
3080 void
3081 expand_eh_return ()
3083 rtx reg1, reg2, reg3;
3084 rtx stub_start, after_stub;
3085 rtx ra, tmp;
3087 if (!eh_return_context)
3088 return;
3090 current_function_cannot_inline = N_("function uses __builtin_eh_return");
3092 eh_regs (&reg1, &reg2, &reg3, 1);
3093 #ifdef POINTERS_EXTEND_UNSIGNED
3094 eh_return_context = convert_memory_address (Pmode, eh_return_context);
3095 eh_return_stack_adjust =
3096 convert_memory_address (Pmode, eh_return_stack_adjust);
3097 eh_return_handler = convert_memory_address (Pmode, eh_return_handler);
3098 #endif
3099 emit_move_insn (reg1, eh_return_context);
3100 emit_move_insn (reg2, eh_return_stack_adjust);
3101 emit_move_insn (reg3, eh_return_handler);
3103 /* Talk directly to the target's epilogue code when possible. */
3105 #ifdef HAVE_eh_epilogue
3106 if (HAVE_eh_epilogue)
3108 emit_insn (gen_eh_epilogue (reg1, reg2, reg3));
3109 return;
3111 #endif
3113 /* Otherwise, use the same stub technique we had before. */
3115 eh_return_stub_label = stub_start = gen_label_rtx ();
3116 after_stub = gen_label_rtx ();
3118 /* Set the return address to the stub label. */
3120 ra = expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
3121 0, hard_frame_pointer_rtx);
3122 if (GET_CODE (ra) == REG && REGNO (ra) >= FIRST_PSEUDO_REGISTER)
3123 abort();
3125 tmp = memory_address (Pmode, gen_rtx_LABEL_REF (Pmode, stub_start));
3126 #ifdef RETURN_ADDR_OFFSET
3127 tmp = plus_constant (tmp, -RETURN_ADDR_OFFSET);
3128 #endif
3129 tmp = force_operand (tmp, ra);
3130 if (tmp != ra)
3131 emit_move_insn (ra, tmp);
3133 /* Indicate that the registers are in fact used. */
3134 emit_insn (gen_rtx_USE (VOIDmode, reg1));
3135 emit_insn (gen_rtx_USE (VOIDmode, reg2));
3136 emit_insn (gen_rtx_USE (VOIDmode, reg3));
3137 if (GET_CODE (ra) == REG)
3138 emit_insn (gen_rtx_USE (VOIDmode, ra));
3140 /* Generate the stub. */
3142 emit_jump (after_stub);
3143 emit_label (stub_start);
3145 eh_regs (&reg1, &reg2, &reg3, 0);
3146 adjust_stack (reg2);
3147 emit_indirect_jump (reg3);
3149 emit_label (after_stub);
3153 /* This contains the code required to verify whether arbitrary instructions
3154 are in the same exception region. */
3156 static int *insn_eh_region = (int *)0;
3157 static int maximum_uid;
3159 static void
3160 set_insn_eh_region (first, region_num)
3161 rtx *first;
3162 int region_num;
3164 rtx insn;
3165 int rnum;
3167 for (insn = *first; insn; insn = NEXT_INSN (insn))
3169 if ((GET_CODE (insn) == NOTE)
3170 && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG))
3172 rnum = NOTE_EH_HANDLER (insn);
3173 insn_eh_region[INSN_UID (insn)] = rnum;
3174 insn = NEXT_INSN (insn);
3175 set_insn_eh_region (&insn, rnum);
3176 /* Upon return, insn points to the EH_REGION_END of nested region */
3177 continue;
3179 insn_eh_region[INSN_UID (insn)] = region_num;
3180 if ((GET_CODE (insn) == NOTE) &&
3181 (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END))
3182 break;
3184 *first = insn;
3187 /* Free the insn table, an make sure it cannot be used again. */
3189 void
3190 free_insn_eh_region ()
3192 if (!doing_eh (0))
3193 return;
3195 if (insn_eh_region)
3197 free (insn_eh_region);
3198 insn_eh_region = (int *)0;
3202 /* Initialize the table. max_uid must be calculated and handed into
3203 this routine. If it is unavailable, passing a value of 0 will
3204 cause this routine to calculate it as well. */
3206 void
3207 init_insn_eh_region (first, max_uid)
3208 rtx first;
3209 int max_uid;
3211 rtx insn;
3213 if (!doing_eh (0))
3214 return;
3216 if (insn_eh_region)
3217 free_insn_eh_region();
3219 if (max_uid == 0)
3220 for (insn = first; insn; insn = NEXT_INSN (insn))
3221 if (INSN_UID (insn) > max_uid) /* find largest UID */
3222 max_uid = INSN_UID (insn);
3224 maximum_uid = max_uid;
3225 insn_eh_region = (int *) xmalloc ((max_uid + 1) * sizeof (int));
3226 insn = first;
3227 set_insn_eh_region (&insn, 0);
3231 /* Check whether 2 instructions are within the same region. */
3233 int
3234 in_same_eh_region (insn1, insn2)
3235 rtx insn1, insn2;
3237 int ret, uid1, uid2;
3239 /* If no exceptions, instructions are always in same region. */
3240 if (!doing_eh (0))
3241 return 1;
3243 /* If the table isn't allocated, assume the worst. */
3244 if (!insn_eh_region)
3245 return 0;
3247 uid1 = INSN_UID (insn1);
3248 uid2 = INSN_UID (insn2);
3250 /* if instructions have been allocated beyond the end, either
3251 the table is out of date, or this is a late addition, or
3252 something... Assume the worst. */
3253 if (uid1 > maximum_uid || uid2 > maximum_uid)
3254 return 0;
3256 ret = (insn_eh_region[uid1] == insn_eh_region[uid2]);
3257 return ret;
3261 /* This function will initialize the handler list for a specified block.
