PR optimization/12845
[official-gcc.git] / gcc / genrecog.c
blob76f3749610706cb9cb59f0ce482267ab4d3bb9c1
1 /* Generate code from machine description to recognize rtl as insns.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 /* This program is used to produce insn-recog.c, which contains a
24 function called `recog' plus its subroutines. These functions
25 contain a decision tree that recognizes whether an rtx, the
26 argument given to recog, is a valid instruction.
28 recog returns -1 if the rtx is not valid. If the rtx is valid,
29 recog returns a nonnegative number which is the insn code number
30 for the pattern that matched. This is the same as the order in the
31 machine description of the entry that matched. This number can be
32 used as an index into various insn_* tables, such as insn_template,
33 insn_outfun, and insn_n_operands (found in insn-output.c).
35 The third argument to recog is an optional pointer to an int. If
36 present, recog will accept a pattern if it matches except for
37 missing CLOBBER expressions at the end. In that case, the value
38 pointed to by the optional pointer will be set to the number of
39 CLOBBERs that need to be added (it should be initialized to zero by
40 the caller). If it is set nonzero, the caller should allocate a
41 PARALLEL of the appropriate size, copy the initial entries, and
42 call add_clobbers (found in insn-emit.c) to fill in the CLOBBERs.
44 This program also generates the function `split_insns', which
45 returns 0 if the rtl could not be split, or it returns the split
46 rtl as an INSN list.
48 This program also generates the function `peephole2_insns', which
49 returns 0 if the rtl could not be matched. If there was a match,
50 the new rtl is returned in an INSN list, and LAST_INSN will point
51 to the last recognized insn in the old sequence. */
53 #include "bconfig.h"
54 #include "system.h"
55 #include "coretypes.h"
56 #include "tm.h"
57 #include "rtl.h"
58 #include "errors.h"
59 #include "gensupport.h"
62 #define OUTPUT_LABEL(INDENT_STRING, LABEL_NUMBER) \
63 printf("%sL%d: ATTRIBUTE_UNUSED_LABEL\n", (INDENT_STRING), (LABEL_NUMBER))
65 /* Holds an array of names indexed by insn_code_number. */
66 static char **insn_name_ptr = 0;
67 static int insn_name_ptr_size = 0;
69 /* A listhead of decision trees. The alternatives to a node are kept
70 in a doubly-linked list so we can easily add nodes to the proper
71 place when merging. */
73 struct decision_head
75 struct decision *first;
76 struct decision *last;
79 /* A single test. The two accept types aren't tests per-se, but
80 their equality (or lack thereof) does affect tree merging so
81 it is convenient to keep them here. */
83 struct decision_test
85 /* A linked list through the tests attached to a node. */
86 struct decision_test *next;
88 /* These types are roughly in the order in which we'd like to test them. */
89 enum decision_type
91 DT_mode, DT_code, DT_veclen,
92 DT_elt_zero_int, DT_elt_one_int, DT_elt_zero_wide, DT_elt_zero_wide_safe,
93 DT_veclen_ge, DT_dup, DT_pred, DT_c_test,
94 DT_accept_op, DT_accept_insn
95 } type;
97 union
99 enum machine_mode mode; /* Machine mode of node. */
100 RTX_CODE code; /* Code to test. */
102 struct
104 const char *name; /* Predicate to call. */
105 int index; /* Index into `preds' or -1. */
106 enum machine_mode mode; /* Machine mode for node. */
107 } pred;
109 const char *c_test; /* Additional test to perform. */
110 int veclen; /* Length of vector. */
111 int dup; /* Number of operand to compare against. */
112 HOST_WIDE_INT intval; /* Value for XINT for XWINT. */
113 int opno; /* Operand number matched. */
115 struct {
116 int code_number; /* Insn number matched. */
117 int lineno; /* Line number of the insn. */
118 int num_clobbers_to_add; /* Number of CLOBBERs to be added. */
119 } insn;
120 } u;
123 /* Data structure for decision tree for recognizing legitimate insns. */
125 struct decision
127 struct decision_head success; /* Nodes to test on success. */
128 struct decision *next; /* Node to test on failure. */
129 struct decision *prev; /* Node whose failure tests us. */
130 struct decision *afterward; /* Node to test on success,
131 but failure of successor nodes. */
133 const char *position; /* String denoting position in pattern. */
135 struct decision_test *tests; /* The tests for this node. */
137 int number; /* Node number, used for labels */
138 int subroutine_number; /* Number of subroutine this node starts */
139 int need_label; /* Label needs to be output. */
142 #define SUBROUTINE_THRESHOLD 100
144 static int next_subroutine_number;
146 /* We can write three types of subroutines: One for insn recognition,
147 one to split insns, and one for peephole-type optimizations. This
148 defines which type is being written. */
150 enum routine_type {
151 RECOG, SPLIT, PEEPHOLE2
154 #define IS_SPLIT(X) ((X) != RECOG)
156 /* Next available node number for tree nodes. */
158 static int next_number;
160 /* Next number to use as an insn_code. */
162 static int next_insn_code;
164 /* Similar, but counts all expressions in the MD file; used for
165 error messages. */
167 static int next_index;
169 /* Record the highest depth we ever have so we know how many variables to
170 allocate in each subroutine we make. */
172 static int max_depth;
174 /* The line number of the start of the pattern currently being processed. */
175 static int pattern_lineno;
177 /* Count of errors. */
178 static int error_count;
180 /* This table contains a list of the rtl codes that can possibly match a
181 predicate defined in recog.c. The function `maybe_both_true' uses it to
182 deduce that there are no expressions that can be matches by certain pairs
183 of tree nodes. Also, if a predicate can match only one code, we can
184 hardwire that code into the node testing the predicate. */
186 static const struct pred_table
188 const char *const name;
189 const RTX_CODE codes[NUM_RTX_CODE];
190 } preds[] = {
191 {"general_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
192 LABEL_REF, SUBREG, REG, MEM, ADDRESSOF}},
193 #ifdef PREDICATE_CODES
194 PREDICATE_CODES
195 #endif
196 {"address_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
197 LABEL_REF, SUBREG, REG, MEM, ADDRESSOF,
198 PLUS, MINUS, MULT}},
199 {"register_operand", {SUBREG, REG, ADDRESSOF}},
200 {"pmode_register_operand", {SUBREG, REG, ADDRESSOF}},
201 {"scratch_operand", {SCRATCH, REG}},
202 {"immediate_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
203 LABEL_REF}},
204 {"const_int_operand", {CONST_INT}},
205 {"const_double_operand", {CONST_INT, CONST_DOUBLE}},
206 {"nonimmediate_operand", {SUBREG, REG, MEM, ADDRESSOF}},
207 {"nonmemory_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
208 LABEL_REF, SUBREG, REG, ADDRESSOF}},
209 {"push_operand", {MEM}},
210 {"pop_operand", {MEM}},
211 {"memory_operand", {SUBREG, MEM}},
212 {"indirect_operand", {SUBREG, MEM}},
213 {"comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, GTU,
214 UNORDERED, ORDERED, UNEQ, UNGE, UNGT, UNLE,
215 UNLT, LTGT}}
218 #define NUM_KNOWN_PREDS ARRAY_SIZE (preds)
220 static const char *const special_mode_pred_table[] = {
221 #ifdef SPECIAL_MODE_PREDICATES
222 SPECIAL_MODE_PREDICATES
223 #endif
224 "pmode_register_operand"
227 #define NUM_SPECIAL_MODE_PREDS ARRAY_SIZE (special_mode_pred_table)
229 static struct decision *new_decision
230 (const char *, struct decision_head *);
231 static struct decision_test *new_decision_test
232 (enum decision_type, struct decision_test ***);
233 static rtx find_operand
234 (rtx, int);
235 static rtx find_matching_operand
236 (rtx, int);
237 static void validate_pattern
238 (rtx, rtx, rtx, int);
239 static struct decision *add_to_sequence
240 (rtx, struct decision_head *, const char *, enum routine_type, int);
242 static int maybe_both_true_2
243 (struct decision_test *, struct decision_test *);
244 static int maybe_both_true_1
245 (struct decision_test *, struct decision_test *);
246 static int maybe_both_true
247 (struct decision *, struct decision *, int);
249 static int nodes_identical_1
250 (struct decision_test *, struct decision_test *);
251 static int nodes_identical
252 (struct decision *, struct decision *);
253 static void merge_accept_insn
254 (struct decision *, struct decision *);
255 static void merge_trees
256 (struct decision_head *, struct decision_head *);
258 static void factor_tests
259 (struct decision_head *);
260 static void simplify_tests
261 (struct decision_head *);
262 static int break_out_subroutines
263 (struct decision_head *, int);
264 static void find_afterward
265 (struct decision_head *, struct decision *);
267 static void change_state
268 (const char *, const char *, struct decision *, const char *);
269 static void print_code
270 (enum rtx_code);
271 static void write_afterward
272 (struct decision *, struct decision *, const char *);
273 static struct decision *write_switch
274 (struct decision *, int);
275 static void write_cond
276 (struct decision_test *, int, enum routine_type);
277 static void write_action
278 (struct decision *, struct decision_test *, int, int,
279 struct decision *, enum routine_type);
280 static int is_unconditional
281 (struct decision_test *, enum routine_type);
282 static int write_node
283 (struct decision *, int, enum routine_type);
284 static void write_tree_1
285 (struct decision_head *, int, enum routine_type);
286 static void write_tree
287 (struct decision_head *, const char *, enum routine_type, int);
288 static void write_subroutine
289 (struct decision_head *, enum routine_type);
290 static void write_subroutines
291 (struct decision_head *, enum routine_type);
292 static void write_header
293 (void);
295 static struct decision_head make_insn_sequence
296 (rtx, enum routine_type);
297 static void process_tree
298 (struct decision_head *, enum routine_type);
300 static void record_insn_name
301 (int, const char *);
303 static void debug_decision_0
304 (struct decision *, int, int);
305 static void debug_decision_1
306 (struct decision *, int);
307 static void debug_decision_2
308 (struct decision_test *);
309 extern void debug_decision
310 (struct decision *);
311 extern void debug_decision_list
312 (struct decision *);
