Cygnus/libgcj changes to Boehm GC.
[official-gcc.git] / boehm-gc / os_dep.c
blob5372d7fb0c9d3336dcbd759992ba44de36a04ddc
1 /*
2 * Copyright (c) 1991-1995 by Xerox Corporation. All rights reserved.
3 * Copyright (c) 1996-1997 by Silicon Graphics. All rights reserved.
5 * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
6 * OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
8 * Permission is hereby granted to use or copy this program
9 * for any purpose, provided the above notices are retained on all copies.
10 * Permission to modify the code and to distribute modified code is granted,
11 * provided the above notices are retained, and a notice that the code was
12 * modified is included with the above copyright notice.
15 # include "gc_priv.h"
17 # if defined(LINUX) && !defined(POWERPC)
18 # include <linux/version.h>
19 # if (LINUX_VERSION_CODE <= 0x10400)
20 /* Ugly hack to get struct sigcontext_struct definition. Required */
21 /* for some early 1.3.X releases. Will hopefully go away soon. */
22 /* in some later Linux releases, asm/sigcontext.h may have to */
23 /* be included instead. */
24 # define __KERNEL__
25 # include <asm/signal.h>
26 # undef __KERNEL__
27 # else
28 /* Kernels prior to 2.1.1 defined struct sigcontext_struct instead of */
29 /* struct sigcontext. libc6 (glibc2) uses "struct sigcontext" in */
30 /* prototypes, so we have to include the top-level sigcontext.h to */
31 /* make sure the former gets defined to be the latter if appropriate. */
32 # include <features.h>
33 # if 2 <= __GLIBC__
34 # include <sigcontext.h>
35 # else /* not 2 <= __GLIBC__ */
36 /* libc5 doesn't have <sigcontext.h>: go directly with the kernel */
37 /* one. Check LINUX_VERSION_CODE to see which we should reference. */
38 # include <asm/sigcontext.h>
39 # endif /* 2 <= __GLIBC__ */
40 # endif
41 # endif
42 # if !defined(OS2) && !defined(PCR) && !defined(AMIGA) && !defined(MACOS)
43 # include <sys/types.h>
44 # if !defined(MSWIN32) && !defined(SUNOS4)
45 # include <unistd.h>
46 # endif
47 # endif
49 # include <stdio.h>
50 # include <signal.h>
52 /* Blatantly OS dependent routines, except for those that are related */
53 /* dynamic loading. */
55 # if !defined(THREADS) && !defined(STACKBOTTOM) && defined(HEURISTIC2)
56 # define NEED_FIND_LIMIT
57 # endif
59 # if defined(IRIX_THREADS)
60 # define NEED_FIND_LIMIT
61 # endif
63 # if (defined(SUNOS4) & defined(DYNAMIC_LOADING)) && !defined(PCR)
64 # define NEED_FIND_LIMIT
65 # endif
67 # if (defined(SVR4) || defined(AUX) || defined(DGUX)) && !defined(PCR)
68 # define NEED_FIND_LIMIT
69 # endif
71 # if defined(LINUX) && defined(POWERPC)
72 # define NEED_FIND_LIMIT
73 # endif
75 #ifdef NEED_FIND_LIMIT
76 # include <setjmp.h>
77 #endif
79 #ifdef FREEBSD
80 # include <machine/trap.h>
81 #endif
83 #ifdef AMIGA
84 # include <proto/exec.h>
85 # include <proto/dos.h>
86 # include <dos/dosextens.h>
87 # include <workbench/startup.h>
88 #endif
90 #ifdef MSWIN32
91 # define WIN32_LEAN_AND_MEAN
92 # define NOSERVICE
93 # include <windows.h>
94 #endif
96 #ifdef MACOS
97 # include <Processes.h>
98 #endif
100 #ifdef IRIX5
101 # include <sys/uio.h>
102 # include <malloc.h> /* for locking */
103 #endif
104 #ifdef USE_MMAP
105 # include <sys/types.h>
106 # include <sys/mman.h>
107 # include <sys/stat.h>
108 # include <fcntl.h>
109 #endif
111 #ifdef SUNOS5SIGS
112 # include <sys/siginfo.h>
113 # undef setjmp
114 # undef longjmp
115 # define setjmp(env) sigsetjmp(env, 1)
116 # define longjmp(env, val) siglongjmp(env, val)
117 # define jmp_buf sigjmp_buf
118 #endif
120 #ifdef DJGPP
121 /* Apparently necessary for djgpp 2.01. May casuse problems with */
122 /* other versions. */
123 typedef long unsigned int caddr_t;
124 #endif
126 #ifdef PCR
127 # include "il/PCR_IL.h"
128 # include "th/PCR_ThCtl.h"
129 # include "mm/PCR_MM.h"
130 #endif
132 #if !defined(NO_EXECUTE_PERMISSION)
133 # define OPT_PROT_EXEC PROT_EXEC
134 #else
135 # define OPT_PROT_EXEC 0
136 #endif
138 #if defined(LINUX) && defined(POWERPC)
139 ptr_t GC_data_start;
141 void GC_init_linuxppc()
143 extern ptr_t GC_find_limit();
144 extern char **_environ;
145 /* This may need to be environ, without the underscore, for */
146 /* some versions. */
147 GC_data_start = GC_find_limit((ptr_t)&_environ, FALSE);
149 #endif
151 # ifdef ECOS
153 # ifndef ECOS_GC_MEMORY_SIZE
154 # define ECOS_GC_MEMORY_SIZE (448 * 1024)
155 # endif /* ECOS_GC_MEMORY_SIZE */
157 // setjmp() function, as described in ANSI para 7.6.1.1
158 #define setjmp( __env__ ) hal_setjmp( __env__ )
160 // FIXME: This is a simple way of allocating memory which is
161 // compatible with ECOS early releases. Later releases use a more
162 // sophisticated means of allocating memory than this simple static
163 // allocator, but this method is at least bound to work.
164 static char memory[ECOS_GC_MEMORY_SIZE];
165 static char *brk = memory;
167 static void *tiny_sbrk(ptrdiff_t increment)
169 void *p = brk;
171 brk += increment;
173 if (brk > memory + sizeof memory)
175 brk -= increment;
176 return NULL;
179 return p;
181 #define sbrk tiny_sbrk
182 # endif /* ECOS */
184 # ifdef OS2
186 # include <stddef.h>
188 # if !defined(__IBMC__) && !defined(__WATCOMC__) /* e.g. EMX */
190 struct exe_hdr {
191 unsigned short magic_number;
192 unsigned short padding[29];
193 long new_exe_offset;
196 #define E_MAGIC(x) (x).magic_number
197 #define EMAGIC 0x5A4D
198 #define E_LFANEW(x) (x).new_exe_offset
200 struct e32_exe {
201 unsigned char magic_number[2];
202 unsigned char byte_order;
203 unsigned char word_order;
204 unsigned long exe_format_level;
205 unsigned short cpu;
206 unsigned short os;
207 unsigned long padding1[13];
208 unsigned long object_table_offset;
209 unsigned long object_count;
210 unsigned long padding2[31];
213 #define E32_MAGIC1(x) (x).magic_number[0]
214 #define E32MAGIC1 'L'
215 #define E32_MAGIC2(x) (x).magic_number[1]
216 #define E32MAGIC2 'X'
217 #define E32_BORDER(x) (x).byte_order
218 #define E32LEBO 0
219 #define E32_WORDER(x) (x).word_order
220 #define E32LEWO 0
221 #define E32_CPU(x) (x).cpu
222 #define E32CPU286 1
223 #define E32_OBJTAB(x) (x).object_table_offset
224 #define E32_OBJCNT(x) (x).object_count
226 struct o32_obj {
227 unsigned long size;
228 unsigned long base;
229 unsigned long flags;
230 unsigned long pagemap;
231 unsigned long mapsize;
232 unsigned long reserved;
235 #define O32_FLAGS(x) (x).flags
236 #define OBJREAD 0x0001L
237 #define OBJWRITE 0x0002L
238 #define OBJINVALID 0x0080L
239 #define O32_SIZE(x) (x).size
240 #define O32_BASE(x) (x).base
242 # else /* IBM's compiler */
244 /* A kludge to get around what appears to be a header file bug */
245 # ifndef WORD
246 # define WORD unsigned short
247 # endif
248 # ifndef DWORD
249 # define DWORD unsigned long
250 # endif
252 # define EXE386 1
253 # include <newexe.h>
254 # include <exe386.h>
256 # endif /* __IBMC__ */
258 # define INCL_DOSEXCEPTIONS
259 # define INCL_DOSPROCESS
260 # define INCL_DOSERRORS
261 # define INCL_DOSMODULEMGR
262 # define INCL_DOSMEMMGR
263 # include <os2.h>
266 /* Disable and enable signals during nontrivial allocations */
268 void GC_disable_signals(void)
270 ULONG nest;
272 DosEnterMustComplete(&nest);
273 if (nest != 1) ABORT("nested GC_disable_signals");
276 void GC_enable_signals(void)
278 ULONG nest;
280 DosExitMustComplete(&nest);
281 if (nest != 0) ABORT("GC_enable_signals");
285 # else
287 # if !defined(PCR) && !defined(AMIGA) && !defined(MSWIN32) \
288 && !defined(MACOS) && !defined(DJGPP) && !defined(DOS4GW) \
289 && !defined(NO_SIGSET)
291 # if defined(sigmask) && !defined(UTS4)
292 /* Use the traditional BSD interface */
293 # define SIGSET_T int
294 # define SIG_DEL(set, signal) (set) &= ~(sigmask(signal))
295 # define SIG_FILL(set) (set) = 0x7fffffff
296 /* Setting the leading bit appears to provoke a bug in some */
297 /* longjmp implementations. Most systems appear not to have */
298 /* a signal 32. */
299 # define SIGSETMASK(old, new) (old) = sigsetmask(new)
300 # else
301 /* Use POSIX/SYSV interface */
302 # define SIGSET_T sigset_t
303 # define SIG_DEL(set, signal) sigdelset(&(set), (signal))
304 # define SIG_FILL(set) sigfillset(&set)
305 # define SIGSETMASK(old, new) sigprocmask(SIG_SETMASK, &(new), &(old))
306 # endif
308 static GC_bool mask_initialized = FALSE;
310 static SIGSET_T new_mask;
312 static SIGSET_T old_mask;
314 static SIGSET_T dummy;
316 #if defined(PRINTSTATS) && !defined(THREADS)
317 # define CHECK_SIGNALS
318 int GC_sig_disabled = 0;
319 #endif
321 void GC_disable_signals()
323 if (!mask_initialized) {
324 SIG_FILL(new_mask);
326 SIG_DEL(new_mask, SIGSEGV);
327 SIG_DEL(new_mask, SIGILL);
328 SIG_DEL(new_mask, SIGQUIT);
329 # ifdef SIGBUS
330 SIG_DEL(new_mask, SIGBUS);
331 # endif
332 # ifdef SIGIOT
333 SIG_DEL(new_mask, SIGIOT);
334 # endif
335 # ifdef SIGEMT
336 SIG_DEL(new_mask, SIGEMT);
337 # endif
338 # ifdef SIGTRAP
339 SIG_DEL(new_mask, SIGTRAP);
340 # endif
341 mask_initialized = TRUE;
343 # ifdef CHECK_SIGNALS
344 if (GC_sig_disabled != 0) ABORT("Nested disables");
345 GC_sig_disabled++;
346 # endif
347 SIGSETMASK(old_mask,new_mask);
350 void GC_enable_signals()
352 # ifdef CHECK_SIGNALS
353 if (GC_sig_disabled != 1) ABORT("Unmatched enable");
354 GC_sig_disabled--;
355 # endif
356 SIGSETMASK(dummy,old_mask);
359 # endif /* !PCR */
361 # endif /*!OS/2 */
363 /* Ivan Demakov: simplest way (to me) */
364 #if defined (DOS4GW) || defined (NO_SIGSET)
365 void GC_disable_signals() { }
366 void GC_enable_signals() { }
367 #endif
369 /* Find the page size */
370 word GC_page_size;
372 # ifdef MSWIN32
373 void GC_setpagesize()
375 SYSTEM_INFO sysinfo;
377 GetSystemInfo(&sysinfo);
378 GC_page_size = sysinfo.dwPageSize;
381 # else
382 # if defined(MPROTECT_VDB) || defined(PROC_VDB) || defined(USE_MMAP)
383 void GC_setpagesize()
385 GC_page_size = GETPAGESIZE();
387 # else
388 /* It's acceptable to fake it. */
389 void GC_setpagesize()
391 GC_page_size = HBLKSIZE;
393 # endif
394 # endif
397 * Find the base of the stack.
