1 ------------------------------------------------------------------------------
3 -- GNAT LIBRARY COMPONENTS --
5 -- A D A . C O N T A I N E R S . B O U N D E D _ O R D E R E D _ S E T S --
9 -- Copyright (C) 2004-2014, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
27 -- This unit was originally developed by Matthew J Heaney. --
28 ------------------------------------------------------------------------------
30 with Ada
.Containers
.Red_Black_Trees
.Generic_Bounded_Operations
;
32 (Ada
.Containers
.Red_Black_Trees
.Generic_Bounded_Operations
);
34 with Ada
.Containers
.Red_Black_Trees
.Generic_Bounded_Keys
;
35 pragma Elaborate_All
(Ada
.Containers
.Red_Black_Trees
.Generic_Bounded_Keys
);
37 with Ada
.Containers
.Red_Black_Trees
.Generic_Bounded_Set_Operations
;
39 (Ada
.Containers
.Red_Black_Trees
.Generic_Bounded_Set_Operations
);
41 with System
; use type System
.Address
;
43 package body Ada
.Containers
.Bounded_Ordered_Sets
is
45 ------------------------------
46 -- Access to Fields of Node --
47 ------------------------------
49 -- These subprograms provide functional notation for access to fields
50 -- of a node, and procedural notation for modifying these fields.
52 function Color
(Node
: Node_Type
) return Red_Black_Trees
.Color_Type
;
53 pragma Inline
(Color
);
55 function Left
(Node
: Node_Type
) return Count_Type
;
58 function Parent
(Node
: Node_Type
) return Count_Type
;
59 pragma Inline
(Parent
);
61 function Right
(Node
: Node_Type
) return Count_Type
;
62 pragma Inline
(Right
);
65 (Node
: in out Node_Type
;
66 Color
: Red_Black_Trees
.Color_Type
);
67 pragma Inline
(Set_Color
);
69 procedure Set_Left
(Node
: in out Node_Type
; Left
: Count_Type
);
70 pragma Inline
(Set_Left
);
72 procedure Set_Right
(Node
: in out Node_Type
; Right
: Count_Type
);
73 pragma Inline
(Set_Right
);
75 procedure Set_Parent
(Node
: in out Node_Type
; Parent
: Count_Type
);
76 pragma Inline
(Set_Parent
);
78 -----------------------
79 -- Local Subprograms --
80 -----------------------
82 procedure Insert_Sans_Hint
83 (Container
: in out Set
;
84 New_Item
: Element_Type
;
85 Node
: out Count_Type
;
86 Inserted
: out Boolean);
88 procedure Insert_With_Hint
89 (Dst_Set
: in out Set
;
90 Dst_Hint
: Count_Type
;
92 Dst_Node
: out Count_Type
);
94 function Is_Greater_Element_Node
96 Right
: Node_Type
) return Boolean;
97 pragma Inline
(Is_Greater_Element_Node
);
99 function Is_Less_Element_Node
100 (Left
: Element_Type
;
101 Right
: Node_Type
) return Boolean;
102 pragma Inline
(Is_Less_Element_Node
);
104 function Is_Less_Node_Node
(L
, R
: Node_Type
) return Boolean;
105 pragma Inline
(Is_Less_Node_Node
);
107 procedure Replace_Element
108 (Container
: in out Set
;
110 Item
: Element_Type
);
112 --------------------------
113 -- Local Instantiations --
114 --------------------------
116 package Tree_Operations
is
117 new Red_Black_Trees
.Generic_Bounded_Operations
(Tree_Types
);
121 package Element_Keys
is
122 new Red_Black_Trees
.Generic_Bounded_Keys
123 (Tree_Operations
=> Tree_Operations
,
124 Key_Type
=> Element_Type
,
125 Is_Less_Key_Node
=> Is_Less_Element_Node
,
126 Is_Greater_Key_Node
=> Is_Greater_Element_Node
);
129 new Red_Black_Trees
.Generic_Bounded_Set_Operations
130 (Tree_Operations
=> Tree_Operations
,
133 Insert_With_Hint
=> Insert_With_Hint
,
134 Is_Less
=> Is_Less_Node_Node
);
140 function "<" (Left
, Right
: Cursor
) return Boolean is
142 if Left
.Node
= 0 then
143 raise Constraint_Error
with "Left cursor equals No_Element";
146 if Right
.Node
= 0 then
147 raise Constraint_Error
with "Right cursor equals No_Element";
150 pragma Assert
(Vet
(Left
.Container
.all, Left
.Node
),
151 "bad Left cursor in ""<""");
153 pragma Assert
(Vet
(Right
.Container
.all, Right
.Node
),
154 "bad Right cursor in ""<""");
157 LN
: Nodes_Type
renames Left
.Container
.Nodes
;
158 RN
: Nodes_Type
renames Right
.Container
.Nodes
;
160 return LN
(Left
.Node
).Element
< RN
(Right
.Node
).Element
;
164 function "<" (Left
: Cursor
; Right
: Element_Type
) return Boolean is
166 if Left
.Node
= 0 then
167 raise Constraint_Error
with "Left cursor equals No_Element";
170 pragma Assert
(Vet
(Left
.Container
.all, Left
.Node
),
171 "bad Left cursor in ""<""");
173 return Left
.Container
.Nodes
(Left
.Node
).Element
< Right
;
176 function "<" (Left
: Element_Type
; Right
: Cursor
) return Boolean is
178 if Right
.Node
= 0 then
179 raise Constraint_Error
with "Right cursor equals No_Element";
182 pragma Assert
(Vet
(Right
.Container
.all, Right
.Node
),
183 "bad Right cursor in ""<""");
185 return Left
< Right
.Container
.Nodes
(Right
.Node
).Element
;
192 function "=" (Left
, Right
: Set
) return Boolean is
193 function Is_Equal_Node_Node
(L
, R
: Node_Type
) return Boolean;
194 pragma Inline
(Is_Equal_Node_Node
);
197 new Tree_Operations