314 /* Create a new node in sequence after LAST. */
316 static struct decision *
317 new_decision (const char *position, struct decision_head *last)
319 struct decision *new = xcalloc (1, sizeof (struct decision));
321 new->success = *last;
322 new->position = xstrdup (position);
323 new->number = next_number++;
325 last->first = last->last = new;
326 return new;
329 /* Create a new test and link it in at PLACE. */
331 static struct decision_test *
332 new_decision_test (enum decision_type type, struct decision_test ***pplace)
334 struct decision_test **place = *pplace;
335 struct decision_test *test;
337 test = xmalloc (sizeof (*test));
338 test->next = *place;
339 test->type = type;
340 *place = test;
342 place = &test->next;
343 *pplace = place;
345 return test;
348 /* Search for and return operand N. */
350 static rtx
351 find_operand (rtx pattern, int n)
353 const char *fmt;
354 RTX_CODE code;
355 int i, j, len;
356 rtx r;
358 code = GET_CODE (pattern);
359 if ((code == MATCH_SCRATCH
360 || code == MATCH_INSN
361 || code == MATCH_OPERAND
362 || code == MATCH_OPERATOR
363 || code == MATCH_PARALLEL)
364 && XINT (pattern, 0) == n)
365 return pattern;
367 fmt = GET_RTX_FORMAT (code);
368 len = GET_RTX_LENGTH (code);
369 for (i = 0; i < len; i++)
371 switch (fmt[i])
373 case 'e': case 'u':
374 if ((r = find_operand (XEXP (pattern, i), n)) != NULL_RTX)
375 return r;
376 break;
378 case 'V':
379 if (! XVEC (pattern, i))
380 break;
381 /* FALLTHRU */
383 case 'E':
384 for (j = 0; j < XVECLEN (pattern, i); j++)
385 if ((r = find_operand (XVECEXP (pattern, i, j), n)) != NULL_RTX)
386 return r;
387 break;
389 case 'i': case 'w': case '0': case 's':
390 break;
392 default:
393 abort ();
397 return NULL;
400 /* Search for and return operand M, such that it has a matching
401 constraint for operand N. */
403 static rtx
404 find_matching_operand (rtx pattern, int n)
406 const char *fmt;
407 RTX_CODE code;
408 int i, j, len;
409 rtx r;
411 code = GET_CODE (pattern);
412 if (code == MATCH_OPERAND
413 && (XSTR (pattern, 2)[0] == '0' + n
414 || (XSTR (pattern, 2)[0] == '%'
415 && XSTR (pattern, 2)[1] == '0' + n)))
416 return pattern;
418 fmt = GET_RTX_FORMAT (code);
419 len = GET_RTX_LENGTH (code);
420 for (i = 0; i < len; i++)
422 switch (fmt[i])
424 case 'e': case 'u':
425 if ((r = find_matching_operand (XEXP (pattern, i), n)))
426 return r;
427 break;
429 case 'V':
430 if (! XVEC (pattern, i))
431 break;
432 /* FALLTHRU */
434 case 'E':
435 for (j = 0; j < XVECLEN (pattern, i); j++)
436 if ((r = find_matching_operand (XVECEXP (pattern, i, j), n)))
437 return r;
438 break;
440 case 'i': case 'w': case '0': case 's':
441 break;
443 default:
444 abort ();
448 return NULL;
452 /* Check for various errors in patterns. SET is nonnull for a destination,
453 and is the complete set pattern. SET_CODE is '=' for normal sets, and
454 '+' within a context that requires in-out constraints. */
456 static void
457 validate_pattern (rtx pattern, rtx insn, rtx set, int set_code)
459 const char *fmt;
460 RTX_CODE code;
461 size_t i, len;
462 int j;
464 code = GET_CODE (pattern);
465 switch (code)
467 case MATCH_SCRATCH:
468 return;
470 case MATCH_INSN:
471 case MATCH_OPERAND:
472 case MATCH_OPERATOR:
474 const char *pred_name = XSTR (pattern, 1);
475 int allows_non_lvalue = 1, allows_non_const = 1;
476 int special_mode_pred = 0;
477 const char *c_test;
479 if (GET_CODE (insn) == DEFINE_INSN)
480 c_test = XSTR (insn, 2);
481 else
482 c_test = XSTR (insn, 1);
484 if (pred_name[0] != 0)
486 for (i = 0; i < NUM_KNOWN_PREDS; i++)
487 if (! strcmp (preds[i].name, pred_name))
488 break;
490 if (i < NUM_KNOWN_PREDS)
492 int j;
494 allows_non_lvalue = allows_non_const = 0;
495 for (j = 0; preds[i].codes[j] != 0; j++)
497 RTX_CODE c = preds[i].codes[j];
498 if (c != LABEL_REF
499 && c != SYMBOL_REF
500 && c != CONST_INT
501 && c != CONST_DOUBLE
502 && c != CONST
503 && c != HIGH
504 && c != CONSTANT_P_RTX)
505 allows_non_const = 1;
507 if (c != REG
508 && c != SUBREG
509 && c != MEM
510 && c != ADDRESSOF
511 && c != CONCAT
512 && c != PARALLEL
513 && c != STRICT_LOW_PART)
514 allows_non_lvalue = 1;
517 else
519 #ifdef PREDICATE_CODES
520 /* If the port has a list of the predicates it uses but
521 omits one, warn. */
522 message_with_line (pattern_lineno,
523 "warning: `%s' not in PREDICATE_CODES",
524 pred_name);
525 #endif
528 for (i = 0; i < NUM_SPECIAL_MODE_PREDS; ++i)
529 if (strcmp (pred_name, special_mode_pred_table[i]) == 0)
531 special_mode_pred = 1;
532 break;
536 if (code == MATCH_OPERAND)
538 const char constraints0 = XSTR (pattern, 2)[0];
540 /* In DEFINE_EXPAND, DEFINE_SPLIT, and DEFINE_PEEPHOLE2, we
541 don't use the MATCH_OPERAND constraint, only the predicate.
542 This is confusing to folks doing new ports, so help them
543 not make the mistake. */
544 if (GET_CODE (insn) == DEFINE_EXPAND
545 || GET_CODE (insn) == DEFINE_SPLIT
546 || GET_CODE (insn) == DEFINE_PEEPHOLE2)
548 if (constraints0)
549 message_with_line (pattern_lineno,
550 "warning: constraints not supported in %s",
551 rtx_name[GET_CODE (insn)]);
554 /* A MATCH_OPERAND that is a SET should have an output reload. */
555 else if (set && constraints0)
557 if (set_code == '+')
559 if (constraints0 == '+')
561 /* If we've only got an output reload for this operand,
562 we'd better have a matching input operand. */
563 else if (constraints0 == '='
564 && find_matching_operand (insn, XINT (pattern, 0)))
566 else
568 message_with_line (pattern_lineno,
569 "operand %d missing in-out reload",
570 XINT (pattern, 0));
571 error_count++;
574 else if (constraints0 != '=' && constraints0 != '+')
576 message_with_line (pattern_lineno,
577 "operand %d missing output reload",
578 XINT (pattern, 0));
579 error_count++;
584 /* Allowing non-lvalues in destinations -- particularly CONST_INT --
585 while not likely to occur at runtime, results in less efficient
586 code from insn-recog.c. */
587 if (set
588 && pred_name[0] != '\0'
589 && allows_non_lvalue)
591 message_with_line (pattern_lineno,
592 "warning: destination operand %d allows non-lvalue",
593 XINT (pattern, 0));
596 /* A modeless MATCH_OPERAND can be handy when we can
597 check for multiple modes in the c_test. In most other cases,
598 it is a mistake. Only DEFINE_INSN is eligible, since SPLIT
599 and PEEP2 can FAIL within the output pattern. Exclude
600 address_operand, since its mode is related to the mode of
601 the memory not the operand. Exclude the SET_DEST of a call
602 instruction, as that is a common idiom. */
604 if (GET_MODE (pattern) == VOIDmode
605 && code == MATCH_OPERAND
606 && GET_CODE (insn) == DEFINE_INSN
607 && allows_non_const
608 && ! special_mode_pred
609 && pred_name[0] != '\0'
610 && strcmp (pred_name, "address_operand") != 0
611 && strstr (c_test, "operands") == NULL
612 && ! (set
613 && GET_CODE (set) == SET
614 && GET_CODE (SET_SRC (set)) == CALL))
616 message_with_line (pattern_lineno,
617 "warning: operand %d missing mode?",
618 XINT (pattern, 0));
620 return;
623 case SET:
625 enum machine_mode dmode, smode;
626 rtx dest, src;
628 dest = SET_DEST (pattern);
629 src = SET_SRC (pattern);
631 /* STRICT_LOW_PART is a wrapper. Its argument is the real
632 destination, and it's mode should match the source. */
633 if (GET_CODE (dest) == STRICT_LOW_PART)
634 dest = XEXP (dest, 0);
636 /* Find the referant for a DUP. */
638 if (GET_CODE (dest) == MATCH_DUP
639 || GET_CODE (dest) == MATCH_OP_DUP
640 || GET_CODE (dest) == MATCH_PAR_DUP)
641 dest = find_operand (insn, XINT (dest, 0));
643 if (GET_CODE (src) == MATCH_DUP
644 || GET_CODE (src) == MATCH_OP_DUP
645 || GET_CODE (src) == MATCH_PAR_DUP)
646 src = find_operand (insn, XINT (src, 0));
648 dmode = GET_MODE (dest);
649 smode = GET_MODE (src);
651 /* The mode of an ADDRESS_OPERAND is the mode of the memory
652 reference, not the mode of the address. */
653 if (GET_CODE (src) == MATCH_OPERAND
654 && ! strcmp (XSTR (src, 1), "address_operand"))
657 /* The operands of a SET must have the same mode unless one
658 is VOIDmode. */
659 else if (dmode != VOIDmode && smode != VOIDmode && dmode != smode)
661 message_with_line (pattern_lineno,
662 "mode mismatch in set: %smode vs %smode",
663 GET_MODE_NAME (dmode), GET_MODE_NAME (smode));
664 error_count++;
667 /* If only one of the operands is VOIDmode, and PC or CC0 is
668 not involved, it's probably a mistake. */
669 else if (dmode != smode
670 && GET_CODE (dest) != PC
671 && GET_CODE (dest) != CC0
672 && GET_CODE (src) != PC
673 && GET_CODE (src) != CC0
674 && GET_CODE (src) != CONST_INT)
676 const char *which;
677 which = (dmode == VOIDmode ? "destination" : "source");
678 message_with_line (pattern_lineno,
679 "warning: %s missing a mode?", which);
682 if (dest != SET_DEST (pattern))
683 validate_pattern (dest, insn, pattern, '=');
684 validate_pattern (SET_DEST (pattern), insn, pattern, '=');
685 validate_pattern (SET_SRC (pattern), insn, NULL_RTX, 0);
686 return;
689 case CLOBBER:
690 validate_pattern (SET_DEST (pattern), insn, pattern, '=');
691 return;
693 case ZERO_EXTRACT:
694 validate_pattern (XEXP (pattern, 0), insn, set, set ? '+' : 0);
695 validate_pattern (XEXP (pattern, 1), insn, NULL_RTX, 0);
696 validate_pattern (XEXP (pattern, 2), insn, NULL_RTX, 0);
697 return;
699 case STRICT_LOW_PART:
700 validate_pattern (XEXP (pattern, 0), insn, set, set ? '+' : 0);
701 return;
703 case LABEL_REF:
704 if (GET_MODE (XEXP (pattern, 0)) != VOIDmode)
706 message_with_line (pattern_lineno,
707 "operand to label_ref %smode not VOIDmode",
708 GET_MODE_NAME (GET_MODE (XEXP (pattern, 0))));
709 error_count++;
711 break;
713 default:
714 break;
717 fmt = GET_RTX_FORMAT (code);
718 len = GET_RTX_LENGTH (code);
719 for (i = 0; i < len; i++)
721 switch (fmt[i])
723 case 'e': case 'u':
724 validate_pattern (XEXP (pattern, i), insn, NULL_RTX, 0);
725 break;
727 case 'E':
728 for (j = 0; j < XVECLEN (pattern, i); j++)
729 validate_pattern (XVECEXP (pattern, i, j), insn, NULL_RTX, 0);
730 break;
732 case 'i': case 'w': case '0': case 's':
733 break;
735 default:
736 abort ();
741 /* Create a chain of nodes to verify that an rtl expression matches
742 PATTERN.
744 LAST is a pointer to the listhead in the previous node in the chain (or
745 in the calling function, for the first node).