398 * Used only in single-threaded environment.
399 * With threads, GC_mark_roots needs to know how to do this.
400 * Called with allocator lock held.
402 # ifdef MSWIN32
403 # define is_writable(prot) ((prot) == PAGE_READWRITE \
404 || (prot) == PAGE_WRITECOPY \
405 || (prot) == PAGE_EXECUTE_READWRITE \
406 || (prot) == PAGE_EXECUTE_WRITECOPY)
407 /* Return the number of bytes that are writable starting at p. */
408 /* The pointer p is assumed to be page aligned. */
409 /* If base is not 0, *base becomes the beginning of the */
410 /* allocation region containing p. */
411 word GC_get_writable_length(ptr_t p, ptr_t *base)
413 MEMORY_BASIC_INFORMATION buf;
414 word result;
415 word protect;
417 result = VirtualQuery(p, &buf, sizeof(buf));
418 if (result != sizeof(buf)) ABORT("Weird VirtualQuery result");
419 if (base != 0) *base = (ptr_t)(buf.AllocationBase);
420 protect = (buf.Protect & ~(PAGE_GUARD | PAGE_NOCACHE));
421 if (!is_writable(protect)) {
422 return(0);
424 if (buf.State != MEM_COMMIT) return(0);
425 return(buf.RegionSize);
428 ptr_t GC_get_stack_base()
430 int dummy;
431 ptr_t sp = (ptr_t)(&dummy);
432 ptr_t trunc_sp = (ptr_t)((word)sp & ~(GC_page_size - 1));
433 word size = GC_get_writable_length(trunc_sp, 0);
435 return(trunc_sp + size);
439 # else
441 # ifdef OS2
443 ptr_t GC_get_stack_base()
445 PTIB ptib;
446 PPIB ppib;
448 if (DosGetInfoBlocks(&ptib, &ppib) != NO_ERROR) {
449 GC_err_printf0("DosGetInfoBlocks failed\n");
450 ABORT("DosGetInfoBlocks failed\n");
452 return((ptr_t)(ptib -> tib_pstacklimit));
455 # else
457 # ifdef AMIGA
459 ptr_t GC_get_stack_base()
461 extern struct WBStartup *_WBenchMsg;
462 extern long __base;
463 extern long __stack;
464 struct Task *task;
465 struct Process *proc;
466 struct CommandLineInterface *cli;
467 long size;
469 if ((task = FindTask(0)) == 0) {
470 GC_err_puts("Cannot find own task structure\n");
471 ABORT("task missing");
473 proc = (struct Process *)task;
474 cli = BADDR(proc->pr_CLI);
476 if (_WBenchMsg != 0 || cli == 0) {
477 size = (char *)task->tc_SPUpper - (char *)task->tc_SPLower;
478 } else {
479 size = cli->cli_DefaultStack * 4;
481 return (ptr_t)(__base + GC_max(size, __stack));
484 # else
488 # ifdef NEED_FIND_LIMIT
489 /* Some tools to implement HEURISTIC2 */
490 # define MIN_PAGE_SIZE 256 /* Smallest conceivable page size, bytes */
491 /* static */ jmp_buf GC_jmp_buf;
493 /*ARGSUSED*/
494 void GC_fault_handler(sig)
495 int sig;
497 longjmp(GC_jmp_buf, 1);
500 # ifdef __STDC__
501 typedef void (*handler)(int);
502 # else
503 typedef void (*handler)();
504 # endif
506 # if defined(SUNOS5SIGS) || defined(IRIX5)
507 static struct sigaction old_segv_act;
508 static struct sigaction old_bus_act;
509 # else
510 static handler old_segv_handler, old_bus_handler;
511 # endif
513 void GC_setup_temporary_fault_handler()
515 # ifndef ECOS
516 # if defined(SUNOS5SIGS) || defined(IRIX5)
517 struct sigaction act;
519 act.sa_handler = GC_fault_handler;
520 act.sa_flags = SA_RESTART | SA_NODEFER;
521 /* The presence of SA_NODEFER represents yet another gross */
522 /* hack. Under Solaris 2.3, siglongjmp doesn't appear to */
523 /* interact correctly with -lthread. We hide the confusion */
524 /* by making sure that signal handling doesn't affect the */
525 /* signal mask. */
527 (void) sigemptyset(&act.sa_mask);
528 # ifdef IRIX_THREADS
529 /* Older versions have a bug related to retrieving and */
530 /* and setting a handler at the same time. */
531 (void) sigaction(SIGSEGV, 0, &old_segv_act);
532 (void) sigaction(SIGSEGV, &act, 0);
533 # else
534 (void) sigaction(SIGSEGV, &act, &old_segv_act);
535 # ifdef _sigargs /* Irix 5.x, not 6.x */
536 /* Under 5.x, we may get SIGBUS. */
537 /* Pthreads doesn't exist under 5.x, so we don't */
538 /* have to worry in the threads case. */
539 (void) sigaction(SIGBUS, &act, &old_bus_act);
540 # endif
541 # endif /* IRIX_THREADS */
542 # else
543 old_segv_handler = signal(SIGSEGV, GC_fault_handler);
544 # ifdef SIGBUS
545 old_bus_handler = signal(SIGBUS, GC_fault_handler);
546 # endif
547 # endif
548 # endif /* ECOS */
551 void GC_reset_fault_handler()
553 # ifndef ECOS
554 # if defined(SUNOS5SIGS) || defined(IRIX5)
555 (void) sigaction(SIGSEGV, &old_segv_act, 0);
556 # ifdef _sigargs /* Irix 5.x, not 6.x */
557 (void) sigaction(SIGBUS, &old_bus_act, 0);
558 # endif
559 # else
560 (void) signal(SIGSEGV, old_segv_handler);
561 # ifdef SIGBUS
562 (void) signal(SIGBUS, old_bus_handler);
563 # endif
564 # endif
565 # endif /* ECOS */
568 /* Return the first nonaddressible location > p (up) or */
569 /* the smallest location q s.t. [q,p] is addressible (!up). */
570 ptr_t GC_find_limit(p, up)
571 ptr_t p;
572 GC_bool up;
574 # ifndef ECOS
575 static VOLATILE ptr_t result;
576 /* Needs to be static, since otherwise it may not be */
577 /* preserved across the longjmp. Can safely be */
578 /* static since it's only called once, with the */
579 /* allocation lock held. */
582 GC_setup_temporary_fault_handler();
583 if (setjmp(GC_jmp_buf) == 0) {
584 result = (ptr_t)(((word)(p))
585 & ~(MIN_PAGE_SIZE-1));
586 for (;;) {
587 if (up) {
588 result += MIN_PAGE_SIZE;
589 } else {
590 result -= MIN_PAGE_SIZE;
592 GC_noop1((word)(*result));
595 GC_reset_fault_handler();
596 if (!up) {
597 result += MIN_PAGE_SIZE;
599 return(result);
600 # else /* ECOS */
601 abort();
602 # endif /* ECOS */
604 # endif
607 # ifndef ECOS
608 ptr_t GC_get_stack_base()
610 word dummy;
611 ptr_t result;
613 # define STACKBOTTOM_ALIGNMENT_M1 ((word)STACK_GRAN - 1)
615 # if defined(STACKBASE)
616 extern ptr_t STACKBASE;
617 return(STACKBASE);
618 # else
619 # ifdef STACKBOTTOM
620 return(STACKBOTTOM);
621 # else
622 # ifdef HEURISTIC1
623 # ifdef STACK_GROWS_DOWN
624 result = (ptr_t)((((word)(&dummy))
625 + STACKBOTTOM_ALIGNMENT_M1)
626 & ~STACKBOTTOM_ALIGNMENT_M1);
627 # else
628 result = (ptr_t)(((word)(&dummy))
629 & ~STACKBOTTOM_ALIGNMENT_M1);
630 # endif
631 # endif /* HEURISTIC1 */
632 # ifdef HEURISTIC2
633 # ifdef STACK_GROWS_DOWN
634 result = GC_find_limit((ptr_t)(&dummy), TRUE);
635 # ifdef HEURISTIC2_LIMIT
636 if (result > HEURISTIC2_LIMIT
637 && (ptr_t)(&dummy) < HEURISTIC2_LIMIT) {
638 result = HEURISTIC2_LIMIT;
640 # endif
641 # else
642 result = GC_find_limit((ptr_t)(&dummy), FALSE);
643 # ifdef HEURISTIC2_LIMIT
644 if (result < HEURISTIC2_LIMIT
645 && (ptr_t)(&dummy) > HEURISTIC2_LIMIT) {
646 result = HEURISTIC2_LIMIT;
648 # endif
649 # endif
651 # endif /* HEURISTIC2 */
652 return(result);
653 # endif /* STACKBOTTOM */
654 # endif /* STACKBASE */
656 # endif /* ECOS */
658 # endif /* ! AMIGA */
659 # endif /* ! OS2 */
660 # endif /* ! MSWIN32 */
663 * Register static data segment(s) as roots.
