1 /* Emit RTL for the GNU C-Compiler expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
23 /* Middle-to-low level generation of rtx code and insns.
25 This file contains the functions `gen_rtx', `gen_reg_rtx'
26 and `gen_label_rtx' that are the usual ways of creating rtl
27 expressions for most purposes.
29 It also has the functions for creating insns and linking
30 them in the doubly-linked chain.
32 The patterns of the insns are created by machine-dependent
33 routines in insn-emit.c, which is generated automatically from
34 the machine description. These routines use `gen_rtx' to make
35 the individual rtx's of the pattern; what is machine dependent
36 is the kind of rtx's they make and what arguments they use. */
48 #include "hard-reg-set.h"
50 #include "insn-config.h"
55 #include "basic-block.h"
59 /* Commonly used modes. */
61 enum machine_mode byte_mode
; /* Mode whose width is BITS_PER_UNIT. */
62 enum machine_mode word_mode
; /* Mode whose width is BITS_PER_WORD. */
63 enum machine_mode double_mode
; /* Mode whose width is DOUBLE_TYPE_SIZE. */
64 enum machine_mode ptr_mode
; /* Mode whose width is POINTER_SIZE. */
67 /* This is *not* reset after each function. It gives each CODE_LABEL
68 in the entire compilation a unique label number. */
70 static int label_num
= 1;
72 /* Highest label number in current function.
73 Zero means use the value of label_num instead.
74 This is nonzero only when belatedly compiling an inline function. */
76 static int last_label_num
;
78 /* Value label_num had when set_new_first_and_last_label_number was called.
79 If label_num has not changed since then, last_label_num is valid. */
81 static int base_label_num
;
83 /* Nonzero means do not generate NOTEs for source line numbers. */
85 static int no_line_numbers
;
87 /* Commonly used rtx's, so that we only need space for one copy.
88 These are initialized once for the entire compilation.
89 All of these except perhaps the floating-point CONST_DOUBLEs
90 are unique; no other rtx-object will be equal to any of these. */
92 rtx global_rtl
[GR_MAX
];
94 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
95 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
96 record a copy of const[012]_rtx. */
98 rtx const_tiny_rtx
[3][(int) MAX_MACHINE_MODE
];
102 REAL_VALUE_TYPE dconst0
;
103 REAL_VALUE_TYPE dconst1
;
104 REAL_VALUE_TYPE dconst2
;
105 REAL_VALUE_TYPE dconstm1
;
107 /* All references to the following fixed hard registers go through
108 these unique rtl objects. On machines where the frame-pointer and
109 arg-pointer are the same register, they use the same unique object.
111 After register allocation, other rtl objects which used to be pseudo-regs
112 may be clobbered to refer to the frame-pointer register.
113 But references that were originally to the frame-pointer can be
114 distinguished from the others because they contain frame_pointer_rtx.
116 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
117 tricky: until register elimination has taken place hard_frame_pointer_rtx
118 should be used if it is being set, and frame_pointer_rtx otherwise. After
119 register elimination hard_frame_pointer_rtx should always be used.
120 On machines where the two registers are same (most) then these are the
123 In an inline procedure, the stack and frame pointer rtxs may not be
124 used for anything else. */
125 rtx struct_value_rtx
; /* (REG:Pmode STRUCT_VALUE_REGNUM) */
126 rtx struct_value_incoming_rtx
; /* (REG:Pmode STRUCT_VALUE_INCOMING_REGNUM) */
127 rtx static_chain_rtx
; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
128 rtx static_chain_incoming_rtx
; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
129 rtx pic_offset_table_rtx
; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
131 /* This is used to implement __builtin_return_address for some machines.
132 See for instance the MIPS port. */
133 rtx return_address_pointer_rtx
; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
135 /* We make one copy of (const_int C) where C is in
136 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
137 to save space during the compilation and simplify comparisons of
140 rtx const_int_rtx
[MAX_SAVED_CONST_INT
* 2 + 1];
142 /* A hash table storing CONST_INTs whose absolute value is greater
143 than MAX_SAVED_CONST_INT. */
145 static htab_t const_int_htab
;
147 /* start_sequence and gen_sequence can make a lot of rtx expressions which are
148 shortly thrown away. We use two mechanisms to prevent this waste:
150 For sizes up to 5 elements, we keep a SEQUENCE and its associated
151 rtvec for use by gen_sequence. One entry for each size is
152 sufficient because most cases are calls to gen_sequence followed by
153 immediately emitting the SEQUENCE. Reuse is safe since emitting a
154 sequence is destructive on the insn in it anyway and hence can't be
157 We do not bother to save this cached data over nested function calls.
158 Instead, we just reinitialize them. */
160 #define SEQUENCE_RESULT_SIZE 5
162 static rtx sequence_result
[SEQUENCE_RESULT_SIZE
];
164 /* During RTL generation, we also keep a list of free INSN rtl codes. */
165 static rtx free_insn
;
167 #define first_insn (cfun->emit->x_first_insn)
168 #define last_insn (cfun->emit->x_last_insn)
169 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
170 #define last_linenum (cfun->emit->x_last_linenum)
171 #define last_filename (cfun->emit->x_last_filename)
172 #define first_label_num (cfun->emit->x_first_label_num)
174 static rtx make_jump_insn_raw
PARAMS ((rtx
));
175 static rtx make_call_insn_raw
PARAMS ((rtx
));
176 static rtx find_line_note
PARAMS ((rtx
));
177 static void mark_sequence_stack
PARAMS ((struct sequence_stack
*));
178 static void unshare_all_rtl_1
PARAMS ((rtx
));
179 static void unshare_all_decls
PARAMS ((tree
));
180 static void reset_used_decls
PARAMS ((tree
));
181 static hashval_t const_int_htab_hash
PARAMS ((const void *));
182 static int const_int_htab_eq
PARAMS ((const void *,
184 static int rtx_htab_mark_1
PARAMS ((void **, void *));
185 static void rtx_htab_mark
PARAMS ((void *));
188 /* Returns a hash code for X (which is a really a CONST_INT). */
191 const_int_htab_hash (x
)
194 return (hashval_t
) INTVAL ((const struct rtx_def
*) x
);
197 /* Returns non-zero if the value represented by X (which is really a
198 CONST_INT) is the same as that given by Y (which is really a
202 const_int_htab_eq (x
, y
)
206 return (INTVAL ((const struct rtx_def
*) x
) == *((const HOST_WIDE_INT
*) y
));
209 /* Mark the hash-table element X (which is really a pointer to an
213 rtx_htab_mark_1 (x
, data
)
215 void *data ATTRIBUTE_UNUSED
;
221 /* Mark all the elements of HTAB (which is really an htab_t full of
228 htab_traverse (*((htab_t
*) htab
), rtx_htab_mark_1
, NULL
);
231 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
232 don't attempt to share with the various global pieces of rtl (such as
233 frame_pointer_rtx). */
236 gen_raw_REG (mode
, regno
)
237 enum machine_mode mode
;
240 rtx x
= gen_rtx_raw_REG (mode
, regno
);
241 ORIGINAL_REGNO (x
) = regno
;
245 /* There are some RTL codes that require special attention; the generation
246 functions do the raw handling. If you add to this list, modify
247 special_rtx in gengenrtl.c as well. */
250 gen_rtx_CONST_INT (mode
, arg
)
251 enum machine_mode mode ATTRIBUTE_UNUSED
;
256 if (arg
>= - MAX_SAVED_CONST_INT
&& arg
<= MAX_SAVED_CONST_INT
)
257 return const_int_rtx
[arg
+ MAX_SAVED_CONST_INT
];
259 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
260 if (const_true_rtx
&& arg
== STORE_FLAG_VALUE
)
261 return const_true_rtx
;
264 /* Look up the CONST_INT in the hash table. */
265 slot
= htab_find_slot_with_hash (const_int_htab
, &arg
,
266 (hashval_t
) arg
, INSERT
);
268 *slot
= gen_rtx_raw_CONST_INT (VOIDmode
, arg
);
273 /* CONST_DOUBLEs needs special handling because their length is known
277 gen_rtx_CONST_DOUBLE (mode
, arg0
, arg1
, arg2
)
278 enum machine_mode mode
;
280 HOST_WIDE_INT arg1
, arg2
;
282 rtx r
= rtx_alloc (CONST_DOUBLE
);
287 X0EXP (r
, 1) = NULL_RTX
;
291 for (i
= GET_RTX_LENGTH (CONST_DOUBLE
) - 1; i
> 3; --i
)
298 gen_rtx_REG (mode
, regno
)
299 enum machine_mode mode
;
302 /* In case the MD file explicitly references the frame pointer, have
303 all such references point to the same frame pointer. This is
304 used during frame pointer elimination to distinguish the explicit
305 references to these registers from pseudos that happened to be
308 If we have eliminated the frame pointer or arg pointer, we will
309 be using it as a normal register, for example as a spill
310 register. In such cases, we might be accessing it in a mode that
311 is not Pmode and therefore cannot use the pre-allocated rtx.
313 Also don't do this when we are making new REGs in reload, since
314 we don't want to get confused with the real pointers. */
316 if (mode
== Pmode
&& !reload_in_progress
)
318 if (regno
== FRAME_POINTER_REGNUM
)
319 return frame_pointer_rtx
;
320 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
321 if (regno
== HARD_FRAME_POINTER_REGNUM
)
322 return hard_frame_pointer_rtx
;
324 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
325 if (regno
== ARG_POINTER_REGNUM
)
326 return arg_pointer_rtx
;
328 #ifdef RETURN_ADDRESS_POINTER_REGNUM
329 if (regno
== RETURN_ADDRESS_POINTER_REGNUM
)
330 return return_address_pointer_rtx
;
332 if (regno
== STACK_POINTER_REGNUM
)
333 return stack_pointer_rtx
;
336 return gen_raw_REG (mode
, regno
);
340 gen_rtx_MEM (mode
, addr
)
341 enum machine_mode mode
;
344 rtx rt
= gen_rtx_raw_MEM (mode
, addr
);
346 /* This field is not cleared by the mere allocation of the rtx, so
348 MEM_ALIAS_SET (rt
) = 0;
353 /* rtx gen_rtx (code, mode, [element1, ..., elementn])
355 ** This routine generates an RTX of the size specified by
356 ** <code>, which is an RTX code. The RTX structure is initialized
357 ** from the arguments <element1> through <elementn>, which are
358 ** interpreted according to the specific RTX type's format. The
359 ** special machine mode associated with the rtx (if any) is specified
362 ** gen_rtx can be invoked in a way which resembles the lisp-like
363 ** rtx it will generate. For example, the following rtx structure:
365 ** (plus:QI (mem:QI (reg:SI 1))
366 ** (mem:QI (plusw:SI (reg:SI 2) (reg:SI 3))))
368 ** ...would be generated by the following C code:
370 ** gen_rtx (PLUS, QImode,
371 ** gen_rtx (MEM, QImode,
372 ** gen_rtx (REG, SImode, 1)),
373 ** gen_rtx (MEM, QImode,
374 ** gen_rtx (PLUS, SImode,
375 ** gen_rtx (REG, SImode, 2),
376 ** gen_rtx (REG, SImode, 3)))),
381 gen_rtx
VPARAMS ((enum rtx_code code
, enum machine_mode mode
, ...))
383 #ifndef ANSI_PROTOTYPES
385 enum machine_mode mode
;
388 register int i
; /* Array indices... */
389 register const char *fmt
; /* Current rtx's format... */
390 register rtx rt_val
; /* RTX to return to caller... */
394 #ifndef ANSI_PROTOTYPES
395 code
= va_arg (p
, enum rtx_code
);
396 mode
= va_arg (p
, enum machine_mode
);
402 rt_val
= gen_rtx_CONST_INT (mode
, va_arg (p
, HOST_WIDE_INT
));
407 rtx arg0
= va_arg (p
, rtx
);
408 HOST_WIDE_INT arg1
= va_arg (p
, HOST_WIDE_INT
);
409 HOST_WIDE_INT arg2
= va_arg (p
, HOST_WIDE_INT
);
410 rt_val
= gen_rtx_CONST_DOUBLE (mode
, arg0
, arg1
, arg2
);
415 rt_val
= gen_rtx_REG (mode
, va_arg (p
, int));
419 rt_val
= gen_rtx_MEM (mode
, va_arg (p
, rtx
));
423 rt_val
= rtx_alloc (code
); /* Allocate the storage space. */
424 rt_val
->mode
= mode
; /* Store the machine mode... */
426 fmt
= GET_RTX_FORMAT (code
); /* Find the right format... */
427 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
431 case '0': /* Unused field. */
434 case 'i': /* An integer? */
435 XINT (rt_val
, i
) = va_arg (p
, int);
438 case 'w': /* A wide integer? */
439 XWINT (rt_val
, i
) = va_arg (p
, HOST_WIDE_INT
);
442 case 's': /* A string? */
443 XSTR (rt_val
, i
) = va_arg (p
, char *);
446 case 'e': /* An expression? */
447 case 'u': /* An insn? Same except when printing. */
448 XEXP (rt_val
, i
) = va_arg (p
, rtx
);
451 case 'E': /* An RTX vector? */
452 XVEC (rt_val
, i
) = va_arg (p
, rtvec
);
455 case 'b': /* A bitmap? */
456 XBITMAP (rt_val
, i
) = va_arg (p
, bitmap
);
459 case 't': /* A tree? */
460 XTREE (rt_val
, i
) = va_arg (p
, tree
);
474 /* gen_rtvec (n, [rt1, ..., rtn])
476 ** This routine creates an rtvec and stores within it the
477 ** pointers to rtx's which are its arguments.
482 gen_rtvec
VPARAMS ((int n
, ...))
484 #ifndef ANSI_PROTOTYPES
493 #ifndef ANSI_PROTOTYPES
498 return NULL_RTVEC
; /* Don't allocate an empty rtvec... */
500 vector
= (rtx
*) alloca (n
* sizeof (rtx
));
502 for (i
= 0; i
< n
; i
++)
503 vector
[i
] = va_arg (p
, rtx
);
506 return gen_rtvec_v (n
, vector
);
510 gen_rtvec_v (n
, argp
)
515 register rtvec rt_val
;
518 return NULL_RTVEC
; /* Don't allocate an empty rtvec... */
520 rt_val
= rtvec_alloc (n
); /* Allocate an rtvec... */
522 for (i
= 0; i
< n
; i
++)
523 rt_val
->elem
[i
] = *argp
++;
529 /* Generate a REG rtx for a new pseudo register of mode MODE.
530 This pseudo is assigned the next sequential register number. */
534 enum machine_mode mode
;
536 struct function
*f
= cfun
;
539 /* Don't let anything called after initial flow analysis create new
544 if (generating_concat_p
545 && (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
546 || GET_MODE_CLASS (mode
) == MODE_COMPLEX_INT
))
548 /* For complex modes, don't make a single pseudo.
