re PR rtl-optimization/34522 (inefficient code for long long multiply when only low...
[official-gcc.git] / gcc / expmed.c
blob04071d375ed9a81700084ad034eeb0809f3889c8
1 /* Medium-level subroutines: convert bit-field store and extract
2 and shifts, multiplies and divides to rtl instructions.
3 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "toplev.h"
29 #include "rtl.h"
30 #include "tree.h"
31 #include "tm_p.h"
32 #include "flags.h"
33 #include "insn-config.h"
34 #include "expr.h"
35 #include "optabs.h"
36 #include "real.h"
37 #include "recog.h"
38 #include "langhooks.h"
39 #include "df.h"
40 #include "target.h"
42 static void store_fixed_bit_field (rtx, unsigned HOST_WIDE_INT,
43 unsigned HOST_WIDE_INT,
44 unsigned HOST_WIDE_INT, rtx);
45 static void store_split_bit_field (rtx, unsigned HOST_WIDE_INT,
46 unsigned HOST_WIDE_INT, rtx);
47 static rtx extract_fixed_bit_field (enum machine_mode, rtx,
48 unsigned HOST_WIDE_INT,
49 unsigned HOST_WIDE_INT,
50 unsigned HOST_WIDE_INT, rtx, int);
51 static rtx mask_rtx (enum machine_mode, int, int, int);
52 static rtx lshift_value (enum machine_mode, rtx, int, int);
53 static rtx extract_split_bit_field (rtx, unsigned HOST_WIDE_INT,
54 unsigned HOST_WIDE_INT, int);
55 static void do_cmp_and_jump (rtx, rtx, enum rtx_code, enum machine_mode, rtx);
56 static rtx expand_smod_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
57 static rtx expand_sdiv_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
59 /* Test whether a value is zero of a power of two. */
60 #define EXACT_POWER_OF_2_OR_ZERO_P(x) (((x) & ((x) - 1)) == 0)
62 /* Nonzero means divides or modulus operations are relatively cheap for
63 powers of two, so don't use branches; emit the operation instead.
64 Usually, this will mean that the MD file will emit non-branch
65 sequences. */
67 static bool sdiv_pow2_cheap[NUM_MACHINE_MODES];
68 static bool smod_pow2_cheap[NUM_MACHINE_MODES];
70 #ifndef SLOW_UNALIGNED_ACCESS
71 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
72 #endif
74 /* For compilers that support multiple targets with different word sizes,
75 MAX_BITS_PER_WORD contains the biggest value of BITS_PER_WORD. An example
76 is the H8/300(H) compiler. */
78 #ifndef MAX_BITS_PER_WORD
79 #define MAX_BITS_PER_WORD BITS_PER_WORD
80 #endif
82 /* Reduce conditional compilation elsewhere. */
83 #ifndef HAVE_insv
84 #define HAVE_insv 0
85 #define CODE_FOR_insv CODE_FOR_nothing
86 #define gen_insv(a,b,c,d) NULL_RTX
87 #endif
88 #ifndef HAVE_extv
89 #define HAVE_extv 0
90 #define CODE_FOR_extv CODE_FOR_nothing
91 #define gen_extv(a,b,c,d) NULL_RTX
92 #endif
93 #ifndef HAVE_extzv
94 #define HAVE_extzv 0
95 #define CODE_FOR_extzv CODE_FOR_nothing
96 #define gen_extzv(a,b,c,d) NULL_RTX
97 #endif
99 /* Cost of various pieces of RTL. Note that some of these are indexed by
100 shift count and some by mode. */
101 static int zero_cost;
102 static int add_cost[NUM_MACHINE_MODES];
103 static int neg_cost[NUM_MACHINE_MODES];
104 static int shift_cost[NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
105 static int shiftadd_cost[NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
106 static int shiftsub_cost[NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
107 static int mul_cost[NUM_MACHINE_MODES];
108 static int sdiv_cost[NUM_MACHINE_MODES];
109 static int udiv_cost[NUM_MACHINE_MODES];
110 static int mul_widen_cost[NUM_MACHINE_MODES];
111 static int mul_highpart_cost[NUM_MACHINE_MODES];
113 void
114 init_expmed (void)
116 struct
118 struct rtx_def reg; rtunion reg_fld[2];
119 struct rtx_def plus; rtunion plus_fld1;
120 struct rtx_def neg;
121 struct rtx_def mult; rtunion mult_fld1;
122 struct rtx_def sdiv; rtunion sdiv_fld1;
123 struct rtx_def udiv; rtunion udiv_fld1;
124 struct rtx_def zext;
125 struct rtx_def sdiv_32; rtunion sdiv_32_fld1;
126 struct rtx_def smod_32; rtunion smod_32_fld1;
127 struct rtx_def wide_mult; rtunion wide_mult_fld1;
128 struct rtx_def wide_lshr; rtunion wide_lshr_fld1;
129 struct rtx_def wide_trunc;
130 struct rtx_def shift; rtunion shift_fld1;
131 struct rtx_def shift_mult; rtunion shift_mult_fld1;
132 struct rtx_def shift_add; rtunion shift_add_fld1;
133 struct rtx_def shift_sub; rtunion shift_sub_fld1;
134 } all;
136 rtx pow2[MAX_BITS_PER_WORD];
137 rtx cint[MAX_BITS_PER_WORD];
138 int m, n;
139 enum machine_mode mode, wider_mode;
141 zero_cost = rtx_cost (const0_rtx, 0);
143 for (m = 1; m < MAX_BITS_PER_WORD; m++)
145 pow2[m] = GEN_INT ((HOST_WIDE_INT) 1 << m);
146 cint[m] = GEN_INT (m);
149 memset (&all, 0, sizeof all);
151 PUT_CODE (&all.reg, REG);
152 /* Avoid using hard regs in ways which may be unsupported. */
153 SET_REGNO (&all.reg, LAST_VIRTUAL_REGISTER + 1);
155 PUT_CODE (&all.plus, PLUS);
156 XEXP (&all.plus, 0) = &all.reg;
157 XEXP (&all.plus, 1) = &all.reg;
159 PUT_CODE (&all.neg, NEG);
160 XEXP (&all.neg, 0) = &all.reg;
162 PUT_CODE (&all.mult, MULT);
163 XEXP (&all.mult, 0) = &all.reg;
164 XEXP (&all.mult, 1) = &all.reg;
166 PUT_CODE (&all.sdiv, DIV);
167 XEXP (&all.sdiv, 0) = &all.reg;
168 XEXP (&all.sdiv, 1) = &all.reg;
170 PUT_CODE (&all.udiv, UDIV);
171 XEXP (&all.udiv, 0) = &all.reg;
172 XEXP (&all.udiv, 1) = &all.reg;
174 PUT_CODE (&all.sdiv_32, DIV);
175 XEXP (&all.sdiv_32, 0) = &all.reg;
176 XEXP (&all.sdiv_32, 1) = 32 < MAX_BITS_PER_WORD ? cint[32] : GEN_INT (32);
178 PUT_CODE (&all.smod_32, MOD);
179 XEXP (&all.smod_32, 0) = &all.reg;
180 XEXP (&all.smod_32, 1) = XEXP (&all.sdiv_32, 1);
182 PUT_CODE (&all.zext, ZERO_EXTEND);
183 XEXP (&all.zext, 0) = &all.reg;
185 PUT_CODE (&all.wide_mult, MULT);
186 XEXP (&all.wide_mult, 0) = &all.zext;
187 XEXP (&all.wide_mult, 1) = &all.zext;
189 PUT_CODE (&all.wide_lshr, LSHIFTRT);
190 XEXP (&all.wide_lshr, 0) = &all.wide_mult;
192 PUT_CODE (&all.wide_trunc, TRUNCATE);
193 XEXP (&all.wide_trunc, 0) = &all.wide_lshr;
195 PUT_CODE (&all.shift, ASHIFT);
196 XEXP (&all.shift, 0) = &all.reg;
198 PUT_CODE (&all.shift_mult, MULT);
199 XEXP (&all.shift_mult, 0) = &all.reg;
201 PUT_CODE (&all.shift_add, PLUS);
202 XEXP (&all.shift_add, 0) = &all.shift_mult;
203 XEXP (&all.shift_add, 1) = &all.reg;
205 PUT_CODE (&all.shift_sub, MINUS);
206 XEXP (&all.shift_sub, 0) = &all.shift_mult;
207 XEXP (&all.shift_sub, 1) = &all.reg;
209 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
210 mode != VOIDmode;
211 mode = GET_MODE_WIDER_MODE (mode))
213 PUT_MODE (&all.reg, mode);
214 PUT_MODE (&all.plus, mode);
215 PUT_MODE (&all.neg, mode);
216 PUT_MODE (&all.mult, mode);
217 PUT_MODE (&all.sdiv, mode);
218 PUT_MODE (&all.udiv, mode);
219 PUT_MODE (&all.sdiv_32, mode);
220 PUT_MODE (&all.smod_32, mode);
221 PUT_MODE (&all.wide_trunc, mode);
222 PUT_MODE (&all.shift, mode);
223 PUT_MODE (&all.shift_mult, mode);
224 PUT_MODE (&all.shift_add, mode);
225 PUT_MODE (&all.shift_sub, mode);
227 add_cost[mode] = rtx_cost (&all.plus, SET);
228 neg_cost[mode] = rtx_cost (&all.neg, SET);
229 mul_cost[mode] = rtx_cost (&all.mult, SET);
230 sdiv_cost[mode] = rtx_cost (&all.sdiv, SET);
231 udiv_cost[mode] = rtx_cost (&all.udiv, SET);
233 sdiv_pow2_cheap[mode] = (rtx_cost (&all.sdiv_32, SET)
234 <= 2 * add_cost[mode]);
235 smod_pow2_cheap[mode] = (rtx_cost (&all.smod_32, SET)
236 <= 4 * add_cost[mode]);
238 wider_mode = GET_MODE_WIDER_MODE (mode);
239 if (wider_mode != VOIDmode)
241 PUT_MODE (&all.zext, wider_mode);
242 PUT_MODE (&all.wide_mult, wider_mode);
243 PUT_MODE (&all.wide_lshr, wider_mode);
244 XEXP (&all.wide_lshr, 1) = GEN_INT (GET_MODE_BITSIZE (mode));
246 mul_widen_cost[wider_mode] = rtx_cost (&all.wide_mult, SET);
247 mul_highpart_cost[mode] = rtx_cost (&all.wide_trunc, SET);
250 shift_cost[mode][0] = 0;
251 shiftadd_cost[mode][0] = shiftsub_cost[mode][0] = add_cost[mode];
253 n = MIN (MAX_BITS_PER_WORD, GET_MODE_BITSIZE (mode));
254 for (m = 1; m < n; m++)
256 XEXP (&all.shift, 1) = cint[m];
257 XEXP (&all.shift_mult, 1) = pow2[m];
259 shift_cost[mode][m] = rtx_cost (&all.shift, SET);
260 shiftadd_cost[mode][m] = rtx_cost (&all.shift_add, SET);
261 shiftsub_cost[mode][m] = rtx_cost (&all.shift_sub, SET);
266 /* Return an rtx representing minus the value of X.
267 MODE is the intended mode of the result,
268 useful if X is a CONST_INT. */
271 negate_rtx (enum machine_mode mode, rtx x)
273 rtx result = simplify_unary_operation (NEG, mode, x, mode);
275 if (result == 0)
276 result = expand_unop (mode, neg_optab, x, NULL_RTX, 0);
278 return result;
281 /* Report on the availability of insv/extv/extzv and the desired mode
282 of each of their operands. Returns MAX_MACHINE_MODE if HAVE_foo
283 is false; else the mode of the specified operand. If OPNO is -1,
284 all the caller cares about is whether the insn is available. */
285 enum machine_mode
286 mode_for_extraction (enum extraction_pattern pattern, int opno)
288 const struct insn_data *data;
290 switch (pattern)
292 case EP_insv:
293 if (HAVE_insv)
295 data = &insn_data[CODE_FOR_insv];
296 break;
298 return MAX_MACHINE_MODE;
300 case EP_extv:
301 if (HAVE_extv)
303 data = &insn_data[CODE_FOR_extv];
304 break;
306 return MAX_MACHINE_MODE;
308 case EP_extzv:
309 if (HAVE_extzv)
311 data = &insn_data[CODE_FOR_extzv];
312 break;
314 return MAX_MACHINE_MODE;
316 default:
317 gcc_unreachable ();
320 if (opno == -1)
321 return VOIDmode;
323 /* Everyone who uses this function used to follow it with
324 if (result == VOIDmode) result = word_mode; */
325 if (data->operand[opno].mode == VOIDmode)
326 return word_mode;
327 return data->operand[opno].mode;
330 /* Return true if X, of mode MODE, matches the predicate for operand
331 OPNO of instruction ICODE. Allow volatile memories, regardless of
332 the ambient volatile_ok setting. */
334 static bool
335 check_predicate_volatile_ok (enum insn_code icode, int opno,
336 rtx x, enum machine_mode mode)
338 bool save_volatile_ok, result;
340 save_volatile_ok = volatile_ok;
341 result = insn_data[(int) icode].operand[opno].predicate (x, mode);
342 volatile_ok = save_volatile_ok;
343 return result;
346 /* A subroutine of store_bit_field, with the same arguments. Return true
347 if the operation could be implemented.
349 If FALLBACK_P is true, fall back to store_fixed_bit_field if we have
350 no other way of implementing the operation. If FALLBACK_P is false,
351 return false instead. */
353 static bool
354 store_bit_field_1 (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
355 unsigned HOST_WIDE_INT bitnum, enum machine_mode fieldmode,
356 rtx value, bool fallback_p)
358 unsigned int unit
359 = (MEM_P (str_rtx)) ? BITS_PER_UNIT : BITS_PER_WORD;
360 unsigned HOST_WIDE_INT offset, bitpos;
361 rtx op0 = str_rtx;
362 int byte_offset;
363 rtx orig_value;
365 enum machine_mode op_mode = mode_for_extraction (EP_insv, 3);
367 while (GET_CODE (op0) == SUBREG)
369 /* The following line once was done only if WORDS_BIG_ENDIAN,
370 but I think that is a mistake. WORDS_BIG_ENDIAN is
371 meaningful at a much higher level; when structures are copied
372 between memory and regs, the higher-numbered regs
373 always get higher addresses. */
374 int inner_mode_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)));
375 int outer_mode_size = GET_MODE_SIZE (GET_MODE (op0));
377 byte_offset = 0;
379 /* Paradoxical subregs need special handling on big endian machines. */
380 if (SUBREG_BYTE (op0) == 0 && inner_mode_size < outer_mode_size)
382 int difference = inner_mode_size - outer_mode_size;
384 if (WORDS_BIG_ENDIAN)
385 byte_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
386 if (BYTES_BIG_ENDIAN)
387 byte_offset += difference % UNITS_PER_WORD;
389 else
390 byte_offset = SUBREG_BYTE (op0);
392 bitnum += byte_offset * BITS_PER_UNIT;
393 op0 = SUBREG_REG (op0);
396 /* No action is needed if the target is a register and if the field
397 lies completely outside that register. This can occur if the source
398 code contains an out-of-bounds access to a small array. */
399 if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
400 return true;
402 /* Use vec_set patterns for inserting parts of vectors whenever
403 available. */
404 if (VECTOR_MODE_P (GET_MODE (op0))
405 && !MEM_P (op0)
406 && (optab_handler (vec_set_optab, GET_MODE (op0))->insn_code
407 != CODE_FOR_nothing)
408 && fieldmode == GET_MODE_INNER (GET_MODE (op0))
409 && bitsize == GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
410 && !(bitnum % GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
412 enum machine_mode outermode = GET_MODE (op0);
413 enum machine_mode innermode = GET_MODE_INNER (outermode);
414 int icode = (int) optab_handler (vec_set_optab, outermode)->insn_code;
415 int pos = bitnum / GET_MODE_BITSIZE (innermode);
416 rtx rtxpos = GEN_INT (pos);
417 rtx src = value;
418 rtx dest = op0;
419 rtx pat, seq;
420 enum machine_mode mode0 = insn_data[icode].operand[0].mode;
421 enum machine_mode mode1 = insn_data[icode].operand[1].mode;
422 enum machine_mode mode2 = insn_data[icode].operand[2].mode;
424 start_sequence ();
426 if (! (*insn_data[icode].operand[1].predicate) (src, mode1))
427 src = copy_to_mode_reg (mode1, src);
429 if (! (*insn_data[icode].operand[2].predicate) (rtxpos, mode2))
430 rtxpos = copy_to_mode_reg (mode1, rtxpos);
432 /* We could handle this, but we should always be called with a pseudo
433 for our targets and all insns should take them as outputs. */
434 gcc_assert ((*insn_data[icode].operand[0].predicate) (dest, mode0)
435 && (*insn_data[icode].operand[1].predicate) (src, mode1)
436 && (*insn_data[icode].operand[2].predicate) (rtxpos, mode2));
437 pat = GEN_FCN (icode) (dest, src, rtxpos);
438 seq = get_insns ();
439 end_sequence ();
440 if (pat)
442 emit_insn (seq);
443 emit_insn (pat);
444 return true;
448 /* If the target is a register, overwriting the entire object, or storing
449 a full-word or multi-word field can be done with just a SUBREG.
451 If the target is memory, storing any naturally aligned field can be
452 done with a simple store. For targets that support fast unaligned
453 memory, any naturally sized, unit aligned field can be done directly. */
455 offset = bitnum / unit;
456 bitpos = bitnum % unit;
457 byte_offset = (bitnum % BITS_PER_WORD) / BITS_PER_UNIT
458 + (offset * UNITS_PER_WORD);
460 if (bitpos == 0
461 && bitsize == GET_MODE_BITSIZE (fieldmode)
462 && (!MEM_P (op0)
463 ? ((GET_MODE_SIZE (fieldmode) >= UNITS_PER_WORD
464 || GET_MODE_SIZE (GET_MODE (op0)) == GET_MODE_SIZE (fieldmode))
465 && byte_offset % GET_MODE_SIZE (fieldmode) == 0)
466 : (! SLOW_UNALIGNED_ACCESS (fieldmode, MEM_ALIGN (op0))
467 || (offset * BITS_PER_UNIT % bitsize == 0
468 && MEM_ALIGN (op0) % GET_MODE_BITSIZE (fieldmode) == 0))))
470 if (MEM_P (op0))
471 op0 = adjust_address (op0, fieldmode, offset);
472 else if (GET_MODE (op0) != fieldmode)
473 op0 = simplify_gen_subreg (fieldmode, op0, GET_MODE (op0),
474 byte_offset);
475 emit_move_insn (op0, value);
476 return true;
479 /* Make sure we are playing with integral modes. Pun with subregs
480 if we aren't. This must come after the entire register case above,
481 since that case is valid for any mode. The following cases are only
482 valid for integral modes. */
484 enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
485 if (imode != GET_MODE (op0))
487 if (MEM_P (op0))
488 op0 = adjust_address (op0, imode, 0);
489 else
491 gcc_assert (imode != BLKmode);
492 op0 = gen_lowpart (imode, op0);
497 /* We may be accessing data outside the field, which means
498 we can alias adjacent data. */
499 if (MEM_P (op0))
501 op0 = shallow_copy_rtx (op0);
502 set_mem_alias_set (op0, 0);
503 set_mem_expr (op0, 0);
506 /* If OP0 is a register, BITPOS must count within a word.
507 But as we have it, it counts within whatever size OP0 now has.
508 On a bigendian machine, these are not the same, so convert. */
509 if (BYTES_BIG_ENDIAN
510 && !MEM_P (op0)
511 && unit > GET_MODE_BITSIZE (GET_MODE (op0)))
512 bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
514 /* Storing an lsb-aligned field in a register
515 can be done with a movestrict instruction. */
517 if (!MEM_P (op0)
518 && (BYTES_BIG_ENDIAN ? bitpos + bitsize == unit : bitpos == 0)
519 && bitsize == GET_MODE_BITSIZE (fieldmode)
520 && (optab_handler (movstrict_optab, fieldmode)->insn_code
521 != CODE_FOR_nothing))
523 int icode = optab_handler (movstrict_optab, fieldmode)->insn_code;
525 /* Get appropriate low part of the value being stored. */
526 if (GET_CODE (value) == CONST_INT || REG_P (value))
527 value = gen_lowpart (fieldmode, value);
528 else if (!(GET_CODE (value) == SYMBOL_REF
529 || GET_CODE (value) == LABEL_REF
530 || GET_CODE (value) == CONST))
531 value = convert_to_mode (fieldmode, value, 0);
533 if (! (*insn_data[icode].operand[1].predicate) (value, fieldmode))
534 value = copy_to_mode_reg (fieldmode, value);
536 if (GET_CODE (op0) == SUBREG)
538 /* Else we've got some float mode source being extracted into
539 a different float mode destination -- this combination of
540 subregs results in Severe Tire Damage. */
541 gcc_assert (GET_MODE (SUBREG_REG (op0)) == fieldmode
542 || GET_MODE_CLASS (fieldmode) == MODE_INT
543 || GET_MODE_CLASS (fieldmode) == MODE_PARTIAL_INT);
544 op0 = SUBREG_REG (op0);
547 emit_insn (GEN_FCN (icode)
548 (gen_rtx_SUBREG (fieldmode, op0,
549 (bitnum % BITS_PER_WORD) / BITS_PER_UNIT
550 + (offset * UNITS_PER_WORD)),
551 value));
553 return true;
556 /* Handle fields bigger than a word. */
558 if (bitsize > BITS_PER_WORD)
560 /* Here we transfer the words of the field
561 in the order least significant first.
562 This is because the most significant word is the one which may
563 be less than full.
564 However, only do that if the value is not BLKmode. */
566 unsigned int backwards = WORDS_BIG_ENDIAN && fieldmode != BLKmode;
567 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
568 unsigned int i;
569 rtx last;
571 /* This is the mode we must force value to, so that there will be enough
572 subwords to extract. Note that fieldmode will often (always?) be
573 VOIDmode, because that is what store_field uses to indicate that this
574 is a bit field, but passing VOIDmode to operand_subword_force
575 is not allowed. */
576 fieldmode = GET_MODE (value);
577 if (fieldmode == VOIDmode)
578 fieldmode = smallest_mode_for_size (nwords * BITS_PER_WORD, MODE_INT);
580 last = get_last_insn ();
581 for (i = 0; i < nwords; i++)
583 /* If I is 0, use the low-order word in both field and target;
584 if I is 1, use the next to lowest word; and so on. */
585 unsigned int wordnum = (backwards ? nwords - i - 1 : i);
586 unsigned int bit_offset = (backwards
587 ? MAX ((int) bitsize - ((int) i + 1)
588 * BITS_PER_WORD,
590 : (int) i * BITS_PER_WORD);
591 rtx value_word = operand_subword_force (value, wordnum, fieldmode);
593 if (!store_bit_field_1 (op0, MIN (BITS_PER_WORD,
594 bitsize - i * BITS_PER_WORD),
595 bitnum + bit_offset, word_mode,
596 value_word, fallback_p))
598 delete_insns_since (last);
599 return false;
602 return true;
605 /* From here on we can assume that the field to be stored in is
606 a full-word (whatever type that is), since it is shorter than a word. */
608 /* OFFSET is the number of words or bytes (UNIT says which)
609 from STR_RTX to the first word or byte containing part of the field. */
611 if (!MEM_P (op0))
613 if (offset != 0
614 || GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
616 if (!REG_P (op0))
618 /* Since this is a destination (lvalue), we can't copy
619 it to a pseudo. We can remove a SUBREG that does not
620 change the size of the operand. Such a SUBREG may
621 have been added above. */
622 gcc_assert (GET_CODE (op0) == SUBREG
623 && (GET_MODE_SIZE (GET_MODE (op0))
624 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))));
625 op0 = SUBREG_REG (op0);
627 op0 = gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD, MODE_INT, 0),
628 op0, (offset * UNITS_PER_WORD));
630 offset = 0;
633 /* If VALUE has a floating-point or complex mode, access it as an
634 integer of the corresponding size. This can occur on a machine
635 with 64 bit registers that uses SFmode for float. It can also
636 occur for unaligned float or complex fields. */
637 orig_value = value;
638 if (GET_MODE (value) != VOIDmode
639 && GET_MODE_CLASS (GET_MODE (value)) != MODE_INT
640 && GET_MODE_CLASS (GET_MODE (value)) != MODE_PARTIAL_INT)
642 value = gen_reg_rtx (int_mode_for_mode (GET_MODE (value)));
643 emit_move_insn (gen_lowpart (GET_MODE (orig_value), value), orig_value);
646 /* Now OFFSET is nonzero only if OP0 is memory
647 and is therefore always measured in bytes. */
649 if (HAVE_insv
650 && GET_MODE (value) != BLKmode
651 && bitsize > 0
652 && GET_MODE_BITSIZE (op_mode) >= bitsize
653 && ! ((REG_P (op0) || GET_CODE (op0) == SUBREG)
654 && (bitsize + bitpos > GET_MODE_BITSIZE (op_mode)))
655 && insn_data[CODE_FOR_insv].operand[1].predicate (GEN_INT (bitsize),
656 VOIDmode)
657 && check_predicate_volatile_ok (CODE_FOR_insv, 0, op0, VOIDmode))
659 int xbitpos = bitpos;
660 rtx value1;
661 rtx xop0 = op0;
662 rtx last = get_last_insn ();
663 rtx pat;
665 /* Add OFFSET into OP0's address. */
666 if (MEM_P (xop0))
667 xop0 = adjust_address (xop0, byte_mode, offset);
669 /* If xop0 is a register, we need it in OP_MODE
670 to make it acceptable to the format of insv. */
671 if (GET_CODE (xop0) == SUBREG)
672 /* We can't just change the mode, because this might clobber op0,
673 and we will need the original value of op0 if insv fails. */
674 xop0 = gen_rtx_SUBREG (op_mode, SUBREG_REG (xop0), SUBREG_BYTE (xop0));
675 if (REG_P (xop0) && GET_MODE (xop0) != op_mode)
676 xop0 = gen_rtx_SUBREG (op_mode, xop0, 0);
678 /* On big-endian machines, we count bits from the most significant.
