[RS6000] PR69645, -ffixed-reg ignored
[official-gcc.git] / gcc / rtlanal.c
blob0b6e1e0e38d18f76a92ddbd43c45f938b0144fe8
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "predict.h"
29 #include "df.h"
30 #include "tm_p.h"
31 #include "insn-config.h"
32 #include "regs.h"
33 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
34 #include "recog.h"
35 #include "addresses.h"
36 #include "rtl-iter.h"
38 /* Forward declarations */
39 static void set_of_1 (rtx, const_rtx, void *);
40 static bool covers_regno_p (const_rtx, unsigned int);
41 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
42 static int computed_jump_p_1 (const_rtx);
43 static void parms_set (rtx, const_rtx, void *);
45 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, machine_mode,
46 const_rtx, machine_mode,
47 unsigned HOST_WIDE_INT);
48 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, machine_mode,
49 const_rtx, machine_mode,
50 unsigned HOST_WIDE_INT);
51 static unsigned int cached_num_sign_bit_copies (const_rtx, machine_mode, const_rtx,
52 machine_mode,
53 unsigned int);
54 static unsigned int num_sign_bit_copies1 (const_rtx, machine_mode, const_rtx,
55 machine_mode, unsigned int);
57 rtx_subrtx_bound_info rtx_all_subrtx_bounds[NUM_RTX_CODE];
58 rtx_subrtx_bound_info rtx_nonconst_subrtx_bounds[NUM_RTX_CODE];
60 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
61 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
62 SIGN_EXTEND then while narrowing we also have to enforce the
63 representation and sign-extend the value to mode DESTINATION_REP.
65 If the value is already sign-extended to DESTINATION_REP mode we
66 can just switch to DESTINATION mode on it. For each pair of
67 integral modes SOURCE and DESTINATION, when truncating from SOURCE
68 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
69 contains the number of high-order bits in SOURCE that have to be
70 copies of the sign-bit so that we can do this mode-switch to
71 DESTINATION. */
73 static unsigned int
74 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
76 /* Store X into index I of ARRAY. ARRAY is known to have at least I
77 elements. Return the new base of ARRAY. */
79 template <typename T>
80 typename T::value_type *
81 generic_subrtx_iterator <T>::add_single_to_queue (array_type &array,
82 value_type *base,
83 size_t i, value_type x)
85 if (base == array.stack)
87 if (i < LOCAL_ELEMS)
89 base[i] = x;
90 return base;
92 gcc_checking_assert (i == LOCAL_ELEMS);
93 /* A previous iteration might also have moved from the stack to the
94 heap, in which case the heap array will already be big enough. */
95 if (vec_safe_length (array.heap) <= i)
96 vec_safe_grow (array.heap, i + 1);
97 base = array.heap->address ();
98 memcpy (base, array.stack, sizeof (array.stack));
99 base[LOCAL_ELEMS] = x;
100 return base;
102 unsigned int length = array.heap->length ();
103 if (length > i)
105 gcc_checking_assert (base == array.heap->address ());
106 base[i] = x;
107 return base;
109 else
111 gcc_checking_assert (i == length);
112 vec_safe_push (array.heap, x);
113 return array.heap->address ();
117 /* Add the subrtxes of X to worklist ARRAY, starting at END. Return the
118 number of elements added to the worklist. */
120 template <typename T>
121 size_t
122 generic_subrtx_iterator <T>::add_subrtxes_to_queue (array_type &array,
123 value_type *base,
124 size_t end, rtx_type x)
126 enum rtx_code code = GET_CODE (x);
127 const char *format = GET_RTX_FORMAT (code);
128 size_t orig_end = end;
129 if (__builtin_expect (INSN_P (x), false))
131 /* Put the pattern at the top of the queue, since that's what
132 we're likely to want most. It also allows for the SEQUENCE
133 code below. */
134 for (int i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; --i)
135 if (format[i] == 'e')
137 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
138 if (__builtin_expect (end < LOCAL_ELEMS, true))
139 base[end++] = subx;
140 else
141 base = add_single_to_queue (array, base, end++, subx);
144 else
145 for (int i = 0; format[i]; ++i)
146 if (format[i] == 'e')
148 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
149 if (__builtin_expect (end < LOCAL_ELEMS, true))
150 base[end++] = subx;
151 else
152 base = add_single_to_queue (array, base, end++, subx);
154 else if (format[i] == 'E')
156 unsigned int length = GET_NUM_ELEM (x->u.fld[i].rt_rtvec);
157 rtx *vec = x->u.fld[i].rt_rtvec->elem;
158 if (__builtin_expect (end + length <= LOCAL_ELEMS, true))
159 for (unsigned int j = 0; j < length; j++)
160 base[end++] = T::get_value (vec[j]);
161 else
162 for (unsigned int j = 0; j < length; j++)
163 base = add_single_to_queue (array, base, end++,
164 T::get_value (vec[j]));
165 if (code == SEQUENCE && end == length)
166 /* If the subrtxes of the sequence fill the entire array then
167 we know that no other parts of a containing insn are queued.
168 The caller is therefore iterating over the sequence as a
169 PATTERN (...), so we also want the patterns of the
170 subinstructions. */
171 for (unsigned int j = 0; j < length; j++)
173 typename T::rtx_type x = T::get_rtx (base[j]);
174 if (INSN_P (x))
175 base[j] = T::get_value (PATTERN (x));
178 return end - orig_end;
181 template <typename T>
182 void
183 generic_subrtx_iterator <T>::free_array (array_type &array)
185 vec_free (array.heap);
188 template <typename T>
189 const size_t generic_subrtx_iterator <T>::LOCAL_ELEMS;
191 template class generic_subrtx_iterator <const_rtx_accessor>;
192 template class generic_subrtx_iterator <rtx_var_accessor>;
193 template class generic_subrtx_iterator <rtx_ptr_accessor>;
195 /* Return 1 if the value of X is unstable
196 (would be different at a different point in the program).
197 The frame pointer, arg pointer, etc. are considered stable
198 (within one function) and so is anything marked `unchanging'. */
201 rtx_unstable_p (const_rtx x)
203 const RTX_CODE code = GET_CODE (x);
204 int i;
205 const char *fmt;
207 switch (code)
209 case MEM:
210 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
212 case CONST:
213 CASE_CONST_ANY:
214 case SYMBOL_REF:
215 case LABEL_REF:
216 return 0;
218 case REG:
219 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
220 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
221 /* The arg pointer varies if it is not a fixed register. */
222 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
223 return 0;
224 /* ??? When call-clobbered, the value is stable modulo the restore
225 that must happen after a call. This currently screws up local-alloc
226 into believing that the restore is not needed. */
227 if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED && x == pic_offset_table_rtx)
228 return 0;
229 return 1;
231 case ASM_OPERANDS:
232 if (MEM_VOLATILE_P (x))
233 return 1;
235 /* Fall through. */
237 default:
238 break;
241 fmt = GET_RTX_FORMAT (code);
242 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
243 if (fmt[i] == 'e')
245 if (rtx_unstable_p (XEXP (x, i)))
246 return 1;
248 else if (fmt[i] == 'E')
250 int j;
251 for (j = 0; j < XVECLEN (x, i); j++)
252 if (rtx_unstable_p (XVECEXP (x, i, j)))
253 return 1;
256 return 0;
259 /* Return 1 if X has a value that can vary even between two
260 executions of the program. 0 means X can be compared reliably
261 against certain constants or near-constants.
262 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
263 zero, we are slightly more conservative.
264 The frame pointer and the arg pointer are considered constant. */
266 bool
267 rtx_varies_p (const_rtx x, bool for_alias)
269 RTX_CODE code;
270 int i;
271 const char *fmt;
273 if (!x)
274 return 0;
276 code = GET_CODE (x);
277 switch (code)
279 case MEM:
280 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
282 case CONST:
283 CASE_CONST_ANY:
284 case SYMBOL_REF:
285 case LABEL_REF:
286 return 0;
288 case REG:
289 /* Note that we have to test for the actual rtx used for the frame
290 and arg pointers and not just the register number in case we have
291 eliminated the frame and/or arg pointer and are using it
292 for pseudos. */
293 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
294 /* The arg pointer varies if it is not a fixed register. */
295 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
296 return 0;
297 if (x == pic_offset_table_rtx
298 /* ??? When call-clobbered, the value is stable modulo the restore
299 that must happen after a call. This currently screws up
300 local-alloc into believing that the restore is not needed, so we
301 must return 0 only if we are called from alias analysis. */
302 && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED || for_alias))
303 return 0;
304 return 1;
306 case LO_SUM:
307 /* The operand 0 of a LO_SUM is considered constant
308 (in fact it is related specifically to operand 1)
309 during alias analysis. */
310 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
311 || rtx_varies_p (XEXP (x, 1), for_alias);
313 case ASM_OPERANDS:
314 if (MEM_VOLATILE_P (x))
315 return 1;
317 /* Fall through. */
319 default:
320 break;
323 fmt = GET_RTX_FORMAT (code);
324 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
325 if (fmt[i] == 'e')
327 if (rtx_varies_p (XEXP (x, i), for_alias))
328 return 1;
330 else if (fmt[i] == 'E')
332 int j;
333 for (j = 0; j < XVECLEN (x, i); j++)
334 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
335 return 1;
338 return 0;
341 /* Compute an approximation for the offset between the register
342 FROM and TO for the current function, as it was at the start
343 of the routine. */
345 static HOST_WIDE_INT
346 get_initial_register_offset (int from, int to)
348 #ifdef ELIMINABLE_REGS
349 static const struct elim_table_t
351 const int from;
352 const int to;
353 } table[] = ELIMINABLE_REGS;
354 HOST_WIDE_INT offset1, offset2;
355 unsigned int i, j;
357 if (to == from)
358 return 0;
360 /* It is not safe to call INITIAL_ELIMINATION_OFFSET
361 before the reload pass. We need to give at least
362 an estimation for the resulting frame size. */
363 if (! reload_completed)
365 offset1 = crtl->outgoing_args_size + get_frame_size ();
366 #if !STACK_GROWS_DOWNWARD
367 offset1 = - offset1;
368 #endif
369 if (to == STACK_POINTER_REGNUM)
370 return offset1;
371 else if (from == STACK_POINTER_REGNUM)
372 return - offset1;
373 else
374 return 0;
377 for (i = 0; i < ARRAY_SIZE (table); i++)
378 if (table[i].from == from)
380 if (table[i].to == to)
382 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
383 offset1);
384 return offset1;
386 for (j = 0; j < ARRAY_SIZE (table); j++)
388 if (table[j].to == to
389 && table[j].from == table[i].to)
391 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
392 offset1);
393 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
394 offset2);
395 return offset1 + offset2;
397 if (table[j].from == to
398 && table[j].to == table[i].to)
400 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
401 offset1);
402 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
403 offset2);
404 return offset1 - offset2;
408 else if (table[i].to == from)
410 if (table[i].from == to)
412 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
413 offset1);
414 return - offset1;
416 for (j = 0; j < ARRAY_SIZE (table); j++)
418 if (table[j].to == to
419 && table[j].from == table[i].from)
421 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
422 offset1);
423 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
424 offset2);
425 return - offset1 + offset2;
427 if (table[j].from == to
428 && table[j].to == table[i].from)
430 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
431 offset1);
432 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
433 offset2);
434 return - offset1 - offset2;
439 /* If the requested register combination was not found,
440 try a different more simple combination. */
441 if (from == ARG_POINTER_REGNUM)
442 return get_initial_register_offset (HARD_FRAME_POINTER_REGNUM, to);
443 else if (to == ARG_POINTER_REGNUM)
444 return get_initial_register_offset (from, HARD_FRAME_POINTER_REGNUM);
445 else if (from == HARD_FRAME_POINTER_REGNUM)
446 return get_initial_register_offset (FRAME_POINTER_REGNUM, to);
447 else if (to == HARD_FRAME_POINTER_REGNUM)
448 return get_initial_register_offset (from, FRAME_POINTER_REGNUM);
449 else
450 return 0;
452 #else
453 HOST_WIDE_INT offset;
455 if (to == from)
456 return 0;
458 if (reload_completed)
460 INITIAL_FRAME_POINTER_OFFSET (offset);
462 else
464 offset = crtl->outgoing_args_size + get_frame_size ();
465 #if !STACK_GROWS_DOWNWARD
466 offset = - offset;
467 #endif
470 if (to == STACK_POINTER_REGNUM)
471 return offset;
472 else if (from == STACK_POINTER_REGNUM)
473 return - offset;
474 else
475 return 0;
477 #endif
480 /* Return nonzero if the use of X+OFFSET as an address in a MEM with SIZE
481 bytes can cause a trap. MODE is the mode of the MEM (not that of X) and
482 UNALIGNED_MEMS controls whether nonzero is returned for unaligned memory
483 references on strict alignment machines. */
485 static int
486 rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
487 machine_mode mode, bool unaligned_mems)
489 enum rtx_code code = GET_CODE (x);
491 /* The offset must be a multiple of the mode size if we are considering
492 unaligned memory references on strict alignment machines. */
493 if (STRICT_ALIGNMENT && unaligned_mems && GET_MODE_SIZE (mode) != 0)
495 HOST_WIDE_INT actual_offset = offset;
497 #ifdef SPARC_STACK_BOUNDARY_HACK
498 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
499 the real alignment of %sp. However, when it does this, the
500 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
501 if (SPARC_STACK_BOUNDARY_HACK
502 && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
503 actual_offset -= STACK_POINTER_OFFSET;
504 #endif
506 if (actual_offset % GET_MODE_SIZE (mode) != 0)
507 return 1;
510 switch (code)
512 case SYMBOL_REF:
513 if (SYMBOL_REF_WEAK (x))
514 return 1;
515 if (!CONSTANT_POOL_ADDRESS_P (x))
517 tree decl;
518 HOST_WIDE_INT decl_size;
520 if (offset < 0)
521 return 1;
522 if (size == 0)
523 size = GET_MODE_SIZE (mode);
524 if (size == 0)
525 return offset != 0;
527 /* If the size of the access or of the symbol is unknown,
528 assume the worst. */
529 decl = SYMBOL_REF_DECL (x);
531 /* Else check that the access is in bounds. TODO: restructure
532 expr_size/tree_expr_size/int_expr_size and just use the latter. */
533 if (!decl)
534 decl_size = -1;
535 else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
536 decl_size = (tree_fits_shwi_p (DECL_SIZE_UNIT (decl))
537 ? tree_to_shwi (DECL_SIZE_UNIT (decl))
538 : -1);
539 else if (TREE_CODE (decl) == STRING_CST)
540 decl_size = TREE_STRING_LENGTH (decl);
541 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
542 decl_size = int_size_in_bytes (TREE_TYPE (decl));
543 else
544 decl_size = -1;
546 return (decl_size <= 0 ? offset != 0 : offset + size > decl_size);
549 return 0;
551 case LABEL_REF:
552 return 0;
554 case REG:
555 /* Stack references are assumed not to trap, but we need to deal with
556 nonsensical offsets. */
557 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
558 || x == stack_pointer_rtx
559 /* The arg pointer varies if it is not a fixed register. */
560 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
562 #ifdef RED_ZONE_SIZE
563 HOST_WIDE_INT red_zone_size = RED_ZONE_SIZE;
564 #else
565 HOST_WIDE_INT red_zone_size = 0;
566 #endif
567 HOST_WIDE_INT stack_boundary = PREFERRED_STACK_BOUNDARY
568 / BITS_PER_UNIT;
569 HOST_WIDE_INT low_bound, high_bound;
571 if (size == 0)
572 size = GET_MODE_SIZE (mode);
574 if (x == frame_pointer_rtx)
576 if (FRAME_GROWS_DOWNWARD)
578 high_bound = STARTING_FRAME_OFFSET;
579 low_bound = high_bound - get_frame_size ();
581 else
583 low_bound = STARTING_FRAME_OFFSET;
584 high_bound = low_bound + get_frame_size ();
587 else if (x == hard_frame_pointer_rtx)
589 HOST_WIDE_INT sp_offset
590 = get_initial_register_offset (STACK_POINTER_REGNUM,
591 HARD_FRAME_POINTER_REGNUM);
592 HOST_WIDE_INT ap_offset
593 = get_initial_register_offset (ARG_POINTER_REGNUM,
594 HARD_FRAME_POINTER_REGNUM);
596 #if STACK_GROWS_DOWNWARD
597 low_bound = sp_offset - red_zone_size - stack_boundary;
598 high_bound = ap_offset
599 + FIRST_PARM_OFFSET (current_function_decl)
600 #if !ARGS_GROW_DOWNWARD
601 + crtl->args.size
602 #endif
603 + stack_boundary;
604 #else
605 high_bound = sp_offset + red_zone_size + stack_boundary;
606 low_bound = ap_offset
607 + FIRST_PARM_OFFSET (current_function_decl)
608 #if ARGS_GROW_DOWNWARD
609 - crtl->args.size
610 #endif
611 - stack_boundary;
612 #endif
614 else if (x == stack_pointer_rtx)
616 HOST_WIDE_INT ap_offset
617 = get_initial_register_offset (ARG_POINTER_REGNUM,
618 STACK_POINTER_REGNUM);
620 #if STACK_GROWS_DOWNWARD
621 low_bound = - red_zone_size - stack_boundary;
622 high_bound = ap_offset
623 + FIRST_PARM_OFFSET (current_function_decl)
624 #if !ARGS_GROW_DOWNWARD
625 + crtl->args.size
626 #endif
627 + stack_boundary;
628 #else
629 high_bound = red_zone_size + stack_boundary;
630 low_bound = ap_offset
631 + FIRST_PARM_OFFSET (current_function_decl)
632 #if ARGS_GROW_DOWNWARD
633 - crtl->args.size
634 #endif
635 - stack_boundary;
636 #endif
638 else
640 /* We assume that accesses are safe to at least the
641 next stack boundary.
642 Examples are varargs and __builtin_return_address. */
643 #if ARGS_GROW_DOWNWARD
644 high_bound = FIRST_PARM_OFFSET (current_function_decl)
645 + stack_boundary;
646 low_bound = FIRST_PARM_OFFSET (current_function_decl)
647 - crtl->args.size - stack_boundary;
648 #else
649 low_bound = FIRST_PARM_OFFSET (current_function_decl)
650 - stack_boundary;
651 high_bound = FIRST_PARM_OFFSET (current_function_decl)
652 + crtl->args.size + stack_boundary;
653 #endif
656 if (offset >= low_bound && offset <= high_bound - size)
657 return 0;
658 return 1;
660 /* All of the virtual frame registers are stack references. */
661 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
662 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
663 return 0;
664 return 1;
666 case CONST:
667 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
668 mode, unaligned_mems);
670 case PLUS:
671 /* An address is assumed not to trap if:
672 - it is the pic register plus a constant. */
673 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
674 return 0;
676 /* - or it is an address that can't trap plus a constant integer. */
677 if (CONST_INT_P (XEXP (x, 1))
678 && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + INTVAL (XEXP (x, 1)),
679 size, mode, unaligned_mems))
680 return 0;
682 return 1;
684 case LO_SUM:
685 case PRE_MODIFY:
686 return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
687 mode, unaligned_mems);
689 case PRE_DEC:
690 case PRE_INC:
691 case POST_DEC:
692 case POST_INC:
693 case POST_MODIFY:
694 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
695 mode, unaligned_mems);
697 default:
698 break;
701 /* If it isn't one of the case above, it can cause a trap. */
702 return 1;
705 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
708 rtx_addr_can_trap_p (const_rtx x)
710 return rtx_addr_can_trap_p_1 (x, 0, 0, VOIDmode, false);
713 /* Return true if X is an address that is known to not be zero. */
715 bool
716 nonzero_address_p (const_rtx x)
718 const enum rtx_code code = GET_CODE (x);
720 switch (code)
722 case SYMBOL_REF:
723 return flag_delete_null_pointer_checks && !SYMBOL_REF_WEAK (x);
725 case LABEL_REF:
726 return true;
728 case REG:
729 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
730 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
731 || x == stack_pointer_rtx
732 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
733 return true;
734 /* All of the virtual frame registers are stack references. */
735 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
736 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
737 return true;
738 return false;
740 case CONST:
741 return nonzero_address_p (XEXP (x, 0));
743 case PLUS:
744 /* Handle PIC references. */
745 if (XEXP (x, 0) == pic_offset_table_rtx
746 && CONSTANT_P (XEXP (x, 1)))
747 return true;
748 return false;
750 case PRE_MODIFY:
751 /* Similar to the above; allow positive offsets. Further, since
752 auto-inc is only allowed in memories, the register must be a
753 pointer. */
754 if (CONST_INT_P (XEXP (x, 1))
755 && INTVAL (XEXP (x, 1)) > 0)
756 return true;
757 return nonzero_address_p (XEXP (x, 0));
759 case PRE_INC:
760 /* Similarly. Further, the offset is always positive. */
761 return true;
763 case PRE_DEC:
764 case POST_DEC:
765 case POST_INC:
766 case POST_MODIFY:
767 return nonzero_address_p (XEXP (x, 0));
769 case LO_SUM:
770 return nonzero_address_p (XEXP (x, 1));
772 default:
773 break;
776 /* If it isn't one of the case above, might be zero. */
777 return false;
780 /* Return 1 if X refers to a memory location whose address
781 cannot be compared reliably with constant addresses,
782 or if X refers to a BLKmode memory object.
783 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
784 zero, we are slightly more conservative. */
786 bool
787 rtx_addr_varies_p (const_rtx x, bool for_alias)
789 enum rtx_code code;
790 int i;
791 const char *fmt;
793 if (x == 0)
794 return 0;
796 code = GET_CODE (x);
797 if (code == MEM)
798 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
800 fmt = GET_RTX_FORMAT (code);
801 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
802 if (fmt[i] == 'e')
804 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
805 return 1;
807 else if (fmt[i] == 'E')
809 int j;
810 for (j = 0; j < XVECLEN (x, i); j++)
811 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
812 return 1;
814 return 0;
817 /* Return the CALL in X if there is one. */
820 get_call_rtx_from (rtx x)
822 if (INSN_P (x))
823 x = PATTERN (x);
824 if (GET_CODE (x) == PARALLEL)
825 x = XVECEXP (x, 0, 0);
826 if (GET_CODE (x) == SET)
827 x = SET_SRC (x);
828 if (GET_CODE (x) == CALL && MEM_P (XEXP (x, 0)))
829 return x;
830 return NULL_RTX;
833 /* Return the value of the integer term in X, if one is apparent;
834 otherwise return 0.
