1 /* Analysis Utilities for Loop Vectorization.
2 Copyright (C) 2003,2004,2005,2006 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
24 #include "coretypes.h"
28 #include "basic-block.h"
29 #include "diagnostic.h"
30 #include "tree-flow.h"
31 #include "tree-dump.h"
37 #include "tree-chrec.h"
38 #include "tree-data-ref.h"
39 #include "tree-scalar-evolution.h"
40 #include "tree-vectorizer.h"
42 /* Main analysis functions. */
43 static loop_vec_info
vect_analyze_loop_form (struct loop
*);
44 static bool vect_analyze_data_refs (loop_vec_info
);
45 static bool vect_mark_stmts_to_be_vectorized (loop_vec_info
);
46 static void vect_analyze_scalar_cycles (loop_vec_info
);
47 static bool vect_analyze_data_ref_accesses (loop_vec_info
);
48 static bool vect_analyze_data_ref_dependences (loop_vec_info
);
49 static bool vect_analyze_data_refs_alignment (loop_vec_info
);
50 static bool vect_compute_data_refs_alignment (loop_vec_info
);
51 static bool vect_enhance_data_refs_alignment (loop_vec_info
);
52 static bool vect_analyze_operations (loop_vec_info
);
53 static bool vect_determine_vectorization_factor (loop_vec_info
);
55 /* Utility functions for the analyses. */
56 static bool exist_non_indexing_operands_for_use_p (tree
, tree
);
57 static void vect_mark_relevant (VEC(tree
,heap
) **, tree
, bool, bool);
58 static bool vect_stmt_relevant_p (tree
, loop_vec_info
, bool *, bool *);
59 static tree
vect_get_loop_niters (struct loop
*, tree
*);
60 static bool vect_analyze_data_ref_dependence
61 (struct data_dependence_relation
*, loop_vec_info
);
62 static bool vect_compute_data_ref_alignment (struct data_reference
*);
63 static bool vect_analyze_data_ref_access (struct data_reference
*);
64 static bool vect_can_advance_ivs_p (loop_vec_info
);
65 static void vect_update_misalignment_for_peel
66 (struct data_reference
*, struct data_reference
*, int npeel
);
69 /* Function vect_determine_vectorization_factor
71 Determine the vectorization factor (VF). VF is the number of data elements
72 that are operated upon in parallel in a single iteration of the vectorized
73 loop. For example, when vectorizing a loop that operates on 4byte elements,
74 on a target with vector size (VS) 16byte, the VF is set to 4, since 4
75 elements can fit in a single vector register.
77 We currently support vectorization of loops in which all types operated upon
78 are of the same size. Therefore this function currently sets VF according to
79 the size of the types operated upon, and fails if there are multiple sizes
82 VF is also the factor by which the loop iterations are strip-mined, e.g.:
89 for (i=0; i<N; i+=VF){
90 a[i:VF] = b[i:VF] + c[i:VF];
95 vect_determine_vectorization_factor (loop_vec_info loop_vinfo
)
97 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
98 basic_block
*bbs
= LOOP_VINFO_BBS (loop_vinfo
);
99 int nbbs
= loop
->num_nodes
;
100 block_stmt_iterator si
;
101 unsigned int vectorization_factor
= 0;
105 if (vect_print_dump_info (REPORT_DETAILS
))
106 fprintf (vect_dump
, "=== vect_determine_vectorization_factor ===");
108 for (i
= 0; i
< nbbs
; i
++)
110 basic_block bb
= bbs
[i
];
112 for (si
= bsi_start (bb
); !bsi_end_p (si
); bsi_next (&si
))
114 tree stmt
= bsi_stmt (si
);
116 stmt_vec_info stmt_info
= vinfo_for_stmt (stmt
);
119 if (vect_print_dump_info (REPORT_DETAILS
))
121 fprintf (vect_dump
, "==> examining statement: ");
122 print_generic_expr (vect_dump
, stmt
, TDF_SLIM
);
125 gcc_assert (stmt_info
);
126 /* skip stmts which do not need to be vectorized. */
127 if (!STMT_VINFO_RELEVANT_P (stmt_info
)
128 && !STMT_VINFO_LIVE_P (stmt_info
))
130 if (vect_print_dump_info (REPORT_DETAILS
))
131 fprintf (vect_dump
, "skip.");
135 if (VECTOR_MODE_P (TYPE_MODE (TREE_TYPE (stmt
))))
137 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS
))
139 fprintf (vect_dump
, "not vectorized: vector stmt in loop:");
140 print_generic_expr (vect_dump
, stmt
, TDF_SLIM
);
145 if (STMT_VINFO_VECTYPE (stmt_info
))
147 vectype
= STMT_VINFO_VECTYPE (stmt_info
);
148 scalar_type
= TREE_TYPE (vectype
);
152 if (STMT_VINFO_DATA_REF (stmt_info
))
154 TREE_TYPE (DR_REF (STMT_VINFO_DATA_REF (stmt_info
)));
155 else if (TREE_CODE (stmt
) == MODIFY_EXPR
)
156 scalar_type
= TREE_TYPE (TREE_OPERAND (stmt
, 0));
158 scalar_type
= TREE_TYPE (stmt
);
160 if (vect_print_dump_info (REPORT_DETAILS
))
162 fprintf (vect_dump
, "get vectype for scalar type: ");
163 print_generic_expr (vect_dump
, scalar_type
, TDF_SLIM
);
166 vectype
= get_vectype_for_scalar_type (scalar_type
);
169 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS
))
172 "not vectorized: unsupported data-type ");
173 print_generic_expr (vect_dump
, scalar_type
, TDF_SLIM
);
177 STMT_VINFO_VECTYPE (stmt_info
) = vectype
;
180 if (vect_print_dump_info (REPORT_DETAILS
))
182 fprintf (vect_dump
, "vectype: ");
183 print_generic_expr (vect_dump
, vectype
, TDF_SLIM
);
186 nunits
= TYPE_VECTOR_SUBPARTS (vectype
);
187 if (vect_print_dump_info (REPORT_DETAILS
))
188 fprintf (vect_dump
, "nunits = %d", nunits
);
190 if (vectorization_factor
)
192 /* FORNOW: don't allow mixed units.
193 This restriction will be relaxed in the future. */
194 if (nunits
!= vectorization_factor
)
196 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS
))
197 fprintf (vect_dump
, "not vectorized: mixed data-types");
202 vectorization_factor
= nunits
;
204 gcc_assert (GET_MODE_SIZE (TYPE_MODE (scalar_type
))
205 * vectorization_factor
== UNITS_PER_SIMD_WORD
);
209 /* TODO: Analyze cost. Decide if worth while to vectorize. */
211 if (vectorization_factor
<= 1)
213 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS
))
214 fprintf (vect_dump
, "not vectorized: unsupported data-type");
217 LOOP_VINFO_VECT_FACTOR (loop_vinfo
) = vectorization_factor
;
223 /* Function vect_analyze_operations.
225 Scan the loop stmts and make sure they are all vectorizable. */
228 vect_analyze_operations (loop_vec_info loop_vinfo
)
230 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
231 basic_block
*bbs
= LOOP_VINFO_BBS (loop_vinfo
);
232 int nbbs
= loop
->num_nodes
;
233 block_stmt_iterator si
;
234 unsigned int vectorization_factor
= 0;
238 stmt_vec_info stmt_info
;
239 bool need_to_vectorize
= false;
241 if (vect_print_dump_info (REPORT_DETAILS
))
242 fprintf (vect_dump
, "=== vect_analyze_operations ===");
244 gcc_assert (LOOP_VINFO_VECT_FACTOR (loop_vinfo
));
245 vectorization_factor
= LOOP_VINFO_VECT_FACTOR (loop_vinfo
);
247 for (i
= 0; i
< nbbs
; i
++)
249 basic_block bb
= bbs
[i
];
251 for (phi
= phi_nodes (bb
); phi
; phi
= PHI_CHAIN (phi
))
253 stmt_info
= vinfo_for_stmt (phi
);
254 if (vect_print_dump_info (REPORT_DETAILS
))
256 fprintf (vect_dump
, "examining phi: ");
257 print_generic_expr (vect_dump
, phi
, TDF_SLIM
);
260 gcc_assert (stmt_info
);
262 if (STMT_VINFO_LIVE_P (stmt_info
))
264 /* FORNOW: not yet supported. */
265 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS
))
266 fprintf (vect_dump
, "not vectorized: value used after loop.");
270 if (STMT_VINFO_RELEVANT_P (stmt_info
))
272 /* Most likely a reduction-like computation that is used
274 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS
))
275 fprintf (vect_dump
, "not vectorized: unsupported pattern.");
280 for (si
= bsi_start (bb
); !bsi_end_p (si
); bsi_next (&si
))
282 tree stmt
= bsi_stmt (si
);
283 stmt_vec_info stmt_info
= vinfo_for_stmt (stmt
);
285 if (vect_print_dump_info (REPORT_DETAILS
))
287 fprintf (vect_dump
, "==> examining statement: ");
288 print_generic_expr (vect_dump
, stmt
, TDF_SLIM
);
291 gcc_assert (stmt_info
);
293 /* skip stmts which do not need to be vectorized.