747 POSITION is the string representing the current position in the insn.
749 INSN_TYPE is the type of insn for which we are emitting code.
751 A pointer to the final node in the chain is returned. */
753 static struct decision *
754 add_to_sequence (rtx pattern, struct decision_head *last, const char *position,
755 enum routine_type insn_type, int top)
757 RTX_CODE code;
758 struct decision *this, *sub;
759 struct decision_test *test;
760 struct decision_test **place;
761 char *subpos;
762 size_t i;
763 const char *fmt;
764 int depth = strlen (position);
765 int len;
766 enum machine_mode mode;
768 if (depth > max_depth)
769 max_depth = depth;
771 subpos = xmalloc (depth + 2);
772 strcpy (subpos, position);
773 subpos[depth + 1] = 0;
775 sub = this = new_decision (position, last);
776 place = &this->tests;
778 restart:
779 mode = GET_MODE (pattern);
780 code = GET_CODE (pattern);
782 switch (code)
784 case PARALLEL:
785 /* Toplevel peephole pattern. */
786 if (insn_type == PEEPHOLE2 && top)
788 /* We don't need the node we just created -- unlink it. */
789 last->first = last->last = NULL;
791 for (i = 0; i < (size_t) XVECLEN (pattern, 0); i++)
793 /* Which insn we're looking at is represented by A-Z. We don't
794 ever use 'A', however; it is always implied. */
796 subpos[depth] = (i > 0 ? 'A' + i : 0);
797 sub = add_to_sequence (XVECEXP (pattern, 0, i),
798 last, subpos, insn_type, 0);
799 last = &sub->success;
801 goto ret;
804 /* Else nothing special. */
805 break;
807 case MATCH_PARALLEL:
808 /* The explicit patterns within a match_parallel enforce a minimum
809 length on the vector. The match_parallel predicate may allow
810 for more elements. We do need to check for this minimum here
811 or the code generated to match the internals may reference data
812 beyond the end of the vector. */
813 test = new_decision_test (DT_veclen_ge, &place);
814 test->u.veclen = XVECLEN (pattern, 2);
815 /* FALLTHRU */
817 case MATCH_OPERAND:
818 case MATCH_SCRATCH:
819 case MATCH_OPERATOR:
820 case MATCH_INSN:
822 const char *pred_name;
823 RTX_CODE was_code = code;
824 int allows_const_int = 1;
826 if (code == MATCH_SCRATCH)
828 pred_name = "scratch_operand";
829 code = UNKNOWN;
831 else
833 pred_name = XSTR (pattern, 1);
834 if (code == MATCH_PARALLEL)
835 code = PARALLEL;
836 else
837 code = UNKNOWN;
840 if (pred_name[0] != 0)
842 test = new_decision_test (DT_pred, &place);
843 test->u.pred.name = pred_name;
844 test->u.pred.mode = mode;
846 /* See if we know about this predicate and save its number.
847 If we do, and it only accepts one code, note that fact.
849 If we know that the predicate does not allow CONST_INT,
850 we know that the only way the predicate can match is if
851 the modes match (here we use the kludge of relying on the
852 fact that "address_operand" accepts CONST_INT; otherwise,
853 it would have to be a special case), so we can test the
854 mode (but we need not). This fact should considerably
855 simplify the generated code. */
857 for (i = 0; i < NUM_KNOWN_PREDS; i++)
858 if (! strcmp (preds[i].name, pred_name))
859 break;
861 if (i < NUM_KNOWN_PREDS)
863 int j;
865 test->u.pred.index = i;
867 if (preds[i].codes[1] == 0 && code == UNKNOWN)
868 code = preds[i].codes[0];
870 allows_const_int = 0;
871 for (j = 0; preds[i].codes[j] != 0; j++)
872 if (preds[i].codes[j] == CONST_INT)
874 allows_const_int = 1;
875 break;
878 else
879 test->u.pred.index = -1;
882 /* Can't enforce a mode if we allow const_int. */
883 if (allows_const_int)
884 mode = VOIDmode;
886 /* Accept the operand, ie. record it in `operands'. */
887 test = new_decision_test (DT_accept_op, &place);
888 test->u.opno = XINT (pattern, 0);
890 if (was_code == MATCH_OPERATOR || was_code == MATCH_PARALLEL)
892 char base = (was_code == MATCH_OPERATOR ? '0' : 'a');
893 for (i = 0; i < (size_t) XVECLEN (pattern, 2); i++)
895 subpos[depth] = i + base;
896 sub = add_to_sequence (XVECEXP (pattern, 2, i),
897 &sub->success, subpos, insn_type, 0);
900 goto fini;
903 case MATCH_OP_DUP:
904 code = UNKNOWN;
906 test = new_decision_test (DT_dup, &place);
907 test->u.dup = XINT (pattern, 0);
909 test = new_decision_test (DT_accept_op, &place);
910 test->u.opno = XINT (pattern, 0);
912 for (i = 0; i < (size_t) XVECLEN (pattern, 1); i++)
914 subpos[depth] = i + '0';
915 sub = add_to_sequence (XVECEXP (pattern, 1, i),
916 &sub->success, subpos, insn_type, 0);
918 goto fini;
920 case MATCH_DUP:
921 case MATCH_PAR_DUP:
922 code = UNKNOWN;
924 test = new_decision_test (DT_dup, &place);
925 test->u.dup = XINT (pattern, 0);
926 goto fini;
928 case ADDRESS:
929 pattern = XEXP (pattern, 0);
930 goto restart;
932 default:
933 break;
936 fmt = GET_RTX_FORMAT (code);
937 len = GET_RTX_LENGTH (code);
939 /* Do tests against the current node first. */
940 for (i = 0; i < (size_t) len; i++)
942 if (fmt[i] == 'i')
944 if (i == 0)
946 test = new_decision_test (DT_elt_zero_int, &place);
947 test->u.intval = XINT (pattern, i);
949 else if (i == 1)
951 test = new_decision_test (DT_elt_one_int, &place);
952 test->u.intval = XINT (pattern, i);
954 else
955 abort ();
957 else if (fmt[i] == 'w')
959 /* If this value actually fits in an int, we can use a switch
960 statement here, so indicate that. */
961 enum decision_type type
962 = ((int) XWINT (pattern, i) == XWINT (pattern, i))
963 ? DT_elt_zero_wide_safe : DT_elt_zero_wide;
965 if (i != 0)
966 abort ();
968 test = new_decision_test (type, &place);
969 test->u.intval = XWINT (pattern, i);
971 else if (fmt[i] == 'E')
973 if (i != 0)
974 abort ();
976 test = new_decision_test (DT_veclen, &place);
977 test->u.veclen = XVECLEN (pattern, i);
981 /* Now test our sub-patterns. */
982 for (i = 0; i < (size_t) len; i++)
984 switch (fmt[i])
986 case 'e': case 'u':
987 subpos[depth] = '0' + i;
988 sub = add_to_sequence (XEXP (pattern, i), &sub->success,
989 subpos, insn_type, 0);
990 break;
992 case 'E':
994 int j;
995 for (j = 0; j < XVECLEN (pattern, i); j++)
997 subpos[depth] = 'a' + j;
998 sub = add_to_sequence (XVECEXP (pattern, i, j),
999 &sub->success, subpos, insn_type, 0);
1001 break;
1004 case 'i': case 'w':
1005 /* Handled above. */
1006 break;
1007 case '0':
1008 break;
1010 default:
1011 abort ();
1015 fini:
1016 /* Insert nodes testing mode and code, if they're still relevant,
1017 before any of the nodes we may have added above. */
1018 if (code != UNKNOWN)
1020 place = &this->tests;
1021 test = new_decision_test (DT_code, &place);
1022 test->u.code = code;
1025 if (mode != VOIDmode)
1027 place = &this->tests;
1028 test = new_decision_test (DT_mode, &place);
1029 test->u.mode = mode;
1032 /* If we didn't insert any tests or accept nodes, hork. */
1033 if (this->tests == NULL)
1034 abort ();
1036 ret:
1037 free (subpos);
1038 return sub;
1041 /* A subroutine of maybe_both_true; examines only one test.