.Generic_Equal
(Is_Equal_Node_Node
);
199 ------------------------
200 -- Is_Equal_Node_Node --
201 ------------------------
203 function Is_Equal_Node_Node
(L
, R
: Node_Type
) return Boolean is
205 return L
.Element
= R
.Element
;
206 end Is_Equal_Node_Node
;
208 -- Start of processing for Is_Equal
211 return Is_Equal
(Left
, Right
);
218 function ">" (Left
, Right
: Cursor
) return Boolean is
220 if Left
.Node
= 0 then
221 raise Constraint_Error
with "Left cursor equals No_Element";
224 if Right
.Node
= 0 then
225 raise Constraint_Error
with "Right cursor equals No_Element";
228 pragma Assert
(Vet
(Left
.Container
.all, Left
.Node
),
229 "bad Left cursor in "">""");
231 pragma Assert
(Vet
(Right
.Container
.all, Right
.Node
),
232 "bad Right cursor in "">""");
234 -- L > R same as R < L
237 LN
: Nodes_Type
renames Left
.Container
.Nodes
;
238 RN
: Nodes_Type
renames Right
.Container
.Nodes
;
240 return RN
(Right
.Node
).Element
< LN
(Left
.Node
).Element
;
244 function ">" (Left
: Element_Type
; Right
: Cursor
) return Boolean is
246 if Right
.Node
= 0 then
247 raise Constraint_Error
with "Right cursor equals No_Element";
250 pragma Assert
(Vet
(Right
.Container
.all, Right
.Node
),
251 "bad Right cursor in "">""");
253 return Right
.Container
.Nodes
(Right
.Node
).Element
< Left
;
256 function ">" (Left
: Cursor
; Right
: Element_Type
) return Boolean is
258 if Left
.Node
= 0 then
259 raise Constraint_Error
with "Left cursor equals No_Element";
262 pragma Assert
(Vet
(Left
.Container
.all, Left
.Node
),
263 "bad Left cursor in "">""");
265 return Right
< Left
.Container
.Nodes
(Left
.Node
).Element
;
272 procedure Adjust
(Control
: in out Reference_Control_Type
) is
274 if Control
.Container
/= null then
276 C
: Set
renames Control
.Container
.all;
277 B
: Natural renames C
.Busy
;
278 L
: Natural renames C
.Lock
;
290 procedure Assign
(Target
: in out Set
; Source
: Set
) is
291 procedure Append_Element
(Source_Node
: Count_Type
);
293 procedure Append_Elements
is
294 new Tree_Operations
.Generic_Iteration
(Append_Element
);
300 procedure Append_Element
(Source_Node
: Count_Type
) is
301 SN
: Node_Type
renames Source
.Nodes
(Source_Node
);
303 procedure Set_Element
(Node
: in out Node_Type
);
304 pragma Inline
(Set_Element
);
306 function New_Node
return Count_Type
;
307 pragma Inline
(New_Node
);
309 procedure Insert_Post
is
310 new Element_Keys
.Generic_Insert_Post
(New_Node
);
312 procedure Unconditional_Insert_Sans_Hint
is
313 new Element_Keys
.Generic_Unconditional_Insert
(Insert_Post
);
315 procedure Unconditional_Insert_Avec_Hint
is
316 new Element_Keys
.Generic_Unconditional_Insert_With_Hint
318 Unconditional_Insert_Sans_Hint
);
320 procedure Allocate
is
321 new Tree_Operations
.Generic_Allocate
(Set_Element
);
327 function New_Node
return Count_Type
is
330 Allocate
(Target
, Result
);
338 procedure Set_Element
(Node
: in out Node_Type
) is
340 Node
.Element
:= SN
.Element
;
343 Target_Node
: Count_Type
;
345 -- Start of processing for Append_Element
348 Unconditional_Insert_Avec_Hint
352 Node
=> Target_Node
);
355 -- Start of processing for Assign
358 if Target
'Address = Source
'Address then
362 if Target
.Capacity
< Source
.Length
then
364 with "Target capacity is less than Source length";
368 Append_Elements
(Source
);
375 function Ceiling
(Container
: Set
; Item
: Element_Type
) return Cursor
is
376 Node
: constant Count_Type
:=
377 Element_Keys
.Ceiling
(Container
, Item
);
379 return (if Node
= 0 then No_Element
380 else Cursor
'(Container'Unrestricted_Access, Node));
387 procedure Clear (Container : in out Set) is
389 Tree_Operations.Clear_Tree (Container);
396 function Color (Node : Node_Type) return Red_Black_Trees.Color_Type is
401 ------------------------
402 -- Constant_Reference --
403 ------------------------
405 function Constant_Reference
406 (Container : aliased Set;
407 Position : Cursor) return Constant_Reference_Type
410 if Position.Container = null then
411 raise Constraint_Error with "Position cursor has no element";
414 if Position.Container /= Container'Unrestricted_Access then
415 raise Program_Error with
416 "Position cursor designates wrong container";
420 (Vet (Container, Position.Node),
421 "bad cursor in Constant_Reference");
424 N : Node_Type renames Container.Nodes (Position.Node);
425 B : Natural renames Position.Container.Busy;
426 L : Natural renames Position.Container.Lock;
428 return R : constant Constant_Reference_Type :=
429 (Element => N.Element'Access,
430 Control => (Controlled with Container'Unrestricted_Access))
436 end Constant_Reference;
444 Item : Element_Type) return Boolean
447 return Find (Container, Item) /= No_Element;
454 function Copy (Source : Set; Capacity : Count_Type := 0) return Set is
460 elsif Capacity >= Source.Length then