549 Instead, make a CONCAT of two pseudos.
550 This allows noncontiguous allocation of the real and imaginary parts,
551 which makes much better code. Besides, allocating DCmode
552 pseudos overstrains reload on some machines like the 386. */
553 rtx realpart
, imagpart
;
554 int size
= GET_MODE_UNIT_SIZE (mode
);
555 enum machine_mode partmode
556 = mode_for_size (size
* BITS_PER_UNIT
,
557 (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
558 ? MODE_FLOAT
: MODE_INT
),
561 realpart
= gen_reg_rtx (partmode
);
562 imagpart
= gen_reg_rtx (partmode
);
563 return gen_rtx_CONCAT (mode
, realpart
, imagpart
);
566 /* Make sure regno_pointer_align and regno_reg_rtx are large enough
567 to have an element for this pseudo reg number. */
569 if (reg_rtx_no
== f
->emit
->regno_pointer_align_length
)
571 int old_size
= f
->emit
->regno_pointer_align_length
;
574 new = xrealloc (f
->emit
->regno_pointer_align
, old_size
* 2);
575 memset (new + old_size
, 0, old_size
);
576 f
->emit
->regno_pointer_align
= (unsigned char *) new;
578 new1
= (rtx
*) xrealloc (f
->emit
->x_regno_reg_rtx
,
579 old_size
* 2 * sizeof (rtx
));
580 memset (new1
+ old_size
, 0, old_size
* sizeof (rtx
));
581 regno_reg_rtx
= new1
;
583 f
->emit
->regno_pointer_align_length
= old_size
* 2;
586 val
= gen_raw_REG (mode
, reg_rtx_no
);
587 regno_reg_rtx
[reg_rtx_no
++] = val
;
591 /* Identify REG (which may be a CONCAT) as a user register. */
597 if (GET_CODE (reg
) == CONCAT
)
599 REG_USERVAR_P (XEXP (reg
, 0)) = 1;
600 REG_USERVAR_P (XEXP (reg
, 1)) = 1;
602 else if (GET_CODE (reg
) == REG
)
603 REG_USERVAR_P (reg
) = 1;
608 /* Identify REG as a probable pointer register and show its alignment
609 as ALIGN, if nonzero. */
612 mark_reg_pointer (reg
, align
)
616 if (! REG_POINTER (reg
))
618 REG_POINTER (reg
) = 1;
621 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
623 else if (align
&& align
< REGNO_POINTER_ALIGN (REGNO (reg
)))
624 /* We can no-longer be sure just how aligned this pointer is */
625 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
628 /* Return 1 plus largest pseudo reg number used in the current function. */
636 /* Return 1 + the largest label number used so far in the current function. */
641 if (last_label_num
&& label_num
== base_label_num
)
642 return last_label_num
;
646 /* Return first label number used in this function (if any were used). */
649 get_first_label_num ()
651 return first_label_num
;
654 /* Return a value representing some low-order bits of X, where the number
655 of low-order bits is given by MODE. Note that no conversion is done
656 between floating-point and fixed-point values, rather, the bit
657 representation is returned.
659 This function handles the cases in common between gen_lowpart, below,
660 and two variants in cse.c and combine.c. These are the cases that can
661 be safely handled at all points in the compilation.
663 If this is not a case we can handle, return 0. */
666 gen_lowpart_common (mode
, x
)
667 enum machine_mode mode
;
672 if (GET_MODE (x
) == mode
)
675 /* MODE must occupy no more words than the mode of X. */
676 if (GET_MODE (x
) != VOIDmode
677 && ((GET_MODE_SIZE (mode
) + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
678 > ((GET_MODE_SIZE (GET_MODE (x
)) + (UNITS_PER_WORD
- 1))
682 if (WORDS_BIG_ENDIAN
&& GET_MODE_SIZE (GET_MODE (x
)) > UNITS_PER_WORD
)
683 word
= ((GET_MODE_SIZE (GET_MODE (x
))
684 - MAX (GET_MODE_SIZE (mode
), UNITS_PER_WORD
))
687 if ((GET_CODE (x
) == ZERO_EXTEND
|| GET_CODE (x
) == SIGN_EXTEND
)
688 && (GET_MODE_CLASS (mode
) == MODE_INT
689 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
))
691 /* If we are getting the low-order part of something that has been
692 sign- or zero-extended, we can either just use the object being
693 extended or make a narrower extension. If we want an even smaller
694 piece than the size of the object being extended, call ourselves
697 This case is used mostly by combine and cse. */
699 if (GET_MODE (XEXP (x
, 0)) == mode
)
701 else if (GET_MODE_SIZE (mode
) < GET_MODE_SIZE (GET_MODE (XEXP (x
, 0))))
702 return gen_lowpart_common (mode
, XEXP (x
, 0));
703 else if (GET_MODE_SIZE (mode
) < GET_MODE_SIZE (GET_MODE (x
)))
704 return gen_rtx_fmt_e (GET_CODE (x
), mode
, XEXP (x
, 0));
706 else if (GET_CODE (x
) == SUBREG
707 && (GET_MODE_SIZE (mode
) <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
)))
708 || GET_MODE_SIZE (mode
) <= UNITS_PER_WORD
709 || GET_MODE_SIZE (mode
) == GET_MODE_UNIT_SIZE (GET_MODE (x
))))
710 return (GET_MODE (SUBREG_REG (x
)) == mode
&& SUBREG_WORD (x
) == 0
712 : gen_rtx_SUBREG (mode
, SUBREG_REG (x
), SUBREG_WORD (x
) + word
));
713 else if (GET_CODE (x
) == REG
)
715 /* Let the backend decide how many registers to skip. This is needed
716 in particular for Sparc64 where fp regs are smaller than a word. */
717 /* ??? Note that subregs are now ambiguous, in that those against
718 pseudos are sized by the Word Size, while those against hard
719 regs are sized by the underlying register size. Better would be
720 to always interpret the subreg offset parameter as bytes or bits. */
722 if (WORDS_BIG_ENDIAN
&& REGNO (x
) < FIRST_PSEUDO_REGISTER
723 && GET_MODE_SIZE (GET_MODE (x
)) > GET_MODE_SIZE (mode
))
724 word
= (HARD_REGNO_NREGS (REGNO (x
), GET_MODE (x
))
725 - HARD_REGNO_NREGS (REGNO (x
), mode
));
727 /* If the register is not valid for MODE, return 0. If we don't
728 do this, there is no way to fix up the resulting REG later.
729 But we do do this if the current REG is not valid for its
730 mode. This latter is a kludge, but is required due to the
731 way that parameters are passed on some machines, most
733 if (REGNO (x
) < FIRST_PSEUDO_REGISTER
734 && ! HARD_REGNO_MODE_OK (REGNO (x
) + word
, mode
)
735 && HARD_REGNO_MODE_OK (REGNO (x
), GET_MODE (x
)))
737 else if (REGNO (x
) < FIRST_PSEUDO_REGISTER
738 /* integrate.c can't handle parts of a return value register. */
739 && (! REG_FUNCTION_VALUE_P (x
)
740 || ! rtx_equal_function_value_matters
)
741 #ifdef CLASS_CANNOT_CHANGE_MODE
742 && ! (CLASS_CANNOT_CHANGE_MODE_P (mode
, GET_MODE (x
))
743 && GET_MODE_CLASS (GET_MODE (x
)) != MODE_COMPLEX_INT
744 && GET_MODE_CLASS (GET_MODE (x
)) != MODE_COMPLEX_FLOAT
745 && (TEST_HARD_REG_BIT
746 (reg_class_contents
[(int) CLASS_CANNOT_CHANGE_MODE
],
749 /* We want to keep the stack, frame, and arg pointers
751 && x
!= frame_pointer_rtx
752 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
753 && x
!= arg_pointer_rtx
755 && x
!= stack_pointer_rtx
)
756 return gen_rtx_REG (mode
, REGNO (x
) + word
);
758 return gen_rtx_SUBREG (mode
, x
, word
);
760 /* If X is a CONST_INT or a CONST_DOUBLE, extract the appropriate bits
761 from the low-order part of the constant. */
762 else if ((GET_MODE_CLASS (mode
) == MODE_INT
763 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
)
764 && GET_MODE (x
) == VOIDmode
765 && (GET_CODE (x
) == CONST_INT
|| GET_CODE (x
) == CONST_DOUBLE
))
767 /* If MODE is twice the host word size, X is already the desired
768 representation. Otherwise, if MODE is wider than a word, we can't
769 do this. If MODE is exactly a word, return just one CONST_INT. */
771 if (GET_MODE_BITSIZE (mode
) >= 2 * HOST_BITS_PER_WIDE_INT
)
773 else if (GET_MODE_BITSIZE (mode
) > HOST_BITS_PER_WIDE_INT
)
775 else if (GET_MODE_BITSIZE (mode
) == HOST_BITS_PER_WIDE_INT
)
776 return (GET_CODE (x
) == CONST_INT
? x
777 : GEN_INT (CONST_DOUBLE_LOW (x
)));
780 /* MODE must be narrower than HOST_BITS_PER_WIDE_INT. */
781 HOST_WIDE_INT val
= (GET_CODE (x
) == CONST_INT
? INTVAL (x
)
782 : CONST_DOUBLE_LOW (x
));
784 /* Sign extend to HOST_WIDE_INT. */
785 val
= trunc_int_for_mode (val
, mode
);
787 return (GET_CODE (x
) == CONST_INT
&& INTVAL (x
) == val
? x
792 #ifndef REAL_ARITHMETIC
793 /* If X is an integral constant but we want it in floating-point, it
794 must be the case that we have a union of an integer and a floating-point
795 value. If the machine-parameters allow it, simulate that union here
796 and return the result. The two-word and single-word cases are
799 else if (((HOST_FLOAT_FORMAT
== TARGET_FLOAT_FORMAT
800 && HOST_BITS_PER_WIDE_INT
== BITS_PER_WORD
)
801 || flag_pretend_float
)
802 && GET_MODE_CLASS (mode
) == MODE_FLOAT
803 && GET_MODE_SIZE (mode
) == UNITS_PER_WORD
804 && GET_CODE (x
) == CONST_INT
805 && sizeof (float) * HOST_BITS_PER_CHAR
== HOST_BITS_PER_WIDE_INT
)
807 union {HOST_WIDE_INT i
; float d
; } u
;
810 return CONST_DOUBLE_FROM_REAL_VALUE (u
.d
, mode
);
812 else if (((HOST_FLOAT_FORMAT
== TARGET_FLOAT_FORMAT
813 && HOST_BITS_PER_WIDE_INT
== BITS_PER_WORD
)
814 || flag_pretend_float
)
815 && GET_MODE_CLASS (mode
) == MODE_FLOAT
816 && GET_MODE_SIZE (mode
) == 2 * UNITS_PER_WORD
817 && (GET_CODE (x
) == CONST_INT
|| GET_CODE (x
) == CONST_DOUBLE
)
818 && GET_MODE (x
) == VOIDmode
819 && (sizeof (double) * HOST_BITS_PER_CHAR
820 == 2 * HOST_BITS_PER_WIDE_INT
))
822 union {HOST_WIDE_INT i
[2]; double d
; } u
;
823 HOST_WIDE_INT low
, high
;
825 if (GET_CODE (x
) == CONST_INT
)
826 low
= INTVAL (x
), high
= low
>> (HOST_BITS_PER_WIDE_INT
-1);
828 low
= CONST_DOUBLE_LOW (x
), high
= CONST_DOUBLE_HIGH (x
);
830 #ifdef HOST_WORDS_BIG_ENDIAN
831 u
.i
[0] = high
, u
.i
[1] = low
;
833 u
.i
[0] = low
, u
.i
[1] = high
;
836 return CONST_DOUBLE_FROM_REAL_VALUE (u
.d
, mode
);
839 /* Similarly, if this is converting a floating-point value into a
840 single-word integer. Only do this is the host and target parameters are
843 else if (((HOST_FLOAT_FORMAT
== TARGET_FLOAT_FORMAT
844 && HOST_BITS_PER_WIDE_INT
== BITS_PER_WORD
)
845 || flag_pretend_float
)
846 && (GET_MODE_CLASS (mode
) == MODE_INT
847 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
)
848 && GET_CODE (x
) == CONST_DOUBLE
849 && GET_MODE_CLASS (GET_MODE (x
)) == MODE_FLOAT
850 && GET_MODE_BITSIZE (mode
) == BITS_PER_WORD
)
851 return operand_subword (x
, word
, 0, GET_MODE (x
));
853 /* Similarly, if this is converting a floating-point value into a
854 two-word integer, we can do this one word at a time and make an
855 integer. Only do this is the host and target parameters are
858 else if (((HOST_FLOAT_FORMAT
== TARGET_FLOAT_FORMAT
859 && HOST_BITS_PER_WIDE_INT
== BITS_PER_WORD
)
860 || flag_pretend_float
)
861 && (GET_MODE_CLASS (mode
) == MODE_INT
862 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
)
863 && GET_CODE (x
) == CONST_DOUBLE
864 && GET_MODE_CLASS (GET_MODE (x
)) == MODE_FLOAT
865 && GET_MODE_BITSIZE (mode
) == 2 * BITS_PER_WORD
)
868 = operand_subword (x
, word
+ WORDS_BIG_ENDIAN
, 0, GET_MODE (x
));
870 = operand_subword (x
, word
+ ! WORDS_BIG_ENDIAN
, 0, GET_MODE (x
));
872 if (lowpart
&& GET_CODE (lowpart
) == CONST_INT
873 && highpart
&& GET_CODE (highpart
) == CONST_INT
)
874 return immed_double_const (INTVAL (lowpart
), INTVAL (highpart
), mode
);
876 #else /* ifndef REAL_ARITHMETIC */
878 /* When we have a FP emulator, we can handle all conversions between
879 FP and integer operands. This simplifies reload because it
880 doesn't have to deal with constructs like (subreg:DI
881 (const_double:SF ...)) or (subreg:DF (const_int ...)). */
883 else if (mode
== SFmode
884 && GET_CODE (x
) == CONST_INT
)
890 r
= REAL_VALUE_FROM_TARGET_SINGLE (i
);
891 return CONST_DOUBLE_FROM_REAL_VALUE (r
, mode
);
893 else if (mode
== DFmode
894 && (GET_CODE (x
) == CONST_INT
|| GET_CODE (x
) == CONST_DOUBLE
)
895 && GET_MODE (x
) == VOIDmode
)
899 HOST_WIDE_INT low
, high
;
901 if (GET_CODE (x
) == CONST_INT
)
904 high
= low
>> (HOST_BITS_PER_WIDE_INT
- 1);
908 low
= CONST_DOUBLE_LOW (x
);
909 high
= CONST_DOUBLE_HIGH (x
);
912 /* REAL_VALUE_TARGET_DOUBLE takes the addressing order of the
914 if (WORDS_BIG_ENDIAN
)
915 i
[0] = high
, i
[1] = low
;
917 i
[0] = low
, i
[1] = high
;
919 r
= REAL_VALUE_FROM_TARGET_DOUBLE (i
);
920 return CONST_DOUBLE_FROM_REAL_VALUE (r
, mode
);
922 else if ((GET_MODE_CLASS (mode
) == MODE_INT
923 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
)
924 && GET_CODE (x
) == CONST_DOUBLE
925 && GET_MODE_CLASS (GET_MODE (x
)) == MODE_FLOAT
)
928 long i
[4]; /* Only the low 32 bits of each 'long' are used. */
929 int endian
= WORDS_BIG_ENDIAN
? 1 : 0;
931 REAL_VALUE_FROM_CONST_DOUBLE (r
, x
);
932 switch (GET_MODE (x
))
935 REAL_VALUE_TO_TARGET_SINGLE (r
, i
[endian
]);
939 REAL_VALUE_TO_TARGET_DOUBLE (r
, i
);
941 #if LONG_DOUBLE_TYPE_SIZE == 96
943 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r
, i
+ endian
);
947 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r
, i
);
954 /* Now, pack the 32-bit elements of the array into a CONST_DOUBLE
956 #if HOST_BITS_PER_WIDE_INT == 32
957 return immed_double_const (i
[endian
], i
[1 - endian
], mode
);
962 if (HOST_BITS_PER_WIDE_INT
!= 64)
965 for (c
= 0; c
< 4; c
++)
968 switch (GET_MODE (x
))
972 return immed_double_const (((unsigned long) i
[endian
]) |
973 (((HOST_WIDE_INT
) i
[1-endian
]) << 32),
976 return immed_double_const (((unsigned long) i
[endian
*3]) |
977 (((HOST_WIDE_INT
) i
[1+endian
]) << 32),
978 ((unsigned long) i
[2-endian
]) |
979 (((HOST_WIDE_INT
) i
[3-endian
*3]) << 32),
985 #endif /* ifndef REAL_ARITHMETIC */
987 /* Otherwise, we can't do this. */
991 /* Return the real part (which has mode MODE) of a complex value X.