679 If the bit field insn does not, we must invert. */
681 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
682 xbitpos = unit - bitsize - xbitpos;
684 /* We have been counting XBITPOS within UNIT.
685 Count instead within the size of the register. */
686 if (BITS_BIG_ENDIAN && !MEM_P (xop0))
687 xbitpos += GET_MODE_BITSIZE (op_mode) - unit;
689 unit = GET_MODE_BITSIZE (op_mode);
691 /* Convert VALUE to op_mode (which insv insn wants) in VALUE1. */
692 value1 = value;
693 if (GET_MODE (value) != op_mode)
695 if (GET_MODE_BITSIZE (GET_MODE (value)) >= bitsize)
697 /* Optimization: Don't bother really extending VALUE
698 if it has all the bits we will actually use. However,
699 if we must narrow it, be sure we do it correctly. */
701 if (GET_MODE_SIZE (GET_MODE (value)) < GET_MODE_SIZE (op_mode))
703 rtx tmp;
705 tmp = simplify_subreg (op_mode, value1, GET_MODE (value), 0);
706 if (! tmp)
707 tmp = simplify_gen_subreg (op_mode,
708 force_reg (GET_MODE (value),
709 value1),
710 GET_MODE (value), 0);
711 value1 = tmp;
713 else
714 value1 = gen_lowpart (op_mode, value1);
716 else if (GET_CODE (value) == CONST_INT)
717 value1 = gen_int_mode (INTVAL (value), op_mode);
718 else
719 /* Parse phase is supposed to make VALUE's data type
720 match that of the component reference, which is a type
721 at least as wide as the field; so VALUE should have
722 a mode that corresponds to that type. */
723 gcc_assert (CONSTANT_P (value));
726 /* If this machine's insv insists on a register,
727 get VALUE1 into a register. */
728 if (! ((*insn_data[(int) CODE_FOR_insv].operand[3].predicate)
729 (value1, op_mode)))
730 value1 = force_reg (op_mode, value1);
732 pat = gen_insv (xop0, GEN_INT (bitsize), GEN_INT (xbitpos), value1);
733 if (pat)
735 emit_insn (pat);
736 return true;
738 delete_insns_since (last);
741 /* If OP0 is a memory, try copying it to a register and seeing if a
742 cheap register alternative is available. */
743 if (HAVE_insv && MEM_P (op0))
745 enum machine_mode bestmode;
747 /* Get the mode to use for inserting into this field. If OP0 is
748 BLKmode, get the smallest mode consistent with the alignment. If
749 OP0 is a non-BLKmode object that is no wider than OP_MODE, use its
750 mode. Otherwise, use the smallest mode containing the field. */
752 if (GET_MODE (op0) == BLKmode
753 || (op_mode != MAX_MACHINE_MODE
754 && GET_MODE_SIZE (GET_MODE (op0)) > GET_MODE_SIZE (op_mode)))
755 bestmode = get_best_mode (bitsize, bitnum, MEM_ALIGN (op0),
756 (op_mode == MAX_MACHINE_MODE
757 ? VOIDmode : op_mode),
758 MEM_VOLATILE_P (op0));
759 else
760 bestmode = GET_MODE (op0);
762 if (bestmode != VOIDmode
763 && GET_MODE_SIZE (bestmode) >= GET_MODE_SIZE (fieldmode)
764 && !(SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (op0))
765 && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (op0)))
767 rtx last, tempreg, xop0;
768 unsigned HOST_WIDE_INT xoffset, xbitpos;
770 last = get_last_insn ();
772 /* Adjust address to point to the containing unit of
773 that mode. Compute the offset as a multiple of this unit,
774 counting in bytes. */
775 unit = GET_MODE_BITSIZE (bestmode);
776 xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
777 xbitpos = bitnum % unit;
778 xop0 = adjust_address (op0, bestmode, xoffset);
780 /* Fetch that unit, store the bitfield in it, then store
781 the unit. */
782 tempreg = copy_to_reg (xop0);
783 if (store_bit_field_1 (tempreg, bitsize, xbitpos,
784 fieldmode, orig_value, false))
786 emit_move_insn (xop0, tempreg);
787 return true;
789 delete_insns_since (last);
793 if (!fallback_p)
794 return false;
796 store_fixed_bit_field (op0, offset, bitsize, bitpos, value);
797 return true;
800 /* Generate code to store value from rtx VALUE
801 into a bit-field within structure STR_RTX
802 containing BITSIZE bits starting at bit BITNUM.
803 FIELDMODE is the machine-mode of the FIELD_DECL node for this field. */
805 void
806 store_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
807 unsigned HOST_WIDE_INT bitnum, enum machine_mode fieldmode,
808 rtx value)
810 if (!store_bit_field_1 (str_rtx, bitsize, bitnum, fieldmode, value, true))
811 gcc_unreachable ();
814 /* Use shifts and boolean operations to store VALUE
815 into a bit field of width BITSIZE
816 in a memory location specified by OP0 except offset by OFFSET bytes.
817 (OFFSET must be 0 if OP0 is a register.)
818 The field starts at position BITPOS within the byte.
819 (If OP0 is a register, it may be a full word or a narrower mode,
820 but BITPOS still counts within a full word,
821 which is significant on bigendian machines.) */
823 static void
824 store_fixed_bit_field (rtx op0, unsigned HOST_WIDE_INT offset,
825 unsigned HOST_WIDE_INT bitsize,
826 unsigned HOST_WIDE_INT bitpos, rtx value)
828 enum machine_mode mode;
829 unsigned int total_bits = BITS_PER_WORD;
830 rtx temp;
831 int all_zero = 0;
832 int all_one = 0;
834 /* There is a case not handled here:
835 a structure with a known alignment of just a halfword
836 and a field split across two aligned halfwords within the structure.
837 Or likewise a structure with a known alignment of just a byte
838 and a field split across two bytes.
839 Such cases are not supposed to be able to occur. */
841 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
843 gcc_assert (!offset);
844 /* Special treatment for a bit field split across two registers. */
845 if (bitsize + bitpos > BITS_PER_WORD)
847 store_split_bit_field (op0, bitsize, bitpos, value);
848 return;
851 else
853 /* Get the proper mode to use for this field. We want a mode that
854 includes the entire field. If such a mode would be larger than
855 a word, we won't be doing the extraction the normal way.
856 We don't want a mode bigger than the destination. */
858 mode = GET_MODE (op0);
859 if (GET_MODE_BITSIZE (mode) == 0
860 || GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (word_mode))
861 mode = word_mode;
862 mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
863 MEM_ALIGN (op0), mode, MEM_VOLATILE_P (op0));
865 if (mode == VOIDmode)
867 /* The only way this should occur is if the field spans word
868 boundaries. */
869 store_split_bit_field (op0, bitsize, bitpos + offset * BITS_PER_UNIT,
870 value);
871 return;
874 total_bits = GET_MODE_BITSIZE (mode);
876 /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
877 be in the range 0 to total_bits-1, and put any excess bytes in
878 OFFSET. */
879 if (bitpos >= total_bits)
881 offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
882 bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
883 * BITS_PER_UNIT);
886 /* Get ref to an aligned byte, halfword, or word containing the field.
887 Adjust BITPOS to be position within a word,
888 and OFFSET to be the offset of that word.
889 Then alter OP0 to refer to that word. */
890 bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
891 offset -= (offset % (total_bits / BITS_PER_UNIT));
892 op0 = adjust_address (op0, mode, offset);
895 mode = GET_MODE (op0);
897 /* Now MODE is either some integral mode for a MEM as OP0,
898 or is a full-word for a REG as OP0. TOTAL_BITS corresponds.
899 The bit field is contained entirely within OP0.
900 BITPOS is the starting bit number within OP0.
901 (OP0's mode may actually be narrower than MODE.) */
903 if (BYTES_BIG_ENDIAN)
904 /* BITPOS is the distance between our msb
905 and that of the containing datum.
906 Convert it to the distance from the lsb. */
907 bitpos = total_bits - bitsize - bitpos;
909 /* Now BITPOS is always the distance between our lsb
910 and that of OP0. */
912 /* Shift VALUE left by BITPOS bits. If VALUE is not constant,
913 we must first convert its mode to MODE. */
915 if (GET_CODE (value) == CONST_INT)
917 HOST_WIDE_INT v = INTVAL (value);
919 if (bitsize < HOST_BITS_PER_WIDE_INT)
920 v &= ((HOST_WIDE_INT) 1 << bitsize) - 1;
922 if (v == 0)
923 all_zero = 1;
924 else if ((bitsize < HOST_BITS_PER_WIDE_INT
925 && v == ((HOST_WIDE_INT) 1 << bitsize) - 1)
926 || (bitsize == HOST_BITS_PER_WIDE_INT && v == -1))
927 all_one = 1;
929 value = lshift_value (mode, value, bitpos, bitsize);
931 else
933 int must_and = (GET_MODE_BITSIZE (GET_MODE (value)) != bitsize
934 && bitpos + bitsize != GET_MODE_BITSIZE (mode));
936 if (GET_MODE (value) != mode)
938 if ((REG_P (value) || GET_CODE (value) == SUBREG)
939 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (value)))
940 value = gen_lowpart (mode, value);
941 else
942 value = convert_to_mode (mode, value, 1);
945 if (must_and)
946 value = expand_binop (mode, and_optab, value,
947 mask_rtx (mode, 0, bitsize, 0),
948 NULL_RTX, 1, OPTAB_LIB_WIDEN);
949 if (bitpos > 0)
950 value = expand_shift (LSHIFT_EXPR, mode, value,
951 build_int_cst (NULL_TREE, bitpos), NULL_RTX, 1);
954 /* Now clear the chosen bits in OP0,
955 except that if VALUE is -1 we need not bother. */
956 /* We keep the intermediates in registers to allow CSE to combine
957 consecutive bitfield assignments. */
959 temp = force_reg (mode, op0);
961 if (! all_one)
963 temp = expand_binop (mode, and_optab, temp,
964 mask_rtx (mode, bitpos, bitsize, 1),
965 NULL_RTX, 1, OPTAB_LIB_WIDEN);
966 temp = force_reg (mode, temp);
969 /* Now logical-or VALUE into OP0, unless it is zero. */
971 if (! all_zero)
973 temp = expand_binop (mode, ior_optab, temp, value,
974 NULL_RTX, 1, OPTAB_LIB_WIDEN);
975 temp = force_reg (mode, temp);
978 if (op0 != temp)
979 emit_move_insn (op0, temp);
982 /* Store a bit field that is split across multiple accessible memory objects.
984 OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
985 BITSIZE is the field width; BITPOS the position of its first bit
986 (within the word).
987 VALUE is the value to store.
989 This does not yet handle fields wider than BITS_PER_WORD. */
991 static void
992 store_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
993 unsigned HOST_WIDE_INT bitpos, rtx value)
995 unsigned int unit;
996 unsigned int bitsdone = 0;
998 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
999 much at a time. */
1000 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
1001 unit = BITS_PER_WORD;
1002 else
1003 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
1005 /* If VALUE is a constant other than a CONST_INT, get it into a register in
1006 WORD_MODE. If we can do this using gen_lowpart_common, do so. Note
1007 that VALUE might be a floating-point constant. */
1008 if (CONSTANT_P (value) && GET_CODE (value) != CONST_INT)
1010 rtx word = gen_lowpart_common (word_mode, value);
1012 if (word && (value != word))
1013 value = word;
1014 else
1015 value = gen_lowpart_common (word_mode,
1016 force_reg (GET_MODE (value) != VOIDmode
1017 ? GET_MODE (value)
1018 : word_mode, value));
1021 while (bitsdone < bitsize)
1023 unsigned HOST_WIDE_INT thissize;
1024 rtx part, word;
1025 unsigned HOST_WIDE_INT thispos;
1026 unsigned HOST_WIDE_INT offset;
1028 offset = (bitpos + bitsdone) / unit;
1029 thispos = (bitpos + bitsdone) % unit;
1031 /* THISSIZE must not overrun a word boundary. Otherwise,
1032 store_fixed_bit_field will call us again, and we will mutually
1033 recurse forever. */
1034 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
1035 thissize = MIN (thissize, unit - thispos);
1037 if (BYTES_BIG_ENDIAN)
1039 int total_bits;
1041 /* We must do an endian conversion exactly the same way as it is
1042 done in extract_bit_field, so that the two calls to
1043 extract_fixed_bit_field will have comparable arguments. */
1044 if (!MEM_P (value) || GET_MODE (value) == BLKmode)
1045 total_bits = BITS_PER_WORD;
1046 else
1047 total_bits = GET_MODE_BITSIZE (GET_MODE (value));
1049 /* Fetch successively less significant portions. */
1050 if (GET_CODE (value) == CONST_INT)
1051 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1052 >> (bitsize - bitsdone - thissize))
1053 & (((HOST_WIDE_INT) 1 << thissize) - 1));
1054 else
1055 /* The args are chosen so that the last part includes the
1056 lsb. Give extract_bit_field the value it needs (with
1057 endianness compensation) to fetch the piece we want. */
1058 part = extract_fixed_bit_field (word_mode, value, 0, thissize,
1059 total_bits - bitsize + bitsdone,
1060 NULL_RTX, 1);
1062 else
1064 /* Fetch successively more significant portions. */
1065 if (GET_CODE (value) == CONST_INT)
1066 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1067 >> bitsdone)
1068 & (((HOST_WIDE_INT) 1 << thissize) - 1));
1069 else
1070 part = extract_fixed_bit_field (word_mode, value, 0, thissize,
1071 bitsdone, NULL_RTX, 1);
1074 /* If OP0 is a register, then handle OFFSET here.
1076 When handling multiword bitfields, extract_bit_field may pass
1077 down a word_mode SUBREG of a larger REG for a bitfield that actually
1078 crosses a word boundary. Thus, for a SUBREG, we must find
1079 the current word starting from the base register. */
1080 if (GET_CODE (op0) == SUBREG)
1082 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
1083 word = operand_subword_force (SUBREG_REG (op0), word_offset,
1084 GET_MODE (SUBREG_REG (op0)));
1085 offset = 0;
1087 else if (REG_P (op0))
1089 word = operand_subword_force (op0, offset, GET_MODE (op0));
1090 offset = 0;
1092 else
1093 word = op0;
1095 /* OFFSET is in UNITs, and UNIT is in bits.
1096 store_fixed_bit_field wants offset in bytes. */
1097 store_fixed_bit_field (word, offset * unit / BITS_PER_UNIT, thissize,
1098 thispos, part);
1099 bitsdone += thissize;
1103 /* A subroutine of extract_bit_field_1 that converts return value X
1104 to either MODE or TMODE. MODE, TMODE and UNSIGNEDP are arguments
1105 to extract_bit_field. */
1107 static rtx
1108 convert_extracted_bit_field (rtx x, enum machine_mode mode,
1109 enum machine_mode tmode, bool unsignedp)
1111 if (GET_MODE (x) == tmode || GET_MODE (x) == mode)
1112 return x;
1114 /* If the x mode is not a scalar integral, first convert to the
1115 integer mode of that size and then access it as a floating-point
1116 value via a SUBREG. */
1117 if (!SCALAR_INT_MODE_P (tmode))
1119 enum machine_mode smode;
1121 smode = mode_for_size (GET_MODE_BITSIZE (tmode), MODE_INT, 0);
1122 x = convert_to_mode (smode, x, unsignedp);
1123 x = force_reg (smode, x);
1124 return gen_lowpart (tmode, x);
1127 return convert_to_mode (tmode, x, unsignedp);
1130 /* A subroutine of extract_bit_field, with the same arguments.
1131 If FALLBACK_P is true, fall back to extract_fixed_bit_field
1132 if we can find no other means of implementing the operation.
1133 if FALLBACK_P is false, return NULL instead. */
1135 static rtx
1136 extract_bit_field_1 (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
1137 unsigned HOST_WIDE_INT bitnum, int unsignedp, rtx target,
1138 enum machine_mode mode, enum machine_mode tmode,
1139 bool fallback_p)
1141 unsigned int unit
1142 = (MEM_P (str_rtx)) ? BITS_PER_UNIT : BITS_PER_WORD;
1143 unsigned HOST_WIDE_INT offset, bitpos;
1144 rtx op0 = str_rtx;
1145 enum machine_mode int_mode;
1146 enum machine_mode ext_mode;
1147 enum machine_mode mode1;
1148 enum insn_code icode;
1149 int byte_offset;
1151 if (tmode == VOIDmode)
1152 tmode = mode;
1154 while (GET_CODE (op0) == SUBREG)
1156 bitnum += SUBREG_BYTE (op0) * BITS_PER_UNIT;
1157 op0 = SUBREG_REG (op0);
1160 /* If we have an out-of-bounds access to a register, just return an
1161 uninitialized register of the required mode. This can occur if the
1162 source code contains an out-of-bounds access to a small array. */
1163 if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
1164 return gen_reg_rtx (tmode);
1166 if (REG_P (op0)
1167 && mode == GET_MODE (op0)
1168 && bitnum == 0
1169 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
1171 /* We're trying to extract a full register from itself. */
1172 return op0;
1175 /* See if we can get a better vector mode before extracting. */
1176 if (VECTOR_MODE_P (GET_MODE (op0))
1177 && !MEM_P (op0)
1178 && GET_MODE_INNER (GET_MODE (op0)) != tmode)
1180 enum machine_mode new_mode;
1181 int nunits = GET_MODE_NUNITS (GET_MODE (op0));
1183 if (GET_MODE_CLASS (tmode) == MODE_FLOAT)
1184 new_mode = MIN_MODE_VECTOR_FLOAT;
1185 else if (GET_MODE_CLASS (tmode) == MODE_FRACT)
1186 new_mode = MIN_MODE_VECTOR_FRACT;
1187 else if (GET_MODE_CLASS (tmode) == MODE_UFRACT)
1188 new_mode = MIN_MODE_VECTOR_UFRACT;
1189 else if (GET_MODE_CLASS (tmode) == MODE_ACCUM)
1190 new_mode = MIN_MODE_VECTOR_ACCUM;
1191 else if (GET_MODE_CLASS (tmode) == MODE_UACCUM)
1192 new_mode = MIN_MODE_VECTOR_UACCUM;
1193 else
1194 new_mode = MIN_MODE_VECTOR_INT;
1196 for (; new_mode != VOIDmode ; new_mode = GET_MODE_WIDER_MODE (new_mode))
1197 if (GET_MODE_NUNITS (new_mode) == nunits
1198 && GET_MODE_INNER (new_mode) == tmode
1199 && targetm.vector_mode_supported_p (new_mode))
1200 break;
1201 if (new_mode != VOIDmode)
1202 op0 = gen_lowpart (new_mode, op0);
1205 /* Use vec_extract patterns for extracting parts of vectors whenever
1206 available. */
1207 if (VECTOR_MODE_P (GET_MODE (op0))
1208 && !MEM_P (op0)
1209 && (optab_handler (vec_extract_optab, GET_MODE (op0))->insn_code
1210 != CODE_FOR_nothing)
1211 && ((bitnum + bitsize - 1) / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
1212 == bitnum / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
1214 enum machine_mode outermode = GET_MODE (op0);
1215 enum machine_mode innermode = GET_MODE_INNER (outermode);
1216 int icode = (int) optab_handler (vec_extract_optab, outermode)->insn_code;
1217 unsigned HOST_WIDE_INT pos = bitnum / GET_MODE_BITSIZE (innermode);
1218 rtx rtxpos = GEN_INT (pos);
1219 rtx src = op0;
1220 rtx dest = NULL, pat, seq;
1221 enum machine_mode mode0 = insn_data[icode].operand[0].mode;
1222 enum machine_mode mode1 = insn_data[icode].operand[1].mode;
1223 enum machine_mode mode2 = insn_data[icode].operand[2].mode;
1225 if (innermode == tmode || innermode == mode)
1226 dest = target;
1228 if (!dest)
1229 dest = gen_reg_rtx (innermode);
1231 start_sequence ();
1233 if (! (*insn_data[icode].operand[0].predicate) (dest, mode0))
1234 dest = copy_to_mode_reg (mode0, dest);
1236 if (! (*insn_data[icode].operand[1].predicate) (src, mode1))
1237 src = copy_to_mode_reg (mode1, src);
1239 if (! (*insn_data[icode].operand[2].predicate) (rtxpos, mode2))
1240 rtxpos = copy_to_mode_reg (mode1, rtxpos);
1242 /* We could handle this, but we should always be called with a pseudo
1243 for our targets and all insns should take them as outputs. */
1244 gcc_assert ((*insn_data[icode].operand[0].predicate) (dest, mode0)
1245 && (*insn_data[icode].operand[1].predicate) (src, mode1)
1246 && (*insn_data[icode].operand[2].predicate) (rtxpos, mode2));
1248 pat = GEN_FCN (icode) (dest, src, rtxpos);
1249 seq = get_insns ();
1250 end_sequence ();
1251 if (pat)
1253 emit_insn (seq);
1254 emit_insn (pat);
1255 if (mode0 != mode)
1256 return gen_lowpart (tmode, dest);
1257 return dest;
1261 /* Make sure we are playing with integral modes. Pun with subregs
1262 if we aren't. */
1264 enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
1265 if (imode != GET_MODE (op0))
1267 if (MEM_P (op0))
1268 op0 = adjust_address (op0, imode, 0);
1269 else
1271 gcc_assert (imode != BLKmode);
1272 op0 = gen_lowpart (imode, op0);
1274 /* If we got a SUBREG, force it into a register since we
1275 aren't going to be able to do another SUBREG on it. */
1276 if (GET_CODE (op0) == SUBREG)
1277 op0 = force_reg (imode, op0);
1282 /* We may be accessing data outside the field, which means
1283 we can alias adjacent data. */
1284 if (MEM_P (op0))
1286 op0 = shallow_copy_rtx (op0);
1287 set_mem_alias_set (op0, 0);
1288 set_mem_expr (op0, 0);
1291 /* Extraction of a full-word or multi-word value from a structure
1292 in a register or aligned memory can be done with just a SUBREG.
1293 A subword value in the least significant part of a register
1294 can also be extracted with a SUBREG. For this, we need the
1295 byte offset of the value in op0. */
1297 bitpos = bitnum % unit;
1298 offset = bitnum / unit;
1299 byte_offset = bitpos / BITS_PER_UNIT + offset * UNITS_PER_WORD;
1301 /* If OP0 is a register, BITPOS must count within a word.
1302 But as we have it, it counts within whatever size OP0 now has.
1303 On a bigendian machine, these are not the same, so convert. */
1304 if (BYTES_BIG_ENDIAN
1305 && !MEM_P (op0)
1306 && unit > GET_MODE_BITSIZE (GET_MODE (op0)))
1307 bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
1309 /* ??? We currently assume TARGET is at least as big as BITSIZE.
1310 If that's wrong, the solution is to test for it and set TARGET to 0
1311 if needed. */
1313 /* Only scalar integer modes can be converted via subregs. There is an
1314 additional problem for FP modes here in that they can have a precision
1315 which is different from the size. mode_for_size uses precision, but
1316 we want a mode based on the size, so we must avoid calling it for FP
1317 modes. */
1318 mode1 = (SCALAR_INT_MODE_P (tmode)
1319 ? mode_for_size (bitsize, GET_MODE_CLASS (tmode), 0)
1320 : mode);
1322 if (((bitsize >= BITS_PER_WORD && bitsize == GET_MODE_BITSIZE (mode)
1323 && bitpos % BITS_PER_WORD == 0)
1324 || (mode1 != BLKmode
1325 /* ??? The big endian test here is wrong. This is correct
1326 if the value is in a register, and if mode_for_size is not
1327 the same mode as op0. This causes us to get unnecessarily
1328 inefficient code from the Thumb port when -mbig-endian. */
1329 && (BYTES_BIG_ENDIAN
1330 ? bitpos + bitsize == BITS_PER_WORD
1331 : bitpos == 0)))
1332 && ((!MEM_P (op0)
1333 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
1334 GET_MODE_BITSIZE (GET_MODE (op0)))
1335 && GET_MODE_SIZE (mode1) != 0
1336 && byte_offset % GET_MODE_SIZE (mode1) == 0)
1337 || (MEM_P (op0)
1338 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (op0))
1339 || (offset * BITS_PER_UNIT % bitsize == 0
1340 && MEM_ALIGN (op0) % bitsize == 0)))))
1342 if (MEM_P (op0))
1343 op0 = adjust_address (op0, mode1, offset);
1344 else if (mode1 != GET_MODE (op0))
1346 rtx sub = simplify_gen_subreg (mode1, op0, GET_MODE (op0),
1347 byte_offset);
1348 if (sub == NULL)
1349 goto no_subreg_mode_swap;
1350 op0 = sub;
1352 if (mode1 != mode)
1353 return convert_to_mode (tmode, op0, unsignedp);
1354 return op0;
1356 no_subreg_mode_swap:
1358 /* Handle fields bigger than a word. */
1360 if (bitsize > BITS_PER_WORD)
1362 /* Here we transfer the words of the field
1363 in the order least significant first.