1042 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1044 static int
1045 maybe_both_true_2 (struct decision_test *d1, struct decision_test *d2)
1047 if (d1->type == d2->type)
1049 switch (d1->type)
1051 case DT_mode:
1052 return d1->u.mode == d2->u.mode;
1054 case DT_code:
1055 return d1->u.code == d2->u.code;
1057 case DT_veclen:
1058 return d1->u.veclen == d2->u.veclen;
1060 case DT_elt_zero_int:
1061 case DT_elt_one_int:
1062 case DT_elt_zero_wide:
1063 case DT_elt_zero_wide_safe:
1064 return d1->u.intval == d2->u.intval;
1066 default:
1067 break;
1071 /* If either has a predicate that we know something about, set
1072 things up so that D1 is the one that always has a known
1073 predicate. Then see if they have any codes in common. */
1075 if (d1->type == DT_pred || d2->type == DT_pred)
1077 if (d2->type == DT_pred)
1079 struct decision_test *tmp;
1080 tmp = d1, d1 = d2, d2 = tmp;
1083 /* If D2 tests a mode, see if it matches D1. */
1084 if (d1->u.pred.mode != VOIDmode)
1086 if (d2->type == DT_mode)
1088 if (d1->u.pred.mode != d2->u.mode
1089 /* The mode of an address_operand predicate is the
1090 mode of the memory, not the operand. It can only
1091 be used for testing the predicate, so we must
1092 ignore it here. */
1093 && strcmp (d1->u.pred.name, "address_operand") != 0)
1094 return 0;
1096 /* Don't check two predicate modes here, because if both predicates
1097 accept CONST_INT, then both can still be true even if the modes
1098 are different. If they don't accept CONST_INT, there will be a
1099 separate DT_mode that will make maybe_both_true_1 return 0. */
1102 if (d1->u.pred.index >= 0)
1104 /* If D2 tests a code, see if it is in the list of valid
1105 codes for D1's predicate. */
1106 if (d2->type == DT_code)
1108 const RTX_CODE *c = &preds[d1->u.pred.index].codes[0];
1109 while (*c != 0)
1111 if (*c == d2->u.code)
1112 break;
1113 ++c;
1115 if (*c == 0)
1116 return 0;
1119 /* Otherwise see if the predicates have any codes in common. */
1120 else if (d2->type == DT_pred && d2->u.pred.index >= 0)
1122 const RTX_CODE *c1 = &preds[d1->u.pred.index].codes[0];
1123 int common = 0;
1125 while (*c1 != 0 && !common)
1127 const RTX_CODE *c2 = &preds[d2->u.pred.index].codes[0];
1128 while (*c2 != 0 && !common)
1130 common = (*c1 == *c2);
1131 ++c2;
1133 ++c1;
1136 if (!common)
1137 return 0;
1142 /* Tests vs veclen may be known when strict equality is involved. */
1143 if (d1->type == DT_veclen && d2->type == DT_veclen_ge)
1144 return d1->u.veclen >= d2->u.veclen;
1145 if (d1->type == DT_veclen_ge && d2->type == DT_veclen)
1146 return d2->u.veclen >= d1->u.veclen;
1148 return -1;
1151 /* A subroutine of maybe_both_true; examines all the tests for a given node.
1152 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1154 static int
1155 maybe_both_true_1 (struct decision_test *d1, struct decision_test *d2)
1157 struct decision_test *t1, *t2;
1159 /* A match_operand with no predicate can match anything. Recognize
1160 this by the existence of a lone DT_accept_op test. */
1161 if (d1->type == DT_accept_op || d2->type == DT_accept_op)
1162 return 1;
1164 /* Eliminate pairs of tests while they can exactly match. */
1165 while (d1 && d2 && d1->type == d2->type)
1167 if (maybe_both_true_2 (d1, d2) == 0)
1168 return 0;
1169 d1 = d1->next, d2 = d2->next;
1172 /* After that, consider all pairs. */
1173 for (t1 = d1; t1 ; t1 = t1->next)
1174 for (t2 = d2; t2 ; t2 = t2->next)
1175 if (maybe_both_true_2 (t1, t2) == 0)
1176 return 0;
1178 return -1;
1181 /* Return 0 if we can prove that there is no RTL that can match both
1182 D1 and D2. Otherwise, return 1 (it may be that there is an RTL that
1183 can match both or just that we couldn't prove there wasn't such an RTL).
1185 TOPLEVEL is nonzero if we are to only look at the top level and not
1186 recursively descend. */
1188 static int
1189 maybe_both_true (struct decision *d1, struct decision *d2,
1190 int toplevel)
1192 struct decision *p1, *p2;
1193 int cmp;
1195 /* Don't compare strings on the different positions in insn. Doing so
1196 is incorrect and results in false matches from constructs like
1198 [(set (subreg:HI (match_operand:SI "register_operand" "r") 0)
1199 (subreg:HI (match_operand:SI "register_operand" "r") 0))]
1201 [(set (match_operand:HI "register_operand" "r")
1202 (match_operand:HI "register_operand" "r"))]
1204 If we are presented with such, we are recursing through the remainder
1205 of a node's success nodes (from the loop at the end of this function).
1206 Skip forward until we come to a position that matches.
1208 Due to the way position strings are constructed, we know that iterating
1209 forward from the lexically lower position (e.g. "00") will run into
1210 the lexically higher position (e.g. "1") and not the other way around.
1211 This saves a bit of effort. */
1213 cmp = strcmp (d1->position, d2->position);
1214 if (cmp != 0)
1216 if (toplevel)
1217 abort ();
1219 /* If the d2->position was lexically lower, swap. */
1220 if (cmp > 0)
1221 p1 = d1, d1 = d2, d2 = p1;
1223 if (d1->success.first == 0)
1224 return 1;
1225 for (p1 = d1->success.first; p1; p1 = p1->next)
1226 if (maybe_both_true (p1, d2, 0))
1227 return 1;
1229 return 0;
1232 /* Test the current level. */
1233 cmp = maybe_both_true_1 (d1->tests, d2->tests);
1234 if (cmp >= 0)
1235 return cmp;
1237 /* We can't prove that D1 and D2 cannot both be true. If we are only
1238 to check the top level, return 1. Otherwise, see if we can prove
1239 that all choices in both successors are mutually exclusive. If
1240 either does not have any successors, we can't prove they can't both
1241 be true. */
1243 if (toplevel || d1->success.first == 0 || d2->success.first == 0)
1244 return 1;
1246 for (p1 = d1->success.first; p1; p1 = p1->next)
1247 for (p2 = d2->success.first; p2; p2 = p2->next)
1248 if (maybe_both_true (p1, p2, 0))
1249 return 1;
1251 return 0;
1254 /* A subroutine of nodes_identical. Examine two tests for equivalence. */
1256 static int
1257 nodes_identical_1 (struct decision_test *d1, struct decision_test *d2)
1259 switch (d1->type)
1261 case DT_mode:
1262 return d1->u.mode == d2->u.mode;
1264 case DT_code:
1265 return d1->u.code == d2->u.code;
1267 case DT_pred:
1268 return (d1->u.pred.mode == d2->u.pred.mode
1269 && strcmp (d1->u.pred.name, d2->u.pred.name) == 0);
1271 case DT_c_test:
1272 return strcmp (d1->u.c_test, d2->u.c_test) == 0;
1274 case DT_veclen:
1275 case DT_veclen_ge:
1276 return d1->u.veclen == d2->u.veclen;
1278 case DT_dup:
1279 return d1->u.dup == d2->u.dup;
1281 case DT_elt_zero_int:
1282 case DT_elt_one_int:
1283 case DT_elt_zero_wide:
1284 case DT_elt_zero_wide_safe:
1285 return d1->u.intval == d2->u.intval;
1287 case DT_accept_op:
1288 return d1->u.opno == d2->u.opno;
1290 case DT_accept_insn:
1291 /* Differences will be handled in merge_accept_insn. */
1292 return 1;
1294 default:
1295 abort ();
1299 /* True iff the two nodes are identical (on one level only). Due
1300 to the way these lists are constructed, we shouldn't have to
1301 consider different orderings on the tests. */
1303 static int
1304 nodes_identical (struct decision *d1, struct decision *d2)
1306 struct decision_test *t1, *t2;
1308 for (t1 = d1->tests, t2 = d2->tests; t1 && t2; t1 = t1->next, t2 = t2->next)
1310 if (t1->type != t2->type)
1311 return 0;
1312 if (! nodes_identical_1 (t1, t2))
1313 return 0;
1316 /* For success, they should now both be null. */
1317 if (t1 != t2)
1318 return 0;
1320 /* Check that their subnodes are at the same position, as any one set
1321 of sibling decisions must be at the same position. Allowing this
1322 requires complications to find_afterward and when change_state is
1323 invoked. */
1324 if (d1->success.first
1325 && d2->success.first
1326 && strcmp (d1->success.first->position, d2->success.first->position))
1327 return 0;
1329 return 1;
1332 /* A subroutine of merge_trees; given two nodes that have been declared
1333 identical, cope with two insn accept states. If they differ in the
1334 number of clobbers, then the conflict was created by make_insn_sequence
1335 and we can drop the with-clobbers version on the floor. If both
1336 nodes have no additional clobbers, we have found an ambiguity in the
1337 source machine description. */
1339 static void
1340 merge_accept_insn (struct decision *oldd, struct decision *addd)
1342 struct decision_test *old, *add;
1344 for (old = oldd->tests; old; old = old->next)
1345 if (old->type == DT_accept_insn)
1346 break;
1347 if (old == NULL)
1348 return;
1350 for (add = addd->tests; add; add = add->next)
1351 if (add->type == DT_accept_insn)
1352 break;
1353 if (add == NULL)
1354 return;
1356 /* If one node is for a normal insn and the second is for the base
1357 insn with clobbers stripped off, the second node should be ignored. */
1359 if (old->u.insn.num_clobbers_to_add == 0
1360 && add->u.insn.num_clobbers_to_add > 0)
1362 /* Nothing to do here. */
1364 else if (old->u.insn.num_clobbers_to_add > 0
1365 && add->u.insn.num_clobbers_to_add == 0)
1367 /* In this case, replace OLD with ADD. */
1368 old->u.insn = add->u.insn;
1370 else
1372 message_with_line (add->u.insn.lineno, "`%s' matches `%s'",
1373 get_insn_name (add->u.insn.code_number),
1374 get_insn_name (old->u.insn.code_number));
1375 message_with_line (old->u.insn.lineno, "previous definition of `%s'",
1376 get_insn_name (old->u.insn.code_number));
1377 error_count++;
1381 /* Merge two decision trees OLDH and ADDH, modifying OLDH destructively. */
1383 static void
1384 merge_trees (struct decision_head *oldh, struct decision_head *addh)
1386 struct decision *next, *add;
1388 if (addh->first == 0)
1389 return;
1390 if (oldh->first == 0)
1392 *oldh = *addh;
1393 return;
1396 /* Trying to merge bits at different positions isn't possible. */
1397 if (strcmp (oldh->first->position, addh->first->position))
1398 abort ();
1400 for (add = addh->first; add ; add = next)
1402 struct decision *old, *insert_before = NULL;
1404 next = add->next;
1406 /* The semantics of pattern matching state that the tests are
1407 done in the order given in the MD file so that if an insn
1408 matches two patterns, the first one will be used. However,
1409 in practice, most, if not all, patterns are unambiguous so
1410 that their order is independent. In that case, we can merge
1411 identical tests and group all similar modes and codes together.