992 This always comes at the low address in memory. */
995 gen_realpart (mode
, x
)
996 enum machine_mode mode
;
999 if (GET_CODE (x
) == CONCAT
&& GET_MODE (XEXP (x
, 0)) == mode
)
1001 else if (WORDS_BIG_ENDIAN
1002 && GET_MODE_BITSIZE (mode
) < BITS_PER_WORD
1004 && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
1005 fatal ("Unable to access real part of complex value in a hard register on this target");
1006 else if (WORDS_BIG_ENDIAN
)
1007 return gen_highpart (mode
, x
);
1009 return gen_lowpart (mode
, x
);
1012 /* Return the imaginary part (which has mode MODE) of a complex value X.
1013 This always comes at the high address in memory. */
1016 gen_imagpart (mode
, x
)
1017 enum machine_mode mode
;
1020 if (GET_CODE (x
) == CONCAT
&& GET_MODE (XEXP (x
, 0)) == mode
)
1022 else if (WORDS_BIG_ENDIAN
)
1023 return gen_lowpart (mode
, x
);
1024 else if (!WORDS_BIG_ENDIAN
1025 && GET_MODE_BITSIZE (mode
) < BITS_PER_WORD
1027 && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
1028 fatal ("Unable to access imaginary part of complex value in a hard register on this target");
1030 return gen_highpart (mode
, x
);
1033 /* Return 1 iff X, assumed to be a SUBREG,
1034 refers to the real part of the complex value in its containing reg.
1035 Complex values are always stored with the real part in the first word,
1036 regardless of WORDS_BIG_ENDIAN. */
1039 subreg_realpart_p (x
)
1042 if (GET_CODE (x
) != SUBREG
)
1045 return ((unsigned int) SUBREG_WORD (x
) * UNITS_PER_WORD
1046 < GET_MODE_UNIT_SIZE (GET_MODE (SUBREG_REG (x
))));
1049 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a value,
1050 return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
1051 least-significant part of X.
1052 MODE specifies how big a part of X to return;
1053 it usually should not be larger than a word.
1054 If X is a MEM whose address is a QUEUED, the value may be so also. */
1057 gen_lowpart (mode
, x
)
1058 enum machine_mode mode
;
1061 rtx result
= gen_lowpart_common (mode
, x
);
1065 else if (GET_CODE (x
) == REG
)
1067 /* Must be a hard reg that's not valid in MODE. */
1068 result
= gen_lowpart_common (mode
, copy_to_reg (x
));
1073 else if (GET_CODE (x
) == MEM
)
1075 /* The only additional case we can do is MEM. */
1076 register int offset
= 0;
1077 if (WORDS_BIG_ENDIAN
)
1078 offset
= (MAX (GET_MODE_SIZE (GET_MODE (x
)), UNITS_PER_WORD
)
1079 - MAX (GET_MODE_SIZE (mode
), UNITS_PER_WORD
));
1081 if (BYTES_BIG_ENDIAN
)
1082 /* Adjust the address so that the address-after-the-data
1084 offset
-= (MIN (UNITS_PER_WORD
, GET_MODE_SIZE (mode
))
1085 - MIN (UNITS_PER_WORD
, GET_MODE_SIZE (GET_MODE (x
))));
1087 return change_address (x
, mode
, plus_constant (XEXP (x
, 0), offset
));
1089 else if (GET_CODE (x
) == ADDRESSOF
)
1090 return gen_lowpart (mode
, force_reg (GET_MODE (x
), x
));
1095 /* Like `gen_lowpart', but refer to the most significant part.
1096 This is used to access the imaginary part of a complex number. */
1099 gen_highpart (mode
, x
)
1100 enum machine_mode mode
;
1103 /* This case loses if X is a subreg. To catch bugs early,
1104 complain if an invalid MODE is used even in other cases. */
1105 if (GET_MODE_SIZE (mode
) > UNITS_PER_WORD
1106 && GET_MODE_SIZE (mode
) != GET_MODE_UNIT_SIZE (GET_MODE (x
)))
1108 if (GET_CODE (x
) == CONST_DOUBLE
1109 #if !(TARGET_FLOAT_FORMAT != HOST_FLOAT_FORMAT || defined (REAL_IS_NOT_DOUBLE))
1110 && GET_MODE_CLASS (GET_MODE (x
)) != MODE_FLOAT
1113 return GEN_INT (CONST_DOUBLE_HIGH (x
) & GET_MODE_MASK (mode
));
1114 else if (GET_CODE (x
) == CONST_INT
)
1116 if (HOST_BITS_PER_WIDE_INT
<= BITS_PER_WORD
)
1118 return GEN_INT (INTVAL (x
) >> (HOST_BITS_PER_WIDE_INT
- BITS_PER_WORD
));
1120 else if (GET_CODE (x
) == MEM
)
1122 register int offset
= 0;
1123 if (! WORDS_BIG_ENDIAN
)
1124 offset
= (MAX (GET_MODE_SIZE (GET_MODE (x
)), UNITS_PER_WORD
)
1125 - MAX (GET_MODE_SIZE (mode
), UNITS_PER_WORD
));
1127 if (! BYTES_BIG_ENDIAN
1128 && GET_MODE_SIZE (mode
) < UNITS_PER_WORD
)
1129 offset
-= (GET_MODE_SIZE (mode
)
1130 - MIN (UNITS_PER_WORD
,
1131 GET_MODE_SIZE (GET_MODE (x
))));
1133 return change_address (x
, mode
, plus_constant (XEXP (x
, 0), offset
));
1135 else if (GET_CODE (x
) == SUBREG
)
1137 /* The only time this should occur is when we are looking at a
1138 multi-word item with a SUBREG whose mode is the same as that of the
1139 item. It isn't clear what we would do if it wasn't. */
1140 if (SUBREG_WORD (x
) != 0)
1142 return gen_highpart (mode
, SUBREG_REG (x
));
1144 else if (GET_CODE (x
) == REG
)
1148 /* Let the backend decide how many registers to skip. This is needed
1149 in particular for sparc64 where fp regs are smaller than a word. */
1150 /* ??? Note that subregs are now ambiguous, in that those against
1151 pseudos are sized by the word size, while those against hard
1152 regs are sized by the underlying register size. Better would be
1153 to always interpret the subreg offset parameter as bytes or bits. */
1155 if (GET_MODE_SIZE (GET_MODE (x
)) < GET_MODE_SIZE (mode
))
1157 else if (WORDS_BIG_ENDIAN
)
1159 else if (REGNO (x
) < FIRST_PSEUDO_REGISTER
)
1160 word
= (HARD_REGNO_NREGS (REGNO (x
), GET_MODE (x
))
1161 - HARD_REGNO_NREGS (REGNO (x
), mode
));
1163 word
= ((GET_MODE_SIZE (GET_MODE (x
))
1164 - MAX (GET_MODE_SIZE (mode
), UNITS_PER_WORD
))
1167 if (REGNO (x
) < FIRST_PSEUDO_REGISTER
1168 /* integrate.c can't handle parts of a return value register. */
1169 && (! REG_FUNCTION_VALUE_P (x
)
1170 || ! rtx_equal_function_value_matters
)
1171 /* We want to keep the stack, frame, and arg pointers special. */
1172 && x
!= frame_pointer_rtx
1173 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1174 && x
!= arg_pointer_rtx
1176 && x
!= stack_pointer_rtx
)
1177 return gen_rtx_REG (mode
, REGNO (x
) + word
);
1179 return gen_rtx_SUBREG (mode
, x
, word
);
1185 /* Return 1 iff X, assumed to be a SUBREG,
1186 refers to the least significant part of its containing reg.
1187 If X is not a SUBREG, always return 1 (it is its own low part!). */
1190 subreg_lowpart_p (x
)
1193 if (GET_CODE (x
) != SUBREG
)
1195 else if (GET_MODE (SUBREG_REG (x
)) == VOIDmode
)
1198 if (WORDS_BIG_ENDIAN
1199 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))) > UNITS_PER_WORD
)
1200 return (SUBREG_WORD (x
)
1201 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
)))
1202 - MAX (GET_MODE_SIZE (GET_MODE (x
)), UNITS_PER_WORD
))
1205 return SUBREG_WORD (x
) == 0;
1208 /* Return subword I of operand OP.
1209 The word number, I, is interpreted as the word number starting at the
1210 low-order address. Word 0 is the low-order word if not WORDS_BIG_ENDIAN,
1211 otherwise it is the high-order word.
1213 If we cannot extract the required word, we return zero. Otherwise, an
1214 rtx corresponding to the requested word will be returned.
1216 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1217 reload has completed, a valid address will always be returned. After
1218 reload, if a valid address cannot be returned, we return zero.
1220 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1221 it is the responsibility of the caller.
1223 MODE is the mode of OP in case it is a CONST_INT. */
1226 operand_subword (op
, i
, validate_address
, mode
)
1229 int validate_address
;
1230 enum machine_mode mode
;
1233 int size_ratio
= HOST_BITS_PER_WIDE_INT
/ BITS_PER_WORD
;
1235 if (mode
== VOIDmode
)
1236 mode
= GET_MODE (op
);
1238 if (mode
== VOIDmode
)
1241 /* If OP is narrower than a word, fail. */
1243 && (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
))
1246 /* If we want a word outside OP, return zero. */
1248 && (i
+ 1) * UNITS_PER_WORD
> GET_MODE_SIZE (mode
))
1251 /* If OP is already an integer word, return it. */
1252 if (GET_MODE_CLASS (mode
) == MODE_INT
1253 && GET_MODE_SIZE (mode
) == UNITS_PER_WORD
)
1256 /* If OP is a REG or SUBREG, we can handle it very simply. */
1257 if (GET_CODE (op
) == REG
)
1259 /* ??? There is a potential problem with this code. It does not
1260 properly handle extractions of a subword from a hard register
1261 that is larger than word_mode. Presumably the check for
1262 HARD_REGNO_MODE_OK catches these most of these cases. */
1264 /* If OP is a hard register, but OP + I is not a hard register,
1265 then extracting a subword is impossible.
1267 For example, consider if OP is the last hard register and it is
1268 larger than word_mode. If we wanted word N (for N > 0) because a
1269 part of that hard register was known to contain a useful value,
1270 then OP + I would refer to a pseudo, not the hard register we
1272 if (REGNO (op
) < FIRST_PSEUDO_REGISTER
1273 && REGNO (op
) + i
>= FIRST_PSEUDO_REGISTER
)
1276 /* If the register is not valid for MODE, return 0. Note we
1277 have to check both OP and OP + I since they may refer to
1278 different parts of the register file.
1280 Consider if OP refers to the last 96bit FP register and we want
1281 subword 3 because that subword is known to contain a value we
1283 if (REGNO (op
) < FIRST_PSEUDO_REGISTER
1284 && (! HARD_REGNO_MODE_OK (REGNO (op
), word_mode
)
1285 || ! HARD_REGNO_MODE_OK (REGNO (op
) + i
, word_mode
)))
1287 else if (REGNO (op
) >= FIRST_PSEUDO_REGISTER
1288 || (REG_FUNCTION_VALUE_P (op
)
1289 && rtx_equal_function_value_matters
)
1290 /* We want to keep the stack, frame, and arg pointers
1292 || op
== frame_pointer_rtx
1293 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1294 || op
== arg_pointer_rtx
1296 || op
== stack_pointer_rtx
)
1297 return gen_rtx_SUBREG (word_mode
, op
, i
);
1299 return gen_rtx_REG (word_mode
, REGNO (op
) + i
);
1301 else if (GET_CODE (op
) == SUBREG
)
1302 return gen_rtx_SUBREG (word_mode
, SUBREG_REG (op
), i
+ SUBREG_WORD (op
));
1303 else if (GET_CODE (op
) == CONCAT
)
1305 unsigned int partwords
1306 = GET_MODE_UNIT_SIZE (GET_MODE (op
)) / UNITS_PER_WORD
;
1309 return operand_subword (XEXP (op
, 0), i
, validate_address
, mode
);
1310 return operand_subword (XEXP (op
, 1), i
- partwords
,
1311 validate_address
, mode
);
1314 /* Form a new MEM at the requested address. */
1315 if (GET_CODE (op
) == MEM
)
1317 rtx addr
= plus_constant (XEXP (op
, 0), i
* UNITS_PER_WORD
);
1320 if (validate_address
)
1322 if (reload_completed
)
1324 if (! strict_memory_address_p (word_mode
, addr
))
1328 addr
= memory_address (word_mode
, addr
);
1331 new = gen_rtx_MEM (word_mode
, addr
);
1332 MEM_COPY_ATTRIBUTES (new, op
);
1336 /* The only remaining cases are when OP is a constant. If the host and
1337 target floating formats are the same, handling two-word floating
1338 constants are easy. Note that REAL_VALUE_TO_TARGET_{SINGLE,DOUBLE}
1339 are defined as returning one or two 32 bit values, respectively,
1340 and not values of BITS_PER_WORD bits. */
1341 #ifdef REAL_ARITHMETIC
1342 /* The output is some bits, the width of the target machine's word.
1343 A wider-word host can surely hold them in a CONST_INT. A narrower-word
1345 if (HOST_BITS_PER_WIDE_INT
>= BITS_PER_WORD
1346 && GET_MODE_CLASS (mode
) == MODE_FLOAT
1347 && GET_MODE_BITSIZE (mode
) == 64
1348 && GET_CODE (op
) == CONST_DOUBLE
)
1353 REAL_VALUE_FROM_CONST_DOUBLE (rv
, op
);
1354 REAL_VALUE_TO_TARGET_DOUBLE (rv
, k
);
1356 /* We handle 32-bit and >= 64-bit words here. Note that the order in
1357 which the words are written depends on the word endianness.