1364 This is because the most significant word is the one which may
1365 be less than full. */
1367 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
1368 unsigned int i;
1370 if (target == 0 || !REG_P (target))
1371 target = gen_reg_rtx (mode);
1373 /* Indicate for flow that the entire target reg is being set. */
1374 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
1376 for (i = 0; i < nwords; i++)
1378 /* If I is 0, use the low-order word in both field and target;
1379 if I is 1, use the next to lowest word; and so on. */
1380 /* Word number in TARGET to use. */
1381 unsigned int wordnum
1382 = (WORDS_BIG_ENDIAN
1383 ? GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD - i - 1
1384 : i);
1385 /* Offset from start of field in OP0. */
1386 unsigned int bit_offset = (WORDS_BIG_ENDIAN
1387 ? MAX (0, ((int) bitsize - ((int) i + 1)
1388 * (int) BITS_PER_WORD))
1389 : (int) i * BITS_PER_WORD);
1390 rtx target_part = operand_subword (target, wordnum, 1, VOIDmode);
1391 rtx result_part
1392 = extract_bit_field (op0, MIN (BITS_PER_WORD,
1393 bitsize - i * BITS_PER_WORD),
1394 bitnum + bit_offset, 1, target_part, mode,
1395 word_mode);
1397 gcc_assert (target_part);
1399 if (result_part != target_part)
1400 emit_move_insn (target_part, result_part);
1403 if (unsignedp)
1405 /* Unless we've filled TARGET, the upper regs in a multi-reg value
1406 need to be zero'd out. */
1407 if (GET_MODE_SIZE (GET_MODE (target)) > nwords * UNITS_PER_WORD)
1409 unsigned int i, total_words;
1411 total_words = GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD;
1412 for (i = nwords; i < total_words; i++)
1413 emit_move_insn
1414 (operand_subword (target,
1415 WORDS_BIG_ENDIAN ? total_words - i - 1 : i,
1416 1, VOIDmode),
1417 const0_rtx);
1419 return target;
1422 /* Signed bit field: sign-extend with two arithmetic shifts. */
1423 target = expand_shift (LSHIFT_EXPR, mode, target,
1424 build_int_cst (NULL_TREE,
1425 GET_MODE_BITSIZE (mode) - bitsize),
1426 NULL_RTX, 0);
1427 return expand_shift (RSHIFT_EXPR, mode, target,
1428 build_int_cst (NULL_TREE,
1429 GET_MODE_BITSIZE (mode) - bitsize),
1430 NULL_RTX, 0);
1433 /* From here on we know the desired field is smaller than a word. */
1435 /* Check if there is a correspondingly-sized integer field, so we can
1436 safely extract it as one size of integer, if necessary; then
1437 truncate or extend to the size that is wanted; then use SUBREGs or
1438 convert_to_mode to get one of the modes we really wanted. */
1440 int_mode = int_mode_for_mode (tmode);
1441 if (int_mode == BLKmode)
1442 int_mode = int_mode_for_mode (mode);
1443 /* Should probably push op0 out to memory and then do a load. */
1444 gcc_assert (int_mode != BLKmode);
1446 /* OFFSET is the number of words or bytes (UNIT says which)
1447 from STR_RTX to the first word or byte containing part of the field. */
1448 if (!MEM_P (op0))
1450 if (offset != 0
1451 || GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
1453 if (!REG_P (op0))
1454 op0 = copy_to_reg (op0);
1455 op0 = gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD, MODE_INT, 0),
1456 op0, (offset * UNITS_PER_WORD));
1458 offset = 0;
1461 /* Now OFFSET is nonzero only for memory operands. */
1462 ext_mode = mode_for_extraction (unsignedp ? EP_extzv : EP_extv, 0);
1463 icode = unsignedp ? CODE_FOR_extzv : CODE_FOR_extv;
1464 if (ext_mode != MAX_MACHINE_MODE
1465 && bitsize > 0
1466 && GET_MODE_BITSIZE (ext_mode) >= bitsize
1467 /* If op0 is a register, we need it in EXT_MODE to make it
1468 acceptable to the format of ext(z)v. */
1469 && !(GET_CODE (op0) == SUBREG && GET_MODE (op0) != ext_mode)
1470 && !((REG_P (op0) || GET_CODE (op0) == SUBREG)
1471 && (bitsize + bitpos > GET_MODE_BITSIZE (ext_mode)))
1472 && check_predicate_volatile_ok (icode, 1, op0, GET_MODE (op0)))
1474 unsigned HOST_WIDE_INT xbitpos = bitpos, xoffset = offset;
1475 rtx bitsize_rtx, bitpos_rtx;
1476 rtx last = get_last_insn ();
1477 rtx xop0 = op0;
1478 rtx xtarget = target;
1479 rtx xspec_target = target;
1480 rtx xspec_target_subreg = 0;
1481 rtx pat;
1483 /* If op0 is a register, we need it in EXT_MODE to make it
1484 acceptable to the format of ext(z)v. */
1485 if (REG_P (xop0) && GET_MODE (xop0) != ext_mode)
1486 xop0 = gen_rtx_SUBREG (ext_mode, xop0, 0);
1487 if (MEM_P (xop0))
1488 /* Get ref to first byte containing part of the field. */
1489 xop0 = adjust_address (xop0, byte_mode, xoffset);
1491 /* On big-endian machines, we count bits from the most significant.
1492 If the bit field insn does not, we must invert. */
1493 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
1494 xbitpos = unit - bitsize - xbitpos;
1496 /* Now convert from counting within UNIT to counting in EXT_MODE. */
1497 if (BITS_BIG_ENDIAN && !MEM_P (xop0))
1498 xbitpos += GET_MODE_BITSIZE (ext_mode) - unit;
1500 unit = GET_MODE_BITSIZE (ext_mode);
1502 if (xtarget == 0)
1503 xtarget = xspec_target = gen_reg_rtx (tmode);
1505 if (GET_MODE (xtarget) != ext_mode)
1507 if (REG_P (xtarget))
1509 xtarget = gen_lowpart (ext_mode, xtarget);
1510 if (GET_MODE_SIZE (ext_mode)
1511 > GET_MODE_SIZE (GET_MODE (xspec_target)))
1512 xspec_target_subreg = xtarget;
1514 else
1515 xtarget = gen_reg_rtx (ext_mode);
1518 /* If this machine's ext(z)v insists on a register target,
1519 make sure we have one. */
1520 if (!insn_data[(int) icode].operand[0].predicate (xtarget, ext_mode))
1521 xtarget = gen_reg_rtx (ext_mode);
1523 bitsize_rtx = GEN_INT (bitsize);
1524 bitpos_rtx = GEN_INT (xbitpos);
1526 pat = (unsignedp
1527 ? gen_extzv (xtarget, xop0, bitsize_rtx, bitpos_rtx)
1528 : gen_extv (xtarget, xop0, bitsize_rtx, bitpos_rtx));
1529 if (pat)
1531 emit_insn (pat);
1532 if (xtarget == xspec_target)
1533 return xtarget;
1534 if (xtarget == xspec_target_subreg)
1535 return xspec_target;
1536 return convert_extracted_bit_field (xtarget, mode, tmode, unsignedp);
1538 delete_insns_since (last);
1541 /* If OP0 is a memory, try copying it to a register and seeing if a
1542 cheap register alternative is available. */
1543 if (ext_mode != MAX_MACHINE_MODE && MEM_P (op0))
1545 enum machine_mode bestmode;
1547 /* Get the mode to use for inserting into this field. If
1548 OP0 is BLKmode, get the smallest mode consistent with the
1549 alignment. If OP0 is a non-BLKmode object that is no
1550 wider than EXT_MODE, use its mode. Otherwise, use the
1551 smallest mode containing the field. */
1553 if (GET_MODE (op0) == BLKmode
1554 || (ext_mode != MAX_MACHINE_MODE
1555 && GET_MODE_SIZE (GET_MODE (op0)) > GET_MODE_SIZE (ext_mode)))
1556 bestmode = get_best_mode (bitsize, bitnum, MEM_ALIGN (op0),
1557 (ext_mode == MAX_MACHINE_MODE
1558 ? VOIDmode : ext_mode),
1559 MEM_VOLATILE_P (op0));
1560 else
1561 bestmode = GET_MODE (op0);
1563 if (bestmode != VOIDmode
1564 && !(SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (op0))
1565 && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (op0)))
1567 unsigned HOST_WIDE_INT xoffset, xbitpos;
1569 /* Compute the offset as a multiple of this unit,
1570 counting in bytes. */
1571 unit = GET_MODE_BITSIZE (bestmode);
1572 xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
1573 xbitpos = bitnum % unit;
1575 /* Make sure the register is big enough for the whole field. */
1576 if (xoffset * BITS_PER_UNIT + unit
1577 >= offset * BITS_PER_UNIT + bitsize)
1579 rtx last, result, xop0;
1581 last = get_last_insn ();
1583 /* Fetch it to a register in that size. */
1584 xop0 = adjust_address (op0, bestmode, xoffset);
1585 xop0 = force_reg (bestmode, xop0);
1586 result = extract_bit_field_1 (xop0, bitsize, xbitpos,
1587 unsignedp, target,
1588 mode, tmode, false);
1589 if (result)
1590 return result;
1592 delete_insns_since (last);
1597 if (!fallback_p)
1598 return NULL;
1600 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1601 bitpos, target, unsignedp);
1602 return convert_extracted_bit_field (target, mode, tmode, unsignedp);
1605 /* Generate code to extract a byte-field from STR_RTX
1606 containing BITSIZE bits, starting at BITNUM,
1607 and put it in TARGET if possible (if TARGET is nonzero).
1608 Regardless of TARGET, we return the rtx for where the value is placed.
1610 STR_RTX is the structure containing the byte (a REG or MEM).
1611 UNSIGNEDP is nonzero if this is an unsigned bit field.
1612 MODE is the natural mode of the field value once extracted.
1613 TMODE is the mode the caller would like the value to have;
1614 but the value may be returned with type MODE instead.
1616 If a TARGET is specified and we can store in it at no extra cost,
1617 we do so, and return TARGET.
1618 Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
1619 if they are equally easy. */
1622 extract_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
1623 unsigned HOST_WIDE_INT bitnum, int unsignedp, rtx target,
1624 enum machine_mode mode, enum machine_mode tmode)
1626 return extract_bit_field_1 (str_rtx, bitsize, bitnum, unsignedp,
1627 target, mode, tmode, true);
1630 /* Extract a bit field using shifts and boolean operations
1631 Returns an rtx to represent the value.
1632 OP0 addresses a register (word) or memory (byte).
1633 BITPOS says which bit within the word or byte the bit field starts in.
1634 OFFSET says how many bytes farther the bit field starts;
1635 it is 0 if OP0 is a register.
1636 BITSIZE says how many bits long the bit field is.
1637 (If OP0 is a register, it may be narrower than a full word,
1638 but BITPOS still counts within a full word,
1639 which is significant on bigendian machines.)
1641 UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
1642 If TARGET is nonzero, attempts to store the value there
1643 and return TARGET, but this is not guaranteed.
1644 If TARGET is not used, create a pseudo-reg of mode TMODE for the value. */
1646 static rtx
1647 extract_fixed_bit_field (enum machine_mode tmode, rtx op0,
1648 unsigned HOST_WIDE_INT offset,
1649 unsigned HOST_WIDE_INT bitsize,
1650 unsigned HOST_WIDE_INT bitpos, rtx target,
1651 int unsignedp)
1653 unsigned int total_bits = BITS_PER_WORD;
1654 enum machine_mode mode;
1656 if (GET_CODE (op0) == SUBREG || REG_P (op0))
1658 /* Special treatment for a bit field split across two registers. */
1659 if (bitsize + bitpos > BITS_PER_WORD)
1660 return extract_split_bit_field (op0, bitsize, bitpos, unsignedp);
1662 else
1664 /* Get the proper mode to use for this field. We want a mode that
1665 includes the entire field. If such a mode would be larger than
1666 a word, we won't be doing the extraction the normal way. */
1668 mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
1669 MEM_ALIGN (op0), word_mode, MEM_VOLATILE_P (op0));
1671 if (mode == VOIDmode)
1672 /* The only way this should occur is if the field spans word
1673 boundaries. */
1674 return extract_split_bit_field (op0, bitsize,
1675 bitpos + offset * BITS_PER_UNIT,
1676 unsignedp);
1678 total_bits = GET_MODE_BITSIZE (mode);
1680 /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
1681 be in the range 0 to total_bits-1, and put any excess bytes in
1682 OFFSET. */
1683 if (bitpos >= total_bits)
1685 offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
1686 bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
1687 * BITS_PER_UNIT);
1690 /* Get ref to an aligned byte, halfword, or word containing the field.
1691 Adjust BITPOS to be position within a word,
1692 and OFFSET to be the offset of that word.
1693 Then alter OP0 to refer to that word. */
1694 bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
1695 offset -= (offset % (total_bits / BITS_PER_UNIT));
1696 op0 = adjust_address (op0, mode, offset);
1699 mode = GET_MODE (op0);
1701 if (BYTES_BIG_ENDIAN)
1702 /* BITPOS is the distance between our msb and that of OP0.
1703 Convert it to the distance from the lsb. */
1704 bitpos = total_bits - bitsize - bitpos;
1706 /* Now BITPOS is always the distance between the field's lsb and that of OP0.
1707 We have reduced the big-endian case to the little-endian case. */
1709 if (unsignedp)
1711 if (bitpos)
1713 /* If the field does not already start at the lsb,
1714 shift it so it does. */
1715 tree amount = build_int_cst (NULL_TREE, bitpos);
1716 /* Maybe propagate the target for the shift. */
1717 /* But not if we will return it--could confuse integrate.c. */
1718 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1719 if (tmode != mode) subtarget = 0;
1720 op0 = expand_shift (RSHIFT_EXPR, mode, op0, amount, subtarget, 1);
1722 /* Convert the value to the desired mode. */
1723 if (mode != tmode)
1724 op0 = convert_to_mode (tmode, op0, 1);
1726 /* Unless the msb of the field used to be the msb when we shifted,
1727 mask out the upper bits. */
1729 if (GET_MODE_BITSIZE (mode) != bitpos + bitsize)
1730 return expand_binop (GET_MODE (op0), and_optab, op0,
1731 mask_rtx (GET_MODE (op0), 0, bitsize, 0),
1732 target, 1, OPTAB_LIB_WIDEN);
1733 return op0;
1736 /* To extract a signed bit-field, first shift its msb to the msb of the word,
1737 then arithmetic-shift its lsb to the lsb of the word. */
1738 op0 = force_reg (mode, op0);
1739 if (mode != tmode)
1740 target = 0;
1742 /* Find the narrowest integer mode that contains the field. */
1744 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1745 mode = GET_MODE_WIDER_MODE (mode))
1746 if (GET_MODE_BITSIZE (mode) >= bitsize + bitpos)
1748 op0 = convert_to_mode (mode, op0, 0);
1749 break;
1752 if (GET_MODE_BITSIZE (mode) != (bitsize + bitpos))
1754 tree amount
1755 = build_int_cst (NULL_TREE,
1756 GET_MODE_BITSIZE (mode) - (bitsize + bitpos));
1757 /* Maybe propagate the target for the shift. */
1758 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1759 op0 = expand_shift (LSHIFT_EXPR, mode, op0, amount, subtarget, 1);
1762 return expand_shift (RSHIFT_EXPR, mode, op0,
1763 build_int_cst (NULL_TREE,
1764 GET_MODE_BITSIZE (mode) - bitsize),
1765 target, 0);
1768 /* Return a constant integer (CONST_INT or CONST_DOUBLE) mask value
1769 of mode MODE with BITSIZE ones followed by BITPOS zeros, or the
1770 complement of that if COMPLEMENT. The mask is truncated if
1771 necessary to the width of mode MODE. The mask is zero-extended if
1772 BITSIZE+BITPOS is too small for MODE. */
1774 static rtx
1775 mask_rtx (enum machine_mode mode, int bitpos, int bitsize, int complement)
1777 HOST_WIDE_INT masklow, maskhigh;
1779 if (bitsize == 0)
1780 masklow = 0;
1781 else if (bitpos < HOST_BITS_PER_WIDE_INT)
1782 masklow = (HOST_WIDE_INT) -1 << bitpos;
1783 else
1784 masklow = 0;
1786 if (bitpos + bitsize < HOST_BITS_PER_WIDE_INT)
1787 masklow &= ((unsigned HOST_WIDE_INT) -1
1788 >> (HOST_BITS_PER_WIDE_INT - bitpos - bitsize));
1790 if (bitpos <= HOST_BITS_PER_WIDE_INT)
1791 maskhigh = -1;
1792 else
1793 maskhigh = (HOST_WIDE_INT) -1 << (bitpos - HOST_BITS_PER_WIDE_INT);
1795 if (bitsize == 0)
1796 maskhigh = 0;
1797 else if (bitpos + bitsize > HOST_BITS_PER_WIDE_INT)
1798 maskhigh &= ((unsigned HOST_WIDE_INT) -1
1799 >> (2 * HOST_BITS_PER_WIDE_INT - bitpos - bitsize));
1800 else
1801 maskhigh = 0;
1803 if (complement)
1805 maskhigh = ~maskhigh;
1806 masklow = ~masklow;
1809 return immed_double_const (masklow, maskhigh, mode);
1812 /* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
1813 VALUE truncated to BITSIZE bits and then shifted left BITPOS bits. */
1815 static rtx
1816 lshift_value (enum machine_mode mode, rtx value, int bitpos, int bitsize)
1818 unsigned HOST_WIDE_INT v = INTVAL (value);
1819 HOST_WIDE_INT low, high;
1821 if (bitsize < HOST_BITS_PER_WIDE_INT)
1822 v &= ~((HOST_WIDE_INT) -1 << bitsize);
1824 if (bitpos < HOST_BITS_PER_WIDE_INT)
1826 low = v << bitpos;
1827 high = (bitpos > 0 ? (v >> (HOST_BITS_PER_WIDE_INT - bitpos)) : 0);
1829 else
1831 low = 0;
1832 high = v << (bitpos - HOST_BITS_PER_WIDE_INT);
1835 return immed_double_const (low, high, mode);
1838 /* Extract a bit field from a memory by forcing the alignment of the
1839 memory. This efficient only if the field spans at least 4 boundaries.
1841 OP0 is the MEM.
1842 BITSIZE is the field width; BITPOS is the position of the first bit.
1843 UNSIGNEDP is true if the result should be zero-extended. */
1845 static rtx
1846 extract_force_align_mem_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
1847 unsigned HOST_WIDE_INT bitpos,
1848 int unsignedp)
1850 enum machine_mode mode, dmode;
1851 unsigned int m_bitsize, m_size;
1852 unsigned int sign_shift_up, sign_shift_dn;
1853 rtx base, a1, a2, v1, v2, comb, shift, result, start;
1855 /* Choose a mode that will fit BITSIZE. */
1856 mode = smallest_mode_for_size (bitsize, MODE_INT);
1857 m_size = GET_MODE_SIZE (mode);
1858 m_bitsize = GET_MODE_BITSIZE (mode);
1860 /* Choose a mode twice as wide. Fail if no such mode exists. */
1861 dmode = mode_for_size (m_bitsize * 2, MODE_INT, false);
1862 if (dmode == BLKmode)
1863 return NULL;
1865 do_pending_stack_adjust ();
1866 start = get_last_insn ();
1868 /* At the end, we'll need an additional shift to deal with sign/zero
1869 extension. By default this will be a left+right shift of the
1870 appropriate size. But we may be able to eliminate one of them. */
1871 sign_shift_up = sign_shift_dn = m_bitsize - bitsize;
1873 if (STRICT_ALIGNMENT)
1875 base = plus_constant (XEXP (op0, 0), bitpos / BITS_PER_UNIT);
1876 bitpos %= BITS_PER_UNIT;
1878 /* We load two values to be concatenate. There's an edge condition
1879 that bears notice -- an aligned value at the end of a page can
1880 only load one value lest we segfault. So the two values we load
1881 are at "base & -size" and "(base + size - 1) & -size". If base
1882 is unaligned, the addresses will be aligned and sequential; if
1883 base is aligned, the addresses will both be equal to base. */
1885 a1 = expand_simple_binop (Pmode, AND, force_operand (base, NULL),
1886 GEN_INT (-(HOST_WIDE_INT)m_size),
1887 NULL, true, OPTAB_LIB_WIDEN);
1888 mark_reg_pointer (a1, m_bitsize);
1889 v1 = gen_rtx_MEM (mode, a1);
1890 set_mem_align (v1, m_bitsize);
1891 v1 = force_reg (mode, validize_mem (v1));
1893 a2 = plus_constant (base, GET_MODE_SIZE (mode) - 1);
1894 a2 = expand_simple_binop (Pmode, AND, force_operand (a2, NULL),
1895 GEN_INT (-(HOST_WIDE_INT)m_size),
1896 NULL, true, OPTAB_LIB_WIDEN);
1897 v2 = gen_rtx_MEM (mode, a2);
1898 set_mem_align (v2, m_bitsize);
1899 v2 = force_reg (mode, validize_mem (v2));
1901 /* Combine these two values into a double-word value. */
1902 if (m_bitsize == BITS_PER_WORD)
1904 comb = gen_reg_rtx (dmode);
1905 emit_insn (gen_rtx_CLOBBER (VOIDmode, comb));
1906 emit_move_insn (gen_rtx_SUBREG (mode, comb, 0), v1);
1907 emit_move_insn (gen_rtx_SUBREG (mode, comb, m_size), v2);
1909 else
1911 if (BYTES_BIG_ENDIAN)
1912 comb = v1, v1 = v2, v2 = comb;
1913 v1 = convert_modes (dmode, mode, v1, true);
1914 if (v1 == NULL)
1915 goto fail;
1916 v2 = convert_modes (dmode, mode, v2, true);
1917 v2 = expand_simple_binop (dmode, ASHIFT, v2, GEN_INT (m_bitsize),
1918 NULL, true, OPTAB_LIB_WIDEN);
1919 if (v2 == NULL)
1920 goto fail;
1921 comb = expand_simple_binop (dmode, IOR, v1, v2, NULL,
1922 true, OPTAB_LIB_WIDEN);
1923 if (comb == NULL)
1924 goto fail;
1927 shift = expand_simple_binop (Pmode, AND, base, GEN_INT (m_size - 1),
1928 NULL, true, OPTAB_LIB_WIDEN);
1929 shift = expand_mult (Pmode, shift, GEN_INT (BITS_PER_UNIT), NULL, 1);
1931 if (bitpos != 0)
1933 if (sign_shift_up <= bitpos)
1934 bitpos -= sign_shift_up, sign_shift_up = 0;
1935 shift = expand_simple_binop (Pmode, PLUS, shift, GEN_INT (bitpos),
1936 NULL, true, OPTAB_LIB_WIDEN);
1939 else
1941 unsigned HOST_WIDE_INT offset = bitpos / BITS_PER_UNIT;
1942 bitpos %= BITS_PER_UNIT;
1944 /* When strict alignment is not required, we can just load directly
1945 from memory without masking. If the remaining BITPOS offset is
1946 small enough, we may be able to do all operations in MODE as
1947 opposed to DMODE. */
1948 if (bitpos + bitsize <= m_bitsize)
1949 dmode = mode;
1950 comb = adjust_address (op0, dmode, offset);
1952 if (sign_shift_up <= bitpos)
1953 bitpos -= sign_shift_up, sign_shift_up = 0;
1954 shift = GEN_INT (bitpos);
1957 /* Shift down the double-word such that the requested value is at bit 0. */
1958 if (shift != const0_rtx)
1959 comb = expand_simple_binop (dmode, unsignedp ? LSHIFTRT : ASHIFTRT,
1960 comb, shift, NULL, unsignedp, OPTAB_LIB_WIDEN);
1961 if (comb == NULL)
1962 goto fail;
1964 /* If the field exactly matches MODE, then all we need to do is return the
1965 lowpart. Otherwise, shift to get the sign bits set properly. */
1966 result = force_reg (mode, gen_lowpart (mode, comb));
1968 if (sign_shift_up)
1969 result = expand_simple_binop (mode, ASHIFT, result,
1970 GEN_INT (sign_shift_up),
1971 NULL_RTX, 0, OPTAB_LIB_WIDEN);
1972 if (sign_shift_dn)
1973 result = expand_simple_binop (mode, unsignedp ? LSHIFTRT : ASHIFTRT,
1974 result, GEN_INT (sign_shift_dn),
1975 NULL_RTX, 0, OPTAB_LIB_WIDEN);
1977 return result;
1979 fail:
1980 delete_insns_since (start);
1981 return NULL;
1984 /* Extract a bit field that is split across two words
1985 and return an RTX for the result.
1987 OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
1988 BITSIZE is the field width; BITPOS, position of its first bit, in the word.
1989 UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend. */
1991 static rtx
1992 extract_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
1993 unsigned HOST_WIDE_INT bitpos, int unsignedp)
1995 unsigned int unit;
1996 unsigned int bitsdone = 0;
1997 rtx result = NULL_RTX;
1998 int first = 1;
2000 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
2001 much at a time. */
2002 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
2003 unit = BITS_PER_WORD;
2004 else
2006 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
2007 if (0 && bitsize / unit > 2)
2009 rtx tmp = extract_force_align_mem_bit_field (op0, bitsize, bitpos,
2010 unsignedp);
2011 if (tmp)
2012 return tmp;
2016 while (bitsdone < bitsize)
2018 unsigned HOST_WIDE_INT thissize;
2019 rtx part, word;
2020 unsigned HOST_WIDE_INT thispos;
2021 unsigned HOST_WIDE_INT offset;
2023 offset = (bitpos + bitsdone) / unit;
2024 thispos = (bitpos + bitsdone) % unit;
2026 /* THISSIZE must not overrun a word boundary. Otherwise,
2027 extract_fixed_bit_field will call us again, and we will mutually
2028 recurse forever. */
2029 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
2030 thissize = MIN (thissize, unit - thispos);
2032 /* If OP0 is a register, then handle OFFSET here.
2034 When handling multiword bitfields, extract_bit_field may pass
2035 down a word_mode SUBREG of a larger REG for a bitfield that actually
2036 crosses a word boundary. Thus, for a SUBREG, we must find
2037 the current word starting from the base register. */
2038 if (GET_CODE (op0) == SUBREG)
2040 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
2041 word = operand_subword_force (SUBREG_REG (op0), word_offset,
2042 GET_MODE (SUBREG_REG (op0)));
2043 offset = 0;
2045 else if (REG_P (op0))
2047 word = operand_subword_force (op0, offset, GET_MODE (op0));
2048 offset = 0;
2050 else
2051 word = op0;
2053 /* Extract the parts in bit-counting order,
2054 whose meaning is determined by BYTES_PER_UNIT.