463 raise Capacity_Error with "Capacity value too small";
466 return Target : Set (Capacity => C) do
467 Assign (Target => Target, Source => Source);
475 procedure Delete (Container : in out Set; Position : in out Cursor) is
477 if Position.Node = 0 then
478 raise Constraint_Error with "Position cursor equals No_Element";
481 if Position.Container /= Container'Unrestricted_Access then
482 raise Program_Error with "Position cursor designates wrong set";
485 if Container.Busy > 0 then
486 raise Program_Error with
487 "attempt to tamper with cursors (set is busy)";
490 pragma Assert (Vet (Container, Position.Node),
491 "bad cursor in Delete");
493 Tree_Operations.Delete_Node_Sans_Free (Container, Position.Node);
494 Tree_Operations.Free (Container, Position.Node);
496 Position := No_Element;
499 procedure Delete (Container : in out Set; Item : Element_Type) is
500 X : constant Count_Type := Element_Keys.Find (Container, Item);
503 Tree_Operations.Delete_Node_Sans_Free (Container, X);
506 raise Constraint_Error with "attempt to delete element not in set";
509 Tree_Operations.Free (Container, X);
516 procedure Delete_First (Container : in out Set) is
517 X : constant Count_Type := Container.First;
520 Tree_Operations.Delete_Node_Sans_Free (Container, X);
521 Tree_Operations.Free (Container, X);
529 procedure Delete_Last (Container : in out Set) is
530 X : constant Count_Type := Container.Last;
533 Tree_Operations.Delete_Node_Sans_Free (Container, X);
534 Tree_Operations.Free (Container, X);
542 procedure Difference (Target : in out Set; Source : Set)
543 renames Set_Ops.Set_Difference;
545 function Difference (Left, Right : Set) return Set
546 renames Set_Ops.Set_Difference;
552 function Element (Position : Cursor) return Element_Type is
554 if Position.Node = 0 then
555 raise Constraint_Error with "Position cursor equals No_Element";
558 pragma Assert (Vet (Position.Container.all, Position.Node),
559 "bad cursor in Element");
561 return Position.Container.Nodes (Position.Node).Element;
564 -------------------------
565 -- Equivalent_Elements --
566 -------------------------
568 function Equivalent_Elements (Left, Right : Element_Type) return Boolean is
570 return (if Left < Right or else Right < Left then False else True);
571 end Equivalent_Elements;
573 ---------------------
574 -- Equivalent_Sets --
575 ---------------------
577 function Equivalent_Sets (Left, Right : Set) return Boolean is
578 function Is_Equivalent_Node_Node (L, R : Node_Type) return Boolean;
579 pragma Inline (Is_Equivalent_Node_Node);
581 function Is_Equivalent is
582 new Tree_Operations.Generic_Equal (Is_Equivalent_Node_Node);
584 -----------------------------
585 -- Is_Equivalent_Node_Node --
586 -----------------------------
588 function Is_Equivalent_Node_Node (L, R : Node_Type) return Boolean is
590 return (if L.Element < R.Element then False
591 elsif R.Element < L.Element then False
593 end Is_Equivalent_Node_Node;
595 -- Start of processing for Equivalent_Sets
598 return Is_Equivalent (Left, Right);
605 procedure Exclude (Container : in out Set; Item : Element_Type) is
606 X : constant Count_Type := Element_Keys.Find (Container, Item);
609 Tree_Operations.Delete_Node_Sans_Free (Container, X);
610 Tree_Operations.Free (Container, X);
618 procedure Finalize (Object : in out Iterator) is
620 if Object.Container /= null then
622 B : Natural renames Object.Container.all.Busy;
629 procedure Finalize (Control : in out Reference_Control_Type) is
631 if Control.Container /= null then
633 C : Set renames Control.Container.all;
634 B : Natural renames C.Busy;
635 L : Natural renames C.Lock;
641 Control.Container := null;
649 function Find (Container : Set; Item : Element_Type) return Cursor is
650 Node : constant Count_Type := Element_Keys.Find (Container, Item);
652 return (if Node = 0 then No_Element
653 else Cursor'(Container
'Unrestricted_Access, Node
));
660 function First
(Container
: Set
) return Cursor
is
662 return (if Container
.First
= 0 then No_Element
663 else Cursor
'(Container'Unrestricted_Access, Container.First));
666 function First (Object : Iterator) return Cursor is
668 -- The value of the iterator object's Node component influences the
669 -- behavior of the First (and Last) selector function.
671 -- When the Node component is 0, this means the iterator object was
672 -- constructed without a start expression, in which case the (forward)
673 -- iteration starts from the (logical) beginning of the entire sequence
674 -- of items (corresponding to Container.First, for a forward iterator).
676 -- Otherwise, this is iteration over a partial sequence of items. When
677 -- the Node component is positive, the iterator object was constructed
678 -- with a start expression, that specifies the position from which the
679 -- (forward) partial iteration begins.