664 * If more data segments are added later then they need to be registered
665 * add that point (as we do with SunOS dynamic loading),
666 * or GC_mark_roots needs to check for them (as we do with PCR).
667 * Called with allocator lock held.
670 # ifdef OS2
672 void GC_register_data_segments()
674 PTIB ptib;
675 PPIB ppib;
676 HMODULE module_handle;
677 # define PBUFSIZ 512
678 UCHAR path[PBUFSIZ];
679 FILE * myexefile;
680 struct exe_hdr hdrdos; /* MSDOS header. */
681 struct e32_exe hdr386; /* Real header for my executable */
682 struct o32_obj seg; /* Currrent segment */
683 int nsegs;
686 if (DosGetInfoBlocks(&ptib, &ppib) != NO_ERROR) {
687 GC_err_printf0("DosGetInfoBlocks failed\n");
688 ABORT("DosGetInfoBlocks failed\n");
690 module_handle = ppib -> pib_hmte;
691 if (DosQueryModuleName(module_handle, PBUFSIZ, path) != NO_ERROR) {
692 GC_err_printf0("DosQueryModuleName failed\n");
693 ABORT("DosGetInfoBlocks failed\n");
695 myexefile = fopen(path, "rb");
696 if (myexefile == 0) {
697 GC_err_puts("Couldn't open executable ");
698 GC_err_puts(path); GC_err_puts("\n");
699 ABORT("Failed to open executable\n");
701 if (fread((char *)(&hdrdos), 1, sizeof hdrdos, myexefile) < sizeof hdrdos) {
702 GC_err_puts("Couldn't read MSDOS header from ");
703 GC_err_puts(path); GC_err_puts("\n");
704 ABORT("Couldn't read MSDOS header");
706 if (E_MAGIC(hdrdos) != EMAGIC) {
707 GC_err_puts("Executable has wrong DOS magic number: ");
708 GC_err_puts(path); GC_err_puts("\n");
709 ABORT("Bad DOS magic number");
711 if (fseek(myexefile, E_LFANEW(hdrdos), SEEK_SET) != 0) {
712 GC_err_puts("Seek to new header failed in ");
713 GC_err_puts(path); GC_err_puts("\n");
714 ABORT("Bad DOS magic number");
716 if (fread((char *)(&hdr386), 1, sizeof hdr386, myexefile) < sizeof hdr386) {
717 GC_err_puts("Couldn't read MSDOS header from ");
718 GC_err_puts(path); GC_err_puts("\n");
719 ABORT("Couldn't read OS/2 header");
721 if (E32_MAGIC1(hdr386) != E32MAGIC1 || E32_MAGIC2(hdr386) != E32MAGIC2) {
722 GC_err_puts("Executable has wrong OS/2 magic number:");
723 GC_err_puts(path); GC_err_puts("\n");
724 ABORT("Bad OS/2 magic number");
726 if ( E32_BORDER(hdr386) != E32LEBO || E32_WORDER(hdr386) != E32LEWO) {
727 GC_err_puts("Executable %s has wrong byte order: ");
728 GC_err_puts(path); GC_err_puts("\n");
729 ABORT("Bad byte order");
731 if ( E32_CPU(hdr386) == E32CPU286) {
732 GC_err_puts("GC can't handle 80286 executables: ");
733 GC_err_puts(path); GC_err_puts("\n");
734 EXIT();
736 if (fseek(myexefile, E_LFANEW(hdrdos) + E32_OBJTAB(hdr386),
737 SEEK_SET) != 0) {
738 GC_err_puts("Seek to object table failed: ");
739 GC_err_puts(path); GC_err_puts("\n");
740 ABORT("Seek to object table failed");
742 for (nsegs = E32_OBJCNT(hdr386); nsegs > 0; nsegs--) {
743 int flags;
744 if (fread((char *)(&seg), 1, sizeof seg, myexefile) < sizeof seg) {
745 GC_err_puts("Couldn't read obj table entry from ");
746 GC_err_puts(path); GC_err_puts("\n");
747 ABORT("Couldn't read obj table entry");
749 flags = O32_FLAGS(seg);
750 if (!(flags & OBJWRITE)) continue;
751 if (!(flags & OBJREAD)) continue;
752 if (flags & OBJINVALID) {
753 GC_err_printf0("Object with invalid pages?\n");
754 continue;
756 GC_add_roots_inner(O32_BASE(seg), O32_BASE(seg)+O32_SIZE(seg), FALSE);
760 # else
762 # ifdef MSWIN32
763 /* Unfortunately, we have to handle win32s very differently from NT, */
764 /* Since VirtualQuery has very different semantics. In particular, */
765 /* under win32s a VirtualQuery call on an unmapped page returns an */
766 /* invalid result. Under GC_register_data_segments is a noop and */
767 /* all real work is done by GC_register_dynamic_libraries. Under */
768 /* win32s, we cannot find the data segments associated with dll's. */
769 /* We rgister the main data segment here. */
770 GC_bool GC_win32s = FALSE; /* We're running under win32s. */
772 GC_bool GC_is_win32s()
774 DWORD v = GetVersion();
776 /* Check that this is not NT, and Windows major version <= 3 */
777 return ((v & 0x80000000) && (v & 0xff) <= 3);
780 void GC_init_win32()
782 GC_win32s = GC_is_win32s();
785 /* Return the smallest address a such that VirtualQuery */
786 /* returns correct results for all addresses between a and start. */
787 /* Assumes VirtualQuery returns correct information for start. */
788 ptr_t GC_least_described_address(ptr_t start)
790 MEMORY_BASIC_INFORMATION buf;
791 SYSTEM_INFO sysinfo;
792 DWORD result;
793 LPVOID limit;
794 ptr_t p;
795 LPVOID q;
797 GetSystemInfo(&sysinfo);
798 limit = sysinfo.lpMinimumApplicationAddress;
799 p = (ptr_t)((word)start & ~(GC_page_size - 1));
800 for (;;) {
801 q = (LPVOID)(p - GC_page_size);
802 if ((ptr_t)q > (ptr_t)p /* underflow */ || q < limit) break;
803 result = VirtualQuery(q, &buf, sizeof(buf));
804 if (result != sizeof(buf) || buf.AllocationBase == 0) break;
805 p = (ptr_t)(buf.AllocationBase);
807 return(p);
810 /* Is p the start of either the malloc heap, or of one of our */
811 /* heap sections? */
812 GC_bool GC_is_heap_base (ptr_t p)
815 register unsigned i;
817 # ifndef REDIRECT_MALLOC
818 static ptr_t malloc_heap_pointer = 0;
820 if (0 == malloc_heap_pointer) {
821 MEMORY_BASIC_INFORMATION buf;
822 register DWORD result = VirtualQuery(malloc(1), &buf, sizeof(buf));
824 if (result != sizeof(buf)) {
825 ABORT("Weird VirtualQuery result");
827 malloc_heap_pointer = (ptr_t)(buf.AllocationBase);
829 if (p == malloc_heap_pointer) return(TRUE);
830 # endif
831 for (i = 0; i < GC_n_heap_bases; i++) {
832 if (GC_heap_bases[i] == p) return(TRUE);
834 return(FALSE);
837 void GC_register_root_section(ptr_t static_root)
839 MEMORY_BASIC_INFORMATION buf;
840 SYSTEM_INFO sysinfo;
841 DWORD result;
842 DWORD protect;
843 LPVOID p;
844 char * base;
845 char * limit, * new_limit;
847 if (!GC_win32s) return;
848 p = base = limit = GC_least_described_address(static_root);
849 GetSystemInfo(&sysinfo);
850 while (p < sysinfo.lpMaximumApplicationAddress) {
851 result = VirtualQuery(p, &buf, sizeof(buf));
852 if (result != sizeof(buf) || buf.AllocationBase == 0
853 || GC_is_heap_base(buf.AllocationBase)) break;
854 new_limit = (char *)p + buf.RegionSize;
855 protect = buf.Protect;
856 if (buf.State == MEM_COMMIT
857 && is_writable(protect)) {
858 if ((char *)p == limit) {
859 limit = new_limit;
860 } else {
861 if (base != limit) GC_add_roots_inner(base, limit, FALSE);
862 base = p;
863 limit = new_limit;
866 if (p > (LPVOID)new_limit /* overflow */) break;
867 p = (LPVOID)new_limit;
869 if (base != limit) GC_add_roots_inner(base, limit, FALSE);
872 void GC_register_data_segments()
874 static char dummy;
876 GC_register_root_section((ptr_t)(&dummy));
878 # else
879 # ifdef AMIGA
881 void GC_register_data_segments()
883 extern struct WBStartup *_WBenchMsg;
884 struct Process *proc;
885 struct CommandLineInterface *cli;
886 BPTR myseglist;
887 ULONG *data;
889 if ( _WBenchMsg != 0 ) {
890 if ((myseglist = _WBenchMsg->sm_Segment) == 0) {
891 GC_err_puts("No seglist from workbench\n");
892 return;
894 } else {
895 if ((proc = (struct Process *)FindTask(0)) == 0) {
896 GC_err_puts("Cannot find process structure\n");
897 return;
899 if ((cli = BADDR(proc->pr_CLI)) == 0) {
900 GC_err_puts("No CLI\n");
901 return;
903 if ((myseglist = cli->cli_Module) == 0) {