2055 OFFSET is in UNITs, and UNIT is in bits.
2056 extract_fixed_bit_field wants offset in bytes. */
2057 part = extract_fixed_bit_field (word_mode, word,
2058 offset * unit / BITS_PER_UNIT,
2059 thissize, thispos, 0, 1);
2060 bitsdone += thissize;
2062 /* Shift this part into place for the result. */
2063 if (BYTES_BIG_ENDIAN)
2065 if (bitsize != bitsdone)
2066 part = expand_shift (LSHIFT_EXPR, word_mode, part,
2067 build_int_cst (NULL_TREE, bitsize - bitsdone),
2068 0, 1);
2070 else
2072 if (bitsdone != thissize)
2073 part = expand_shift (LSHIFT_EXPR, word_mode, part,
2074 build_int_cst (NULL_TREE,
2075 bitsdone - thissize), 0, 1);
2078 if (first)
2079 result = part;
2080 else
2081 /* Combine the parts with bitwise or. This works
2082 because we extracted each part as an unsigned bit field. */
2083 result = expand_binop (word_mode, ior_optab, part, result, NULL_RTX, 1,
2084 OPTAB_LIB_WIDEN);
2086 first = 0;
2089 /* Unsigned bit field: we are done. */
2090 if (unsignedp)
2091 return result;
2092 /* Signed bit field: sign-extend with two arithmetic shifts. */
2093 result = expand_shift (LSHIFT_EXPR, word_mode, result,
2094 build_int_cst (NULL_TREE, BITS_PER_WORD - bitsize),
2095 NULL_RTX, 0);
2096 return expand_shift (RSHIFT_EXPR, word_mode, result,
2097 build_int_cst (NULL_TREE, BITS_PER_WORD - bitsize),
2098 NULL_RTX, 0);
2101 /* Add INC into TARGET. */
2103 void
2104 expand_inc (rtx target, rtx inc)
2106 rtx value = expand_binop (GET_MODE (target), add_optab,
2107 target, inc,
2108 target, 0, OPTAB_LIB_WIDEN);
2109 if (value != target)
2110 emit_move_insn (target, value);
2113 /* Subtract DEC from TARGET. */
2115 void
2116 expand_dec (rtx target, rtx dec)
2118 rtx value = expand_binop (GET_MODE (target), sub_optab,
2119 target, dec,
2120 target, 0, OPTAB_LIB_WIDEN);
2121 if (value != target)
2122 emit_move_insn (target, value);
2125 /* Output a shift instruction for expression code CODE,
2126 with SHIFTED being the rtx for the value to shift,
2127 and AMOUNT the tree for the amount to shift by.
2128 Store the result in the rtx TARGET, if that is convenient.
2129 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2130 Return the rtx for where the value is. */
2133 expand_shift (enum tree_code code, enum machine_mode mode, rtx shifted,
2134 tree amount, rtx target, int unsignedp)
2136 rtx op1, temp = 0;
2137 int left = (code == LSHIFT_EXPR || code == LROTATE_EXPR);
2138 int rotate = (code == LROTATE_EXPR || code == RROTATE_EXPR);
2139 int try;
2141 /* Previously detected shift-counts computed by NEGATE_EXPR
2142 and shifted in the other direction; but that does not work
2143 on all machines. */
2145 op1 = expand_normal (amount);
2147 if (SHIFT_COUNT_TRUNCATED)
2149 if (GET_CODE (op1) == CONST_INT
2150 && ((unsigned HOST_WIDE_INT) INTVAL (op1) >=
2151 (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode)))
2152 op1 = GEN_INT ((unsigned HOST_WIDE_INT) INTVAL (op1)
2153 % GET_MODE_BITSIZE (mode));
2154 else if (GET_CODE (op1) == SUBREG
2155 && subreg_lowpart_p (op1))
2156 op1 = SUBREG_REG (op1);
2159 if (op1 == const0_rtx)
2160 return shifted;
2162 /* Check whether its cheaper to implement a left shift by a constant
2163 bit count by a sequence of additions. */
2164 if (code == LSHIFT_EXPR
2165 && GET_CODE (op1) == CONST_INT
2166 && INTVAL (op1) > 0
2167 && INTVAL (op1) < GET_MODE_BITSIZE (mode)
2168 && INTVAL (op1) < MAX_BITS_PER_WORD
2169 && shift_cost[mode][INTVAL (op1)] > INTVAL (op1) * add_cost[mode]
2170 && shift_cost[mode][INTVAL (op1)] != MAX_COST)
2172 int i;
2173 for (i = 0; i < INTVAL (op1); i++)
2175 temp = force_reg (mode, shifted);
2176 shifted = expand_binop (mode, add_optab, temp, temp, NULL_RTX,
2177 unsignedp, OPTAB_LIB_WIDEN);
2179 return shifted;
2182 for (try = 0; temp == 0 && try < 3; try++)
2184 enum optab_methods methods;
2186 if (try == 0)
2187 methods = OPTAB_DIRECT;
2188 else if (try == 1)
2189 methods = OPTAB_WIDEN;
2190 else
2191 methods = OPTAB_LIB_WIDEN;
2193 if (rotate)
2195 /* Widening does not work for rotation. */
2196 if (methods == OPTAB_WIDEN)
2197 continue;
2198 else if (methods == OPTAB_LIB_WIDEN)
2200 /* If we have been unable to open-code this by a rotation,
2201 do it as the IOR of two shifts. I.e., to rotate A
2202 by N bits, compute (A << N) | ((unsigned) A >> (C - N))
2203 where C is the bitsize of A.
2205 It is theoretically possible that the target machine might
2206 not be able to perform either shift and hence we would
2207 be making two libcalls rather than just the one for the
2208 shift (similarly if IOR could not be done). We will allow
2209 this extremely unlikely lossage to avoid complicating the
2210 code below. */
2212 rtx subtarget = target == shifted ? 0 : target;
2213 tree new_amount, other_amount;
2214 rtx temp1;
2215 tree type = TREE_TYPE (amount);
2216 if (GET_MODE (op1) != TYPE_MODE (type)
2217 && GET_MODE (op1) != VOIDmode)
2218 op1 = convert_to_mode (TYPE_MODE (type), op1, 1);
2219 new_amount = make_tree (type, op1);
2220 other_amount
2221 = fold_build2 (MINUS_EXPR, type,
2222 build_int_cst (type, GET_MODE_BITSIZE (mode)),
2223 new_amount);
2225 shifted = force_reg (mode, shifted);
2227 temp = expand_shift (left ? LSHIFT_EXPR : RSHIFT_EXPR,
2228 mode, shifted, new_amount, 0, 1);
2229 temp1 = expand_shift (left ? RSHIFT_EXPR : LSHIFT_EXPR,
2230 mode, shifted, other_amount, subtarget, 1);
2231 return expand_binop (mode, ior_optab, temp, temp1, target,
2232 unsignedp, methods);
2235 temp = expand_binop (mode,
2236 left ? rotl_optab : rotr_optab,
2237 shifted, op1, target, unsignedp, methods);
2239 else if (unsignedp)
2240 temp = expand_binop (mode,
2241 left ? ashl_optab : lshr_optab,
2242 shifted, op1, target, unsignedp, methods);
2244 /* Do arithmetic shifts.
2245 Also, if we are going to widen the operand, we can just as well
2246 use an arithmetic right-shift instead of a logical one. */
2247 if (temp == 0 && ! rotate
2248 && (! unsignedp || (! left && methods == OPTAB_WIDEN)))
2250 enum optab_methods methods1 = methods;
2252 /* If trying to widen a log shift to an arithmetic shift,
2253 don't accept an arithmetic shift of the same size. */
2254 if (unsignedp)
2255 methods1 = OPTAB_MUST_WIDEN;
2257 /* Arithmetic shift */
2259 temp = expand_binop (mode,
2260 left ? ashl_optab : ashr_optab,
2261 shifted, op1, target, unsignedp, methods1);
2264 /* We used to try extzv here for logical right shifts, but that was
2265 only useful for one machine, the VAX, and caused poor code
2266 generation there for lshrdi3, so the code was deleted and a
2267 define_expand for lshrsi3 was added to vax.md. */
2270 gcc_assert (temp);
2271 return temp;
2274 enum alg_code {
2275 alg_unknown,
2276 alg_zero,
2277 alg_m, alg_shift,
2278 alg_add_t_m2,
2279 alg_sub_t_m2,
2280 alg_add_factor,
2281 alg_sub_factor,
2282 alg_add_t2_m,
2283 alg_sub_t2_m,
2284 alg_impossible
2287 /* This structure holds the "cost" of a multiply sequence. The
2288 "cost" field holds the total rtx_cost of every operator in the
2289 synthetic multiplication sequence, hence cost(a op b) is defined
2290 as rtx_cost(op) + cost(a) + cost(b), where cost(leaf) is zero.
2291 The "latency" field holds the minimum possible latency of the
2292 synthetic multiply, on a hypothetical infinitely parallel CPU.
2293 This is the critical path, or the maximum height, of the expression
2294 tree which is the sum of rtx_costs on the most expensive path from
2295 any leaf to the root. Hence latency(a op b) is defined as zero for
2296 leaves and rtx_cost(op) + max(latency(a), latency(b)) otherwise. */
2298 struct mult_cost {
2299 short cost; /* Total rtx_cost of the multiplication sequence. */
2300 short latency; /* The latency of the multiplication sequence. */
2303 /* This macro is used to compare a pointer to a mult_cost against an
2304 single integer "rtx_cost" value. This is equivalent to the macro
2305 CHEAPER_MULT_COST(X,Z) where Z = {Y,Y}. */
2306 #define MULT_COST_LESS(X,Y) ((X)->cost < (Y) \
2307 || ((X)->cost == (Y) && (X)->latency < (Y)))
2309 /* This macro is used to compare two pointers to mult_costs against
2310 each other. The macro returns true if X is cheaper than Y.
2311 Currently, the cheaper of two mult_costs is the one with the
2312 lower "cost". If "cost"s are tied, the lower latency is cheaper. */
2313 #define CHEAPER_MULT_COST(X,Y) ((X)->cost < (Y)->cost \
2314 || ((X)->cost == (Y)->cost \
2315 && (X)->latency < (Y)->latency))
2317 /* This structure records a sequence of operations.
2318 `ops' is the number of operations recorded.
2319 `cost' is their total cost.
2320 The operations are stored in `op' and the corresponding
2321 logarithms of the integer coefficients in `log'.
2323 These are the operations:
2324 alg_zero total := 0;
2325 alg_m total := multiplicand;
2326 alg_shift total := total * coeff
2327 alg_add_t_m2 total := total + multiplicand * coeff;
2328 alg_sub_t_m2 total := total - multiplicand * coeff;
2329 alg_add_factor total := total * coeff + total;
2330 alg_sub_factor total := total * coeff - total;
2331 alg_add_t2_m total := total * coeff + multiplicand;
2332 alg_sub_t2_m total := total * coeff - multiplicand;
2334 The first operand must be either alg_zero or alg_m. */
2336 struct algorithm
2338 struct mult_cost cost;
2339 short ops;
2340 /* The size of the OP and LOG fields are not directly related to the
2341 word size, but the worst-case algorithms will be if we have few
2342 consecutive ones or zeros, i.e., a multiplicand like 10101010101...
2343 In that case we will generate shift-by-2, add, shift-by-2, add,...,
2344 in total wordsize operations. */
2345 enum alg_code op[MAX_BITS_PER_WORD];
2346 char log[MAX_BITS_PER_WORD];
2349 /* The entry for our multiplication cache/hash table. */
2350 struct alg_hash_entry {
2351 /* The number we are multiplying by. */
2352 unsigned HOST_WIDE_INT t;
2354 /* The mode in which we are multiplying something by T. */
2355 enum machine_mode mode;
2357 /* The best multiplication algorithm for t. */
2358 enum alg_code alg;
2360 /* The cost of multiplication if ALG_CODE is not alg_impossible.
2361 Otherwise, the cost within which multiplication by T is
2362 impossible. */
2363 struct mult_cost cost;
2366 /* The number of cache/hash entries. */
2367 #if HOST_BITS_PER_WIDE_INT == 64
2368 #define NUM_ALG_HASH_ENTRIES 1031
2369 #else
2370 #define NUM_ALG_HASH_ENTRIES 307
2371 #endif
2373 /* Each entry of ALG_HASH caches alg_code for some integer. This is
2374 actually a hash table. If we have a collision, that the older
2375 entry is kicked out. */
2376 static struct alg_hash_entry alg_hash[NUM_ALG_HASH_ENTRIES];
2378 /* Indicates the type of fixup needed after a constant multiplication.
2379 BASIC_VARIANT means no fixup is needed, NEGATE_VARIANT means that
2380 the result should be negated, and ADD_VARIANT means that the
2381 multiplicand should be added to the result. */
2382 enum mult_variant {basic_variant, negate_variant, add_variant};
2384 static void synth_mult (struct algorithm *, unsigned HOST_WIDE_INT,
2385 const struct mult_cost *, enum machine_mode mode);
2386 static bool choose_mult_variant (enum machine_mode, HOST_WIDE_INT,
2387 struct algorithm *, enum mult_variant *, int);
2388 static rtx expand_mult_const (enum machine_mode, rtx, HOST_WIDE_INT, rtx,
2389 const struct algorithm *, enum mult_variant);
2390 static unsigned HOST_WIDE_INT choose_multiplier (unsigned HOST_WIDE_INT, int,
2391 int, rtx *, int *, int *);
2392 static unsigned HOST_WIDE_INT invert_mod2n (unsigned HOST_WIDE_INT, int);
2393 static rtx extract_high_half (enum machine_mode, rtx);
2394 static rtx expand_mult_highpart (enum machine_mode, rtx, rtx, rtx, int, int);
2395 static rtx expand_mult_highpart_optab (enum machine_mode, rtx, rtx, rtx,
2396 int, int);
2397 /* Compute and return the best algorithm for multiplying by T.
2398 The algorithm must cost less than cost_limit
2399 If retval.cost >= COST_LIMIT, no algorithm was found and all
2400 other field of the returned struct are undefined.
2401 MODE is the machine mode of the multiplication. */
2403 static void
2404 synth_mult (struct algorithm *alg_out, unsigned HOST_WIDE_INT t,
2405 const struct mult_cost *cost_limit, enum machine_mode mode)
2407 int m;
2408 struct algorithm *alg_in, *best_alg;
2409 struct mult_cost best_cost;
2410 struct mult_cost new_limit;
2411 int op_cost, op_latency;
2412 unsigned HOST_WIDE_INT q;
2413 int maxm = MIN (BITS_PER_WORD, GET_MODE_BITSIZE (mode));
2414 int hash_index;
2415 bool cache_hit = false;
2416 enum alg_code cache_alg = alg_zero;
2418 /* Indicate that no algorithm is yet found. If no algorithm
2419 is found, this value will be returned and indicate failure. */
2420 alg_out->cost.cost = cost_limit->cost + 1;
2421 alg_out->cost.latency = cost_limit->latency + 1;
2423 if (cost_limit->cost < 0
2424 || (cost_limit->cost == 0 && cost_limit->latency <= 0))
2425 return;
2427 /* Restrict the bits of "t" to the multiplication's mode. */
2428 t &= GET_MODE_MASK (mode);
2430 /* t == 1 can be done in zero cost. */
2431 if (t == 1)
2433 alg_out->ops = 1;
2434 alg_out->cost.cost = 0;
2435 alg_out->cost.latency = 0;
2436 alg_out->op[0] = alg_m;
2437 return;
2440 /* t == 0 sometimes has a cost. If it does and it exceeds our limit,
2441 fail now. */
2442 if (t == 0)
2444 if (MULT_COST_LESS (cost_limit, zero_cost))
2445 return;
2446 else
2448 alg_out->ops = 1;
2449 alg_out->cost.cost = zero_cost;
2450 alg_out->cost.latency = zero_cost;
2451 alg_out->op[0] = alg_zero;
2452 return;
2456 /* We'll be needing a couple extra algorithm structures now. */
2458 alg_in = alloca (sizeof (struct algorithm));
2459 best_alg = alloca (sizeof (struct algorithm));
2460 best_cost = *cost_limit;
2462 /* Compute the hash index. */
2463 hash_index = (t ^ (unsigned int) mode) % NUM_ALG_HASH_ENTRIES;
2465 /* See if we already know what to do for T. */
2466 if (alg_hash[hash_index].t == t
2467 && alg_hash[hash_index].mode == mode
2468 && alg_hash[hash_index].alg != alg_unknown)
2470 cache_alg = alg_hash[hash_index].alg;
2472 if (cache_alg == alg_impossible)
2474 /* The cache tells us that it's impossible to synthesize
2475 multiplication by T within alg_hash[hash_index].cost. */
2476 if (!CHEAPER_MULT_COST (&alg_hash[hash_index].cost, cost_limit))
2477 /* COST_LIMIT is at least as restrictive as the one
2478 recorded in the hash table, in which case we have no
2479 hope of synthesizing a multiplication. Just
2480 return. */
2481 return;
2483 /* If we get here, COST_LIMIT is less restrictive than the
2484 one recorded in the hash table, so we may be able to
2485 synthesize a multiplication. Proceed as if we didn't
2486 have the cache entry. */
2488 else
2490 if (CHEAPER_MULT_COST (cost_limit, &alg_hash[hash_index].cost))
2491 /* The cached algorithm shows that this multiplication
2492 requires more cost than COST_LIMIT. Just return. This
2493 way, we don't clobber this cache entry with
2494 alg_impossible but retain useful information. */
2495 return;
2497 cache_hit = true;
2499 switch (cache_alg)
2501 case alg_shift:
2502 goto do_alg_shift;
2504 case alg_add_t_m2:
2505 case alg_sub_t_m2:
2506 goto do_alg_addsub_t_m2;
2508 case alg_add_factor:
2509 case alg_sub_factor:
2510 goto do_alg_addsub_factor;
2512 case alg_add_t2_m:
2513 goto do_alg_add_t2_m;
2515 case alg_sub_t2_m:
2516 goto do_alg_sub_t2_m;
2518 default:
2519 gcc_unreachable ();
2524 /* If we have a group of zero bits at the low-order part of T, try
2525 multiplying by the remaining bits and then doing a shift. */
2527 if ((t & 1) == 0)
2529 do_alg_shift:
2530 m = floor_log2 (t & -t); /* m = number of low zero bits */
2531 if (m < maxm)
2533 q = t >> m;
2534 /* The function expand_shift will choose between a shift and
2535 a sequence of additions, so the observed cost is given as
2536 MIN (m * add_cost[mode], shift_cost[mode][m]). */
2537 op_cost = m * add_cost[mode];
2538 if (shift_cost[mode][m] < op_cost)
2539 op_cost = shift_cost[mode][m];
2540 new_limit.cost = best_cost.cost - op_cost;
2541 new_limit.latency = best_cost.latency - op_cost;
2542 synth_mult (alg_in, q, &new_limit, mode);
2544 alg_in->cost.cost += op_cost;
2545 alg_in->cost.latency += op_cost;
2546 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2548 struct algorithm *x;
2549 best_cost = alg_in->cost;
2550 x = alg_in, alg_in = best_alg, best_alg = x;
2551 best_alg->log[best_alg->ops] = m;
2552 best_alg->op[best_alg->ops] = alg_shift;
2555 if (cache_hit)
2556 goto done;
2559 /* If we have an odd number, add or subtract one. */
2560 if ((t & 1) != 0)
2562 unsigned HOST_WIDE_INT w;
2564 do_alg_addsub_t_m2:
2565 for (w = 1; (w & t) != 0; w <<= 1)
2567 /* If T was -1, then W will be zero after the loop. This is another
2568 case where T ends with ...111. Handling this with (T + 1) and
2569 subtract 1 produces slightly better code and results in algorithm
2570 selection much faster than treating it like the ...0111 case
2571 below. */
2572 if (w == 0
2573 || (w > 2
2574 /* Reject the case where t is 3.
2575 Thus we prefer addition in that case. */
2576 && t != 3))
2578 /* T ends with ...111. Multiply by (T + 1) and subtract 1. */
2580 op_cost = add_cost[mode];
2581 new_limit.cost = best_cost.cost - op_cost;
2582 new_limit.latency = best_cost.latency - op_cost;
2583 synth_mult (alg_in, t + 1, &new_limit, mode);
2585 alg_in->cost.cost += op_cost;
2586 alg_in->cost.latency += op_cost;
2587 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2589 struct algorithm *x;
2590 best_cost = alg_in->cost;
2591 x = alg_in, alg_in = best_alg, best_alg = x;
2592 best_alg->log[best_alg->ops] = 0;
2593 best_alg->op[best_alg->ops] = alg_sub_t_m2;
2596 else
2598 /* T ends with ...01 or ...011. Multiply by (T - 1) and add 1. */
2600 op_cost = add_cost[mode];
2601 new_limit.cost = best_cost.cost - op_cost;
2602 new_limit.latency = best_cost.latency - op_cost;
2603 synth_mult (alg_in, t - 1, &new_limit, mode);
2605 alg_in->cost.cost += op_cost;
2606 alg_in->cost.latency += op_cost;
2607 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2609 struct algorithm *x;
2610 best_cost = alg_in->cost;
2611 x = alg_in, alg_in = best_alg, best_alg = x;
2612 best_alg->log[best_alg->ops] = 0;
2613 best_alg->op[best_alg->ops] = alg_add_t_m2;
2616 if (cache_hit)
2617 goto done;
2620 /* Look for factors of t of the form
2621 t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
2622 If we find such a factor, we can multiply by t using an algorithm that
2623 multiplies by q, shift the result by m and add/subtract it to itself.
2625 We search for large factors first and loop down, even if large factors
2626 are less probable than small; if we find a large factor we will find a
2627 good sequence quickly, and therefore be able to prune (by decreasing
2628 COST_LIMIT) the search. */
2630 do_alg_addsub_factor:
2631 for (m = floor_log2 (t - 1); m >= 2; m--)
2633 unsigned HOST_WIDE_INT d;
2635 d = ((unsigned HOST_WIDE_INT) 1 << m) + 1;
2636 if (t % d == 0 && t > d && m < maxm
2637 && (!cache_hit || cache_alg == alg_add_factor))
2639 /* If the target has a cheap shift-and-add instruction use
2640 that in preference to a shift insn followed by an add insn.
2641 Assume that the shift-and-add is "atomic" with a latency
2642 equal to its cost, otherwise assume that on superscalar
2643 hardware the shift may be executed concurrently with the
2644 earlier steps in the algorithm. */
2645 op_cost = add_cost[mode] + shift_cost[mode][m];
2646 if (shiftadd_cost[mode][m] < op_cost)
2648 op_cost = shiftadd_cost[mode][m];
2649 op_latency = op_cost;
2651 else
2652 op_latency = add_cost[mode];
2654 new_limit.cost = best_cost.cost - op_cost;
2655 new_limit.latency = best_cost.latency - op_latency;
2656 synth_mult (alg_in, t / d, &new_limit, mode);
2658 alg_in->cost.cost += op_cost;
2659 alg_in->cost.latency += op_latency;
2660 if (alg_in->cost.latency < op_cost)
2661 alg_in->cost.latency = op_cost;
2662 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2664 struct algorithm *x;
2665 best_cost = alg_in->cost;
2666 x = alg_in, alg_in = best_alg, best_alg = x;
2667 best_alg->log[best_alg->ops] = m;
2668 best_alg->op[best_alg->ops] = alg_add_factor;
2670 /* Other factors will have been taken care of in the recursion. */
2671 break;
2674 d = ((unsigned HOST_WIDE_INT) 1 << m) - 1;
2675 if (t % d == 0 && t > d && m < maxm
2676 && (!cache_hit || cache_alg == alg_sub_factor))
2678 /* If the target has a cheap shift-and-subtract insn use
2679 that in preference to a shift insn followed by a sub insn.