294 this is expected to include:
295 - the COND_EXPR which is the loop exit condition
296 - any LABEL_EXPRs in the loop
297 - computations that are used only for array indexing or loop
300 if (!STMT_VINFO_RELEVANT_P (stmt_info
)
301 && !STMT_VINFO_LIVE_P (stmt_info
))
303 if (vect_print_dump_info (REPORT_DETAILS
))
304 fprintf (vect_dump
, "irrelevant.");
308 if (STMT_VINFO_RELEVANT_P (stmt_info
))
310 gcc_assert (!VECTOR_MODE_P (TYPE_MODE (TREE_TYPE (stmt
))));
311 gcc_assert (STMT_VINFO_VECTYPE (stmt_info
));
313 ok
= (vectorizable_operation (stmt
, NULL
, NULL
)
314 || vectorizable_assignment (stmt
, NULL
, NULL
)
315 || vectorizable_load (stmt
, NULL
, NULL
)
316 || vectorizable_store (stmt
, NULL
, NULL
)
317 || vectorizable_condition (stmt
, NULL
, NULL
));
321 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS
))
324 "not vectorized: relevant stmt not supported: ");
325 print_generic_expr (vect_dump
, stmt
, TDF_SLIM
);
329 need_to_vectorize
= true;
332 if (STMT_VINFO_LIVE_P (stmt_info
))
334 ok
= vectorizable_reduction (stmt
, NULL
, NULL
);
337 need_to_vectorize
= true;
339 ok
= vectorizable_live_operation (stmt
, NULL
, NULL
);
343 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS
))
346 "not vectorized: live stmt not supported: ");
347 print_generic_expr (vect_dump
, stmt
, TDF_SLIM
);
355 /* TODO: Analyze cost. Decide if worth while to vectorize. */
357 /* All operations in the loop are either irrelevant (deal with loop
358 control, or dead), or only used outside the loop and can be moved
359 out of the loop (e.g. invariants, inductions). The loop can be
360 optimized away by scalar optimizations. We're better off not
361 touching this loop. */
362 if (!need_to_vectorize
)
364 if (vect_print_dump_info (REPORT_DETAILS
))
366 "All the computation can be taken out of the loop.");
367 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS
))
369 "not vectorized: redundant loop. no profit to vectorize.");
373 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo
)
374 && vect_print_dump_info (REPORT_DETAILS
))
376 "vectorization_factor = %d, niters = " HOST_WIDE_INT_PRINT_DEC
,
377 vectorization_factor
, LOOP_VINFO_INT_NITERS (loop_vinfo
));
379 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo
)
380 && LOOP_VINFO_INT_NITERS (loop_vinfo
) < vectorization_factor
)
382 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS
))
383 fprintf (vect_dump
, "not vectorized: iteration count too small.");
387 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo
)
388 || LOOP_VINFO_INT_NITERS (loop_vinfo
) % vectorization_factor
!= 0
389 || LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo
))
391 if (vect_print_dump_info (REPORT_DETAILS
))
392 fprintf (vect_dump
, "epilog loop required.");
393 if (!vect_can_advance_ivs_p (loop_vinfo
))
395 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS
))
397 "not vectorized: can't create epilog loop 1.");
400 if (!slpeel_can_duplicate_loop_p (loop
, loop
->single_exit
))
402 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS
))
404 "not vectorized: can't create epilog loop 2.");
413 /* Function exist_non_indexing_operands_for_use_p
415 USE is one of the uses attached to STMT. Check if USE is
416 used in STMT for anything other than indexing an array. */
419 exist_non_indexing_operands_for_use_p (tree use
, tree stmt
)
422 stmt_vec_info stmt_info
= vinfo_for_stmt (stmt
);
424 /* USE corresponds to some operand in STMT. If there is no data
425 reference in STMT, then any operand that corresponds to USE
426 is not indexing an array. */
427 if (!STMT_VINFO_DATA_REF (stmt_info
))
430 /* STMT has a data_ref. FORNOW this means that its of one of
434 (This should have been verified in analyze_data_refs).
436 'var' in the second case corresponds to a def, not a use,
437 so USE cannot correspond to any operands that are not used
440 Therefore, all we need to check is if STMT falls into the
441 first case, and whether var corresponds to USE. */
443 if (TREE_CODE (TREE_OPERAND (stmt
, 0)) == SSA_NAME
)
446 operand
= TREE_OPERAND (stmt
, 1);
448 if (TREE_CODE (operand
) != SSA_NAME
)
458 /* Function vect_analyze_scalar_cycles.
460 Examine the cross iteration def-use cycles of scalar variables, by
461 analyzing the loop (scalar) PHIs; Classify each cycle as one of the
462 following: invariant, induction, reduction, unknown.
464 Some forms of scalar cycles are not yet supported.
466 Example1: reduction: (unsupported yet)
472 Example2: induction: (unsupported yet)
478 Note: the following loop *is* vectorizable:
484 even though it has a def-use cycle caused by the induction variable i:
486 loop: i_2 = PHI (i_0, i_1)
491 because the def-use cycle in loop3 is considered "not relevant" - i.e.,
492 it does not need to be vectorized because it is only used for array
493 indexing (see 'mark_stmts_to_be_vectorized'). The def-use cycle in
494 loop2 on the other hand is relevant (it is being written to memory).
498 vect_analyze_scalar_cycles (loop_vec_info loop_vinfo
)
501 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
502 basic_block bb
= loop
->header
;
505 if (vect_print_dump_info (REPORT_DETAILS
))
506 fprintf (vect_dump
, "=== vect_analyze_scalar_cycles ===");
508 for (phi
= phi_nodes (bb
); phi
; phi
= PHI_CHAIN (phi
))
510 tree access_fn
= NULL
;
511 tree def
= PHI_RESULT (phi
);
512 stmt_vec_info stmt_vinfo
= vinfo_for_stmt (phi
);
515 if (vect_print_dump_info (REPORT_DETAILS
))
517 fprintf (vect_dump
, "Analyze phi: ");
518 print_generic_expr (vect_dump
, phi
, TDF_SLIM
);
521 /* Skip virtual phi's. The data dependences that are associated with
522 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
524 if (!is_gimple_reg (SSA_NAME_VAR (def
)))
526 if (vect_print_dump_info (REPORT_DETAILS
))
527 fprintf (vect_dump
, "virtual phi. skip.");
531 STMT_VINFO_DEF_TYPE (stmt_vinfo
) = vect_unknown_def_type
;
533 /* Analyze the evolution function. */
535 access_fn
= analyze_scalar_evolution (loop
, def
);
540 if (vect_print_dump_info (REPORT_DETAILS
))
542 fprintf (vect_dump
, "Access function of PHI: ");
543 print_generic_expr (vect_dump
, access_fn
, TDF_SLIM
);
546 if (vect_is_simple_iv_evolution (loop
->num
, access_fn
, &dummy
, &dummy
))
548 if (vect_print_dump_info (REPORT_DETAILS
))
549 fprintf (vect_dump
, "Detected induction.");
550 STMT_VINFO_DEF_TYPE (stmt_vinfo
) = vect_induction_def
;
554 /* TODO: handle invariant phis */
556 reduc_stmt
= vect_is_simple_reduction (loop
, phi
);
559 if (vect_print_dump_info (REPORT_DETAILS
))
560 fprintf (vect_dump
, "Detected reduction.");
561 STMT_VINFO_DEF_TYPE (stmt_vinfo
) = vect_reduction_def
;
562 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt
)) =
566 if (vect_print_dump_info (REPORT_DETAILS
))
567 fprintf (vect_dump
, "Unknown def-use cycle pattern.");
575 /* Function vect_analyze_data_ref_dependence.