1413 Scan starting from the end of OLDH until we reach a point
1414 where we reach the head of the list or where we pass a
1415 pattern that could also be true if NEW is true. If we find
1416 an identical pattern, we can merge them. Also, record the
1417 last node that tests the same code and mode and the last one
1418 that tests just the same mode.
1420 If we have no match, place NEW after the closest match we found. */
1422 for (old = oldh->last; old; old = old->prev)
1424 if (nodes_identical (old, add))
1426 merge_accept_insn (old, add);
1427 merge_trees (&old->success, &add->success);
1428 goto merged_nodes;
1431 if (maybe_both_true (old, add, 0))
1432 break;
1434 /* Insert the nodes in DT test type order, which is roughly
1435 how expensive/important the test is. Given that the tests
1436 are also ordered within the list, examining the first is
1437 sufficient. */
1438 if ((int) add->tests->type < (int) old->tests->type)
1439 insert_before = old;
1442 if (insert_before == NULL)
1444 add->next = NULL;
1445 add->prev = oldh->last;
1446 oldh->last->next = add;
1447 oldh->last = add;
1449 else
1451 if ((add->prev = insert_before->prev) != NULL)
1452 add->prev->next = add;
1453 else
1454 oldh->first = add;
1455 add->next = insert_before;
1456 insert_before->prev = add;
1459 merged_nodes:;
1463 /* Walk the tree looking for sub-nodes that perform common tests.
1464 Factor out the common test into a new node. This enables us
1465 (depending on the test type) to emit switch statements later. */
1467 static void
1468 factor_tests (struct decision_head *head)
1470 struct decision *first, *next;
1472 for (first = head->first; first && first->next; first = next)
1474 enum decision_type type;
1475 struct decision *new, *old_last;
1477 type = first->tests->type;
1478 next = first->next;
1480 /* Want at least two compatible sequential nodes. */
1481 if (next->tests->type != type)
1482 continue;
1484 /* Don't want all node types, just those we can turn into
1485 switch statements. */
1486 if (type != DT_mode
1487 && type != DT_code
1488 && type != DT_veclen
1489 && type != DT_elt_zero_int
1490 && type != DT_elt_one_int
1491 && type != DT_elt_zero_wide_safe)
1492 continue;
1494 /* If we'd been performing more than one test, create a new node
1495 below our first test. */
1496 if (first->tests->next != NULL)
1498 new = new_decision (first->position, &first->success);
1499 new->tests = first->tests->next;
1500 first->tests->next = NULL;
1503 /* Crop the node tree off after our first test. */
1504 first->next = NULL;
1505 old_last = head->last;
1506 head->last = first;
1508 /* For each compatible test, adjust to perform only one test in
1509 the top level node, then merge the node back into the tree. */
1512 struct decision_head h;
1514 if (next->tests->next != NULL)
1516 new = new_decision (next->position, &next->success);
1517 new->tests = next->tests->next;
1518 next->tests->next = NULL;
1520 new = next;
1521 next = next->next;
1522 new->next = NULL;
1523 h.first = h.last = new;
1525 merge_trees (head, &h);
1527 while (next && next->tests->type == type);
1529 /* After we run out of compatible tests, graft the remaining nodes
1530 back onto the tree. */
1531 if (next)
1533 next->prev = head->last;
1534 head->last->next = next;
1535 head->last = old_last;
1539 /* Recurse. */
1540 for (first = head->first; first; first = first->next)
1541 factor_tests (&first->success);
1544 /* After factoring, try to simplify the tests on any one node.
1545 Tests that are useful for switch statements are recognizable
1546 by having only a single test on a node -- we'll be manipulating
1547 nodes with multiple tests:
1549 If we have mode tests or code tests that are redundant with
1550 predicates, remove them. */
1552 static void
1553 simplify_tests (struct decision_head *head)
1555 struct decision *tree;
1557 for (tree = head->first; tree; tree = tree->next)
1559 struct decision_test *a, *b;
1561 a = tree->tests;
1562 b = a->next;
1563 if (b == NULL)
1564 continue;
1566 /* Find a predicate node. */
1567 while (b && b->type != DT_pred)
1568 b = b->next;
1569 if (b)
1571 /* Due to how these tests are constructed, we don't even need
1572 to check that the mode and code are compatible -- they were
1573 generated from the predicate in the first place. */
1574 while (a->type == DT_mode || a->type == DT_code)
1575 a = a->next;
1576 tree->tests = a;
1580 /* Recurse. */
1581 for (tree = head->first; tree; tree = tree->next)
1582 simplify_tests (&tree->success);
1585 /* Count the number of subnodes of HEAD. If the number is high enough,
1586 make the first node in HEAD start a separate subroutine in the C code
1587 that is generated. */
1589 static int
1590 break_out_subroutines (struct decision_head *head, int initial)
1592 int size = 0;
1593 struct decision *sub;
1595 for (sub = head->first; sub; sub = sub->next)
1596 size += 1 + break_out_subroutines (&sub->success, 0);
1598 if (size > SUBROUTINE_THRESHOLD && ! initial)
1600 head->first->subroutine_number = ++next_subroutine_number;
1601 size = 1;
1603 return size;
1606 /* For each node p, find the next alternative that might be true
1607 when p is true. */
1609 static void
1610 find_afterward (struct decision_head *head, struct decision *real_afterward)
1612 struct decision *p, *q, *afterward;
1614 /* We can't propagate alternatives across subroutine boundaries.
1615 This is not incorrect, merely a minor optimization loss. */
1617 p = head->first;
1618 afterward = (p->subroutine_number > 0 ? NULL : real_afterward);
1620 for ( ; p ; p = p->next)
1622 /* Find the next node that might be true if this one fails. */
1623 for (q = p->next; q ; q = q->next)
1624 if (maybe_both_true (p, q, 1))
1625 break;
1627 /* If we reached the end of the list without finding one,
1628 use the incoming afterward position. */
1629 if (!q)
1630 q = afterward;
1631 p->afterward = q;
1632 if (q)
1633 q->need_label = 1;
1636 /* Recurse. */
1637 for (p = head->first; p ; p = p->next)
1638 if (p->success.first)
1639 find_afterward (&p->success, p->afterward);
1641 /* When we are generating a subroutine, record the real afterward
1642 position in the first node where write_tree can find it, and we
1643 can do the right thing at the subroutine call site. */
1644 p = head->first;
1645 if (p->subroutine_number > 0)
1646 p->afterward = real_afterward;
1649 /* Assuming that the state of argument is denoted by OLDPOS, take whatever
1650 actions are necessary to move to NEWPOS. If we fail to move to the
1651 new state, branch to node AFTERWARD if nonzero, otherwise return.
1653 Failure to move to the new state can only occur if we are trying to
1654 match multiple insns and we try to step past the end of the stream. */
1656 static void
1657 change_state (const char *oldpos, const char *newpos,
1658 struct decision *afterward, const char *indent)
1660 int odepth = strlen (oldpos);
1661 int ndepth = strlen (newpos);
1662 int depth;
1663 int old_has_insn, new_has_insn;
1665 /* Pop up as many levels as necessary. */
1666 for (depth = odepth; strncmp (oldpos, newpos, depth) != 0; --depth)
1667 continue;
1669 /* Hunt for the last [A-Z] in both strings. */
1670 for (old_has_insn = odepth - 1; old_has_insn >= 0; --old_has_insn)
1671 if (ISUPPER (oldpos[old_has_insn]))
1672 break;
1673 for (new_has_insn = ndepth - 1; new_has_insn >= 0; --new_has_insn)
1674 if (ISUPPER (newpos[new_has_insn]))
1675 break;
1677 /* Go down to desired level. */
1678 while (depth < ndepth)
1680 /* It's a different insn from the first one. */
1681 if (ISUPPER (newpos[depth]))
1683 /* We can only fail if we're moving down the tree. */
1684 if (old_has_insn >= 0 && oldpos[old_has_insn] >= newpos[depth])
1686 printf ("%stem = peep2_next_insn (%d);\n",
1687 indent, newpos[depth] - 'A');
1689 else
1691 printf ("%stem = peep2_next_insn (%d);\n",
1692 indent, newpos[depth] - 'A');
1693 printf ("%sif (tem == NULL_RTX)\n", indent);
1694 if (afterward)
1695 printf ("%s goto L%d;\n", indent, afterward->number);
1696 else
1697 printf ("%s goto ret0;\n", indent);
1699 printf ("%sx%d = PATTERN (tem);\n", indent, depth + 1);
1701 else if (ISLOWER (newpos[depth]))
1702 printf ("%sx%d = XVECEXP (x%d, 0, %d);\n",
1703 indent, depth + 1, depth, newpos[depth] - 'a');
1704 else
1705 printf ("%sx%d = XEXP (x%d, %c);\n",
1706 indent, depth + 1, depth, newpos[depth]);
1707 ++depth;
1711 /* Print the enumerator constant for CODE -- the upcase version of
1712 the name. */
1714 static void
1715 print_code (enum rtx_code code)
1717 const char *p;
1718 for (p = GET_RTX_NAME (code); *p; p++)
1719 putchar (TOUPPER (*p));
1722 /* Emit code to cross an afterward link -- change state and branch. */
1724 static void
1725 write_afterward (struct decision *start, struct decision *afterward,
1726 const char *indent)
1728 if (!afterward || start->subroutine_number > 0)
1729 printf("%sgoto ret0;\n", indent);
1730 else
1732 change_state (start->position, afterward->position, NULL, indent);
1733 printf ("%sgoto L%d;\n", indent, afterward->number);
1737 /* Emit a switch statement, if possible, for an initial sequence of
1738 nodes at START. Return the first node yet untested. */
1740 static struct decision *
1741 write_switch (struct decision *start, int depth)
1743 struct decision *p = start;
1744 enum decision_type type = p->tests->type;
1745 struct decision *needs_label = NULL;
1747 /* If we have two or more nodes in sequence that test the same one
1748 thing, we may be able to use a switch statement. */
1750 if (!p->next
1751 || p->tests->next
1752 || p->next->tests->type != type
1753 || p->next->tests->next
1754 || nodes_identical_1 (p->tests, p->next->tests))
1755 return p;
1757 /* DT_code is special in that we can do interesting things with
1758 known predicates at the same time. */
1759 if (type == DT_code)
1761 char codemap[NUM_RTX_CODE];
1762 struct decision *ret;
1763 RTX_CODE code;
1765 memset (codemap, 0, sizeof(codemap));
1767 printf (" switch (GET_CODE (x%d))\n {\n", depth);
1768 code = p->tests->u.code;
1771 if (p != start && p->need_label && needs_label == NULL)
1772 needs_label = p;
1774 printf (" case ");
1775 print_code (code);
1776 printf (":\n goto L%d;\n", p->success.first->number);
1777 p->success.first->need_label = 1;
1779 codemap[code] = 1;
1780 p = p->next;
1782 while (p
1783 && ! p->tests->next
1784 && p->tests->type == DT_code
1785 && ! codemap[code = p->tests->u.code]);
1787 /* If P is testing a predicate that we know about and we haven't
1788 seen any of the codes that are valid for the predicate, we can
1789 write a series of "case" statement, one for each possible code.