2680 Assume that the shift-and-sub is "atomic" with a latency
2681 equal to it's cost, otherwise assume that on superscalar
2682 hardware the shift may be executed concurrently with the
2683 earlier steps in the algorithm. */
2684 op_cost = add_cost[mode] + shift_cost[mode][m];
2685 if (shiftsub_cost[mode][m] < op_cost)
2687 op_cost = shiftsub_cost[mode][m];
2688 op_latency = op_cost;
2690 else
2691 op_latency = add_cost[mode];
2693 new_limit.cost = best_cost.cost - op_cost;
2694 new_limit.latency = best_cost.latency - op_latency;
2695 synth_mult (alg_in, t / d, &new_limit, mode);
2697 alg_in->cost.cost += op_cost;
2698 alg_in->cost.latency += op_latency;
2699 if (alg_in->cost.latency < op_cost)
2700 alg_in->cost.latency = op_cost;
2701 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2703 struct algorithm *x;
2704 best_cost = alg_in->cost;
2705 x = alg_in, alg_in = best_alg, best_alg = x;
2706 best_alg->log[best_alg->ops] = m;
2707 best_alg->op[best_alg->ops] = alg_sub_factor;
2709 break;
2712 if (cache_hit)
2713 goto done;
2715 /* Try shift-and-add (load effective address) instructions,
2716 i.e. do a*3, a*5, a*9. */
2717 if ((t & 1) != 0)
2719 do_alg_add_t2_m:
2720 q = t - 1;
2721 q = q & -q;
2722 m = exact_log2 (q);
2723 if (m >= 0 && m < maxm)
2725 op_cost = shiftadd_cost[mode][m];
2726 new_limit.cost = best_cost.cost - op_cost;
2727 new_limit.latency = best_cost.latency - op_cost;
2728 synth_mult (alg_in, (t - 1) >> m, &new_limit, mode);
2730 alg_in->cost.cost += op_cost;
2731 alg_in->cost.latency += op_cost;
2732 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2734 struct algorithm *x;
2735 best_cost = alg_in->cost;
2736 x = alg_in, alg_in = best_alg, best_alg = x;
2737 best_alg->log[best_alg->ops] = m;
2738 best_alg->op[best_alg->ops] = alg_add_t2_m;
2741 if (cache_hit)
2742 goto done;
2744 do_alg_sub_t2_m:
2745 q = t + 1;
2746 q = q & -q;
2747 m = exact_log2 (q);
2748 if (m >= 0 && m < maxm)
2750 op_cost = shiftsub_cost[mode][m];
2751 new_limit.cost = best_cost.cost - op_cost;
2752 new_limit.latency = best_cost.latency - op_cost;
2753 synth_mult (alg_in, (t + 1) >> m, &new_limit, mode);
2755 alg_in->cost.cost += op_cost;
2756 alg_in->cost.latency += op_cost;
2757 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2759 struct algorithm *x;
2760 best_cost = alg_in->cost;
2761 x = alg_in, alg_in = best_alg, best_alg = x;
2762 best_alg->log[best_alg->ops] = m;
2763 best_alg->op[best_alg->ops] = alg_sub_t2_m;
2766 if (cache_hit)
2767 goto done;
2770 done:
2771 /* If best_cost has not decreased, we have not found any algorithm. */
2772 if (!CHEAPER_MULT_COST (&best_cost, cost_limit))
2774 /* We failed to find an algorithm. Record alg_impossible for
2775 this case (that is, <T, MODE, COST_LIMIT>) so that next time
2776 we are asked to find an algorithm for T within the same or
2777 lower COST_LIMIT, we can immediately return to the
2778 caller. */
2779 alg_hash[hash_index].t = t;
2780 alg_hash[hash_index].mode = mode;
2781 alg_hash[hash_index].alg = alg_impossible;
2782 alg_hash[hash_index].cost = *cost_limit;
2783 return;
2786 /* Cache the result. */
2787 if (!cache_hit)
2789 alg_hash[hash_index].t = t;
2790 alg_hash[hash_index].mode = mode;
2791 alg_hash[hash_index].alg = best_alg->op[best_alg->ops];
2792 alg_hash[hash_index].cost.cost = best_cost.cost;
2793 alg_hash[hash_index].cost.latency = best_cost.latency;
2796 /* If we are getting a too long sequence for `struct algorithm'
2797 to record, make this search fail. */
2798 if (best_alg->ops == MAX_BITS_PER_WORD)
2799 return;
2801 /* Copy the algorithm from temporary space to the space at alg_out.
2802 We avoid using structure assignment because the majority of
2803 best_alg is normally undefined, and this is a critical function. */
2804 alg_out->ops = best_alg->ops + 1;
2805 alg_out->cost = best_cost;
2806 memcpy (alg_out->op, best_alg->op,
2807 alg_out->ops * sizeof *alg_out->op);
2808 memcpy (alg_out->log, best_alg->log,
2809 alg_out->ops * sizeof *alg_out->log);
2812 /* Find the cheapest way of multiplying a value of mode MODE by VAL.
2813 Try three variations:
2815 - a shift/add sequence based on VAL itself
2816 - a shift/add sequence based on -VAL, followed by a negation
2817 - a shift/add sequence based on VAL - 1, followed by an addition.
2819 Return true if the cheapest of these cost less than MULT_COST,
2820 describing the algorithm in *ALG and final fixup in *VARIANT. */
2822 static bool
2823 choose_mult_variant (enum machine_mode mode, HOST_WIDE_INT val,
2824 struct algorithm *alg, enum mult_variant *variant,
2825 int mult_cost)
2827 struct algorithm alg2;
2828 struct mult_cost limit;
2829 int op_cost;
2831 /* Fail quickly for impossible bounds. */
2832 if (mult_cost < 0)
2833 return false;
2835 /* Ensure that mult_cost provides a reasonable upper bound.
2836 Any constant multiplication can be performed with less
2837 than 2 * bits additions. */
2838 op_cost = 2 * GET_MODE_BITSIZE (mode) * add_cost[mode];
2839 if (mult_cost > op_cost)
2840 mult_cost = op_cost;
2842 *variant = basic_variant;
2843 limit.cost = mult_cost;
2844 limit.latency = mult_cost;
2845 synth_mult (alg, val, &limit, mode);
2847 /* This works only if the inverted value actually fits in an
2848 `unsigned int' */
2849 if (HOST_BITS_PER_INT >= GET_MODE_BITSIZE (mode))
2851 op_cost = neg_cost[mode];
2852 if (MULT_COST_LESS (&alg->cost, mult_cost))
2854 limit.cost = alg->cost.cost - op_cost;
2855 limit.latency = alg->cost.latency - op_cost;
2857 else
2859 limit.cost = mult_cost - op_cost;
2860 limit.latency = mult_cost - op_cost;
2863 synth_mult (&alg2, -val, &limit, mode);
2864 alg2.cost.cost += op_cost;
2865 alg2.cost.latency += op_cost;
2866 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2867 *alg = alg2, *variant = negate_variant;
2870 /* This proves very useful for division-by-constant. */
2871 op_cost = add_cost[mode];
2872 if (MULT_COST_LESS (&alg->cost, mult_cost))
2874 limit.cost = alg->cost.cost - op_cost;
2875 limit.latency = alg->cost.latency - op_cost;
2877 else
2879 limit.cost = mult_cost - op_cost;
2880 limit.latency = mult_cost - op_cost;
2883 synth_mult (&alg2, val - 1, &limit, mode);
2884 alg2.cost.cost += op_cost;
2885 alg2.cost.latency += op_cost;
2886 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2887 *alg = alg2, *variant = add_variant;
2889 return MULT_COST_LESS (&alg->cost, mult_cost);
2892 /* A subroutine of expand_mult, used for constant multiplications.
2893 Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
2894 convenient. Use the shift/add sequence described by ALG and apply
2895 the final fixup specified by VARIANT. */
2897 static rtx
2898 expand_mult_const (enum machine_mode mode, rtx op0, HOST_WIDE_INT val,
2899 rtx target, const struct algorithm *alg,
2900 enum mult_variant variant)
2902 HOST_WIDE_INT val_so_far;
2903 rtx insn, accum, tem;
2904 int opno;
2905 enum machine_mode nmode;
2907 /* Avoid referencing memory over and over and invalid sharing
2908 on SUBREGs. */
2909 op0 = force_reg (mode, op0);
2911 /* ACCUM starts out either as OP0 or as a zero, depending on
2912 the first operation. */
2914 if (alg->op[0] == alg_zero)
2916 accum = copy_to_mode_reg (mode, const0_rtx);
2917 val_so_far = 0;
2919 else if (alg->op[0] == alg_m)
2921 accum = copy_to_mode_reg (mode, op0);
2922 val_so_far = 1;
2924 else
2925 gcc_unreachable ();
2927 for (opno = 1; opno < alg->ops; opno++)
2929 int log = alg->log[opno];
2930 rtx shift_subtarget = optimize ? 0 : accum;
2931 rtx add_target
2932 = (opno == alg->ops - 1 && target != 0 && variant != add_variant
2933 && !optimize)
2934 ? target : 0;
2935 rtx accum_target = optimize ? 0 : accum;
2937 switch (alg->op[opno])
2939 case alg_shift:
2940 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2941 build_int_cst (NULL_TREE, log),
2942 NULL_RTX, 0);
2943 val_so_far <<= log;
2944 break;
2946 case alg_add_t_m2:
2947 tem = expand_shift (LSHIFT_EXPR, mode, op0,
2948 build_int_cst (NULL_TREE, log),
2949 NULL_RTX, 0);
2950 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
2951 add_target ? add_target : accum_target);
2952 val_so_far += (HOST_WIDE_INT) 1 << log;
2953 break;
2955 case alg_sub_t_m2:
2956 tem = expand_shift (LSHIFT_EXPR, mode, op0,
2957 build_int_cst (NULL_TREE, log),
2958 NULL_RTX, 0);
2959 accum = force_operand (gen_rtx_MINUS (mode, accum, tem),
2960 add_target ? add_target : accum_target);
2961 val_so_far -= (HOST_WIDE_INT) 1 << log;
2962 break;
2964 case alg_add_t2_m:
2965 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2966 build_int_cst (NULL_TREE, log),
2967 shift_subtarget,
2969 accum = force_operand (gen_rtx_PLUS (mode, accum, op0),
2970 add_target ? add_target : accum_target);
2971 val_so_far = (val_so_far << log) + 1;
2972 break;
2974 case alg_sub_t2_m:
2975 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2976 build_int_cst (NULL_TREE, log),
2977 shift_subtarget, 0);
2978 accum = force_operand (gen_rtx_MINUS (mode, accum, op0),
2979 add_target ? add_target : accum_target);
2980 val_so_far = (val_so_far << log) - 1;
2981 break;
2983 case alg_add_factor:
2984 tem = expand_shift (LSHIFT_EXPR, mode, accum,
2985 build_int_cst (NULL_TREE, log),
2986 NULL_RTX, 0);
2987 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
2988 add_target ? add_target : accum_target);
2989 val_so_far += val_so_far << log;
2990 break;
2992 case alg_sub_factor:
2993 tem = expand_shift (LSHIFT_EXPR, mode, accum,
2994 build_int_cst (NULL_TREE, log),
2995 NULL_RTX, 0);
2996 accum = force_operand (gen_rtx_MINUS (mode, tem, accum),
2997 (add_target
2998 ? add_target : (optimize ? 0 : tem)));
2999 val_so_far = (val_so_far << log) - val_so_far;
3000 break;
3002 default:
3003 gcc_unreachable ();
3006 /* Write a REG_EQUAL note on the last insn so that we can cse
3007 multiplication sequences. Note that if ACCUM is a SUBREG,
3008 we've set the inner register and must properly indicate
3009 that. */
3011 tem = op0, nmode = mode;
3012 if (GET_CODE (accum) == SUBREG)
3014 nmode = GET_MODE (SUBREG_REG (accum));
3015 tem = gen_lowpart (nmode, op0);
3018 insn = get_last_insn ();
3019 set_unique_reg_note (insn, REG_EQUAL,
3020 gen_rtx_MULT (nmode, tem,
3021 GEN_INT (val_so_far)));
3024 if (variant == negate_variant)
3026 val_so_far = -val_so_far;
3027 accum = expand_unop (mode, neg_optab, accum, target, 0);
3029 else if (variant == add_variant)
3031 val_so_far = val_so_far + 1;
3032 accum = force_operand (gen_rtx_PLUS (mode, accum, op0), target);
3035 /* Compare only the bits of val and val_so_far that are significant
3036 in the result mode, to avoid sign-/zero-extension confusion. */
3037 val &= GET_MODE_MASK (mode);
3038 val_so_far &= GET_MODE_MASK (mode);
3039 gcc_assert (val == val_so_far);
3041 return accum;
3044 /* Perform a multiplication and return an rtx for the result.
3045 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3046 TARGET is a suggestion for where to store the result (an rtx).
3048 We check specially for a constant integer as OP1.
3049 If you want this check for OP0 as well, then before calling
3050 you should swap the two operands if OP0 would be constant. */
3053 expand_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3054 int unsignedp)
3056 enum mult_variant variant;
3057 struct algorithm algorithm;
3058 int max_cost;
3060 /* Handling const0_rtx here allows us to use zero as a rogue value for
3061 coeff below. */
3062 if (op1 == const0_rtx)
3063 return const0_rtx;
3064 if (op1 == const1_rtx)
3065 return op0;
3066 if (op1 == constm1_rtx)
3067 return expand_unop (mode,
3068 GET_MODE_CLASS (mode) == MODE_INT
3069 && !unsignedp && flag_trapv
3070 ? negv_optab : neg_optab,
3071 op0, target, 0);
3073 /* These are the operations that are potentially turned into a sequence
3074 of shifts and additions. */
3075 if (SCALAR_INT_MODE_P (mode)
3076 && (unsignedp || !flag_trapv))
3078 HOST_WIDE_INT coeff = 0;
3079 rtx fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
3081 /* synth_mult does an `unsigned int' multiply. As long as the mode is
3082 less than or equal in size to `unsigned int' this doesn't matter.
3083 If the mode is larger than `unsigned int', then synth_mult works
3084 only if the constant value exactly fits in an `unsigned int' without
3085 any truncation. This means that multiplying by negative values does
3086 not work; results are off by 2^32 on a 32 bit machine. */
3088 if (GET_CODE (op1) == CONST_INT)
3090 /* Attempt to handle multiplication of DImode values by negative
3091 coefficients, by performing the multiplication by a positive
3092 multiplier and then inverting the result. */
3093 if (INTVAL (op1) < 0
3094 && GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
3096 /* Its safe to use -INTVAL (op1) even for INT_MIN, as the
3097 result is interpreted as an unsigned coefficient.
3098 Exclude cost of op0 from max_cost to match the cost
3099 calculation of the synth_mult. */
3100 max_cost = rtx_cost (gen_rtx_MULT (mode, fake_reg, op1), SET)
3101 - neg_cost[mode];
3102 if (max_cost > 0
3103 && choose_mult_variant (mode, -INTVAL (op1), &algorithm,
3104 &variant, max_cost))
3106 rtx temp = expand_mult_const (mode, op0, -INTVAL (op1),
3107 NULL_RTX, &algorithm,
3108 variant);
3109 return expand_unop (mode, neg_optab, temp, target, 0);
3112 else coeff = INTVAL (op1);
3114 else if (GET_CODE (op1) == CONST_DOUBLE)
3116 /* If we are multiplying in DImode, it may still be a win
3117 to try to work with shifts and adds. */
3118 if (CONST_DOUBLE_HIGH (op1) == 0)
3119 coeff = CONST_DOUBLE_LOW (op1);
3120 else if (CONST_DOUBLE_LOW (op1) == 0
3121 && EXACT_POWER_OF_2_OR_ZERO_P (CONST_DOUBLE_HIGH (op1)))
3123 int shift = floor_log2 (CONST_DOUBLE_HIGH (op1))
3124 + HOST_BITS_PER_WIDE_INT;
3125 return expand_shift (LSHIFT_EXPR, mode, op0,
3126 build_int_cst (NULL_TREE, shift),
3127 target, unsignedp);
3131 /* We used to test optimize here, on the grounds that it's better to
3132 produce a smaller program when -O is not used. But this causes
3133 such a terrible slowdown sometimes that it seems better to always
3134 use synth_mult. */
3135 if (coeff != 0)
3137 /* Special case powers of two. */
3138 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
3139 return expand_shift (LSHIFT_EXPR, mode, op0,
3140 build_int_cst (NULL_TREE, floor_log2 (coeff)),
3141 target, unsignedp);
3143 /* Exclude cost of op0 from max_cost to match the cost
3144 calculation of the synth_mult. */
3145 max_cost = rtx_cost (gen_rtx_MULT (mode, fake_reg, op1), SET);
3146 if (choose_mult_variant (mode, coeff, &algorithm, &variant,
3147 max_cost))
3148 return expand_mult_const (mode, op0, coeff, target,
3149 &algorithm, variant);
3153 if (GET_CODE (op0) == CONST_DOUBLE)
3155 rtx temp = op0;
3156 op0 = op1;
3157 op1 = temp;
3160 /* Expand x*2.0 as x+x. */
3161 if (GET_CODE (op1) == CONST_DOUBLE
3162 && SCALAR_FLOAT_MODE_P (mode))
3164 REAL_VALUE_TYPE d;
3165 REAL_VALUE_FROM_CONST_DOUBLE (d, op1);
3167 if (REAL_VALUES_EQUAL (d, dconst2))
3169 op0 = force_reg (GET_MODE (op0), op0);
3170 return expand_binop (mode, add_optab, op0, op0,
3171 target, unsignedp, OPTAB_LIB_WIDEN);
3175 /* This used to use umul_optab if unsigned, but for non-widening multiply
3176 there is no difference between signed and unsigned. */
3177 op0 = expand_binop (mode,
3178 ! unsignedp
3179 && flag_trapv && (GET_MODE_CLASS(mode) == MODE_INT)
3180 ? smulv_optab : smul_optab,
3181 op0, op1, target, unsignedp, OPTAB_LIB_WIDEN);
3182 gcc_assert (op0);
3183 return op0;
3186 /* Return the smallest n such that 2**n >= X. */
3189 ceil_log2 (unsigned HOST_WIDE_INT x)
3191 return floor_log2 (x - 1) + 1;
3194 /* Choose a minimal N + 1 bit approximation to 1/D that can be used to
3195 replace division by D, and put the least significant N bits of the result
3196 in *MULTIPLIER_PTR and return the most significant bit.
3198 The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
3199 needed precision is in PRECISION (should be <= N).
3201 PRECISION should be as small as possible so this function can choose
3202 multiplier more freely.
3204 The rounded-up logarithm of D is placed in *lgup_ptr. A shift count that
3205 is to be used for a final right shift is placed in *POST_SHIFT_PTR.
3207 Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
3208 where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier. */
3210 static
3211 unsigned HOST_WIDE_INT
3212 choose_multiplier (unsigned HOST_WIDE_INT d, int n, int precision,
3213 rtx *multiplier_ptr, int *post_shift_ptr, int *lgup_ptr)
3215 HOST_WIDE_INT mhigh_hi, mlow_hi;
3216 unsigned HOST_WIDE_INT mhigh_lo, mlow_lo;
3217 int lgup, post_shift;
3218 int pow, pow2;
3219 unsigned HOST_WIDE_INT nl, dummy1;
3220 HOST_WIDE_INT nh, dummy2;
3222 /* lgup = ceil(log2(divisor)); */
3223 lgup = ceil_log2 (d);
3225 gcc_assert (lgup <= n);
3227 pow = n + lgup;
3228 pow2 = n + lgup - precision;
3230 /* We could handle this with some effort, but this case is much
3231 better handled directly with a scc insn, so rely on caller using
3232 that. */
3233 gcc_assert (pow != 2 * HOST_BITS_PER_WIDE_INT);
3235 /* mlow = 2^(N + lgup)/d */
3236 if (pow >= HOST_BITS_PER_WIDE_INT)
3238 nh = (HOST_WIDE_INT) 1 << (pow - HOST_BITS_PER_WIDE_INT);
3239 nl = 0;
3241 else
3243 nh = 0;
3244 nl = (unsigned HOST_WIDE_INT) 1 << pow;
3246 div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
3247 &mlow_lo, &mlow_hi, &dummy1, &dummy2);
3249 /* mhigh = (2^(N + lgup) + 2^N + lgup - precision)/d */
3250 if (pow2 >= HOST_BITS_PER_WIDE_INT)
3251 nh |= (HOST_WIDE_INT) 1 << (pow2 - HOST_BITS_PER_WIDE_INT);
3252 else
3253 nl |= (unsigned HOST_WIDE_INT) 1 << pow2;
3254 div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
3255 &mhigh_lo, &mhigh_hi, &dummy1, &dummy2);
3257 gcc_assert (!mhigh_hi || nh - d < d);
3258 gcc_assert (mhigh_hi <= 1 && mlow_hi <= 1);
3259 /* Assert that mlow < mhigh. */
3260 gcc_assert (mlow_hi < mhigh_hi
3261 || (mlow_hi == mhigh_hi && mlow_lo < mhigh_lo));
3263 /* If precision == N, then mlow, mhigh exceed 2^N
3264 (but they do not exceed 2^(N+1)). */
3266 /* Reduce to lowest terms. */
3267 for (post_shift = lgup; post_shift > 0; post_shift--)
3269 unsigned HOST_WIDE_INT ml_lo = (mlow_hi << (HOST_BITS_PER_WIDE_INT - 1)) | (mlow_lo >> 1);
3270 unsigned HOST_WIDE_INT mh_lo = (mhigh_hi << (HOST_BITS_PER_WIDE_INT - 1)) | (mhigh_lo >> 1);
3271 if (ml_lo >= mh_lo)
3272 break;
3274 mlow_hi = 0;
3275 mlow_lo = ml_lo;
3276 mhigh_hi = 0;
3277 mhigh_lo = mh_lo;
3280 *post_shift_ptr = post_shift;
3281 *lgup_ptr = lgup;
3282 if (n < HOST_BITS_PER_WIDE_INT)
3284 unsigned HOST_WIDE_INT mask = ((unsigned HOST_WIDE_INT) 1 << n) - 1;
3285 *multiplier_ptr = GEN_INT (mhigh_lo & mask);
3286 return mhigh_lo >= mask;
3288 else
3290 *multiplier_ptr = GEN_INT (mhigh_lo);
3291 return mhigh_hi;
3295 /* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
3296 congruent to 1 (mod 2**N). */
3298 static unsigned HOST_WIDE_INT
3299 invert_mod2n (unsigned HOST_WIDE_INT x, int n)
3301 /* Solve x*y == 1 (mod 2^n), where x is odd. Return y. */
3303 /* The algorithm notes that the choice y = x satisfies
3304 x*y == 1 mod 2^3, since x is assumed odd.
3305 Each iteration doubles the number of bits of significance in y. */
3307 unsigned HOST_WIDE_INT mask;
3308 unsigned HOST_WIDE_INT y = x;
3309 int nbit = 3;
3311 mask = (n == HOST_BITS_PER_WIDE_INT
3312 ? ~(unsigned HOST_WIDE_INT) 0
3313 : ((unsigned HOST_WIDE_INT) 1 << n) - 1);
3315 while (nbit < n)
3317 y = y * (2 - x*y) & mask; /* Modulo 2^N */
3318 nbit *= 2;
3320 return y;
3323 /* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
3324 flavor of OP0 and OP1. ADJ_OPERAND is already the high half of the
3325 product OP0 x OP1. If UNSIGNEDP is nonzero, adjust the signed product
3326 to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
3327 become signed.
3329 The result is put in TARGET if that is convenient.
3331 MODE is the mode of operation. */
3334 expand_mult_highpart_adjust (enum machine_mode mode, rtx adj_operand, rtx op0,
3335 rtx op1, rtx target, int unsignedp)
3337 rtx tem;
3338 enum rtx_code adj_code = unsignedp ? PLUS : MINUS;
3340 tem = expand_shift (RSHIFT_EXPR, mode, op0,
3341 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode) - 1),
3342 NULL_RTX, 0);
3343 tem = expand_and (mode, tem, op1, NULL_RTX);
3344 adj_operand
3345 = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3346 adj_operand);
3348 tem = expand_shift (RSHIFT_EXPR, mode, op1,
3349 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode) - 1),
3350 NULL_RTX, 0);
3351 tem = expand_and (mode, tem, op0, NULL_RTX);
3352 target = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3353 target);
3355 return target;
3358 /* Subroutine of expand_mult_highpart. Return the MODE high part of OP. */
3360 static rtx
3361 extract_high_half (enum machine_mode mode, rtx op)
3363 enum machine_mode wider_mode;
3365 if (mode == word_mode)
3366 return gen_highpart (mode, op);
3368 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3370 wider_mode = GET_MODE_WIDER_MODE (mode);
3371 op = expand_shift (RSHIFT_EXPR, wider_mode, op,
3372 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode)), 0, 1);
3373 return convert_modes (mode, wider_mode, op, 0);
3376 /* Like expand_mult_highpart, but only consider using a multiplication
3377 optab. OP1 is an rtx for the constant operand. */
3379 static rtx
3380 expand_mult_highpart_optab (enum machine_mode mode, rtx op0, rtx op1,
3381 rtx target, int unsignedp, int max_cost)
3383 rtx narrow_op1 = gen_int_mode (INTVAL (op1), mode);
3384 enum machine_mode wider_mode;
3385 optab moptab;
3386 rtx tem;
3387 int size;
3389 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3391 wider_mode = GET_MODE_WIDER_MODE (mode);
3392 size = GET_MODE_BITSIZE (mode);
3394 /* Firstly, try using a multiplication insn that only generates the needed
3395 high part of the product, and in the sign flavor of unsignedp. */
3396 if (mul_highpart_cost[mode] < max_cost)
3398 moptab = unsignedp ? umul_highpart_optab : smul_highpart_optab;
3399 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3400 unsignedp, OPTAB_DIRECT);
3401 if (tem)
3402 return tem;
3405 /* Secondly, same as above, but use sign flavor opposite of unsignedp.
3406 Need to adjust the result after the multiplication. */
3407 if (size - 1 < BITS_PER_WORD
3408 && (mul_highpart_cost[mode] + 2 * shift_cost[mode][size-1]
3409 + 4 * add_cost[mode] < max_cost))
3411 moptab = unsignedp ? smul_highpart_optab : umul_highpart_optab;
3412 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3413 unsignedp, OPTAB_DIRECT);
3414 if (tem)
3415 /* We used the wrong signedness. Adjust the result. */
3416 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3417 tem, unsignedp);
3420 /* Try widening multiplication. */
3421 moptab = unsignedp ? umul_widen_optab : smul_widen_optab;
3422 if (optab_handler (moptab, wider_mode)->insn_code != CODE_FOR_nothing
3423 && mul_widen_cost[wider_mode] < max_cost)
3425 tem = expand_binop (wider_mode, moptab, op0, narrow_op1, 0,
3426 unsignedp, OPTAB_WIDEN);
3427 if (tem)
3428 return extract_high_half (mode, tem);
3431 /* Try widening the mode and perform a non-widening multiplication. */
3432 if (optab_handler (smul_optab, wider_mode)->insn_code != CODE_FOR_nothing
3433 && size - 1 < BITS_PER_WORD
3434 && mul_cost[wider_mode] + shift_cost[mode][size-1] < max_cost)
3436 rtx insns, wop0, wop1;
3438 /* We need to widen the operands, for example to ensure the
3439 constant multiplier is correctly sign or zero extended.