577 Return TRUE if there (might) exist a dependence between a memory-reference
578 DRA and a memory-reference DRB. */
581 vect_analyze_data_ref_dependence (struct data_dependence_relation
*ddr
,
582 loop_vec_info loop_vinfo
)
585 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
586 int vectorization_factor
= LOOP_VINFO_VECT_FACTOR (loop_vinfo
);
587 struct data_reference
*dra
= DDR_A (ddr
);
588 struct data_reference
*drb
= DDR_B (ddr
);
589 stmt_vec_info stmtinfo_a
= vinfo_for_stmt (DR_STMT (dra
));
590 stmt_vec_info stmtinfo_b
= vinfo_for_stmt (DR_STMT (drb
));
591 lambda_vector dist_v
;
592 unsigned int loop_depth
;
594 if (DDR_ARE_DEPENDENT (ddr
) == chrec_known
)
597 if (DDR_ARE_DEPENDENT (ddr
) == chrec_dont_know
)
599 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS
))
602 "not vectorized: can't determine dependence between ");
603 print_generic_expr (vect_dump
, DR_REF (dra
), TDF_SLIM
);
604 fprintf (vect_dump
, " and ");
605 print_generic_expr (vect_dump
, DR_REF (drb
), TDF_SLIM
);
610 if (DDR_NUM_DIST_VECTS (ddr
) == 0)
612 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS
))
614 fprintf (vect_dump
, "not vectorized: bad dist vector for ");
615 print_generic_expr (vect_dump
, DR_REF (dra
), TDF_SLIM
);
616 fprintf (vect_dump
, " and ");
617 print_generic_expr (vect_dump
, DR_REF (drb
), TDF_SLIM
);
622 loop_depth
= index_in_loop_nest (loop
->num
, DDR_LOOP_NEST (ddr
));
623 for (i
= 0; VEC_iterate (lambda_vector
, DDR_DIST_VECTS (ddr
), i
, dist_v
); i
++)
625 int dist
= dist_v
[loop_depth
];
627 if (vect_print_dump_info (REPORT_DR_DETAILS
))
628 fprintf (vect_dump
, "dependence distance = %d.", dist
);
630 /* Same loop iteration. */
631 if (dist
% vectorization_factor
== 0)
633 /* Two references with distance zero have the same alignment. */
634 VEC_safe_push (dr_p
, heap
, STMT_VINFO_SAME_ALIGN_REFS (stmtinfo_a
), drb
);
635 VEC_safe_push (dr_p
, heap
, STMT_VINFO_SAME_ALIGN_REFS (stmtinfo_b
), dra
);
636 if (vect_print_dump_info (REPORT_ALIGNMENT
))
637 fprintf (vect_dump
, "accesses have the same alignment.");
638 if (vect_print_dump_info (REPORT_DR_DETAILS
))
640 fprintf (vect_dump
, "dependence distance modulo vf == 0 between ");
641 print_generic_expr (vect_dump
, DR_REF (dra
), TDF_SLIM
);
642 fprintf (vect_dump
, " and ");
643 print_generic_expr (vect_dump
, DR_REF (drb
), TDF_SLIM
);
648 if (abs (dist
) >= vectorization_factor
)
650 /* Dependence distance does not create dependence, as far as vectorization
651 is concerned, in this case. */
652 if (vect_print_dump_info (REPORT_DR_DETAILS
))
653 fprintf (vect_dump
, "dependence distance >= VF.");
657 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS
))
660 "not vectorized: possible dependence between data-refs ");
661 print_generic_expr (vect_dump
, DR_REF (dra
), TDF_SLIM
);
662 fprintf (vect_dump
, " and ");
663 print_generic_expr (vect_dump
, DR_REF (drb
), TDF_SLIM
);
673 /* Function vect_analyze_data_ref_dependences.
675 Examine all the data references in the loop, and make sure there do not
676 exist any data dependences between them. */
679 vect_analyze_data_ref_dependences (loop_vec_info loop_vinfo
)
682 VEC (ddr_p
, heap
) *ddrs
= LOOP_VINFO_DDRS (loop_vinfo
);
683 struct data_dependence_relation
*ddr
;
685 if (vect_print_dump_info (REPORT_DETAILS
))
686 fprintf (vect_dump
, "=== vect_analyze_dependences ===");
688 for (i
= 0; VEC_iterate (ddr_p
, ddrs
, i
, ddr
); i
++)
689 if (vect_analyze_data_ref_dependence (ddr
, loop_vinfo
))
696 /* Function vect_compute_data_ref_alignment
698 Compute the misalignment of the data reference DR.
701 1. If during the misalignment computation it is found that the data reference
702 cannot be vectorized then false is returned.
703 2. DR_MISALIGNMENT (DR) is defined.
705 FOR NOW: No analysis is actually performed. Misalignment is calculated
706 only for trivial cases. TODO. */
709 vect_compute_data_ref_alignment (struct data_reference
*dr
)
711 tree stmt
= DR_STMT (dr
);
712 stmt_vec_info stmt_info
= vinfo_for_stmt (stmt
);
713 tree ref
= DR_REF (dr
);
715 tree base
, base_addr
;
718 tree aligned_to
, alignment
;
720 if (vect_print_dump_info (REPORT_DETAILS
))
721 fprintf (vect_dump
, "vect_compute_data_ref_alignment:");
723 /* Initialize misalignment to unknown. */
724 DR_MISALIGNMENT (dr
) = -1;
726 misalign
= DR_OFFSET_MISALIGNMENT (dr
);
727 aligned_to
= DR_ALIGNED_TO (dr
);
728 base_addr
= DR_BASE_ADDRESS (dr
);
729 base
= build_fold_indirect_ref (base_addr
);
730 vectype
= STMT_VINFO_VECTYPE (stmt_info
);
731 alignment
= ssize_int (TYPE_ALIGN (vectype
)/BITS_PER_UNIT
);
733 if ((aligned_to
&& tree_int_cst_compare (aligned_to
, alignment
) < 0)
736 if (vect_print_dump_info (REPORT_DETAILS
))
738 fprintf (vect_dump
, "Unknown alignment for access: ");
739 print_generic_expr (vect_dump
, base
, TDF_SLIM
);
745 && tree_int_cst_compare (ssize_int (DECL_ALIGN_UNIT (base
)),
747 || (TREE_CODE (base_addr
) == SSA_NAME
748 && tree_int_cst_compare (ssize_int (TYPE_ALIGN_UNIT (TREE_TYPE (
749 TREE_TYPE (base_addr
)))),
753 base_aligned
= false;
757 /* Do not change the alignment of global variables if
758 flag_section_anchors is enabled. */
759 if (!vect_can_force_dr_alignment_p (base
, TYPE_ALIGN (vectype
))
760 || (TREE_STATIC (base
) && flag_section_anchors
))
762 if (vect_print_dump_info (REPORT_DETAILS
))
764 fprintf (vect_dump
, "can't force alignment of ref: ");
765 print_generic_expr (vect_dump
, ref
, TDF_SLIM
);
770 /* Force the alignment of the decl.
771 NOTE: This is the only change to the code we make during
772 the analysis phase, before deciding to vectorize the loop. */
773 if (vect_print_dump_info (REPORT_DETAILS
))
774 fprintf (vect_dump
, "force alignment");
775 DECL_ALIGN (base
) = TYPE_ALIGN (vectype
);
776 DECL_USER_ALIGN (base
) = 1;
779 /* At this point we assume that the base is aligned. */
780 gcc_assert (base_aligned
781 || (TREE_CODE (base
) == VAR_DECL
782 && DECL_ALIGN (base
) >= TYPE_ALIGN (vectype
)));
784 /* Modulo alignment. */
785 misalign
= size_binop (TRUNC_MOD_EXPR
, misalign
, alignment
);
787 if (!host_integerp (misalign
, 1))
789 /* Negative or overflowed misalignment value. */
790 if (vect_print_dump_info (REPORT_DETAILS
))
791 fprintf (vect_dump
, "unexpected misalign value");
795 DR_MISALIGNMENT (dr
) = TREE_INT_CST_LOW (misalign
);
797 if (vect_print_dump_info (REPORT_DETAILS
))
799 fprintf (vect_dump
, "misalign = %d bytes of ref ", DR_MISALIGNMENT (dr
));
800 print_generic_expr (vect_dump
, ref
, TDF_SLIM
);
807 /* Function vect_compute_data_refs_alignment
809 Compute the misalignment of data references in the loop.
810 Return FALSE if a data reference is found that cannot be vectorized. */
813 vect_compute_data_refs_alignment (loop_vec_info loop_vinfo
)
815 VEC (data_reference_p
, heap
) *datarefs
= LOOP_VINFO_DATAREFS (loop_vinfo
);
816 struct data_reference
*dr
;
819 for (i
= 0; VEC_iterate (data_reference_p
, datarefs
, i
, dr
); i
++)
820 if (!vect_compute_data_ref_alignment (dr
))
827 /* Function vect_update_misalignment_for_peel
829 DR - the data reference whose misalignment is to be adjusted.
830 DR_PEEL - the data reference whose misalignment is being made
831 zero in the vector loop by the peel.