904 GC_err_puts("No seglist from CLI\n");
905 return;
909 for (data = (ULONG *)BADDR(myseglist); data != 0;
910 data = (ULONG *)BADDR(data[0])) {
911 # ifdef AMIGA_SKIP_SEG
912 if (((ULONG) GC_register_data_segments < (ULONG) &data[1]) ||
913 ((ULONG) GC_register_data_segments > (ULONG) &data[1] + data[-1])) {
914 # else
916 # endif /* AMIGA_SKIP_SEG */
917 GC_add_roots_inner((char *)&data[1],
918 ((char *)&data[1]) + data[-1], FALSE);
924 # else
926 # if (defined(SVR4) || defined(AUX) || defined(DGUX)) && !defined(PCR)
927 char * GC_SysVGetDataStart(max_page_size, etext_addr)
928 int max_page_size;
929 int * etext_addr;
931 word text_end = ((word)(etext_addr) + sizeof(word) - 1)
932 & ~(sizeof(word) - 1);
933 /* etext rounded to word boundary */
934 word next_page = ((text_end + (word)max_page_size - 1)
935 & ~((word)max_page_size - 1));
936 word page_offset = (text_end & ((word)max_page_size - 1));
937 VOLATILE char * result = (char *)(next_page + page_offset);
938 /* Note that this isnt equivalent to just adding */
939 /* max_page_size to &etext if &etext is at a page boundary */
941 GC_setup_temporary_fault_handler();
942 if (setjmp(GC_jmp_buf) == 0) {
943 /* Try writing to the address. */
944 *result = *result;
945 GC_reset_fault_handler();
946 } else {
947 GC_reset_fault_handler();
948 /* We got here via a longjmp. The address is not readable. */
949 /* This is known to happen under Solaris 2.4 + gcc, which place */
950 /* string constants in the text segment, but after etext. */
951 /* Use plan B. Note that we now know there is a gap between */
952 /* text and data segments, so plan A bought us something. */
953 result = (char *)GC_find_limit((ptr_t)(DATAEND) - MIN_PAGE_SIZE, FALSE);
955 return((char *)result);
957 # endif
960 void GC_register_data_segments()
962 # if !defined(PCR) && !defined(SRC_M3) && !defined(NEXT) && !defined(MACOS)
963 # if defined(REDIRECT_MALLOC) && defined(SOLARIS_THREADS)
964 /* As of Solaris 2.3, the Solaris threads implementation */
965 /* allocates the data structure for the initial thread with */
966 /* sbrk at process startup. It needs to be scanned, so that */
967 /* we don't lose some malloc allocated data structures */
968 /* hanging from it. We're on thin ice here ... */
969 extern caddr_t sbrk();
971 GC_add_roots_inner(DATASTART, (char *)sbrk(0), FALSE);
972 # else
973 GC_add_roots_inner(DATASTART, (char *)(DATAEND), FALSE);
974 # endif
975 # endif
976 # if !defined(PCR) && defined(NEXT)
977 GC_add_roots_inner(DATASTART, (char *) get_end(), FALSE);
978 # endif
979 # if defined(MACOS)
981 # if defined(THINK_C)
982 extern void* GC_MacGetDataStart(void);
983 /* globals begin above stack and end at a5. */
984 GC_add_roots_inner((ptr_t)GC_MacGetDataStart(),
985 (ptr_t)LMGetCurrentA5(), FALSE);
986 # else
987 # if defined(__MWERKS__)
988 # if !__POWERPC__
989 extern void* GC_MacGetDataStart(void);
990 /* globals begin above stack and end at a5. */
991 GC_add_roots_inner((ptr_t)GC_MacGetDataStart(),
992 (ptr_t)LMGetCurrentA5(), FALSE);
993 # else
994 extern char __data_start__[], __data_end__[];
995 GC_add_roots_inner((ptr_t)&__data_start__,
996 (ptr_t)&__data_end__, FALSE);
997 # endif /* __POWERPC__ */
998 # endif /* __MWERKS__ */
999 # endif /* !THINK_C */
1001 # endif /* MACOS */
1003 /* Dynamic libraries are added at every collection, since they may */
1004 /* change. */
1007 # endif /* ! AMIGA */
1008 # endif /* ! MSWIN32 */
1009 # endif /* ! OS2 */
1012 * Auxiliary routines for obtaining memory from OS.
1015 # if !defined(OS2) && !defined(PCR) && !defined(AMIGA) \
1016 && !defined(MSWIN32) && !defined(MACOS) && !defined(DOS4GW)
1018 # ifdef SUNOS4
1019 extern caddr_t sbrk();
1020 # endif
1021 # ifdef __STDC__
1022 # define SBRK_ARG_T ptrdiff_t
1023 # else
1024 # define SBRK_ARG_T int
1025 # endif
1027 # ifdef RS6000
1028 /* The compiler seems to generate speculative reads one past the end of */
1029 /* an allocated object. Hence we need to make sure that the page */
1030 /* following the last heap page is also mapped. */
1031 ptr_t GC_unix_get_mem(bytes)
1032 word bytes;
1034 caddr_t cur_brk = (caddr_t)sbrk(0);
1035 caddr_t result;
1036 SBRK_ARG_T lsbs = (word)cur_brk & (GC_page_size-1);
1037 static caddr_t my_brk_val = 0;
1039 if ((SBRK_ARG_T)bytes < 0) return(0); /* too big */
1040 if (lsbs != 0) {
1041 if((caddr_t)(sbrk(GC_page_size - lsbs)) == (caddr_t)(-1)) return(0);
1043 if (cur_brk == my_brk_val) {
1044 /* Use the extra block we allocated last time. */
1045 result = (ptr_t)sbrk((SBRK_ARG_T)bytes);
1046 if (result == (caddr_t)(-1)) return(0);
1047 result -= GC_page_size;
1048 } else {
1049 result = (ptr_t)sbrk(GC_page_size + (SBRK_ARG_T)bytes);
1050 if (result == (caddr_t)(-1)) return(0);
1052 my_brk_val = result + bytes + GC_page_size; /* Always page aligned */
1053 return((ptr_t)result);
1056 #else /* Not RS6000 */
1058 #if defined(USE_MMAP)
1059 /* Tested only under IRIX5 */
1061 ptr_t GC_unix_get_mem(bytes)
1062 word bytes;
1064 static GC_bool initialized = FALSE;
1065 static int fd;
1066 void *result;
1067 static ptr_t last_addr = HEAP_START;
1069 if (!initialized) {
1070 fd = open("/dev/zero", O_RDONLY);
1071 initialized = TRUE;
1073 if (bytes & (GC_page_size -1)) ABORT("Bad GET_MEM arg");
1074 result = mmap(last_addr, bytes, PROT_READ | PROT_WRITE | OPT_PROT_EXEC,
1075 MAP_PRIVATE | MAP_FIXED, fd, 0/* offset */);
1076 if (result == MAP_FAILED) return(0);
1077 last_addr = (ptr_t)result + bytes + GC_page_size - 1;
1078 last_addr = (ptr_t)((word)last_addr & ~(GC_page_size - 1));
1079 return((ptr_t)result);
1082 #else /* Not RS6000, not USE_MMAP */
1083 ptr_t GC_unix_get_mem(bytes)
1084 word bytes;
1086 ptr_t result;
1087 # ifdef IRIX5
1088 /* Bare sbrk isn't thread safe. Play by malloc rules. */
1089 /* The equivalent may be needed on other systems as well. */
1090 __LOCK_MALLOC();
1091 # endif
1093 ptr_t cur_brk = (ptr_t)sbrk(0);
1094 SBRK_ARG_T lsbs = (word)cur_brk & (GC_page_size-1);
1096 if ((SBRK_ARG_T)bytes < 0) return(0); /* too big */
1097 if (lsbs != 0) {
1098 if((ptr_t)sbrk(GC_page_size - lsbs) == (ptr_t)(-1)) return(0);
1100 result = (ptr_t)sbrk((SBRK_ARG_T)bytes);
1101 if (result == (ptr_t)(-1)) result = 0;
1103 # ifdef IRIX5
1104 __UNLOCK_MALLOC();
1105 # endif
1106 return(result);
1109 #endif /* Not USE_MMAP */
1110 #endif /* Not RS6000 */
1112 # endif /* UN*X */
1114 # ifdef OS2
1116 void * os2_alloc(size_t bytes)
1118 void * result;
1120 if (DosAllocMem(&result, bytes, PAG_EXECUTE | PAG_READ |
1121 PAG_WRITE | PAG_COMMIT)
1122 != NO_ERROR) {
1123 return(0);
1125 if (result == 0) return(os2_alloc(bytes));
1126 return(result);
1129 # endif /* OS2 */
1132 # ifdef MSWIN32
1133 word GC_n_heap_bases = 0;
1135 ptr_t GC_win32_get_mem(bytes)
1136 word bytes;
1138 ptr_t result;
1140 if (GC_win32s) {
1141 /* VirtualAlloc doesn't like PAGE_EXECUTE_READWRITE. */
1142 /* There are also unconfirmed rumors of other */
1143 /* problems, so we dodge the issue. */
1144 result = (ptr_t) GlobalAlloc(0, bytes + HBLKSIZE);
1145 result = (ptr_t)(((word)result + HBLKSIZE) & ~(HBLKSIZE-1));
1146 } else {
1147 result = (ptr_t) VirtualAlloc(NULL, bytes,
1148 MEM_COMMIT | MEM_RESERVE,
1149 PAGE_EXECUTE_READWRITE);
1151 if (HBLKDISPL(result) != 0) ABORT("Bad VirtualAlloc result");
1152 /* If I read the documentation correctly, this can */
