[RS6000] PR69645, -ffixed-reg ignored
[official-gcc.git] / gcc / ipa-inline.c
blobb855fc7f07cfb0854574a2934f3914d01e6729f3
1 /* Inlining decision heuristics.
2 Copyright (C) 2003-2016 Free Software Foundation, Inc.
3 Contributed by Jan Hubicka
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* Inlining decision heuristics
23 The implementation of inliner is organized as follows:
25 inlining heuristics limits
27 can_inline_edge_p allow to check that particular inlining is allowed
28 by the limits specified by user (allowed function growth, growth and so
29 on).
31 Functions are inlined when it is obvious the result is profitable (such
32 as functions called once or when inlining reduce code size).
33 In addition to that we perform inlining of small functions and recursive
34 inlining.
36 inlining heuristics
38 The inliner itself is split into two passes:
40 pass_early_inlining
42 Simple local inlining pass inlining callees into current function.
43 This pass makes no use of whole unit analysis and thus it can do only
44 very simple decisions based on local properties.
46 The strength of the pass is that it is run in topological order
47 (reverse postorder) on the callgraph. Functions are converted into SSA
48 form just before this pass and optimized subsequently. As a result, the
49 callees of the function seen by the early inliner was already optimized
50 and results of early inlining adds a lot of optimization opportunities
51 for the local optimization.
53 The pass handle the obvious inlining decisions within the compilation
54 unit - inlining auto inline functions, inlining for size and
55 flattening.
57 main strength of the pass is the ability to eliminate abstraction
58 penalty in C++ code (via combination of inlining and early
59 optimization) and thus improve quality of analysis done by real IPA
60 optimizers.
62 Because of lack of whole unit knowledge, the pass can not really make
63 good code size/performance tradeoffs. It however does very simple
64 speculative inlining allowing code size to grow by
65 EARLY_INLINING_INSNS when callee is leaf function. In this case the
66 optimizations performed later are very likely to eliminate the cost.
68 pass_ipa_inline
70 This is the real inliner able to handle inlining with whole program
71 knowledge. It performs following steps:
73 1) inlining of small functions. This is implemented by greedy
74 algorithm ordering all inlinable cgraph edges by their badness and
75 inlining them in this order as long as inline limits allows doing so.
77 This heuristics is not very good on inlining recursive calls. Recursive
78 calls can be inlined with results similar to loop unrolling. To do so,
79 special purpose recursive inliner is executed on function when
80 recursive edge is met as viable candidate.
82 2) Unreachable functions are removed from callgraph. Inlining leads
83 to devirtualization and other modification of callgraph so functions
84 may become unreachable during the process. Also functions declared as
85 extern inline or virtual functions are removed, since after inlining
86 we no longer need the offline bodies.
88 3) Functions called once and not exported from the unit are inlined.
89 This should almost always lead to reduction of code size by eliminating
90 the need for offline copy of the function. */
92 #include "config.h"
93 #include "system.h"
94 #include "coretypes.h"
95 #include "backend.h"
96 #include "target.h"
97 #include "rtl.h"
98 #include "tree.h"
99 #include "gimple.h"
100 #include "alloc-pool.h"
101 #include "tree-pass.h"
102 #include "gimple-ssa.h"
103 #include "cgraph.h"
104 #include "lto-streamer.h"
105 #include "trans-mem.h"
106 #include "calls.h"
107 #include "tree-inline.h"
108 #include "params.h"
109 #include "profile.h"
110 #include "symbol-summary.h"
111 #include "ipa-prop.h"
112 #include "ipa-inline.h"
113 #include "ipa-utils.h"
114 #include "sreal.h"
115 #include "auto-profile.h"
116 #include "builtins.h"
117 #include "fibonacci_heap.h"
119 typedef fibonacci_heap <sreal, cgraph_edge> edge_heap_t;
120 typedef fibonacci_node <sreal, cgraph_edge> edge_heap_node_t;
122 /* Statistics we collect about inlining algorithm. */
123 static int overall_size;
124 static gcov_type max_count;
125 static gcov_type spec_rem;
127 /* Pre-computed constants 1/CGRAPH_FREQ_BASE and 1/100. */
128 static sreal cgraph_freq_base_rec, percent_rec;
130 /* Return false when inlining edge E would lead to violating
131 limits on function unit growth or stack usage growth.
133 The relative function body growth limit is present generally
134 to avoid problems with non-linear behavior of the compiler.