3262 It may recursively call itself if the outer block hasn't been processed
3263 yet. At some point in the future we can trim out handlers which we
3264 know cannot be called. (ie, if a block has an INT type handler,
3265 control will never be passed to an outer INT type handler). */
3267 static void
3268 process_nestinfo (block, info, nested_eh_region)
3269 int block;
3270 eh_nesting_info *info;
3271 int *nested_eh_region;
3273 handler_info *ptr, *last_ptr = NULL;
3274 int x, y, count = 0;
3275 int extra = 0;
3276 handler_info **extra_handlers = 0;
3277 int index = info->region_index[block];
3279 /* If we've already processed this block, simply return. */
3280 if (info->num_handlers[index] > 0)
3281 return;
3283 for (ptr = get_first_handler (block); ptr; last_ptr = ptr, ptr = ptr->next)
3284 count++;
3286 /* pick up any information from the next outer region. It will already
3287 contain a summary of itself and all outer regions to it. */
3289 if (nested_eh_region [block] != 0)
3291 int nested_index = info->region_index[nested_eh_region[block]];
3292 process_nestinfo (nested_eh_region[block], info, nested_eh_region);
3293 extra = info->num_handlers[nested_index];
3294 extra_handlers = info->handlers[nested_index];
3295 info->outer_index[index] = nested_index;
3298 /* If the last handler is either a CATCH_ALL or a cleanup, then we
3299 won't use the outer ones since we know control will not go past the
3300 catch-all or cleanup. */
3302 if (last_ptr != NULL && (last_ptr->type_info == NULL
3303 || last_ptr->type_info == CATCH_ALL_TYPE))
3304 extra = 0;
3306 info->num_handlers[index] = count + extra;
3307 info->handlers[index] = (handler_info **) xmalloc ((count + extra)
3308 * sizeof (handler_info **));
3310 /* First put all our handlers into the list. */
3311 ptr = get_first_handler (block);
3312 for (x = 0; x < count; x++)
3314 info->handlers[index][x] = ptr;
3315 ptr = ptr->next;
3318 /* Now add all the outer region handlers, if they aren't they same as
3319 one of the types in the current block. We won't worry about
3320 derived types yet, we'll just look for the exact type. */
3321 for (y =0, x = 0; x < extra ; x++)
3323 int i, ok;
3324 ok = 1;
3325 /* Check to see if we have a type duplication. */
3326 for (i = 0; i < count; i++)
3327 if (info->handlers[index][i]->type_info == extra_handlers[x]->type_info)
3329 ok = 0;
3330 /* Record one less handler. */
3331 (info->num_handlers[index])--;
3332 break;
3334 if (ok)
3336 info->handlers[index][y + count] = extra_handlers[x];
3337 y++;
3342 /* This function will allocate and initialize an eh_nesting_info structure.
3343 It returns a pointer to the completed data structure. If there are
3344 no exception regions, a NULL value is returned. */
3346 eh_nesting_info *
3347 init_eh_nesting_info ()
3349 int *nested_eh_region;
3350 int region_count = 0;
3351 rtx eh_note = NULL_RTX;
3352 eh_nesting_info *info;
3353 rtx insn;
3354 int x;
3356 if (! flag_exceptions)
3357 return 0;
3359 info = (eh_nesting_info *) xmalloc (sizeof (eh_nesting_info));
3360 info->region_index = (int *) xcalloc ((max_label_num () + 1), sizeof (int));
3361 nested_eh_region = (int *) xcalloc (max_label_num () + 1, sizeof (int));
3363 /* Create the nested_eh_region list. If indexed with a block number, it
3364 returns the block number of the next outermost region, if any.