835 Only obvious integer terms are detected.
836 This is used in cse.c with the `related_value' field. */
838 HOST_WIDE_INT
839 get_integer_term (const_rtx x)
841 if (GET_CODE (x) == CONST)
842 x = XEXP (x, 0);
844 if (GET_CODE (x) == MINUS
845 && CONST_INT_P (XEXP (x, 1)))
846 return - INTVAL (XEXP (x, 1));
847 if (GET_CODE (x) == PLUS
848 && CONST_INT_P (XEXP (x, 1)))
849 return INTVAL (XEXP (x, 1));
850 return 0;
853 /* If X is a constant, return the value sans apparent integer term;
854 otherwise return 0.
855 Only obvious integer terms are detected. */
858 get_related_value (const_rtx x)
860 if (GET_CODE (x) != CONST)
861 return 0;
862 x = XEXP (x, 0);
863 if (GET_CODE (x) == PLUS
864 && CONST_INT_P (XEXP (x, 1)))
865 return XEXP (x, 0);
866 else if (GET_CODE (x) == MINUS
867 && CONST_INT_P (XEXP (x, 1)))
868 return XEXP (x, 0);
869 return 0;
872 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
873 to somewhere in the same object or object_block as SYMBOL. */
875 bool
876 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
878 tree decl;
880 if (GET_CODE (symbol) != SYMBOL_REF)
881 return false;
883 if (offset == 0)
884 return true;
886 if (offset > 0)
888 if (CONSTANT_POOL_ADDRESS_P (symbol)
889 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
890 return true;
892 decl = SYMBOL_REF_DECL (symbol);
893 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
894 return true;
897 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
898 && SYMBOL_REF_BLOCK (symbol)
899 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
900 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
901 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
902 return true;
904 return false;
907 /* Split X into a base and a constant offset, storing them in *BASE_OUT
908 and *OFFSET_OUT respectively. */
910 void
911 split_const (rtx x, rtx *base_out, rtx *offset_out)
913 if (GET_CODE (x) == CONST)
915 x = XEXP (x, 0);
916 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
918 *base_out = XEXP (x, 0);
919 *offset_out = XEXP (x, 1);
920 return;
923 *base_out = x;
924 *offset_out = const0_rtx;
927 /* Return the number of places FIND appears within X. If COUNT_DEST is
928 zero, we do not count occurrences inside the destination of a SET. */
931 count_occurrences (const_rtx x, const_rtx find, int count_dest)
933 int i, j;
934 enum rtx_code code;
935 const char *format_ptr;
936 int count;
938 if (x == find)
939 return 1;
941 code = GET_CODE (x);
943 switch (code)
945 case REG:
946 CASE_CONST_ANY:
947 case SYMBOL_REF:
948 case CODE_LABEL:
949 case PC:
950 case CC0:
951 return 0;
953 case EXPR_LIST:
954 count = count_occurrences (XEXP (x, 0), find, count_dest);
955 if (XEXP (x, 1))
956 count += count_occurrences (XEXP (x, 1), find, count_dest);
957 return count;
959 case MEM:
960 if (MEM_P (find) && rtx_equal_p (x, find))
961 return 1;
962 break;
964 case SET:
965 if (SET_DEST (x) == find && ! count_dest)
966 return count_occurrences (SET_SRC (x), find, count_dest);
967 break;
969 default:
970 break;
973 format_ptr = GET_RTX_FORMAT (code);
974 count = 0;
976 for (i = 0; i < GET_RTX_LENGTH (code); i++)
978 switch (*format_ptr++)
980 case 'e':
981 count += count_occurrences (XEXP (x, i), find, count_dest);
982 break;
984 case 'E':
985 for (j = 0; j < XVECLEN (x, i); j++)
986 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
987 break;
990 return count;
994 /* Return TRUE if OP is a register or subreg of a register that
995 holds an unsigned quantity. Otherwise, return FALSE. */
997 bool
998 unsigned_reg_p (rtx op)
1000 if (REG_P (op)
1001 && REG_EXPR (op)
1002 && TYPE_UNSIGNED (TREE_TYPE (REG_EXPR (op))))
1003 return true;
1005 if (GET_CODE (op) == SUBREG
1006 && SUBREG_PROMOTED_SIGN (op))
1007 return true;
1009 return false;
1013 /* Nonzero if register REG appears somewhere within IN.
1014 Also works if REG is not a register; in this case it checks
1015 for a subexpression of IN that is Lisp "equal" to REG. */
1018 reg_mentioned_p (const_rtx reg, const_rtx in)
1020 const char *fmt;
1021 int i;
1022 enum rtx_code code;
1024 if (in == 0)
1025 return 0;
1027 if (reg == in)
1028 return 1;
1030 if (GET_CODE (in) == LABEL_REF)
1031 return reg == LABEL_REF_LABEL (in);
1033 code = GET_CODE (in);
1035 switch (code)
1037 /* Compare registers by number. */
1038 case REG:
1039 return REG_P (reg) && REGNO (in) == REGNO (reg);
1041 /* These codes have no constituent expressions
1042 and are unique. */
1043 case SCRATCH:
1044 case CC0:
1045 case PC:
1046 return 0;
1048 CASE_CONST_ANY:
1049 /* These are kept unique for a given value. */
1050 return 0;
1052 default:
1053 break;
1056 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
1057 return 1;
1059 fmt = GET_RTX_FORMAT (code);
1061 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1063 if (fmt[i] == 'E')
1065 int j;
1066 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
1067 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
1068 return 1;
1070 else if (fmt[i] == 'e'
1071 && reg_mentioned_p (reg, XEXP (in, i)))
1072 return 1;
1074 return 0;
1077 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
1078 no CODE_LABEL insn. */
1081 no_labels_between_p (const rtx_insn *beg, const rtx_insn *end)
1083 rtx_insn *p;
1084 if (beg == end)
1085 return 0;
1086 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
1087 if (LABEL_P (p))
1088 return 0;
1089 return 1;
1092 /* Nonzero if register REG is used in an insn between
1093 FROM_INSN and TO_INSN (exclusive of those two). */
1096 reg_used_between_p (const_rtx reg, const rtx_insn *from_insn,
1097 const rtx_insn *to_insn)
1099 rtx_insn *insn;
1101 if (from_insn == to_insn)
1102 return 0;
1104 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
1105 if (NONDEBUG_INSN_P (insn)
1106 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
1107 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
1108 return 1;
1109 return 0;
1112 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
1113 is entirely replaced by a new value and the only use is as a SET_DEST,
1114 we do not consider it a reference. */
1117 reg_referenced_p (const_rtx x, const_rtx body)
1119 int i;
1121 switch (GET_CODE (body))
1123 case SET:
1124 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
1125 return 1;
1127 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
1128 of a REG that occupies all of the REG, the insn references X if
1129 it is mentioned in the destination. */
1130 if (GET_CODE (SET_DEST (body)) != CC0
1131 && GET_CODE (SET_DEST (body)) != PC
1132 && !REG_P (SET_DEST (body))
1133 && ! (GET_CODE (SET_DEST (body)) == SUBREG
1134 && REG_P (SUBREG_REG (SET_DEST (body)))
1135 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
1136 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
1137 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
1138 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
1139 && reg_overlap_mentioned_p (x, SET_DEST (body)))
1140 return 1;
1141 return 0;
1143 case ASM_OPERANDS:
1144 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1145 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
1146 return 1;
1147 return 0;
1149 case CALL:
1150 case USE:
1151 case IF_THEN_ELSE:
1152 return reg_overlap_mentioned_p (x, body);
1154 case TRAP_IF:
1155 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
1157 case PREFETCH:
1158 return reg_overlap_mentioned_p (x, XEXP (body, 0));
1160 case UNSPEC:
1161 case UNSPEC_VOLATILE:
1162 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1163 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
1164 return 1;
1165 return 0;
1167 case PARALLEL:
1168 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1169 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
1170 return 1;
1171 return 0;
1173 case CLOBBER:
1174 if (MEM_P (XEXP (body, 0)))
1175 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
1176 return 1;
1177 return 0;
1179 case COND_EXEC:
1180 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
1181 return 1;
1182 return reg_referenced_p (x, COND_EXEC_CODE (body));
1184 default:
1185 return 0;
1189 /* Nonzero if register REG is set or clobbered in an insn between
1190 FROM_INSN and TO_INSN (exclusive of those two). */
1193 reg_set_between_p (const_rtx reg, const rtx_insn *from_insn,
1194 const rtx_insn *to_insn)
1196 const rtx_insn *insn;
1198 if (from_insn == to_insn)
1199 return 0;
1201 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
1202 if (INSN_P (insn) && reg_set_p (reg, insn))
1203 return 1;
1204 return 0;
1207 /* Return true if REG is set or clobbered inside INSN. */
1210 reg_set_p (const_rtx reg, const_rtx insn)
1212 /* After delay slot handling, call and branch insns might be in a
1213 sequence. Check all the elements there. */
1214 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1216 for (int i = 0; i < XVECLEN (PATTERN (insn), 0); ++i)
1217 if (reg_set_p (reg, XVECEXP (PATTERN (insn), 0, i)))
1218 return true;
1220 return false;
1223 /* We can be passed an insn or part of one. If we are passed an insn,
1224 check if a side-effect of the insn clobbers REG. */
1225 if (INSN_P (insn)
1226 && (FIND_REG_INC_NOTE (insn, reg)
1227 || (CALL_P (insn)
1228 && ((REG_P (reg)
1229 && REGNO (reg) < FIRST_PSEUDO_REGISTER
1230 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
1231 GET_MODE (reg), REGNO (reg)))
1232 || MEM_P (reg)
1233 || find_reg_fusage (insn, CLOBBER, reg)))))
1234 return true;
1236 return set_of (reg, insn) != NULL_RTX;
1239 /* Similar to reg_set_between_p, but check all registers in X. Return 0
1240 only if none of them are modified between START and END. Return 1 if
1241 X contains a MEM; this routine does use memory aliasing. */
1244 modified_between_p (const_rtx x, const rtx_insn *start, const rtx_insn *end)
1246 const enum rtx_code code = GET_CODE (x);
1247 const char *fmt;
1248 int i, j;
1249 rtx_insn *insn;
1251 if (start == end)
1252 return 0;
1254 switch (code)
1256 CASE_CONST_ANY:
1257 case CONST:
1258 case SYMBOL_REF:
1259 case LABEL_REF:
1260 return 0;
1262 case PC:
1263 case CC0:
1264 return 1;
1266 case MEM:
1267 if (modified_between_p (XEXP (x, 0), start, end))
1268 return 1;
1269 if (MEM_READONLY_P (x))
1270 return 0;
1271 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
1272 if (memory_modified_in_insn_p (x, insn))
1273 return 1;
1274 return 0;
1275 break;
1277 case REG:
1278 return reg_set_between_p (x, start, end);
1280 default:
1281 break;
1284 fmt = GET_RTX_FORMAT (code);
1285 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1287 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
1288 return 1;
1290 else if (fmt[i] == 'E')
1291 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1292 if (modified_between_p (XVECEXP (x, i, j), start, end))
1293 return 1;
1296 return 0;
1299 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
1300 of them are modified in INSN. Return 1 if X contains a MEM; this routine
1301 does use memory aliasing. */
1304 modified_in_p (const_rtx x, const_rtx insn)
1306 const enum rtx_code code = GET_CODE (x);
1307 const char *fmt;
1308 int i, j;
1310 switch (code)
1312 CASE_CONST_ANY:
1313 case CONST:
1314 case SYMBOL_REF:
1315 case LABEL_REF:
1316 return 0;
1318 case PC:
1319 case CC0:
1320 return 1;
1322 case MEM:
1323 if (modified_in_p (XEXP (x, 0), insn))
1324 return 1;
1325 if (MEM_READONLY_P (x))
1326 return 0;
1327 if (memory_modified_in_insn_p (x, insn))
1328 return 1;
1329 return 0;
1330 break;
1332 case REG:
1333 return reg_set_p (x, insn);
1335 default:
1336 break;
1339 fmt = GET_RTX_FORMAT (code);
1340 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1342 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
1343 return 1;
1345 else if (fmt[i] == 'E')
1346 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1347 if (modified_in_p (XVECEXP (x, i, j), insn))
1348 return 1;
1351 return 0;
1354 /* Helper function for set_of. */
1355 struct set_of_data
1357 const_rtx found;
1358 const_rtx pat;
1361 static void
1362 set_of_1 (rtx x, const_rtx pat, void *data1)
1364 struct set_of_data *const data = (struct set_of_data *) (data1);
1365 if (rtx_equal_p (x, data->pat)
1366 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
1367 data->found = pat;
1370 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1371 (either directly or via STRICT_LOW_PART and similar modifiers). */
1372 const_rtx
1373 set_of (const_rtx pat, const_rtx insn)
1375 struct set_of_data data;
1376 data.found = NULL_RTX;
1377 data.pat = pat;
1378 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1379 return data.found;
1382 /* Add all hard register in X to *PSET. */
1383 void
1384 find_all_hard_regs (const_rtx x, HARD_REG_SET *pset)
1386 subrtx_iterator::array_type array;
1387 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1389 const_rtx x = *iter;
1390 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1391 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1395 /* This function, called through note_stores, collects sets and
1396 clobbers of hard registers in a HARD_REG_SET, which is pointed to
1397 by DATA. */
1398 void
1399 record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1401 HARD_REG_SET *pset = (HARD_REG_SET *)data;
1402 if (REG_P (x) && HARD_REGISTER_P (x))
1403 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1406 /* Examine INSN, and compute the set of hard registers written by it.
1407 Store it in *PSET. Should only be called after reload. */
1408 void
1409 find_all_hard_reg_sets (const rtx_insn *insn, HARD_REG_SET *pset, bool implicit)
1411 rtx link;
1413 CLEAR_HARD_REG_SET (*pset);
1414 note_stores (PATTERN (insn), record_hard_reg_sets, pset);
1415 if (CALL_P (insn))
1417 if (implicit)
1418 IOR_HARD_REG_SET (*pset, call_used_reg_set);
1420 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1421 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1423 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1424 if (REG_NOTE_KIND (link) == REG_INC)
1425 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1428 /* Like record_hard_reg_sets, but called through note_uses. */
1429 void
1430 record_hard_reg_uses (rtx *px, void *data)
1432 find_all_hard_regs (*px, (HARD_REG_SET *) data);
1435 /* Given an INSN, return a SET expression if this insn has only a single SET.
1436 It may also have CLOBBERs, USEs, or SET whose output
1437 will not be used, which we ignore. */
1440 single_set_2 (const rtx_insn *insn, const_rtx pat)
1442 rtx set = NULL;
1443 int set_verified = 1;
1444 int i;
1446 if (GET_CODE (pat) == PARALLEL)
1448 for (i = 0; i < XVECLEN (pat, 0); i++)
1450 rtx sub = XVECEXP (pat, 0, i);
1451 switch (GET_CODE (sub))
1453 case USE:
1454 case CLOBBER:
1455 break;
1457 case SET:
1458 /* We can consider insns having multiple sets, where all
1459 but one are dead as single set insns. In common case
1460 only single set is present in the pattern so we want
1461 to avoid checking for REG_UNUSED notes unless necessary.
1463 When we reach set first time, we just expect this is
1464 the single set we are looking for and only when more
1465 sets are found in the insn, we check them. */
1466 if (!set_verified)
1468 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1469 && !side_effects_p (set))
1470 set = NULL;
1471 else
1472 set_verified = 1;
1474 if (!set)
1475 set = sub, set_verified = 0;
1476 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1477 || side_effects_p (sub))
1478 return NULL_RTX;
1479 break;
1481 default:
1482 return NULL_RTX;
1486 return set;
1489 /* Given an INSN, return nonzero if it has more than one SET, else return
1490 zero. */
1493 multiple_sets (const_rtx insn)
1495 int found;
1496 int i;
1498 /* INSN must be an insn. */
1499 if (! INSN_P (insn))
1500 return 0;
1502 /* Only a PARALLEL can have multiple SETs. */
1503 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1505 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1506 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1508 /* If we have already found a SET, then return now. */
1509 if (found)
1510 return 1;
1511 else
1512 found = 1;
1516 /* Either zero or one SET. */
1517 return 0;
1520 /* Return nonzero if the destination of SET equals the source
1521 and there are no side effects. */
1524 set_noop_p (const_rtx set)
1526 rtx src = SET_SRC (set);
1527 rtx dst = SET_DEST (set);
1529 if (dst == pc_rtx && src == pc_rtx)
1530 return 1;
1532 if (MEM_P (dst) && MEM_P (src))
1533 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1535 if (GET_CODE (dst) == ZERO_EXTRACT)
1536 return rtx_equal_p (XEXP (dst, 0), src)
1537 && !BITS_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1538 && !side_effects_p (src);
1540 if (GET_CODE (dst) == STRICT_LOW_PART)
1541 dst = XEXP (dst, 0);
1543 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1545 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1546 return 0;
1547 src = SUBREG_REG (src);
1548 dst = SUBREG_REG (dst);
1551 /* It is a NOOP if destination overlaps with selected src vector
1552 elements. */
1553 if (GET_CODE (src) == VEC_SELECT
1554 && REG_P (XEXP (src, 0)) && REG_P (dst)
1555 && HARD_REGISTER_P (XEXP (src, 0))
1556 && HARD_REGISTER_P (dst))
1558 int i;
1559 rtx par = XEXP (src, 1);
1560 rtx src0 = XEXP (src, 0);
1561 int c0 = INTVAL (XVECEXP (par, 0, 0));
1562 HOST_WIDE_INT offset = GET_MODE_UNIT_SIZE (GET_MODE (src0)) * c0;
1564 for (i = 1; i < XVECLEN (par, 0); i++)
1565 if (INTVAL (XVECEXP (par, 0, i)) != c0 + i)
1566 return 0;
1567 return
1568 simplify_subreg_regno (REGNO (src0), GET_MODE (src0),
1569 offset, GET_MODE (dst)) == (int) REGNO (dst);
1572 return (REG_P (src) && REG_P (dst)
1573 && REGNO (src) == REGNO (dst));
1576 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1577 value to itself. */
1580 noop_move_p (const rtx_insn *insn)
1582 rtx pat = PATTERN (insn);
1584 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1585 return 1;
1587 /* Insns carrying these notes are useful later on. */
1588 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1589 return 0;
1591 /* Check the code to be executed for COND_EXEC. */
1592 if (GET_CODE (pat) == COND_EXEC)
1593 pat = COND_EXEC_CODE (pat);
1595 if (GET_CODE (pat) == SET && set_noop_p (pat))
1596 return 1;
1598 if (GET_CODE (pat) == PARALLEL)
1600 int i;
1601 /* If nothing but SETs of registers to themselves,
1602 this insn can also be deleted. */
1603 for (i = 0; i < XVECLEN (pat, 0); i++)
1605 rtx tem = XVECEXP (pat, 0, i);
1607 if (GET_CODE (tem) == USE
1608 || GET_CODE (tem) == CLOBBER)
1609 continue;
1611 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1612 return 0;
1615 return 1;
1617 return 0;
1621 /* Return nonzero if register in range [REGNO, ENDREGNO)
1622 appears either explicitly or implicitly in X
1623 other than being stored into.
1625 References contained within the substructure at LOC do not count.
1626 LOC may be zero, meaning don't ignore anything. */
1628 bool
1629 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1630 rtx *loc)
1632 int i;
1633 unsigned int x_regno;
1634 RTX_CODE code;
1635 const char *fmt;
1637 repeat:
1638 /* The contents of a REG_NONNEG note is always zero, so we must come here
1639 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1640 if (x == 0)
1641 return false;
1643 code = GET_CODE (x);
1645 switch (code)
1647 case REG:
1648 x_regno = REGNO (x);
1650 /* If we modifying the stack, frame, or argument pointer, it will
1651 clobber a virtual register. In fact, we could be more precise,
1652 but it isn't worth it. */
1653 if ((x_regno == STACK_POINTER_REGNUM
1654 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1655 && x_regno == ARG_POINTER_REGNUM)
1656 || x_regno == FRAME_POINTER_REGNUM)
1657 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1658 return true;
1660 return endregno > x_regno && regno < END_REGNO (x);
1662 case SUBREG:
1663 /* If this is a SUBREG of a hard reg, we can see exactly which
1664 registers are being modified. Otherwise, handle normally. */
1665 if (REG_P (SUBREG_REG (x))
1666 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1668 unsigned int inner_regno = subreg_regno (x);
1669 unsigned int inner_endregno
1670 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1671 ? subreg_nregs (x) : 1);
1673 return endregno > inner_regno && regno < inner_endregno;
1675 break;
1677 case CLOBBER:
1678 case SET:
1679 if (&SET_DEST (x) != loc
1680 /* Note setting a SUBREG counts as referring to the REG it is in for
1681 a pseudo but not for hard registers since we can
1682 treat each word individually. */
1683 && ((GET_CODE (SET_DEST (x)) == SUBREG
1684 && loc != &SUBREG_REG (SET_DEST (x))
1685 && REG_P (SUBREG_REG (SET_DEST (x)))
1686 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1687 && refers_to_regno_p (regno, endregno,
1688 SUBREG_REG (SET_DEST (x)), loc))
1689 || (!REG_P (SET_DEST (x))
1690 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1691 return true;
1693 if (code == CLOBBER || loc == &SET_SRC (x))
1694 return false;
1695 x = SET_SRC (x);
1696 goto repeat;
1698 default:
1699 break;
1702 /* X does not match, so try its subexpressions. */
1704 fmt = GET_RTX_FORMAT (code);
1705 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1707 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1709 if (i == 0)
1711 x = XEXP (x, 0);
1712 goto repeat;
1714 else
1715 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1716 return true;
1718 else if (fmt[i] == 'E')
1720 int j;
1721 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1722 if (loc != &XVECEXP (x, i, j)
1723 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1724 return true;
1727 return false;
1730 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1731 we check if any register number in X conflicts with the relevant register
1732 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1733 contains a MEM (we don't bother checking for memory addresses that can't
1734 conflict because we expect this to be a rare case. */
1737 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1739 unsigned int regno, endregno;
1741 /* If either argument is a constant, then modifying X can not
1742 affect IN. Here we look at IN, we can profitably combine
1743 CONSTANT_P (x) with the switch statement below. */
1744 if (CONSTANT_P (in))
1745 return 0;
1747 recurse:
1748 switch (GET_CODE (x))
1750 case STRICT_LOW_PART:
1751 case ZERO_EXTRACT:
1752 case SIGN_EXTRACT:
1753 /* Overly conservative. */
1754 x = XEXP (x, 0);
1755 goto recurse;
1757 case SUBREG:
1758 regno = REGNO (SUBREG_REG (x));
1759 if (regno < FIRST_PSEUDO_REGISTER)
1760 regno = subreg_regno (x);
1761 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1762 ? subreg_nregs (x) : 1);
1763 goto do_reg;
1765 case REG:
1766 regno = REGNO (x);
1767 endregno = END_REGNO (x);
1768 do_reg:
1769 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1771 case MEM:
1773 const char *fmt;
1774 int i;
1776 if (MEM_P (in))
1777 return 1;
1779 fmt = GET_RTX_FORMAT (GET_CODE (in));
1780 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1781 if (fmt[i] == 'e')
1783 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1784 return 1;
1786 else if (fmt[i] == 'E')
1788 int j;
1789 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1790 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1791 return 1;
1794 return 0;
1797 case SCRATCH:
1798 case PC:
1799 case CC0:
1800 return reg_mentioned_p (x, in);
1802 case PARALLEL:
1804 int i;
1806 /* If any register in here refers to it we return true. */
1807 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1808 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1809 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1810 return 1;
1811 return 0;
1814 default:
1815 gcc_assert (CONSTANT_P (x));
1816 return 0;
1820 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1821 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1822 ignored by note_stores, but passed to FUN.