832 NPEEL - the number of iterations in the peel loop if the misalignment
833 of DR_PEEL is known at compile time. */
836 vect_update_misalignment_for_peel (struct data_reference
*dr
,
837 struct data_reference
*dr_peel
, int npeel
)
841 VEC(dr_p
,heap
) *same_align_drs
;
842 struct data_reference
*current_dr
;
844 if (known_alignment_for_access_p (dr
)
845 && DR_MISALIGNMENT (dr
) == DR_MISALIGNMENT (dr_peel
))
847 DR_MISALIGNMENT (dr
) = 0;
851 /* It can be assumed that the data refs with the same alignment as dr_peel
852 are aligned in the vector loop. */
854 = STMT_VINFO_SAME_ALIGN_REFS (vinfo_for_stmt (DR_STMT (dr_peel
)));
855 for (i
= 0; VEC_iterate (dr_p
, same_align_drs
, i
, current_dr
); i
++)
857 if (current_dr
!= dr
)
859 gcc_assert (DR_MISALIGNMENT (dr
) == DR_MISALIGNMENT (dr_peel
));
860 DR_MISALIGNMENT (dr
) = 0;
864 if (known_alignment_for_access_p (dr
)
865 && known_alignment_for_access_p (dr_peel
))
867 drsize
= GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr
))));
868 DR_MISALIGNMENT (dr
) += npeel
* drsize
;
869 DR_MISALIGNMENT (dr
) %= UNITS_PER_SIMD_WORD
;
873 DR_MISALIGNMENT (dr
) = -1;
877 /* Function vect_verify_datarefs_alignment
879 Return TRUE if all data references in the loop can be
880 handled with respect to alignment. */
883 vect_verify_datarefs_alignment (loop_vec_info loop_vinfo
)
885 VEC (data_reference_p
, heap
) *datarefs
= LOOP_VINFO_DATAREFS (loop_vinfo
);
886 struct data_reference
*dr
;
887 enum dr_alignment_support supportable_dr_alignment
;
890 for (i
= 0; VEC_iterate (data_reference_p
, datarefs
, i
, dr
); i
++)
892 supportable_dr_alignment
= vect_supportable_dr_alignment (dr
);
893 if (!supportable_dr_alignment
)
895 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS
))
899 "not vectorized: unsupported unaligned load.");
902 "not vectorized: unsupported unaligned store.");
906 if (supportable_dr_alignment
!= dr_aligned
907 && vect_print_dump_info (REPORT_ALIGNMENT
))
908 fprintf (vect_dump
, "Vectorizing an unaligned access.");
914 /* Function vect_enhance_data_refs_alignment
916 This pass will use loop versioning and loop peeling in order to enhance
917 the alignment of data references in the loop.
919 FOR NOW: we assume that whatever versioning/peeling takes place, only the
920 original loop is to be vectorized; Any other loops that are created by
921 the transformations performed in this pass - are not supposed to be
922 vectorized. This restriction will be relaxed.
924 This pass will require a cost model to guide it whether to apply peeling
925 or versioning or a combination of the two. For example, the scheme that
926 intel uses when given a loop with several memory accesses, is as follows:
927 choose one memory access ('p') which alignment you want to force by doing
928 peeling. Then, either (1) generate a loop in which 'p' is aligned and all
929 other accesses are not necessarily aligned, or (2) use loop versioning to
930 generate one loop in which all accesses are aligned, and another loop in
931 which only 'p' is necessarily aligned.
933 ("Automatic Intra-Register Vectorization for the Intel Architecture",
934 Aart J.C. Bik, Milind Girkar, Paul M. Grey and Ximmin Tian, International
935 Journal of Parallel Programming, Vol. 30, No. 2, April 2002.)
937 Devising a cost model is the most critical aspect of this work. It will
938 guide us on which access to peel for, whether to use loop versioning, how
939 many versions to create, etc. The cost model will probably consist of
940 generic considerations as well as target specific considerations (on
941 powerpc for example, misaligned stores are more painful than misaligned
944 Here are the general steps involved in alignment enhancements:
946 -- original loop, before alignment analysis:
948 x = q[i]; # DR_MISALIGNMENT(q) = unknown
949 p[i] = y; # DR_MISALIGNMENT(p) = unknown
952 -- After vect_compute_data_refs_alignment:
954 x = q[i]; # DR_MISALIGNMENT(q) = 3
955 p[i] = y; # DR_MISALIGNMENT(p) = unknown
958 -- Possibility 1: we do loop versioning:
960 for (i=0; i<N; i++){ # loop 1A
961 x = q[i]; # DR_MISALIGNMENT(q) = 3
962 p[i] = y; # DR_MISALIGNMENT(p) = 0
966 for (i=0; i<N; i++){ # loop 1B
967 x = q[i]; # DR_MISALIGNMENT(q) = 3
968 p[i] = y; # DR_MISALIGNMENT(p) = unaligned
972 -- Possibility 2: we do loop peeling:
973 for (i = 0; i < 3; i++){ # (scalar loop, not to be vectorized).
977 for (i = 3; i < N; i++){ # loop 2A
978 x = q[i]; # DR_MISALIGNMENT(q) = 0
979 p[i] = y; # DR_MISALIGNMENT(p) = unknown
982 -- Possibility 3: combination of loop peeling and versioning:
983 for (i = 0; i < 3; i++){ # (scalar loop, not to be vectorized).
988 for (i = 3; i<N; i++){ # loop 3A
989 x = q[i]; # DR_MISALIGNMENT(q) = 0
990 p[i] = y; # DR_MISALIGNMENT(p) = 0
994 for (i = 3; i<N; i++){ # loop 3B
995 x = q[i]; # DR_MISALIGNMENT(q) = 0
996 p[i] = y; # DR_MISALIGNMENT(p) = unaligned
1000 These loops are later passed to loop_transform to be vectorized. The
1001 vectorizer will use the alignment information to guide the transformation
1002 (whether to generate regular loads/stores, or with special handling for
1006 vect_enhance_data_refs_alignment (loop_vec_info loop_vinfo
)
1008 VEC (data_reference_p
, heap
) *datarefs
= LOOP_VINFO_DATAREFS (loop_vinfo
);
1009 enum dr_alignment_support supportable_dr_alignment
;
1010 struct data_reference
*dr0
= NULL
;
1011 struct data_reference
*dr
;
1013 bool do_peeling
= false;
1014 bool do_versioning
= false;
1017 /* While cost model enhancements are expected in the future, the high level
1018 view of the code at this time is as follows:
1020 A) If there is a misaligned write then see if peeling to align this write
1021 can make all data references satisfy vect_supportable_dr_alignment.
1022 If so, update data structures as needed and return true. Note that
1023 at this time vect_supportable_dr_alignment is known to return false
1024 for a a misaligned write.
1026 B) If peeling wasn't possible and there is a data reference with an
1027 unknown misalignment that does not satisfy vect_supportable_dr_alignment
1028 then see if loop versioning checks can be used to make all data
1029 references satisfy vect_supportable_dr_alignment. If so, update
1030 data structures as needed and return true.
1032 C) If neither peeling nor versioning were successful then return false if
1033 any data reference does not satisfy vect_supportable_dr_alignment.
1035 D) Return true (all data references satisfy vect_supportable_dr_alignment).
1037 Note, Possibility 3 above (which is peeling and versioning together) is not
1038 being done at this time. */
1040 /* (1) Peeling to force alignment. */
1042 /* (1.1) Decide whether to perform peeling, and how many iterations to peel:
1044 + How many accesses will become aligned due to the peeling
1045 - How many accesses will become unaligned due to the peeling,
1046 and the cost of misaligned accesses.
1047 - The cost of peeling (the extra runtime checks, the increase
1050 The scheme we use FORNOW: peel to force the alignment of the first
1051 misaligned store in the loop.