3440 Use a sequence to clean-up any instructions emitted by
3441 the conversions if things don't work out. */
3442 start_sequence ();
3443 wop0 = convert_modes (wider_mode, mode, op0, unsignedp);
3444 wop1 = convert_modes (wider_mode, mode, op1, unsignedp);
3445 tem = expand_binop (wider_mode, smul_optab, wop0, wop1, 0,
3446 unsignedp, OPTAB_WIDEN);
3447 insns = get_insns ();
3448 end_sequence ();
3450 if (tem)
3452 emit_insn (insns);
3453 return extract_high_half (mode, tem);
3457 /* Try widening multiplication of opposite signedness, and adjust. */
3458 moptab = unsignedp ? smul_widen_optab : umul_widen_optab;
3459 if (optab_handler (moptab, wider_mode)->insn_code != CODE_FOR_nothing
3460 && size - 1 < BITS_PER_WORD
3461 && (mul_widen_cost[wider_mode] + 2 * shift_cost[mode][size-1]
3462 + 4 * add_cost[mode] < max_cost))
3464 tem = expand_binop (wider_mode, moptab, op0, narrow_op1,
3465 NULL_RTX, ! unsignedp, OPTAB_WIDEN);
3466 if (tem != 0)
3468 tem = extract_high_half (mode, tem);
3469 /* We used the wrong signedness. Adjust the result. */
3470 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3471 target, unsignedp);
3475 return 0;
3478 /* Emit code to multiply OP0 and OP1 (where OP1 is an integer constant),
3479 putting the high half of the result in TARGET if that is convenient,
3480 and return where the result is. If the operation can not be performed,
3481 0 is returned.
3483 MODE is the mode of operation and result.
3485 UNSIGNEDP nonzero means unsigned multiply.
3487 MAX_COST is the total allowed cost for the expanded RTL. */
3489 static rtx
3490 expand_mult_highpart (enum machine_mode mode, rtx op0, rtx op1,
3491 rtx target, int unsignedp, int max_cost)
3493 enum machine_mode wider_mode = GET_MODE_WIDER_MODE (mode);
3494 unsigned HOST_WIDE_INT cnst1;
3495 int extra_cost;
3496 bool sign_adjust = false;
3497 enum mult_variant variant;
3498 struct algorithm alg;
3499 rtx tem;
3501 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3502 /* We can't support modes wider than HOST_BITS_PER_INT. */
3503 gcc_assert (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT);
3505 cnst1 = INTVAL (op1) & GET_MODE_MASK (mode);
3507 /* We can't optimize modes wider than BITS_PER_WORD.
3508 ??? We might be able to perform double-word arithmetic if
3509 mode == word_mode, however all the cost calculations in
3510 synth_mult etc. assume single-word operations. */
3511 if (GET_MODE_BITSIZE (wider_mode) > BITS_PER_WORD)
3512 return expand_mult_highpart_optab (mode, op0, op1, target,
3513 unsignedp, max_cost);
3515 extra_cost = shift_cost[mode][GET_MODE_BITSIZE (mode) - 1];
3517 /* Check whether we try to multiply by a negative constant. */
3518 if (!unsignedp && ((cnst1 >> (GET_MODE_BITSIZE (mode) - 1)) & 1))
3520 sign_adjust = true;
3521 extra_cost += add_cost[mode];
3524 /* See whether shift/add multiplication is cheap enough. */
3525 if (choose_mult_variant (wider_mode, cnst1, &alg, &variant,
3526 max_cost - extra_cost))
3528 /* See whether the specialized multiplication optabs are
3529 cheaper than the shift/add version. */
3530 tem = expand_mult_highpart_optab (mode, op0, op1, target, unsignedp,
3531 alg.cost.cost + extra_cost);
3532 if (tem)
3533 return tem;
3535 tem = convert_to_mode (wider_mode, op0, unsignedp);
3536 tem = expand_mult_const (wider_mode, tem, cnst1, 0, &alg, variant);
3537 tem = extract_high_half (mode, tem);
3539 /* Adjust result for signedness. */
3540 if (sign_adjust)
3541 tem = force_operand (gen_rtx_MINUS (mode, tem, op0), tem);
3543 return tem;
3545 return expand_mult_highpart_optab (mode, op0, op1, target,
3546 unsignedp, max_cost);
3550 /* Expand signed modulus of OP0 by a power of two D in mode MODE. */
3552 static rtx
3553 expand_smod_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
3555 unsigned HOST_WIDE_INT masklow, maskhigh;
3556 rtx result, temp, shift, label;
3557 int logd;
3559 logd = floor_log2 (d);
3560 result = gen_reg_rtx (mode);
3562 /* Avoid conditional branches when they're expensive. */
3563 if (BRANCH_COST >= 2
3564 && !optimize_size)
3566 rtx signmask = emit_store_flag (result, LT, op0, const0_rtx,
3567 mode, 0, -1);
3568 if (signmask)
3570 signmask = force_reg (mode, signmask);
3571 masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
3572 shift = GEN_INT (GET_MODE_BITSIZE (mode) - logd);
3574 /* Use the rtx_cost of a LSHIFTRT instruction to determine
3575 which instruction sequence to use. If logical right shifts
3576 are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
3577 use a LSHIFTRT, 1 ADD, 1 SUB and an AND. */
3579 temp = gen_rtx_LSHIFTRT (mode, result, shift);
3580 if (optab_handler (lshr_optab, mode)->insn_code == CODE_FOR_nothing
3581 || rtx_cost (temp, SET) > COSTS_N_INSNS (2))
3583 temp = expand_binop (mode, xor_optab, op0, signmask,
3584 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3585 temp = expand_binop (mode, sub_optab, temp, signmask,
3586 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3587 temp = expand_binop (mode, and_optab, temp, GEN_INT (masklow),
3588 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3589 temp = expand_binop (mode, xor_optab, temp, signmask,
3590 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3591 temp = expand_binop (mode, sub_optab, temp, signmask,
3592 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3594 else
3596 signmask = expand_binop (mode, lshr_optab, signmask, shift,
3597 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3598 signmask = force_reg (mode, signmask);
3600 temp = expand_binop (mode, add_optab, op0, signmask,
3601 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3602 temp = expand_binop (mode, and_optab, temp, GEN_INT (masklow),
3603 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3604 temp = expand_binop (mode, sub_optab, temp, signmask,
3605 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3607 return temp;
3611 /* Mask contains the mode's signbit and the significant bits of the
3612 modulus. By including the signbit in the operation, many targets
3613 can avoid an explicit compare operation in the following comparison
3614 against zero. */
3616 masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
3617 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3619 masklow |= (HOST_WIDE_INT) -1 << (GET_MODE_BITSIZE (mode) - 1);
3620 maskhigh = -1;
3622 else
3623 maskhigh = (HOST_WIDE_INT) -1
3624 << (GET_MODE_BITSIZE (mode) - HOST_BITS_PER_WIDE_INT - 1);
3626 temp = expand_binop (mode, and_optab, op0,
3627 immed_double_const (masklow, maskhigh, mode),
3628 result, 1, OPTAB_LIB_WIDEN);
3629 if (temp != result)
3630 emit_move_insn (result, temp);
3632 label = gen_label_rtx ();
3633 do_cmp_and_jump (result, const0_rtx, GE, mode, label);
3635 temp = expand_binop (mode, sub_optab, result, const1_rtx, result,
3636 0, OPTAB_LIB_WIDEN);
3637 masklow = (HOST_WIDE_INT) -1 << logd;
3638 maskhigh = -1;
3639 temp = expand_binop (mode, ior_optab, temp,
3640 immed_double_const (masklow, maskhigh, mode),
3641 result, 1, OPTAB_LIB_WIDEN);
3642 temp = expand_binop (mode, add_optab, temp, const1_rtx, result,
3643 0, OPTAB_LIB_WIDEN);
3644 if (temp != result)
3645 emit_move_insn (result, temp);
3646 emit_label (label);
3647 return result;
3650 /* Expand signed division of OP0 by a power of two D in mode MODE.
3651 This routine is only called for positive values of D. */
3653 static rtx
3654 expand_sdiv_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
3656 rtx temp, label;
3657 tree shift;
3658 int logd;
3660 logd = floor_log2 (d);
3661 shift = build_int_cst (NULL_TREE, logd);
3663 if (d == 2 && BRANCH_COST >= 1)
3665 temp = gen_reg_rtx (mode);
3666 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, 1);
3667 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3668 0, OPTAB_LIB_WIDEN);
3669 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3672 #ifdef HAVE_conditional_move
3673 if (BRANCH_COST >= 2)
3675 rtx temp2;
3677 /* ??? emit_conditional_move forces a stack adjustment via
3678 compare_from_rtx so, if the sequence is discarded, it will
3679 be lost. Do it now instead. */
3680 do_pending_stack_adjust ();
3682 start_sequence ();
3683 temp2 = copy_to_mode_reg (mode, op0);
3684 temp = expand_binop (mode, add_optab, temp2, GEN_INT (d-1),
3685 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3686 temp = force_reg (mode, temp);
3688 /* Construct "temp2 = (temp2 < 0) ? temp : temp2". */
3689 temp2 = emit_conditional_move (temp2, LT, temp2, const0_rtx,
3690 mode, temp, temp2, mode, 0);
3691 if (temp2)
3693 rtx seq = get_insns ();
3694 end_sequence ();
3695 emit_insn (seq);
3696 return expand_shift (RSHIFT_EXPR, mode, temp2, shift, NULL_RTX, 0);
3698 end_sequence ();
3700 #endif
3702 if (BRANCH_COST >= 2)
3704 int ushift = GET_MODE_BITSIZE (mode) - logd;
3706 temp = gen_reg_rtx (mode);
3707 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, -1);
3708 if (shift_cost[mode][ushift] > COSTS_N_INSNS (1))
3709 temp = expand_binop (mode, and_optab, temp, GEN_INT (d - 1),
3710 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3711 else
3712 temp = expand_shift (RSHIFT_EXPR, mode, temp,
3713 build_int_cst (NULL_TREE, ushift),
3714 NULL_RTX, 1);
3715 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3716 0, OPTAB_LIB_WIDEN);
3717 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3720 label = gen_label_rtx ();
3721 temp = copy_to_mode_reg (mode, op0);
3722 do_cmp_and_jump (temp, const0_rtx, GE, mode, label);
3723 expand_inc (temp, GEN_INT (d - 1));
3724 emit_label (label);
3725 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3728 /* Emit the code to divide OP0 by OP1, putting the result in TARGET
3729 if that is convenient, and returning where the result is.
3730 You may request either the quotient or the remainder as the result;
3731 specify REM_FLAG nonzero to get the remainder.
3733 CODE is the expression code for which kind of division this is;
3734 it controls how rounding is done. MODE is the machine mode to use.
3735 UNSIGNEDP nonzero means do unsigned division. */
3737 /* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
3738 and then correct it by or'ing in missing high bits
3739 if result of ANDI is nonzero.
3740 For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
3741 This could optimize to a bfexts instruction.
3742 But C doesn't use these operations, so their optimizations are
3743 left for later. */
3744 /* ??? For modulo, we don't actually need the highpart of the first product,
3745 the low part will do nicely. And for small divisors, the second multiply
3746 can also be a low-part only multiply or even be completely left out.
3747 E.g. to calculate the remainder of a division by 3 with a 32 bit
3748 multiply, multiply with 0x55555556 and extract the upper two bits;
3749 the result is exact for inputs up to 0x1fffffff.
3750 The input range can be reduced by using cross-sum rules.
3751 For odd divisors >= 3, the following table gives right shift counts
3752 so that if a number is shifted by an integer multiple of the given
3753 amount, the remainder stays the same:
3754 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
3755 14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
3756 0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
3757 20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
3758 0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12
3760 Cross-sum rules for even numbers can be derived by leaving as many bits
3761 to the right alone as the divisor has zeros to the right.
3762 E.g. if x is an unsigned 32 bit number:
3763 (x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
3767 expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
3768 rtx op0, rtx op1, rtx target, int unsignedp)
3770 enum machine_mode compute_mode;
3771 rtx tquotient;
3772 rtx quotient = 0, remainder = 0;
3773 rtx last;
3774 int size;
3775 rtx insn, set;
3776 optab optab1, optab2;
3777 int op1_is_constant, op1_is_pow2 = 0;
3778 int max_cost, extra_cost;
3779 static HOST_WIDE_INT last_div_const = 0;
3780 static HOST_WIDE_INT ext_op1;
3782 op1_is_constant = GET_CODE (op1) == CONST_INT;
3783 if (op1_is_constant)
3785 ext_op1 = INTVAL (op1);
3786 if (unsignedp)
3787 ext_op1 &= GET_MODE_MASK (mode);
3788 op1_is_pow2 = ((EXACT_POWER_OF_2_OR_ZERO_P (ext_op1)
3789 || (! unsignedp && EXACT_POWER_OF_2_OR_ZERO_P (-ext_op1))));
3793 This is the structure of expand_divmod:
3795 First comes code to fix up the operands so we can perform the operations
3796 correctly and efficiently.
3798 Second comes a switch statement with code specific for each rounding mode.
3799 For some special operands this code emits all RTL for the desired
3800 operation, for other cases, it generates only a quotient and stores it in
3801 QUOTIENT. The case for trunc division/remainder might leave quotient = 0,
3802 to indicate that it has not done anything.
3804 Last comes code that finishes the operation. If QUOTIENT is set and
3805 REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1. If
3806 QUOTIENT is not set, it is computed using trunc rounding.
3808 We try to generate special code for division and remainder when OP1 is a
3809 constant. If |OP1| = 2**n we can use shifts and some other fast
3810 operations. For other values of OP1, we compute a carefully selected
3811 fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
3812 by m.
3814 In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
3815 half of the product. Different strategies for generating the product are
3816 implemented in expand_mult_highpart.
3818 If what we actually want is the remainder, we generate that by another
3819 by-constant multiplication and a subtraction. */
3821 /* We shouldn't be called with OP1 == const1_rtx, but some of the
3822 code below will malfunction if we are, so check here and handle
3823 the special case if so. */
3824 if (op1 == const1_rtx)
3825 return rem_flag ? const0_rtx : op0;
3827 /* When dividing by -1, we could get an overflow.
3828 negv_optab can handle overflows. */
3829 if (! unsignedp && op1 == constm1_rtx)
3831 if (rem_flag)
3832 return const0_rtx;
3833 return expand_unop (mode, flag_trapv && GET_MODE_CLASS(mode) == MODE_INT
3834 ? negv_optab : neg_optab, op0, target, 0);
3837 if (target
3838 /* Don't use the function value register as a target
3839 since we have to read it as well as write it,
3840 and function-inlining gets confused by this. */
3841 && ((REG_P (target) && REG_FUNCTION_VALUE_P (target))
3842 /* Don't clobber an operand while doing a multi-step calculation. */
3843 || ((rem_flag || op1_is_constant)
3844 && (reg_mentioned_p (target, op0)
3845 || (MEM_P (op0) && MEM_P (target))))
3846 || reg_mentioned_p (target, op1)
3847 || (MEM_P (op1) && MEM_P (target))))
3848 target = 0;
3850 /* Get the mode in which to perform this computation. Normally it will
3851 be MODE, but sometimes we can't do the desired operation in MODE.
3852 If so, pick a wider mode in which we can do the operation. Convert
3853 to that mode at the start to avoid repeated conversions.
3855 First see what operations we need. These depend on the expression
3856 we are evaluating. (We assume that divxx3 insns exist under the
3857 same conditions that modxx3 insns and that these insns don't normally
3858 fail. If these assumptions are not correct, we may generate less
3859 efficient code in some cases.)
3861 Then see if we find a mode in which we can open-code that operation
3862 (either a division, modulus, or shift). Finally, check for the smallest
3863 mode for which we can do the operation with a library call. */
3865 /* We might want to refine this now that we have division-by-constant
3866 optimization. Since expand_mult_highpart tries so many variants, it is
3867 not straightforward to generalize this. Maybe we should make an array
3868 of possible modes in init_expmed? Save this for GCC 2.7. */
3870 optab1 = ((op1_is_pow2 && op1 != const0_rtx)
3871 ? (unsignedp ? lshr_optab : ashr_optab)
3872 : (unsignedp ? udiv_optab : sdiv_optab));
3873 optab2 = ((op1_is_pow2 && op1 != const0_rtx)
3874 ? optab1
3875 : (unsignedp ? udivmod_optab : sdivmod_optab));
3877 for (compute_mode = mode; compute_mode != VOIDmode;
3878 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
3879 if (optab_handler (optab1, compute_mode)->insn_code != CODE_FOR_nothing
3880 || optab_handler (optab2, compute_mode)->insn_code != CODE_FOR_nothing)
3881 break;
3883 if (compute_mode == VOIDmode)
3884 for (compute_mode = mode; compute_mode != VOIDmode;
3885 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
3886 if (optab_libfunc (optab1, compute_mode)
3887 || optab_libfunc (optab2, compute_mode))
3888 break;
3890 /* If we still couldn't find a mode, use MODE, but expand_binop will
3891 probably die. */
3892 if (compute_mode == VOIDmode)
3893 compute_mode = mode;
3895 if (target && GET_MODE (target) == compute_mode)
3896 tquotient = target;
3897 else
3898 tquotient = gen_reg_rtx (compute_mode);
3900 size = GET_MODE_BITSIZE (compute_mode);
3901 #if 0
3902 /* It should be possible to restrict the precision to GET_MODE_BITSIZE
3903 (mode), and thereby get better code when OP1 is a constant. Do that
3904 later. It will require going over all usages of SIZE below. */
3905 size = GET_MODE_BITSIZE (mode);
3906 #endif
3908 /* Only deduct something for a REM if the last divide done was
3909 for a different constant. Then set the constant of the last
3910 divide. */
3911 max_cost = unsignedp ? udiv_cost[compute_mode] : sdiv_cost[compute_mode];
3912 if (rem_flag && ! (last_div_const != 0 && op1_is_constant
3913 && INTVAL (op1) == last_div_const))
3914 max_cost -= mul_cost[compute_mode] + add_cost[compute_mode];
3916 last_div_const = ! rem_flag && op1_is_constant ? INTVAL (op1) : 0;
3918 /* Now convert to the best mode to use. */
3919 if (compute_mode != mode)
3921 op0 = convert_modes (compute_mode, mode, op0, unsignedp);
3922 op1 = convert_modes (compute_mode, mode, op1, unsignedp);
3924 /* convert_modes may have placed op1 into a register, so we
3925 must recompute the following. */
3926 op1_is_constant = GET_CODE (op1) == CONST_INT;
3927 op1_is_pow2 = (op1_is_constant
3928 && ((EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
3929 || (! unsignedp
3930 && EXACT_POWER_OF_2_OR_ZERO_P (-INTVAL (op1)))))) ;
3933 /* If one of the operands is a volatile MEM, copy it into a register. */
3935 if (MEM_P (op0) && MEM_VOLATILE_P (op0))
3936 op0 = force_reg (compute_mode, op0);
3937 if (MEM_P (op1) && MEM_VOLATILE_P (op1))
3938 op1 = force_reg (compute_mode, op1);
3940 /* If we need the remainder or if OP1 is constant, we need to
3941 put OP0 in a register in case it has any queued subexpressions. */
3942 if (rem_flag || op1_is_constant)
3943 op0 = force_reg (compute_mode, op0);
3945 last = get_last_insn ();
3947 /* Promote floor rounding to trunc rounding for unsigned operations. */
3948 if (unsignedp)
3950 if (code == FLOOR_DIV_EXPR)
3951 code = TRUNC_DIV_EXPR;
3952 if (code == FLOOR_MOD_EXPR)
3953 code = TRUNC_MOD_EXPR;
3954 if (code == EXACT_DIV_EXPR && op1_is_pow2)
3955 code = TRUNC_DIV_EXPR;
3958 if (op1 != const0_rtx)
3959 switch (code)
3961 case TRUNC_MOD_EXPR:
3962 case TRUNC_DIV_EXPR:
3963 if (op1_is_constant)
3965 if (unsignedp)
3967 unsigned HOST_WIDE_INT mh;
3968 int pre_shift, post_shift;
3969 int dummy;
3970 rtx ml;
3971 unsigned HOST_WIDE_INT d = (INTVAL (op1)
3972 & GET_MODE_MASK (compute_mode));
3974 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
3976 pre_shift = floor_log2 (d);
3977 if (rem_flag)
3979 remainder
3980 = expand_binop (compute_mode, and_optab, op0,
3981 GEN_INT (((HOST_WIDE_INT) 1 << pre_shift) - 1),
3982 remainder, 1,
3983 OPTAB_LIB_WIDEN);
3984 if (remainder)
3985 return gen_lowpart (mode, remainder);
3987 quotient = expand_shift (RSHIFT_EXPR, compute_mode, op0,
3988 build_int_cst (NULL_TREE,
3989 pre_shift),
3990 tquotient, 1);
3992 else if (size <= HOST_BITS_PER_WIDE_INT)
3994 if (d >= ((unsigned HOST_WIDE_INT) 1 << (size - 1)))
3996 /* Most significant bit of divisor is set; emit an scc
3997 insn. */
3998 quotient = emit_store_flag (tquotient, GEU, op0, op1,
3999 compute_mode, 1, 1);
4000 if (quotient == 0)
4001 goto fail1;
4003 else
4005 /* Find a suitable multiplier and right shift count
4006 instead of multiplying with D. */
4008 mh = choose_multiplier (d, size, size,
4009 &ml, &post_shift, &dummy);
4011 /* If the suggested multiplier is more than SIZE bits,
4012 we can do better for even divisors, using an
4013 initial right shift. */
4014 if (mh != 0 && (d & 1) == 0)
4016 pre_shift = floor_log2 (d & -d);
4017 mh = choose_multiplier (d >> pre_shift, size,
4018 size - pre_shift,
4019 &ml, &post_shift, &dummy);
4020 gcc_assert (!mh);
4022 else
4023 pre_shift = 0;
4025 if (mh != 0)
4027 rtx t1, t2, t3, t4;
4029 if (post_shift - 1 >= BITS_PER_WORD)
4030 goto fail1;
4032 extra_cost
4033 = (shift_cost[compute_mode][post_shift - 1]
4034 + shift_cost[compute_mode][1]
4035 + 2 * add_cost[compute_mode]);
4036 t1 = expand_mult_highpart (compute_mode, op0, ml,
4037 NULL_RTX, 1,
4038 max_cost - extra_cost);
4039 if (t1 == 0)
4040 goto fail1;
4041 t2 = force_operand (gen_rtx_MINUS (compute_mode,
4042 op0, t1),
4043 NULL_RTX);
4044 t3 = expand_shift
4045 (RSHIFT_EXPR, compute_mode, t2,
4046 build_int_cst (NULL_TREE, 1),
4047 NULL_RTX,1);
4048 t4 = force_operand (gen_rtx_PLUS (compute_mode,
4049 t1, t3),
4050 NULL_RTX);
4051 quotient = expand_shift
4052 (RSHIFT_EXPR, compute_mode, t4,
4053 build_int_cst (NULL_TREE, post_shift - 1),
4054 tquotient, 1);
4056 else
4058 rtx t1, t2;
4060 if (pre_shift >= BITS_PER_WORD
4061 || post_shift >= BITS_PER_WORD)
4062 goto fail1;
4064 t1 = expand_shift
4065 (RSHIFT_EXPR, compute_mode, op0,
4066 build_int_cst (NULL_TREE, pre_shift),
4067 NULL_RTX, 1);
4068 extra_cost
4069 = (shift_cost[compute_mode][pre_shift]
4070 + shift_cost[compute_mode][post_shift]);
4071 t2 = expand_mult_highpart (compute_mode, t1, ml,
4072 NULL_RTX, 1,
4073 max_cost - extra_cost);
4074 if (t2 == 0)
4075 goto fail1;
4076 quotient = expand_shift
4077 (RSHIFT_EXPR, compute_mode, t2,
4078 build_int_cst (NULL_TREE, post_shift),
4079 tquotient, 1);
4083 else /* Too wide mode to use tricky code */
4084 break;
4086 insn = get_last_insn ();
4087 if (insn != last
4088 && (set = single_set (insn)) != 0
4089 && SET_DEST (set) == quotient)
4090 set_unique_reg_note (insn,
4091 REG_EQUAL,
4092 gen_rtx_UDIV (compute_mode, op0, op1));
4094 else /* TRUNC_DIV, signed */
4096 unsigned HOST_WIDE_INT ml;
4097 int lgup, post_shift;
4098 rtx mlr;
4099 HOST_WIDE_INT d = INTVAL (op1);
4100 unsigned HOST_WIDE_INT abs_d;
4102 /* Since d might be INT_MIN, we have to cast to
4103 unsigned HOST_WIDE_INT before negating to avoid
4104 undefined signed overflow. */
4105 abs_d = (d >= 0
4106 ? (unsigned HOST_WIDE_INT) d
4107 : - (unsigned HOST_WIDE_INT) d);
4109 /* n rem d = n rem -d */
4110 if (rem_flag && d < 0)
4112 d = abs_d;
4113 op1 = gen_int_mode (abs_d, compute_mode);
4116 if (d == 1)
4117 quotient = op0;
4118 else if (d == -1)
4119 quotient = expand_unop (compute_mode, neg_optab, op0,
4120 tquotient, 0);
4121 else if (abs_d == (unsigned HOST_WIDE_INT) 1 << (size - 1))
4123 /* This case is not handled correctly below. */
4124 quotient = emit_store_flag (tquotient, EQ, op0, op1,