1824 FUN receives three arguments:
1825 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1826 2. the SET or CLOBBER rtx that does the store,
1827 3. the pointer DATA provided to note_stores.
1829 If the item being stored in or clobbered is a SUBREG of a hard register,
1830 the SUBREG will be passed. */
1832 void
1833 note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
1835 int i;
1837 if (GET_CODE (x) == COND_EXEC)
1838 x = COND_EXEC_CODE (x);
1840 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1842 rtx dest = SET_DEST (x);
1844 while ((GET_CODE (dest) == SUBREG
1845 && (!REG_P (SUBREG_REG (dest))
1846 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1847 || GET_CODE (dest) == ZERO_EXTRACT
1848 || GET_CODE (dest) == STRICT_LOW_PART)
1849 dest = XEXP (dest, 0);
1851 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1852 each of whose first operand is a register. */
1853 if (GET_CODE (dest) == PARALLEL)
1855 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1856 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1857 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1859 else
1860 (*fun) (dest, x, data);
1863 else if (GET_CODE (x) == PARALLEL)
1864 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1865 note_stores (XVECEXP (x, 0, i), fun, data);
1868 /* Like notes_stores, but call FUN for each expression that is being
1869 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1870 FUN for each expression, not any interior subexpressions. FUN receives a
1871 pointer to the expression and the DATA passed to this function.
1873 Note that this is not quite the same test as that done in reg_referenced_p
1874 since that considers something as being referenced if it is being
1875 partially set, while we do not. */
1877 void
1878 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1880 rtx body = *pbody;
1881 int i;
1883 switch (GET_CODE (body))
1885 case COND_EXEC:
1886 (*fun) (&COND_EXEC_TEST (body), data);
1887 note_uses (&COND_EXEC_CODE (body), fun, data);
1888 return;
1890 case PARALLEL:
1891 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1892 note_uses (&XVECEXP (body, 0, i), fun, data);
1893 return;
1895 case SEQUENCE:
1896 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1897 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1898 return;
1900 case USE:
1901 (*fun) (&XEXP (body, 0), data);
1902 return;
1904 case ASM_OPERANDS:
1905 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1906 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1907 return;
1909 case TRAP_IF:
1910 (*fun) (&TRAP_CONDITION (body), data);
1911 return;
1913 case PREFETCH:
1914 (*fun) (&XEXP (body, 0), data);
1915 return;
1917 case UNSPEC:
1918 case UNSPEC_VOLATILE:
1919 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1920 (*fun) (&XVECEXP (body, 0, i), data);
1921 return;
1923 case CLOBBER:
1924 if (MEM_P (XEXP (body, 0)))
1925 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1926 return;
1928 case SET:
1930 rtx dest = SET_DEST (body);
1932 /* For sets we replace everything in source plus registers in memory
1933 expression in store and operands of a ZERO_EXTRACT. */
1934 (*fun) (&SET_SRC (body), data);
1936 if (GET_CODE (dest) == ZERO_EXTRACT)
1938 (*fun) (&XEXP (dest, 1), data);
1939 (*fun) (&XEXP (dest, 2), data);
1942 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1943 dest = XEXP (dest, 0);
1945 if (MEM_P (dest))
1946 (*fun) (&XEXP (dest, 0), data);
1948 return;
1950 default:
1951 /* All the other possibilities never store. */
1952 (*fun) (pbody, data);
1953 return;
1957 /* Return nonzero if X's old contents don't survive after INSN.
1958 This will be true if X is (cc0) or if X is a register and
1959 X dies in INSN or because INSN entirely sets X.
1961 "Entirely set" means set directly and not through a SUBREG, or
1962 ZERO_EXTRACT, so no trace of the old contents remains.
1963 Likewise, REG_INC does not count.
1965 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1966 but for this use that makes no difference, since regs don't overlap
1967 during their lifetimes. Therefore, this function may be used
1968 at any time after deaths have been computed.
1970 If REG is a hard reg that occupies multiple machine registers, this
1971 function will only return 1 if each of those registers will be replaced
1972 by INSN. */
1975 dead_or_set_p (const_rtx insn, const_rtx x)
1977 unsigned int regno, end_regno;
1978 unsigned int i;
1980 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1981 if (GET_CODE (x) == CC0)
1982 return 1;
1984 gcc_assert (REG_P (x));
1986 regno = REGNO (x);
1987 end_regno = END_REGNO (x);
1988 for (i = regno; i < end_regno; i++)
1989 if (! dead_or_set_regno_p (insn, i))
1990 return 0;
1992 return 1;
1995 /* Return TRUE iff DEST is a register or subreg of a register and
1996 doesn't change the number of words of the inner register, and any
1997 part of the register is TEST_REGNO. */
1999 static bool
2000 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
2002 unsigned int regno, endregno;
2004 if (GET_CODE (dest) == SUBREG
2005 && (((GET_MODE_SIZE (GET_MODE (dest))
2006 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
2007 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
2008 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
2009 dest = SUBREG_REG (dest);
2011 if (!REG_P (dest))
2012 return false;
2014 regno = REGNO (dest);
2015 endregno = END_REGNO (dest);
2016 return (test_regno >= regno && test_regno < endregno);
2019 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
2020 any member matches the covers_regno_no_parallel_p criteria. */
2022 static bool
2023 covers_regno_p (const_rtx dest, unsigned int test_regno)
2025 if (GET_CODE (dest) == PARALLEL)
2027 /* Some targets place small structures in registers for return
2028 values of functions, and those registers are wrapped in
2029 PARALLELs that we may see as the destination of a SET. */
2030 int i;
2032 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
2034 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
2035 if (inner != NULL_RTX
2036 && covers_regno_no_parallel_p (inner, test_regno))
2037 return true;
2040 return false;
2042 else
2043 return covers_regno_no_parallel_p (dest, test_regno);
2046 /* Utility function for dead_or_set_p to check an individual register. */
2049 dead_or_set_regno_p (const_rtx insn, unsigned int test_regno)
2051 const_rtx pattern;
2053 /* See if there is a death note for something that includes TEST_REGNO. */
2054 if (find_regno_note (insn, REG_DEAD, test_regno))
2055 return 1;
2057 if (CALL_P (insn)
2058 && find_regno_fusage (insn, CLOBBER, test_regno))
2059 return 1;
2061 pattern = PATTERN (insn);
2063 /* If a COND_EXEC is not executed, the value survives. */
2064 if (GET_CODE (pattern) == COND_EXEC)
2065 return 0;
2067 if (GET_CODE (pattern) == SET)
2068 return covers_regno_p (SET_DEST (pattern), test_regno);
2069 else if (GET_CODE (pattern) == PARALLEL)
2071 int i;
2073 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
2075 rtx body = XVECEXP (pattern, 0, i);
2077 if (GET_CODE (body) == COND_EXEC)
2078 body = COND_EXEC_CODE (body);
2080 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
2081 && covers_regno_p (SET_DEST (body), test_regno))
2082 return 1;
2086 return 0;
2089 /* Return the reg-note of kind KIND in insn INSN, if there is one.
2090 If DATUM is nonzero, look for one whose datum is DATUM. */
2093 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
2095 rtx link;
2097 gcc_checking_assert (insn);
2099 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2100 if (! INSN_P (insn))
2101 return 0;
2102 if (datum == 0)
2104 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2105 if (REG_NOTE_KIND (link) == kind)
2106 return link;
2107 return 0;
2110 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2111 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
2112 return link;
2113 return 0;
2116 /* Return the reg-note of kind KIND in insn INSN which applies to register
2117 number REGNO, if any. Return 0 if there is no such reg-note. Note that
2118 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
2119 it might be the case that the note overlaps REGNO. */
2122 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
2124 rtx link;
2126 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2127 if (! INSN_P (insn))
2128 return 0;
2130 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2131 if (REG_NOTE_KIND (link) == kind
2132 /* Verify that it is a register, so that scratch and MEM won't cause a
2133 problem here. */
2134 && REG_P (XEXP (link, 0))
2135 && REGNO (XEXP (link, 0)) <= regno
2136 && END_REGNO (XEXP (link, 0)) > regno)
2137 return link;
2138 return 0;
2141 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
2142 has such a note. */
2145 find_reg_equal_equiv_note (const_rtx insn)
2147 rtx link;
2149 if (!INSN_P (insn))
2150 return 0;
2152 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2153 if (REG_NOTE_KIND (link) == REG_EQUAL
2154 || REG_NOTE_KIND (link) == REG_EQUIV)
2156 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
2157 insns that have multiple sets. Checking single_set to
2158 make sure of this is not the proper check, as explained
2159 in the comment in set_unique_reg_note.
2161 This should be changed into an assert. */
2162 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
2163 return 0;
2164 return link;
2166 return NULL;
2169 /* Check whether INSN is a single_set whose source is known to be
2170 equivalent to a constant. Return that constant if so, otherwise
2171 return null. */
2174 find_constant_src (const rtx_insn *insn)
2176 rtx note, set, x;
2178 set = single_set (insn);
2179 if (set)
2181 x = avoid_constant_pool_reference (SET_SRC (set));
2182 if (CONSTANT_P (x))
2183 return x;
2186 note = find_reg_equal_equiv_note (insn);
2187 if (note && CONSTANT_P (XEXP (note, 0)))
2188 return XEXP (note, 0);
2190 return NULL_RTX;
2193 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
2194 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2197 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
2199 /* If it's not a CALL_INSN, it can't possibly have a
2200 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
2201 if (!CALL_P (insn))
2202 return 0;
2204 gcc_assert (datum);
2206 if (!REG_P (datum))
2208 rtx link;
2210 for (link = CALL_INSN_FUNCTION_USAGE (insn);
2211 link;
2212 link = XEXP (link, 1))
2213 if (GET_CODE (XEXP (link, 0)) == code
2214 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
2215 return 1;
2217 else
2219 unsigned int regno = REGNO (datum);
2221 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2222 to pseudo registers, so don't bother checking. */
2224 if (regno < FIRST_PSEUDO_REGISTER)
2226 unsigned int end_regno = END_REGNO (datum);
2227 unsigned int i;
2229 for (i = regno; i < end_regno; i++)
2230 if (find_regno_fusage (insn, code, i))
2231 return 1;
2235 return 0;
2238 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
2239 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2242 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
2244 rtx link;
2246 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2247 to pseudo registers, so don't bother checking. */
2249 if (regno >= FIRST_PSEUDO_REGISTER
2250 || !CALL_P (insn) )
2251 return 0;
2253 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
2255 rtx op, reg;
2257 if (GET_CODE (op = XEXP (link, 0)) == code
2258 && REG_P (reg = XEXP (op, 0))
2259 && REGNO (reg) <= regno
2260 && END_REGNO (reg) > regno)
2261 return 1;
2264 return 0;
2268 /* Return true if KIND is an integer REG_NOTE. */
2270 static bool
2271 int_reg_note_p (enum reg_note kind)
2273 return kind == REG_BR_PROB;
2276 /* Allocate a register note with kind KIND and datum DATUM. LIST is
2277 stored as the pointer to the next register note. */
2280 alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
2282 rtx note;
2284 gcc_checking_assert (!int_reg_note_p (kind));
2285 switch (kind)
2287 case REG_CC_SETTER:
2288 case REG_CC_USER:
2289 case REG_LABEL_TARGET:
2290 case REG_LABEL_OPERAND:
2291 case REG_TM:
2292 /* These types of register notes use an INSN_LIST rather than an
2293 EXPR_LIST, so that copying is done right and dumps look
2294 better. */
2295 note = alloc_INSN_LIST (datum, list);
2296 PUT_REG_NOTE_KIND (note, kind);
2297 break;
2299 default:
2300 note = alloc_EXPR_LIST (kind, datum, list);
2301 break;
2304 return note;
2307 /* Add register note with kind KIND and datum DATUM to INSN. */
2309 void
2310 add_reg_note (rtx insn, enum reg_note kind, rtx datum)
2312 REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
2315 /* Add an integer register note with kind KIND and datum DATUM to INSN. */
2317 void
2318 add_int_reg_note (rtx insn, enum reg_note kind, int datum)
2320 gcc_checking_assert (int_reg_note_p (kind));
2321 REG_NOTES (insn) = gen_rtx_INT_LIST ((machine_mode) kind,
2322 datum, REG_NOTES (insn));
2325 /* Add a register note like NOTE to INSN. */
2327 void
2328 add_shallow_copy_of_reg_note (rtx_insn *insn, rtx note)
2330 if (GET_CODE (note) == INT_LIST)
2331 add_int_reg_note (insn, REG_NOTE_KIND (note), XINT (note, 0));
2332 else
2333 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
2336 /* Remove register note NOTE from the REG_NOTES of INSN. */
2338 void
2339 remove_note (rtx insn, const_rtx note)
2341 rtx link;
2343 if (note == NULL_RTX)
2344 return;
2346 if (REG_NOTES (insn) == note)
2347 REG_NOTES (insn) = XEXP (note, 1);
2348 else
2349 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2350 if (XEXP (link, 1) == note)
2352 XEXP (link, 1) = XEXP (note, 1);
2353 break;
2356 switch (REG_NOTE_KIND (note))
2358 case REG_EQUAL:
2359 case REG_EQUIV:
2360 df_notes_rescan (as_a <rtx_insn *> (insn));
2361 break;
2362 default:
2363 break;
2367 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
2369 void
2370 remove_reg_equal_equiv_notes (rtx_insn *insn)
2372 rtx *loc;
2374 loc = &REG_NOTES (insn);
2375 while (*loc)
2377 enum reg_note kind = REG_NOTE_KIND (*loc);
2378 if (kind == REG_EQUAL || kind == REG_EQUIV)
2379 *loc = XEXP (*loc, 1);
2380 else
2381 loc = &XEXP (*loc, 1);
2385 /* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */
2387 void
2388 remove_reg_equal_equiv_notes_for_regno (unsigned int regno)
2390 df_ref eq_use;
2392 if (!df)
2393 return;
2395 /* This loop is a little tricky. We cannot just go down the chain because
2396 it is being modified by some actions in the loop. So we just iterate
2397 over the head. We plan to drain the list anyway. */
2398 while ((eq_use = DF_REG_EQ_USE_CHAIN (regno)) != NULL)
2400 rtx_insn *insn = DF_REF_INSN (eq_use);
2401 rtx note = find_reg_equal_equiv_note (insn);
2403 /* This assert is generally triggered when someone deletes a REG_EQUAL
2404 or REG_EQUIV note by hacking the list manually rather than calling
2405 remove_note. */
2406 gcc_assert (note);
2408 remove_note (insn, note);
2412 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2413 return 1 if it is found. A simple equality test is used to determine if
2414 NODE matches. */
2416 bool
2417 in_insn_list_p (const rtx_insn_list *listp, const rtx_insn *node)
2419 const_rtx x;
2421 for (x = listp; x; x = XEXP (x, 1))
2422 if (node == XEXP (x, 0))
2423 return true;
2425 return false;
2428 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2429 remove that entry from the list if it is found.
2431 A simple equality test is used to determine if NODE matches. */
2433 void
2434 remove_node_from_expr_list (const_rtx node, rtx_expr_list **listp)
2436 rtx_expr_list *temp = *listp;
2437 rtx_expr_list *prev = NULL;
2439 while (temp)
2441 if (node == temp->element ())
2443 /* Splice the node out of the list. */
2444 if (prev)
2445 XEXP (prev, 1) = temp->next ();
2446 else
2447 *listp = temp->next ();
2449 return;
2452 prev = temp;
2453 temp = temp->next ();
2457 /* Search LISTP (an INSN_LIST) for an entry whose first operand is NODE and
2458 remove that entry from the list if it is found.
2460 A simple equality test is used to determine if NODE matches. */
2462 void
2463 remove_node_from_insn_list (const rtx_insn *node, rtx_insn_list **listp)
2465 rtx_insn_list *temp = *listp;
2466 rtx_insn_list *prev = NULL;
2468 while (temp)
2470 if (node == temp->insn ())
2472 /* Splice the node out of the list. */
2473 if (prev)
2474 XEXP (prev, 1) = temp->next ();
2475 else
2476 *listp = temp->next ();
2478 return;
2481 prev = temp;
2482 temp = temp->next ();
2486 /* Nonzero if X contains any volatile instructions. These are instructions
2487 which may cause unpredictable machine state instructions, and thus no
2488 instructions or register uses should be moved or combined across them.
2489 This includes only volatile asms and UNSPEC_VOLATILE instructions. */
2492 volatile_insn_p (const_rtx x)
2494 const RTX_CODE code = GET_CODE (x);
2495 switch (code)
2497 case LABEL_REF:
2498 case SYMBOL_REF:
2499 case CONST:
2500 CASE_CONST_ANY:
2501 case CC0:
2502 case PC:
2503 case REG:
2504 case SCRATCH:
2505 case CLOBBER:
2506 case ADDR_VEC:
2507 case ADDR_DIFF_VEC:
2508 case CALL:
2509 case MEM:
2510 return 0;
2512 case UNSPEC_VOLATILE:
2513 return 1;
2515 case ASM_INPUT:
2516 case ASM_OPERANDS:
2517 if (MEM_VOLATILE_P (x))
2518 return 1;
2520 default:
2521 break;
2524 /* Recursively scan the operands of this expression. */
2527 const char *const fmt = GET_RTX_FORMAT (code);
2528 int i;
2530 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2532 if (fmt[i] == 'e')
2534 if (volatile_insn_p (XEXP (x, i)))
2535 return 1;
2537 else if (fmt[i] == 'E')
2539 int j;
2540 for (j = 0; j < XVECLEN (x, i); j++)
2541 if (volatile_insn_p (XVECEXP (x, i, j)))
2542 return 1;
2546 return 0;
2549 /* Nonzero if X contains any volatile memory references
2550 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2553 volatile_refs_p (const_rtx x)
2555 const RTX_CODE code = GET_CODE (x);
2556 switch (code)
2558 case LABEL_REF:
2559 case SYMBOL_REF:
2560 case CONST:
2561 CASE_CONST_ANY:
2562 case CC0:
2563 case PC:
2564 case REG:
2565 case SCRATCH:
2566 case CLOBBER:
2567 case ADDR_VEC:
2568 case ADDR_DIFF_VEC:
2569 return 0;
2571 case UNSPEC_VOLATILE:
2572 return 1;
2574 case MEM:
2575 case ASM_INPUT:
2576 case ASM_OPERANDS:
2577 if (MEM_VOLATILE_P (x))
2578 return 1;
2580 default:
2581 break;
2584 /* Recursively scan the operands of this expression. */
2587 const char *const fmt = GET_RTX_FORMAT (code);
2588 int i;
2590 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2592 if (fmt[i] == 'e')
2594 if (volatile_refs_p (XEXP (x, i)))
2595 return 1;
2597 else if (fmt[i] == 'E')
2599 int j;
2600 for (j = 0; j < XVECLEN (x, i); j++)
2601 if (volatile_refs_p (XVECEXP (x, i, j)))
2602 return 1;
2606 return 0;
2609 /* Similar to above, except that it also rejects register pre- and post-
2610 incrementing. */
2613 side_effects_p (const_rtx x)
2615 const RTX_CODE code = GET_CODE (x);
2616 switch (code)
2618 case LABEL_REF:
2619 case SYMBOL_REF:
2620 case CONST:
2621 CASE_CONST_ANY:
2622 case CC0:
2623 case PC:
2624 case REG:
2625 case SCRATCH:
2626 case ADDR_VEC:
2627 case ADDR_DIFF_VEC:
2628 case VAR_LOCATION:
2629 return 0;
2631 case CLOBBER:
2632 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2633 when some combination can't be done. If we see one, don't think
2634 that we can simplify the expression. */
2635 return (GET_MODE (x) != VOIDmode);
2637 case PRE_INC:
2638 case PRE_DEC:
2639 case POST_INC:
2640 case POST_DEC:
2641 case PRE_MODIFY:
2642 case POST_MODIFY:
2643 case CALL:
2644 case UNSPEC_VOLATILE:
2645 return 1;
2647 case MEM:
2648 case ASM_INPUT:
2649 case ASM_OPERANDS:
2650 if (MEM_VOLATILE_P (x))
2651 return 1;
2653 default:
2654 break;
2657 /* Recursively scan the operands of this expression. */
2660 const char *fmt = GET_RTX_FORMAT (code);
2661 int i;
2663 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2665 if (fmt[i] == 'e')
2667 if (side_effects_p (XEXP (x, i)))
2668 return 1;
2670 else if (fmt[i] == 'E')
2672 int j;
2673 for (j = 0; j < XVECLEN (x, i); j++)
2674 if (side_effects_p (XVECEXP (x, i, j)))
2675 return 1;
2679 return 0;
2682 /* Return nonzero if evaluating rtx X might cause a trap.