681 if Object.Node = 0 then
682 return Bounded_Ordered_Sets.First (Object.Container.all);
684 return Cursor'(Object
.Container
, Object
.Node
);
692 function First_Element
(Container
: Set
) return Element_Type
is
694 if Container
.First
= 0 then
695 raise Constraint_Error
with "set is empty";
698 return Container
.Nodes
(Container
.First
).Element
;
705 function Floor
(Container
: Set
; Item
: Element_Type
) return Cursor
is
706 Node
: constant Count_Type
:= Element_Keys
.Floor
(Container
, Item
);
708 return (if Node
= 0 then No_Element
709 else Cursor
'(Container'Unrestricted_Access, Node));
716 package body Generic_Keys is
718 -----------------------
719 -- Local Subprograms --
720 -----------------------
722 function Is_Greater_Key_Node
724 Right : Node_Type) return Boolean;
725 pragma Inline (Is_Greater_Key_Node);
727 function Is_Less_Key_Node
729 Right : Node_Type) return Boolean;
730 pragma Inline (Is_Less_Key_Node);
732 --------------------------
733 -- Local Instantiations --
734 --------------------------
737 new Red_Black_Trees.Generic_Bounded_Keys
738 (Tree_Operations => Tree_Operations,
739 Key_Type => Key_Type,
740 Is_Less_Key_Node => Is_Less_Key_Node,
741 Is_Greater_Key_Node => Is_Greater_Key_Node);
747 procedure Adjust (Control : in out Reference_Control_Type) is
749 if Control.Container /= null then
751 B : Natural renames Control.Container.Busy;
752 L : Natural renames Control.Container.Lock;
764 function Ceiling (Container : Set; Key : Key_Type) return Cursor is
765 Node : constant Count_Type :=
766 Key_Keys.Ceiling (Container, Key);
768 return (if Node = 0 then No_Element
769 else Cursor'(Container
'Unrestricted_Access, Node
));
772 ------------------------
773 -- Constant_Reference --
774 ------------------------
776 function Constant_Reference
777 (Container
: aliased Set
;
778 Key
: Key_Type
) return Constant_Reference_Type
780 Node
: constant Count_Type
:= Key_Keys
.Find
(Container
, Key
);
784 raise Constraint_Error
with "key not in set";
788 Cur
: Cursor
:= Find
(Container
, Key
);
789 pragma Unmodified
(Cur
);
791 N
: Node_Type
renames Container
.Nodes
(Node
);
792 B
: Natural renames Cur
.Container
.Busy
;
793 L
: Natural renames Cur
.Container
.Lock
;
796 return R
: constant Constant_Reference_Type
:=
797 (Element
=> N
.Element
'Access,
798 Control
=> (Controlled
with Container
'Unrestricted_Access))
804 end Constant_Reference
;
810 function Contains
(Container
: Set
; Key
: Key_Type
) return Boolean is
812 return Find
(Container
, Key
) /= No_Element
;
819 procedure Delete
(Container
: in out Set
; Key
: Key_Type
) is
820 X
: constant Count_Type
:= Key_Keys
.Find
(Container
, Key
);
824 raise Constraint_Error
with "attempt to delete key not in set";
827 Tree_Operations
.Delete_Node_Sans_Free
(Container
, X
);
828 Tree_Operations
.Free
(Container
, X
);
835 function Element
(Container
: Set
; Key
: Key_Type
) return Element_Type
is
836 Node
: constant Count_Type
:= Key_Keys
.Find
(Container
, Key
);
840 raise Constraint_Error
with "key not in set";
843 return Container
.Nodes
(Node
).Element
;
846 ---------------------
847 -- Equivalent_Keys --
848 ---------------------
850 function Equivalent_Keys
(Left
, Right
: Key_Type
) return Boolean is
852 return (if Left
< Right
or else Right
< Left
then False else True);
859 procedure Exclude
(Container
: in out Set
; Key
: Key_Type
) is
860 X
: constant Count_Type
:= Key_Keys
.Find
(Container
, Key
);
863 Tree_Operations
.Delete_Node_Sans_Free
(Container
, X
);
864 Tree_Operations
.Free
(Container
, X
);
872 procedure Finalize
(Control
: in out Reference_Control_Type
) is
874 if Control
.Container
/= null then
876 B
: Natural renames Control
.Container
.Busy
;
877 L
: Natural renames Control
.Container
.Lock
;
883 if not (Key
(Control
.Pos
) = Control
.Old_Key
.all) then
884 Delete
(Control
.Container
.all, Key
(Control
.Pos
));
888 Control
.Container
:= null;
896 function Find
(Container
: Set
; Key
: Key_Type
) return Cursor
is
897 Node
: constant Count_Type
:= Key_Keys
.Find
(Container
, Key
);
899 return (if Node
= 0 then No_Element
900 else Cursor
'(Container'Unrestricted_Access, Node));
907 function Floor (Container : Set; Key : Key_Type) return Cursor is
908 Node : constant Count_Type := Key_Keys.Floor (Container, Key);
910 return (if Node = 0 then No_Element
911 else Cursor'(Container
'Unrestricted_Access, Node
));
914 -------------------------
915 -- Is_Greater_Key_Node --
916 -------------------------
918 function Is_Greater_Key_Node
920 Right
: Node_Type
) return Boolean
923 return Key
(Right
.Element
) < Left
;
924 end Is_Greater_Key_Node
;
926 ----------------------
927 -- Is_Less_Key_Node --
928 ----------------------
930 function Is_Less_Key_Node
932 Right
: Node_Type
) return Boolean
935 return Left
< Key
(Right
.Element
);
936 end Is_Less_Key_Node
;
942 function Key
(Position
: Cursor
) return Key_Type
is
944 if Position
.Node
= 0 then
945 raise Constraint_Error
with
946 "Position cursor equals No_Element";
949 pragma Assert
(Vet
(Position
.Container
.all, Position
.Node
),
950 "bad cursor in Key");
952 return Key
(Position
.Container
.Nodes
(Position
.Node
).Element
);
960 (Stream
: not null access Root_Stream_Type
'Class;
961 Item
: out Reference_Type
)
964 raise Program_Error
with "attempt to stream reference";
967 ------------------------------
968 -- Reference_Preserving_Key --
969 ------------------------------
971 function Reference_Preserving_Key
972 (Container
: aliased in out Set
;
973 Position
: Cursor
) return Reference_Type
976 if Position
.Container
= null then
977 raise Constraint_Error
with "Position cursor has no element";
980 if Position
.Container
/= Container
'Unrestricted_Access then
981 raise Program_Error
with
982 "Position cursor designates wrong container";
986 (Vet
(Container
, Position
.Node
),
987 "bad cursor in function Reference_Preserving_Key");
990 N
: Node_Type
renames Container
.Nodes
(Position
.Node
);
991 B
: Natural renames Container
.Busy
;
992 L
: Natural renames Container
.Lock
;
994 return R
: constant Reference_Type
:=
995 (Element
=> N
.Element
'Access,
998 Container
=> Container
'Access,
1000 Old_Key
=> new Key_Type
'(Key (Position))))
1006 end Reference_Preserving_Key;
1008 function Reference_Preserving_Key
1009 (Container : aliased in out Set;
1010 Key : Key_Type) return Reference_Type
1012 Node : constant Count_Type := Key_Keys.Find (Container, Key);
1016 raise Constraint_Error with "key not in set";
1020 N : Node_Type renames Container.Nodes (Node);
1021 B : Natural renames Container.Busy;
1022 L : Natural renames Container.Lock;
1024 return R : constant Reference_Type :=
1025 (Element => N.Element'Access,
1028 Container => Container'Access,
1029 Pos => Find (Container, Key),
1030 Old_Key => new Key_Type'(Key
)))
1036 end Reference_Preserving_Key
;
1043 (Container
: in out Set
;
1045 New_Item
: Element_Type
)
1047 Node
: constant Count_Type
:= Key_Keys
.Find
(Container
, Key
);
1051 raise Constraint_Error
with
1052 "attempt to replace key not in set";
1055 Replace_Element
(Container
, Node
, New_Item
);
1058 -----------------------------------
1059 -- Update_Element_Preserving_Key --
1060 -----------------------------------
1062 procedure Update_Element_Preserving_Key
1063 (Container
: in out Set
;
1065 Process
: not null access procedure (Element
: in out Element_Type
))
1068 if Position
.Node
= 0 then
1069 raise Constraint_Error
with
1070 "Position cursor equals No_Element";
1073 if Position
.Container
/= Container
'Unrestricted_Access then
1074 raise Program_Error
with
1075 "Position cursor designates wrong set";
1078 pragma Assert
(Vet
(Container
, Position
.Node
),
1079 "bad cursor in Update_Element_Preserving_Key");
1081 -- Per AI05-0022, the container implementation is required to detect
1082 -- element tampering by a generic actual subprogram.