3365 We can count the number of regions and initialize the region_index
3366 vector at the same time. */
3367 for (insn = get_insns(); insn; insn = NEXT_INSN (insn))
3369 if (GET_CODE (insn) == NOTE)
3371 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
3373 int block = NOTE_EH_HANDLER (insn);
3374 region_count++;
3375 info->region_index[block] = region_count;
3376 if (eh_note)
3377 nested_eh_region [block] =
3378 NOTE_EH_HANDLER (XEXP (eh_note, 0));
3379 else
3380 nested_eh_region [block] = 0;
3381 eh_note = gen_rtx_EXPR_LIST (VOIDmode, insn, eh_note);
3383 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END)
3384 eh_note = XEXP (eh_note, 1);
3388 /* If there are no regions, wrap it up now. */
3389 if (region_count == 0)
3391 free (info->region_index);
3392 free (info);
3393 free (nested_eh_region);
3394 return NULL;
3397 region_count++;
3398 info->handlers = (handler_info ***) xcalloc (region_count,
3399 sizeof (handler_info ***));
3400 info->num_handlers = (int *) xcalloc (region_count, sizeof (int));
3401 info->outer_index = (int *) xcalloc (region_count, sizeof (int));
3403 /* Now initialize the handler lists for all exception blocks. */
3404 for (x = 0; x <= max_label_num (); x++)
3406 if (info->region_index[x] != 0)
3407 process_nestinfo (x, info, nested_eh_region);
3409 info->region_count = region_count;
3411 /* Clean up. */
3412 free (nested_eh_region);
3414 return info;
3418 /* This function is used to retreive the vector of handlers which
3419 can be reached by a given insn in a given exception region.
3420 BLOCK is the exception block the insn is in.
3421 INFO is the eh_nesting_info structure.
3422 INSN is the (optional) insn within the block. If insn is not NULL_RTX,
3423 it may contain reg notes which modify its throwing behavior, and
3424 these will be obeyed. If NULL_RTX is passed, then we simply return the
3425 handlers for block.
3426 HANDLERS is the address of a pointer to a vector of handler_info pointers.
3427 Upon return, this will have the handlers which can be reached by block.
3428 This function returns the number of elements in the handlers vector. */
3430 int
3431 reachable_handlers (block, info, insn, handlers)
3432 int block;
3433 eh_nesting_info *info;
3434 rtx insn ;
3435 handler_info ***handlers;
3437 int index = 0;
3438 *handlers = NULL;
3440 if (info == NULL)
3441 return 0;
3442 if (block > 0)
3443 index = info->region_index[block];
3445 if (insn && GET_CODE (insn) == CALL_INSN)
3447 /* RETHROWs specify a region number from which we are going to rethrow.
3448 This means we won't pass control to handlers in the specified
3449 region, but rather any region OUTSIDE the specified region.
3450 We accomplish this by setting block to the outer_index of the
3451 specified region. */
3452 rtx note = find_reg_note (insn, REG_EH_RETHROW, NULL_RTX);
3453 if (note)
3455 index = eh_region_from_symbol (XEXP (note, 0));
3456 index = info->region_index[index];
3457 if (index)
3458 index = info->outer_index[index];
3460 else
3462 /* If there is no rethrow, we look for a REG_EH_REGION, and
3463 we'll throw from that block. A value of 0 or less
3464 indicates that this insn cannot throw. */
3465 note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3466 if (note)
3468 int b = INTVAL (XEXP (note, 0));
3469 if (b <= 0)
3470 index = 0;
3471 else
3472 index = info->region_index[b];
3476 /* If we reach this point, and index is 0, there is no throw. */
3477 if (index == 0)
3478 return 0;
3480 *handlers = info->handlers[index];
3481 return info->num_handlers[index];
3485 /* This function will free all memory associated with the eh_nesting info. */
3487 void
3488 free_eh_nesting_info (info)
3489 eh_nesting_info *info;
3491 int x;
3492 if (info != NULL)
3494 if (info->region_index)
3495 free (info->region_index);
3496 if (info->num_handlers)
3497 free (info->num_handlers);
3498 if (info->outer_index)
3499 free (info->outer_index);
3500 if (info->handlers)
3502 for (x = 0; x < info->region_count; x++)
3503 if (info->handlers[x])
3504 free (info->handlers[x]);
3505 free (info->handlers);
3507 free (info);