2683 FLAGS controls how to consider MEMs. A nonzero means the context
2684 of the access may have changed from the original, such that the
2685 address may have become invalid. */
2688 may_trap_p_1 (const_rtx x, unsigned flags)
2690 int i;
2691 enum rtx_code code;
2692 const char *fmt;
2694 /* We make no distinction currently, but this function is part of
2695 the internal target-hooks ABI so we keep the parameter as
2696 "unsigned flags". */
2697 bool code_changed = flags != 0;
2699 if (x == 0)
2700 return 0;
2701 code = GET_CODE (x);
2702 switch (code)
2704 /* Handle these cases quickly. */
2705 CASE_CONST_ANY:
2706 case SYMBOL_REF:
2707 case LABEL_REF:
2708 case CONST:
2709 case PC:
2710 case CC0:
2711 case REG:
2712 case SCRATCH:
2713 return 0;
2715 case UNSPEC:
2716 return targetm.unspec_may_trap_p (x, flags);
2718 case UNSPEC_VOLATILE:
2719 case ASM_INPUT:
2720 case TRAP_IF:
2721 return 1;
2723 case ASM_OPERANDS:
2724 return MEM_VOLATILE_P (x);
2726 /* Memory ref can trap unless it's a static var or a stack slot. */
2727 case MEM:
2728 /* Recognize specific pattern of stack checking probes. */
2729 if (flag_stack_check
2730 && MEM_VOLATILE_P (x)
2731 && XEXP (x, 0) == stack_pointer_rtx)
2732 return 1;
2733 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2734 reference; moving it out of context such as when moving code
2735 when optimizing, might cause its address to become invalid. */
2736 code_changed
2737 || !MEM_NOTRAP_P (x))
2739 HOST_WIDE_INT size = MEM_SIZE_KNOWN_P (x) ? MEM_SIZE (x) : 0;
2740 return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
2741 GET_MODE (x), code_changed);
2744 return 0;
2746 /* Division by a non-constant might trap. */
2747 case DIV:
2748 case MOD:
2749 case UDIV:
2750 case UMOD:
2751 if (HONOR_SNANS (x))
2752 return 1;
2753 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2754 return flag_trapping_math;
2755 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2756 return 1;
2757 break;
2759 case EXPR_LIST:
2760 /* An EXPR_LIST is used to represent a function call. This
2761 certainly may trap. */
2762 return 1;
2764 case GE:
2765 case GT:
2766 case LE:
2767 case LT:
2768 case LTGT:
2769 case COMPARE:
2770 /* Some floating point comparisons may trap. */
2771 if (!flag_trapping_math)
2772 break;
2773 /* ??? There is no machine independent way to check for tests that trap
2774 when COMPARE is used, though many targets do make this distinction.
2775 For instance, sparc uses CCFPE for compares which generate exceptions
2776 and CCFP for compares which do not generate exceptions. */
2777 if (HONOR_NANS (x))
2778 return 1;
2779 /* But often the compare has some CC mode, so check operand
2780 modes as well. */
2781 if (HONOR_NANS (XEXP (x, 0))
2782 || HONOR_NANS (XEXP (x, 1)))
2783 return 1;
2784 break;
2786 case EQ:
2787 case NE:
2788 if (HONOR_SNANS (x))
2789 return 1;
2790 /* Often comparison is CC mode, so check operand modes. */
2791 if (HONOR_SNANS (XEXP (x, 0))
2792 || HONOR_SNANS (XEXP (x, 1)))
2793 return 1;
2794 break;
2796 case FIX:
2797 /* Conversion of floating point might trap. */
2798 if (flag_trapping_math && HONOR_NANS (XEXP (x, 0)))
2799 return 1;
2800 break;
2802 case NEG:
2803 case ABS:
2804 case SUBREG:
2805 /* These operations don't trap even with floating point. */
2806 break;
2808 default:
2809 /* Any floating arithmetic may trap. */
2810 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)) && flag_trapping_math)
2811 return 1;
2814 fmt = GET_RTX_FORMAT (code);
2815 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2817 if (fmt[i] == 'e')
2819 if (may_trap_p_1 (XEXP (x, i), flags))
2820 return 1;
2822 else if (fmt[i] == 'E')
2824 int j;
2825 for (j = 0; j < XVECLEN (x, i); j++)
2826 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2827 return 1;
2830 return 0;
2833 /* Return nonzero if evaluating rtx X might cause a trap. */
2836 may_trap_p (const_rtx x)
2838 return may_trap_p_1 (x, 0);
2841 /* Same as above, but additionally return nonzero if evaluating rtx X might
2842 cause a fault. We define a fault for the purpose of this function as a
2843 erroneous execution condition that cannot be encountered during the normal
2844 execution of a valid program; the typical example is an unaligned memory
2845 access on a strict alignment machine. The compiler guarantees that it
2846 doesn't generate code that will fault from a valid program, but this
2847 guarantee doesn't mean anything for individual instructions. Consider
2848 the following example:
2850 struct S { int d; union { char *cp; int *ip; }; };
2852 int foo(struct S *s)
2854 if (s->d == 1)
2855 return *s->ip;
2856 else
2857 return *s->cp;
2860 on a strict alignment machine. In a valid program, foo will never be
2861 invoked on a structure for which d is equal to 1 and the underlying
2862 unique field of the union not aligned on a 4-byte boundary, but the
2863 expression *s->ip might cause a fault if considered individually.
2865 At the RTL level, potentially problematic expressions will almost always
2866 verify may_trap_p; for example, the above dereference can be emitted as
2867 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2868 However, suppose that foo is inlined in a caller that causes s->cp to
2869 point to a local character variable and guarantees that s->d is not set
2870 to 1; foo may have been effectively translated into pseudo-RTL as:
2872 if ((reg:SI) == 1)
2873 (set (reg:SI) (mem:SI (%fp - 7)))
2874 else
2875 (set (reg:QI) (mem:QI (%fp - 7)))
2877 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2878 memory reference to a stack slot, but it will certainly cause a fault
2879 on a strict alignment machine. */
2882 may_trap_or_fault_p (const_rtx x)
2884 return may_trap_p_1 (x, 1);
2887 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2888 i.e., an inequality. */
2891 inequality_comparisons_p (const_rtx x)
2893 const char *fmt;
2894 int len, i;
2895 const enum rtx_code code = GET_CODE (x);
2897 switch (code)
2899 case REG:
2900 case SCRATCH:
2901 case PC:
2902 case CC0:
2903 CASE_CONST_ANY:
2904 case CONST:
2905 case LABEL_REF:
2906 case SYMBOL_REF:
2907 return 0;
2909 case LT:
2910 case LTU:
2911 case GT:
2912 case GTU:
2913 case LE:
2914 case LEU:
2915 case GE:
2916 case GEU:
2917 return 1;
2919 default:
2920 break;
2923 len = GET_RTX_LENGTH (code);
2924 fmt = GET_RTX_FORMAT (code);
2926 for (i = 0; i < len; i++)
2928 if (fmt[i] == 'e')
2930 if (inequality_comparisons_p (XEXP (x, i)))
2931 return 1;
2933 else if (fmt[i] == 'E')
2935 int j;
2936 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2937 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2938 return 1;
2942 return 0;
2945 /* Replace any occurrence of FROM in X with TO. The function does
2946 not enter into CONST_DOUBLE for the replace.
2948 Note that copying is not done so X must not be shared unless all copies
2949 are to be modified.
2951 ALL_REGS is true if we want to replace all REGs equal to FROM, not just
2952 those pointer-equal ones. */
2955 replace_rtx (rtx x, rtx from, rtx to, bool all_regs)
2957 int i, j;
2958 const char *fmt;
2960 if (x == from)
2961 return to;
2963 /* Allow this function to make replacements in EXPR_LISTs. */
2964 if (x == 0)
2965 return 0;
2967 if (all_regs
2968 && REG_P (x)
2969 && REG_P (from)
2970 && REGNO (x) == REGNO (from))
2972 gcc_assert (GET_MODE (x) == GET_MODE (from));
2973 return to;
2975 else if (GET_CODE (x) == SUBREG)
2977 rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to, all_regs);
2979 if (CONST_INT_P (new_rtx))
2981 x = simplify_subreg (GET_MODE (x), new_rtx,
2982 GET_MODE (SUBREG_REG (x)),
2983 SUBREG_BYTE (x));
2984 gcc_assert (x);
2986 else
2987 SUBREG_REG (x) = new_rtx;
2989 return x;
2991 else if (GET_CODE (x) == ZERO_EXTEND)
2993 rtx new_rtx = replace_rtx (XEXP (x, 0), from, to, all_regs);
2995 if (CONST_INT_P (new_rtx))
2997 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2998 new_rtx, GET_MODE (XEXP (x, 0)));
2999 gcc_assert (x);
3001 else
3002 XEXP (x, 0) = new_rtx;
3004 return x;
3007 fmt = GET_RTX_FORMAT (GET_CODE (x));
3008 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3010 if (fmt[i] == 'e')
3011 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to, all_regs);
3012 else if (fmt[i] == 'E')
3013 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3014 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j),
3015 from, to, all_regs);
3018 return x;
3021 /* Replace occurrences of the OLD_LABEL in *LOC with NEW_LABEL. Also track
3022 the change in LABEL_NUSES if UPDATE_LABEL_NUSES. */
3024 void
3025 replace_label (rtx *loc, rtx old_label, rtx new_label, bool update_label_nuses)
3027 /* Handle jump tables specially, since ADDR_{DIFF_,}VECs can be long. */
3028 rtx x = *loc;
3029 if (JUMP_TABLE_DATA_P (x))
3031 x = PATTERN (x);
3032 rtvec vec = XVEC (x, GET_CODE (x) == ADDR_DIFF_VEC);
3033 int len = GET_NUM_ELEM (vec);
3034 for (int i = 0; i < len; ++i)
3036 rtx ref = RTVEC_ELT (vec, i);
3037 if (XEXP (ref, 0) == old_label)
3039 XEXP (ref, 0) = new_label;
3040 if (update_label_nuses)
3042 ++LABEL_NUSES (new_label);
3043 --LABEL_NUSES (old_label);
3047 return;
3050 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
3051 field. This is not handled by the iterator because it doesn't
3052 handle unprinted ('0') fields. */
3053 if (JUMP_P (x) && JUMP_LABEL (x) == old_label)
3054 JUMP_LABEL (x) = new_label;
3056 subrtx_ptr_iterator::array_type array;
3057 FOR_EACH_SUBRTX_PTR (iter, array, loc, ALL)
3059 rtx *loc = *iter;
3060 if (rtx x = *loc)
3062 if (GET_CODE (x) == SYMBOL_REF
3063 && CONSTANT_POOL_ADDRESS_P (x))
3065 rtx c = get_pool_constant (x);
3066 if (rtx_referenced_p (old_label, c))
3068 /* Create a copy of constant C; replace the label inside
3069 but do not update LABEL_NUSES because uses in constant pool
3070 are not counted. */
3071 rtx new_c = copy_rtx (c);
3072 replace_label (&new_c, old_label, new_label, false);
3074 /* Add the new constant NEW_C to constant pool and replace
3075 the old reference to constant by new reference. */
3076 rtx new_mem = force_const_mem (get_pool_mode (x), new_c);
3077 *loc = replace_rtx (x, x, XEXP (new_mem, 0));
3081 if ((GET_CODE (x) == LABEL_REF
3082 || GET_CODE (x) == INSN_LIST)
3083 && XEXP (x, 0) == old_label)
3085 XEXP (x, 0) = new_label;
3086 if (update_label_nuses)
3088 ++LABEL_NUSES (new_label);
3089 --LABEL_NUSES (old_label);
3096 void
3097 replace_label_in_insn (rtx_insn *insn, rtx old_label, rtx new_label,
3098 bool update_label_nuses)
3100 rtx insn_as_rtx = insn;
3101 replace_label (&insn_as_rtx, old_label, new_label, update_label_nuses);
3102 gcc_checking_assert (insn_as_rtx == insn);
3105 /* Return true if X is referenced in BODY. */
3107 bool
3108 rtx_referenced_p (const_rtx x, const_rtx body)
3110 subrtx_iterator::array_type array;
3111 FOR_EACH_SUBRTX (iter, array, body, ALL)
3112 if (const_rtx y = *iter)
3114 /* Check if a label_ref Y refers to label X. */
3115 if (GET_CODE (y) == LABEL_REF
3116 && LABEL_P (x)
3117 && LABEL_REF_LABEL (y) == x)
3118 return true;
3120 if (rtx_equal_p (x, y))
3121 return true;
3123 /* If Y is a reference to pool constant traverse the constant. */
3124 if (GET_CODE (y) == SYMBOL_REF
3125 && CONSTANT_POOL_ADDRESS_P (y))
3126 iter.substitute (get_pool_constant (y));
3128 return false;
3131 /* If INSN is a tablejump return true and store the label (before jump table) to
3132 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
3134 bool
3135 tablejump_p (const rtx_insn *insn, rtx *labelp, rtx_jump_table_data **tablep)
3137 rtx label;
3138 rtx_insn *table;
3140 if (!JUMP_P (insn))
3141 return false;
3143 label = JUMP_LABEL (insn);
3144 if (label != NULL_RTX && !ANY_RETURN_P (label)
3145 && (table = NEXT_INSN (as_a <rtx_insn *> (label))) != NULL_RTX
3146 && JUMP_TABLE_DATA_P (table))
3148 if (labelp)
3149 *labelp = label;
3150 if (tablep)
3151 *tablep = as_a <rtx_jump_table_data *> (table);
3152 return true;
3154 return false;
3157 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
3158 constant that is not in the constant pool and not in the condition
3159 of an IF_THEN_ELSE. */
3161 static int
3162 computed_jump_p_1 (const_rtx x)
3164 const enum rtx_code code = GET_CODE (x);
3165 int i, j;
3166 const char *fmt;
3168 switch (code)
3170 case LABEL_REF:
3171 case PC:
3172 return 0;
3174 case CONST:
3175 CASE_CONST_ANY:
3176 case SYMBOL_REF:
3177 case REG:
3178 return 1;
3180 case MEM:
3181 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3182 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
3184 case IF_THEN_ELSE:
3185 return (computed_jump_p_1 (XEXP (x, 1))
3186 || computed_jump_p_1 (XEXP (x, 2)));
3188 default:
3189 break;
3192 fmt = GET_RTX_FORMAT (code);
3193 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3195 if (fmt[i] == 'e'
3196 && computed_jump_p_1 (XEXP (x, i)))
3197 return 1;
3199 else if (fmt[i] == 'E')
3200 for (j = 0; j < XVECLEN (x, i); j++)
3201 if (computed_jump_p_1 (XVECEXP (x, i, j)))
3202 return 1;
3205 return 0;
3208 /* Return nonzero if INSN is an indirect jump (aka computed jump).
3210 Tablejumps and casesi insns are not considered indirect jumps;
3211 we can recognize them by a (use (label_ref)). */
3214 computed_jump_p (const rtx_insn *insn)
3216 int i;
3217 if (JUMP_P (insn))
3219 rtx pat = PATTERN (insn);
3221 /* If we have a JUMP_LABEL set, we're not a computed jump. */
3222 if (JUMP_LABEL (insn) != NULL)
3223 return 0;
3225 if (GET_CODE (pat) == PARALLEL)
3227 int len = XVECLEN (pat, 0);
3228 int has_use_labelref = 0;
3230 for (i = len - 1; i >= 0; i--)
3231 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
3232 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
3233 == LABEL_REF))
3235 has_use_labelref = 1;
3236 break;
3239 if (! has_use_labelref)
3240 for (i = len - 1; i >= 0; i--)
3241 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
3242 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
3243 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
3244 return 1;
3246 else if (GET_CODE (pat) == SET
3247 && SET_DEST (pat) == pc_rtx
3248 && computed_jump_p_1 (SET_SRC (pat)))
3249 return 1;
3251 return 0;
3256 /* MEM has a PRE/POST-INC/DEC/MODIFY address X. Extract the operands of
3257 the equivalent add insn and pass the result to FN, using DATA as the
3258 final argument. */
3260 static int
3261 for_each_inc_dec_find_inc_dec (rtx mem, for_each_inc_dec_fn fn, void *data)
3263 rtx x = XEXP (mem, 0);
3264 switch (GET_CODE (x))
3266 case PRE_INC:
3267 case POST_INC:
3269 int size = GET_MODE_SIZE (GET_MODE (mem));
3270 rtx r1 = XEXP (x, 0);
3271 rtx c = gen_int_mode (size, GET_MODE (r1));
3272 return fn (mem, x, r1, r1, c, data);
3275 case PRE_DEC:
3276 case POST_DEC:
3278 int size = GET_MODE_SIZE (GET_MODE (mem));
3279 rtx r1 = XEXP (x, 0);
3280 rtx c = gen_int_mode (-size, GET_MODE (r1));
3281 return fn (mem, x, r1, r1, c, data);
3284 case PRE_MODIFY:
3285 case POST_MODIFY:
3287 rtx r1 = XEXP (x, 0);
3288 rtx add = XEXP (x, 1);
3289 return fn (mem, x, r1, add, NULL, data);
3292 default:
3293 gcc_unreachable ();
3297 /* Traverse *LOC looking for MEMs that have autoinc addresses.
3298 For each such autoinc operation found, call FN, passing it
3299 the innermost enclosing MEM, the operation itself, the RTX modified
3300 by the operation, two RTXs (the second may be NULL) that, once
3301 added, represent the value to be held by the modified RTX
3302 afterwards, and DATA. FN is to return 0 to continue the
3303 traversal or any other value to have it returned to the caller of
3304 for_each_inc_dec. */
3307 for_each_inc_dec (rtx x,
3308 for_each_inc_dec_fn fn,
3309 void *data)
3311 subrtx_var_iterator::array_type array;
3312 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
3314 rtx mem = *iter;
3315 if (mem
3316 && MEM_P (mem)
3317 && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
3319 int res = for_each_inc_dec_find_inc_dec (mem, fn, data);
3320 if (res != 0)
3321 return res;
3322 iter.skip_subrtxes ();
3325 return 0;
3329 /* Searches X for any reference to REGNO, returning the rtx of the
3330 reference found if any. Otherwise, returns NULL_RTX. */
3333 regno_use_in (unsigned int regno, rtx x)
3335 const char *fmt;
3336 int i, j;
3337 rtx tem;
3339 if (REG_P (x) && REGNO (x) == regno)
3340 return x;
3342 fmt = GET_RTX_FORMAT (GET_CODE (x));
3343 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3345 if (fmt[i] == 'e')
3347 if ((tem = regno_use_in (regno, XEXP (x, i))))
3348 return tem;
3350 else if (fmt[i] == 'E')
3351 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3352 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
3353 return tem;
3356 return NULL_RTX;
3359 /* Return a value indicating whether OP, an operand of a commutative
3360 operation, is preferred as the first or second operand. The more
3361 positive the value, the stronger the preference for being the first
3362 operand. */
3365 commutative_operand_precedence (rtx op)
3367 enum rtx_code code = GET_CODE (op);
3369 /* Constants always become the second operand. Prefer "nice" constants. */
3370 if (code == CONST_INT)
3371 return -8;
3372 if (code == CONST_WIDE_INT)
3373 return -7;
3374 if (code == CONST_DOUBLE)
3375 return -7;
3376 if (code == CONST_FIXED)
3377 return -7;
3378 op = avoid_constant_pool_reference (op);
3379 code = GET_CODE (op);
3381 switch (GET_RTX_CLASS (code))
3383 case RTX_CONST_OBJ:
3384 if (code == CONST_INT)
3385 return -6;
3386 if (code == CONST_WIDE_INT)
3387 return -6;
3388 if (code == CONST_DOUBLE)
3389 return -5;
3390 if (code == CONST_FIXED)
3391 return -5;
3392 return -4;
3394 case RTX_EXTRA:
3395 /* SUBREGs of objects should come second. */
3396 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
3397 return -3;
3398 return 0;
3400 case RTX_OBJ:
3401 /* Complex expressions should be the first, so decrease priority
3402 of objects. Prefer pointer objects over non pointer objects. */
3403 if ((REG_P (op) && REG_POINTER (op))
3404 || (MEM_P (op) && MEM_POINTER (op)))
3405 return -1;
3406 return -2;
3408 case RTX_COMM_ARITH:
3409 /* Prefer operands that are themselves commutative to be first.
3410 This helps to make things linear. In particular,
3411 (and (and (reg) (reg)) (not (reg))) is canonical. */
3412 return 4;
3414 case RTX_BIN_ARITH:
3415 /* If only one operand is a binary expression, it will be the first
3416 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3417 is canonical, although it will usually be further simplified. */
3418 return 2;
3420 case RTX_UNARY:
3421 /* Then prefer NEG and NOT. */
3422 if (code == NEG || code == NOT)
3423 return 1;
3425 default:
3426 return 0;
3430 /* Return 1 iff it is necessary to swap operands of commutative operation
3431 in order to canonicalize expression. */
3433 bool
3434 swap_commutative_operands_p (rtx x, rtx y)
3436 return (commutative_operand_precedence (x)
3437 < commutative_operand_precedence (y));
3440 /* Return 1 if X is an autoincrement side effect and the register is
3441 not the stack pointer. */
3443 auto_inc_p (const_rtx x)
3445 switch (GET_CODE (x))
3447 case PRE_INC:
3448 case POST_INC:
3449 case PRE_DEC:
3450 case POST_DEC:
3451 case PRE_MODIFY:
3452 case POST_MODIFY:
3453 /* There are no REG_INC notes for SP. */
3454 if (XEXP (x, 0) != stack_pointer_rtx)
3455 return 1;
3456 default:
3457 break;
3459 return 0;
3462 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3464 loc_mentioned_in_p (rtx *loc, const_rtx in)
3466 enum rtx_code code;
3467 const char *fmt;
3468 int i, j;
3470 if (!in)
3471 return 0;
3473 code = GET_CODE (in);
3474 fmt = GET_RTX_FORMAT (code);
3475 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3477 if (fmt[i] == 'e')
3479 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
3480 return 1;
3482 else if (fmt[i] == 'E')
3483 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3484 if (loc == &XVECEXP (in, i, j)
3485 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3486 return 1;
3488 return 0;
3491 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3492 and SUBREG_BYTE, return the bit offset where the subreg begins
3493 (counting from the least significant bit of the operand). */
3495 unsigned int
3496 subreg_lsb_1 (machine_mode outer_mode,
3497 machine_mode inner_mode,
3498 unsigned int subreg_byte)
3500 unsigned int bitpos;
3501 unsigned int byte;
3502 unsigned int word;
3504 /* A paradoxical subreg begins at bit position 0. */
3505 if (GET_MODE_PRECISION (outer_mode) > GET_MODE_PRECISION (inner_mode))
3506 return 0;
3508 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3509 /* If the subreg crosses a word boundary ensure that
3510 it also begins and ends on a word boundary. */
3511 gcc_assert (!((subreg_byte % UNITS_PER_WORD
3512 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3513 && (subreg_byte % UNITS_PER_WORD
3514 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
3516 if (WORDS_BIG_ENDIAN)
3517 word = (GET_MODE_SIZE (inner_mode)
3518 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3519 else
3520 word = subreg_byte / UNITS_PER_WORD;
3521 bitpos = word * BITS_PER_WORD;
3523 if (BYTES_BIG_ENDIAN)
3524 byte = (GET_MODE_SIZE (inner_mode)
3525 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3526 else
3527 byte = subreg_byte % UNITS_PER_WORD;
3528 bitpos += byte * BITS_PER_UNIT;
3530 return bitpos;
3533 /* Given a subreg X, return the bit offset where the subreg begins
3534 (counting from the least significant bit of the reg). */
3536 unsigned int
3537 subreg_lsb (const_rtx x)
3539 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3540 SUBREG_BYTE (x));
3543 /* Fill in information about a subreg of a hard register.