1153 /* only happen if HBLKSIZE > 64k or not a power of 2. */
1154 if (GC_n_heap_bases >= MAX_HEAP_SECTS) ABORT("Too many heap sections");
1155 GC_heap_bases[GC_n_heap_bases++] = result;
1156 return(result);
1159 # endif
1161 /* Routine for pushing any additional roots. In THREADS */
1162 /* environment, this is also responsible for marking from */
1163 /* thread stacks. In the SRC_M3 case, it also handles */
1164 /* global variables. */
1165 #ifndef THREADS
1166 void (*GC_push_other_roots)() = 0;
1167 #else /* THREADS */
1169 # ifdef PCR
1170 PCR_ERes GC_push_thread_stack(PCR_Th_T *t, PCR_Any dummy)
1172 struct PCR_ThCtl_TInfoRep info;
1173 PCR_ERes result;
1175 info.ti_stkLow = info.ti_stkHi = 0;
1176 result = PCR_ThCtl_GetInfo(t, &info);
1177 GC_push_all_stack((ptr_t)(info.ti_stkLow), (ptr_t)(info.ti_stkHi));
1178 return(result);
1181 /* Push the contents of an old object. We treat this as stack */
1182 /* data only becasue that makes it robust against mark stack */
1183 /* overflow. */
1184 PCR_ERes GC_push_old_obj(void *p, size_t size, PCR_Any data)
1186 GC_push_all_stack((ptr_t)p, (ptr_t)p + size);
1187 return(PCR_ERes_okay);
1191 void GC_default_push_other_roots()
1193 /* Traverse data allocated by previous memory managers. */
1195 extern struct PCR_MM_ProcsRep * GC_old_allocator;
1197 if ((*(GC_old_allocator->mmp_enumerate))(PCR_Bool_false,
1198 GC_push_old_obj, 0)
1199 != PCR_ERes_okay) {
1200 ABORT("Old object enumeration failed");
1203 /* Traverse all thread stacks. */
1204 if (PCR_ERes_IsErr(
1205 PCR_ThCtl_ApplyToAllOtherThreads(GC_push_thread_stack,0))
1206 || PCR_ERes_IsErr(GC_push_thread_stack(PCR_Th_CurrThread(), 0))) {
1207 ABORT("Thread stack marking failed\n");
1211 # endif /* PCR */
1213 # ifdef SRC_M3
1215 # ifdef ALL_INTERIOR_POINTERS
1216 --> misconfigured
1217 # endif
1220 extern void ThreadF__ProcessStacks();
1222 void GC_push_thread_stack(start, stop)
1223 word start, stop;
1225 GC_push_all_stack((ptr_t)start, (ptr_t)stop + sizeof(word));
1228 /* Push routine with M3 specific calling convention. */
1229 GC_m3_push_root(dummy1, p, dummy2, dummy3)
1230 word *p;
1231 ptr_t dummy1, dummy2;
1232 int dummy3;
1234 word q = *p;
1236 if ((ptr_t)(q) >= GC_least_plausible_heap_addr
1237 && (ptr_t)(q) < GC_greatest_plausible_heap_addr) {
1238 GC_push_one_checked(q,FALSE);
1242 /* M3 set equivalent to RTHeap.TracedRefTypes */
1243 typedef struct { int elts[1]; } RefTypeSet;
1244 RefTypeSet GC_TracedRefTypes = {{0x1}};
1246 /* From finalize.c */
1247 extern void GC_push_finalizer_structures();
1249 /* From stubborn.c: */
1250 # ifdef STUBBORN_ALLOC
1251 extern GC_PTR * GC_changing_list_start;
1252 # endif
1255 void GC_default_push_other_roots()
1257 /* Use the M3 provided routine for finding static roots. */
1258 /* This is a bit dubious, since it presumes no C roots. */
1259 /* We handle the collector roots explicitly. */
1261 # ifdef STUBBORN_ALLOC
1262 GC_push_one(GC_changing_list_start);
1263 # endif
1264 GC_push_finalizer_structures();
1265 RTMain__GlobalMapProc(GC_m3_push_root, 0, GC_TracedRefTypes);
1267 if (GC_words_allocd > 0) {
1268 ThreadF__ProcessStacks(GC_push_thread_stack);
1270 /* Otherwise this isn't absolutely necessary, and we have */
1271 /* startup ordering problems. */
1274 # endif /* SRC_M3 */
1276 # if defined(SOLARIS_THREADS) || defined(WIN32_THREADS) \
1277 || defined(IRIX_THREADS) || defined(LINUX_THREADS) \
1278 || defined(QUICK_THREADS)
1280 extern void GC_push_all_stacks();
1282 void GC_default_push_other_roots()
1284 GC_push_all_stacks();
1287 # endif /* SOLARIS_THREADS || ... */
1289 void (*GC_push_other_roots)() = GC_default_push_other_roots;
1291 #endif
1294 * Routines for accessing dirty bits on virtual pages.
1295 * We plan to eventaually implement four strategies for doing so:
1296 * DEFAULT_VDB: A simple dummy implementation that treats every page
1297 * as possibly dirty. This makes incremental collection
1298 * useless, but the implementation is still correct.
1299 * PCR_VDB: Use PPCRs virtual dirty bit facility.
1300 * PROC_VDB: Use the /proc facility for reading dirty bits. Only
1301 * works under some SVR4 variants. Even then, it may be
1302 * too slow to be entirely satisfactory. Requires reading
1303 * dirty bits for entire address space. Implementations tend
1304 * to assume that the client is a (slow) debugger.
1305 * MPROTECT_VDB:Protect pages and then catch the faults to keep track of
1306 * dirtied pages. The implementation (and implementability)
1307 * is highly system dependent. This usually fails when system
1308 * calls write to a protected page. We prevent the read system
1309 * call from doing so. It is the clients responsibility to
1310 * make sure that other system calls are similarly protected
1311 * or write only to the stack.
1314 GC_bool GC_dirty_maintained = FALSE;
1316 # ifdef DEFAULT_VDB
1318 /* All of the following assume the allocation lock is held, and */
1319 /* signals are disabled. */
1321 /* The client asserts that unallocated pages in the heap are never */
1322 /* written. */
1324 /* Initialize virtual dirty bit implementation. */
1325 void GC_dirty_init()
1327 GC_dirty_maintained = TRUE;
1330 /* Retrieve system dirty bits for heap to a local buffer. */
1331 /* Restore the systems notion of which pages are dirty. */
1332 void GC_read_dirty()
1335 /* Is the HBLKSIZE sized page at h marked dirty in the local buffer? */
1336 /* If the actual page size is different, this returns TRUE if any */
1337 /* of the pages overlapping h are dirty. This routine may err on the */
1338 /* side of labelling pages as dirty (and this implementation does). */
1339 /*ARGSUSED*/
1340 GC_bool GC_page_was_dirty(h)
1341 struct hblk *h;
1343 return(TRUE);
1347 * The following two routines are typically less crucial. They matter
1348 * most with large dynamic libraries, or if we can't accurately identify
1349 * stacks, e.g. under Solaris 2.X. Otherwise the following default
1350 * versions are adequate.
1353 /* Could any valid GC heap pointer ever have been written to this page? */
1354 /*ARGSUSED*/
1355 GC_bool GC_page_was_ever_dirty(h)
1356 struct hblk *h;
1358 return(TRUE);
1361 /* Reset the n pages starting at h to "was never dirty" status. */
1362 void GC_is_fresh(h, n)
1363 struct hblk *h;
1364 word n;
1368 /* A call hints that h is about to be written. */
1369 /* May speed up some dirty bit implementations. */
1370 /*ARGSUSED*/
1371 void GC_write_hint(h)
1372 struct hblk *h;
1376 # endif /* DEFAULT_VDB */
1379 # ifdef MPROTECT_VDB
1382 * See DEFAULT_VDB for interface descriptions.
1386 * This implementation maintains dirty bits itself by catching write
1387 * faults and keeping track of them. We assume nobody else catches
1388 * SIGBUS or SIGSEGV. We assume no write faults occur in system calls
1389 * except as a result of a read system call. This means clients must
1390 * either ensure that system calls do not touch the heap, or must
1391 * provide their own wrappers analogous to the one for read.
1392 * We assume the page size is a multiple of HBLKSIZE.
1393 * This implementation is currently SunOS 4.X and IRIX 5.X specific, though we
1394 * tried to use portable code where easily possible. It is known
1395 * not to work under a number of other systems.