1358 ??? This is a potential portability problem and should
1359 be fixed at some point.
1361 We must excercise caution with the sign bit. By definition there
1362 are 32 significant bits in K; there may be more in a HOST_WIDE_INT.
1363 Consider a host with a 32-bit long and a 64-bit HOST_WIDE_INT.
1364 So we explicitly mask and sign-extend as necessary. */
1365 if (BITS_PER_WORD
== 32)
1368 val
= ((val
& 0xffffffff) ^ 0x80000000) - 0x80000000;
1369 return GEN_INT (val
);
1371 #if HOST_BITS_PER_WIDE_INT >= 64
1372 else if (BITS_PER_WORD
>= 64 && i
== 0)
1374 val
= k
[! WORDS_BIG_ENDIAN
];
1375 val
= (((val
& 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1376 val
|= (HOST_WIDE_INT
) k
[WORDS_BIG_ENDIAN
] & 0xffffffff;
1377 return GEN_INT (val
);
1380 else if (BITS_PER_WORD
== 16)
1383 if ((i
& 1) == !WORDS_BIG_ENDIAN
)
1386 return GEN_INT (val
);
1391 else if (HOST_BITS_PER_WIDE_INT
>= BITS_PER_WORD
1392 && GET_MODE_CLASS (mode
) == MODE_FLOAT
1393 && GET_MODE_BITSIZE (mode
) > 64
1394 && GET_CODE (op
) == CONST_DOUBLE
)
1399 REAL_VALUE_FROM_CONST_DOUBLE (rv
, op
);
1400 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv
, k
);
1402 if (BITS_PER_WORD
== 32)
1405 val
= ((val
& 0xffffffff) ^ 0x80000000) - 0x80000000;
1406 return GEN_INT (val
);
1408 #if HOST_BITS_PER_WIDE_INT >= 64
1409 else if (BITS_PER_WORD
>= 64 && i
<= 1)
1411 val
= k
[i
*2 + ! WORDS_BIG_ENDIAN
];
1412 val
= (((val
& 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1413 val
|= (HOST_WIDE_INT
) k
[i
*2 + WORDS_BIG_ENDIAN
] & 0xffffffff;
1414 return GEN_INT (val
);
1420 #else /* no REAL_ARITHMETIC */
1421 if (((HOST_FLOAT_FORMAT
== TARGET_FLOAT_FORMAT
1422 && HOST_BITS_PER_WIDE_INT
== BITS_PER_WORD
)
1423 || flag_pretend_float
)
1424 && GET_MODE_CLASS (mode
) == MODE_FLOAT
1425 && GET_MODE_SIZE (mode
) == 2 * UNITS_PER_WORD
1426 && GET_CODE (op
) == CONST_DOUBLE
)
1428 /* The constant is stored in the host's word-ordering,
1429 but we want to access it in the target's word-ordering. Some
1430 compilers don't like a conditional inside macro args, so we have two
1431 copies of the return. */
1432 #ifdef HOST_WORDS_BIG_ENDIAN
1433 return GEN_INT (i
== WORDS_BIG_ENDIAN
1434 ? CONST_DOUBLE_HIGH (op
) : CONST_DOUBLE_LOW (op
));
1436 return GEN_INT (i
!= WORDS_BIG_ENDIAN
1437 ? CONST_DOUBLE_HIGH (op
) : CONST_DOUBLE_LOW (op
));
1440 #endif /* no REAL_ARITHMETIC */
1442 /* Single word float is a little harder, since single- and double-word
1443 values often do not have the same high-order bits. We have already
1444 verified that we want the only defined word of the single-word value. */
1445 #ifdef REAL_ARITHMETIC
1446 if (GET_MODE_CLASS (mode
) == MODE_FLOAT
1447 && GET_MODE_BITSIZE (mode
) == 32
1448 && GET_CODE (op
) == CONST_DOUBLE
)
1453 REAL_VALUE_FROM_CONST_DOUBLE (rv
, op
);
1454 REAL_VALUE_TO_TARGET_SINGLE (rv
, l
);
1456 /* Sign extend from known 32-bit value to HOST_WIDE_INT. */
1458 val
= ((val
& 0xffffffff) ^ 0x80000000) - 0x80000000;
1460 if (BITS_PER_WORD
== 16)
1462 if ((i
& 1) == !WORDS_BIG_ENDIAN
)
1467 return GEN_INT (val
);
1470 if (((HOST_FLOAT_FORMAT
== TARGET_FLOAT_FORMAT
1471 && HOST_BITS_PER_WIDE_INT
== BITS_PER_WORD
)
1472 || flag_pretend_float
)
1473 && sizeof (float) * 8 == HOST_BITS_PER_WIDE_INT
1474 && GET_MODE_CLASS (mode
) == MODE_FLOAT
1475 && GET_MODE_SIZE (mode
) == UNITS_PER_WORD
1476 && GET_CODE (op
) == CONST_DOUBLE
)
1479 union {float f
; HOST_WIDE_INT i
; } u
;
1481 REAL_VALUE_FROM_CONST_DOUBLE (d
, op
);
1484 return GEN_INT (u
.i
);
1486 if (((HOST_FLOAT_FORMAT
== TARGET_FLOAT_FORMAT
1487 && HOST_BITS_PER_WIDE_INT
== BITS_PER_WORD
)
1488 || flag_pretend_float
)
1489 && sizeof (double) * 8 == HOST_BITS_PER_WIDE_INT
1490 && GET_MODE_CLASS (mode
) == MODE_FLOAT
1491 && GET_MODE_SIZE (mode
) == UNITS_PER_WORD
1492 && GET_CODE (op
) == CONST_DOUBLE
)
1495 union {double d
; HOST_WIDE_INT i
; } u
;
1497 REAL_VALUE_FROM_CONST_DOUBLE (d
, op
);
1500 return GEN_INT (u
.i
);
1502 #endif /* no REAL_ARITHMETIC */
1504 /* The only remaining cases that we can handle are integers.
1505 Convert to proper endianness now since these cases need it.
1506 At this point, i == 0 means the low-order word.
1508 We do not want to handle the case when BITS_PER_WORD <= HOST_BITS_PER_INT
1509 in general. However, if OP is (const_int 0), we can just return
1512 if (op
== const0_rtx
)
1515 if (GET_MODE_CLASS (mode
) != MODE_INT
1516 || (GET_CODE (op
) != CONST_INT
&& GET_CODE (op
) != CONST_DOUBLE
)
1517 || BITS_PER_WORD
> HOST_BITS_PER_WIDE_INT
)
1520 if (WORDS_BIG_ENDIAN
)
1521 i
= GET_MODE_SIZE (mode
) / UNITS_PER_WORD
- 1 - i
;
1523 /* Find out which word on the host machine this value is in and get
1524 it from the constant. */
1525 val
= (i
/ size_ratio
== 0
1526 ? (GET_CODE (op
) == CONST_INT
? INTVAL (op
) : CONST_DOUBLE_LOW (op
))
1527 : (GET_CODE (op
) == CONST_INT
1528 ? (INTVAL (op
) < 0 ? ~0 : 0) : CONST_DOUBLE_HIGH (op
)));
1530 /* Get the value we want into the low bits of val. */
1531 if (BITS_PER_WORD
< HOST_BITS_PER_WIDE_INT
)
1532 val
= ((val
>> ((i
% size_ratio
) * BITS_PER_WORD
)));
1534 val
= trunc_int_for_mode (val
, word_mode
);
1536 return GEN_INT (val
);
1539 /* Similar to `operand_subword', but never return 0. If we can't extract
1540 the required subword, put OP into a register and try again. If that fails,
1541 abort. We always validate the address in this case. It is not valid
1542 to call this function after reload; it is mostly meant for RTL
1545 MODE is the mode of OP, in case it is CONST_INT. */
1548 operand_subword_force (op
, i
, mode
)
1551 enum machine_mode mode
;
1553 rtx result
= operand_subword (op
, i
, 1, mode
);
1558 if (mode
!= BLKmode
&& mode
!= VOIDmode
)
1560 /* If this is a register which can not be accessed by words, copy it
1561 to a pseudo register. */
1562 if (GET_CODE (op
) == REG
)
1563 op
= copy_to_reg (op
);
1565 op
= force_reg (mode
, op
);
1568 result
= operand_subword (op
, i
, 1, mode
);
1575 /* Given a compare instruction, swap the operands.
1576 A test instruction is changed into a compare of 0 against the operand. */
1579 reverse_comparison (insn
)
1582 rtx body
= PATTERN (insn
);
1585 if (GET_CODE (body
) == SET
)
1586 comp
= SET_SRC (body
);
1588 comp
= SET_SRC (XVECEXP (body
, 0, 0));
1590 if (GET_CODE (comp
) == COMPARE
)
1592 rtx op0
= XEXP (comp
, 0);
1593 rtx op1
= XEXP (comp
, 1);
1594 XEXP (comp
, 0) = op1
;
1595 XEXP (comp
, 1) = op0
;
1599 rtx
new = gen_rtx_COMPARE (VOIDmode
,
1600 CONST0_RTX (GET_MODE (comp
)), comp
);
1601 if (GET_CODE (body
) == SET
)
1602 SET_SRC (body
) = new;
1604 SET_SRC (XVECEXP (body
, 0, 0)) = new;
1608 /* Return a memory reference like MEMREF, but with its mode changed
1609 to MODE and its address changed to ADDR.
1610 (VOIDmode means don't change the mode.
1611 NULL for ADDR means don't change the address.) */
1614 change_address (memref
, mode
, addr
)
1616 enum machine_mode mode
;
1621 if (GET_CODE (memref
) != MEM
)
1623 if (mode
== VOIDmode
)
1624 mode
= GET_MODE (memref
);
1626 addr
= XEXP (memref
, 0);
1628 /* If reload is in progress or has completed, ADDR must be valid.
1629 Otherwise, we can call memory_address to make it valid. */
1630 if (reload_completed
|| reload_in_progress
)
1632 if (! memory_address_p (mode
, addr
))
1636 addr
= memory_address (mode
, addr
);
1638 if (rtx_equal_p (addr
, XEXP (memref
, 0)) && mode
== GET_MODE (memref
))
1641 new = gen_rtx_MEM (mode
, addr
);
1642 MEM_COPY_ATTRIBUTES (new, memref
);
1646 /* Return a newly created CODE_LABEL rtx with a unique label number. */
1653 label
= gen_rtx_CODE_LABEL (VOIDmode
, 0, NULL_RTX
,
1654 NULL_RTX
, label_num
++, NULL_PTR
, NULL_PTR
);
1656 LABEL_NUSES (label
) = 0;
1657 LABEL_ALTERNATE_NAME (label
) = NULL
;
1661 /* For procedure integration. */
1663 /* Install new pointers to the first and last insns in the chain.
1664 Also, set cur_insn_uid to one higher than the last in use.
1665 Used for an inline-procedure after copying the insn chain. */
1668 set_new_first_and_last_insn (first
, last
)
1677 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
1678 cur_insn_uid
= MAX (cur_insn_uid
, INSN_UID (insn
));
1683 /* Set the range of label numbers found in the current function.
1684 This is used when belatedly compiling an inline function. */
1687 set_new_first_and_last_label_num (first
, last
)
1690 base_label_num
= label_num
;
1691 first_label_num
= first
;
1692 last_label_num
= last
;
1695 /* Set the last label number found in the current function.
1696 This is used when belatedly compiling an inline function. */
1699 set_new_last_label_num (last
)
1702 base_label_num
= label_num
;
1703 last_label_num
= last
;
1706 /* Restore all variables describing the current status from the structure *P.
1707 This is used after a nested function. */
1710 restore_emit_status (p
)
1711 struct function
*p ATTRIBUTE_UNUSED
;
1714 clear_emit_caches ();
1717 /* Clear out all parts of the state in F that can safely be discarded
1718 after the function has been compiled, to let garbage collection
1719 reclaim the memory. */
1722 free_emit_status (f
)
1725 free (f
->emit
->x_regno_reg_rtx
);
1726 free (f
->emit
->regno_pointer_align
);
1731 /* Go through all the RTL insn bodies and copy any invalid shared
1732 structure. This routine should only be called once. */
1735 unshare_all_rtl (fndecl
, insn
)
1741 /* Make sure that virtual parameters are not shared. */
1742 for (decl
= DECL_ARGUMENTS (fndecl
); decl
; decl
= TREE_CHAIN (decl
))
1743 DECL_RTL (decl
) = copy_rtx_if_shared (DECL_RTL (decl
));
1745 /* Make sure that virtual stack slots are not shared. */
1746 unshare_all_decls (DECL_INITIAL (fndecl
));
1748 /* Unshare just about everything else. */
1749 unshare_all_rtl_1 (insn
);
1751 /* Make sure the addresses of stack slots found outside the insn chain
1752 (such as, in DECL_RTL of a variable) are not shared
1753 with the insn chain.
1755 This special care is necessary when the stack slot MEM does not
1756 actually appear in the insn chain. If it does appear, its address
1757 is unshared from all else at that point. */
1758 stack_slot_list
= copy_rtx_if_shared (stack_slot_list
);
1761 /* Go through all the RTL insn bodies and copy any invalid shared
1762 structure, again. This is a fairly expensive thing to do so it
1763 should be done sparingly. */
1766 unshare_all_rtl_again (insn
)
1772 for (p
= insn
; p
; p
= NEXT_INSN (p
))
1775 reset_used_flags (PATTERN (p
));
1776 reset_used_flags (REG_NOTES (p
));
1777 reset_used_flags (LOG_LINKS (p
));
1780 /* Make sure that virtual stack slots are not shared. */
1781 reset_used_decls (DECL_INITIAL (cfun
->decl
));
1783 /* Make sure that virtual parameters are not shared. */
1784 for (decl
= DECL_ARGUMENTS (cfun
->decl
); decl
; decl
= TREE_CHAIN (decl
))
1785 reset_used_flags (DECL_RTL (decl
));
1787 reset_used_flags (stack_slot_list
);
1789 unshare_all_rtl (cfun
->decl
, insn
);
1792 /* Go through all the RTL insn bodies and copy any invalid shared structure.
1793 Assumes the mark bits are cleared at entry. */
1796 unshare_all_rtl_1 (insn
)
1799 for (; insn
; insn
= NEXT_INSN (insn
))
1802 PATTERN (insn
) = copy_rtx_if_shared (PATTERN (insn
));
1803 REG_NOTES (insn
) = copy_rtx_if_shared (REG_NOTES (insn
));
1804 LOG_LINKS (insn
) = copy_rtx_if_shared (LOG_LINKS (insn
));
1808 /* Go through all virtual stack slots of a function and copy any
1809 shared structure. */
1811 unshare_all_decls (blk
)
1816 /* Copy shared decls. */
1817 for (t
= BLOCK_VARS (blk
); t
; t
= TREE_CHAIN (t
))
1818 DECL_RTL (t
) = copy_rtx_if_shared (DECL_RTL (t
));
1820 /* Now process sub-blocks. */
1821 for (t
= BLOCK_SUBBLOCKS (blk
); t
; t
= TREE_CHAIN (t
))
1822 unshare_all_decls (t
);
1825 /* Go through all virtual stack slots of a function and mark them as
1828 reset_used_decls (blk
)
1834 for (t
= BLOCK_VARS (blk
); t
; t
= TREE_CHAIN (t
))
1835 reset_used_flags (DECL_RTL (t
));
1837 /* Now process sub-blocks. */
1838 for (t
= BLOCK_SUBBLOCKS (blk
); t
; t
= TREE_CHAIN (t
))
1839 reset_used_decls (t
);
1842 /* Mark ORIG as in use, and return a copy of it if it was already in use.