3544 xregno - A regno of an inner hard subreg_reg (or what will become one).
3545 xmode - The mode of xregno.
3546 offset - The byte offset.
3547 ymode - The mode of a top level SUBREG (or what may become one).
3548 info - Pointer to structure to fill in.
3550 Rather than considering one particular inner register (and thus one
3551 particular "outer" register) in isolation, this function really uses
3552 XREGNO as a model for a sequence of isomorphic hard registers. Thus the
3553 function does not check whether adding INFO->offset to XREGNO gives
3554 a valid hard register; even if INFO->offset + XREGNO is out of range,
3555 there might be another register of the same type that is in range.
3556 Likewise it doesn't check whether HARD_REGNO_MODE_OK accepts the new
3557 register, since that can depend on things like whether the final
3558 register number is even or odd. Callers that want to check whether
3559 this particular subreg can be replaced by a simple (reg ...) should
3560 use simplify_subreg_regno. */
3562 void
3563 subreg_get_info (unsigned int xregno, machine_mode xmode,
3564 unsigned int offset, machine_mode ymode,
3565 struct subreg_info *info)
3567 int nregs_xmode, nregs_ymode;
3568 int mode_multiple, nregs_multiple;
3569 int offset_adj, y_offset, y_offset_adj;
3570 int regsize_xmode, regsize_ymode;
3571 bool rknown;
3573 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3575 rknown = false;
3577 /* If there are holes in a non-scalar mode in registers, we expect
3578 that it is made up of its units concatenated together. */
3579 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3581 machine_mode xmode_unit;
3583 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3584 xmode_unit = GET_MODE_INNER (xmode);
3585 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3586 gcc_assert (nregs_xmode
3587 == (GET_MODE_NUNITS (xmode)
3588 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3589 gcc_assert (hard_regno_nregs[xregno][xmode]
3590 == (hard_regno_nregs[xregno][xmode_unit]
3591 * GET_MODE_NUNITS (xmode)));
3593 /* You can only ask for a SUBREG of a value with holes in the middle
3594 if you don't cross the holes. (Such a SUBREG should be done by
3595 picking a different register class, or doing it in memory if
3596 necessary.) An example of a value with holes is XCmode on 32-bit
3597 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3598 3 for each part, but in memory it's two 128-bit parts.
3599 Padding is assumed to be at the end (not necessarily the 'high part')
3600 of each unit. */
3601 if ((offset / GET_MODE_SIZE (xmode_unit) + 1
3602 < GET_MODE_NUNITS (xmode))
3603 && (offset / GET_MODE_SIZE (xmode_unit)
3604 != ((offset + GET_MODE_SIZE (ymode) - 1)
3605 / GET_MODE_SIZE (xmode_unit))))
3607 info->representable_p = false;
3608 rknown = true;
3611 else
3612 nregs_xmode = hard_regno_nregs[xregno][xmode];
3614 nregs_ymode = hard_regno_nregs[xregno][ymode];
3616 /* Paradoxical subregs are otherwise valid. */
3617 if (!rknown
3618 && offset == 0
3619 && GET_MODE_PRECISION (ymode) > GET_MODE_PRECISION (xmode))
3621 info->representable_p = true;
3622 /* If this is a big endian paradoxical subreg, which uses more
3623 actual hard registers than the original register, we must
3624 return a negative offset so that we find the proper highpart
3625 of the register. */
3626 if (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3627 ? REG_WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN)
3628 info->offset = nregs_xmode - nregs_ymode;
3629 else
3630 info->offset = 0;
3631 info->nregs = nregs_ymode;
3632 return;
3635 /* If registers store different numbers of bits in the different
3636 modes, we cannot generally form this subreg. */
3637 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3638 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3639 && (GET_MODE_SIZE (xmode) % nregs_xmode) == 0
3640 && (GET_MODE_SIZE (ymode) % nregs_ymode) == 0)
3642 regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
3643 regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
3644 if (!rknown && regsize_xmode > regsize_ymode && nregs_ymode > 1)
3646 info->representable_p = false;
3647 info->nregs
3648 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3649 info->offset = offset / regsize_xmode;
3650 return;
3652 if (!rknown && regsize_ymode > regsize_xmode && nregs_xmode > 1)
3654 info->representable_p = false;
3655 info->nregs
3656 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3657 info->offset = offset / regsize_xmode;
3658 return;
3660 /* Quick exit for the simple and common case of extracting whole
3661 subregisters from a multiregister value. */
3662 /* ??? It would be better to integrate this into the code below,
3663 if we can generalize the concept enough and figure out how
3664 odd-sized modes can coexist with the other weird cases we support. */
3665 if (!rknown
3666 && WORDS_BIG_ENDIAN == REG_WORDS_BIG_ENDIAN
3667 && regsize_xmode == regsize_ymode
3668 && (offset % regsize_ymode) == 0)
3670 info->representable_p = true;
3671 info->nregs = nregs_ymode;
3672 info->offset = offset / regsize_ymode;
3673 gcc_assert (info->offset + info->nregs <= nregs_xmode);
3674 return;
3678 /* Lowpart subregs are otherwise valid. */
3679 if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3681 info->representable_p = true;
3682 rknown = true;
3684 if (offset == 0 || nregs_xmode == nregs_ymode)
3686 info->offset = 0;
3687 info->nregs = nregs_ymode;
3688 return;
3692 /* This should always pass, otherwise we don't know how to verify
3693 the constraint. These conditions may be relaxed but
3694 subreg_regno_offset would need to be redesigned. */
3695 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3696 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3698 if (WORDS_BIG_ENDIAN != REG_WORDS_BIG_ENDIAN
3699 && GET_MODE_SIZE (xmode) > UNITS_PER_WORD)
3701 HOST_WIDE_INT xsize = GET_MODE_SIZE (xmode);
3702 HOST_WIDE_INT ysize = GET_MODE_SIZE (ymode);
3703 HOST_WIDE_INT off_low = offset & (ysize - 1);
3704 HOST_WIDE_INT off_high = offset & ~(ysize - 1);
3705 offset = (xsize - ysize - off_high) | off_low;
3707 /* The XMODE value can be seen as a vector of NREGS_XMODE
3708 values. The subreg must represent a lowpart of given field.
3709 Compute what field it is. */
3710 offset_adj = offset;
3711 offset_adj -= subreg_lowpart_offset (ymode,
3712 mode_for_size (GET_MODE_BITSIZE (xmode)
3713 / nregs_xmode,
3714 MODE_INT, 0));
3716 /* Size of ymode must not be greater than the size of xmode. */
3717 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3718 gcc_assert (mode_multiple != 0);
3720 y_offset = offset / GET_MODE_SIZE (ymode);
3721 y_offset_adj = offset_adj / GET_MODE_SIZE (ymode);
3722 nregs_multiple = nregs_xmode / nregs_ymode;
3724 gcc_assert ((offset_adj % GET_MODE_SIZE (ymode)) == 0);
3725 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3727 if (!rknown)
3729 info->representable_p = (!(y_offset_adj % (mode_multiple / nregs_multiple)));
3730 rknown = true;
3732 info->offset = (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3733 info->nregs = nregs_ymode;
3736 /* This function returns the regno offset of a subreg expression.
3737 xregno - A regno of an inner hard subreg_reg (or what will become one).
3738 xmode - The mode of xregno.
3739 offset - The byte offset.
3740 ymode - The mode of a top level SUBREG (or what may become one).
3741 RETURN - The regno offset which would be used. */
3742 unsigned int
3743 subreg_regno_offset (unsigned int xregno, machine_mode xmode,
3744 unsigned int offset, machine_mode ymode)
3746 struct subreg_info info;
3747 subreg_get_info (xregno, xmode, offset, ymode, &info);
3748 return info.offset;
3751 /* This function returns true when the offset is representable via
3752 subreg_offset in the given regno.
3753 xregno - A regno of an inner hard subreg_reg (or what will become one).
3754 xmode - The mode of xregno.
3755 offset - The byte offset.
3756 ymode - The mode of a top level SUBREG (or what may become one).
3757 RETURN - Whether the offset is representable. */
3758 bool
3759 subreg_offset_representable_p (unsigned int xregno, machine_mode xmode,
3760 unsigned int offset, machine_mode ymode)
3762 struct subreg_info info;
3763 subreg_get_info (xregno, xmode, offset, ymode, &info);
3764 return info.representable_p;
3767 /* Return the number of a YMODE register to which
3769 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3771 can be simplified. Return -1 if the subreg can't be simplified.
3773 XREGNO is a hard register number. */
3776 simplify_subreg_regno (unsigned int xregno, machine_mode xmode,
3777 unsigned int offset, machine_mode ymode)
3779 struct subreg_info info;
3780 unsigned int yregno;
3782 #ifdef CANNOT_CHANGE_MODE_CLASS
3783 /* Give the backend a chance to disallow the mode change. */
3784 if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
3785 && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
3786 && REG_CANNOT_CHANGE_MODE_P (xregno, xmode, ymode)
3787 /* We can use mode change in LRA for some transformations. */
3788 && ! lra_in_progress)
3789 return -1;
3790 #endif
3792 /* We shouldn't simplify stack-related registers. */
3793 if ((!reload_completed || frame_pointer_needed)
3794 && xregno == FRAME_POINTER_REGNUM)
3795 return -1;
3797 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3798 && xregno == ARG_POINTER_REGNUM)
3799 return -1;
3801 if (xregno == STACK_POINTER_REGNUM
3802 /* We should convert hard stack register in LRA if it is
3803 possible. */
3804 && ! lra_in_progress)
3805 return -1;
3807 /* Try to get the register offset. */
3808 subreg_get_info (xregno, xmode, offset, ymode, &info);
3809 if (!info.representable_p)
3810 return -1;
3812 /* Make sure that the offsetted register value is in range. */
3813 yregno = xregno + info.offset;
3814 if (!HARD_REGISTER_NUM_P (yregno))
3815 return -1;
3817 /* See whether (reg:YMODE YREGNO) is valid.
3819 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3820 This is a kludge to work around how complex FP arguments are passed
3821 on IA-64 and should be fixed. See PR target/49226. */
3822 if (!HARD_REGNO_MODE_OK (yregno, ymode)
3823 && HARD_REGNO_MODE_OK (xregno, xmode))
3824 return -1;
3826 return (int) yregno;
3829 /* Return the final regno that a subreg expression refers to. */
3830 unsigned int
3831 subreg_regno (const_rtx x)
3833 unsigned int ret;
3834 rtx subreg = SUBREG_REG (x);
3835 int regno = REGNO (subreg);
3837 ret = regno + subreg_regno_offset (regno,
3838 GET_MODE (subreg),
3839 SUBREG_BYTE (x),
3840 GET_MODE (x));
3841 return ret;
3845 /* Return the number of registers that a subreg expression refers
3846 to. */
3847 unsigned int
3848 subreg_nregs (const_rtx x)
3850 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
3853 /* Return the number of registers that a subreg REG with REGNO
3854 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3855 changed so that the regno can be passed in. */
3857 unsigned int
3858 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
3860 struct subreg_info info;
3861 rtx subreg = SUBREG_REG (x);
3863 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3864 &info);
3865 return info.nregs;
3869 struct parms_set_data
3871 int nregs;
3872 HARD_REG_SET regs;
3875 /* Helper function for noticing stores to parameter registers. */
3876 static void
3877 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3879 struct parms_set_data *const d = (struct parms_set_data *) data;
3880 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3881 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3883 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3884 d->nregs--;
3888 /* Look backward for first parameter to be loaded.
3889 Note that loads of all parameters will not necessarily be
3890 found if CSE has eliminated some of them (e.g., an argument
3891 to the outer function is passed down as a parameter).
3892 Do not skip BOUNDARY. */
3893 rtx_insn *
3894 find_first_parameter_load (rtx_insn *call_insn, rtx_insn *boundary)
3896 struct parms_set_data parm;
3897 rtx p;
3898 rtx_insn *before, *first_set;
3900 /* Since different machines initialize their parameter registers
3901 in different orders, assume nothing. Collect the set of all
3902 parameter registers. */
3903 CLEAR_HARD_REG_SET (parm.regs);
3904 parm.nregs = 0;
3905 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3906 if (GET_CODE (XEXP (p, 0)) == USE
3907 && REG_P (XEXP (XEXP (p, 0), 0)))
3909 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3911 /* We only care about registers which can hold function
3912 arguments. */
3913 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3914 continue;
3916 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3917 parm.nregs++;
3919 before = call_insn;
3920 first_set = call_insn;
3922 /* Search backward for the first set of a register in this set. */
3923 while (parm.nregs && before != boundary)
3925 before = PREV_INSN (before);
3927 /* It is possible that some loads got CSEed from one call to
3928 another. Stop in that case. */
3929 if (CALL_P (before))
3930 break;
3932 /* Our caller needs either ensure that we will find all sets
3933 (in case code has not been optimized yet), or take care
3934 for possible labels in a way by setting boundary to preceding
3935 CODE_LABEL. */
3936 if (LABEL_P (before))
3938 gcc_assert (before == boundary);
3939 break;
3942 if (INSN_P (before))
3944 int nregs_old = parm.nregs;
3945 note_stores (PATTERN (before), parms_set, &parm);
3946 /* If we found something that did not set a parameter reg,
3947 we're done. Do not keep going, as that might result
3948 in hoisting an insn before the setting of a pseudo
3949 that is used by the hoisted insn. */
3950 if (nregs_old != parm.nregs)
3951 first_set = before;
3952 else
3953 break;
3956 return first_set;
3959 /* Return true if we should avoid inserting code between INSN and preceding
3960 call instruction. */
3962 bool
3963 keep_with_call_p (const rtx_insn *insn)
3965 rtx set;
3967 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3969 if (REG_P (SET_DEST (set))
3970 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3971 && fixed_regs[REGNO (SET_DEST (set))]
3972 && general_operand (SET_SRC (set), VOIDmode))
3973 return true;
3974 if (REG_P (SET_SRC (set))
3975 && targetm.calls.function_value_regno_p (REGNO (SET_SRC (set)))
3976 && REG_P (SET_DEST (set))
3977 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3978 return true;
3979 /* There may be a stack pop just after the call and before the store
3980 of the return register. Search for the actual store when deciding
3981 if we can break or not. */
3982 if (SET_DEST (set) == stack_pointer_rtx)
3984 /* This CONST_CAST is okay because next_nonnote_insn just
3985 returns its argument and we assign it to a const_rtx
3986 variable. */
3987 const rtx_insn *i2
3988 = next_nonnote_insn (const_cast<rtx_insn *> (insn));
3989 if (i2 && keep_with_call_p (i2))
3990 return true;
3993 return false;
3996 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3997 to non-complex jumps. That is, direct unconditional, conditional,
3998 and tablejumps, but not computed jumps or returns. It also does
3999 not apply to the fallthru case of a conditional jump. */
4001 bool
4002 label_is_jump_target_p (const_rtx label, const rtx_insn *jump_insn)
4004 rtx tmp = JUMP_LABEL (jump_insn);
4005 rtx_jump_table_data *table;
4007 if (label == tmp)
4008 return true;
4010 if (tablejump_p (jump_insn, NULL, &table))
4012 rtvec vec = table->get_labels ();
4013 int i, veclen = GET_NUM_ELEM (vec);
4015 for (i = 0; i < veclen; ++i)
4016 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
4017 return true;
4020 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
4021 return true;
4023 return false;
4027 /* Return an estimate of the cost of computing rtx X.
4028 One use is in cse, to decide which expression to keep in the hash table.
4029 Another is in rtl generation, to pick the cheapest way to multiply.
4030 Other uses like the latter are expected in the future.
4032 X appears as operand OPNO in an expression with code OUTER_CODE.
4033 SPEED specifies whether costs optimized for speed or size should
4034 be returned. */
4037 rtx_cost (rtx x, machine_mode mode, enum rtx_code outer_code,
4038 int opno, bool speed)
4040 int i, j;
4041 enum rtx_code code;
4042 const char *fmt;
4043 int total;
4044 int factor;
4046 if (x == 0)
4047 return 0;
4049 if (GET_MODE (x) != VOIDmode)
4050 mode = GET_MODE (x);
4052 /* A size N times larger than UNITS_PER_WORD likely needs N times as
4053 many insns, taking N times as long. */
4054 factor = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
4055 if (factor == 0)
4056 factor = 1;
4058 /* Compute the default costs of certain things.
4059 Note that targetm.rtx_costs can override the defaults. */
4061 code = GET_CODE (x);
4062 switch (code)
4064 case MULT:
4065 /* Multiplication has time-complexity O(N*N), where N is the
4066 number of units (translated from digits) when using
4067 schoolbook long multiplication. */
4068 total = factor * factor * COSTS_N_INSNS (5);
4069 break;
4070 case DIV:
4071 case UDIV:
4072 case MOD:
4073 case UMOD:
4074 /* Similarly, complexity for schoolbook long division. */
4075 total = factor * factor * COSTS_N_INSNS (7);
4076 break;
4077 case USE:
4078 /* Used in combine.c as a marker. */
4079 total = 0;
4080 break;
4081 case SET:
4082 /* A SET doesn't have a mode, so let's look at the SET_DEST to get
4083 the mode for the factor. */
4084 mode = GET_MODE (SET_DEST (x));
4085 factor = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
4086 if (factor == 0)
4087 factor = 1;
4088 /* Pass through. */
4089 default:
4090 total = factor * COSTS_N_INSNS (1);
4093 switch (code)
4095 case REG:
4096 return 0;
4098 case SUBREG:
4099 total = 0;
4100 /* If we can't tie these modes, make this expensive. The larger
4101 the mode, the more expensive it is. */
4102 if (! MODES_TIEABLE_P (mode, GET_MODE (SUBREG_REG (x))))
4103 return COSTS_N_INSNS (2 + factor);
4104 break;
4106 default:
4107 if (targetm.rtx_costs (x, mode, outer_code, opno, &total, speed))
4108 return total;
4109 break;
4112 /* Sum the costs of the sub-rtx's, plus cost of this operation,
4113 which is already in total. */
4115 fmt = GET_RTX_FORMAT (code);
4116 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4117 if (fmt[i] == 'e')
4118 total += rtx_cost (XEXP (x, i), mode, code, i, speed);
4119 else if (fmt[i] == 'E')
4120 for (j = 0; j < XVECLEN (x, i); j++)
4121 total += rtx_cost (XVECEXP (x, i, j), mode, code, i, speed);
4123 return total;
4126 /* Fill in the structure C with information about both speed and size rtx
4127 costs for X, which is operand OPNO in an expression with code OUTER. */
4129 void
4130 get_full_rtx_cost (rtx x, machine_mode mode, enum rtx_code outer, int opno,
4131 struct full_rtx_costs *c)
4133 c->speed = rtx_cost (x, mode, outer, opno, true);
4134 c->size = rtx_cost (x, mode, outer, opno, false);
4138 /* Return cost of address expression X.
4139 Expect that X is properly formed address reference.
4141 SPEED parameter specify whether costs optimized for speed or size should
4142 be returned. */
4145 address_cost (rtx x, machine_mode mode, addr_space_t as, bool speed)
4147 /* We may be asked for cost of various unusual addresses, such as operands
4148 of push instruction. It is not worthwhile to complicate writing
4149 of the target hook by such cases. */
4151 if (!memory_address_addr_space_p (mode, x, as))
4152 return 1000;
4154 return targetm.address_cost (x, mode, as, speed);
4157 /* If the target doesn't override, compute the cost as with arithmetic. */
4160 default_address_cost (rtx x, machine_mode, addr_space_t, bool speed)
4162 return rtx_cost (x, Pmode, MEM, 0, speed);
4166 unsigned HOST_WIDE_INT
4167 nonzero_bits (const_rtx x, machine_mode mode)
4169 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
4172 unsigned int
4173 num_sign_bit_copies (const_rtx x, machine_mode mode)
4175 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
4178 /* Return true if nonzero_bits1 might recurse into both operands
4179 of X. */
4181 static inline bool
4182 nonzero_bits_binary_arith_p (const_rtx x)
4184 if (!ARITHMETIC_P (x))
4185 return false;
4186 switch (GET_CODE (x))
4188 case AND:
4189 case XOR:
4190 case IOR:
4191 case UMIN:
4192 case UMAX:
4193 case SMIN:
4194 case SMAX:
4195 case PLUS:
4196 case MINUS:
4197 case MULT:
4198 case DIV:
4199 case UDIV:
4200 case MOD:
4201 case UMOD:
4202 return true;
4203 default:
4204 return false;
4208 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
4209 It avoids exponential behavior in nonzero_bits1 when X has
4210 identical subexpressions on the first or the second level. */
4212 static unsigned HOST_WIDE_INT
4213 cached_nonzero_bits (const_rtx x, machine_mode mode, const_rtx known_x,
4214 machine_mode known_mode,
4215 unsigned HOST_WIDE_INT known_ret)
4217 if (x == known_x && mode == known_mode)
4218 return known_ret;
4220 /* Try to find identical subexpressions. If found call
4221 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
4222 precomputed value for the subexpression as KNOWN_RET. */
4224 if (nonzero_bits_binary_arith_p (x))
4226 rtx x0 = XEXP (x, 0);
4227 rtx x1 = XEXP (x, 1);
4229 /* Check the first level. */
4230 if (x0 == x1)
4231 return nonzero_bits1 (x, mode, x0, mode,
4232 cached_nonzero_bits (x0, mode, known_x,
4233 known_mode, known_ret));
4235 /* Check the second level. */
4236 if (nonzero_bits_binary_arith_p (x0)
4237 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4238 return nonzero_bits1 (x, mode, x1, mode,
4239 cached_nonzero_bits (x1, mode, known_x,
4240 known_mode, known_ret));
4242 if (nonzero_bits_binary_arith_p (x1)
4243 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4244 return nonzero_bits1 (x, mode, x0, mode,
4245 cached_nonzero_bits (x0, mode, known_x,
4246 known_mode, known_ret));
4249 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
4252 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
4253 We don't let nonzero_bits recur into num_sign_bit_copies, because that
4254 is less useful. We can't allow both, because that results in exponential
4255 run time recursion. There is a nullstone testcase that triggered
4256 this. This macro avoids accidental uses of num_sign_bit_copies. */
4257 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
4259 /* Given an expression, X, compute which bits in X can be nonzero.