1398 # ifndef MSWIN32
1400 # include <sys/mman.h>
1401 # include <signal.h>
1402 # include <sys/syscall.h>
1404 # define PROTECT(addr, len) \
1405 if (mprotect((caddr_t)(addr), (int)(len), \
1406 PROT_READ | OPT_PROT_EXEC) < 0) { \
1407 ABORT("mprotect failed"); \
1409 # define UNPROTECT(addr, len) \
1410 if (mprotect((caddr_t)(addr), (int)(len), \
1411 PROT_WRITE | PROT_READ | OPT_PROT_EXEC ) < 0) { \
1412 ABORT("un-mprotect failed"); \
1415 # else
1417 # include <signal.h>
1419 static DWORD protect_junk;
1420 # define PROTECT(addr, len) \
1421 if (!VirtualProtect((addr), (len), PAGE_EXECUTE_READ, \
1422 &protect_junk)) { \
1423 DWORD last_error = GetLastError(); \
1424 GC_printf1("Last error code: %lx\n", last_error); \
1425 ABORT("VirtualProtect failed"); \
1427 # define UNPROTECT(addr, len) \
1428 if (!VirtualProtect((addr), (len), PAGE_EXECUTE_READWRITE, \
1429 &protect_junk)) { \
1430 ABORT("un-VirtualProtect failed"); \
1433 # endif
1435 VOLATILE page_hash_table GC_dirty_pages;
1436 /* Pages dirtied since last GC_read_dirty. */
1438 #if defined(SUNOS4) || defined(FREEBSD)
1439 typedef void (* SIG_PF)();
1440 #endif
1441 #if defined(SUNOS5SIGS) || defined(OSF1) || defined(LINUX)
1442 typedef void (* SIG_PF)(int);
1443 #endif
1444 #if defined(MSWIN32)
1445 typedef LPTOP_LEVEL_EXCEPTION_FILTER SIG_PF;
1446 # undef SIG_DFL
1447 # define SIG_DFL (LPTOP_LEVEL_EXCEPTION_FILTER) (-1)
1448 #endif
1450 #if defined(IRIX5) || defined(OSF1)
1451 typedef void (* REAL_SIG_PF)(int, int, struct sigcontext *);
1452 #endif
1453 #if defined(SUNOS5SIGS)
1454 typedef void (* REAL_SIG_PF)(int, struct siginfo *, void *);
1455 #endif
1456 #if defined(LINUX)
1457 # include <linux/version.h>
1458 # if (LINUX_VERSION_CODE >= 0x20100)
1459 typedef void (* REAL_SIG_PF)(int, struct sigcontext);
1460 # else
1461 typedef void (* REAL_SIG_PF)(int, struct sigcontext_struct);
1462 # endif
1463 # endif
1465 SIG_PF GC_old_bus_handler;
1466 SIG_PF GC_old_segv_handler; /* Also old MSWIN32 ACCESS_VIOLATION filter */
1468 /*ARGSUSED*/
1469 # if defined (SUNOS4) || defined(FREEBSD)
1470 void GC_write_fault_handler(sig, code, scp, addr)
1471 int sig, code;
1472 struct sigcontext *scp;
1473 char * addr;
1474 # ifdef SUNOS4
1475 # define SIG_OK (sig == SIGSEGV || sig == SIGBUS)
1476 # define CODE_OK (FC_CODE(code) == FC_PROT \
1477 || (FC_CODE(code) == FC_OBJERR \
1478 && FC_ERRNO(code) == FC_PROT))
1479 # endif
1480 # ifdef FREEBSD
1481 # define SIG_OK (sig == SIGBUS)
1482 # define CODE_OK (code == BUS_PAGE_FAULT)
1483 # endif
1484 # endif
1485 # if defined(IRIX5) || defined(OSF1)
1486 # include <errno.h>
1487 void GC_write_fault_handler(int sig, int code, struct sigcontext *scp)
1488 # define SIG_OK (sig == SIGSEGV)
1489 # ifdef OSF1
1490 # define CODE_OK (code == 2 /* experimentally determined */)
1491 # endif
1492 # ifdef IRIX5
1493 # define CODE_OK (code == EACCES)
1494 # endif
1495 # endif
1496 # if defined(LINUX)
1497 # if (LINUX_VERSION_CODE >= 0x20100)
1498 void GC_write_fault_handler(int sig, struct sigcontext sc)
1499 # else
1500 void GC_write_fault_handler(int sig, struct sigcontext_struct sc)
1501 # endif
1502 # define SIG_OK (sig == SIGSEGV)
1503 # define CODE_OK TRUE
1504 /* Empirically c.trapno == 14, but is that useful? */
1505 /* We assume Intel architecture, so alignment */
1506 /* faults are not possible. */
1507 # endif
1508 # if defined(SUNOS5SIGS)
1509 void GC_write_fault_handler(int sig, struct siginfo *scp, void * context)
1510 # define SIG_OK (sig == SIGSEGV)
1511 # define CODE_OK (scp -> si_code == SEGV_ACCERR)
1512 # endif
1513 # if defined(MSWIN32)
1514 LONG WINAPI GC_write_fault_handler(struct _EXCEPTION_POINTERS *exc_info)
1515 # define SIG_OK (exc_info -> ExceptionRecord -> ExceptionCode == \
1516 EXCEPTION_ACCESS_VIOLATION)
1517 # define CODE_OK (exc_info -> ExceptionRecord -> ExceptionInformation[0] == 1)
1518 /* Write fault */
1519 # endif
1521 register unsigned i;
1522 # ifdef IRIX5
1523 char * addr = (char *) (size_t) (scp -> sc_badvaddr);
1524 # endif
1525 # if defined(OSF1) && defined(ALPHA)
1526 char * addr = (char *) (scp -> sc_traparg_a0);
1527 # endif
1528 # ifdef SUNOS5SIGS
1529 char * addr = (char *) (scp -> si_addr);
1530 # endif
1531 # ifdef LINUX
1532 # ifdef I386
1533 char * addr = (char *) (sc.cr2);
1534 # else
1535 char * addr = /* As of 1.3.90 there seemed to be no way to do this. */;
1536 # endif
1537 # endif
1538 # if defined(MSWIN32)
1539 char * addr = (char *) (exc_info -> ExceptionRecord
1540 -> ExceptionInformation[1]);
1541 # define sig SIGSEGV
1542 # endif
1544 if (SIG_OK && CODE_OK) {
1545 register struct hblk * h =
1546 (struct hblk *)((word)addr & ~(GC_page_size-1));
1547 GC_bool in_allocd_block;
1549 # ifdef SUNOS5SIGS
1550 /* Address is only within the correct physical page. */
1551 in_allocd_block = FALSE;
1552 for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
1553 if (HDR(h+i) != 0) {
1554 in_allocd_block = TRUE;
1557 # else
1558 in_allocd_block = (HDR(addr) != 0);
1559 # endif
1560 if (!in_allocd_block) {
1561 /* Heap blocks now begin and end on page boundaries */
1562 SIG_PF old_handler;
1564 if (sig == SIGSEGV) {
1565 old_handler = GC_old_segv_handler;
1566 } else {
1567 old_handler = GC_old_bus_handler;
1569 if (old_handler == SIG_DFL) {
1570 # ifndef MSWIN32
1571 ABORT("Unexpected bus error or segmentation fault");
1572 # else
1573 return(EXCEPTION_CONTINUE_SEARCH);
1574 # endif
1575 } else {
1576 # if defined (SUNOS4) || defined(FREEBSD)
1577 (*old_handler) (sig, code, scp, addr);
1578 return;
1579 # endif
1580 # if defined (SUNOS5SIGS)
1581 (*(REAL_SIG_PF)old_handler) (sig, scp, context);
1582 return;
1583 # endif
1584 # if defined (LINUX)
1585 (*(REAL_SIG_PF)old_handler) (sig, sc);
1586 return;
1587 # endif
1588 # if defined (IRIX5) || defined(OSF1)
1589 (*(REAL_SIG_PF)old_handler) (sig, code, scp);
1590 return;
1591 # endif
1592 # ifdef MSWIN32
1593 return((*old_handler)(exc_info));
1594 # endif
1597 for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
1598 register int index = PHT_HASH(h+i);
1600 set_pht_entry_from_index(GC_dirty_pages, index);
1602 UNPROTECT(h, GC_page_size);
1603 # if defined(OSF1) || defined(LINUX)
1604 /* These reset the signal handler each time by default. */
1605 signal(SIGSEGV, (SIG_PF) GC_write_fault_handler);
1606 # endif
1607 /* The write may not take place before dirty bits are read. */
1608 /* But then we'll fault again ... */
1609 # ifdef MSWIN32
1610 return(EXCEPTION_CONTINUE_EXECUTION);
1611 # else
1612 return;
1613 # endif
1615 #ifdef MSWIN32
1616 return EXCEPTION_CONTINUE_SEARCH;
1617 #else
1618 ABORT("Unexpected bus error or segmentation fault");
1619 #endif
1623 * We hold the allocation lock. We expect block h to be written
1624 * shortly.