1052 Rationale: misaligned stores are not yet supported.
1054 TODO: Use a cost model. */
1056 for (i
= 0; VEC_iterate (data_reference_p
, datarefs
, i
, dr
); i
++)
1057 if (!DR_IS_READ (dr
) && !aligned_access_p (dr
))
1064 /* Often peeling for alignment will require peeling for loop-bound, which in
1065 turn requires that we know how to adjust the loop ivs after the loop. */
1066 if (!vect_can_advance_ivs_p (loop_vinfo
))
1074 if (known_alignment_for_access_p (dr0
))
1076 /* Since it's known at compile time, compute the number of iterations
1077 in the peeled loop (the peeling factor) for use in updating
1078 DR_MISALIGNMENT values. The peeling factor is the vectorization
1079 factor minus the misalignment as an element count. */
1080 mis
= DR_MISALIGNMENT (dr0
);
1081 mis
/= GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr0
))));
1082 npeel
= LOOP_VINFO_VECT_FACTOR (loop_vinfo
) - mis
;
1085 /* Ensure that all data refs can be vectorized after the peel. */
1086 for (i
= 0; VEC_iterate (data_reference_p
, datarefs
, i
, dr
); i
++)
1088 int save_misalignment
;
1093 save_misalignment
= DR_MISALIGNMENT (dr
);
1094 vect_update_misalignment_for_peel (dr
, dr0
, npeel
);
1095 supportable_dr_alignment
= vect_supportable_dr_alignment (dr
);
1096 DR_MISALIGNMENT (dr
) = save_misalignment
;
1098 if (!supportable_dr_alignment
)
1107 /* (1.2) Update the DR_MISALIGNMENT of each data reference DR_i.
1108 If the misalignment of DR_i is identical to that of dr0 then set
1109 DR_MISALIGNMENT (DR_i) to zero. If the misalignment of DR_i and
1110 dr0 are known at compile time then increment DR_MISALIGNMENT (DR_i)
1111 by the peeling factor times the element size of DR_i (MOD the
1112 vectorization factor times the size). Otherwise, the
1113 misalignment of DR_i must be set to unknown. */
1114 for (i
= 0; VEC_iterate (data_reference_p
, datarefs
, i
, dr
); i
++)
1116 vect_update_misalignment_for_peel (dr
, dr0
, npeel
);
1118 LOOP_VINFO_UNALIGNED_DR (loop_vinfo
) = dr0
;
1119 LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo
) = DR_MISALIGNMENT (dr0
);
1120 DR_MISALIGNMENT (dr0
) = 0;
1121 if (vect_print_dump_info (REPORT_ALIGNMENT
))
1122 fprintf (vect_dump
, "Alignment of access forced using peeling.");
1124 if (vect_print_dump_info (REPORT_DETAILS
))
1125 fprintf (vect_dump
, "Peeling for alignment will be applied.");
1127 stat
= vect_verify_datarefs_alignment (loop_vinfo
);
1134 /* (2) Versioning to force alignment. */
1136 /* Try versioning if:
1137 1) flag_tree_vect_loop_version is TRUE
1138 2) optimize_size is FALSE
1139 3) there is at least one unsupported misaligned data ref with an unknown
1141 4) all misaligned data refs with a known misalignment are supported, and
1142 5) the number of runtime alignment checks is within reason. */
1144 do_versioning
= flag_tree_vect_loop_version
&& (!optimize_size
);
1148 for (i
= 0; VEC_iterate (data_reference_p
, datarefs
, i
, dr
); i
++)
1150 if (aligned_access_p (dr
))
1153 supportable_dr_alignment
= vect_supportable_dr_alignment (dr
);
1155 if (!supportable_dr_alignment
)
1161 if (known_alignment_for_access_p (dr
)
1162 || VEC_length (tree
,
1163 LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo
))
1164 >= (unsigned) PARAM_VALUE (PARAM_VECT_MAX_VERSION_CHECKS
))
1166 do_versioning
= false;
1170 stmt
= DR_STMT (dr
);
1171 vectype
= STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt
));
1172 gcc_assert (vectype
);
1174 /* The rightmost bits of an aligned address must be zeros.
1175 Construct the mask needed for this test. For example,
1176 GET_MODE_SIZE for the vector mode V4SI is 16 bytes so the
1177 mask must be 15 = 0xf. */
1178 mask
= GET_MODE_SIZE (TYPE_MODE (vectype
)) - 1;
1180 /* FORNOW: use the same mask to test all potentially unaligned
1181 references in the loop. The vectorizer currently supports
1182 a single vector size, see the reference to
1183 GET_MODE_NUNITS (TYPE_MODE (vectype)) where the
1184 vectorization factor is computed. */
1185 gcc_assert (!LOOP_VINFO_PTR_MASK (loop_vinfo
)
1186 || LOOP_VINFO_PTR_MASK (loop_vinfo
) == mask
);
1187 LOOP_VINFO_PTR_MASK (loop_vinfo
) = mask
;
1188 VEC_safe_push (tree
, heap
,
1189 LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo
),
1194 /* Versioning requires at least one misaligned data reference. */
1195 if (VEC_length (tree
, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo
)) == 0)
1196 do_versioning
= false;
1197 else if (!do_versioning
)
1198 VEC_truncate (tree
, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo
), 0);
1203 VEC(tree
,heap
) *may_misalign_stmts
1204 = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo
);
1207 /* It can now be assumed that the data references in the statements
1208 in LOOP_VINFO_MAY_MISALIGN_STMTS will be aligned in the version
1209 of the loop being vectorized. */
1210 for (i
= 0; VEC_iterate (tree
, may_misalign_stmts
, i
, stmt
); i
++)
1212 stmt_vec_info stmt_info
= vinfo_for_stmt (stmt
);
1213 dr
= STMT_VINFO_DATA_REF (stmt_info
);
1214 DR_MISALIGNMENT (dr
) = 0;
1215 if (vect_print_dump_info (REPORT_ALIGNMENT
))
1216 fprintf (vect_dump
, "Alignment of access forced using versioning.");
1219 if (vect_print_dump_info (REPORT_DETAILS
))
1220 fprintf (vect_dump
, "Versioning for alignment will be applied.");
1222 /* Peeling and versioning can't be done together at this time. */
1223 gcc_assert (! (do_peeling
&& do_versioning
));
1225 stat
= vect_verify_datarefs_alignment (loop_vinfo
);
1230 /* This point is reached if neither peeling nor versioning is being done. */
1231 gcc_assert (! (do_peeling
|| do_versioning
));
1233 stat
= vect_verify_datarefs_alignment (loop_vinfo
);
1238 /* Function vect_analyze_data_refs_alignment
1240 Analyze the alignment of the data-references in the loop.
1241 Return FALSE if a data reference is found that cannot be vectorized. */
1244 vect_analyze_data_refs_alignment (loop_vec_info loop_vinfo
)
1246 if (vect_print_dump_info (REPORT_DETAILS
))
1247 fprintf (vect_dump
, "=== vect_analyze_data_refs_alignment ===");
1249 if (!vect_compute_data_refs_alignment (loop_vinfo
))
1251 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS
))
1253 "not vectorized: can't calculate alignment for data ref.");
1261 /* Function vect_analyze_data_ref_access.
1263 Analyze the access pattern of the data-reference DR. For now, a data access
1264 has to be consecutive to be considered vectorizable. */
1267 vect_analyze_data_ref_access (struct data_reference
*dr
)
1269 tree step
= DR_STEP (dr
);
1270 tree scalar_type
= TREE_TYPE (DR_REF (dr
));
1272 if (!step
|| tree_int_cst_compare (step
, TYPE_SIZE_UNIT (scalar_type
)))
1274 if (vect_print_dump_info (REPORT_DETAILS
))
1275 fprintf (vect_dump
, "not consecutive access");
1282 /* Function vect_analyze_data_ref_accesses.
1284 Analyze the access pattern of all the data references in the loop.
1286 FORNOW: the only access pattern that is considered vectorizable is a
1287 simple step 1 (consecutive) access.
1289 FORNOW: handle only arrays and pointer accesses. */
1292 vect_analyze_data_ref_accesses (loop_vec_info loop_vinfo
)
1295 VEC (data_reference_p
, heap
) *datarefs
= LOOP_VINFO_DATAREFS (loop_vinfo
);
1296 struct data_reference
*dr
;
1298 if (vect_print_dump_info (REPORT_DETAILS
))
1299 fprintf (vect_dump
, "=== vect_analyze_data_ref_accesses ===");
1301 for (i
= 0; VEC_iterate (data_reference_p
, datarefs
, i
, dr
); i
++)
1302 if (!vect_analyze_data_ref_access (dr
))
1304 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS
))
1305 fprintf (vect_dump
, "not vectorized: complicated access pattern.");
1313 /* Function vect_analyze_data_refs.
1315 Find all the data references in the loop.
1317 The general structure of the analysis of data refs in the vectorizer is as
1319 1- vect_analyze_data_refs(loop): call compute_data_dependences_for_loop to
1320 find and analyze all data-refs in the loop and their dependences.
1321 2- vect_analyze_dependences(): apply dependence testing using ddrs.
1322 3- vect_analyze_drs_alignment(): check that ref_stmt.alignment is ok.