4260 We don't care about bits outside of those defined in MODE.
4262 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
4263 an arithmetic operation, we can do better. */
4265 static unsigned HOST_WIDE_INT
4266 nonzero_bits1 (const_rtx x, machine_mode mode, const_rtx known_x,
4267 machine_mode known_mode,
4268 unsigned HOST_WIDE_INT known_ret)
4270 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
4271 unsigned HOST_WIDE_INT inner_nz;
4272 enum rtx_code code;
4273 machine_mode inner_mode;
4274 unsigned int mode_width = GET_MODE_PRECISION (mode);
4276 /* For floating-point and vector values, assume all bits are needed. */
4277 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode)
4278 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4279 return nonzero;
4281 /* If X is wider than MODE, use its mode instead. */
4282 if (GET_MODE_PRECISION (GET_MODE (x)) > mode_width)
4284 mode = GET_MODE (x);
4285 nonzero = GET_MODE_MASK (mode);
4286 mode_width = GET_MODE_PRECISION (mode);
4289 if (mode_width > HOST_BITS_PER_WIDE_INT)
4290 /* Our only callers in this case look for single bit values. So
4291 just return the mode mask. Those tests will then be false. */
4292 return nonzero;
4294 /* If MODE is wider than X, but both are a single word for both the host
4295 and target machines, we can compute this from which bits of the
4296 object might be nonzero in its own mode, taking into account the fact
4297 that on many CISC machines, accessing an object in a wider mode
4298 causes the high-order bits to become undefined. So they are
4299 not known to be zero. */
4301 if (!WORD_REGISTER_OPERATIONS
4302 && GET_MODE (x) != VOIDmode
4303 && GET_MODE (x) != mode
4304 && GET_MODE_PRECISION (GET_MODE (x)) <= BITS_PER_WORD
4305 && GET_MODE_PRECISION (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
4306 && GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (GET_MODE (x)))
4308 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
4309 known_x, known_mode, known_ret);
4310 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
4311 return nonzero;
4314 /* Please keep nonzero_bits_binary_arith_p above in sync with
4315 the code in the switch below. */
4316 code = GET_CODE (x);
4317 switch (code)
4319 case REG:
4320 #if defined(POINTERS_EXTEND_UNSIGNED)
4321 /* If pointers extend unsigned and this is a pointer in Pmode, say that
4322 all the bits above ptr_mode are known to be zero. */
4323 /* As we do not know which address space the pointer is referring to,
4324 we can do this only if the target does not support different pointer
4325 or address modes depending on the address space. */
4326 if (target_default_pointer_address_modes_p ()
4327 && POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4328 && REG_POINTER (x)
4329 && !targetm.have_ptr_extend ())
4330 nonzero &= GET_MODE_MASK (ptr_mode);
4331 #endif
4333 /* Include declared information about alignment of pointers. */
4334 /* ??? We don't properly preserve REG_POINTER changes across
4335 pointer-to-integer casts, so we can't trust it except for
4336 things that we know must be pointers. See execute/960116-1.c. */
4337 if ((x == stack_pointer_rtx
4338 || x == frame_pointer_rtx
4339 || x == arg_pointer_rtx)
4340 && REGNO_POINTER_ALIGN (REGNO (x)))
4342 unsigned HOST_WIDE_INT alignment
4343 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
4345 #ifdef PUSH_ROUNDING
4346 /* If PUSH_ROUNDING is defined, it is possible for the
4347 stack to be momentarily aligned only to that amount,
4348 so we pick the least alignment. */
4349 if (x == stack_pointer_rtx && PUSH_ARGS)
4350 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
4351 alignment);
4352 #endif
4354 nonzero &= ~(alignment - 1);
4358 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
4359 rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
4360 known_mode, known_ret,
4361 &nonzero_for_hook);
4363 if (new_rtx)
4364 nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
4365 known_mode, known_ret);
4367 return nonzero_for_hook;
4370 case CONST_INT:
4371 /* If X is negative in MODE, sign-extend the value. */
4372 if (SHORT_IMMEDIATES_SIGN_EXTEND && INTVAL (x) > 0
4373 && mode_width < BITS_PER_WORD
4374 && (UINTVAL (x) & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
4375 != 0)
4376 return UINTVAL (x) | (HOST_WIDE_INT_M1U << mode_width);
4378 return UINTVAL (x);
4380 case MEM:
4381 #ifdef LOAD_EXTEND_OP
4382 /* In many, if not most, RISC machines, reading a byte from memory
4383 zeros the rest of the register. Noticing that fact saves a lot
4384 of extra zero-extends. */
4385 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
4386 nonzero &= GET_MODE_MASK (GET_MODE (x));
4387 #endif
4388 break;
4390 case EQ: case NE:
4391 case UNEQ: case LTGT:
4392 case GT: case GTU: case UNGT:
4393 case LT: case LTU: case UNLT:
4394 case GE: case GEU: case UNGE:
4395 case LE: case LEU: case UNLE:
4396 case UNORDERED: case ORDERED:
4397 /* If this produces an integer result, we know which bits are set.
4398 Code here used to clear bits outside the mode of X, but that is
4399 now done above. */
4400 /* Mind that MODE is the mode the caller wants to look at this
4401 operation in, and not the actual operation mode. We can wind
4402 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
4403 that describes the results of a vector compare. */
4404 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
4405 && mode_width <= HOST_BITS_PER_WIDE_INT)
4406 nonzero = STORE_FLAG_VALUE;
4407 break;
4409 case NEG:
4410 #if 0
4411 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4412 and num_sign_bit_copies. */
4413 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4414 == GET_MODE_PRECISION (GET_MODE (x)))
4415 nonzero = 1;
4416 #endif
4418 if (GET_MODE_PRECISION (GET_MODE (x)) < mode_width)
4419 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
4420 break;
4422 case ABS:
4423 #if 0
4424 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4425 and num_sign_bit_copies. */
4426 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4427 == GET_MODE_PRECISION (GET_MODE (x)))
4428 nonzero = 1;
4429 #endif
4430 break;
4432 case TRUNCATE:
4433 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
4434 known_x, known_mode, known_ret)
4435 & GET_MODE_MASK (mode));
4436 break;
4438 case ZERO_EXTEND:
4439 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4440 known_x, known_mode, known_ret);
4441 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4442 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4443 break;
4445 case SIGN_EXTEND:
4446 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4447 Otherwise, show all the bits in the outer mode but not the inner
4448 may be nonzero. */
4449 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
4450 known_x, known_mode, known_ret);
4451 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4453 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4454 if (val_signbit_known_set_p (GET_MODE (XEXP (x, 0)), inner_nz))
4455 inner_nz |= (GET_MODE_MASK (mode)
4456 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
4459 nonzero &= inner_nz;
4460 break;
4462 case AND:
4463 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4464 known_x, known_mode, known_ret)
4465 & cached_nonzero_bits (XEXP (x, 1), mode,
4466 known_x, known_mode, known_ret);
4467 break;
4469 case XOR: case IOR:
4470 case UMIN: case UMAX: case SMIN: case SMAX:
4472 unsigned HOST_WIDE_INT nonzero0
4473 = cached_nonzero_bits (XEXP (x, 0), mode,
4474 known_x, known_mode, known_ret);
4476 /* Don't call nonzero_bits for the second time if it cannot change
4477 anything. */
4478 if ((nonzero & nonzero0) != nonzero)
4479 nonzero &= nonzero0
4480 | cached_nonzero_bits (XEXP (x, 1), mode,
4481 known_x, known_mode, known_ret);
4483 break;
4485 case PLUS: case MINUS:
4486 case MULT:
4487 case DIV: case UDIV:
4488 case MOD: case UMOD:
4489 /* We can apply the rules of arithmetic to compute the number of
4490 high- and low-order zero bits of these operations. We start by
4491 computing the width (position of the highest-order nonzero bit)
4492 and the number of low-order zero bits for each value. */
4494 unsigned HOST_WIDE_INT nz0
4495 = cached_nonzero_bits (XEXP (x, 0), mode,
4496 known_x, known_mode, known_ret);
4497 unsigned HOST_WIDE_INT nz1
4498 = cached_nonzero_bits (XEXP (x, 1), mode,
4499 known_x, known_mode, known_ret);
4500 int sign_index = GET_MODE_PRECISION (GET_MODE (x)) - 1;
4501 int width0 = floor_log2 (nz0) + 1;
4502 int width1 = floor_log2 (nz1) + 1;
4503 int low0 = floor_log2 (nz0 & -nz0);
4504 int low1 = floor_log2 (nz1 & -nz1);
4505 unsigned HOST_WIDE_INT op0_maybe_minusp
4506 = nz0 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
4507 unsigned HOST_WIDE_INT op1_maybe_minusp
4508 = nz1 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
4509 unsigned int result_width = mode_width;
4510 int result_low = 0;
4512 switch (code)
4514 case PLUS:
4515 result_width = MAX (width0, width1) + 1;
4516 result_low = MIN (low0, low1);
4517 break;
4518 case MINUS:
4519 result_low = MIN (low0, low1);
4520 break;
4521 case MULT:
4522 result_width = width0 + width1;
4523 result_low = low0 + low1;
4524 break;
4525 case DIV:
4526 if (width1 == 0)
4527 break;
4528 if (!op0_maybe_minusp && !op1_maybe_minusp)
4529 result_width = width0;
4530 break;
4531 case UDIV:
4532 if (width1 == 0)
4533 break;
4534 result_width = width0;
4535 break;
4536 case MOD:
4537 if (width1 == 0)
4538 break;
4539 if (!op0_maybe_minusp && !op1_maybe_minusp)
4540 result_width = MIN (width0, width1);
4541 result_low = MIN (low0, low1);
4542 break;
4543 case UMOD:
4544 if (width1 == 0)
4545 break;
4546 result_width = MIN (width0, width1);
4547 result_low = MIN (low0, low1);
4548 break;
4549 default:
4550 gcc_unreachable ();
4553 if (result_width < mode_width)
4554 nonzero &= ((unsigned HOST_WIDE_INT) 1 << result_width) - 1;
4556 if (result_low > 0)
4557 nonzero &= ~(((unsigned HOST_WIDE_INT) 1 << result_low) - 1);
4559 break;
4561 case ZERO_EXTRACT:
4562 if (CONST_INT_P (XEXP (x, 1))
4563 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
4564 nonzero &= ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
4565 break;
4567 case SUBREG:
4568 /* If this is a SUBREG formed for a promoted variable that has
4569 been zero-extended, we know that at least the high-order bits
4570 are zero, though others might be too. */
4572 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x))
4573 nonzero = GET_MODE_MASK (GET_MODE (x))
4574 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
4575 known_x, known_mode, known_ret);
4577 inner_mode = GET_MODE (SUBREG_REG (x));
4578 /* If the inner mode is a single word for both the host and target
4579 machines, we can compute this from which bits of the inner
4580 object might be nonzero. */
4581 if (GET_MODE_PRECISION (inner_mode) <= BITS_PER_WORD
4582 && (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT))
4584 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4585 known_x, known_mode, known_ret);
4587 #ifdef LOAD_EXTEND_OP
4588 /* If this is a typical RISC machine, we only have to worry
4589 about the way loads are extended. */
4590 if (WORD_REGISTER_OPERATIONS
4591 && ((LOAD_EXTEND_OP (inner_mode) == SIGN_EXTEND
4592 ? val_signbit_known_set_p (inner_mode, nonzero)
4593 : LOAD_EXTEND_OP (inner_mode) != ZERO_EXTEND)
4594 || !MEM_P (SUBREG_REG (x))))
4595 #endif
4597 /* On many CISC machines, accessing an object in a wider mode
4598 causes the high-order bits to become undefined. So they are
4599 not known to be zero. */
4600 if (GET_MODE_PRECISION (GET_MODE (x))
4601 > GET_MODE_PRECISION (inner_mode))
4602 nonzero |= (GET_MODE_MASK (GET_MODE (x))
4603 & ~GET_MODE_MASK (inner_mode));
4606 break;
4608 case ASHIFTRT:
4609 case LSHIFTRT:
4610 case ASHIFT:
4611 case ROTATE:
4612 /* The nonzero bits are in two classes: any bits within MODE
4613 that aren't in GET_MODE (x) are always significant. The rest of the
4614 nonzero bits are those that are significant in the operand of
4615 the shift when shifted the appropriate number of bits. This
4616 shows that high-order bits are cleared by the right shift and
4617 low-order bits by left shifts. */
4618 if (CONST_INT_P (XEXP (x, 1))
4619 && INTVAL (XEXP (x, 1)) >= 0
4620 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
4621 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
4623 machine_mode inner_mode = GET_MODE (x);
4624 unsigned int width = GET_MODE_PRECISION (inner_mode);
4625 int count = INTVAL (XEXP (x, 1));
4626 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
4627 unsigned HOST_WIDE_INT op_nonzero
4628 = cached_nonzero_bits (XEXP (x, 0), mode,
4629 known_x, known_mode, known_ret);
4630 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4631 unsigned HOST_WIDE_INT outer = 0;
4633 if (mode_width > width)
4634 outer = (op_nonzero & nonzero & ~mode_mask);
4636 if (code == LSHIFTRT)
4637 inner >>= count;
4638 else if (code == ASHIFTRT)
4640 inner >>= count;
4642 /* If the sign bit may have been nonzero before the shift, we
4643 need to mark all the places it could have been copied to
4644 by the shift as possibly nonzero. */
4645 if (inner & ((unsigned HOST_WIDE_INT) 1 << (width - 1 - count)))
4646 inner |= (((unsigned HOST_WIDE_INT) 1 << count) - 1)
4647 << (width - count);
4649 else if (code == ASHIFT)
4650 inner <<= count;
4651 else
4652 inner = ((inner << (count % width)
4653 | (inner >> (width - (count % width)))) & mode_mask);
4655 nonzero &= (outer | inner);
4657 break;
4659 case FFS:
4660 case POPCOUNT:
4661 /* This is at most the number of bits in the mode. */
4662 nonzero = ((unsigned HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4663 break;
4665 case CLZ:
4666 /* If CLZ has a known value at zero, then the nonzero bits are
4667 that value, plus the number of bits in the mode minus one. */
4668 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4669 nonzero
4670 |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4671 else
4672 nonzero = -1;
4673 break;
4675 case CTZ:
4676 /* If CTZ has a known value at zero, then the nonzero bits are
4677 that value, plus the number of bits in the mode minus one. */
4678 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4679 nonzero
4680 |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4681 else
4682 nonzero = -1;
4683 break;
4685 case CLRSB:
4686 /* This is at most the number of bits in the mode minus 1. */
4687 nonzero = ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4688 break;
4690 case PARITY:
4691 nonzero = 1;
4692 break;
4694 case IF_THEN_ELSE:
4696 unsigned HOST_WIDE_INT nonzero_true
4697 = cached_nonzero_bits (XEXP (x, 1), mode,
4698 known_x, known_mode, known_ret);
4700 /* Don't call nonzero_bits for the second time if it cannot change
4701 anything. */
4702 if ((nonzero & nonzero_true) != nonzero)
4703 nonzero &= nonzero_true
4704 | cached_nonzero_bits (XEXP (x, 2), mode,
4705 known_x, known_mode, known_ret);
4707 break;
4709 default:
4710 break;
4713 return nonzero;
4716 /* See the macro definition above. */
4717 #undef cached_num_sign_bit_copies
4720 /* Return true if num_sign_bit_copies1 might recurse into both operands
4721 of X. */
4723 static inline bool
4724 num_sign_bit_copies_binary_arith_p (const_rtx x)
4726 if (!ARITHMETIC_P (x))
4727 return false;
4728 switch (GET_CODE (x))
4730 case IOR:
4731 case AND:
4732 case XOR:
4733 case SMIN:
4734 case SMAX:
4735 case UMIN:
4736 case UMAX:
4737 case PLUS:
4738 case MINUS:
4739 case MULT:
4740 return true;
4741 default:
4742 return false;
4746 /* The function cached_num_sign_bit_copies is a wrapper around
4747 num_sign_bit_copies1. It avoids exponential behavior in
4748 num_sign_bit_copies1 when X has identical subexpressions on the
4749 first or the second level. */
4751 static unsigned int
4752 cached_num_sign_bit_copies (const_rtx x, machine_mode mode, const_rtx known_x,
4753 machine_mode known_mode,
4754 unsigned int known_ret)
4756 if (x == known_x && mode == known_mode)
4757 return known_ret;
4759 /* Try to find identical subexpressions. If found call
4760 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4761 the precomputed value for the subexpression as KNOWN_RET. */
4763 if (num_sign_bit_copies_binary_arith_p (x))
4765 rtx x0 = XEXP (x, 0);
4766 rtx x1 = XEXP (x, 1);
4768 /* Check the first level. */
4769 if (x0 == x1)
4770 return
4771 num_sign_bit_copies1 (x, mode, x0, mode,
4772 cached_num_sign_bit_copies (x0, mode, known_x,
4773 known_mode,
4774 known_ret));
4776 /* Check the second level. */
4777 if (num_sign_bit_copies_binary_arith_p (x0)
4778 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4779 return
4780 num_sign_bit_copies1 (x, mode, x1, mode,
4781 cached_num_sign_bit_copies (x1, mode, known_x,
4782 known_mode,
4783 known_ret));
4785 if (num_sign_bit_copies_binary_arith_p (x1)
4786 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4787 return
4788 num_sign_bit_copies1 (x, mode, x0, mode,
4789 cached_num_sign_bit_copies (x0, mode, known_x,
4790 known_mode,
4791 known_ret));
4794 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4797 /* Return the number of bits at the high-order end of X that are known to
4798 be equal to the sign bit. X will be used in mode MODE; if MODE is
4799 VOIDmode, X will be used in its own mode. The returned value will always
4800 be between 1 and the number of bits in MODE. */
4802 static unsigned int
4803 num_sign_bit_copies1 (const_rtx x, machine_mode mode, const_rtx known_x,
4804 machine_mode known_mode,
4805 unsigned int known_ret)
4807 enum rtx_code code = GET_CODE (x);
4808 unsigned int bitwidth = GET_MODE_PRECISION (mode);
4809 int num0, num1, result;
4810 unsigned HOST_WIDE_INT nonzero;
4812 /* If we weren't given a mode, use the mode of X. If the mode is still
4813 VOIDmode, we don't know anything. Likewise if one of the modes is
4814 floating-point. */
4816 if (mode == VOIDmode)
4817 mode = GET_MODE (x);
4819 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x))
4820 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4821 return 1;
4823 /* For a smaller object, just ignore the high bits. */
4824 if (bitwidth < GET_MODE_PRECISION (GET_MODE (x)))
4826 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4827 known_x, known_mode, known_ret);
4828 return MAX (1,
4829 num0 - (int) (GET_MODE_PRECISION (GET_MODE (x)) - bitwidth));
4832 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_PRECISION (GET_MODE (x)))
4834 /* If this machine does not do all register operations on the entire
4835 register and MODE is wider than the mode of X, we can say nothing
4836 at all about the high-order bits. */
4837 if (!WORD_REGISTER_OPERATIONS)
4838 return 1;
4840 /* Likewise on machines that do, if the mode of the object is smaller
4841 than a word and loads of that size don't sign extend, we can say
4842 nothing about the high order bits. */
4843 if (GET_MODE_PRECISION (GET_MODE (x)) < BITS_PER_WORD
4844 #ifdef LOAD_EXTEND_OP
4845 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4846 #endif
4848 return 1;
4851 /* Please keep num_sign_bit_copies_binary_arith_p above in sync with
4852 the code in the switch below. */
4853 switch (code)
4855 case REG:
4857 #if defined(POINTERS_EXTEND_UNSIGNED)
4858 /* If pointers extend signed and this is a pointer in Pmode, say that
4859 all the bits above ptr_mode are known to be sign bit copies. */
4860 /* As we do not know which address space the pointer is referring to,
4861 we can do this only if the target does not support different pointer
4862 or address modes depending on the address space. */
4863 if (target_default_pointer_address_modes_p ()
4864 && ! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4865 && mode == Pmode && REG_POINTER (x)
4866 && !targetm.have_ptr_extend ())
4867 return GET_MODE_PRECISION (Pmode) - GET_MODE_PRECISION (ptr_mode) + 1;
4868 #endif
4871 unsigned int copies_for_hook = 1, copies = 1;
4872 rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4873 known_mode, known_ret,
4874 &copies_for_hook);
4876 if (new_rtx)
4877 copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
4878 known_mode, known_ret);
4880 if (copies > 1 || copies_for_hook > 1)
4881 return MAX (copies, copies_for_hook);
4883 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4885 break;
4887 case MEM:
4888 #ifdef LOAD_EXTEND_OP
4889 /* Some RISC machines sign-extend all loads of smaller than a word. */
4890 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4891 return MAX (1, ((int) bitwidth
4892 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1));
4893 #endif
4894 break;
4896 case CONST_INT:
4897 /* If the constant is negative, take its 1's complement and remask.