1843 Recursively does the same for subexpressions. */
1846 copy_rtx_if_shared (orig
)
1849 register rtx x
= orig
;
1851 register enum rtx_code code
;
1852 register const char *format_ptr
;
1858 code
= GET_CODE (x
);
1860 /* These types may be freely shared. */
1873 /* SCRATCH must be shared because they represent distinct values. */
1877 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
1878 a LABEL_REF, it isn't sharable. */
1879 if (GET_CODE (XEXP (x
, 0)) == PLUS
1880 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == SYMBOL_REF
1881 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
)
1890 /* The chain of insns is not being copied. */
1894 /* A MEM is allowed to be shared if its address is constant.
1896 We used to allow sharing of MEMs which referenced
1897 virtual_stack_vars_rtx or virtual_incoming_args_rtx, but
1898 that can lose. instantiate_virtual_regs will not unshare
1899 the MEMs, and combine may change the structure of the address
1900 because it looks safe and profitable in one context, but
1901 in some other context it creates unrecognizable RTL. */
1902 if (CONSTANT_ADDRESS_P (XEXP (x
, 0)))
1911 /* This rtx may not be shared. If it has already been seen,
1912 replace it with a copy of itself. */
1918 copy
= rtx_alloc (code
);
1920 (sizeof (*copy
) - sizeof (copy
->fld
)
1921 + sizeof (copy
->fld
[0]) * GET_RTX_LENGTH (code
)));
1927 /* Now scan the subexpressions recursively.
1928 We can store any replaced subexpressions directly into X
1929 since we know X is not shared! Any vectors in X
1930 must be copied if X was copied. */
1932 format_ptr
= GET_RTX_FORMAT (code
);
1934 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
1936 switch (*format_ptr
++)
1939 XEXP (x
, i
) = copy_rtx_if_shared (XEXP (x
, i
));
1943 if (XVEC (x
, i
) != NULL
)
1946 int len
= XVECLEN (x
, i
);
1948 if (copied
&& len
> 0)
1949 XVEC (x
, i
) = gen_rtvec_v (len
, XVEC (x
, i
)->elem
);
1950 for (j
= 0; j
< len
; j
++)
1951 XVECEXP (x
, i
, j
) = copy_rtx_if_shared (XVECEXP (x
, i
, j
));
1959 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
1960 to look for shared sub-parts. */
1963 reset_used_flags (x
)
1967 register enum rtx_code code
;
1968 register const char *format_ptr
;
1973 code
= GET_CODE (x
);
1975 /* These types may be freely shared so we needn't do any resetting
1996 /* The chain of insns is not being copied. */
2005 format_ptr
= GET_RTX_FORMAT (code
);
2006 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
2008 switch (*format_ptr
++)
2011 reset_used_flags (XEXP (x
, i
));
2015 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2016 reset_used_flags (XVECEXP (x
, i
, j
));
2022 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2023 Return X or the rtx for the pseudo reg the value of X was copied into.
2024 OTHER must be valid as a SET_DEST. */
2027 make_safe_from (x
, other
)
2031 switch (GET_CODE (other
))
2034 other
= SUBREG_REG (other
);
2036 case STRICT_LOW_PART
:
2039 other
= XEXP (other
, 0);
2045 if ((GET_CODE (other
) == MEM
2047 && GET_CODE (x
) != REG
2048 && GET_CODE (x
) != SUBREG
)
2049 || (GET_CODE (other
) == REG
2050 && (REGNO (other
) < FIRST_PSEUDO_REGISTER
2051 || reg_mentioned_p (other
, x
))))
2053 rtx temp
= gen_reg_rtx (GET_MODE (x
));
2054 emit_move_insn (temp
, x
);
2060 /* Emission of insns (adding them to the doubly-linked list). */
2062 /* Return the first insn of the current sequence or current function. */
2070 /* Return the last insn emitted in current sequence or current function. */
2078 /* Specify a new insn as the last in the chain. */
2081 set_last_insn (insn
)
2084 if (NEXT_INSN (insn
) != 0)
2089 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2092 get_last_insn_anywhere ()
2094 struct sequence_stack
*stack
;
2097 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
2098 if (stack
->last
!= 0)
2103 /* Return a number larger than any instruction's uid in this function. */
2108 return cur_insn_uid
;
2111 /* Renumber instructions so that no instruction UIDs are wasted. */
2114 renumber_insns (stream
)
2119 /* If we're not supposed to renumber instructions, don't. */
2120 if (!flag_renumber_insns
)
2123 /* If there aren't that many instructions, then it's not really
2124 worth renumbering them. */
2125 if (flag_renumber_insns
== 1 && get_max_uid () < 25000)
2130 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
2133 fprintf (stream
, "Renumbering insn %d to %d\n",
2134 INSN_UID (insn
), cur_insn_uid
);
2135 INSN_UID (insn
) = cur_insn_uid
++;
2139 /* Return the next insn. If it is a SEQUENCE, return the first insn
2148 insn
= NEXT_INSN (insn
);
2149 if (insn
&& GET_CODE (insn
) == INSN
2150 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
2151 insn
= XVECEXP (PATTERN (insn
), 0, 0);
2157 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2161 previous_insn (insn
)
2166 insn
= PREV_INSN (insn
);
2167 if (insn
&& GET_CODE (insn
) == INSN
2168 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
2169 insn
= XVECEXP (PATTERN (insn
), 0, XVECLEN (PATTERN (insn
), 0) - 1);
2175 /* Return the next insn after INSN that is not a NOTE. This routine does not
2176 look inside SEQUENCEs. */
2179 next_nonnote_insn (insn
)
2184 insn
= NEXT_INSN (insn
);
2185 if (insn
== 0 || GET_CODE (insn
) != NOTE
)
2192 /* Return the previous insn before INSN that is not a NOTE. This routine does
2193 not look inside SEQUENCEs. */
2196 prev_nonnote_insn (insn
)
2201 insn
= PREV_INSN (insn
);
2202 if (insn
== 0 || GET_CODE (insn
) != NOTE
)
2209 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2210 or 0, if there is none. This routine does not look inside
2214 next_real_insn (insn
)
2219 insn
= NEXT_INSN (insn
);
2220 if (insn
== 0 || GET_CODE (insn
) == INSN
2221 || GET_CODE (insn
) == CALL_INSN
|| GET_CODE (insn
) == JUMP_INSN
)
2228 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2229 or 0, if there is none. This routine does not look inside
2233 prev_real_insn (insn
)
2238 insn
= PREV_INSN (insn
);
2239 if (insn
== 0 || GET_CODE (insn
) == INSN
|| GET_CODE (insn
) == CALL_INSN
2240 || GET_CODE (insn
) == JUMP_INSN
)
2247 /* Find the next insn after INSN that really does something. This routine
2248 does not look inside SEQUENCEs. Until reload has completed, this is the
2249 same as next_real_insn. */
2252 active_insn_p (insn
)
2255 return (GET_CODE (insn
) == CALL_INSN
|| GET_CODE (insn
) == JUMP_INSN
2256 || (GET_CODE (insn
) == INSN
2257 && (! reload_completed
2258 || (GET_CODE (PATTERN (insn
)) != USE
2259 && GET_CODE (PATTERN (insn
)) != CLOBBER
))));
2263 next_active_insn (insn
)
2268 insn
= NEXT_INSN (insn
);
2269 if (insn
== 0 || active_insn_p (insn
))
2276 /* Find the last insn before INSN that really does something. This routine
2277 does not look inside SEQUENCEs. Until reload has completed, this is the
2278 same as prev_real_insn. */
2281 prev_active_insn (insn
)
2286 insn
= PREV_INSN (insn
);
2287 if (insn
== 0 || active_insn_p (insn
))
2294 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
2302 insn
= NEXT_INSN (insn
);
2303 if (insn
== 0 || GET_CODE (insn
) == CODE_LABEL
)
2310 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
2318 insn
= PREV_INSN (insn
);
2319 if (insn
== 0 || GET_CODE (insn
) == CODE_LABEL
)
2327 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
2328 and REG_CC_USER notes so we can find it. */
2331 link_cc0_insns (insn
)
2334 rtx user
= next_nonnote_insn (insn
);
2336 if (GET_CODE (user
) == INSN
&& GET_CODE (PATTERN (user
)) == SEQUENCE
)
2337 user
= XVECEXP (PATTERN (user
), 0, 0);
2339 REG_NOTES (user
) = gen_rtx_INSN_LIST (REG_CC_SETTER
, insn
,
2341 REG_NOTES (insn
) = gen_rtx_INSN_LIST (REG_CC_USER
, user
, REG_NOTES (insn
));
2344 /* Return the next insn that uses CC0 after INSN, which is assumed to
2345 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
2346 applied to the result of this function should yield INSN).
2348 Normally, this is simply the next insn. However, if a REG_CC_USER note
2349 is present, it contains the insn that uses CC0.
2351 Return 0 if we can't find the insn. */
2354 next_cc0_user (insn
)
2357 rtx note
= find_reg_note (insn
, REG_CC_USER
, NULL_RTX
);
2360 return XEXP (note
, 0);
2362 insn
= next_nonnote_insn (insn
);
2363 if (insn
&& GET_CODE (insn
) == INSN
&& GET_CODE (PATTERN (insn
)) == SEQUENCE
)
2364 insn
= XVECEXP (PATTERN (insn
), 0, 0);
2366 if (insn
&& INSN_P (insn
) && reg_mentioned_p (cc0_rtx
, PATTERN (insn
)))
2372 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
2373 note, it is the previous insn. */
2376 prev_cc0_setter (insn
)
2379 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
2382 return XEXP (note
, 0);
2384 insn
= prev_nonnote_insn (insn
);
2385 if (! sets_cc0_p (PATTERN (insn
)))
2392 /* Try splitting insns that can be split for better scheduling.
2393 PAT is the pattern which might split.
2394 TRIAL is the insn providing PAT.
2395 LAST is non-zero if we should return the last insn of the sequence produced.
2397 If this routine succeeds in splitting, it returns the first or last
2398 replacement insn depending on the value of LAST. Otherwise, it
2399 returns TRIAL. If the insn to be returned can be split, it will be. */
2402 try_split (pat
, trial
, last
)
2406 rtx before
= PREV_INSN (trial
);
2407 rtx after
= NEXT_INSN (trial
);
2408 rtx seq
= split_insns (pat
, trial
);
2409 int has_barrier
= 0;
2412 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
2413 We may need to handle this specially. */
2414 if (after
&& GET_CODE (after
) == BARRIER
)
2417 after
= NEXT_INSN (after
);
2422 /* SEQ can either be a SEQUENCE or the pattern of a single insn.
2423 The latter case will normally arise only when being done so that
2424 it, in turn, will be split (SFmode on the 29k is an example). */
2425 if (GET_CODE (seq
) == SEQUENCE
)
2429 /* Avoid infinite loop if any insn of the result matches
2430 the original pattern. */
2431 for (i
= 0; i
< XVECLEN (seq
, 0); i
++)
2432 if (GET_CODE (XVECEXP (seq
, 0, i
)) == INSN
2433 && rtx_equal_p (PATTERN (XVECEXP (seq
, 0, i
)), pat
))
2436 /* If we are splitting a JUMP_INSN, look for the JUMP_INSN in
2437 SEQ and copy our JUMP_LABEL to it. If JUMP_LABEL is non-zero,
2438 increment the usage count so we don't delete the label. */
2440 if (GET_CODE (trial
) == JUMP_INSN
)
2441 for (i
= XVECLEN (seq
, 0) - 1; i
>= 0; i
--)
2442 if (GET_CODE (XVECEXP (seq
, 0, i
)) == JUMP_INSN
)
2444 JUMP_LABEL (XVECEXP (seq
, 0, i
)) = JUMP_LABEL (trial
);
2446 if (JUMP_LABEL (trial
))
2447 LABEL_NUSES (JUMP_LABEL (trial
))++;
2450 /* If we are splitting a CALL_INSN, look for the CALL_INSN
2451 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
2452 if (GET_CODE (trial
) == CALL_INSN
)
2453 for (i
= XVECLEN (seq
, 0) - 1; i
>= 0; i
--)
2454 if (GET_CODE (XVECEXP (seq
, 0, i
)) == CALL_INSN
)
2455 CALL_INSN_FUNCTION_USAGE (XVECEXP (seq
, 0, i
))
2456 = CALL_INSN_FUNCTION_USAGE (trial
);
2458 tem
= emit_insn_after (seq
, before
);
2460 delete_insn (trial
);
2462 emit_barrier_after (tem
);
2464 /* Recursively call try_split for each new insn created; by the
2465 time control returns here that insn will be fully split, so
2466 set LAST and continue from the insn after the one returned.
2467 We can't use next_active_insn here since AFTER may be a note.
2468 Ignore deleted insns, which can be occur if not optimizing. */
2469 for (tem
= NEXT_INSN (before
); tem
!= after
; tem
= NEXT_INSN (tem
))
2470 if (! INSN_DELETED_P (tem
) && INSN_P (tem
))
2471 tem
= try_split (PATTERN (tem
), tem
, 1);
2473 /* Avoid infinite loop if the result matches the original pattern. */
2474 else if (rtx_equal_p (seq
, pat
))
2478 PATTERN (trial
) = seq
;
2479 INSN_CODE (trial
) = -1;
2480 try_split (seq
, trial
, last
);
2483 /* Return either the first or the last insn, depending on which was
2486 ? (after
? prev_active_insn (after
) : last_insn
)
2487 : next_active_insn (before
);
2493 /* Make and return an INSN rtx, initializing all its slots.