1323 4- vect_analyze_drs_access(): check that ref_stmt.step is ok.
1328 vect_analyze_data_refs (loop_vec_info loop_vinfo
)
1330 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
1332 VEC (data_reference_p
, heap
) *datarefs
;
1333 struct data_reference
*dr
;
1336 if (vect_print_dump_info (REPORT_DETAILS
))
1337 fprintf (vect_dump
, "=== vect_analyze_data_refs ===");
1339 compute_data_dependences_for_loop (loop
, false,
1340 &LOOP_VINFO_DATAREFS (loop_vinfo
),
1341 &LOOP_VINFO_DDRS (loop_vinfo
));
1343 /* Go through the data-refs, check that the analysis succeeded. Update pointer
1344 from stmt_vec_info struct to DR and vectype. */
1345 datarefs
= LOOP_VINFO_DATAREFS (loop_vinfo
);
1347 for (i
= 0; VEC_iterate (data_reference_p
, datarefs
, i
, dr
); i
++)
1350 stmt_vec_info stmt_info
;
1352 if (!dr
|| !DR_REF (dr
))
1354 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS
))
1355 fprintf (vect_dump
, "not vectorized: unhandled data-ref ");
1359 /* Update DR field in stmt_vec_info struct. */
1360 stmt
= DR_STMT (dr
);
1361 stmt_info
= vinfo_for_stmt (stmt
);
1363 if (STMT_VINFO_DATA_REF (stmt_info
))
1365 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS
))
1368 "not vectorized: more than one data ref in stmt: ");
1369 print_generic_expr (vect_dump
, stmt
, TDF_SLIM
);
1373 STMT_VINFO_DATA_REF (stmt_info
) = dr
;
1375 /* Check that analysis of the data-ref succeeded. */
1376 if (!DR_BASE_ADDRESS (dr
) || !DR_OFFSET (dr
) || !DR_INIT (dr
)
1379 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS
))
1381 fprintf (vect_dump
, "not vectorized: data ref analysis failed ");
1382 print_generic_expr (vect_dump
, stmt
, TDF_SLIM
);
1386 if (!DR_MEMTAG (dr
))
1388 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS
))
1390 fprintf (vect_dump
, "not vectorized: no memory tag for ");
1391 print_generic_expr (vect_dump
, DR_REF (dr
), TDF_SLIM
);
1396 /* Set vectype for STMT. */
1397 scalar_type
= TREE_TYPE (DR_REF (dr
));
1398 STMT_VINFO_VECTYPE (stmt_info
) =
1399 get_vectype_for_scalar_type (scalar_type
);
1400 if (!STMT_VINFO_VECTYPE (stmt_info
))
1402 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS
))
1405 "not vectorized: no vectype for stmt: ");
1406 print_generic_expr (vect_dump
, stmt
, TDF_SLIM
);
1407 fprintf (vect_dump
, " scalar_type: ");
1408 print_generic_expr (vect_dump
, scalar_type
, TDF_DETAILS
);
1418 /* Utility functions used by vect_mark_stmts_to_be_vectorized. */
1420 /* Function vect_mark_relevant.
1422 Mark STMT as "relevant for vectorization" and add it to WORKLIST. */
1425 vect_mark_relevant (VEC(tree
,heap
) **worklist
, tree stmt
,
1426 bool relevant_p
, bool live_p
)
1428 stmt_vec_info stmt_info
= vinfo_for_stmt (stmt
);
1429 bool save_relevant_p
= STMT_VINFO_RELEVANT_P (stmt_info
);
1430 bool save_live_p
= STMT_VINFO_LIVE_P (stmt_info
);
1432 if (vect_print_dump_info (REPORT_DETAILS
))
1433 fprintf (vect_dump
, "mark relevant %d, live %d.",relevant_p
, live_p
);
1435 if (STMT_VINFO_IN_PATTERN_P (stmt_info
))
1439 /* This is the last stmt in a sequence that was detected as a
1440 pattern that can potentially be vectorized. Don't mark the stmt
1441 as relevant/live because it's not going to vectorized.
1442 Instead mark the pattern-stmt that replaces it. */
1443 if (vect_print_dump_info (REPORT_DETAILS
))
1444 fprintf (vect_dump
, "last stmt in pattern. don't mark relevant/live.");
1445 pattern_stmt
= STMT_VINFO_RELATED_STMT (stmt_info
);
1446 stmt_info
= vinfo_for_stmt (pattern_stmt
);
1447 gcc_assert (STMT_VINFO_RELATED_STMT (stmt_info
) == stmt
);
1448 save_relevant_p
= STMT_VINFO_RELEVANT_P (stmt_info
);
1449 save_live_p
= STMT_VINFO_LIVE_P (stmt_info
);
1450 stmt
= pattern_stmt
;
1453 STMT_VINFO_LIVE_P (stmt_info
) |= live_p
;
1454 STMT_VINFO_RELEVANT_P (stmt_info
) |= relevant_p
;
1456 if (TREE_CODE (stmt
) == PHI_NODE
)
1457 /* Don't put phi-nodes in the worklist. Phis that are marked relevant
1458 or live will fail vectorization later on. */
1461 if (STMT_VINFO_RELEVANT_P (stmt_info
) == save_relevant_p
1462 && STMT_VINFO_LIVE_P (stmt_info
) == save_live_p
)
1464 if (vect_print_dump_info (REPORT_DETAILS
))
1465 fprintf (vect_dump
, "already marked relevant/live.");
1469 VEC_safe_push (tree
, heap
, *worklist
, stmt
);
1473 /* Function vect_stmt_relevant_p.
1475 Return true if STMT in loop that is represented by LOOP_VINFO is
1476 "relevant for vectorization".
1478 A stmt is considered "relevant for vectorization" if:
1479 - it has uses outside the loop.
1480 - it has vdefs (it alters memory).
1481 - control stmts in the loop (except for the exit condition).
1483 CHECKME: what other side effects would the vectorizer allow? */
1486 vect_stmt_relevant_p (tree stmt
, loop_vec_info loop_vinfo
,
1487 bool *relevant_p
, bool *live_p
)
1489 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
1490 ssa_op_iter op_iter
;
1491 imm_use_iterator imm_iter
;
1492 use_operand_p use_p
;
1493 def_operand_p def_p
;
1495 *relevant_p
= false;
1498 /* cond stmt other than loop exit cond. */
1499 if (is_ctrl_stmt (stmt
) && (stmt
!= LOOP_VINFO_EXIT_COND (loop_vinfo
)))
1502 /* changing memory. */
1503 if (TREE_CODE (stmt
) != PHI_NODE
)
1504 if (!ZERO_SSA_OPERANDS (stmt
, SSA_OP_VIRTUAL_DEFS
))
1506 if (vect_print_dump_info (REPORT_DETAILS
))
1507 fprintf (vect_dump
, "vec_stmt_relevant_p: stmt has vdefs.");
1511 /* uses outside the loop. */
1512 FOR_EACH_PHI_OR_STMT_DEF (def_p
, stmt
, op_iter
, SSA_OP_DEF
)
1514 FOR_EACH_IMM_USE_FAST (use_p
, imm_iter
, DEF_FROM_PTR (def_p
))
1516 basic_block bb
= bb_for_stmt (USE_STMT (use_p
));
1517 if (!flow_bb_inside_loop_p (loop
, bb
))
1519 if (vect_print_dump_info (REPORT_DETAILS
))
1520 fprintf (vect_dump
, "vec_stmt_relevant_p: used out of loop.");
1522 /* We expect all such uses to be in the loop exit phis
1523 (because of loop closed form) */
1524 gcc_assert (TREE_CODE (USE_STMT (use_p
)) == PHI_NODE
);
1525 gcc_assert (bb
== loop
->single_exit
->dest
);
1532 return (*live_p
|| *relevant_p
);
1536 /* Function vect_mark_stmts_to_be_vectorized.
1538 Not all stmts in the loop need to be vectorized. For example:
1547 Stmt 1 and 3 do not need to be vectorized, because loop control and
1548 addressing of vectorized data-refs are handled differently.