4898 Then see how many zero bits we have. */
4899 nonzero = UINTVAL (x) & GET_MODE_MASK (mode);
4900 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4901 && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4902 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4904 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4906 case SUBREG:
4907 /* If this is a SUBREG for a promoted object that is sign-extended
4908 and we are looking at it in a wider mode, we know that at least the
4909 high-order bits are known to be sign bit copies. */
4911 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_SIGNED_P (x))
4913 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4914 known_x, known_mode, known_ret);
4915 return MAX ((int) bitwidth
4916 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1,
4917 num0);
4920 /* For a smaller object, just ignore the high bits. */
4921 if (bitwidth <= GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))))
4923 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4924 known_x, known_mode, known_ret);
4925 return MAX (1, (num0
4926 - (int) (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x)))
4927 - bitwidth)));
4930 #ifdef LOAD_EXTEND_OP
4931 /* For paradoxical SUBREGs on machines where all register operations
4932 affect the entire register, just look inside. Note that we are
4933 passing MODE to the recursive call, so the number of sign bit copies
4934 will remain relative to that mode, not the inner mode. */
4936 /* This works only if loads sign extend. Otherwise, if we get a
4937 reload for the inner part, it may be loaded from the stack, and
4938 then we lose all sign bit copies that existed before the store
4939 to the stack. */
4941 if (WORD_REGISTER_OPERATIONS
4942 && paradoxical_subreg_p (x)
4943 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4944 && MEM_P (SUBREG_REG (x)))
4945 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4946 known_x, known_mode, known_ret);
4947 #endif
4948 break;
4950 case SIGN_EXTRACT:
4951 if (CONST_INT_P (XEXP (x, 1)))
4952 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4953 break;
4955 case SIGN_EXTEND:
4956 return (bitwidth - GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
4957 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4958 known_x, known_mode, known_ret));
4960 case TRUNCATE:
4961 /* For a smaller object, just ignore the high bits. */
4962 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4963 known_x, known_mode, known_ret);
4964 return MAX (1, (num0 - (int) (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
4965 - bitwidth)));
4967 case NOT:
4968 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4969 known_x, known_mode, known_ret);
4971 case ROTATE: case ROTATERT:
4972 /* If we are rotating left by a number of bits less than the number
4973 of sign bit copies, we can just subtract that amount from the
4974 number. */
4975 if (CONST_INT_P (XEXP (x, 1))
4976 && INTVAL (XEXP (x, 1)) >= 0
4977 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4979 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4980 known_x, known_mode, known_ret);
4981 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4982 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4984 break;
4986 case NEG:
4987 /* In general, this subtracts one sign bit copy. But if the value
4988 is known to be positive, the number of sign bit copies is the
4989 same as that of the input. Finally, if the input has just one bit
4990 that might be nonzero, all the bits are copies of the sign bit. */
4991 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4992 known_x, known_mode, known_ret);
4993 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4994 return num0 > 1 ? num0 - 1 : 1;
4996 nonzero = nonzero_bits (XEXP (x, 0), mode);
4997 if (nonzero == 1)
4998 return bitwidth;
5000 if (num0 > 1
5001 && (((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
5002 num0--;
5004 return num0;
5006 case IOR: case AND: case XOR:
5007 case SMIN: case SMAX: case UMIN: case UMAX:
5008 /* Logical operations will preserve the number of sign-bit copies.
5009 MIN and MAX operations always return one of the operands. */
5010 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5011 known_x, known_mode, known_ret);
5012 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5013 known_x, known_mode, known_ret);
5015 /* If num1 is clearing some of the top bits then regardless of
5016 the other term, we are guaranteed to have at least that many
5017 high-order zero bits. */
5018 if (code == AND
5019 && num1 > 1
5020 && bitwidth <= HOST_BITS_PER_WIDE_INT
5021 && CONST_INT_P (XEXP (x, 1))
5022 && (UINTVAL (XEXP (x, 1))
5023 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) == 0)
5024 return num1;
5026 /* Similarly for IOR when setting high-order bits. */
5027 if (code == IOR
5028 && num1 > 1
5029 && bitwidth <= HOST_BITS_PER_WIDE_INT
5030 && CONST_INT_P (XEXP (x, 1))
5031 && (UINTVAL (XEXP (x, 1))
5032 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
5033 return num1;
5035 return MIN (num0, num1);
5037 case PLUS: case MINUS:
5038 /* For addition and subtraction, we can have a 1-bit carry. However,
5039 if we are subtracting 1 from a positive number, there will not
5040 be such a carry. Furthermore, if the positive number is known to
5041 be 0 or 1, we know the result is either -1 or 0. */
5043 if (code == PLUS && XEXP (x, 1) == constm1_rtx
5044 && bitwidth <= HOST_BITS_PER_WIDE_INT)
5046 nonzero = nonzero_bits (XEXP (x, 0), mode);
5047 if ((((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
5048 return (nonzero == 1 || nonzero == 0 ? bitwidth
5049 : bitwidth - floor_log2 (nonzero) - 1);
5052 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5053 known_x, known_mode, known_ret);
5054 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5055 known_x, known_mode, known_ret);
5056 result = MAX (1, MIN (num0, num1) - 1);
5058 return result;
5060 case MULT:
5061 /* The number of bits of the product is the sum of the number of
5062 bits of both terms. However, unless one of the terms if known
5063 to be positive, we must allow for an additional bit since negating
5064 a negative number can remove one sign bit copy. */
5066 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5067 known_x, known_mode, known_ret);
5068 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5069 known_x, known_mode, known_ret);
5071 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
5072 if (result > 0
5073 && (bitwidth > HOST_BITS_PER_WIDE_INT
5074 || (((nonzero_bits (XEXP (x, 0), mode)
5075 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
5076 && ((nonzero_bits (XEXP (x, 1), mode)
5077 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)))
5078 != 0))))
5079 result--;
5081 return MAX (1, result);
5083 case UDIV:
5084 /* The result must be <= the first operand. If the first operand
5085 has the high bit set, we know nothing about the number of sign
5086 bit copies. */
5087 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5088 return 1;
5089 else if ((nonzero_bits (XEXP (x, 0), mode)
5090 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
5091 return 1;
5092 else
5093 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
5094 known_x, known_mode, known_ret);
5096 case UMOD:
5097 /* The result must be <= the second operand. If the second operand
5098 has (or just might have) the high bit set, we know nothing about
5099 the number of sign bit copies. */
5100 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5101 return 1;
5102 else if ((nonzero_bits (XEXP (x, 1), mode)
5103 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
5104 return 1;
5105 else
5106 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
5107 known_x, known_mode, known_ret);
5109 case DIV:
5110 /* Similar to unsigned division, except that we have to worry about
5111 the case where the divisor is negative, in which case we have
5112 to add 1. */
5113 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5114 known_x, known_mode, known_ret);
5115 if (result > 1
5116 && (bitwidth > HOST_BITS_PER_WIDE_INT
5117 || (nonzero_bits (XEXP (x, 1), mode)
5118 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
5119 result--;
5121 return result;
5123 case MOD:
5124 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5125 known_x, known_mode, known_ret);
5126 if (result > 1
5127 && (bitwidth > HOST_BITS_PER_WIDE_INT
5128 || (nonzero_bits (XEXP (x, 1), mode)
5129 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
5130 result--;
5132 return result;
5134 case ASHIFTRT:
5135 /* Shifts by a constant add to the number of bits equal to the
5136 sign bit. */
5137 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5138 known_x, known_mode, known_ret);
5139 if (CONST_INT_P (XEXP (x, 1))
5140 && INTVAL (XEXP (x, 1)) > 0
5141 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
5142 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
5144 return num0;
5146 case ASHIFT:
5147 /* Left shifts destroy copies. */
5148 if (!CONST_INT_P (XEXP (x, 1))
5149 || INTVAL (XEXP (x, 1)) < 0
5150 || INTVAL (XEXP (x, 1)) >= (int) bitwidth
5151 || INTVAL (XEXP (x, 1)) >= GET_MODE_PRECISION (GET_MODE (x)))
5152 return 1;
5154 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5155 known_x, known_mode, known_ret);
5156 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
5158 case IF_THEN_ELSE:
5159 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5160 known_x, known_mode, known_ret);
5161 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
5162 known_x, known_mode, known_ret);
5163 return MIN (num0, num1);
5165 case EQ: case NE: case GE: case GT: case LE: case LT:
5166 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
5167 case GEU: case GTU: case LEU: case LTU:
5168 case UNORDERED: case ORDERED:
5169 /* If the constant is negative, take its 1's complement and remask.
5170 Then see how many zero bits we have. */
5171 nonzero = STORE_FLAG_VALUE;
5172 if (bitwidth <= HOST_BITS_PER_WIDE_INT
5173 && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
5174 nonzero = (~nonzero) & GET_MODE_MASK (mode);
5176 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
5178 default:
5179 break;
5182 /* If we haven't been able to figure it out by one of the above rules,
5183 see if some of the high-order bits are known to be zero. If so,
5184 count those bits and return one less than that amount. If we can't
5185 safely compute the mask for this mode, always return BITWIDTH. */
5187 bitwidth = GET_MODE_PRECISION (mode);
5188 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5189 return 1;
5191 nonzero = nonzero_bits (x, mode);
5192 return nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))
5193 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
5196 /* Calculate the rtx_cost of a single instruction. A return value of
5197 zero indicates an instruction pattern without a known cost. */
5200 insn_rtx_cost (rtx pat, bool speed)
5202 int i, cost;
5203 rtx set;
5205 /* Extract the single set rtx from the instruction pattern.
5206 We can't use single_set since we only have the pattern. */
5207 if (GET_CODE (pat) == SET)
5208 set = pat;
5209 else if (GET_CODE (pat) == PARALLEL)
5211 set = NULL_RTX;
5212 for (i = 0; i < XVECLEN (pat, 0); i++)
5214 rtx x = XVECEXP (pat, 0, i);
5215 if (GET_CODE (x) == SET)
5217 if (set)
5218 return 0;
5219 set = x;
5222 if (!set)
5223 return 0;
5225 else
5226 return 0;
5228 cost = set_src_cost (SET_SRC (set), GET_MODE (SET_DEST (set)), speed);
5229 return cost > 0 ? cost : COSTS_N_INSNS (1);
5232 /* Returns estimate on cost of computing SEQ. */
5234 unsigned
5235 seq_cost (const rtx_insn *seq, bool speed)
5237 unsigned cost = 0;
5238 rtx set;
5240 for (; seq; seq = NEXT_INSN (seq))
5242 set = single_set (seq);
5243 if (set)
5244 cost += set_rtx_cost (set, speed);
5245 else
5246 cost++;
5249 return cost;
5252 /* Given an insn INSN and condition COND, return the condition in a
5253 canonical form to simplify testing by callers. Specifically:
5255 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
5256 (2) Both operands will be machine operands; (cc0) will have been replaced.
5257 (3) If an operand is a constant, it will be the second operand.
5258 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
5259 for GE, GEU, and LEU.
5261 If the condition cannot be understood, or is an inequality floating-point
5262 comparison which needs to be reversed, 0 will be returned.
5264 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
5266 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5267 insn used in locating the condition was found. If a replacement test
5268 of the condition is desired, it should be placed in front of that
5269 insn and we will be sure that the inputs are still valid.
5271 If WANT_REG is nonzero, we wish the condition to be relative to that
5272 register, if possible. Therefore, do not canonicalize the condition
5273 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
5274 to be a compare to a CC mode register.
5276 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
5277 and at INSN. */
5280 canonicalize_condition (rtx_insn *insn, rtx cond, int reverse,
5281 rtx_insn **earliest,
5282 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
5284 enum rtx_code code;
5285 rtx_insn *prev = insn;
5286 const_rtx set;
5287 rtx tem;
5288 rtx op0, op1;
5289 int reverse_code = 0;
5290 machine_mode mode;
5291 basic_block bb = BLOCK_FOR_INSN (insn);
5293 code = GET_CODE (cond);
5294 mode = GET_MODE (cond);
5295 op0 = XEXP (cond, 0);
5296 op1 = XEXP (cond, 1);
5298 if (reverse)
5299 code = reversed_comparison_code (cond, insn);
5300 if (code == UNKNOWN)
5301 return 0;
5303 if (earliest)
5304 *earliest = insn;
5306 /* If we are comparing a register with zero, see if the register is set
5307 in the previous insn to a COMPARE or a comparison operation. Perform
5308 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
5309 in cse.c */
5311 while ((GET_RTX_CLASS (code) == RTX_COMPARE
5312 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
5313 && op1 == CONST0_RTX (GET_MODE (op0))
5314 && op0 != want_reg)
5316 /* Set nonzero when we find something of interest. */
5317 rtx x = 0;
5319 /* If comparison with cc0, import actual comparison from compare
5320 insn. */
5321 if (op0 == cc0_rtx)
5323 if ((prev = prev_nonnote_insn (prev)) == 0
5324 || !NONJUMP_INSN_P (prev)
5325 || (set = single_set (prev)) == 0
5326 || SET_DEST (set) != cc0_rtx)
5327 return 0;
5329 op0 = SET_SRC (set);
5330 op1 = CONST0_RTX (GET_MODE (op0));
5331 if (earliest)
5332 *earliest = prev;
5335 /* If this is a COMPARE, pick up the two things being compared. */
5336 if (GET_CODE (op0) == COMPARE)
5338 op1 = XEXP (op0, 1);
5339 op0 = XEXP (op0, 0);
5340 continue;
5342 else if (!REG_P (op0))
5343 break;
5345 /* Go back to the previous insn. Stop if it is not an INSN. We also
5346 stop if it isn't a single set or if it has a REG_INC note because
5347 we don't want to bother dealing with it. */
5349 prev = prev_nonnote_nondebug_insn (prev);
5351 if (prev == 0
5352 || !NONJUMP_INSN_P (prev)
5353 || FIND_REG_INC_NOTE (prev, NULL_RTX)
5354 /* In cfglayout mode, there do not have to be labels at the
5355 beginning of a block, or jumps at the end, so the previous
5356 conditions would not stop us when we reach bb boundary. */
5357 || BLOCK_FOR_INSN (prev) != bb)
5358 break;
5360 set = set_of (op0, prev);
5362 if (set
5363 && (GET_CODE (set) != SET
5364 || !rtx_equal_p (SET_DEST (set), op0)))
5365 break;
5367 /* If this is setting OP0, get what it sets it to if it looks
5368 relevant. */
5369 if (set)
5371 machine_mode inner_mode = GET_MODE (SET_DEST (set));
5372 #ifdef FLOAT_STORE_FLAG_VALUE
5373 REAL_VALUE_TYPE fsfv;
5374 #endif
5376 /* ??? We may not combine comparisons done in a CCmode with
5377 comparisons not done in a CCmode. This is to aid targets
5378 like Alpha that have an IEEE compliant EQ instruction, and
5379 a non-IEEE compliant BEQ instruction. The use of CCmode is
5380 actually artificial, simply to prevent the combination, but
5381 should not affect other platforms.
5383 However, we must allow VOIDmode comparisons to match either
5384 CCmode or non-CCmode comparison, because some ports have
5385 modeless comparisons inside branch patterns.
5387 ??? This mode check should perhaps look more like the mode check
5388 in simplify_comparison in combine. */
5389 if (((GET_MODE_CLASS (mode) == MODE_CC)
5390 != (GET_MODE_CLASS (inner_mode) == MODE_CC))
5391 && mode != VOIDmode
5392 && inner_mode != VOIDmode)
5393 break;
5394 if (GET_CODE (SET_SRC (set)) == COMPARE
5395 || (((code == NE
5396 || (code == LT
5397 && val_signbit_known_set_p (inner_mode,
5398 STORE_FLAG_VALUE))
5399 #ifdef FLOAT_STORE_FLAG_VALUE
5400 || (code == LT
5401 && SCALAR_FLOAT_MODE_P (inner_mode)
5402 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5403 REAL_VALUE_NEGATIVE (fsfv)))
5404 #endif
5406 && COMPARISON_P (SET_SRC (set))))
5407 x = SET_SRC (set);
5408 else if (((code == EQ
5409 || (code == GE
5410 && val_signbit_known_set_p (inner_mode,
5411 STORE_FLAG_VALUE))
5412 #ifdef FLOAT_STORE_FLAG_VALUE
5413 || (code == GE
5414 && SCALAR_FLOAT_MODE_P (inner_mode)
5415 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5416 REAL_VALUE_NEGATIVE (fsfv)))
5417 #endif
5419 && COMPARISON_P (SET_SRC (set)))
5421 reverse_code = 1;
5422 x = SET_SRC (set);
5424 else if ((code == EQ || code == NE)
5425 && GET_CODE (SET_SRC (set)) == XOR)
5426 /* Handle sequences like:
5428 (set op0 (xor X Y))
5429 ...(eq|ne op0 (const_int 0))...
5431 in which case:
5433 (eq op0 (const_int 0)) reduces to (eq X Y)
5434 (ne op0 (const_int 0)) reduces to (ne X Y)
5436 This is the form used by MIPS16, for example. */
5437 x = SET_SRC (set);
5438 else
5439 break;
5442 else if (reg_set_p (op0, prev))
5443 /* If this sets OP0, but not directly, we have to give up. */
5444 break;
5446 if (x)
5448 /* If the caller is expecting the condition to be valid at INSN,
5449 make sure X doesn't change before INSN. */
5450 if (valid_at_insn_p)
5451 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
5452 break;
5453 if (COMPARISON_P (x))
5454 code = GET_CODE (x);
5455 if (reverse_code)
5457 code = reversed_comparison_code (x, prev);
5458 if (code == UNKNOWN)
5459 return 0;
5460 reverse_code = 0;
5463 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5464 if (earliest)
5465 *earliest = prev;
5469 /* If constant is first, put it last. */
5470 if (CONSTANT_P (op0))
5471 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
5473 /* If OP0 is the result of a comparison, we weren't able to find what
5474 was really being compared, so fail. */
5475 if (!allow_cc_mode
5476 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5477 return 0;
5479 /* Canonicalize any ordered comparison with integers involving equality
5480 if we can do computations in the relevant mode and we do not
5481 overflow. */
5483 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
5484 && CONST_INT_P (op1)
5485 && GET_MODE (op0) != VOIDmode
5486 && GET_MODE_PRECISION (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
5488 HOST_WIDE_INT const_val = INTVAL (op1);
5489 unsigned HOST_WIDE_INT uconst_val = const_val;
5490 unsigned HOST_WIDE_INT max_val
5491 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
5493 switch (code)
5495 case LE:
5496 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
5497 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
5498 break;
5500 /* When cross-compiling, const_val might be sign-extended from
5501 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
5502 case GE:
5503 if ((const_val & max_val)
5504 != ((unsigned HOST_WIDE_INT) 1
5505 << (GET_MODE_PRECISION (GET_MODE (op0)) - 1)))
5506 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
5507 break;
5509 case LEU:
5510 if (uconst_val < max_val)
5511 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
5512 break;
5514 case GEU:
5515 if (uconst_val != 0)
5516 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
5517 break;
5519 default:
5520 break;
5524 /* Never return CC0; return zero instead. */
5525 if (CC0_P (op0))
5526 return 0;
5528 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
5531 /* Given a jump insn JUMP, return the condition that will cause it to branch
5532 to its JUMP_LABEL. If the condition cannot be understood, or is an
5533 inequality floating-point comparison which needs to be reversed, 0 will
5534 be returned.
5536 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5537 insn used in locating the condition was found. If a replacement test
5538 of the condition is desired, it should be placed in front of that
5539 insn and we will be sure that the inputs are still valid. If EARLIEST
5540 is null, the returned condition will be valid at INSN.
5542 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
5543 compare CC mode register.