1626 void GC_write_hint(h)
1627 struct hblk *h;
1629 register struct hblk * h_trunc;
1630 register unsigned i;
1631 register GC_bool found_clean;
1633 if (!GC_dirty_maintained) return;
1634 h_trunc = (struct hblk *)((word)h & ~(GC_page_size-1));
1635 found_clean = FALSE;
1636 for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
1637 register int index = PHT_HASH(h_trunc+i);
1639 if (!get_pht_entry_from_index(GC_dirty_pages, index)) {
1640 found_clean = TRUE;
1641 set_pht_entry_from_index(GC_dirty_pages, index);
1644 if (found_clean) {
1645 UNPROTECT(h_trunc, GC_page_size);
1649 void GC_dirty_init()
1651 #if defined(SUNOS5SIGS) || defined(IRIX5)
1652 struct sigaction act, oldact;
1653 # ifdef IRIX5
1654 act.sa_flags = SA_RESTART;
1655 act.sa_handler = GC_write_fault_handler;
1656 # else
1657 act.sa_flags = SA_RESTART | SA_SIGINFO;
1658 act.sa_sigaction = GC_write_fault_handler;
1659 # endif
1660 (void)sigemptyset(&act.sa_mask);
1661 #endif
1662 # ifdef PRINTSTATS
1663 GC_printf0("Inititalizing mprotect virtual dirty bit implementation\n");
1664 # endif
1665 GC_dirty_maintained = TRUE;
1666 if (GC_page_size % HBLKSIZE != 0) {
1667 GC_err_printf0("Page size not multiple of HBLKSIZE\n");
1668 ABORT("Page size not multiple of HBLKSIZE");
1670 # if defined(SUNOS4) || defined(FREEBSD)
1671 GC_old_bus_handler = signal(SIGBUS, GC_write_fault_handler);
1672 if (GC_old_bus_handler == SIG_IGN) {
1673 GC_err_printf0("Previously ignored bus error!?");
1674 GC_old_bus_handler = SIG_DFL;
1676 if (GC_old_bus_handler != SIG_DFL) {
1677 # ifdef PRINTSTATS
1678 GC_err_printf0("Replaced other SIGBUS handler\n");
1679 # endif
1681 # endif
1682 # if defined(OSF1) || defined(SUNOS4) || defined(LINUX)
1683 GC_old_segv_handler = signal(SIGSEGV, (SIG_PF)GC_write_fault_handler);
1684 if (GC_old_segv_handler == SIG_IGN) {
1685 GC_err_printf0("Previously ignored segmentation violation!?");
1686 GC_old_segv_handler = SIG_DFL;
1688 if (GC_old_segv_handler != SIG_DFL) {
1689 # ifdef PRINTSTATS
1690 GC_err_printf0("Replaced other SIGSEGV handler\n");
1691 # endif
1693 # endif
1694 # if defined(SUNOS5SIGS) || defined(IRIX5)
1695 # ifdef IRIX_THREADS
1696 sigaction(SIGSEGV, 0, &oldact);
1697 sigaction(SIGSEGV, &act, 0);
1698 # else
1699 sigaction(SIGSEGV, &act, &oldact);
1700 # endif
1701 # if defined(_sigargs)
1702 /* This is Irix 5.x, not 6.x. Irix 5.x does not have */
1703 /* sa_sigaction. */
1704 GC_old_segv_handler = oldact.sa_handler;
1705 # else /* Irix 6.x or SUNOS5SIGS */
1706 if (oldact.sa_flags & SA_SIGINFO) {
1707 GC_old_segv_handler = (SIG_PF)(oldact.sa_sigaction);
1708 } else {
1709 GC_old_segv_handler = oldact.sa_handler;
1711 # endif
1712 if (GC_old_segv_handler == SIG_IGN) {
1713 GC_err_printf0("Previously ignored segmentation violation!?");
1714 GC_old_segv_handler = SIG_DFL;
1716 if (GC_old_segv_handler != SIG_DFL) {
1717 # ifdef PRINTSTATS
1718 GC_err_printf0("Replaced other SIGSEGV handler\n");
1719 # endif
1721 # endif
1722 # if defined(MSWIN32)
1723 GC_old_segv_handler = SetUnhandledExceptionFilter(GC_write_fault_handler);
1724 if (GC_old_segv_handler != NULL) {
1725 # ifdef PRINTSTATS
1726 GC_err_printf0("Replaced other UnhandledExceptionFilter\n");
1727 # endif
1728 } else {
1729 GC_old_segv_handler = SIG_DFL;
1731 # endif
1736 void GC_protect_heap()
1738 ptr_t start;
1739 word len;
1740 unsigned i;
1742 for (i = 0; i < GC_n_heap_sects; i++) {
1743 start = GC_heap_sects[i].hs_start;
1744 len = GC_heap_sects[i].hs_bytes;
1745 PROTECT(start, len);
1749 /* We assume that either the world is stopped or its OK to lose dirty */
1750 /* bits while this is happenning (as in GC_enable_incremental). */
1751 void GC_read_dirty()
1753 BCOPY((word *)GC_dirty_pages, GC_grungy_pages,
1754 (sizeof GC_dirty_pages));
1755 BZERO((word *)GC_dirty_pages, (sizeof GC_dirty_pages));
1756 GC_protect_heap();
1759 GC_bool GC_page_was_dirty(h)
1760 struct hblk * h;
1762 register word index = PHT_HASH(h);
1764 return(HDR(h) == 0 || get_pht_entry_from_index(GC_grungy_pages, index));
1768 * Acquiring the allocation lock here is dangerous, since this
1769 * can be called from within GC_call_with_alloc_lock, and the cord
1770 * package does so. On systems that allow nested lock acquisition, this
1771 * happens to work.
1772 * On other systems, SET_LOCK_HOLDER and friends must be suitably defined.
1775 void GC_begin_syscall()
1777 if (!I_HOLD_LOCK()) LOCK();
1780 void GC_end_syscall()
1782 if (!I_HOLD_LOCK()) UNLOCK();
1785 void GC_unprotect_range(addr, len)
1786 ptr_t addr;
1787 word len;
1789 struct hblk * start_block;
1790 struct hblk * end_block;
1791 register struct hblk *h;
1792 ptr_t obj_start;
1794 if (!GC_incremental) return;
1795 obj_start = GC_base(addr);
1796 if (obj_start == 0) return;
1797 if (GC_base(addr + len - 1) != obj_start) {
1798 ABORT("GC_unprotect_range(range bigger than object)");
1800 start_block = (struct hblk *)((word)addr & ~(GC_page_size - 1));
1801 end_block = (struct hblk *)((word)(addr + len - 1) & ~(GC_page_size - 1));
1802 end_block += GC_page_size/HBLKSIZE - 1;
1803 for (h = start_block; h <= end_block; h++) {
1804 register word index = PHT_HASH(h);
1806 set_pht_entry_from_index(GC_dirty_pages, index);
1808 UNPROTECT(start_block,
1809 ((ptr_t)end_block - (ptr_t)start_block) + HBLKSIZE);
1812 #ifndef MSWIN32
1813 /* Replacement for UNIX system call. */
1814 /* Other calls that write to the heap */
1815 /* should be handled similarly. */
1816 # if defined(__STDC__) && !defined(SUNOS4)
1817 # include <unistd.h>
1818 ssize_t read(int fd, void *buf, size_t nbyte)
1819 # else
1820 # ifndef LINT
1821 int read(fd, buf, nbyte)
1822 # else
1823 int GC_read(fd, buf, nbyte)
1824 # endif
1825 int fd;
1826 char *buf;
1827 int nbyte;
1828 # endif
1830 int result;
1832 GC_begin_syscall();
1833 GC_unprotect_range(buf, (word)nbyte);
1834 # ifdef IRIX5
1835 /* Indirect system call may not always be easily available. */
1836 /* We could call _read, but that would interfere with the */
1837 /* libpthread interception of read. */
1839 struct iovec iov;
1841 iov.iov_base = buf;
1842 iov.iov_len = nbyte;
1843 result = readv(fd, &iov, 1);
1845 # else
1846 result = syscall(SYS_read, fd, buf, nbyte);
1847 # endif
1848 GC_end_syscall();
1849 return(result);
1851 #endif /* !MSWIN32 */
1853 /*ARGSUSED*/
1854 GC_bool GC_page_was_ever_dirty(h)
1855 struct hblk *h;
1857 return(TRUE);
1860 /* Reset the n pages starting at h to "was never dirty" status. */
1861 /*ARGSUSED*/
1862 void GC_is_fresh(h, n)
1863 struct hblk *h;
1864 word n;
1868 # endif /* MPROTECT_VDB */
1870 # ifdef PROC_VDB
1873 * See DEFAULT_VDB for interface descriptions.
1877 * This implementaion assumes a Solaris 2.X like /proc pseudo-file-system
1878 * from which we can read page modified bits. This facility is far from
1879 * optimal (e.g. we would like to get the info for only some of the
1880 * address space), but it avoids intercepting system calls.