1550 This pass detects such stmts. */
1553 vect_mark_stmts_to_be_vectorized (loop_vec_info loop_vinfo
)
1555 VEC(tree
,heap
) *worklist
;
1556 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
1557 basic_block
*bbs
= LOOP_VINFO_BBS (loop_vinfo
);
1558 unsigned int nbbs
= loop
->num_nodes
;
1559 block_stmt_iterator si
;
1564 stmt_vec_info stmt_vinfo
;
1567 bool relevant_p
, live_p
;
1569 enum vect_def_type dt
;
1571 if (vect_print_dump_info (REPORT_DETAILS
))
1572 fprintf (vect_dump
, "=== vect_mark_stmts_to_be_vectorized ===");
1574 worklist
= VEC_alloc (tree
, heap
, 64);
1576 /* 1. Init worklist. */
1579 for (phi
= phi_nodes (bb
); phi
; phi
= PHI_CHAIN (phi
))
1581 if (vect_print_dump_info (REPORT_DETAILS
))
1583 fprintf (vect_dump
, "init: phi relevant? ");
1584 print_generic_expr (vect_dump
, phi
, TDF_SLIM
);
1587 if (vect_stmt_relevant_p (phi
, loop_vinfo
, &relevant_p
, &live_p
))
1588 vect_mark_relevant (&worklist
, phi
, relevant_p
, live_p
);
1591 for (i
= 0; i
< nbbs
; i
++)
1594 for (si
= bsi_start (bb
); !bsi_end_p (si
); bsi_next (&si
))
1596 stmt
= bsi_stmt (si
);
1598 if (vect_print_dump_info (REPORT_DETAILS
))
1600 fprintf (vect_dump
, "init: stmt relevant? ");
1601 print_generic_expr (vect_dump
, stmt
, TDF_SLIM
);
1604 if (vect_stmt_relevant_p (stmt
, loop_vinfo
, &relevant_p
, &live_p
))
1605 vect_mark_relevant (&worklist
, stmt
, relevant_p
, live_p
);
1610 /* 2. Process_worklist */
1612 while (VEC_length (tree
, worklist
) > 0)
1614 stmt
= VEC_pop (tree
, worklist
);
1616 if (vect_print_dump_info (REPORT_DETAILS
))
1618 fprintf (vect_dump
, "worklist: examine stmt: ");
1619 print_generic_expr (vect_dump
, stmt
, TDF_SLIM
);
1622 /* Examine the USEs of STMT. For each ssa-name USE thta is defined
1623 in the loop, mark the stmt that defines it (DEF_STMT) as
1624 relevant/irrelevant and live/dead according to the liveness and
1625 relevance properties of STMT.
1628 gcc_assert (TREE_CODE (stmt
) != PHI_NODE
);
1630 ann
= stmt_ann (stmt
);
1631 stmt_vinfo
= vinfo_for_stmt (stmt
);
1633 relevant_p
= STMT_VINFO_RELEVANT_P (stmt_vinfo
);
1634 live_p
= STMT_VINFO_LIVE_P (stmt_vinfo
);
1636 /* Generally, the liveness and relevance properties of STMT are
1637 propagated to the DEF_STMTs of its USEs:
1638 STMT_VINFO_LIVE_P (DEF_STMT_info) <-- live_p
1639 STMT_VINFO_RELEVANT_P (DEF_STMT_info) <-- relevant_p
1644 If USE is used only for address computations (e.g. array indexing),
1645 which does not need to be directly vectorized, then the
1646 liveness/relevance of the respective DEF_STMT is left unchanged.
1649 If STMT has been identified as defining a reduction variable, then
1652 The last use of STMT is the reduction-variable, which is defined
1653 by a loop-header-phi. We don't want to mark the phi as live or
1654 relevant (because it does not need to be vectorized, it is handled
1655 as part of the vectorization of the reduction), so in this case we
1656 skip the call to vect_mark_relevant.
1658 The rest of the uses of STMT are defined in the loop body. For
1659 the def_stmt of these uses we want to set liveness/relevance
1661 STMT_VINFO_LIVE_P (DEF_STMT_info) <-- false
1662 STMT_VINFO_RELEVANT_P (DEF_STMT_info) <-- true
1663 because even though STMT is classified as live (since it defines a
1664 value that is used across loop iterations) and irrelevant (since it
1665 is not used inside the loop), it will be vectorized, and therefore
1666 the corresponding DEF_STMTs need to marked as relevant.
1670 if (STMT_VINFO_DEF_TYPE (stmt_vinfo
) == vect_reduction_def
)
1672 gcc_assert (!relevant_p
&& live_p
);
1677 FOR_EACH_SSA_TREE_OPERAND (use
, stmt
, iter
, SSA_OP_USE
)
1679 /* case 1: we are only interested in uses that need to be vectorized.
1680 Uses that are used for address computation are not considered
1683 if (!exist_non_indexing_operands_for_use_p (use
, stmt
))
1686 if (!vect_is_simple_use (use
, loop_vinfo
, &def_stmt
, &def
, &dt
))
1688 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS
))
1689 fprintf (vect_dump
, "not vectorized: unsupported use in stmt.");
1690 VEC_free (tree
, heap
, worklist
);
1694 if (!def_stmt
|| IS_EMPTY_STMT (def_stmt
))
1697 if (vect_print_dump_info (REPORT_DETAILS
))
1699 fprintf (vect_dump
, "worklist: examine use %d: ", i
);
1700 print_generic_expr (vect_dump
, use
, TDF_SLIM
);
1703 bb
= bb_for_stmt (def_stmt
);
1704 if (!flow_bb_inside_loop_p (loop
, bb
))
1707 /* case 2.1: the reduction-use does not mark the defining-phi
1709 if (STMT_VINFO_DEF_TYPE (stmt_vinfo
) == vect_reduction_def
1710 && TREE_CODE (def_stmt
) == PHI_NODE
)
1713 vect_mark_relevant (&worklist
, def_stmt
, relevant_p
, live_p
);
1715 } /* while worklist */
1717 VEC_free (tree
, heap
, worklist
);
1722 /* Function vect_can_advance_ivs_p
1724 In case the number of iterations that LOOP iterates is unknown at compile
1725 time, an epilog loop will be generated, and the loop induction variables
1726 (IVs) will be "advanced" to the value they are supposed to take just before
1727 the epilog loop. Here we check that the access function of the loop IVs
1728 and the expression that represents the loop bound are simple enough.
1729 These restrictions will be relaxed in the future. */
1732 vect_can_advance_ivs_p (loop_vec_info loop_vinfo
)
1734 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
1735 basic_block bb
= loop
->header
;
1738 /* Analyze phi functions of the loop header. */
1740 if (vect_print_dump_info (REPORT_DETAILS
))
1741 fprintf (vect_dump
, "=== vect_can_advance_ivs_p ===");
1743 for (phi
= phi_nodes (bb
); phi
; phi
= PHI_CHAIN (phi
))
1745 tree access_fn
= NULL
;
1746 tree evolution_part
;
1748 if (vect_print_dump_info (REPORT_DETAILS
))
1750 fprintf (vect_dump
, "Analyze phi: ");
1751 print_generic_expr (vect_dump
, phi
, TDF_SLIM
);
1754 /* Skip virtual phi's. The data dependences that are associated with
1755 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
1757 if (!is_gimple_reg (SSA_NAME_VAR (PHI_RESULT (phi
))))
1759 if (vect_print_dump_info (REPORT_DETAILS
))
1760 fprintf (vect_dump
, "virtual phi. skip.");
1764 /* Skip reduction phis. */
1766 if (STMT_VINFO_DEF_TYPE (vinfo_for_stmt (phi
)) == vect_reduction_def
)
1768 if (vect_print_dump_info (REPORT_DETAILS
))
1769 fprintf (vect_dump
, "reduc phi. skip.");
1773 /* Analyze the evolution function. */
1775 access_fn
= instantiate_parameters
1776 (loop
, analyze_scalar_evolution (loop
, PHI_RESULT (phi
)));
1780 if (vect_print_dump_info (REPORT_DETAILS
))
1781 fprintf (vect_dump
, "No Access function.");
1785 if (vect_print_dump_info (REPORT_DETAILS
))
1787 fprintf (vect_dump
, "Access function of PHI: ");
1788 print_generic_expr (vect_dump
, access_fn
, TDF_SLIM
);
1791 evolution_part
= evolution_part_in_loop_num (access_fn
, loop
->num
);
1793 if (evolution_part
== NULL_TREE
)
1795 if (vect_print_dump_info (REPORT_DETAILS
))
1796 fprintf (vect_dump
, "No evolution.");
1800 /* FORNOW: We do not transform initial conditions of IVs
1801 which evolution functions are a polynomial of degree >= 2. */
1803 if (tree_is_chrec (evolution_part
))
1811 /* Function vect_get_loop_niters.
1813 Determine how many iterations the loop is executed.
1814 If an expression that represents the number of iterations
1815 can be constructed, place it in NUMBER_OF_ITERATIONS.