1085 N
: Node_Type
renames Container
.Nodes
(Position
.Node
);
1086 E
: Element_Type
renames N
.Element
;
1087 K
: constant Key_Type
:= Key
(E
);
1089 B
: Natural renames Container
.Busy
;
1090 L
: Natural renames Container
.Lock
;
1100 Eq
:= Equivalent_Keys
(K
, Key
(E
));
1116 Tree_Operations
.Delete_Node_Sans_Free
(Container
, Position
.Node
);
1117 Tree_Operations
.Free
(Container
, Position
.Node
);
1119 raise Program_Error
with "key was modified";
1120 end Update_Element_Preserving_Key
;
1127 (Stream
: not null access Root_Stream_Type
'Class;
1128 Item
: Reference_Type
)
1131 raise Program_Error
with "attempt to stream reference";
1139 function Has_Element
(Position
: Cursor
) return Boolean is
1141 return Position
/= No_Element
;
1148 procedure Include
(Container
: in out Set
; New_Item
: Element_Type
) is
1153 Insert
(Container
, New_Item
, Position
, Inserted
);
1155 if not Inserted
then
1156 if Container
.Lock
> 0 then
1157 raise Program_Error
with
1158 "attempt to tamper with elements (set is locked)";
1161 Container
.Nodes
(Position
.Node
).Element
:= New_Item
;
1170 (Container
: in out Set
;
1171 New_Item
: Element_Type
;
1172 Position
: out Cursor
;
1173 Inserted
: out Boolean)
1182 Position
.Container
:= Container
'Unrestricted_Access;
1186 (Container
: in out Set
;
1187 New_Item
: Element_Type
)
1190 pragma Unreferenced
(Position
);
1195 Insert
(Container
, New_Item
, Position
, Inserted
);
1197 if not Inserted
then
1198 raise Constraint_Error
with
1199 "attempt to insert element already in set";
1203 ----------------------
1204 -- Insert_Sans_Hint --
1205 ----------------------
1207 procedure Insert_Sans_Hint
1208 (Container
: in out Set
;
1209 New_Item
: Element_Type
;
1210 Node
: out Count_Type
;
1211 Inserted
: out Boolean)
1213 procedure Set_Element
(Node
: in out Node_Type
);
1214 pragma Inline
(Set_Element
);
1216 function New_Node
return Count_Type
;
1217 pragma Inline
(New_Node
);
1219 procedure Insert_Post
is
1220 new Element_Keys
.Generic_Insert_Post
(New_Node
);
1222 procedure Conditional_Insert_Sans_Hint
is
1223 new Element_Keys
.Generic_Conditional_Insert
(Insert_Post
);
1225 procedure Allocate
is
1226 new Tree_Operations
.Generic_Allocate
(Set_Element
);
1232 function New_Node
return Count_Type
is
1233 Result
: Count_Type
;
1235 Allocate
(Container
, Result
);
1243 procedure Set_Element
(Node
: in out Node_Type
) is
1245 Node
.Element
:= New_Item
;
1248 -- Start of processing for Insert_Sans_Hint
1251 if Container
.Busy
> 0 then
1252 raise Program_Error
with
1253 "attemot to tamper with cursors (set is busy)";
1256 Conditional_Insert_Sans_Hint
1261 end Insert_Sans_Hint
;
1263 ----------------------
1264 -- Insert_With_Hint --
1265 ----------------------
1267 procedure Insert_With_Hint
1268 (Dst_Set
: in out Set
;
1269 Dst_Hint
: Count_Type
;
1270 Src_Node
: Node_Type
;
1271 Dst_Node
: out Count_Type
)
1274 pragma Unreferenced
(Success
);
1276 procedure Set_Element
(Node
: in out Node_Type
);
1277 pragma Inline
(Set_Element
);
1279 function New_Node
return Count_Type
;
1280 pragma Inline
(New_Node
);
1282 procedure Insert_Post
is
1283 new Element_Keys
.Generic_Insert_Post
(New_Node
);
1285 procedure Insert_Sans_Hint
is
1286 new Element_Keys
.Generic_Conditional_Insert
(Insert_Post
);
1288 procedure Local_Insert_With_Hint
is
1289 new Element_Keys
.Generic_Conditional_Insert_With_Hint
1293 procedure Allocate
is
1294 new Tree_Operations
.Generic_Allocate
(Set_Element
);
1300 function New_Node
return Count_Type
is
1301 Result
: Count_Type
;
1303 Allocate
(Dst_Set
, Result
);
1311 procedure Set_Element
(Node
: in out Node_Type
) is
1313 Node
.Element
:= Src_Node
.Element
;
1316 -- Start of processing for Insert_With_Hint
1319 Local_Insert_With_Hint
1325 end Insert_With_Hint
;
1331 procedure Intersection
(Target
: in out Set
; Source
: Set
)
1332 renames Set_Ops
.Set_Intersection
;
1334 function Intersection
(Left
, Right
: Set
) return Set
1335 renames Set_Ops
.Set_Intersection
;
1341 function Is_Empty
(Container
: Set
) return Boolean is
1343 return Container
.Length
= 0;
1346 -----------------------------
1347 -- Is_Greater_Element_Node --
1348 -----------------------------
1350 function Is_Greater_Element_Node
1351 (Left
: Element_Type
;
1352 Right
: Node_Type
) return Boolean
1355 -- Compute e > node same as node < e
1357 return Right
.Element
< Left
;
1358 end Is_Greater_Element_Node
;
1360 --------------------------
1361 -- Is_Less_Element_Node --
1362 --------------------------
1364 function Is_Less_Element_Node
1365 (Left
: Element_Type
;
1366 Right
: Node_Type
) return Boolean
1369 return Left