4125 compute_mode, 1, 1);
4126 if (quotient == 0)
4127 goto fail1;
4129 else if (EXACT_POWER_OF_2_OR_ZERO_P (d)
4130 && (rem_flag ? smod_pow2_cheap[compute_mode]
4131 : sdiv_pow2_cheap[compute_mode])
4132 /* We assume that cheap metric is true if the
4133 optab has an expander for this mode. */
4134 && ((optab_handler ((rem_flag ? smod_optab
4135 : sdiv_optab),
4136 compute_mode)->insn_code
4137 != CODE_FOR_nothing)
4138 || (optab_handler(sdivmod_optab,
4139 compute_mode)
4140 ->insn_code != CODE_FOR_nothing)))
4142 else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d))
4144 if (rem_flag)
4146 remainder = expand_smod_pow2 (compute_mode, op0, d);
4147 if (remainder)
4148 return gen_lowpart (mode, remainder);
4151 if (sdiv_pow2_cheap[compute_mode]
4152 && ((optab_handler (sdiv_optab, compute_mode)->insn_code
4153 != CODE_FOR_nothing)
4154 || (optab_handler (sdivmod_optab, compute_mode)->insn_code
4155 != CODE_FOR_nothing)))
4156 quotient = expand_divmod (0, TRUNC_DIV_EXPR,
4157 compute_mode, op0,
4158 gen_int_mode (abs_d,
4159 compute_mode),
4160 NULL_RTX, 0);
4161 else
4162 quotient = expand_sdiv_pow2 (compute_mode, op0, abs_d);
4164 /* We have computed OP0 / abs(OP1). If OP1 is negative,
4165 negate the quotient. */
4166 if (d < 0)
4168 insn = get_last_insn ();
4169 if (insn != last
4170 && (set = single_set (insn)) != 0
4171 && SET_DEST (set) == quotient
4172 && abs_d < ((unsigned HOST_WIDE_INT) 1
4173 << (HOST_BITS_PER_WIDE_INT - 1)))
4174 set_unique_reg_note (insn,
4175 REG_EQUAL,
4176 gen_rtx_DIV (compute_mode,
4177 op0,
4178 GEN_INT
4179 (trunc_int_for_mode
4180 (abs_d,
4181 compute_mode))));
4183 quotient = expand_unop (compute_mode, neg_optab,
4184 quotient, quotient, 0);
4187 else if (size <= HOST_BITS_PER_WIDE_INT)
4189 choose_multiplier (abs_d, size, size - 1,
4190 &mlr, &post_shift, &lgup);
4191 ml = (unsigned HOST_WIDE_INT) INTVAL (mlr);
4192 if (ml < (unsigned HOST_WIDE_INT) 1 << (size - 1))
4194 rtx t1, t2, t3;
4196 if (post_shift >= BITS_PER_WORD
4197 || size - 1 >= BITS_PER_WORD)
4198 goto fail1;
4200 extra_cost = (shift_cost[compute_mode][post_shift]
4201 + shift_cost[compute_mode][size - 1]
4202 + add_cost[compute_mode]);
4203 t1 = expand_mult_highpart (compute_mode, op0, mlr,
4204 NULL_RTX, 0,
4205 max_cost - extra_cost);
4206 if (t1 == 0)
4207 goto fail1;
4208 t2 = expand_shift
4209 (RSHIFT_EXPR, compute_mode, t1,
4210 build_int_cst (NULL_TREE, post_shift),
4211 NULL_RTX, 0);
4212 t3 = expand_shift
4213 (RSHIFT_EXPR, compute_mode, op0,
4214 build_int_cst (NULL_TREE, size - 1),
4215 NULL_RTX, 0);
4216 if (d < 0)
4217 quotient
4218 = force_operand (gen_rtx_MINUS (compute_mode,
4219 t3, t2),
4220 tquotient);
4221 else
4222 quotient
4223 = force_operand (gen_rtx_MINUS (compute_mode,
4224 t2, t3),
4225 tquotient);
4227 else
4229 rtx t1, t2, t3, t4;
4231 if (post_shift >= BITS_PER_WORD
4232 || size - 1 >= BITS_PER_WORD)
4233 goto fail1;
4235 ml |= (~(unsigned HOST_WIDE_INT) 0) << (size - 1);
4236 mlr = gen_int_mode (ml, compute_mode);
4237 extra_cost = (shift_cost[compute_mode][post_shift]
4238 + shift_cost[compute_mode][size - 1]
4239 + 2 * add_cost[compute_mode]);
4240 t1 = expand_mult_highpart (compute_mode, op0, mlr,
4241 NULL_RTX, 0,
4242 max_cost - extra_cost);
4243 if (t1 == 0)
4244 goto fail1;
4245 t2 = force_operand (gen_rtx_PLUS (compute_mode,
4246 t1, op0),
4247 NULL_RTX);
4248 t3 = expand_shift
4249 (RSHIFT_EXPR, compute_mode, t2,
4250 build_int_cst (NULL_TREE, post_shift),
4251 NULL_RTX, 0);
4252 t4 = expand_shift
4253 (RSHIFT_EXPR, compute_mode, op0,
4254 build_int_cst (NULL_TREE, size - 1),
4255 NULL_RTX, 0);
4256 if (d < 0)
4257 quotient
4258 = force_operand (gen_rtx_MINUS (compute_mode,
4259 t4, t3),
4260 tquotient);
4261 else
4262 quotient
4263 = force_operand (gen_rtx_MINUS (compute_mode,
4264 t3, t4),
4265 tquotient);
4268 else /* Too wide mode to use tricky code */
4269 break;
4271 insn = get_last_insn ();
4272 if (insn != last
4273 && (set = single_set (insn)) != 0
4274 && SET_DEST (set) == quotient)
4275 set_unique_reg_note (insn,
4276 REG_EQUAL,
4277 gen_rtx_DIV (compute_mode, op0, op1));
4279 break;
4281 fail1:
4282 delete_insns_since (last);
4283 break;
4285 case FLOOR_DIV_EXPR:
4286 case FLOOR_MOD_EXPR:
4287 /* We will come here only for signed operations. */
4288 if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4290 unsigned HOST_WIDE_INT mh;
4291 int pre_shift, lgup, post_shift;
4292 HOST_WIDE_INT d = INTVAL (op1);
4293 rtx ml;
4295 if (d > 0)
4297 /* We could just as easily deal with negative constants here,
4298 but it does not seem worth the trouble for GCC 2.6. */
4299 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
4301 pre_shift = floor_log2 (d);
4302 if (rem_flag)
4304 remainder = expand_binop (compute_mode, and_optab, op0,
4305 GEN_INT (((HOST_WIDE_INT) 1 << pre_shift) - 1),
4306 remainder, 0, OPTAB_LIB_WIDEN);
4307 if (remainder)
4308 return gen_lowpart (mode, remainder);
4310 quotient = expand_shift
4311 (RSHIFT_EXPR, compute_mode, op0,
4312 build_int_cst (NULL_TREE, pre_shift),
4313 tquotient, 0);
4315 else
4317 rtx t1, t2, t3, t4;
4319 mh = choose_multiplier (d, size, size - 1,
4320 &ml, &post_shift, &lgup);
4321 gcc_assert (!mh);
4323 if (post_shift < BITS_PER_WORD
4324 && size - 1 < BITS_PER_WORD)
4326 t1 = expand_shift
4327 (RSHIFT_EXPR, compute_mode, op0,
4328 build_int_cst (NULL_TREE, size - 1),
4329 NULL_RTX, 0);
4330 t2 = expand_binop (compute_mode, xor_optab, op0, t1,
4331 NULL_RTX, 0, OPTAB_WIDEN);
4332 extra_cost = (shift_cost[compute_mode][post_shift]
4333 + shift_cost[compute_mode][size - 1]
4334 + 2 * add_cost[compute_mode]);
4335 t3 = expand_mult_highpart (compute_mode, t2, ml,
4336 NULL_RTX, 1,
4337 max_cost - extra_cost);
4338 if (t3 != 0)
4340 t4 = expand_shift
4341 (RSHIFT_EXPR, compute_mode, t3,
4342 build_int_cst (NULL_TREE, post_shift),
4343 NULL_RTX, 1);
4344 quotient = expand_binop (compute_mode, xor_optab,
4345 t4, t1, tquotient, 0,
4346 OPTAB_WIDEN);
4351 else
4353 rtx nsign, t1, t2, t3, t4;
4354 t1 = force_operand (gen_rtx_PLUS (compute_mode,
4355 op0, constm1_rtx), NULL_RTX);
4356 t2 = expand_binop (compute_mode, ior_optab, op0, t1, NULL_RTX,
4357 0, OPTAB_WIDEN);
4358 nsign = expand_shift
4359 (RSHIFT_EXPR, compute_mode, t2,
4360 build_int_cst (NULL_TREE, size - 1),
4361 NULL_RTX, 0);
4362 t3 = force_operand (gen_rtx_MINUS (compute_mode, t1, nsign),
4363 NULL_RTX);
4364 t4 = expand_divmod (0, TRUNC_DIV_EXPR, compute_mode, t3, op1,
4365 NULL_RTX, 0);
4366 if (t4)
4368 rtx t5;
4369 t5 = expand_unop (compute_mode, one_cmpl_optab, nsign,
4370 NULL_RTX, 0);
4371 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4372 t4, t5),
4373 tquotient);
4378 if (quotient != 0)
4379 break;
4380 delete_insns_since (last);
4382 /* Try using an instruction that produces both the quotient and
4383 remainder, using truncation. We can easily compensate the quotient
4384 or remainder to get floor rounding, once we have the remainder.
4385 Notice that we compute also the final remainder value here,
4386 and return the result right away. */
4387 if (target == 0 || GET_MODE (target) != compute_mode)
4388 target = gen_reg_rtx (compute_mode);
4390 if (rem_flag)
4392 remainder
4393 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4394 quotient = gen_reg_rtx (compute_mode);
4396 else
4398 quotient
4399 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4400 remainder = gen_reg_rtx (compute_mode);
4403 if (expand_twoval_binop (sdivmod_optab, op0, op1,
4404 quotient, remainder, 0))
4406 /* This could be computed with a branch-less sequence.
4407 Save that for later. */
4408 rtx tem;
4409 rtx label = gen_label_rtx ();
4410 do_cmp_and_jump (remainder, const0_rtx, EQ, compute_mode, label);
4411 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4412 NULL_RTX, 0, OPTAB_WIDEN);
4413 do_cmp_and_jump (tem, const0_rtx, GE, compute_mode, label);
4414 expand_dec (quotient, const1_rtx);
4415 expand_inc (remainder, op1);
4416 emit_label (label);
4417 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4420 /* No luck with division elimination or divmod. Have to do it
4421 by conditionally adjusting op0 *and* the result. */
4423 rtx label1, label2, label3, label4, label5;
4424 rtx adjusted_op0;
4425 rtx tem;
4427 quotient = gen_reg_rtx (compute_mode);
4428 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4429 label1 = gen_label_rtx ();
4430 label2 = gen_label_rtx ();
4431 label3 = gen_label_rtx ();
4432 label4 = gen_label_rtx ();
4433 label5 = gen_label_rtx ();
4434 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4435 do_cmp_and_jump (adjusted_op0, const0_rtx, LT, compute_mode, label1);
4436 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4437 quotient, 0, OPTAB_LIB_WIDEN);
4438 if (tem != quotient)
4439 emit_move_insn (quotient, tem);
4440 emit_jump_insn (gen_jump (label5));
4441 emit_barrier ();
4442 emit_label (label1);
4443 expand_inc (adjusted_op0, const1_rtx);
4444 emit_jump_insn (gen_jump (label4));
4445 emit_barrier ();
4446 emit_label (label2);
4447 do_cmp_and_jump (adjusted_op0, const0_rtx, GT, compute_mode, label3);
4448 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4449 quotient, 0, OPTAB_LIB_WIDEN);
4450 if (tem != quotient)
4451 emit_move_insn (quotient, tem);
4452 emit_jump_insn (gen_jump (label5));
4453 emit_barrier ();
4454 emit_label (label3);
4455 expand_dec (adjusted_op0, const1_rtx);
4456 emit_label (label4);
4457 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4458 quotient, 0, OPTAB_LIB_WIDEN);
4459 if (tem != quotient)
4460 emit_move_insn (quotient, tem);
4461 expand_dec (quotient, const1_rtx);
4462 emit_label (label5);
4464 break;
4466 case CEIL_DIV_EXPR:
4467 case CEIL_MOD_EXPR:
4468 if (unsignedp)
4470 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1)))
4472 rtx t1, t2, t3;
4473 unsigned HOST_WIDE_INT d = INTVAL (op1);
4474 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4475 build_int_cst (NULL_TREE, floor_log2 (d)),
4476 tquotient, 1);
4477 t2 = expand_binop (compute_mode, and_optab, op0,
4478 GEN_INT (d - 1),
4479 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4480 t3 = gen_reg_rtx (compute_mode);
4481 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4482 compute_mode, 1, 1);
4483 if (t3 == 0)
4485 rtx lab;
4486 lab = gen_label_rtx ();
4487 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4488 expand_inc (t1, const1_rtx);
4489 emit_label (lab);
4490 quotient = t1;
4492 else
4493 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4494 t1, t3),
4495 tquotient);
4496 break;
4499 /* Try using an instruction that produces both the quotient and
4500 remainder, using truncation. We can easily compensate the
4501 quotient or remainder to get ceiling rounding, once we have the
4502 remainder. Notice that we compute also the final remainder
4503 value here, and return the result right away. */
4504 if (target == 0 || GET_MODE (target) != compute_mode)
4505 target = gen_reg_rtx (compute_mode);
4507 if (rem_flag)
4509 remainder = (REG_P (target)
4510 ? target : gen_reg_rtx (compute_mode));
4511 quotient = gen_reg_rtx (compute_mode);
4513 else
4515 quotient = (REG_P (target)
4516 ? target : gen_reg_rtx (compute_mode));
4517 remainder = gen_reg_rtx (compute_mode);
4520 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient,
4521 remainder, 1))
4523 /* This could be computed with a branch-less sequence.
4524 Save that for later. */
4525 rtx label = gen_label_rtx ();
4526 do_cmp_and_jump (remainder, const0_rtx, EQ,
4527 compute_mode, label);
4528 expand_inc (quotient, const1_rtx);
4529 expand_dec (remainder, op1);
4530 emit_label (label);
4531 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4534 /* No luck with division elimination or divmod. Have to do it
4535 by conditionally adjusting op0 *and* the result. */
4537 rtx label1, label2;
4538 rtx adjusted_op0, tem;
4540 quotient = gen_reg_rtx (compute_mode);
4541 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4542 label1 = gen_label_rtx ();
4543 label2 = gen_label_rtx ();
4544 do_cmp_and_jump (adjusted_op0, const0_rtx, NE,
4545 compute_mode, label1);
4546 emit_move_insn (quotient, const0_rtx);
4547 emit_jump_insn (gen_jump (label2));
4548 emit_barrier ();
4549 emit_label (label1);
4550 expand_dec (adjusted_op0, const1_rtx);
4551 tem = expand_binop (compute_mode, udiv_optab, adjusted_op0, op1,
4552 quotient, 1, OPTAB_LIB_WIDEN);
4553 if (tem != quotient)
4554 emit_move_insn (quotient, tem);
4555 expand_inc (quotient, const1_rtx);
4556 emit_label (label2);
4559 else /* signed */
4561 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
4562 && INTVAL (op1) >= 0)
4564 /* This is extremely similar to the code for the unsigned case
4565 above. For 2.7 we should merge these variants, but for
4566 2.6.1 I don't want to touch the code for unsigned since that
4567 get used in C. The signed case will only be used by other
4568 languages (Ada). */
4570 rtx t1, t2, t3;
4571 unsigned HOST_WIDE_INT d = INTVAL (op1);
4572 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4573 build_int_cst (NULL_TREE, floor_log2 (d)),
4574 tquotient, 0);
4575 t2 = expand_binop (compute_mode, and_optab, op0,
4576 GEN_INT (d - 1),
4577 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4578 t3 = gen_reg_rtx (compute_mode);
4579 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4580 compute_mode, 1, 1);
4581 if (t3 == 0)
4583 rtx lab;
4584 lab = gen_label_rtx ();
4585 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4586 expand_inc (t1, const1_rtx);
4587 emit_label (lab);
4588 quotient = t1;
4590 else
4591 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4592 t1, t3),
4593 tquotient);
4594 break;
4597 /* Try using an instruction that produces both the quotient and
4598 remainder, using truncation. We can easily compensate the
4599 quotient or remainder to get ceiling rounding, once we have the
4600 remainder. Notice that we compute also the final remainder
4601 value here, and return the result right away. */
4602 if (target == 0 || GET_MODE (target) != compute_mode)
4603 target = gen_reg_rtx (compute_mode);
4604 if (rem_flag)
4606 remainder= (REG_P (target)
4607 ? target : gen_reg_rtx (compute_mode));
4608 quotient = gen_reg_rtx (compute_mode);
4610 else
4612 quotient = (REG_P (target)
4613 ? target : gen_reg_rtx (compute_mode));
4614 remainder = gen_reg_rtx (compute_mode);
4617 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient,
4618 remainder, 0))
4620 /* This could be computed with a branch-less sequence.
4621 Save that for later. */
4622 rtx tem;
4623 rtx label = gen_label_rtx ();
4624 do_cmp_and_jump (remainder, const0_rtx, EQ,
4625 compute_mode, label);
4626 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4627 NULL_RTX, 0, OPTAB_WIDEN);
4628 do_cmp_and_jump (tem, const0_rtx, LT, compute_mode, label);
4629 expand_inc (quotient, const1_rtx);
4630 expand_dec (remainder, op1);
4631 emit_label (label);
4632 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4635 /* No luck with division elimination or divmod. Have to do it
4636 by conditionally adjusting op0 *and* the result. */
4638 rtx label1, label2, label3, label4, label5;
4639 rtx adjusted_op0;
4640 rtx tem;
4642 quotient = gen_reg_rtx (compute_mode);
4643 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4644 label1 = gen_label_rtx ();
4645 label2 = gen_label_rtx ();
4646 label3 = gen_label_rtx ();
4647 label4 = gen_label_rtx ();
4648 label5 = gen_label_rtx ();
4649 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4650 do_cmp_and_jump (adjusted_op0, const0_rtx, GT,
4651 compute_mode, label1);
4652 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4653 quotient, 0, OPTAB_LIB_WIDEN);
4654 if (tem != quotient)
4655 emit_move_insn (quotient, tem);
4656 emit_jump_insn (gen_jump (label5));
4657 emit_barrier ();
4658 emit_label (label1);
4659 expand_dec (adjusted_op0, const1_rtx);
4660 emit_jump_insn (gen_jump (label4));
4661 emit_barrier ();
4662 emit_label (label2);
4663 do_cmp_and_jump (adjusted_op0, const0_rtx, LT,
4664 compute_mode, label3);
4665 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4666 quotient, 0, OPTAB_LIB_WIDEN);
4667 if (tem != quotient)
4668 emit_move_insn (quotient, tem);
4669 emit_jump_insn (gen_jump (label5));
4670 emit_barrier ();
4671 emit_label (label3);
4672 expand_inc (adjusted_op0, const1_rtx);
4673 emit_label (label4);
4674 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4675 quotient, 0, OPTAB_LIB_WIDEN);
4676 if (tem != quotient)
4677 emit_move_insn (quotient, tem);
4678 expand_inc (quotient, const1_rtx);
4679 emit_label (label5);
4682 break;
4684 case EXACT_DIV_EXPR:
4685 if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4687 HOST_WIDE_INT d = INTVAL (op1);
4688 unsigned HOST_WIDE_INT ml;
4689 int pre_shift;
4690 rtx t1;
4692 pre_shift = floor_log2 (d & -d);
4693 ml = invert_mod2n (d >> pre_shift, size);
4694 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4695 build_int_cst (NULL_TREE, pre_shift),
4696 NULL_RTX, unsignedp);
4697 quotient = expand_mult (compute_mode, t1,
4698 gen_int_mode (ml, compute_mode),
4699 NULL_RTX, 1);
4701 insn = get_last_insn ();
4702 set_unique_reg_note (insn,
4703 REG_EQUAL,
4704 gen_rtx_fmt_ee (unsignedp ? UDIV : DIV,
4705 compute_mode,
4706 op0, op1));
4708 break;
4710 case ROUND_DIV_EXPR:
4711 case ROUND_MOD_EXPR:
4712 if (unsignedp)
4714 rtx tem;
4715 rtx label;
4716 label = gen_label_rtx ();
4717 quotient = gen_reg_rtx (compute_mode);
4718 remainder = gen_reg_rtx (compute_mode);
4719 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient, remainder, 1) == 0)
4721 rtx tem;
4722 quotient = expand_binop (compute_mode, udiv_optab, op0, op1,
4723 quotient, 1, OPTAB_LIB_WIDEN);
4724 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 1);
4725 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4726 remainder, 1, OPTAB_LIB_WIDEN);
4728 tem = plus_constant (op1, -1);
4729 tem = expand_shift (RSHIFT_EXPR, compute_mode, tem,
4730 build_int_cst (NULL_TREE, 1),
4731 NULL_RTX, 1);
4732 do_cmp_and_jump (remainder, tem, LEU, compute_mode, label);
4733 expand_inc (quotient, const1_rtx);
4734 expand_dec (remainder, op1);
4735 emit_label (label);
4737 else
4739 rtx abs_rem, abs_op1, tem, mask;
4740 rtx label;
4741 label = gen_label_rtx ();
4742 quotient = gen_reg_rtx (compute_mode);
4743 remainder = gen_reg_rtx (compute_mode);
4744 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient, remainder, 0) == 0)
4746 rtx tem;
4747 quotient = expand_binop (compute_mode, sdiv_optab, op0, op1,
4748 quotient, 0, OPTAB_LIB_WIDEN);
4749 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 0);
4750 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4751 remainder, 0, OPTAB_LIB_WIDEN);
4753 abs_rem = expand_abs (compute_mode, remainder, NULL_RTX, 1, 0);
4754 abs_op1 = expand_abs (compute_mode, op1, NULL_RTX, 1, 0);
4755 tem = expand_shift (LSHIFT_EXPR, compute_mode, abs_rem,
4756 build_int_cst (NULL_TREE, 1),
4757 NULL_RTX, 1);
4758 do_cmp_and_jump (tem, abs_op1, LTU, compute_mode, label);
4759 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4760 NULL_RTX, 0, OPTAB_WIDEN);
4761 mask = expand_shift (RSHIFT_EXPR, compute_mode, tem,
4762 build_int_cst (NULL_TREE, size - 1),
4763 NULL_RTX, 0);
4764 tem = expand_binop (compute_mode, xor_optab, mask, const1_rtx,
4765 NULL_RTX, 0, OPTAB_WIDEN);
4766 tem = expand_binop (compute_mode, sub_optab, tem, mask,
4767 NULL_RTX, 0, OPTAB_WIDEN);
4768 expand_inc (quotient, tem);
4769 tem = expand_binop (compute_mode, xor_optab, mask, op1,
4770 NULL_RTX, 0, OPTAB_WIDEN);
4771 tem = expand_binop (compute_mode, sub_optab, tem, mask,
4772 NULL_RTX, 0, OPTAB_WIDEN);
4773 expand_dec (remainder, tem);
4774 emit_label (label);
4776 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4778 default:
4779 gcc_unreachable ();
4782 if (quotient == 0)
4784 if (target && GET_MODE (target) != compute_mode)
4785 target = 0;
4787 if (rem_flag)
4789 /* Try to produce the remainder without producing the quotient.
4790 If we seem to have a divmod pattern that does not require widening,
4791 don't try widening here. We should really have a WIDEN argument
4792 to expand_twoval_binop, since what we'd really like to do here is
4793 1) try a mod insn in compute_mode
4794 2) try a divmod insn in compute_mode
4795 3) try a div insn in compute_mode and multiply-subtract to get
4796 remainder
4797 4) try the same things with widening allowed. */
4798 remainder
4799 = sign_expand_binop (compute_mode, umod_optab, smod_optab,
4800 op0, op1, target,
4801 unsignedp,
4802 ((optab_handler (optab2, compute_mode)->insn_code
4803 != CODE_FOR_nothing)
4804 ? OPTAB_DIRECT : OPTAB_WIDEN));
4805 if (remainder == 0)
4807 /* No luck there. Can we do remainder and divide at once
4808 without a library call? */
4809 remainder = gen_reg_rtx (compute_mode);
4810 if (! expand_twoval_binop ((unsignedp
4811 ? udivmod_optab
4812 : sdivmod_optab),
4813 op0, op1,
4814 NULL_RTX, remainder, unsignedp))
4815 remainder = 0;
4818 if (remainder)
4819 return gen_lowpart (mode, remainder);
4822 /* Produce the quotient. Try a quotient insn, but not a library call.
4823 If we have a divmod in this mode, use it in preference to widening
4824 the div (for this test we assume it will not fail). Note that optab2
4825 is set to the one of the two optabs that the call below will use. */
4826 quotient
4827 = sign_expand_binop (compute_mode, udiv_optab, sdiv_optab,
4828 op0, op1, rem_flag ? NULL_RTX : target,
4829 unsignedp,
4830 ((optab_handler (optab2, compute_mode)->insn_code
4831 != CODE_FOR_nothing)
4832 ? OPTAB_DIRECT : OPTAB_WIDEN));
4834 if (quotient == 0)
4836 /* No luck there. Try a quotient-and-remainder insn,
4837 keeping the quotient alone. */
4838 quotient = gen_reg_rtx (compute_mode);
4839 if (! expand_twoval_binop (unsignedp ? udivmod_optab : sdivmod_optab,
4840 op0, op1,
4841 quotient, NULL_RTX, unsignedp))
4843 quotient = 0;
4844 if (! rem_flag)
4845 /* Still no luck. If we are not computing the remainder,
4846 use a library call for the quotient. */
4847 quotient = sign_expand_binop (compute_mode,
4848 udiv_optab, sdiv_optab,
4849 op0, op1, target,
4850 unsignedp, OPTAB_LIB_WIDEN);
4855 if (rem_flag)
4857 if (target && GET_MODE (target) != compute_mode)
4858 target = 0;
4860 if (quotient == 0)
4862 /* No divide instruction either. Use library for remainder. */
4863 remainder = sign_expand_binop (compute_mode, umod_optab, smod_optab,
4864 op0, op1, target,
4865 unsignedp, OPTAB_LIB_WIDEN);
4866 /* No remainder function. Try a quotient-and-remainder
4867 function, keeping the remainder. */
4868 if (!remainder)
4870 remainder = gen_reg_rtx (compute_mode);
4871 if (!expand_twoval_binop_libfunc
4872 (unsignedp ? udivmod_optab : sdivmod_optab,
4873 op0, op1,
4874 NULL_RTX, remainder,
4875 unsignedp ? UMOD : MOD))
4876 remainder = NULL_RTX;
4879 else
4881 /* We divided. Now finish doing X - Y * (X / Y). */
4882 remainder = expand_mult (compute_mode, quotient, op1,
4883 NULL_RTX, unsignedp);
4884 remainder = expand_binop (compute_mode, sub_optab, op0,
4885 remainder, target, unsignedp,
4886 OPTAB_LIB_WIDEN);
4890 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4893 /* Return a tree node with data type TYPE, describing the value of X.