1790 Since we are already in a switch, these redundant tests are very
1791 cheap and will reduce the number of predicates called. */
1793 /* Note that while we write out cases for these predicates here,
1794 we don't actually write the test here, as it gets kinda messy.
1795 It is trivial to leave this to later by telling our caller that
1796 we only processed the CODE tests. */
1797 if (needs_label != NULL)
1798 ret = needs_label;
1799 else
1800 ret = p;
1802 while (p && p->tests->type == DT_pred
1803 && p->tests->u.pred.index >= 0)
1805 const RTX_CODE *c;
1807 for (c = &preds[p->tests->u.pred.index].codes[0]; *c ; ++c)
1808 if (codemap[(int) *c] != 0)
1809 goto pred_done;
1811 for (c = &preds[p->tests->u.pred.index].codes[0]; *c ; ++c)
1813 printf (" case ");
1814 print_code (*c);
1815 printf (":\n");
1816 codemap[(int) *c] = 1;
1819 printf (" goto L%d;\n", p->number);
1820 p->need_label = 1;
1821 p = p->next;
1824 pred_done:
1825 /* Make the default case skip the predicates we managed to match. */
1827 printf (" default:\n");
1828 if (p != ret)
1830 if (p)
1832 printf (" goto L%d;\n", p->number);
1833 p->need_label = 1;
1835 else
1836 write_afterward (start, start->afterward, " ");
1838 else
1839 printf (" break;\n");
1840 printf (" }\n");
1842 return ret;
1844 else if (type == DT_mode
1845 || type == DT_veclen
1846 || type == DT_elt_zero_int
1847 || type == DT_elt_one_int
1848 || type == DT_elt_zero_wide_safe)
1850 const char *indent = "";
1852 /* We cast switch parameter to integer, so we must ensure that the value
1853 fits. */
1854 if (type == DT_elt_zero_wide_safe)
1856 indent = " ";
1857 printf(" if ((int) XWINT (x%d, 0) == XWINT (x%d, 0))\n", depth, depth);
1859 printf ("%s switch (", indent);
1860 switch (type)
1862 case DT_mode:
1863 printf ("GET_MODE (x%d)", depth);
1864 break;
1865 case DT_veclen:
1866 printf ("XVECLEN (x%d, 0)", depth);
1867 break;
1868 case DT_elt_zero_int:
1869 printf ("XINT (x%d, 0)", depth);
1870 break;
1871 case DT_elt_one_int:
1872 printf ("XINT (x%d, 1)", depth);
1873 break;
1874 case DT_elt_zero_wide_safe:
1875 /* Convert result of XWINT to int for portability since some C
1876 compilers won't do it and some will. */
1877 printf ("(int) XWINT (x%d, 0)", depth);
1878 break;
1879 default:
1880 abort ();
1882 printf (")\n%s {\n", indent);
1886 /* Merge trees will not unify identical nodes if their
1887 sub-nodes are at different levels. Thus we must check
1888 for duplicate cases. */
1889 struct decision *q;
1890 for (q = start; q != p; q = q->next)
1891 if (nodes_identical_1 (p->tests, q->tests))
1892 goto case_done;
1894 if (p != start && p->need_label && needs_label == NULL)
1895 needs_label = p;
1897 printf ("%s case ", indent);
1898 switch (type)
1900 case DT_mode:
1901 printf ("%smode", GET_MODE_NAME (p->tests->u.mode));
1902 break;
1903 case DT_veclen:
1904 printf ("%d", p->tests->u.veclen);
1905 break;
1906 case DT_elt_zero_int:
1907 case DT_elt_one_int:
1908 case DT_elt_zero_wide:
1909 case DT_elt_zero_wide_safe:
1910 printf (HOST_WIDE_INT_PRINT_DEC_C, p->tests->u.intval);
1911 break;
1912 default:
1913 abort ();
1915 printf (":\n%s goto L%d;\n", indent, p->success.first->number);
1916 p->success.first->need_label = 1;
1918 p = p->next;
1920 while (p && p->tests->type == type && !p->tests->next);
1922 case_done:
1923 printf ("%s default:\n%s break;\n%s }\n",
1924 indent, indent, indent);
1926 return needs_label != NULL ? needs_label : p;
1928 else
1930 /* None of the other tests are amenable. */
1931 return p;
1935 /* Emit code for one test. */
1937 static void
1938 write_cond (struct decision_test *p, int depth,
1939 enum routine_type subroutine_type)
1941 switch (p->type)
1943 case DT_mode:
1944 printf ("GET_MODE (x%d) == %smode", depth, GET_MODE_NAME (p->u.mode));
1945 break;
1947 case DT_code:
1948 printf ("GET_CODE (x%d) == ", depth);
1949 print_code (p->u.code);
1950 break;
1952 case DT_veclen:
1953 printf ("XVECLEN (x%d, 0) == %d", depth, p->u.veclen);
1954 break;
1956 case DT_elt_zero_int:
1957 printf ("XINT (x%d, 0) == %d", depth, (int) p->u.intval);
1958 break;
1960 case DT_elt_one_int:
1961 printf ("XINT (x%d, 1) == %d", depth, (int) p->u.intval);
1962 break;
1964 case DT_elt_zero_wide:
1965 case DT_elt_zero_wide_safe:
1966 printf ("XWINT (x%d, 0) == ", depth);
1967 printf (HOST_WIDE_INT_PRINT_DEC_C, p->u.intval);
1968 break;
1970 case DT_veclen_ge:
1971 printf ("XVECLEN (x%d, 0) >= %d", depth, p->u.veclen);
1972 break;
1974 case DT_dup:
1975 printf ("rtx_equal_p (x%d, operands[%d])", depth, p->u.dup);
1976 break;
1978 case DT_pred:
1979 printf ("%s (x%d, %smode)", p->u.pred.name, depth,
1980 GET_MODE_NAME (p->u.pred.mode));
1981 break;
1983 case DT_c_test:
1984 printf ("(%s)", p->u.c_test);
1985 break;
1987 case DT_accept_insn:
1988 switch (subroutine_type)
1990 case RECOG:
1991 if (p->u.insn.num_clobbers_to_add == 0)
1992 abort ();
1993 printf ("pnum_clobbers != NULL");
1994 break;
1996 default:
1997 abort ();
1999 break;
2001 default:
2002 abort ();
2006 /* Emit code for one action. The previous tests have succeeded;
2007 TEST is the last of the chain. In the normal case we simply
2008 perform a state change. For the `accept' tests we must do more work. */
2010 static void
2011 write_action (struct decision *p, struct decision_test *test,
2012 int depth, int uncond, struct decision *success,
2013 enum routine_type subroutine_type)
2015 const char *indent;
2016 int want_close = 0;
2018 if (uncond)
2019 indent = " ";
2020 else if (test->type == DT_accept_op || test->type == DT_accept_insn)
2022 fputs (" {\n", stdout);
2023 indent = " ";
2024 want_close = 1;
2026 else
2027 indent = " ";
2029 if (test->type == DT_accept_op)
2031 printf("%soperands[%d] = x%d;\n", indent, test->u.opno, depth);
2033 /* Only allow DT_accept_insn to follow. */
2034 if (test->next)
2036 test = test->next;
2037 if (test->type != DT_accept_insn)
2038 abort ();
2042 /* Sanity check that we're now at the end of the list of tests. */
2043 if (test->next)
2044 abort ();
2046 if (test->type == DT_accept_insn)
2048 switch (subroutine_type)
2050 case RECOG:
2051 if (test->u.insn.num_clobbers_to_add != 0)
2052 printf ("%s*pnum_clobbers = %d;\n",
2053 indent, test->u.insn.num_clobbers_to_add);
2054 printf ("%sreturn %d;\n", indent, test->u.insn.code_number);
2055 break;
2057 case SPLIT:
2058 printf ("%sreturn gen_split_%d (operands);\n",
2059 indent, test->u.insn.code_number);
2060 break;
2062 case PEEPHOLE2:
2064 int match_len = 0, i;
2066 for (i = strlen (p->position) - 1; i >= 0; --i)
2067 if (ISUPPER (p->position[i]))
2069 match_len = p->position[i] - 'A';
2070 break;
2072 printf ("%s*_pmatch_len = %d;\n", indent, match_len);
2073 printf ("%stem = gen_peephole2_%d (insn, operands);\n",
2074 indent, test->u.insn.code_number);
2075 printf ("%sif (tem != 0)\n%s return tem;\n", indent, indent);
2077 break;
2079 default:
2080 abort ();
2083 else
2085 printf("%sgoto L%d;\n", indent, success->number);
2086 success->need_label = 1;
2089 if (want_close)
2090 fputs (" }\n", stdout);
2093 /* Return 1 if the test is always true and has no fallthru path. Return -1
2094 if the test does have a fallthru path, but requires that the condition be
2095 terminated. Otherwise return 0 for a normal test. */
2096 /* ??? is_unconditional is a stupid name for a tri-state function. */
2098 static int
2099 is_unconditional (struct decision_test *t, enum routine_type subroutine_type)
2101 if (t->type == DT_accept_op)
2102 return 1;
2104 if (t->type == DT_accept_insn)
2106 switch (subroutine_type)
2108 case RECOG:
2109 return (t->u.insn.num_clobbers_to_add == 0);
2110 case SPLIT:
2111 return 1;
2112 case PEEPHOLE2:
2113 return -1;
2114 default:
2115 abort ();
2119 return 0;
2122 /* Emit code for one node -- the conditional and the accompanying action.