< Right
.Element
;
1370 end Is_Less_Element_Node
;
1372 -----------------------
1373 -- Is_Less_Node_Node --
1374 -----------------------
1376 function Is_Less_Node_Node
(L
, R
: Node_Type
) return Boolean is
1378 return L
.Element
< R
.Element
;
1379 end Is_Less_Node_Node
;
1385 function Is_Subset
(Subset
: Set
; Of_Set
: Set
) return Boolean
1386 renames Set_Ops
.Set_Subset
;
1394 Process
: not null access procedure (Position
: Cursor
))
1396 procedure Process_Node
(Node
: Count_Type
);
1397 pragma Inline
(Process_Node
);
1399 procedure Local_Iterate
is
1400 new Tree_Operations
.Generic_Iteration
(Process_Node
);
1406 procedure Process_Node
(Node
: Count_Type
) is
1408 Process
(Cursor
'(Container'Unrestricted_Access, Node));
1411 S : Set renames Container'Unrestricted_Access.all;
1412 B : Natural renames S.Busy;
1414 -- Start of processing for Iterate
1430 function Iterate (Container : Set)
1431 return Set_Iterator_Interfaces.Reversible_Iterator'class
1433 B : Natural renames Container'Unrestricted_Access.all.Busy;
1436 -- The value of the Node component influences the behavior of the First
1437 -- and Last selector functions of the iterator object. When the Node
1438 -- component is 0 (as is the case here), this means the iterator object
1439 -- was constructed without a start expression. This is a complete
1440 -- iterator, meaning that the iteration starts from the (logical)
1441 -- beginning of the sequence of items.
1443 -- Note: For a forward iterator, Container.First is the beginning, and
1444 -- for a reverse iterator, Container.Last is the beginning.
1446 return It : constant Iterator :=
1447 Iterator'(Limited_Controlled
with
1448 Container
=> Container
'Unrestricted_Access,
1455 function Iterate
(Container
: Set
; Start
: Cursor
)
1456 return Set_Iterator_Interfaces
.Reversible_Iterator
'class
1458 B
: Natural renames Container
'Unrestricted_Access.all.Busy
;
1461 -- It was formerly the case that when Start = No_Element, the partial
1462 -- iterator was defined to behave the same as for a complete iterator,
1463 -- and iterate over the entire sequence of items. However, those
1464 -- semantics were unintuitive and arguably error-prone (it is too easy
1465 -- to accidentally create an endless loop), and so they were changed,
1466 -- per the ARG meeting in Denver on 2011/11. However, there was no
1467 -- consensus about what positive meaning this corner case should have,
1468 -- and so it was decided to simply raise an exception. This does imply,
1469 -- however, that it is not possible to use a partial iterator to specify
1470 -- an empty sequence of items.
1472 if Start
= No_Element
then
1473 raise Constraint_Error
with
1474 "Start position for iterator equals No_Element";
1477 if Start
.Container
/= Container
'Unrestricted_Access then
1478 raise Program_Error
with
1479 "Start cursor of Iterate designates wrong set";
1482 pragma Assert
(Vet
(Container
, Start
.Node
),
1483 "Start cursor of Iterate is bad");
1485 -- The value of the Node component influences the behavior of the First
1486 -- and Last selector functions of the iterator object. When the Node
1487 -- component is positive (as is the case here), it means that this
1488 -- is a partial iteration, over a subset of the complete sequence of
1489 -- items. The iterator object was constructed with a start expression,
1490 -- indicating the position from which the iteration begins. (Note that
1491 -- the start position has the same value irrespective of whether this
1492 -- is a forward or reverse iteration.)
1494 return It
: constant Iterator
:=
1495 Iterator
'(Limited_Controlled with
1496 Container => Container'Unrestricted_Access,
1507 function Last (Container : Set) return Cursor is
1509 return (if Container.Last = 0 then No_Element
1510 else Cursor'(Container
'Unrestricted_Access, Container
.Last
));
1513 function Last
(Object
: Iterator
) return Cursor
is
1515 -- The value of the iterator object's Node component influences the
1516 -- behavior of the Last (and First) selector function.
1518 -- When the Node component is 0, this means the iterator object was
1519 -- constructed without a start expression, in which case the (reverse)
1520 -- iteration starts from the (logical) beginning of the entire sequence
1521 -- (corresponding to Container.Last, for a reverse iterator).
1523 -- Otherwise, this is iteration over a partial sequence of items. When
1524 -- the Node component is positive, the iterator object was constructed
1525 -- with a start expression, that specifies the position from which the
1526 -- (reverse) partial iteration begins.