5545 VALID_AT_INSN_P is the same as for canonicalize_condition. */
5548 get_condition (rtx_insn *jump, rtx_insn **earliest, int allow_cc_mode,
5549 int valid_at_insn_p)
5551 rtx cond;
5552 int reverse;
5553 rtx set;
5555 /* If this is not a standard conditional jump, we can't parse it. */
5556 if (!JUMP_P (jump)
5557 || ! any_condjump_p (jump))
5558 return 0;
5559 set = pc_set (jump);
5561 cond = XEXP (SET_SRC (set), 0);
5563 /* If this branches to JUMP_LABEL when the condition is false, reverse
5564 the condition. */
5565 reverse
5566 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
5567 && LABEL_REF_LABEL (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (jump);
5569 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
5570 allow_cc_mode, valid_at_insn_p);
5573 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
5574 TARGET_MODE_REP_EXTENDED.
5576 Note that we assume that the property of
5577 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
5578 narrower than mode B. I.e., if A is a mode narrower than B then in
5579 order to be able to operate on it in mode B, mode A needs to
5580 satisfy the requirements set by the representation of mode B. */
5582 static void
5583 init_num_sign_bit_copies_in_rep (void)
5585 machine_mode mode, in_mode;
5587 for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
5588 in_mode = GET_MODE_WIDER_MODE (mode))
5589 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
5590 mode = GET_MODE_WIDER_MODE (mode))
5592 machine_mode i;
5594 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5595 extends to the next widest mode. */
5596 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
5597 || GET_MODE_WIDER_MODE (mode) == in_mode);
5599 /* We are in in_mode. Count how many bits outside of mode
5600 have to be copies of the sign-bit. */
5601 for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
5603 machine_mode wider = GET_MODE_WIDER_MODE (i);
5605 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
5606 /* We can only check sign-bit copies starting from the
5607 top-bit. In order to be able to check the bits we
5608 have already seen we pretend that subsequent bits
5609 have to be sign-bit copies too. */
5610 || num_sign_bit_copies_in_rep [in_mode][mode])
5611 num_sign_bit_copies_in_rep [in_mode][mode]
5612 += GET_MODE_PRECISION (wider) - GET_MODE_PRECISION (i);
5617 /* Suppose that truncation from the machine mode of X to MODE is not a
5618 no-op. See if there is anything special about X so that we can
5619 assume it already contains a truncated value of MODE. */
5621 bool
5622 truncated_to_mode (machine_mode mode, const_rtx x)
5624 /* This register has already been used in MODE without explicit
5625 truncation. */
5626 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
5627 return true;
5629 /* See if we already satisfy the requirements of MODE. If yes we
5630 can just switch to MODE. */
5631 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
5632 && (num_sign_bit_copies (x, GET_MODE (x))
5633 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
5634 return true;
5636 return false;
5639 /* Return true if RTX code CODE has a single sequence of zero or more
5640 "e" operands and no rtvec operands. Initialize its rtx_all_subrtx_bounds
5641 entry in that case. */
5643 static bool
5644 setup_reg_subrtx_bounds (unsigned int code)
5646 const char *format = GET_RTX_FORMAT ((enum rtx_code) code);
5647 unsigned int i = 0;
5648 for (; format[i] != 'e'; ++i)
5650 if (!format[i])
5651 /* No subrtxes. Leave start and count as 0. */
5652 return true;
5653 if (format[i] == 'E' || format[i] == 'V')
5654 return false;
5657 /* Record the sequence of 'e's. */
5658 rtx_all_subrtx_bounds[code].start = i;
5660 ++i;
5661 while (format[i] == 'e');
5662 rtx_all_subrtx_bounds[code].count = i - rtx_all_subrtx_bounds[code].start;
5663 /* rtl-iter.h relies on this. */
5664 gcc_checking_assert (rtx_all_subrtx_bounds[code].count <= 3);
5666 for (; format[i]; ++i)
5667 if (format[i] == 'E' || format[i] == 'V' || format[i] == 'e')
5668 return false;
5670 return true;
5673 /* Initialize rtx_all_subrtx_bounds. */
5674 void
5675 init_rtlanal (void)
5677 int i;
5678 for (i = 0; i < NUM_RTX_CODE; i++)
5680 if (!setup_reg_subrtx_bounds (i))
5681 rtx_all_subrtx_bounds[i].count = UCHAR_MAX;
5682 if (GET_RTX_CLASS (i) != RTX_CONST_OBJ)
5683 rtx_nonconst_subrtx_bounds[i] = rtx_all_subrtx_bounds[i];
5686 init_num_sign_bit_copies_in_rep ();
5689 /* Check whether this is a constant pool constant. */
5690 bool
5691 constant_pool_constant_p (rtx x)
5693 x = avoid_constant_pool_reference (x);
5694 return CONST_DOUBLE_P (x);
5697 /* If M is a bitmask that selects a field of low-order bits within an item but
5698 not the entire word, return the length of the field. Return -1 otherwise.
5699 M is used in machine mode MODE. */
5702 low_bitmask_len (machine_mode mode, unsigned HOST_WIDE_INT m)
5704 if (mode != VOIDmode)
5706 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
5707 return -1;
5708 m &= GET_MODE_MASK (mode);
5711 return exact_log2 (m + 1);
5714 /* Return the mode of MEM's address. */
5716 machine_mode
5717 get_address_mode (rtx mem)
5719 machine_mode mode;
5721 gcc_assert (MEM_P (mem));
5722 mode = GET_MODE (XEXP (mem, 0));
5723 if (mode != VOIDmode)
5724 return mode;
5725 return targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
5728 /* Split up a CONST_DOUBLE or integer constant rtx
5729 into two rtx's for single words,
5730 storing in *FIRST the word that comes first in memory in the target
5731 and in *SECOND the other.
5733 TODO: This function needs to be rewritten to work on any size
5734 integer. */
5736 void
5737 split_double (rtx value, rtx *first, rtx *second)
5739 if (CONST_INT_P (value))
5741 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
5743 /* In this case the CONST_INT holds both target words.
5744 Extract the bits from it into two word-sized pieces.
5745 Sign extend each half to HOST_WIDE_INT. */
5746 unsigned HOST_WIDE_INT low, high;
5747 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
5748 unsigned bits_per_word = BITS_PER_WORD;
5750 /* Set sign_bit to the most significant bit of a word. */
5751 sign_bit = 1;
5752 sign_bit <<= bits_per_word - 1;
5754 /* Set mask so that all bits of the word are set. We could
5755 have used 1 << BITS_PER_WORD instead of basing the
5756 calculation on sign_bit. However, on machines where
5757 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
5758 compiler warning, even though the code would never be
5759 executed. */
5760 mask = sign_bit << 1;
5761 mask--;
5763 /* Set sign_extend as any remaining bits. */
5764 sign_extend = ~mask;
5766 /* Pick the lower word and sign-extend it. */
5767 low = INTVAL (value);
5768 low &= mask;
5769 if (low & sign_bit)
5770 low |= sign_extend;
5772 /* Pick the higher word, shifted to the least significant
5773 bits, and sign-extend it. */
5774 high = INTVAL (value);
5775 high >>= bits_per_word - 1;
5776 high >>= 1;
5777 high &= mask;
5778 if (high & sign_bit)
5779 high |= sign_extend;
5781 /* Store the words in the target machine order. */
5782 if (WORDS_BIG_ENDIAN)
5784 *first = GEN_INT (high);
5785 *second = GEN_INT (low);
5787 else
5789 *first = GEN_INT (low);
5790 *second = GEN_INT (high);
5793 else
5795 /* The rule for using CONST_INT for a wider mode
5796 is that we regard the value as signed.
5797 So sign-extend it. */
5798 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
5799 if (WORDS_BIG_ENDIAN)
5801 *first = high;
5802 *second = value;
5804 else
5806 *first = value;
5807 *second = high;
5811 else if (GET_CODE (value) == CONST_WIDE_INT)
5813 /* All of this is scary code and needs to be converted to
5814 properly work with any size integer. */
5815 gcc_assert (CONST_WIDE_INT_NUNITS (value) == 2);
5816 if (WORDS_BIG_ENDIAN)
5818 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
5819 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
5821 else
5823 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
5824 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
5827 else if (!CONST_DOUBLE_P (value))
5829 if (WORDS_BIG_ENDIAN)
5831 *first = const0_rtx;
5832 *second = value;
5834 else
5836 *first = value;
5837 *second = const0_rtx;
5840 else if (GET_MODE (value) == VOIDmode
5841 /* This is the old way we did CONST_DOUBLE integers. */
5842 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
5844 /* In an integer, the words are defined as most and least significant.
5845 So order them by the target's convention. */
5846 if (WORDS_BIG_ENDIAN)
5848 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
5849 *second = GEN_INT (CONST_DOUBLE_LOW (value));
5851 else
5853 *first = GEN_INT (CONST_DOUBLE_LOW (value));
5854 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
5857 else
5859 long l[2];
5861 /* Note, this converts the REAL_VALUE_TYPE to the target's
5862 format, splits up the floating point double and outputs
5863 exactly 32 bits of it into each of l[0] and l[1] --
5864 not necessarily BITS_PER_WORD bits. */
5865 REAL_VALUE_TO_TARGET_DOUBLE (*CONST_DOUBLE_REAL_VALUE (value), l);
5867 /* If 32 bits is an entire word for the target, but not for the host,
5868 then sign-extend on the host so that the number will look the same
5869 way on the host that it would on the target. See for instance
5870 simplify_unary_operation. The #if is needed to avoid compiler
5871 warnings. */
5873 #if HOST_BITS_PER_LONG > 32
5874 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
5876 if (l[0] & ((long) 1 << 31))
5877 l[0] |= ((unsigned long) (-1) << 32);
5878 if (l[1] & ((long) 1 << 31))
5879 l[1] |= ((unsigned long) (-1) << 32);
5881 #endif
5883 *first = GEN_INT (l[0]);
5884 *second = GEN_INT (l[1]);
5888 /* Return true if X is a sign_extract or zero_extract from the least
5889 significant bit. */
5891 static bool
5892 lsb_bitfield_op_p (rtx x)
5894 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_BITFIELD_OPS)
5896 machine_mode mode = GET_MODE (XEXP (x, 0));
5897 HOST_WIDE_INT len = INTVAL (XEXP (x, 1));
5898 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
5900 return (pos == (BITS_BIG_ENDIAN ? GET_MODE_PRECISION (mode) - len : 0));
5902 return false;
5905 /* Strip outer address "mutations" from LOC and return a pointer to the
5906 inner value. If OUTER_CODE is nonnull, store the code of the innermost
5907 stripped expression there.
5909 "Mutations" either convert between modes or apply some kind of
5910 extension, truncation or alignment. */
5912 rtx *
5913 strip_address_mutations (rtx *loc, enum rtx_code *outer_code)
5915 for (;;)
5917 enum rtx_code code = GET_CODE (*loc);
5918 if (GET_RTX_CLASS (code) == RTX_UNARY)
5919 /* Things like SIGN_EXTEND, ZERO_EXTEND and TRUNCATE can be
5920 used to convert between pointer sizes. */
5921 loc = &XEXP (*loc, 0);
5922 else if (lsb_bitfield_op_p (*loc))
5923 /* A [SIGN|ZERO]_EXTRACT from the least significant bit effectively
5924 acts as a combined truncation and extension. */
5925 loc = &XEXP (*loc, 0);
5926 else if (code == AND && CONST_INT_P (XEXP (*loc, 1)))
5927 /* (and ... (const_int -X)) is used to align to X bytes. */
5928 loc = &XEXP (*loc, 0);
5929 else if (code == SUBREG
5930 && !OBJECT_P (SUBREG_REG (*loc))
5931 && subreg_lowpart_p (*loc))
5932 /* (subreg (operator ...) ...) inside and is used for mode
5933 conversion too. */
5934 loc = &SUBREG_REG (*loc);
5935 else
5936 return loc;
5937 if (outer_code)
5938 *outer_code = code;
5942 /* Return true if CODE applies some kind of scale. The scaled value is
5943 is the first operand and the scale is the second. */
5945 static bool
5946 binary_scale_code_p (enum rtx_code code)
5948 return (code == MULT
5949 || code == ASHIFT
5950 /* Needed by ARM targets. */
5951 || code == ASHIFTRT
5952 || code == LSHIFTRT
5953 || code == ROTATE
5954 || code == ROTATERT);
5957 /* If *INNER can be interpreted as a base, return a pointer to the inner term
5958 (see address_info). Return null otherwise. */
5960 static rtx *
5961 get_base_term (rtx *inner)
5963 if (GET_CODE (*inner) == LO_SUM)
5964 inner = strip_address_mutations (&XEXP (*inner, 0));
5965 if (REG_P (*inner)
5966 || MEM_P (*inner)
5967 || GET_CODE (*inner) == SUBREG
5968 || GET_CODE (*inner) == SCRATCH)
5969 return inner;
5970 return 0;
5973 /* If *INNER can be interpreted as an index, return a pointer to the inner term
5974 (see address_info). Return null otherwise. */
5976 static rtx *
5977 get_index_term (rtx *inner)
5979 /* At present, only constant scales are allowed. */
5980 if (binary_scale_code_p (GET_CODE (*inner)) && CONSTANT_P (XEXP (*inner, 1)))
5981 inner = strip_address_mutations (&XEXP (*inner, 0));
5982 if (REG_P (*inner)
5983 || MEM_P (*inner)
5984 || GET_CODE (*inner) == SUBREG
5985 || GET_CODE (*inner) == SCRATCH)
5986 return inner;
5987 return 0;
5990 /* Set the segment part of address INFO to LOC, given that INNER is the
5991 unmutated value. */
5993 static void
5994 set_address_segment (struct address_info *info, rtx *loc, rtx *inner)
5996 gcc_assert (!info->segment);
5997 info->segment = loc;
5998 info->segment_term = inner;
6001 /* Set the base part of address INFO to LOC, given that INNER is the
6002 unmutated value. */
6004 static void
6005 set_address_base (struct address_info *info, rtx *loc, rtx *inner)
6007 gcc_assert (!info->base);
6008 info->base = loc;
6009 info->base_term = inner;
6012 /* Set the index part of address INFO to LOC, given that INNER is the
6013 unmutated value. */
6015 static void
6016 set_address_index (struct address_info *info, rtx *loc, rtx *inner)
6018 gcc_assert (!info->index);
6019 info->index = loc;
6020 info->index_term = inner;
6023 /* Set the displacement part of address INFO to LOC, given that INNER
6024 is the constant term. */
6026 static void
6027 set_address_disp (struct address_info *info, rtx *loc, rtx *inner)
6029 gcc_assert (!info->disp);
6030 info->disp = loc;
6031 info->disp_term = inner;
6034 /* INFO->INNER describes a {PRE,POST}_{INC,DEC} address. Set up the
6035 rest of INFO accordingly. */
6037 static void
6038 decompose_incdec_address (struct address_info *info)
6040 info->autoinc_p = true;
6042 rtx *base = &XEXP (*info->inner, 0);
6043 set_address_base (info, base, base);
6044 gcc_checking_assert (info->base == info->base_term);
6046 /* These addresses are only valid when the size of the addressed
6047 value is known. */
6048 gcc_checking_assert (info->mode != VOIDmode);
6051 /* INFO->INNER describes a {PRE,POST}_MODIFY address. Set up the rest
6052 of INFO accordingly. */
6054 static void
6055 decompose_automod_address (struct address_info *info)
6057 info->autoinc_p = true;
6059 rtx *base = &XEXP (*info->inner, 0);
6060 set_address_base (info, base, base);
6061 gcc_checking_assert (info->base == info->base_term);
6063 rtx plus = XEXP (*info->inner, 1);
6064 gcc_assert (GET_CODE (plus) == PLUS);
6066 info->base_term2 = &XEXP (plus, 0);
6067 gcc_checking_assert (rtx_equal_p (*info->base_term, *info->base_term2));
6069 rtx *step = &XEXP (plus, 1);
6070 rtx *inner_step = strip_address_mutations (step);
6071 if (CONSTANT_P (*inner_step))
6072 set_address_disp (info, step, inner_step);
6073 else
6074 set_address_index (info, step, inner_step);
6077 /* Treat *LOC as a tree of PLUS operands and store pointers to the summed
6078 values in [PTR, END). Return a pointer to the end of the used array. */
6080 static rtx **
6081 extract_plus_operands (rtx *loc, rtx **ptr, rtx **end)
6083 rtx x = *loc;
6084 if (GET_CODE (x) == PLUS)
6086 ptr = extract_plus_operands (&XEXP (x, 0), ptr, end);
6087 ptr = extract_plus_operands (&XEXP (x, 1), ptr, end);
6089 else
6091 gcc_assert (ptr != end);
6092 *ptr++ = loc;
6094 return ptr;
6097 /* Evaluate the likelihood of X being a base or index value, returning
6098 positive if it is likely to be a base, negative if it is likely to be
6099 an index, and 0 if we can't tell. Make the magnitude of the return
6100 value reflect the amount of confidence we have in the answer.
6102 MODE, AS, OUTER_CODE and INDEX_CODE are as for ok_for_base_p_1. */
6104 static int
6105 baseness (rtx x, machine_mode mode, addr_space_t as,
6106 enum rtx_code outer_code, enum rtx_code index_code)
6108 /* Believe *_POINTER unless the address shape requires otherwise. */
6109 if (REG_P (x) && REG_POINTER (x))
6110 return 2;
6111 if (MEM_P (x) && MEM_POINTER (x))
6112 return 2;
6114 if (REG_P (x) && HARD_REGISTER_P (x))
6116 /* X is a hard register. If it only fits one of the base
6117 or index classes, choose that interpretation. */
6118 int regno = REGNO (x);
6119 bool base_p = ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
6120 bool index_p = REGNO_OK_FOR_INDEX_P (regno);
6121 if (base_p != index_p)
6122 return base_p ? 1 : -1;
6124 return 0;
6127 /* INFO->INNER describes a normal, non-automodified address.
6128 Fill in the rest of INFO accordingly. */
6130 static void
6131 decompose_normal_address (struct address_info *info)
6133 /* Treat the address as the sum of up to four values. */
6134 rtx *ops[4];
6135 size_t n_ops = extract_plus_operands (info->inner, ops,
6136 ops + ARRAY_SIZE (ops)) - ops;
6138 /* If there is more than one component, any base component is in a PLUS. */
6139 if (n_ops > 1)
6140 info->base_outer_code = PLUS;
6142 /* Try to classify each sum operand now. Leave those that could be
6143 either a base or an index in OPS. */
6144 rtx *inner_ops[4];
6145 size_t out = 0;
6146 for (size_t in = 0; in < n_ops; ++in)
6148 rtx *loc = ops[in];
6149 rtx *inner = strip_address_mutations (loc);
6150 if (CONSTANT_P (*inner))
6151 set_address_disp (info, loc, inner);
6152 else if (GET_CODE (*inner) == UNSPEC)
6153 set_address_segment (info, loc, inner);
6154 else
6156 /* The only other possibilities are a base or an index. */
6157 rtx *base_term = get_base_term (inner);
6158 rtx *index_term = get_index_term (inner);
6159 gcc_assert (base_term || index_term);
6160 if (!base_term)
6161 set_address_index (info, loc, index_term);
6162 else if (!index_term)
6163 set_address_base (info, loc, base_term);
6164 else
6166 gcc_assert (base_term == index_term);
6167 ops[out] = loc;
6168 inner_ops[out] = base_term;
6169 ++out;
6174 /* Classify the remaining OPS members as bases and indexes. */
6175 if (out == 1)
6177 /* If we haven't seen a base or an index yet, assume that this is
6178 the base. If we were confident that another term was the base
6179 or index, treat the remaining operand as the other kind. */
6180 if (!info->base)
6181 set_address_base (info, ops[0], inner_ops[0]);
6182 else
6183 set_address_index (info, ops[0], inner_ops[0]);
6185 else if (out == 2)
6187 /* In the event of a tie, assume the base comes first. */
6188 if (baseness (*inner_ops[0], info->mode, info->as, PLUS,
6189 GET_CODE (*ops[1]))
6190 >= baseness (*inner_ops[1], info->mode, info->as, PLUS,
6191 GET_CODE (*ops[0])))
6193 set_address_base (info, ops[0], inner_ops[0]);
6194 set_address_index (info, ops[1], inner_ops[1]);
6196 else
6198 set_address_base (info, ops[1], inner_ops[1]);
6199 set_address_index (info, ops[0], inner_ops[0]);
6202 else
6203 gcc_assert (out == 0);
6206 /* Describe address *LOC in *INFO. MODE is the mode of the addressed value,
6207 or VOIDmode if not known. AS is the address space associated with LOC.
6208 OUTER_CODE is MEM if *LOC is a MEM address and ADDRESS otherwise. */
6210 void
6211 decompose_address (struct address_info *info, rtx *loc, machine_mode mode,
6212 addr_space_t as, enum rtx_code outer_code)
6214 memset (info, 0, sizeof (*info));
6215 info->mode = mode;
6216 info->as = as;
6217 info->addr_outer_code = outer_code;
6218 info->outer = loc;
6219 info->inner = strip_address_mutations (loc, &outer_code);
6220 info->base_outer_code = outer_code;
6221 switch (GET_CODE (*info->inner))
6223 case PRE_DEC:
6224 case PRE_INC:
6225 case POST_DEC:
6226 case POST_INC:
6227 decompose_incdec_address (info);
6228 break;
6230 case PRE_MODIFY:
6231 case POST_MODIFY:
6232 decompose_automod_address (info);
6233 break;
6235 default:
6236 decompose_normal_address (info);
6237 break;
6241 /* Describe address operand LOC in INFO. */
6243 void
6244 decompose_lea_address (struct address_info *info, rtx *loc)
6246 decompose_address (info, loc, VOIDmode, ADDR_SPACE_GENERIC, ADDRESS);
6249 /* Describe the address of MEM X in INFO. */
6251 void
6252 decompose_mem_address (struct address_info *info, rtx x)
6254 gcc_assert (MEM_P (x));
6255 decompose_address (info, &XEXP (x, 0), GET_MODE (x),
6256 MEM_ADDR_SPACE (x), MEM);
6259 /* Update INFO after a change to the address it describes. */
6261 void
6262 update_address (struct address_info *info)
6264 decompose_address (info, info->outer, info->mode, info->as,
6265 info->addr_outer_code);
6268 /* Return the scale applied to *INFO->INDEX_TERM, or 0 if the index is
6269 more complicated than that. */
6271 HOST_WIDE_INT
6272 get_index_scale (const struct address_info *info)
6274 rtx index = *info->index;
6275 if (GET_CODE (index) == MULT
6276 && CONST_INT_P (XEXP (index, 1))
6277 && info->index_term == &XEXP (index, 0))
6278 return INTVAL (XEXP (index, 1));
6280 if (GET_CODE (index) == ASHIFT
6281 && CONST_INT_P (XEXP (index, 1))
6282 && info->index_term == &XEXP (index, 0))
6283 return (HOST_WIDE_INT) 1 << INTVAL (XEXP (index, 1));
6285 if (info->index == info->index_term)
6286 return 1;
6288 return 0;
6291 /* Return the "index code" of INFO, in the form required by
6292 ok_for_base_p_1. */
6294 enum rtx_code
6295 get_index_code (const struct address_info *info)
6297 if (info->index)
6298 return GET_CODE (*info->index);
6300 if (info->disp)
6301 return GET_CODE (*info->disp);
6303 return SCRATCH;
6306 /* Return true if RTL X contains a SYMBOL_REF. */
6308 bool
6309 contains_symbol_ref_p (const_rtx x)
6311 subrtx_iterator::array_type array;
6312 FOR_EACH_SUBRTX (iter, array, x, ALL)
6313 if (SYMBOL_REF_P (*iter))
6314 return true;
6316 return false;
6319 /* Return true if RTL X contains a SYMBOL_REF or LABEL_REF. */
6321 bool
6322 contains_symbolic_reference_p (const_rtx x)
6324 subrtx_iterator::array_type array;
6325 FOR_EACH_SUBRTX (iter, array, x, ALL)
6326 if (SYMBOL_REF_P (*iter) || GET_CODE (*iter) == LABEL_REF)
6327 return true;
6329 return false;
6332 /* Return true if X contains a thread-local symbol. */
6334 bool
6335 tls_referenced_p (const_rtx x)
6337 if (!targetm.have_tls)
6338 return false;
6340 subrtx_iterator::array_type array;
6341 FOR_EACH_SUBRTX (iter, array, x, ALL)
6342 if (GET_CODE (*iter) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (*iter) != 0)
6343 return true;
6344 return false;