1816 Return the loop exit condition. */
1819 vect_get_loop_niters (struct loop
*loop
, tree
*number_of_iterations
)
1823 if (vect_print_dump_info (REPORT_DETAILS
))
1824 fprintf (vect_dump
, "=== get_loop_niters ===");
1826 niters
= number_of_iterations_in_loop (loop
);
1828 if (niters
!= NULL_TREE
1829 && niters
!= chrec_dont_know
)
1831 *number_of_iterations
= niters
;
1833 if (vect_print_dump_info (REPORT_DETAILS
))
1835 fprintf (vect_dump
, "==> get_loop_niters:" );
1836 print_generic_expr (vect_dump
, *number_of_iterations
, TDF_SLIM
);
1840 return get_loop_exit_condition (loop
);
1844 /* Function vect_analyze_loop_form.
1846 Verify the following restrictions (some may be relaxed in the future):
1847 - it's an inner-most loop
1848 - number of BBs = 2 (which are the loop header and the latch)
1849 - the loop has a pre-header
1850 - the loop has a single entry and exit
1851 - the loop exit condition is simple enough, and the number of iterations
1852 can be analyzed (a countable loop). */
1854 static loop_vec_info
1855 vect_analyze_loop_form (struct loop
*loop
)
1857 loop_vec_info loop_vinfo
;
1859 tree number_of_iterations
= NULL
;
1861 if (vect_print_dump_info (REPORT_DETAILS
))
1862 fprintf (vect_dump
, "=== vect_analyze_loop_form ===");
1866 if (vect_print_dump_info (REPORT_OUTER_LOOPS
))
1867 fprintf (vect_dump
, "not vectorized: nested loop.");
1871 if (!loop
->single_exit
1872 || loop
->num_nodes
!= 2
1873 || EDGE_COUNT (loop
->header
->preds
) != 2)
1875 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS
))
1877 if (!loop
->single_exit
)
1878 fprintf (vect_dump
, "not vectorized: multiple exits.");
1879 else if (loop
->num_nodes
!= 2)
1880 fprintf (vect_dump
, "not vectorized: too many BBs in loop.");
1881 else if (EDGE_COUNT (loop
->header
->preds
) != 2)
1882 fprintf (vect_dump
, "not vectorized: too many incoming edges.");
1888 /* We assume that the loop exit condition is at the end of the loop. i.e,
1889 that the loop is represented as a do-while (with a proper if-guard
1890 before the loop if needed), where the loop header contains all the
1891 executable statements, and the latch is empty. */
1892 if (!empty_block_p (loop
->latch
)
1893 || phi_nodes (loop
->latch
))
1895 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS
))
1896 fprintf (vect_dump
, "not vectorized: unexpected loop form.");
1900 /* Make sure there exists a single-predecessor exit bb: */
1901 if (!single_pred_p (loop
->single_exit
->dest
))
1903 edge e
= loop
->single_exit
;
1904 if (!(e
->flags
& EDGE_ABNORMAL
))
1906 split_loop_exit_edge (e
);
1907 if (vect_print_dump_info (REPORT_DETAILS
))
1908 fprintf (vect_dump
, "split exit edge.");
1912 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS
))
1913 fprintf (vect_dump
, "not vectorized: abnormal loop exit edge.");
1918 if (empty_block_p (loop
->header
))
1920 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS
))
1921 fprintf (vect_dump
, "not vectorized: empty loop.");
1925 loop_cond
= vect_get_loop_niters (loop
, &number_of_iterations
);
1928 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS
))
1929 fprintf (vect_dump
, "not vectorized: complicated exit condition.");
1933 if (!number_of_iterations
)
1935 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS
))
1937 "not vectorized: number of iterations cannot be computed.");
1941 if (chrec_contains_undetermined (number_of_iterations
))
1943 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS
))
1944 fprintf (vect_dump
, "Infinite number of iterations.");
1948 loop_vinfo
= new_loop_vec_info (loop
);
1949 LOOP_VINFO_NITERS (loop_vinfo
) = number_of_iterations
;
1951 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo
))
1953 if (vect_print_dump_info (REPORT_DETAILS
))
1955 fprintf (vect_dump
, "Symbolic number of iterations is ");
1956 print_generic_expr (vect_dump
, number_of_iterations
, TDF_DETAILS
);
1960 if (LOOP_VINFO_INT_NITERS (loop_vinfo
) == 0)
1962 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS
))
1963 fprintf (vect_dump
, "not vectorized: number of iterations = 0.");
1967 LOOP_VINFO_EXIT_COND (loop_vinfo
) = loop_cond
;
1973 /* Function vect_analyze_loop.
1975 Apply a set of analyses on LOOP, and create a loop_vec_info struct
1976 for it. The different analyses will record information in the
1977 loop_vec_info struct. */
1979 vect_analyze_loop (struct loop
*loop
)
1982 loop_vec_info loop_vinfo
;
1984 if (vect_print_dump_info (REPORT_DETAILS
))
1985 fprintf (vect_dump
, "===== analyze_loop_nest =====");
1987 /* Check the CFG characteristics of the loop (nesting, entry/exit, etc. */
1989 loop_vinfo
= vect_analyze_loop_form (loop
);
1992 if (vect_print_dump_info (REPORT_DETAILS
))
1993 fprintf (vect_dump
, "bad loop form.");
1997 /* Find all data references in the loop (which correspond to vdefs/vuses)
1998 and analyze their evolution in the loop.
2000 FORNOW: Handle only simple, array references, which
2001 alignment can be forced, and aligned pointer-references. */
2003 ok
= vect_analyze_data_refs (loop_vinfo
);
2006 if (vect_print_dump_info (REPORT_DETAILS
))
2007 fprintf (vect_dump
, "bad data references.");
2008 destroy_loop_vec_info (loop_vinfo
);
2012 /* Classify all cross-iteration scalar data-flow cycles.
2013 Cross-iteration cycles caused by virtual phis are analyzed separately. */
2015 vect_analyze_scalar_cycles (loop_vinfo
);
2017 vect_pattern_recog (loop_vinfo
);
2019 /* Data-flow analysis to detect stmts that do not need to be vectorized. */
2021 ok
= vect_mark_stmts_to_be_vectorized (loop_vinfo
);
2024 if (vect_print_dump_info (REPORT_DETAILS
))
2025 fprintf (vect_dump
, "unexpected pattern.");
2026 destroy_loop_vec_info (loop_vinfo
);
2030 /* Analyze the alignment of the data-refs in the loop.
2031 Fail if a data reference is found that cannot be vectorized. */
2033 ok
= vect_analyze_data_refs_alignment (loop_vinfo
);
2036 if (vect_print_dump_info (REPORT_DETAILS
))
2037 fprintf (vect_dump
, "bad data alignment.");
2038 destroy_loop_vec_info (loop_vinfo
);
2042 ok
= vect_determine_vectorization_factor (loop_vinfo
);
2045 if (vect_print_dump_info (REPORT_DETAILS
))
2046 fprintf (vect_dump
, "can't determine vectorization factor.");
2047 destroy_loop_vec_info (loop_vinfo
);
2051 /* Analyze data dependences between the data-refs in the loop.
2052 FORNOW: fail at the first data dependence that we encounter. */
2054 ok
= vect_analyze_data_ref_dependences (loop_vinfo
);
2057 if (vect_print_dump_info (REPORT_DETAILS
))
2058 fprintf (vect_dump
, "bad data dependence.");
2059 destroy_loop_vec_info (loop_vinfo
);
2063 /* Analyze the access patterns of the data-refs in the loop (consecutive,
2064 complex, etc.). FORNOW: Only handle consecutive access pattern. */
2066 ok
= vect_analyze_data_ref_accesses (loop_vinfo
);
2069 if (vect_print_dump_info (REPORT_DETAILS
))
2070 fprintf (vect_dump
, "bad data access.");
2071 destroy_loop_vec_info (loop_vinfo
);
2075 /* This pass will decide on using loop versioning and/or loop peeling in
2076 order to enhance the alignment of data references in the loop. */
2078 ok
= vect_enhance_data_refs_alignment (loop_vinfo
);
2081 if (vect_print_dump_info (REPORT_DETAILS
))
2082 fprintf (vect_dump
, "bad data alignment.");
2083 destroy_loop_vec_info (loop_vinfo
);
2087 /* Scan all the operations in the loop and make sure they are
2090 ok
= vect_analyze_operations (loop_vinfo
);
2093 if (vect_print_dump_info (REPORT_DETAILS
))
2094 fprintf (vect_dump
, "bad operation or unsupported loop bound.");
2095 destroy_loop_vec_info (loop_vinfo
);
2099 LOOP_VINFO_VECTORIZABLE_P (loop_vinfo
) = 1;