1528 if Object
.Node
= 0 then
1529 return Bounded_Ordered_Sets
.Last
(Object
.Container
.all);
1531 return Cursor
'(Object.Container, Object.Node);
1539 function Last_Element (Container : Set) return Element_Type is
1541 if Container.Last = 0 then
1542 raise Constraint_Error with "set is empty";
1545 return Container.Nodes (Container.Last).Element;
1552 function Left (Node : Node_Type) return Count_Type is
1561 function Length (Container : Set) return Count_Type is
1563 return Container.Length;
1570 procedure Move (Target : in out Set; Source : in out Set) is
1572 if Target'Address = Source'Address then
1576 if Source.Busy > 0 then
1577 raise Program_Error with
1578 "attempt to tamper with cursors (container is busy)";
1581 Target.Assign (Source);
1589 function Next (Position : Cursor) return Cursor is
1591 if Position = No_Element then
1595 pragma Assert (Vet (Position.Container.all, Position.Node),
1596 "bad cursor in Next");
1599 Node : constant Count_Type :=
1600 Tree_Operations.Next (Position.Container.all, Position.Node);
1607 return Cursor'(Position
.Container
, Node
);
1611 procedure Next
(Position
: in out Cursor
) is
1613 Position
:= Next
(Position
);
1616 function Next
(Object
: Iterator
; Position
: Cursor
) return Cursor
is
1618 if Position
.Container
= null then
1622 if Position
.Container
/= Object
.Container
then
1623 raise Program_Error
with
1624 "Position cursor of Next designates wrong set";
1627 return Next
(Position
);
1634 function Overlap
(Left
, Right
: Set
) return Boolean
1635 renames Set_Ops
.Set_Overlap
;
1641 function Parent
(Node
: Node_Type
) return Count_Type
is
1650 function Previous
(Position
: Cursor
) return Cursor
is
1652 if Position
= No_Element
then
1656 pragma Assert
(Vet
(Position
.Container
.all, Position
.Node
),
1657 "bad cursor in Previous");
1660 Node
: constant Count_Type
:=
1661 Tree_Operations
.Previous
(Position
.Container
.all, Position
.Node
);
1663 return (if Node
= 0 then No_Element
1664 else Cursor
'(Position.Container, Node));
1668 procedure Previous (Position : in out Cursor) is
1670 Position := Previous (Position);
1673 function Previous (Object : Iterator; Position : Cursor) return Cursor is
1675 if Position.Container = null then
1679 if Position.Container /= Object.Container then
1680 raise Program_Error with
1681 "Position cursor of Previous designates wrong set";
1684 return Previous (Position);
1691 procedure Query_Element
1693 Process : not null access procedure (Element : Element_Type))
1696 if Position.Node = 0 then
1697 raise Constraint_Error with "Position cursor equals No_Element";
1700 pragma Assert (Vet (Position.Container.all, Position.Node),
1701 "bad cursor in Query_Element");
1704 S : Set renames Position.Container.all;
1705 B : Natural renames S.Busy;
1706 L : Natural renames S.Lock;
1713 Process (S.Nodes (Position.Node).Element);
1731 (Stream : not null access Root_Stream_Type'Class;
1732 Container : out Set)
1734 procedure Read_Element (Node : in out Node_Type);
1735 pragma Inline (Read_Element);
1737 procedure Allocate is
1738 new Tree_Operations.Generic_Allocate (Read_Element);
1740 procedure Read_Elements is
1741 new Tree_Operations.Generic_Read (Allocate);
1747 procedure Read_Element (Node : in out Node_Type) is
1749 Element_Type'Read (Stream, Node.Element);
1752 -- Start of processing for Read
1755 Read_Elements (Stream, Container);
1759 (Stream : not null access Root_Stream_Type'Class;
1763 raise Program_Error with "attempt to stream set cursor";
1767 (Stream : not null access Root_Stream_Type'Class;
1768 Item : out Constant_Reference_Type)
1771 raise Program_Error with "attempt to stream reference";
1778 procedure Replace (Container : in out Set; New_Item : Element_Type) is
1779 Node : constant Count_Type := Element_Keys.Find (Container, New_Item);
1783 raise Constraint_Error with
1784 "attempt to replace element not in set";
1787 if Container.Lock > 0 then
1788 raise Program_Error with
1789 "attempt to tamper with elements (set is locked)";
1792 Container.Nodes (Node).Element := New_Item;
1795 ---------------------
1796 -- Replace_Element --
1797 ---------------------
1799 procedure Replace_Element
1800 (Container : in out Set;
1802 Item : Element_Type)
1804 pragma Assert (Index /= 0);
1806 function New_Node return Count_Type;
1807 pragma Inline (New_Node);
1809 procedure Local_Insert_Post is
1810 new Element_Keys.Generic_Insert_Post (New_Node);
1812 procedure Local_Insert_Sans_Hint is
1813 new Element_Keys.Generic_Conditional_Insert (Local_Insert_Post);
1815 procedure Local_Insert_With_Hint is
1816 new Element_Keys.Generic_Conditional_Insert_With_Hint
1818 Local_Insert_Sans_Hint);
1820 Nodes : Nodes_Type renames Container.Nodes;
1821 Node : Node_Type renames Nodes (Index);
1827 function New_Node return Count_Type is
1829 Node.Element := Item;
1830 Node.Color := Red_Black_Trees.Red;
1838 Result : Count_Type;
1842 -- Per AI05-0022, the container implementation is required to detect
1843 -- element tampering by a generic actual subprogram.
1845 B : Natural renames Container.Busy;
1846 L : Natural renames Container.Lock;
1848 -- Start of processing for Replace_Element
1851 -- Replace_Element assigns value Item to the element designated by Node,
1852 -- per certain semantic constraints, described as follows.
1854 -- If Item is equivalent to the element, then element is replaced and
1855 -- there's nothing else to do. This is the easy case.
1857 -- If Item is not equivalent, then the node will (possibly) have to move
1858 -- to some other place in the tree. This is slighly more complicated,
1859 -- because we must ensure that Item is not equivalent to some other
1860 -- element in the tree (in which case, the replacement is not allowed).
1862 -- Determine whether Item is equivalent to element on the specified
1869 Compare := (if Item < Node.Element then False
1870 elsif Node.Element < Item then False
1885 -- Item is equivalent to the node's element, so we will not have to
1888 if Container.Lock > 0 then
1889 raise Program_Error with
1890 "attempt to tamper with elements (set is locked)";
1893 Node.Element := Item;
1897 -- The replacement Item is not equivalent to the element on the
1898 -- specified node, which means that it will need to be re-inserted in a
1899 -- different position in the tree. We must now determine whether Item is
1900 -- equivalent to some other element in the tree (which would prohibit
1901 -- the assignment and hence the move).
1903 -- Ceiling returns the smallest element equivalent or greater than the
1904 -- specified Item; if there is no such element, then it returns 0.