2494 Store PATTERN in the pattern slots. */
2497 make_insn_raw (pattern
)
2502 insn
= rtx_alloc (INSN
);
2504 INSN_UID (insn
) = cur_insn_uid
++;
2505 PATTERN (insn
) = pattern
;
2506 INSN_CODE (insn
) = -1;
2507 LOG_LINKS (insn
) = NULL
;
2508 REG_NOTES (insn
) = NULL
;
2510 #ifdef ENABLE_RTL_CHECKING
2513 && (returnjump_p (insn
)
2514 || (GET_CODE (insn
) == SET
2515 && SET_DEST (insn
) == pc_rtx
)))
2517 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
2525 /* Like `make_insn' but make a JUMP_INSN instead of an insn. */
2528 make_jump_insn_raw (pattern
)
2533 insn
= rtx_alloc (JUMP_INSN
);
2534 INSN_UID (insn
) = cur_insn_uid
++;
2536 PATTERN (insn
) = pattern
;
2537 INSN_CODE (insn
) = -1;
2538 LOG_LINKS (insn
) = NULL
;
2539 REG_NOTES (insn
) = NULL
;
2540 JUMP_LABEL (insn
) = NULL
;
2545 /* Like `make_insn' but make a CALL_INSN instead of an insn. */
2548 make_call_insn_raw (pattern
)
2553 insn
= rtx_alloc (CALL_INSN
);
2554 INSN_UID (insn
) = cur_insn_uid
++;
2556 PATTERN (insn
) = pattern
;
2557 INSN_CODE (insn
) = -1;
2558 LOG_LINKS (insn
) = NULL
;
2559 REG_NOTES (insn
) = NULL
;
2560 CALL_INSN_FUNCTION_USAGE (insn
) = NULL
;
2565 /* Add INSN to the end of the doubly-linked list.
2566 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
2572 PREV_INSN (insn
) = last_insn
;
2573 NEXT_INSN (insn
) = 0;
2575 if (NULL
!= last_insn
)
2576 NEXT_INSN (last_insn
) = insn
;
2578 if (NULL
== first_insn
)
2584 /* Add INSN into the doubly-linked list after insn AFTER. This and
2585 the next should be the only functions called to insert an insn once
2586 delay slots have been filled since only they know how to update a
2590 add_insn_after (insn
, after
)
2593 rtx next
= NEXT_INSN (after
);
2595 if (optimize
&& INSN_DELETED_P (after
))
2598 NEXT_INSN (insn
) = next
;
2599 PREV_INSN (insn
) = after
;
2603 PREV_INSN (next
) = insn
;
2604 if (GET_CODE (next
) == INSN
&& GET_CODE (PATTERN (next
)) == SEQUENCE
)
2605 PREV_INSN (XVECEXP (PATTERN (next
), 0, 0)) = insn
;
2607 else if (last_insn
== after
)
2611 struct sequence_stack
*stack
= seq_stack
;
2612 /* Scan all pending sequences too. */
2613 for (; stack
; stack
= stack
->next
)
2614 if (after
== stack
->last
)
2624 NEXT_INSN (after
) = insn
;
2625 if (GET_CODE (after
) == INSN
&& GET_CODE (PATTERN (after
)) == SEQUENCE
)
2627 rtx sequence
= PATTERN (after
);
2628 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = insn
;
2632 /* Add INSN into the doubly-linked list before insn BEFORE. This and
2633 the previous should be the only functions called to insert an insn once
2634 delay slots have been filled since only they know how to update a
2638 add_insn_before (insn
, before
)
2641 rtx prev
= PREV_INSN (before
);
2643 if (optimize
&& INSN_DELETED_P (before
))
2646 PREV_INSN (insn
) = prev
;
2647 NEXT_INSN (insn
) = before
;
2651 NEXT_INSN (prev
) = insn
;
2652 if (GET_CODE (prev
) == INSN
&& GET_CODE (PATTERN (prev
)) == SEQUENCE
)
2654 rtx sequence
= PATTERN (prev
);
2655 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = insn
;
2658 else if (first_insn
== before
)
2662 struct sequence_stack
*stack
= seq_stack
;
2663 /* Scan all pending sequences too. */
2664 for (; stack
; stack
= stack
->next
)
2665 if (before
== stack
->first
)
2667 stack
->first
= insn
;
2675 PREV_INSN (before
) = insn
;
2676 if (GET_CODE (before
) == INSN
&& GET_CODE (PATTERN (before
)) == SEQUENCE
)
2677 PREV_INSN (XVECEXP (PATTERN (before
), 0, 0)) = insn
;
2680 /* Remove an insn from its doubly-linked list. This function knows how
2681 to handle sequences. */
2686 rtx next
= NEXT_INSN (insn
);
2687 rtx prev
= PREV_INSN (insn
);
2690 NEXT_INSN (prev
) = next
;
2691 if (GET_CODE (prev
) == INSN
&& GET_CODE (PATTERN (prev
)) == SEQUENCE
)
2693 rtx sequence
= PATTERN (prev
);
2694 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = next
;
2697 else if (first_insn
== insn
)
2701 struct sequence_stack
*stack
= seq_stack
;
2702 /* Scan all pending sequences too. */
2703 for (; stack
; stack
= stack
->next
)
2704 if (insn
== stack
->first
)
2706 stack
->first
= next
;
2716 PREV_INSN (next
) = prev
;
2717 if (GET_CODE (next
) == INSN
&& GET_CODE (PATTERN (next
)) == SEQUENCE
)
2718 PREV_INSN (XVECEXP (PATTERN (next
), 0, 0)) = prev
;
2720 else if (last_insn
== insn
)
2724 struct sequence_stack
*stack
= seq_stack
;
2725 /* Scan all pending sequences too. */
2726 for (; stack
; stack
= stack
->next
)
2727 if (insn
== stack
->last
)
2738 /* Delete all insns made since FROM.
2739 FROM becomes the new last instruction. */
2742 delete_insns_since (from
)
2748 NEXT_INSN (from
) = 0;
2752 /* This function is deprecated, please use sequences instead.
2754 Move a consecutive bunch of insns to a different place in the chain.
2755 The insns to be moved are those between FROM and TO.
2756 They are moved to a new position after the insn AFTER.
2757 AFTER must not be FROM or TO or any insn in between.
2759 This function does not know about SEQUENCEs and hence should not be
2760 called after delay-slot filling has been done. */
2763 reorder_insns (from
, to
, after
)
2764 rtx from
, to
, after
;
2766 /* Splice this bunch out of where it is now. */
2767 if (PREV_INSN (from
))
2768 NEXT_INSN (PREV_INSN (from
)) = NEXT_INSN (to
);
2770 PREV_INSN (NEXT_INSN (to
)) = PREV_INSN (from
);
2771 if (last_insn
== to
)
2772 last_insn
= PREV_INSN (from
);
2773 if (first_insn
== from
)
2774 first_insn
= NEXT_INSN (to
);
2776 /* Make the new neighbors point to it and it to them. */
2777 if (NEXT_INSN (after
))
2778 PREV_INSN (NEXT_INSN (after
)) = to
;
2780 NEXT_INSN (to
) = NEXT_INSN (after
);
2781 PREV_INSN (from
) = after
;
2782 NEXT_INSN (after
) = from
;
2783 if (after
== last_insn
)
2787 /* Return the line note insn preceding INSN. */
2790 find_line_note (insn
)
2793 if (no_line_numbers
)
2796 for (; insn
; insn
= PREV_INSN (insn
))
2797 if (GET_CODE (insn
) == NOTE
2798 && NOTE_LINE_NUMBER (insn
) >= 0)
2804 /* Like reorder_insns, but inserts line notes to preserve the line numbers
2805 of the moved insns when debugging. This may insert a note between AFTER
2806 and FROM, and another one after TO. */
2809 reorder_insns_with_line_notes (from
, to
, after
)
2810 rtx from
, to
, after
;
2812 rtx from_line
= find_line_note (from
);
2813 rtx after_line
= find_line_note (after
);
2815 reorder_insns (from
, to
, after
);
2817 if (from_line
== after_line
)
2821 emit_line_note_after (NOTE_SOURCE_FILE (from_line
),
2822 NOTE_LINE_NUMBER (from_line
),
2825 emit_line_note_after (NOTE_SOURCE_FILE (after_line
),
2826 NOTE_LINE_NUMBER (after_line
),
2830 /* Remove unnecessary notes from the instruction stream. */
2833 remove_unnecessary_notes ()
2838 /* We must not remove the first instruction in the function because
2839 the compiler depends on the first instruction being a note. */
2840 for (insn
= NEXT_INSN (get_insns ()); insn
; insn
= next
)
2842 /* Remember what's next. */
2843 next
= NEXT_INSN (insn
);
2845 /* We're only interested in notes. */
2846 if (GET_CODE (insn
) != NOTE
)
2849 /* By now, all notes indicating lexical blocks should have
2850 NOTE_BLOCK filled in. */
2851 if ((NOTE_LINE_NUMBER (insn
) == NOTE_INSN_BLOCK_BEG
2852 || NOTE_LINE_NUMBER (insn
) == NOTE_INSN_BLOCK_END
)
2853 && NOTE_BLOCK (insn
) == NULL_TREE
)
2856 /* Remove NOTE_INSN_DELETED notes. */
2857 if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_DELETED
)
2859 else if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_BLOCK_END
)
2861 /* Scan back to see if there are any non-note instructions
2862 between INSN and the beginning of this block. If not,
2863 then there is no PC range in the generated code that will
2864 actually be in this block, so there's no point in
2865 remembering the existence of the block. */
2868 for (prev
= PREV_INSN (insn
); prev
; prev
= PREV_INSN (prev
))
2870 /* This block contains a real instruction. Note that we
2871 don't include labels; if the only thing in the block
2872 is a label, then there are still no PC values that
2873 lie within the block. */
2877 /* We're only interested in NOTEs. */
2878 if (GET_CODE (prev
) != NOTE
)
2881 if (NOTE_LINE_NUMBER (prev
) == NOTE_INSN_BLOCK_BEG
)
2883 /* If the BLOCKs referred to by these notes don't
2884 match, then something is wrong with our BLOCK
2885 nesting structure. */
2886 if (NOTE_BLOCK (prev
) != NOTE_BLOCK (insn
))
2889 if (debug_ignore_block (NOTE_BLOCK (insn
)))
2896 else if (NOTE_LINE_NUMBER (prev
) == NOTE_INSN_BLOCK_END
)
2897 /* There's a nested block. We need to leave the
2898 current block in place since otherwise the debugger
2899 wouldn't be able to show symbols from our block in
2900 the nested block. */
2908 /* Emit an insn of given code and pattern
2909 at a specified place within the doubly-linked list. */
2911 /* Make an instruction with body PATTERN
2912 and output it before the instruction BEFORE. */
2915 emit_insn_before (pattern
, before
)
2916 register rtx pattern
, before
;
2918 register rtx insn
= before
;
2920 if (GET_CODE (pattern
) == SEQUENCE
)
2924 for (i
= 0; i
< XVECLEN (pattern
, 0); i
++)
2926 insn
= XVECEXP (pattern
, 0, i
);
2927 add_insn_before (insn
, before
);
2932 insn
= make_insn_raw (pattern
);
2933 add_insn_before (insn
, before
);
2939 /* Similar to emit_insn_before, but update basic block boundaries as well. */
2942 emit_block_insn_before (pattern
, before
, block
)
2943 rtx pattern
, before
;
2946 rtx prev
= PREV_INSN (before
);
2947 rtx r
= emit_insn_before (pattern
, before
);
2948 if (block
&& block
->head
== before
)
2949 block
->head
= NEXT_INSN (prev
);
2953 /* Make an instruction with body PATTERN and code JUMP_INSN
2954 and output it before the instruction BEFORE. */
2957 emit_jump_insn_before (pattern
, before
)
2958 register rtx pattern
, before
;
2962 if (GET_CODE (pattern
) == SEQUENCE
)
2963 insn
= emit_insn_before (pattern
, before
);
2966 insn
= make_jump_insn_raw (pattern
);
2967 add_insn_before (insn
, before
);
2973 /* Make an instruction with body PATTERN and code CALL_INSN
2974 and output it before the instruction BEFORE. */
2977 emit_call_insn_before (pattern
, before
)
2978 register rtx pattern
, before
;
2982 if (GET_CODE (pattern
) == SEQUENCE
)
2983 insn
= emit_insn_before (pattern
, before
);
2986 insn
= make_call_insn_raw (pattern
);
2987 add_insn_before (insn
, before
);
2988 PUT_CODE (insn
, CALL_INSN
);
2994 /* Make an insn of code BARRIER
2995 and output it before the insn BEFORE. */
2998 emit_barrier_before (before
)
2999 register rtx before
;
3001 register rtx insn
= rtx_alloc (BARRIER
);
3003 INSN_UID (insn
) = cur_insn_uid
++;
3005 add_insn_before (insn
, before
);
3009 /* Emit the label LABEL before the insn BEFORE. */
3012 emit_label_before (label
, before
)
3015 /* This can be called twice for the same label as a result of the
3016 confusion that follows a syntax error! So make it harmless. */
3017 if (INSN_UID (label
) == 0)
3019 INSN_UID (label
) = cur_insn_uid
++;
3020 add_insn_before (label
, before
);
3026 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
3029 emit_note_before (subtype
, before
)
3033 register rtx note
= rtx_alloc (NOTE
);
3034 INSN_UID (note
) = cur_insn_uid
++;
3035 NOTE_SOURCE_FILE (note
) = 0;
3036 NOTE_LINE_NUMBER (note
) = subtype
;
3038 add_insn_before (note
, before
);
3042 /* Make an insn of code INSN with body PATTERN
3043 and output it after the insn AFTER. */
3046 emit_insn_after (pattern
, after
)
3047 register rtx pattern
, after
;
3049 register rtx insn
= after
;
3051 if (GET_CODE (pattern
) == SEQUENCE
)
3055 for (i
= 0; i
< XVECLEN (pattern
, 0); i
++)
3057 insn
= XVECEXP (pattern
, 0, i
);
3058 add_insn_after (insn
, after
);
3064 insn
= make_insn_raw (pattern
);
3065 add_insn_after (insn
, after
);
3071 /* Similar to emit_insn_after, except that line notes are to be inserted so
3072 as to act as if this insn were at FROM. */
3075 emit_insn_after_with_line_notes (pattern
, after
, from
)
3076 rtx pattern
, after
, from
;
3078 rtx from_line
= find_line_note (from
);
3079 rtx after_line
= find_line_note (after
);
3080 rtx insn
= emit_insn_after (pattern
, after
);
3083 emit_line_note_after (NOTE_SOURCE_FILE (from_line
),
3084 NOTE_LINE_NUMBER (from_line
),
3088 emit_line_note_after (NOTE_SOURCE_FILE (after_line
),
3089 NOTE_LINE_NUMBER (after_line
),
3093 /* Similar to emit_insn_after, but update basic block boundaries as well. */
3096 emit_block_insn_after (pattern
, after
, block
)
3100 rtx r
= emit_insn_after (pattern
, after
);
3101 if (block
&& block
->end
== after
)
3106 /* Make an insn of code JUMP_INSN with body PATTERN
3107 and output it after the insn AFTER. */
3110 emit_jump_insn_after (pattern
, after
)
3111 register rtx pattern
, after
;
3115 if (GET_CODE (pattern
) == SEQUENCE
)
3116 insn
= emit_insn_after (pattern
, after
);
3119 insn
= make_jump_insn_raw (pattern
);
3120 add_insn_after (insn
, after
);
3126 /* Make an insn of code BARRIER
3127 and output it after the insn AFTER. */
3130 emit_barrier_after (after
)
3133 register rtx insn
= rtx_alloc (BARRIER
);
3135 INSN_UID (insn
) = cur_insn_uid
++;
3137 add_insn_after (insn
, after
);
3141 /* Emit the label LABEL after the insn AFTER. */
3144 emit_label_after (label
, after
)
3147 /* This can be called twice for the same label
3148 as a result of the confusion that follows a syntax error!