2123 Return true if there is no fallthru path. */
2125 static int
2126 write_node (struct decision *p, int depth,
2127 enum routine_type subroutine_type)
2129 struct decision_test *test, *last_test;
2130 int uncond;
2132 last_test = test = p->tests;
2133 uncond = is_unconditional (test, subroutine_type);
2134 if (uncond == 0)
2136 printf (" if (");
2137 write_cond (test, depth, subroutine_type);
2139 while ((test = test->next) != NULL)
2141 int uncond2;
2143 last_test = test;
2144 uncond2 = is_unconditional (test, subroutine_type);
2145 if (uncond2 != 0)
2146 break;
2148 printf ("\n && ");
2149 write_cond (test, depth, subroutine_type);
2152 printf (")\n");
2155 write_action (p, last_test, depth, uncond, p->success.first, subroutine_type);
2157 return uncond > 0;
2160 /* Emit code for all of the sibling nodes of HEAD. */
2162 static void
2163 write_tree_1 (struct decision_head *head, int depth,
2164 enum routine_type subroutine_type)
2166 struct decision *p, *next;
2167 int uncond = 0;
2169 for (p = head->first; p ; p = next)
2171 /* The label for the first element was printed in write_tree. */
2172 if (p != head->first && p->need_label)
2173 OUTPUT_LABEL (" ", p->number);
2175 /* Attempt to write a switch statement for a whole sequence. */
2176 next = write_switch (p, depth);
2177 if (p != next)
2178 uncond = 0;
2179 else
2181 /* Failed -- fall back and write one node. */
2182 uncond = write_node (p, depth, subroutine_type);
2183 next = p->next;
2187 /* Finished with this chain. Close a fallthru path by branching
2188 to the afterward node. */
2189 if (! uncond)
2190 write_afterward (head->last, head->last->afterward, " ");
2193 /* Write out the decision tree starting at HEAD. PREVPOS is the
2194 position at the node that branched to this node. */
2196 static void
2197 write_tree (struct decision_head *head, const char *prevpos,
2198 enum routine_type type, int initial)
2200 struct decision *p = head->first;
2202 putchar ('\n');
2203 if (p->need_label)
2204 OUTPUT_LABEL (" ", p->number);
2206 if (! initial && p->subroutine_number > 0)
2208 static const char * const name_prefix[] = {
2209 "recog", "split", "peephole2"
2212 static const char * const call_suffix[] = {
2213 ", pnum_clobbers", "", ", _pmatch_len"
2216 /* This node has been broken out into a separate subroutine.
2217 Call it, test the result, and branch accordingly. */
2219 if (p->afterward)
2221 printf (" tem = %s_%d (x0, insn%s);\n",
2222 name_prefix[type], p->subroutine_number, call_suffix[type]);
2223 if (IS_SPLIT (type))
2224 printf (" if (tem != 0)\n return tem;\n");
2225 else
2226 printf (" if (tem >= 0)\n return tem;\n");
2228 change_state (p->position, p->afterward->position, NULL, " ");
2229 printf (" goto L%d;\n", p->afterward->number);
2231 else
2233 printf (" return %s_%d (x0, insn%s);\n",
2234 name_prefix[type], p->subroutine_number, call_suffix[type]);
2237 else
2239 int depth = strlen (p->position);
2241 change_state (prevpos, p->position, head->last->afterward, " ");
2242 write_tree_1 (head, depth, type);
2244 for (p = head->first; p; p = p->next)
2245 if (p->success.first)
2246 write_tree (&p->success, p->position, type, 0);
2250 /* Write out a subroutine of type TYPE to do comparisons starting at
2251 node TREE. */
2253 static void
2254 write_subroutine (struct decision_head *head, enum routine_type type)
2256 int subfunction = head->first ? head->first->subroutine_number : 0;
2257 const char *s_or_e;
2258 char extension[32];
2259 int i;
2261 s_or_e = subfunction ? "static " : "";
2263 if (subfunction)
2264 sprintf (extension, "_%d", subfunction);
2265 else if (type == RECOG)
2266 extension[0] = '\0';
2267 else
2268 strcpy (extension, "_insns");
2270 switch (type)
2272 case RECOG:
2273 printf ("%sint\n\
2274 recog%s (rtx x0 ATTRIBUTE_UNUSED,\n\trtx insn ATTRIBUTE_UNUSED,\n\tint *pnum_clobbers ATTRIBUTE_UNUSED)\n", s_or_e, extension);
2275 break;
2276 case SPLIT:
2277 printf ("%srtx\n\
2278 split%s (rtx x0 ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED)\n",
2279 s_or_e, extension);
2280 break;
2281 case PEEPHOLE2:
2282 printf ("%srtx\n\
2283 peephole2%s (rtx x0 ATTRIBUTE_UNUSED,\n\trtx insn ATTRIBUTE_UNUSED,\n\tint *_pmatch_len ATTRIBUTE_UNUSED)\n",
2284 s_or_e, extension);
2285 break;
2288 printf ("{\n rtx * const operands ATTRIBUTE_UNUSED = &recog_data.operand[0];\n");
2289 for (i = 1; i <= max_depth; i++)
2290 printf (" rtx x%d ATTRIBUTE_UNUSED;\n", i);
2292 printf (" %s tem ATTRIBUTE_UNUSED;\n", IS_SPLIT (type) ? "rtx" : "int");
2294 if (!subfunction)
2295 printf (" recog_data.insn = NULL_RTX;\n");
2297 if (head->first)
2298 write_tree (head, "", type, 1);
2299 else
2300 printf (" goto ret0;\n");
2302 printf (" ret0:\n return %d;\n}\n\n", IS_SPLIT (type) ? 0 : -1);
2305 /* In break_out_subroutines, we discovered the boundaries for the
2306 subroutines, but did not write them out. Do so now. */
2308 static void
2309 write_subroutines (struct decision_head *head, enum routine_type type)
2311 struct decision *p;
2313 for (p = head->first; p ; p = p->next)
2314 if (p->success.first)
2315 write_subroutines (&p->success, type);
2317 if (head->first->subroutine_number > 0)
2318 write_subroutine (head, type);
2321 /* Begin the output file. */
2323 static void
2324 write_header (void)
2326 puts ("\
2327 /* Generated automatically by the program `genrecog' from the target\n\
2328 machine description file. */\n\
2330 #include \"config.h\"\n\
2331 #include \"system.h\"\n\
2332 #include \"coretypes.h\"\n\
2333 #include \"tm.h\"\n\
2334 #include \"rtl.h\"\n\
2335 #include \"tm_p.h\"\n\
2336 #include \"function.h\"\n\
2337 #include \"insn-config.h\"\n\
2338 #include \"recog.h\"\n\
2339 #include \"real.h\"\n\
2340 #include \"output.h\"\n\
2341 #include \"flags.h\"\n\
2342 #include \"hard-reg-set.h\"\n\
2343 #include \"resource.h\"\n\
2344 #include \"toplev.h\"\n\
2345 #include \"reload.h\"\n\
2346 \n");
2348 puts ("\n\
2349 /* `recog' contains a decision tree that recognizes whether the rtx\n\
2350 X0 is a valid instruction.\n\
2352 recog returns -1 if the rtx is not valid. If the rtx is valid, recog\n\
2353 returns a nonnegative number which is the insn code number for the\n\
2354 pattern that matched. This is the same as the order in the machine\n\
2355 description of the entry that matched. This number can be used as an\n\
2356 index into `insn_data' and other tables.\n");
2357 puts ("\
2358 The third argument to recog is an optional pointer to an int. If\n\
2359 present, recog will accept a pattern if it matches except for missing\n\
2360 CLOBBER expressions at the end. In that case, the value pointed to by\n\
2361 the optional pointer will be set to the number of CLOBBERs that need\n\
2362 to be added (it should be initialized to zero by the caller). If it");
2363 puts ("\
2364 is set nonzero, the caller should allocate a PARALLEL of the\n\
2365 appropriate size, copy the initial entries, and call add_clobbers\n\
2366 (found in insn-emit.c) to fill in the CLOBBERs.\n\
2369 puts ("\n\
2370 The function split_insns returns 0 if the rtl could not\n\
2371 be split or the split rtl as an INSN list if it can be.\n\
2373 The function peephole2_insns returns 0 if the rtl could not\n\
2374 be matched. If there was a match, the new rtl is returned in an INSN list,\n\
2375 and LAST_INSN will point to the last recognized insn in the old sequence.\n\
2376 */\n\n");
2380 /* Construct and return a sequence of decisions
2381 that will recognize INSN.
2383 TYPE says what type of routine we are recognizing (RECOG or SPLIT). */
2385 static struct decision_head
2386 make_insn_sequence (rtx insn, enum routine_type type)
2388 rtx x;
2389 const char *c_test = XSTR (insn, type == RECOG ? 2 : 1);
2390 int truth = maybe_eval_c_test (c_test);
2391 struct decision *last;
2392 struct decision_test *test, **place;
2393 struct decision_head head;
2394 char c_test_pos[2];
2396 /* We should never see an insn whose C test is false at compile time. */
2397 if (truth == 0)
2398 abort ();
2400 record_insn_name (next_insn_code, (type == RECOG ? XSTR (insn, 0) : NULL));
2402 c_test_pos[0] = '\0';
2403 if (type == PEEPHOLE2)
2405 int i, j;
2407 /* peephole2 gets special treatment:
2408 - X always gets an outer parallel even if it's only one entry
2409 - we remove all traces of outer-level match_scratch and match_dup
2410 expressions here. */
2411 x = rtx_alloc (PARALLEL);
2412 PUT_MODE (x, VOIDmode);
2413 XVEC (x, 0) = rtvec_alloc (XVECLEN (insn, 0));
2414 for (i = j = 0; i < XVECLEN (insn, 0); i++)
2416 rtx tmp = XVECEXP (insn, 0, i);
2417 if (GET_CODE (tmp) != MATCH_SCRATCH && GET_CODE (tmp) != MATCH_DUP)
2419 XVECEXP (x, 0, j) = tmp;
2420 j++;
2423 XVECLEN (x, 0) = j;
2425 c_test_pos[0] = 'A' + j - 1;
2426 c_test_pos[1] = '\0';
2428 else if (XVECLEN (insn, type == RECOG) == 1)
2429 x = XVECEXP (insn, type == RECOG, 0);
2430 else
2432 x = rtx_alloc (PARALLEL);
2433 XVEC (x, 0) = XVEC (insn, type == RECOG);
2434 PUT_MODE (x, VOIDmode);
2437 validate_pattern (x, insn, NULL_RTX, 0);
2439 memset(&head, 0, sizeof(head));
2440 last = add_to_sequence (x, &head, "", type, 1);
2442 /* Find the end of the test chain on the last node. */
2443 for (test = last->tests; test->next; test = test->next)
2444 continue;
2445 place = &test->next;
2447 /* Skip the C test if it's known to be true at compile time. */
2448 if (truth == -1)
2450 /* Need a new node if we have another test to add. */
2451 if (test->type == DT_accept_op)
2453 last = new_decision (c_test_pos, &last->success);
2454 place = &last->tests;
2456 test = new_decision_test (DT_c_test, &place);
2457 test->u.c_test = c_test;
2460 test = new_decision_test (DT_accept_insn, &place);
2461 test->u.insn.code_number = next_insn_code;
2462 test->u.insn.lineno = pattern_lineno;
2463 test->u.insn.num_clobbers_to_add = 0;
2465 switch (type)
2467 case RECOG:
2468 /* If this is a DEFINE_INSN and X is a PARALLEL, see if it ends
2469 with a group of CLOBBERs of (hard) registers or MATCH_SCRATCHes.