1883 #include <errno.h>
1884 #include <sys/types.h>
1885 #include <sys/signal.h>
1886 #include <sys/fault.h>
1887 #include <sys/syscall.h>
1888 #include <sys/procfs.h>
1889 #include <sys/stat.h>
1890 #include <fcntl.h>
1892 #define INITIAL_BUF_SZ 4096
1893 word GC_proc_buf_size = INITIAL_BUF_SZ;
1894 char *GC_proc_buf;
1896 page_hash_table GC_written_pages = { 0 }; /* Pages ever dirtied */
1898 #ifdef SOLARIS_THREADS
1899 /* We don't have exact sp values for threads. So we count on */
1900 /* occasionally declaring stack pages to be fresh. Thus we */
1901 /* need a real implementation of GC_is_fresh. We can't clear */
1902 /* entries in GC_written_pages, since that would declare all */
1903 /* pages with the given hash address to be fresh. */
1904 # define MAX_FRESH_PAGES 8*1024 /* Must be power of 2 */
1905 struct hblk ** GC_fresh_pages; /* A direct mapped cache. */
1906 /* Collisions are dropped. */
1908 # define FRESH_PAGE_SLOT(h) (divHBLKSZ((word)(h)) & (MAX_FRESH_PAGES-1))
1909 # define ADD_FRESH_PAGE(h) \
1910 GC_fresh_pages[FRESH_PAGE_SLOT(h)] = (h)
1911 # define PAGE_IS_FRESH(h) \
1912 (GC_fresh_pages[FRESH_PAGE_SLOT(h)] == (h) && (h) != 0)
1913 #endif
1915 /* Add all pages in pht2 to pht1 */
1916 void GC_or_pages(pht1, pht2)
1917 page_hash_table pht1, pht2;
1919 register int i;
1921 for (i = 0; i < PHT_SIZE; i++) pht1[i] |= pht2[i];
1924 int GC_proc_fd;
1926 void GC_dirty_init()
1928 int fd;
1929 char buf[30];
1931 GC_dirty_maintained = TRUE;
1932 if (GC_words_allocd != 0 || GC_words_allocd_before_gc != 0) {
1933 register int i;
1935 for (i = 0; i < PHT_SIZE; i++) GC_written_pages[i] = (word)(-1);
1936 # ifdef PRINTSTATS
1937 GC_printf1("Allocated words:%lu:all pages may have been written\n",
1938 (unsigned long)
1939 (GC_words_allocd + GC_words_allocd_before_gc));
1940 # endif
1942 sprintf(buf, "/proc/%d", getpid());
1943 fd = open(buf, O_RDONLY);
1944 if (fd < 0) {
1945 ABORT("/proc open failed");
1947 GC_proc_fd = syscall(SYS_ioctl, fd, PIOCOPENPD, 0);
1948 close(fd);
1949 if (GC_proc_fd < 0) {
1950 ABORT("/proc ioctl failed");
1952 GC_proc_buf = GC_scratch_alloc(GC_proc_buf_size);
1953 # ifdef SOLARIS_THREADS
1954 GC_fresh_pages = (struct hblk **)
1955 GC_scratch_alloc(MAX_FRESH_PAGES * sizeof (struct hblk *));
1956 if (GC_fresh_pages == 0) {
1957 GC_err_printf0("No space for fresh pages\n");
1958 EXIT();
1960 BZERO(GC_fresh_pages, MAX_FRESH_PAGES * sizeof (struct hblk *));
1961 # endif
1964 /* Ignore write hints. They don't help us here. */
1965 /*ARGSUSED*/
1966 void GC_write_hint(h)
1967 struct hblk *h;
1971 #ifdef SOLARIS_THREADS
1972 # define READ(fd,buf,nbytes) syscall(SYS_read, fd, buf, nbytes)
1973 #else
1974 # define READ(fd,buf,nbytes) read(fd, buf, nbytes)
1975 #endif
1977 void GC_read_dirty()
1979 unsigned long ps, np;
1980 int nmaps;
1981 ptr_t vaddr;
1982 struct prasmap * map;
1983 char * bufp;
1984 ptr_t current_addr, limit;
1985 int i;
1986 int dummy;
1988 BZERO(GC_grungy_pages, (sizeof GC_grungy_pages));
1990 bufp = GC_proc_buf;
1991 if (READ(GC_proc_fd, bufp, GC_proc_buf_size) <= 0) {
1992 # ifdef PRINTSTATS
1993 GC_printf1("/proc read failed: GC_proc_buf_size = %lu\n",
1994 GC_proc_buf_size);
1995 # endif
1997 /* Retry with larger buffer. */
1998 word new_size = 2 * GC_proc_buf_size;
1999 char * new_buf = GC_scratch_alloc(new_size);
2001 if (new_buf != 0) {
2002 GC_proc_buf = bufp = new_buf;
2003 GC_proc_buf_size = new_size;
2005 if (syscall(SYS_read, GC_proc_fd, bufp, GC_proc_buf_size) <= 0) {
2006 WARN("Insufficient space for /proc read\n", 0);
2007 /* Punt: */
2008 memset(GC_grungy_pages, 0xff, sizeof (page_hash_table));
2009 memset(GC_written_pages, 0xff, sizeof(page_hash_table));
2010 # ifdef SOLARIS_THREADS
2011 BZERO(GC_fresh_pages,
2012 MAX_FRESH_PAGES * sizeof (struct hblk *));
2013 # endif
2014 return;
2018 /* Copy dirty bits into GC_grungy_pages */
2019 nmaps = ((struct prpageheader *)bufp) -> pr_nmap;
2020 /* printf( "nmaps = %d, PG_REFERENCED = %d, PG_MODIFIED = %d\n",
2021 nmaps, PG_REFERENCED, PG_MODIFIED); */
2022 bufp = bufp + sizeof(struct prpageheader);
2023 for (i = 0; i < nmaps; i++) {
2024 map = (struct prasmap *)bufp;
2025 vaddr = (ptr_t)(map -> pr_vaddr);
2026 ps = map -> pr_pagesize;
2027 np = map -> pr_npage;
2028 /* printf("vaddr = 0x%X, ps = 0x%X, np = 0x%X\n", vaddr, ps, np); */
2029 limit = vaddr + ps * np;
2030 bufp += sizeof (struct prasmap);
2031 for (current_addr = vaddr;
2032 current_addr < limit; current_addr += ps){
2033 if ((*bufp++) & PG_MODIFIED) {
2034 register struct hblk * h = (struct hblk *) current_addr;
2036 while ((ptr_t)h < current_addr + ps) {
2037 register word index = PHT_HASH(h);
2039 set_pht_entry_from_index(GC_grungy_pages, index);
2040 # ifdef SOLARIS_THREADS
2042 register int slot = FRESH_PAGE_SLOT(h);
2044 if (GC_fresh_pages[slot] == h) {
2045 GC_fresh_pages[slot] = 0;
2048 # endif
2049 h++;
2053 bufp += sizeof(long) - 1;
2054 bufp = (char *)((unsigned long)bufp & ~(sizeof(long)-1));
2056 /* Update GC_written_pages. */
2057 GC_or_pages(GC_written_pages, GC_grungy_pages);
2058 # ifdef SOLARIS_THREADS
2059 /* Make sure that old stacks are considered completely clean */
2060 /* unless written again. */
2061 GC_old_stacks_are_fresh();
2062 # endif
2065 #undef READ
2067 GC_bool GC_page_was_dirty(h)
2068 struct hblk *h;
2070 register word index = PHT_HASH(h);
2071 register GC_bool result;
2073 result = get_pht_entry_from_index(GC_grungy_pages, index);
2074 # ifdef SOLARIS_THREADS
2075 if (result && PAGE_IS_FRESH(h)) result = FALSE;
2076 /* This happens only if page was declared fresh since */
2077 /* the read_dirty call, e.g. because it's in an unused */
2078 /* thread stack. It's OK to treat it as clean, in */
2079 /* that case. And it's consistent with */
2080 /* GC_page_was_ever_dirty. */
2081 # endif
2082 return(result);
2085 GC_bool GC_page_was_ever_dirty(h)
2086 struct hblk *h;
2088 register word index = PHT_HASH(h);
2089 register GC_bool result;
2091 result = get_pht_entry_from_index(GC_written_pages, index);
2092 # ifdef SOLARIS_THREADS
2093 if (result && PAGE_IS_FRESH(h)) result = FALSE;
2094 # endif
2095 return(result);
2098 /* Caller holds allocation lock. */
2099 void GC_is_fresh(h, n)
2100 struct hblk *h;
2101 word n;
2104 register word index;
2106 # ifdef SOLARIS_THREADS
2107 register word i;
2109 if (GC_fresh_pages != 0) {
2110 for (i = 0; i < n; i++) {
2111 ADD_FRESH_PAGE(h + i);
2114 # endif
2117 # endif /* PROC_VDB */
2120 # ifdef PCR_VDB
2122 # include "vd/PCR_VD.h"
2124 # define NPAGES (32*1024) /* 128 MB */
2126 PCR_VD_DB GC_grungy_bits[NPAGES];
2128 ptr_t GC_vd_base; /* Address corresponding to GC_grungy_bits[0] */
2129 /* HBLKSIZE aligned. */
2131 void GC_dirty_init()
2133 GC_dirty_maintained = TRUE;
2134 /* For the time being, we assume the heap generally grows up */
2135 GC_vd_base = GC_heap_sects[0].hs_start;
2136 if (GC_vd_base == 0) {
2137 ABORT("Bad initial heap segment");
2139 if (PCR_VD_Start(HBLKSIZE, GC_vd_base, NPAGES*HBLKSIZE)
2140 != PCR_ERes_okay) {
2141 ABORT("dirty bit initialization failed");
2145 void GC_read_dirty()
2147 /* lazily enable dirty bits on newly added heap sects */
2149 static int onhs = 0;
2150 int nhs = GC_n_heap_sects;
2151 for( ; onhs < nhs; onhs++ ) {
2152 PCR_VD_WriteProtectEnable(
2153 GC_heap_sects[onhs].hs_start,
2154 GC_heap_sects[onhs].hs_bytes );
2159 if (PCR_VD_Clear(GC_vd_base, NPAGES*HBLKSIZE, GC_grungy_bits)
2160 != PCR_ERes_okay) {
2161 ABORT("dirty bit read failed");
2165 GC_bool GC_page_was_dirty(h)
2166 struct hblk *h;
2168 if((ptr_t)h < GC_vd_base || (ptr_t)h >= GC_vd_base + NPAGES*HBLKSIZE) {
2169 return(TRUE);
2171 return(GC_grungy_bits[h - (struct hblk *)GC_vd_base] & PCR_VD_DB_dirtyBit);
2174 /*ARGSUSED*/
2175 void GC_write_hint(h)
2176 struct hblk *h;
2178 PCR_VD_WriteProtectDisable(h, HBLKSIZE);
2179 PCR_VD_WriteProtectEnable(h, HBLKSIZE);
2182 # endif /* PCR_VDB */
2185 * Call stack save code for debugging.
2186 * Should probably be in mach_dep.c, but that requires reorganization.
2188 #if defined(SPARC)
2189 # if defined(SUNOS4)
2190 # include <machine/frame.h>
2191 # else
2192 # if defined (DRSNX)
2193 # include <sys/sparc/frame.h>
2194 # else
2195 # include <sys/frame.h>
2196 # endif
2197 # endif
2198 # if NARGS > 6
2199 --> We only know how to to get the first 6 arguments
2200 # endif
2202 #ifdef SAVE_CALL_CHAIN
2203 /* Fill in the pc and argument information for up to NFRAMES of my */
2204 /* callers. Ignore my frame and my callers frame. */
2205 void GC_save_callers (info)
2206 struct callinfo info[NFRAMES];
2208 struct frame *frame;
2209 struct frame *fp;
2210 int nframes = 0;
2211 word GC_save_regs_in_stack();
2213 frame = (struct frame *) GC_save_regs_in_stack ();
2215 for (fp = frame -> fr_savfp; fp != 0 && nframes < NFRAMES;
2216 fp = fp -> fr_savfp, nframes++) {
2217 register int i;
2219 info[nframes].ci_pc = fp->fr_savpc;
2220 for (i = 0; i < NARGS; i++) {
2221 info[nframes].ci_arg[i] = ~(fp->fr_arg[i]);
2224 if (nframes < NFRAMES) info[nframes].ci_pc = 0;
2227 #endif /* SAVE_CALL_CHAIN */
2228 #endif /* SPARC */