3149 So make it harmless. */
3150 if (INSN_UID (label
) == 0)
3152 INSN_UID (label
) = cur_insn_uid
++;
3153 add_insn_after (label
, after
);
3159 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
3162 emit_note_after (subtype
, after
)
3166 register rtx note
= rtx_alloc (NOTE
);
3167 INSN_UID (note
) = cur_insn_uid
++;
3168 NOTE_SOURCE_FILE (note
) = 0;
3169 NOTE_LINE_NUMBER (note
) = subtype
;
3170 add_insn_after (note
, after
);
3174 /* Emit a line note for FILE and LINE after the insn AFTER. */
3177 emit_line_note_after (file
, line
, after
)
3184 if (no_line_numbers
&& line
> 0)
3190 note
= rtx_alloc (NOTE
);
3191 INSN_UID (note
) = cur_insn_uid
++;
3192 NOTE_SOURCE_FILE (note
) = file
;
3193 NOTE_LINE_NUMBER (note
) = line
;
3194 add_insn_after (note
, after
);
3198 /* Make an insn of code INSN with pattern PATTERN
3199 and add it to the end of the doubly-linked list.
3200 If PATTERN is a SEQUENCE, take the elements of it
3201 and emit an insn for each element.
3203 Returns the last insn emitted. */
3209 rtx insn
= last_insn
;
3211 if (GET_CODE (pattern
) == SEQUENCE
)
3215 for (i
= 0; i
< XVECLEN (pattern
, 0); i
++)
3217 insn
= XVECEXP (pattern
, 0, i
);
3223 insn
= make_insn_raw (pattern
);
3230 /* Emit the insns in a chain starting with INSN.
3231 Return the last insn emitted. */
3241 rtx next
= NEXT_INSN (insn
);
3250 /* Emit the insns in a chain starting with INSN and place them in front of
3251 the insn BEFORE. Return the last insn emitted. */
3254 emit_insns_before (insn
, before
)
3262 rtx next
= NEXT_INSN (insn
);
3263 add_insn_before (insn
, before
);
3271 /* Emit the insns in a chain starting with FIRST and place them in back of
3272 the insn AFTER. Return the last insn emitted. */
3275 emit_insns_after (first
, after
)
3280 register rtx after_after
;
3288 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
3291 after_after
= NEXT_INSN (after
);
3293 NEXT_INSN (after
) = first
;
3294 PREV_INSN (first
) = after
;
3295 NEXT_INSN (last
) = after_after
;
3297 PREV_INSN (after_after
) = last
;
3299 if (after
== last_insn
)
3304 /* Make an insn of code JUMP_INSN with pattern PATTERN
3305 and add it to the end of the doubly-linked list. */
3308 emit_jump_insn (pattern
)
3311 if (GET_CODE (pattern
) == SEQUENCE
)
3312 return emit_insn (pattern
);
3315 register rtx insn
= make_jump_insn_raw (pattern
);
3321 /* Make an insn of code CALL_INSN with pattern PATTERN
3322 and add it to the end of the doubly-linked list. */
3325 emit_call_insn (pattern
)
3328 if (GET_CODE (pattern
) == SEQUENCE
)
3329 return emit_insn (pattern
);
3332 register rtx insn
= make_call_insn_raw (pattern
);
3334 PUT_CODE (insn
, CALL_INSN
);
3339 /* Add the label LABEL to the end of the doubly-linked list. */
3345 /* This can be called twice for the same label
3346 as a result of the confusion that follows a syntax error!
3347 So make it harmless. */
3348 if (INSN_UID (label
) == 0)
3350 INSN_UID (label
) = cur_insn_uid
++;
3356 /* Make an insn of code BARRIER
3357 and add it to the end of the doubly-linked list. */
3362 register rtx barrier
= rtx_alloc (BARRIER
);
3363 INSN_UID (barrier
) = cur_insn_uid
++;
3368 /* Make an insn of code NOTE
3369 with data-fields specified by FILE and LINE
3370 and add it to the end of the doubly-linked list,
3371 but only if line-numbers are desired for debugging info. */
3374 emit_line_note (file
, line
)
3378 set_file_and_line_for_stmt (file
, line
);
3381 if (no_line_numbers
)
3385 return emit_note (file
, line
);
3388 /* Make an insn of code NOTE
3389 with data-fields specified by FILE and LINE
3390 and add it to the end of the doubly-linked list.
3391 If it is a line-number NOTE, omit it if it matches the previous one. */
3394 emit_note (file
, line
)
3402 if (file
&& last_filename
&& !strcmp (file
, last_filename
)
3403 && line
== last_linenum
)
3405 last_filename
= file
;
3406 last_linenum
= line
;
3409 if (no_line_numbers
&& line
> 0)
3415 note
= rtx_alloc (NOTE
);
3416 INSN_UID (note
) = cur_insn_uid
++;
3417 NOTE_SOURCE_FILE (note
) = file
;
3418 NOTE_LINE_NUMBER (note
) = line
;
3423 /* Emit a NOTE, and don't omit it even if LINE is the previous note. */
3426 emit_line_note_force (file
, line
)
3431 return emit_line_note (file
, line
);
3434 /* Cause next statement to emit a line note even if the line number
3435 has not changed. This is used at the beginning of a function. */
3438 force_next_line_note ()
3443 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
3444 note of this type already exists, remove it first. */
3447 set_unique_reg_note (insn
, kind
, datum
)
3452 rtx note
= find_reg_note (insn
, kind
, NULL_RTX
);
3454 /* First remove the note if there already is one. */
3456 remove_note (insn
, note
);
3458 REG_NOTES (insn
) = gen_rtx_EXPR_LIST (kind
, datum
, REG_NOTES (insn
));
3461 /* Return an indication of which type of insn should have X as a body.
3462 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
3468 if (GET_CODE (x
) == CODE_LABEL
)
3470 if (GET_CODE (x
) == CALL
)
3472 if (GET_CODE (x
) == RETURN
)
3474 if (GET_CODE (x
) == SET
)
3476 if (SET_DEST (x
) == pc_rtx
)
3478 else if (GET_CODE (SET_SRC (x
)) == CALL
)
3483 if (GET_CODE (x
) == PARALLEL
)
3486 for (j
= XVECLEN (x
, 0) - 1; j
>= 0; j
--)
3487 if (GET_CODE (XVECEXP (x
, 0, j
)) == CALL
)
3489 else if (GET_CODE (XVECEXP (x
, 0, j
)) == SET
3490 && SET_DEST (XVECEXP (x
, 0, j
)) == pc_rtx
)
3492 else if (GET_CODE (XVECEXP (x
, 0, j
)) == SET
3493 && GET_CODE (SET_SRC (XVECEXP (x
, 0, j
))) == CALL
)
3499 /* Emit the rtl pattern X as an appropriate kind of insn.
3500 If X is a label, it is simply added into the insn chain. */
3506 enum rtx_code code
= classify_insn (x
);
3508 if (code
== CODE_LABEL
)
3509 return emit_label (x
);
3510 else if (code
== INSN
)
3511 return emit_insn (x
);
3512 else if (code
== JUMP_INSN
)
3514 register rtx insn
= emit_jump_insn (x
);
3515 if (any_uncondjump_p (insn
) || GET_CODE (x
) == RETURN
)
3516 return emit_barrier ();
3519 else if (code
== CALL_INSN
)
3520 return emit_call_insn (x
);
3525 /* Begin emitting insns to a sequence which can be packaged in an
3526 RTL_EXPR. If this sequence will contain something that might cause
3527 the compiler to pop arguments to function calls (because those
3528 pops have previously been deferred; see INHIBIT_DEFER_POP for more
3529 details), use do_pending_stack_adjust before calling this function.
3530 That will ensure that the deferred pops are not accidentally
3531 emitted in the middle of this sequence. */
3536 struct sequence_stack
*tem
;
3538 tem
= (struct sequence_stack
*) xmalloc (sizeof (struct sequence_stack
));
3540 tem
->next
= seq_stack
;
3541 tem
->first
= first_insn
;
3542 tem
->last
= last_insn
;
3543 tem
->sequence_rtl_expr
= seq_rtl_expr
;
3551 /* Similarly, but indicate that this sequence will be placed in T, an
3552 RTL_EXPR. See the documentation for start_sequence for more
3553 information about how to use this function. */
3556 start_sequence_for_rtl_expr (t
)
3564 /* Set up the insn chain starting with FIRST as the current sequence,
3565 saving the previously current one. See the documentation for
3566 start_sequence for more information about how to use this function. */
3569 push_to_sequence (first
)
3576 for (last
= first
; last
&& NEXT_INSN (last
); last
= NEXT_INSN (last
));
3582 /* Set up the insn chain from a chain stort in FIRST to LAST. */
3585 push_to_full_sequence (first
, last
)
3591 /* We really should have the end of the insn chain here. */
3592 if (last
&& NEXT_INSN (last
))
3596 /* Set up the outer-level insn chain
3597 as the current sequence, saving the previously current one. */
3600 push_topmost_sequence ()
3602 struct sequence_stack
*stack
, *top
= NULL
;
3606 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
3609 first_insn
= top
->first
;
3610 last_insn
= top
->last
;
3611 seq_rtl_expr
= top
->sequence_rtl_expr
;
3614 /* After emitting to the outer-level insn chain, update the outer-level
3615 insn chain, and restore the previous saved state. */
3618 pop_topmost_sequence ()
3620 struct sequence_stack
*stack
, *top
= NULL
;
3622 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
3625 top
->first
= first_insn
;
3626 top
->last
= last_insn
;
3627 /* ??? Why don't we save seq_rtl_expr here? */
3632 /* After emitting to a sequence, restore previous saved state.
3634 To get the contents of the sequence just made, you must call
3635 `gen_sequence' *before* calling here.
3637 If the compiler might have deferred popping arguments while
3638 generating this sequence, and this sequence will not be immediately
3639 inserted into the instruction stream, use do_pending_stack_adjust
3640 before calling gen_sequence. That will ensure that the deferred
3641 pops are inserted into this sequence, and not into some random
3642 location in the instruction stream. See INHIBIT_DEFER_POP for more
3643 information about deferred popping of arguments. */
3648 struct sequence_stack
*tem
= seq_stack
;
3650 first_insn
= tem
->first
;
3651 last_insn
= tem
->last
;
3652 seq_rtl_expr
= tem
->sequence_rtl_expr
;
3653 seq_stack
= tem
->next
;
3658 /* This works like end_sequence, but records the old sequence in FIRST
3662 end_full_sequence (first
, last
)
3665 *first
= first_insn
;
3670 /* Return 1 if currently emitting into a sequence. */
3675 return seq_stack
!= 0;
3678 /* Generate a SEQUENCE rtx containing the insns already emitted
3679 to the current sequence.
3681 This is how the gen_... function from a DEFINE_EXPAND
3682 constructs the SEQUENCE that it returns. */
3692 /* Count the insns in the chain. */
3694 for (tem
= first_insn
; tem
; tem
= NEXT_INSN (tem
))
3697 /* If only one insn, return it rather than a SEQUENCE.
3698 (Now that we cache SEQUENCE expressions, it isn't worth special-casing
3699 the case of an empty list.)
3700 We only return the pattern of an insn if its code is INSN and it
3701 has no notes. This ensures that no information gets lost. */
3703 && ! RTX_FRAME_RELATED_P (first_insn
)
3704 && GET_CODE (first_insn
) == INSN
3705 /* Don't throw away any reg notes. */
3706 && REG_NOTES (first_insn
) == 0)
3707 return PATTERN (first_insn
);
3709 result
= gen_rtx_SEQUENCE (VOIDmode
, rtvec_alloc (len
));
3711 for (i
= 0, tem
= first_insn
; tem
; tem
= NEXT_INSN (tem
), i
++)
3712 XVECEXP (result
, 0, i
) = tem
;
3717 /* Put the various virtual registers into REGNO_REG_RTX. */
3720 init_virtual_regs (es
)
3721 struct emit_status
*es
;
3723 rtx
*ptr
= es
->x_regno_reg_rtx
;
3724 ptr
[VIRTUAL_INCOMING_ARGS_REGNUM
] = virtual_incoming_args_rtx
;
3725 ptr
[VIRTUAL_STACK_VARS_REGNUM
] = virtual_stack_vars_rtx
;
3726 ptr
[VIRTUAL_STACK_DYNAMIC_REGNUM
] = virtual_stack_dynamic_rtx
;
3727 ptr
[VIRTUAL_OUTGOING_ARGS_REGNUM
] = virtual_outgoing_args_rtx
;
3728 ptr
[VIRTUAL_CFA_REGNUM
] = virtual_cfa_rtx
;
3732 clear_emit_caches ()
3736 /* Clear the start_sequence/gen_sequence cache. */
3737 for (i
= 0; i
< SEQUENCE_RESULT_SIZE
; i
++)
3738 sequence_result
[i
] = 0;
3742 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
3743 static rtx copy_insn_scratch_in
[MAX_RECOG_OPERANDS
];
3744 static rtx copy_insn_scratch_out
[MAX_RECOG_OPERANDS
];
3745 static int copy_insn_n_scratches
;
3747 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
3748 copied an ASM_OPERANDS.
3749 In that case, it is the original input-operand vector. */
3750 static rtvec orig_asm_operands_vector
;
3752 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
3753 copied an ASM_OPERANDS.
3754 In that case, it is the copied input-operand vector. */
3755 static rtvec copy_asm_operands_vector
;
3757 /* Likewise for the constraints vector. */
3758 static rtvec orig_asm_constraints_vector
;
3759 static rtvec copy_asm_constraints_vector
;
3761 /* Recursively create a new copy of an rtx for copy_insn.