2470 If so, set up to recognize the pattern without these CLOBBERs. */
2472 if (GET_CODE (x) == PARALLEL)
2474 int i;
2476 /* Find the last non-clobber in the parallel. */
2477 for (i = XVECLEN (x, 0); i > 0; i--)
2479 rtx y = XVECEXP (x, 0, i - 1);
2480 if (GET_CODE (y) != CLOBBER
2481 || (GET_CODE (XEXP (y, 0)) != REG
2482 && GET_CODE (XEXP (y, 0)) != MATCH_SCRATCH))
2483 break;
2486 if (i != XVECLEN (x, 0))
2488 rtx new;
2489 struct decision_head clobber_head;
2491 /* Build a similar insn without the clobbers. */
2492 if (i == 1)
2493 new = XVECEXP (x, 0, 0);
2494 else
2496 int j;
2498 new = rtx_alloc (PARALLEL);
2499 XVEC (new, 0) = rtvec_alloc (i);
2500 for (j = i - 1; j >= 0; j--)
2501 XVECEXP (new, 0, j) = XVECEXP (x, 0, j);
2504 /* Recognize it. */
2505 memset (&clobber_head, 0, sizeof(clobber_head));
2506 last = add_to_sequence (new, &clobber_head, "", type, 1);
2508 /* Find the end of the test chain on the last node. */
2509 for (test = last->tests; test->next; test = test->next)
2510 continue;
2512 /* We definitely have a new test to add -- create a new
2513 node if needed. */
2514 place = &test->next;
2515 if (test->type == DT_accept_op)
2517 last = new_decision ("", &last->success);
2518 place = &last->tests;
2521 /* Skip the C test if it's known to be true at compile
2522 time. */
2523 if (truth == -1)
2525 test = new_decision_test (DT_c_test, &place);
2526 test->u.c_test = c_test;
2529 test = new_decision_test (DT_accept_insn, &place);
2530 test->u.insn.code_number = next_insn_code;
2531 test->u.insn.lineno = pattern_lineno;
2532 test->u.insn.num_clobbers_to_add = XVECLEN (x, 0) - i;
2534 merge_trees (&head, &clobber_head);
2537 break;
2539 case SPLIT:
2540 /* Define the subroutine we will call below and emit in genemit. */
2541 printf ("extern rtx gen_split_%d (rtx *);\n", next_insn_code);
2542 break;
2544 case PEEPHOLE2:
2545 /* Define the subroutine we will call below and emit in genemit. */
2546 printf ("extern rtx gen_peephole2_%d (rtx, rtx *);\n",
2547 next_insn_code);
2548 break;
2551 return head;
2554 static void
2555 process_tree (struct decision_head *head, enum routine_type subroutine_type)
2557 if (head->first == NULL)
2559 /* We can elide peephole2_insns, but not recog or split_insns. */
2560 if (subroutine_type == PEEPHOLE2)
2561 return;
2563 else
2565 factor_tests (head);
2567 next_subroutine_number = 0;
2568 break_out_subroutines (head, 1);
2569 find_afterward (head, NULL);
2571 /* We run this after find_afterward, because find_afterward needs
2572 the redundant DT_mode tests on predicates to determine whether
2573 two tests can both be true or not. */
2574 simplify_tests(head);
2576 write_subroutines (head, subroutine_type);
2579 write_subroutine (head, subroutine_type);
2582 extern int main (int, char **);
2585 main (int argc, char **argv)
2587 rtx desc;
2588 struct decision_head recog_tree, split_tree, peephole2_tree, h;
2590 progname = "genrecog";
2592 memset (&recog_tree, 0, sizeof recog_tree);
2593 memset (&split_tree, 0, sizeof split_tree);
2594 memset (&peephole2_tree, 0, sizeof peephole2_tree);
2596 if (argc <= 1)
2597 fatal ("no input file name");
2599 if (init_md_reader_args (argc, argv) != SUCCESS_EXIT_CODE)
2600 return (FATAL_EXIT_CODE);
2602 next_insn_code = 0;
2603 next_index = 0;
2605 write_header ();
2607 /* Read the machine description. */
2609 while (1)
2611 desc = read_md_rtx (&pattern_lineno, &next_insn_code);
2612 if (desc == NULL)
2613 break;
2615 if (GET_CODE (desc) == DEFINE_INSN)
2617 h = make_insn_sequence (desc, RECOG);
2618 merge_trees (&recog_tree, &h);
2620 else if (GET_CODE (desc) == DEFINE_SPLIT)
2622 h = make_insn_sequence (desc, SPLIT);
2623 merge_trees (&split_tree, &h);
2625 else if (GET_CODE (desc) == DEFINE_PEEPHOLE2)
2627 h = make_insn_sequence (desc, PEEPHOLE2);
2628 merge_trees (&peephole2_tree, &h);
2631 next_index++;
2634 if (error_count)
2635 return FATAL_EXIT_CODE;
2637 puts ("\n\n");
2639 process_tree (&recog_tree, RECOG);
2640 process_tree (&split_tree, SPLIT);
2641 process_tree (&peephole2_tree, PEEPHOLE2);
2643 fflush (stdout);
2644 return (ferror (stdout) != 0 ? FATAL_EXIT_CODE : SUCCESS_EXIT_CODE);
2647 /* Define this so we can link with print-rtl.o to get debug_rtx function. */
2648 const char *
2649 get_insn_name (int code)
2651 if (code < insn_name_ptr_size)
2652 return insn_name_ptr[code];
2653 else
2654 return NULL;
2657 static void
2658 record_insn_name (int code, const char *name)
2660 static const char *last_real_name = "insn";
2661 static int last_real_code = 0;
2662 char *new;
2664 if (insn_name_ptr_size <= code)
2666 int new_size;
2667 new_size = (insn_name_ptr_size ? insn_name_ptr_size * 2 : 512);
2668 insn_name_ptr = xrealloc (insn_name_ptr, sizeof(char *) * new_size);
2669 memset (insn_name_ptr + insn_name_ptr_size, 0,
2670 sizeof(char *) * (new_size - insn_name_ptr_size));
2671 insn_name_ptr_size = new_size;
2674 if (!name || name[0] == '\0')
2676 new = xmalloc (strlen (last_real_name) + 10);
2677 sprintf (new, "%s+%d", last_real_name, code - last_real_code);
2679 else
2681 last_real_name = new = xstrdup (name);
2682 last_real_code = code;
2685 insn_name_ptr[code] = new;
2688 static void
2689 debug_decision_2 (struct decision_test *test)
2691 switch (test->type)
2693 case DT_mode:
2694 fprintf (stderr, "mode=%s", GET_MODE_NAME (test->u.mode));
2695 break;
2696 case DT_code:
2697 fprintf (stderr, "code=%s", GET_RTX_NAME (test->u.code));
2698 break;
2699 case DT_veclen:
2700 fprintf (stderr, "veclen=%d", test->u.veclen);
2701 break;
2702 case DT_elt_zero_int:
2703 fprintf (stderr, "elt0_i=%d", (int) test->u.intval);
2704 break;
2705 case DT_elt_one_int:
2706 fprintf (stderr, "elt1_i=%d", (int) test->u.intval);
2707 break;
2708 case DT_elt_zero_wide:
2709 fprintf (stderr, "elt0_w=" HOST_WIDE_INT_PRINT_DEC, test->u.intval);
2710 break;
2711 case DT_elt_zero_wide_safe:
2712 fprintf (stderr, "elt0_ws=" HOST_WIDE_INT_PRINT_DEC, test->u.intval);
2713 break;
2714 case DT_veclen_ge:
2715 fprintf (stderr, "veclen>=%d", test->u.veclen);
2716 break;
2717 case DT_dup:
2718 fprintf (stderr, "dup=%d", test->u.dup);
2719 break;
2720 case DT_pred:
2721 fprintf (stderr, "pred=(%s,%s)",
2722 test->u.pred.name, GET_MODE_NAME(test->u.pred.mode));
2723 break;
2724 case DT_c_test:
2726 char sub[16+4];
2727 strncpy (sub, test->u.c_test, sizeof(sub));
2728 memcpy (sub+16, "...", 4);
2729 fprintf (stderr, "c_test=\"%s\"", sub);
2731 break;
2732 case DT_accept_op:
2733 fprintf (stderr, "A_op=%d", test->u.opno);
2734 break;
2735 case DT_accept_insn:
2736 fprintf (stderr, "A_insn=(%d,%d)",
2737 test->u.insn.code_number, test->u.insn.num_clobbers_to_add);
2738 break;
2740 default:
2741 abort ();
2745 static void
2746 debug_decision_1 (struct decision *d, int indent)
2748 int i;
2749 struct decision_test *test;
2751 if (d == NULL)
2753 for (i = 0; i < indent; ++i)
2754 putc (' ', stderr);
2755 fputs ("(nil)\n", stderr);
2756 return;
2759 for (i = 0; i < indent; ++i)
2760 putc (' ', stderr);
2762 putc ('{', stderr);
2763 test = d->tests;
2764 if (test)
2766 debug_decision_2 (test);
2767 while ((test = test->next) != NULL)
2769 fputs (" + ", stderr);
2770 debug_decision_2 (test);
2773 fprintf (stderr, "} %d n %d a %d\n", d->number,
2774 (d->next ? d->next->number : -1),
2775 (d->afterward ? d->afterward->number : -1));
2778 static void
2779 debug_decision_0 (struct decision *d, int indent, int maxdepth)
2781 struct decision *n;
2782 int i;
2784 if (maxdepth < 0)
2785 return;
2786 if (d == NULL)
2788 for (i = 0; i < indent; ++i)
2789 putc (' ', stderr);
2790 fputs ("(nil)\n", stderr);
2791 return;
2794 debug_decision_1 (d, indent);
2795 for (n = d->success.first; n ; n = n->next)
2796 debug_decision_0 (n, indent + 2, maxdepth - 1);
2799 void
2800 debug_decision (struct decision *d)
2802 debug_decision_0 (d, 0, 1000000);
2805 void
2806 debug_decision_list (struct decision *d)
2808 while (d)
2810 debug_decision_0 (d, 0, 0);
2811 d = d->next;