1906 Hint := Element_Keys.Ceiling (Container, Item);
1908 if Hint /= 0 then -- Item <= Nodes (Hint).Element
1913 Compare := Item < Nodes (Hint).Element;
1925 -- Item is equivalent to Nodes (Hint).Element
1929 -- Ceiling returns an element that is equivalent or greater than
1930 -- Item. If Item is "not less than" the element, then by
1931 -- elimination we know that Item is equivalent to the element.
1933 -- But this means that it is not possible to assign the value of
1934 -- Item to the specified element (on Node), because a different
1935 -- element (on Hint) equivalent to Item already exsits. (Were we
1936 -- to change Node's element value, we would have to move Node, but
1937 -- we would be unable to move the Node, because its new position
1938 -- in the tree is already occupied by an equivalent element.)
1940 raise Program_Error with "attempt to replace existing element";
1943 -- Item is not equivalent to any other element in the tree
1944 -- (specifically, it is less than Nodes (Hint).Element), so it is
1945 -- safe to assign the value of Item to Node.Element. This means that
1946 -- the node will have to move to a different position in the tree
1947 -- (because its element will have a different value).
1949 -- The nearest (greater) neighbor of Item is Hint. This will be the
1950 -- insertion position of Node (because its element will have Item as
1953 -- If Node equals Hint, the relative position of Node does not
1954 -- change. This allows us to perform an optimization: we need not
1955 -- remove Node from the tree and then reinsert it with its new value,
1956 -- because it would only be placed in the exact same position.
1958 if Hint = Index then
1959 if Container.Lock > 0 then
1960 raise Program_Error with
1961 "attempt to tamper with elements (set is locked)";
1964 Node.Element := Item;
1969 -- If we get here, it is because Item was greater than all elements in
1970 -- the tree (Hint = 0), or because Item was less than some element at a
1971 -- different place in the tree (Item < Nodes (Hint).Element and Hint /=
1972 -- Index). In either case, we remove Node from the tree and then insert
1973 -- Item into the tree, onto the same Node.
1975 Tree_Operations.Delete_Node_Sans_Free (Container, Index);
1977 Local_Insert_With_Hint
1982 Inserted => Inserted);
1984 pragma Assert (Inserted);
1985 pragma Assert (Result = Index);
1986 end Replace_Element;
1988 procedure Replace_Element
1989 (Container : in out Set;
1991 New_Item : Element_Type)
1994 if Position.Node = 0 then
1995 raise Constraint_Error with
1996 "Position cursor equals No_Element";
1999 if Position.Container /= Container'Unrestricted_Access then
2000 raise Program_Error with
2001 "Position cursor designates wrong set";
2004 pragma Assert (Vet (Container, Position.Node),
2005 "bad cursor in Replace_Element");
2007 Replace_Element (Container, Position.Node, New_Item);
2008 end Replace_Element;
2010 ---------------------
2011 -- Reverse_Iterate --
2012 ---------------------
2014 procedure Reverse_Iterate
2016 Process : not null access procedure (Position : Cursor))
2018 procedure Process_Node (Node : Count_Type);
2019 pragma Inline (Process_Node);
2021 procedure Local_Reverse_Iterate is
2022 new Tree_Operations.Generic_Reverse_Iteration (Process_Node);
2028 procedure Process_Node (Node : Count_Type) is
2030 Process (Cursor'(Container
'Unrestricted_Access, Node
));
2033 S
: Set
renames Container
'Unrestricted_Access.all;
2034 B
: Natural renames S
.Busy
;
2036 -- Start of processing for Reverse_Iterate
2042 Local_Reverse_Iterate
(S
);
2050 end Reverse_Iterate
;
2056 function Right
(Node
: Node_Type
) return Count_Type
is
2066 (Node
: in out Node_Type
;
2067 Color
: Red_Black_Trees
.Color_Type
)
2070 Node
.Color
:= Color
;
2077 procedure Set_Left
(Node
: in out Node_Type
; Left
: Count_Type
) is
2086 procedure Set_Parent
(Node
: in out Node_Type
; Parent
: Count_Type
) is
2088 Node
.Parent
:= Parent
;
2095 procedure Set_Right
(Node
: in out Node_Type
; Right
: Count_Type
) is
2097 Node
.Right
:= Right
;
2100 --------------------------
2101 -- Symmetric_Difference --
2102 --------------------------
2104 procedure Symmetric_Difference
(Target
: in out Set
; Source
: Set
)
2105 renames Set_Ops
.Set_Symmetric_Difference
;
2107 function Symmetric_Difference
(Left
, Right
: Set
) return Set
2108 renames Set_Ops
.Set_Symmetric_Difference
;
2114 function To_Set
(New_Item
: Element_Type
) return Set
is
2118 return S
: Set
(1) do
2119 Insert_Sans_Hint
(S
, New_Item
, Node
, Inserted
);
2120 pragma Assert
(Inserted
);
2128 procedure Union
(Target
: in out Set
; Source
: Set
)
2129 renames Set_Ops
.Set_Union
;
2131 function Union
(Left
, Right
: Set
) return Set
2132 renames Set_Ops
.Set_Union
;
2139 (Stream
: not null access Root_Stream_Type
'Class;
2142 procedure Write_Element
2143 (Stream
: not null access Root_Stream_Type
'Class;
2145 pragma Inline
(Write_Element
);
2147 procedure Write_Elements
is
2148 new Tree_Operations
.Generic_Write
(Write_Element
);
2154 procedure Write_Element
2155 (Stream
: not null access Root_Stream_Type
'Class;
2159 Element_Type
'Write (Stream
, Node
.Element
);
2162 -- Start of processing for Write
2165 Write_Elements
(Stream
, Container
);
2169 (Stream
: not null access Root_Stream_Type
'Class;
2173 raise Program_Error
with "attempt to stream set cursor";
2177 (Stream
: not null access Root_Stream_Type
'Class;
2178 Item
: Constant_Reference_Type
)
2181 raise Program_Error
with "attempt to stream reference";
2184 end Ada
.Containers
.Bounded_Ordered_Sets
;