3762 This function differs from copy_rtx in that it handles SCRATCHes and
3763 ASM_OPERANDs properly.
3764 Normally, this function is not used directly; use copy_insn as front end.
3765 However, you could first copy an insn pattern with copy_insn and then use
3766 this function afterwards to properly copy any REG_NOTEs containing
3775 register RTX_CODE code
;
3776 register const char *format_ptr
;
3778 code
= GET_CODE (orig
);
3794 for (i
= 0; i
< copy_insn_n_scratches
; i
++)
3795 if (copy_insn_scratch_in
[i
] == orig
)
3796 return copy_insn_scratch_out
[i
];
3800 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
3801 a LABEL_REF, it isn't sharable. */
3802 if (GET_CODE (XEXP (orig
, 0)) == PLUS
3803 && GET_CODE (XEXP (XEXP (orig
, 0), 0)) == SYMBOL_REF
3804 && GET_CODE (XEXP (XEXP (orig
, 0), 1)) == CONST_INT
)
3808 /* A MEM with a constant address is not sharable. The problem is that
3809 the constant address may need to be reloaded. If the mem is shared,
3810 then reloading one copy of this mem will cause all copies to appear
3811 to have been reloaded. */
3817 copy
= rtx_alloc (code
);
3819 /* Copy the various flags, and other information. We assume that
3820 all fields need copying, and then clear the fields that should
3821 not be copied. That is the sensible default behavior, and forces
3822 us to explicitly document why we are *not* copying a flag. */
3823 memcpy (copy
, orig
, sizeof (struct rtx_def
) - sizeof (rtunion
));
3825 /* We do not copy the USED flag, which is used as a mark bit during
3826 walks over the RTL. */
3829 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
3830 if (GET_RTX_CLASS (code
) == 'i')
3834 copy
->frame_related
= 0;
3837 format_ptr
= GET_RTX_FORMAT (GET_CODE (copy
));
3839 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (copy
)); i
++)
3841 copy
->fld
[i
] = orig
->fld
[i
];
3842 switch (*format_ptr
++)
3845 if (XEXP (orig
, i
) != NULL
)
3846 XEXP (copy
, i
) = copy_insn_1 (XEXP (orig
, i
));
3851 if (XVEC (orig
, i
) == orig_asm_constraints_vector
)
3852 XVEC (copy
, i
) = copy_asm_constraints_vector
;
3853 else if (XVEC (orig
, i
) == orig_asm_operands_vector
)
3854 XVEC (copy
, i
) = copy_asm_operands_vector
;
3855 else if (XVEC (orig
, i
) != NULL
)
3857 XVEC (copy
, i
) = rtvec_alloc (XVECLEN (orig
, i
));
3858 for (j
= 0; j
< XVECLEN (copy
, i
); j
++)
3859 XVECEXP (copy
, i
, j
) = copy_insn_1 (XVECEXP (orig
, i
, j
));
3870 /* These are left unchanged. */
3878 if (code
== SCRATCH
)
3880 i
= copy_insn_n_scratches
++;
3881 if (i
>= MAX_RECOG_OPERANDS
)
3883 copy_insn_scratch_in
[i
] = orig
;
3884 copy_insn_scratch_out
[i
] = copy
;
3886 else if (code
== ASM_OPERANDS
)
3888 orig_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (orig
);
3889 copy_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (copy
);
3890 orig_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig
);
3891 copy_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy
);
3897 /* Create a new copy of an rtx.
3898 This function differs from copy_rtx in that it handles SCRATCHes and
3899 ASM_OPERANDs properly.
3900 INSN doesn't really have to be a full INSN; it could be just the
3906 copy_insn_n_scratches
= 0;
3907 orig_asm_operands_vector
= 0;
3908 orig_asm_constraints_vector
= 0;
3909 copy_asm_operands_vector
= 0;
3910 copy_asm_constraints_vector
= 0;
3911 return copy_insn_1 (insn
);
3914 /* Initialize data structures and variables in this file
3915 before generating rtl for each function. */
3920 struct function
*f
= cfun
;
3922 f
->emit
= (struct emit_status
*) xmalloc (sizeof (struct emit_status
));
3925 seq_rtl_expr
= NULL
;
3927 reg_rtx_no
= LAST_VIRTUAL_REGISTER
+ 1;
3930 first_label_num
= label_num
;
3934 clear_emit_caches ();
3936 /* Init the tables that describe all the pseudo regs. */
3938 f
->emit
->regno_pointer_align_length
= LAST_VIRTUAL_REGISTER
+ 101;
3940 f
->emit
->regno_pointer_align
3941 = (unsigned char *) xcalloc (f
->emit
->regno_pointer_align_length
,
3942 sizeof (unsigned char));
3945 = (rtx
*) xcalloc (f
->emit
->regno_pointer_align_length
* sizeof (rtx
),
3948 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
3949 init_virtual_regs (f
->emit
);
3951 /* Indicate that the virtual registers and stack locations are
3953 REG_POINTER (stack_pointer_rtx
) = 1;
3954 REG_POINTER (frame_pointer_rtx
) = 1;
3955 REG_POINTER (hard_frame_pointer_rtx
) = 1;
3956 REG_POINTER (arg_pointer_rtx
) = 1;
3958 REG_POINTER (virtual_incoming_args_rtx
) = 1;
3959 REG_POINTER (virtual_stack_vars_rtx
) = 1;
3960 REG_POINTER (virtual_stack_dynamic_rtx
) = 1;
3961 REG_POINTER (virtual_outgoing_args_rtx
) = 1;
3962 REG_POINTER (virtual_cfa_rtx
) = 1;
3964 #ifdef STACK_BOUNDARY
3965 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM
) = STACK_BOUNDARY
;
3966 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
3967 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
3968 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM
) = STACK_BOUNDARY
;
3970 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM
) = STACK_BOUNDARY
;
3971 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM
) = STACK_BOUNDARY
;
3972 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM
) = STACK_BOUNDARY
;
3973 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM
) = STACK_BOUNDARY
;
3974 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM
) = BITS_PER_WORD
;
3977 #ifdef INIT_EXPANDERS
3982 /* Mark SS for GC. */
3985 mark_sequence_stack (ss
)
3986 struct sequence_stack
*ss
;
3990 ggc_mark_rtx (ss
->first
);
3991 ggc_mark_tree (ss
->sequence_rtl_expr
);
3996 /* Mark ES for GC. */
3999 mark_emit_status (es
)
4000 struct emit_status
*es
;
4008 for (i
= es
->regno_pointer_align_length
, r
= es
->x_regno_reg_rtx
;
4012 mark_sequence_stack (es
->sequence_stack
);
4013 ggc_mark_tree (es
->sequence_rtl_expr
);
4014 ggc_mark_rtx (es
->x_first_insn
);
4017 /* Create some permanent unique rtl objects shared between all functions.
4018 LINE_NUMBERS is nonzero if line numbers are to be generated. */
4021 init_emit_once (line_numbers
)
4025 enum machine_mode mode
;
4026 enum machine_mode double_mode
;
4028 /* Initialize the CONST_INT hash table. */
4029 const_int_htab
= htab_create (37, const_int_htab_hash
,
4030 const_int_htab_eq
, NULL
);
4031 ggc_add_root (&const_int_htab
, 1, sizeof (const_int_htab
),
4034 no_line_numbers
= ! line_numbers
;
4036 /* Compute the word and byte modes. */
4038 byte_mode
= VOIDmode
;
4039 word_mode
= VOIDmode
;
4040 double_mode
= VOIDmode
;
4042 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
4043 mode
= GET_MODE_WIDER_MODE (mode
))
4045 if (GET_MODE_BITSIZE (mode
) == BITS_PER_UNIT
4046 && byte_mode
== VOIDmode
)
4049 if (GET_MODE_BITSIZE (mode
) == BITS_PER_WORD
4050 && word_mode
== VOIDmode
)
4054 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); mode
!= VOIDmode
;
4055 mode
= GET_MODE_WIDER_MODE (mode
))
4057 if (GET_MODE_BITSIZE (mode
) == DOUBLE_TYPE_SIZE
4058 && double_mode
== VOIDmode
)
4062 ptr_mode
= mode_for_size (POINTER_SIZE
, GET_MODE_CLASS (Pmode
), 0);
4064 /* Assign register numbers to the globally defined register rtx.
4065 This must be done at runtime because the register number field
4066 is in a union and some compilers can't initialize unions. */
4068 pc_rtx
= gen_rtx (PC
, VOIDmode
);
4069 cc0_rtx
= gen_rtx (CC0
, VOIDmode
);
4070 stack_pointer_rtx
= gen_raw_REG (Pmode
, STACK_POINTER_REGNUM
);
4071 frame_pointer_rtx
= gen_raw_REG (Pmode
, FRAME_POINTER_REGNUM
);
4072 if (hard_frame_pointer_rtx
== 0)
4073 hard_frame_pointer_rtx
= gen_raw_REG (Pmode
,
4074 HARD_FRAME_POINTER_REGNUM
);
4075 if (arg_pointer_rtx
== 0)
4076 arg_pointer_rtx
= gen_raw_REG (Pmode
, ARG_POINTER_REGNUM
);
4077 virtual_incoming_args_rtx
=
4078 gen_raw_REG (Pmode
, VIRTUAL_INCOMING_ARGS_REGNUM
);
4079 virtual_stack_vars_rtx
=
4080 gen_raw_REG (Pmode
, VIRTUAL_STACK_VARS_REGNUM
);
4081 virtual_stack_dynamic_rtx
=
4082 gen_raw_REG (Pmode
, VIRTUAL_STACK_DYNAMIC_REGNUM
);
4083 virtual_outgoing_args_rtx
=
4084 gen_raw_REG (Pmode
, VIRTUAL_OUTGOING_ARGS_REGNUM
);
4085 virtual_cfa_rtx
= gen_raw_REG (Pmode
, VIRTUAL_CFA_REGNUM
);
4087 /* These rtx must be roots if GC is enabled. */
4088 ggc_add_rtx_root (global_rtl
, GR_MAX
);
4090 #ifdef INIT_EXPANDERS
4091 /* This is to initialize save_machine_status and restore_machine_status before
4092 the first call to push_function_context_to. This is needed by the Chill
4093 front end which calls push_function_context_to before the first cal to
4094 init_function_start. */
4098 /* Create the unique rtx's for certain rtx codes and operand values. */
4100 /* Don't use gen_rtx here since gen_rtx in this case
4101 tries to use these variables. */
4102 for (i
= - MAX_SAVED_CONST_INT
; i
<= MAX_SAVED_CONST_INT
; i
++)
4103 const_int_rtx
[i
+ MAX_SAVED_CONST_INT
] =
4104 gen_rtx_raw_CONST_INT (VOIDmode
, i
);
4105 ggc_add_rtx_root (const_int_rtx
, 2 * MAX_SAVED_CONST_INT
+ 1);
4107 if (STORE_FLAG_VALUE
>= - MAX_SAVED_CONST_INT
4108 && STORE_FLAG_VALUE
<= MAX_SAVED_CONST_INT
)
4109 const_true_rtx
= const_int_rtx
[STORE_FLAG_VALUE
+ MAX_SAVED_CONST_INT
];
4111 const_true_rtx
= gen_rtx_CONST_INT (VOIDmode
, STORE_FLAG_VALUE
);
4113 dconst0
= REAL_VALUE_ATOF ("0", double_mode
);
4114 dconst1
= REAL_VALUE_ATOF ("1", double_mode
);
4115 dconst2
= REAL_VALUE_ATOF ("2", double_mode
);
4116 dconstm1
= REAL_VALUE_ATOF ("-1", double_mode
);
4118 for (i
= 0; i
<= 2; i
++)
4120 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); mode
!= VOIDmode
;
4121 mode
= GET_MODE_WIDER_MODE (mode
))
4123 rtx tem
= rtx_alloc (CONST_DOUBLE
);
4124 union real_extract u
;
4126 memset ((char *) &u
, 0, sizeof u
); /* Zero any holes in a structure. */
4127 u
.d
= i
== 0 ? dconst0
: i
== 1 ? dconst1
: dconst2
;
4129 memcpy (&CONST_DOUBLE_LOW (tem
), &u
, sizeof u
);
4130 CONST_DOUBLE_MEM (tem
) = cc0_rtx
;
4131 CONST_DOUBLE_CHAIN (tem
) = NULL_RTX
;
4132 PUT_MODE (tem
, mode
);
4134 const_tiny_rtx
[i
][(int) mode
] = tem
;
4137 const_tiny_rtx
[i
][(int) VOIDmode
] = GEN_INT (i
);
4139 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
4140 mode
= GET_MODE_WIDER_MODE (mode
))
4141 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
4143 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT
);
4145 mode
= GET_MODE_WIDER_MODE (mode
))
4146 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
4149 for (mode
= CCmode
; mode
< MAX_MACHINE_MODE
; ++mode
)
4150 if (GET_MODE_CLASS (mode
) == MODE_CC
)
4151 const_tiny_rtx
[0][(int) mode
] = const0_rtx
;
4153 const_tiny_rtx
[0][(int) BImode
] = const0_rtx
;
4154 if (STORE_FLAG_VALUE
== 1)
4155 const_tiny_rtx
[1][(int) BImode
] = const1_rtx
;
4157 /* For bounded pointers, `&const_tiny_rtx[0][0]' is not the same as
4158 `(rtx *) const_tiny_rtx'. The former has bounds that only cover
4159 `const_tiny_rtx[0]', whereas the latter has bounds that cover all. */
4160 ggc_add_rtx_root ((rtx
*) const_tiny_rtx
, sizeof const_tiny_rtx
/ sizeof (rtx
));
4161 ggc_add_rtx_root (&const_true_rtx
, 1);
4163 #ifdef RETURN_ADDRESS_POINTER_REGNUM
4164 return_address_pointer_rtx
4165 = gen_raw_REG (Pmode
, RETURN_ADDRESS_POINTER_REGNUM
);
4169 struct_value_rtx
= STRUCT_VALUE
;
4171 struct_value_rtx
= gen_rtx_REG (Pmode
, STRUCT_VALUE_REGNUM
);
4174 #ifdef STRUCT_VALUE_INCOMING
4175 struct_value_incoming_rtx
= STRUCT_VALUE_INCOMING
;
4177 #ifdef STRUCT_VALUE_INCOMING_REGNUM
4178 struct_value_incoming_rtx
4179 = gen_rtx_REG (Pmode
, STRUCT_VALUE_INCOMING_REGNUM
);
4181 struct_value_incoming_rtx
= struct_value_rtx
;
4185 #ifdef STATIC_CHAIN_REGNUM
4186 static_chain_rtx
= gen_rtx_REG (Pmode
, STATIC_CHAIN_REGNUM
);
4188 #ifdef STATIC_CHAIN_INCOMING_REGNUM
4189 if (STATIC_CHAIN_INCOMING_REGNUM
!= STATIC_CHAIN_REGNUM
)
4190 static_chain_incoming_rtx
4191 = gen_rtx_REG (Pmode
, STATIC_CHAIN_INCOMING_REGNUM
);
4194 static_chain_incoming_rtx
= static_chain_rtx
;
4198 static_chain_rtx
= STATIC_CHAIN
;
4200 #ifdef STATIC_CHAIN_INCOMING
4201 static_chain_incoming_rtx
= STATIC_CHAIN_INCOMING
;
4203 static_chain_incoming_rtx
= static_chain_rtx
;
4207 #ifdef PIC_OFFSET_TABLE_REGNUM
4208 pic_offset_table_rtx
= gen_rtx_REG (Pmode
, PIC_OFFSET_TABLE_REGNUM
);
4211 ggc_add_rtx_root (&pic_offset_table_rtx
, 1);
4212 ggc_add_rtx_root (&struct_value_rtx
, 1);
4213 ggc_add_rtx_root (&struct_value_incoming_rtx
, 1);
4214 ggc_add_rtx_root (&static_chain_rtx
, 1);
4215 ggc_add_rtx_root (&static_chain_incoming_rtx
, 1);
4216 ggc_add_rtx_root (&return_address_pointer_rtx
, 1);
4219 /* Query and clear/ restore no_line_numbers. This is used by the
4220 switch / case handling in stmt.c to give proper line numbers in
4221 warnings about unreachable code. */
4224 force_line_numbers ()
4226 int old
= no_line_numbers
;
4228 no_line_numbers
= 0;
4230 force_next_line_note ();
4235 restore_line_number_status (old_value
)
4238 no_line_numbers
= old_value
;