4894 Usually this is an VAR_DECL, if there is no obvious better choice.
4895 X may be an expression, however we only support those expressions
4896 generated by loop.c. */
4898 tree
4899 make_tree (tree type, rtx x)
4901 tree t;
4903 switch (GET_CODE (x))
4905 case CONST_INT:
4907 HOST_WIDE_INT hi = 0;
4909 if (INTVAL (x) < 0
4910 && !(TYPE_UNSIGNED (type)
4911 && (GET_MODE_BITSIZE (TYPE_MODE (type))
4912 < HOST_BITS_PER_WIDE_INT)))
4913 hi = -1;
4915 t = build_int_cst_wide (type, INTVAL (x), hi);
4917 return t;
4920 case CONST_DOUBLE:
4921 if (GET_MODE (x) == VOIDmode)
4922 t = build_int_cst_wide (type,
4923 CONST_DOUBLE_LOW (x), CONST_DOUBLE_HIGH (x));
4924 else
4926 REAL_VALUE_TYPE d;
4928 REAL_VALUE_FROM_CONST_DOUBLE (d, x);
4929 t = build_real (type, d);
4932 return t;
4934 case CONST_VECTOR:
4936 int units = CONST_VECTOR_NUNITS (x);
4937 tree itype = TREE_TYPE (type);
4938 tree t = NULL_TREE;
4939 int i;
4942 /* Build a tree with vector elements. */
4943 for (i = units - 1; i >= 0; --i)
4945 rtx elt = CONST_VECTOR_ELT (x, i);
4946 t = tree_cons (NULL_TREE, make_tree (itype, elt), t);
4949 return build_vector (type, t);
4952 case PLUS:
4953 return fold_build2 (PLUS_EXPR, type, make_tree (type, XEXP (x, 0)),
4954 make_tree (type, XEXP (x, 1)));
4956 case MINUS:
4957 return fold_build2 (MINUS_EXPR, type, make_tree (type, XEXP (x, 0)),
4958 make_tree (type, XEXP (x, 1)));
4960 case NEG:
4961 return fold_build1 (NEGATE_EXPR, type, make_tree (type, XEXP (x, 0)));
4963 case MULT:
4964 return fold_build2 (MULT_EXPR, type, make_tree (type, XEXP (x, 0)),
4965 make_tree (type, XEXP (x, 1)));
4967 case ASHIFT:
4968 return fold_build2 (LSHIFT_EXPR, type, make_tree (type, XEXP (x, 0)),
4969 make_tree (type, XEXP (x, 1)));
4971 case LSHIFTRT:
4972 t = unsigned_type_for (type);
4973 return fold_convert (type, build2 (RSHIFT_EXPR, t,
4974 make_tree (t, XEXP (x, 0)),
4975 make_tree (type, XEXP (x, 1))));
4977 case ASHIFTRT:
4978 t = signed_type_for (type);
4979 return fold_convert (type, build2 (RSHIFT_EXPR, t,
4980 make_tree (t, XEXP (x, 0)),
4981 make_tree (type, XEXP (x, 1))));
4983 case DIV:
4984 if (TREE_CODE (type) != REAL_TYPE)
4985 t = signed_type_for (type);
4986 else
4987 t = type;
4989 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
4990 make_tree (t, XEXP (x, 0)),
4991 make_tree (t, XEXP (x, 1))));
4992 case UDIV:
4993 t = unsigned_type_for (type);
4994 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
4995 make_tree (t, XEXP (x, 0)),
4996 make_tree (t, XEXP (x, 1))));
4998 case SIGN_EXTEND:
4999 case ZERO_EXTEND:
5000 t = lang_hooks.types.type_for_mode (GET_MODE (XEXP (x, 0)),
5001 GET_CODE (x) == ZERO_EXTEND);
5002 return fold_convert (type, make_tree (t, XEXP (x, 0)));
5004 case CONST:
5005 return make_tree (type, XEXP (x, 0));
5007 case SYMBOL_REF:
5008 t = SYMBOL_REF_DECL (x);
5009 if (t)
5010 return fold_convert (type, build_fold_addr_expr (t));
5011 /* else fall through. */
5013 default:
5014 t = build_decl (VAR_DECL, NULL_TREE, type);
5016 /* If TYPE is a POINTER_TYPE, X might be Pmode with TYPE_MODE being
5017 ptr_mode. So convert. */
5018 if (POINTER_TYPE_P (type))
5019 x = convert_memory_address (TYPE_MODE (type), x);
5021 /* Note that we do *not* use SET_DECL_RTL here, because we do not
5022 want set_decl_rtl to go adjusting REG_ATTRS for this temporary. */
5023 t->decl_with_rtl.rtl = x;
5025 return t;
5029 /* Compute the logical-and of OP0 and OP1, storing it in TARGET
5030 and returning TARGET.
5032 If TARGET is 0, a pseudo-register or constant is returned. */
5035 expand_and (enum machine_mode mode, rtx op0, rtx op1, rtx target)
5037 rtx tem = 0;
5039 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
5040 tem = simplify_binary_operation (AND, mode, op0, op1);
5041 if (tem == 0)
5042 tem = expand_binop (mode, and_optab, op0, op1, target, 0, OPTAB_LIB_WIDEN);
5044 if (target == 0)
5045 target = tem;
5046 else if (tem != target)
5047 emit_move_insn (target, tem);
5048 return target;
5051 /* Helper function for emit_store_flag. */
5052 static rtx
5053 emit_store_flag_1 (rtx target, rtx subtarget, enum machine_mode mode,
5054 int normalizep)
5056 rtx op0;
5057 enum machine_mode target_mode = GET_MODE (target);
5059 /* If we are converting to a wider mode, first convert to
5060 TARGET_MODE, then normalize. This produces better combining
5061 opportunities on machines that have a SIGN_EXTRACT when we are
5062 testing a single bit. This mostly benefits the 68k.
5064 If STORE_FLAG_VALUE does not have the sign bit set when
5065 interpreted in MODE, we can do this conversion as unsigned, which
5066 is usually more efficient. */
5067 if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (mode))
5069 convert_move (target, subtarget,
5070 (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5071 && 0 == (STORE_FLAG_VALUE
5072 & ((HOST_WIDE_INT) 1
5073 << (GET_MODE_BITSIZE (mode) -1))));
5074 op0 = target;
5075 mode = target_mode;
5077 else
5078 op0 = subtarget;
5080 /* If we want to keep subexpressions around, don't reuse our last
5081 target. */
5082 if (optimize)
5083 subtarget = 0;
5085 /* Now normalize to the proper value in MODE. Sometimes we don't
5086 have to do anything. */
5087 if (normalizep == 0 || normalizep == STORE_FLAG_VALUE)
5089 /* STORE_FLAG_VALUE might be the most negative number, so write
5090 the comparison this way to avoid a compiler-time warning. */
5091 else if (- normalizep == STORE_FLAG_VALUE)
5092 op0 = expand_unop (mode, neg_optab, op0, subtarget, 0);
5094 /* We don't want to use STORE_FLAG_VALUE < 0 below since this makes
5095 it hard to use a value of just the sign bit due to ANSI integer
5096 constant typing rules. */
5097 else if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5098 && (STORE_FLAG_VALUE
5099 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))))
5100 op0 = expand_shift (RSHIFT_EXPR, mode, op0,
5101 size_int (GET_MODE_BITSIZE (mode) - 1), subtarget,
5102 normalizep == 1);
5103 else
5105 gcc_assert (STORE_FLAG_VALUE & 1);
5107 op0 = expand_and (mode, op0, const1_rtx, subtarget);
5108 if (normalizep == -1)
5109 op0 = expand_unop (mode, neg_optab, op0, op0, 0);
5112 /* If we were converting to a smaller mode, do the conversion now. */
5113 if (target_mode != mode)
5115 convert_move (target, op0, 0);
5116 return target;
5118 else
5119 return op0;
5122 /* Emit a store-flags instruction for comparison CODE on OP0 and OP1
5123 and storing in TARGET. Normally return TARGET.
5124 Return 0 if that cannot be done.
5126 MODE is the mode to use for OP0 and OP1 should they be CONST_INTs. If
5127 it is VOIDmode, they cannot both be CONST_INT.
5129 UNSIGNEDP is for the case where we have to widen the operands
5130 to perform the operation. It says to use zero-extension.
5132 NORMALIZEP is 1 if we should convert the result to be either zero
5133 or one. Normalize is -1 if we should convert the result to be
5134 either zero or -1. If NORMALIZEP is zero, the result will be left
5135 "raw" out of the scc insn. */
5138 emit_store_flag (rtx target, enum rtx_code code, rtx op0, rtx op1,
5139 enum machine_mode mode, int unsignedp, int normalizep)
5141 rtx subtarget;
5142 enum insn_code icode;
5143 enum machine_mode compare_mode;
5144 enum machine_mode target_mode = GET_MODE (target);
5145 rtx tem;
5146 rtx last = get_last_insn ();
5147 rtx pattern, comparison;
5149 if (unsignedp)
5150 code = unsigned_condition (code);
5152 /* If one operand is constant, make it the second one. Only do this
5153 if the other operand is not constant as well. */
5155 if (swap_commutative_operands_p (op0, op1))
5157 tem = op0;
5158 op0 = op1;
5159 op1 = tem;
5160 code = swap_condition (code);
5163 if (mode == VOIDmode)
5164 mode = GET_MODE (op0);
5166 /* For some comparisons with 1 and -1, we can convert this to
5167 comparisons with zero. This will often produce more opportunities for
5168 store-flag insns. */
5170 switch (code)
5172 case LT:
5173 if (op1 == const1_rtx)
5174 op1 = const0_rtx, code = LE;
5175 break;
5176 case LE:
5177 if (op1 == constm1_rtx)
5178 op1 = const0_rtx, code = LT;
5179 break;
5180 case GE:
5181 if (op1 == const1_rtx)
5182 op1 = const0_rtx, code = GT;
5183 break;
5184 case GT:
5185 if (op1 == constm1_rtx)
5186 op1 = const0_rtx, code = GE;
5187 break;
5188 case GEU:
5189 if (op1 == const1_rtx)
5190 op1 = const0_rtx, code = NE;
5191 break;
5192 case LTU:
5193 if (op1 == const1_rtx)
5194 op1 = const0_rtx, code = EQ;
5195 break;
5196 default:
5197 break;
5200 /* If we are comparing a double-word integer with zero or -1, we can
5201 convert the comparison into one involving a single word. */
5202 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD * 2
5203 && GET_MODE_CLASS (mode) == MODE_INT
5204 && (!MEM_P (op0) || ! MEM_VOLATILE_P (op0)))
5206 if ((code == EQ || code == NE)
5207 && (op1 == const0_rtx || op1 == constm1_rtx))
5209 rtx op00, op01, op0both;
5211 /* Do a logical OR or AND of the two words and compare the
5212 result. */
5213 op00 = simplify_gen_subreg (word_mode, op0, mode, 0);
5214 op01 = simplify_gen_subreg (word_mode, op0, mode, UNITS_PER_WORD);
5215 op0both = expand_binop (word_mode,
5216 op1 == const0_rtx ? ior_optab : and_optab,
5217 op00, op01, NULL_RTX, unsignedp,
5218 OPTAB_DIRECT);
5220 if (op0both != 0)
5221 return emit_store_flag (target, code, op0both, op1, word_mode,
5222 unsignedp, normalizep);
5224 else if ((code == LT || code == GE) && op1 == const0_rtx)
5226 rtx op0h;
5228 /* If testing the sign bit, can just test on high word. */
5229 op0h = simplify_gen_subreg (word_mode, op0, mode,
5230 subreg_highpart_offset (word_mode,
5231 mode));
5232 return emit_store_flag (target, code, op0h, op1, word_mode,
5233 unsignedp, normalizep);
5237 /* If this is A < 0 or A >= 0, we can do this by taking the ones
5238 complement of A (for GE) and shifting the sign bit to the low bit. */
5239 if (op1 == const0_rtx && (code == LT || code == GE)
5240 && GET_MODE_CLASS (mode) == MODE_INT
5241 && (normalizep || STORE_FLAG_VALUE == 1
5242 || (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5243 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5244 == ((unsigned HOST_WIDE_INT) 1
5245 << (GET_MODE_BITSIZE (mode) - 1))))))
5247 subtarget = target;
5249 /* If the result is to be wider than OP0, it is best to convert it
5250 first. If it is to be narrower, it is *incorrect* to convert it
5251 first. */
5252 if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (mode))
5254 op0 = convert_modes (target_mode, mode, op0, 0);
5255 mode = target_mode;
5258 if (target_mode != mode)
5259 subtarget = 0;
5261 if (code == GE)
5262 op0 = expand_unop (mode, one_cmpl_optab, op0,
5263 ((STORE_FLAG_VALUE == 1 || normalizep)
5264 ? 0 : subtarget), 0);
5266 if (STORE_FLAG_VALUE == 1 || normalizep)
5267 /* If we are supposed to produce a 0/1 value, we want to do
5268 a logical shift from the sign bit to the low-order bit; for
5269 a -1/0 value, we do an arithmetic shift. */
5270 op0 = expand_shift (RSHIFT_EXPR, mode, op0,
5271 size_int (GET_MODE_BITSIZE (mode) - 1),
5272 subtarget, normalizep != -1);
5274 if (mode != target_mode)
5275 op0 = convert_modes (target_mode, mode, op0, 0);
5277 return op0;
5280 icode = setcc_gen_code[(int) code];
5282 if (icode != CODE_FOR_nothing)
5284 insn_operand_predicate_fn pred;
5286 /* We think we may be able to do this with a scc insn. Emit the
5287 comparison and then the scc insn. */
5289 do_pending_stack_adjust ();
5290 last = get_last_insn ();
5292 comparison
5293 = compare_from_rtx (op0, op1, code, unsignedp, mode, NULL_RTX);
5294 if (CONSTANT_P (comparison))
5296 switch (GET_CODE (comparison))
5298 case CONST_INT:
5299 if (comparison == const0_rtx)
5300 return const0_rtx;
5301 break;
5303 #ifdef FLOAT_STORE_FLAG_VALUE
5304 case CONST_DOUBLE:
5305 if (comparison == CONST0_RTX (GET_MODE (comparison)))
5306 return const0_rtx;
5307 break;
5308 #endif
5309 default:
5310 gcc_unreachable ();
5313 if (normalizep == 1)
5314 return const1_rtx;
5315 if (normalizep == -1)
5316 return constm1_rtx;
5317 return const_true_rtx;
5320 /* The code of COMPARISON may not match CODE if compare_from_rtx
5321 decided to swap its operands and reverse the original code.
5323 We know that compare_from_rtx returns either a CONST_INT or
5324 a new comparison code, so it is safe to just extract the
5325 code from COMPARISON. */
5326 code = GET_CODE (comparison);
5328 /* Get a reference to the target in the proper mode for this insn. */
5329 compare_mode = insn_data[(int) icode].operand[0].mode;
5330 subtarget = target;
5331 pred = insn_data[(int) icode].operand[0].predicate;
5332 if (optimize || ! (*pred) (subtarget, compare_mode))
5333 subtarget = gen_reg_rtx (compare_mode);
5335 pattern = GEN_FCN (icode) (subtarget);
5336 if (pattern)
5338 emit_insn (pattern);
5339 return emit_store_flag_1 (target, subtarget, compare_mode,
5340 normalizep);
5343 else
5345 /* We don't have an scc insn, so try a cstore insn. */
5347 for (compare_mode = mode; compare_mode != VOIDmode;
5348 compare_mode = GET_MODE_WIDER_MODE (compare_mode))
5350 icode = optab_handler (cstore_optab, compare_mode)->insn_code;
5351 if (icode != CODE_FOR_nothing)
5352 break;
5355 if (icode != CODE_FOR_nothing)
5357 enum machine_mode result_mode
5358 = insn_data[(int) icode].operand[0].mode;
5359 rtx cstore_op0 = op0;
5360 rtx cstore_op1 = op1;
5362 do_pending_stack_adjust ();
5363 last = get_last_insn ();
5365 if (compare_mode != mode)
5367 cstore_op0 = convert_modes (compare_mode, mode, cstore_op0,
5368 unsignedp);
5369 cstore_op1 = convert_modes (compare_mode, mode, cstore_op1,
5370 unsignedp);
5373 if (!insn_data[(int) icode].operand[2].predicate (cstore_op0,
5374 compare_mode))
5375 cstore_op0 = copy_to_mode_reg (compare_mode, cstore_op0);
5377 if (!insn_data[(int) icode].operand[3].predicate (cstore_op1,
5378 compare_mode))
5379 cstore_op1 = copy_to_mode_reg (compare_mode, cstore_op1);
5381 comparison = gen_rtx_fmt_ee (code, result_mode, cstore_op0,
5382 cstore_op1);
5383 subtarget = target;
5385 if (optimize || !(insn_data[(int) icode].operand[0].predicate
5386 (subtarget, result_mode)))
5387 subtarget = gen_reg_rtx (result_mode);
5389 pattern = GEN_FCN (icode) (subtarget, comparison, cstore_op0,
5390 cstore_op1);
5392 if (pattern)
5394 emit_insn (pattern);
5395 return emit_store_flag_1 (target, subtarget, result_mode,
5396 normalizep);
5401 delete_insns_since (last);
5403 /* If optimizing, use different pseudo registers for each insn, instead
5404 of reusing the same pseudo. This leads to better CSE, but slows
5405 down the compiler, since there are more pseudos */
5406 subtarget = (!optimize
5407 && (target_mode == mode)) ? target : NULL_RTX;
5409 /* If we reached here, we can't do this with a scc insn. However, there
5410 are some comparisons that can be done directly. For example, if
5411 this is an equality comparison of integers, we can try to exclusive-or
5412 (or subtract) the two operands and use a recursive call to try the
5413 comparison with zero. Don't do any of these cases if branches are
5414 very cheap. */
5416 if (BRANCH_COST > 0
5417 && GET_MODE_CLASS (mode) == MODE_INT && (code == EQ || code == NE)
5418 && op1 != const0_rtx)
5420 tem = expand_binop (mode, xor_optab, op0, op1, subtarget, 1,
5421 OPTAB_WIDEN);
5423 if (tem == 0)
5424 tem = expand_binop (mode, sub_optab, op0, op1, subtarget, 1,
5425 OPTAB_WIDEN);
5426 if (tem != 0)
5427 tem = emit_store_flag (target, code, tem, const0_rtx,
5428 mode, unsignedp, normalizep);
5429 if (tem == 0)
5430 delete_insns_since (last);
5431 return tem;
5434 /* Some other cases we can do are EQ, NE, LE, and GT comparisons with
5435 the constant zero. Reject all other comparisons at this point. Only
5436 do LE and GT if branches are expensive since they are expensive on
5437 2-operand machines. */
5439 if (BRANCH_COST == 0
5440 || GET_MODE_CLASS (mode) != MODE_INT || op1 != const0_rtx
5441 || (code != EQ && code != NE
5442 && (BRANCH_COST <= 1 || (code != LE && code != GT))))
5443 return 0;
5445 /* See what we need to return. We can only return a 1, -1, or the
5446 sign bit. */
5448 if (normalizep == 0)
5450 if (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5451 normalizep = STORE_FLAG_VALUE;
5453 else if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5454 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5455 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1)))
5457 else
5458 return 0;
5461 /* Try to put the result of the comparison in the sign bit. Assume we can't
5462 do the necessary operation below. */
5464 tem = 0;
5466 /* To see if A <= 0, compute (A | (A - 1)). A <= 0 iff that result has
5467 the sign bit set. */
5469 if (code == LE)
5471 /* This is destructive, so SUBTARGET can't be OP0. */
5472 if (rtx_equal_p (subtarget, op0))
5473 subtarget = 0;
5475 tem = expand_binop (mode, sub_optab, op0, const1_rtx, subtarget, 0,
5476 OPTAB_WIDEN);
5477 if (tem)
5478 tem = expand_binop (mode, ior_optab, op0, tem, subtarget, 0,
5479 OPTAB_WIDEN);
5482 /* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
5483 number of bits in the mode of OP0, minus one. */
5485 if (code == GT)
5487 if (rtx_equal_p (subtarget, op0))
5488 subtarget = 0;
5490 tem = expand_shift (RSHIFT_EXPR, mode, op0,
5491 size_int (GET_MODE_BITSIZE (mode) - 1),
5492 subtarget, 0);
5493 tem = expand_binop (mode, sub_optab, tem, op0, subtarget, 0,
5494 OPTAB_WIDEN);
5497 if (code == EQ || code == NE)
5499 /* For EQ or NE, one way to do the comparison is to apply an operation
5500 that converts the operand into a positive number if it is nonzero
5501 or zero if it was originally zero. Then, for EQ, we subtract 1 and
5502 for NE we negate. This puts the result in the sign bit. Then we
5503 normalize with a shift, if needed.
5505 Two operations that can do the above actions are ABS and FFS, so try
5506 them. If that doesn't work, and MODE is smaller than a full word,
5507 we can use zero-extension to the wider mode (an unsigned conversion)
5508 as the operation. */
5510 /* Note that ABS doesn't yield a positive number for INT_MIN, but
5511 that is compensated by the subsequent overflow when subtracting
5512 one / negating. */
5514 if (optab_handler (abs_optab, mode)->insn_code != CODE_FOR_nothing)
5515 tem = expand_unop (mode, abs_optab, op0, subtarget, 1);
5516 else if (optab_handler (ffs_optab, mode)->insn_code != CODE_FOR_nothing)
5517 tem = expand_unop (mode, ffs_optab, op0, subtarget, 1);
5518 else if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5520 tem = convert_modes (word_mode, mode, op0, 1);
5521 mode = word_mode;
5524 if (tem != 0)
5526 if (code == EQ)
5527 tem = expand_binop (mode, sub_optab, tem, const1_rtx, subtarget,
5528 0, OPTAB_WIDEN);
5529 else
5530 tem = expand_unop (mode, neg_optab, tem, subtarget, 0);
5533 /* If we couldn't do it that way, for NE we can "or" the two's complement
5534 of the value with itself. For EQ, we take the one's complement of
5535 that "or", which is an extra insn, so we only handle EQ if branches
5536 are expensive. */
5538 if (tem == 0 && (code == NE || BRANCH_COST > 1))
5540 if (rtx_equal_p (subtarget, op0))
5541 subtarget = 0;
5543 tem = expand_unop (mode, neg_optab, op0, subtarget, 0);
5544 tem = expand_binop (mode, ior_optab, tem, op0, subtarget, 0,
5545 OPTAB_WIDEN);
5547 if (tem && code == EQ)
5548 tem = expand_unop (mode, one_cmpl_optab, tem, subtarget, 0);
5552 if (tem && normalizep)
5553 tem = expand_shift (RSHIFT_EXPR, mode, tem,
5554 size_int (GET_MODE_BITSIZE (mode) - 1),
5555 subtarget, normalizep == 1);
5557 if (tem)
5559 if (GET_MODE (tem) != target_mode)
5561 convert_move (target, tem, 0);
5562 tem = target;
5564 else if (!subtarget)
5566 emit_move_insn (target, tem);
5567 tem = target;
5570 else
5571 delete_insns_since (last);
5573 return tem;
5576 /* Like emit_store_flag, but always succeeds. */
5579 emit_store_flag_force (rtx target, enum rtx_code code, rtx op0, rtx op1,
5580 enum machine_mode mode, int unsignedp, int normalizep)
5582 rtx tem, label;
5584 /* First see if emit_store_flag can do the job. */
5585 tem = emit_store_flag (target, code, op0, op1, mode, unsignedp, normalizep);
5586 if (tem != 0)
5587 return tem;
5589 if (normalizep == 0)
5590 normalizep = 1;
5592 /* If this failed, we have to do this with set/compare/jump/set code. */
5594 if (!REG_P (target)
5595 || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
5596 target = gen_reg_rtx (GET_MODE (target));
5598 emit_move_insn (target, const1_rtx);
5599 label = gen_label_rtx ();
5600 do_compare_rtx_and_jump (op0, op1, code, unsignedp, mode, NULL_RTX,
5601 NULL_RTX, label);
5603 emit_move_insn (target, const0_rtx);
5604 emit_label (label);
5606 return target;
5609 /* Perform possibly multi-word comparison and conditional jump to LABEL
5610 if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE. This is
5611 now a thin wrapper around do_compare_rtx_and_jump. */
5613 static void
5614 do_cmp_and_jump (rtx arg1, rtx arg2, enum rtx_code op, enum machine_mode mode,
5615 rtx label)
5617 int unsignedp = (op == LTU || op == LEU || op == GTU || op == GEU);
5618 do_compare_rtx_and_jump (arg1, arg2, op, unsignedp, mode,
5619 NULL_RTX, NULL_RTX, label);