135 To allow inlining huge functions into tiny wrapper, the limit
136 is always based on the bigger of the two functions considered.
138 For stack growth limits we always base the growth in stack usage
139 of the callers. We want to prevent applications from segfaulting
140 on stack overflow when functions with huge stack frames gets
141 inlined. */
143 static bool
144 caller_growth_limits (struct cgraph_edge *e)
146 struct cgraph_node *to = e->caller;
147 struct cgraph_node *what = e->callee->ultimate_alias_target ();
148 int newsize;
149 int limit = 0;
150 HOST_WIDE_INT stack_size_limit = 0, inlined_stack;
151 inline_summary *info, *what_info, *outer_info = inline_summaries->get (to);
153 /* Look for function e->caller is inlined to. While doing
154 so work out the largest function body on the way. As
155 described above, we want to base our function growth
156 limits based on that. Not on the self size of the
157 outer function, not on the self size of inline code
158 we immediately inline to. This is the most relaxed
159 interpretation of the rule "do not grow large functions
160 too much in order to prevent compiler from exploding". */
161 while (true)
163 info = inline_summaries->get (to);
164 if (limit < info->self_size)
165 limit = info->self_size;
166 if (stack_size_limit < info->estimated_self_stack_size)
167 stack_size_limit = info->estimated_self_stack_size;
168 if (to->global.inlined_to)
169 to = to->callers->caller;
170 else
171 break;
174 what_info = inline_summaries->get (what);
176 if (limit < what_info->self_size)
177 limit = what_info->self_size;
179 limit += limit * PARAM_VALUE (PARAM_LARGE_FUNCTION_GROWTH) / 100;
181 /* Check the size after inlining against the function limits. But allow
182 the function to shrink if it went over the limits by forced inlining. */
183 newsize = estimate_size_after_inlining (to, e);
184 if (newsize >= info->size
185 && newsize > PARAM_VALUE (PARAM_LARGE_FUNCTION_INSNS)
186 && newsize > limit)
188 e->inline_failed = CIF_LARGE_FUNCTION_GROWTH_LIMIT;
189 return false;
192 if (!what_info->estimated_stack_size)
193 return true;
195 /* FIXME: Stack size limit often prevents inlining in Fortran programs
196 due to large i/o datastructures used by the Fortran front-end.
197 We ought to ignore this limit when we know that the edge is executed
198 on every invocation of the caller (i.e. its call statement dominates
199 exit block). We do not track this information, yet. */
200 stack_size_limit += ((gcov_type)stack_size_limit
201 * PARAM_VALUE (PARAM_STACK_FRAME_GROWTH) / 100);
203 inlined_stack = (outer_info->stack_frame_offset
204 + outer_info->estimated_self_stack_size
205 + what_info->estimated_stack_size);
206 /* Check new stack consumption with stack consumption at the place
207 stack is used. */
208 if (inlined_stack > stack_size_limit
209 /* If function already has large stack usage from sibling
210 inline call, we can inline, too.
211 This bit overoptimistically assume that we are good at stack
212 packing. */
213 && inlined_stack > info->estimated_stack_size
214 && inlined_stack > PARAM_VALUE (PARAM_LARGE_STACK_FRAME))
216 e->inline_failed = CIF_LARGE_STACK_FRAME_GROWTH_LIMIT;
217 return false;
219 return true;
222 /* Dump info about why inlining has failed. */
224 static void
225 report_inline_failed_reason (struct cgraph_edge *e)
227 if (dump_file)
229 fprintf (dump_file, " not inlinable: %s/%i -> %s/%i, %s\n",
230 xstrdup_for_dump (e->caller->name ()), e->caller->order,
231 xstrdup_for_dump (e->callee->name ()), e->callee->order,
232 cgraph_inline_failed_string (e->inline_failed));
233 if ((e->inline_failed == CIF_TARGET_OPTION_MISMATCH
234 || e->inline_failed == CIF_OPTIMIZATION_MISMATCH)
235 && e->caller->lto_file_data
236 && e->callee->function_symbol ()->lto_file_data)
238 fprintf (dump_file, " LTO objects: %s, %s\n",
239 e->caller->lto_file_data->file_name,
240 e->callee->function_symbol ()->lto_file_data->file_name);
242 if (e->inline_failed == CIF_TARGET_OPTION_MISMATCH)
243 cl_target_option_print_diff
244 (dump_file, 2, target_opts_for_fn (e->caller->decl),
245 target_opts_for_fn (e->callee->ultimate_alias_target ()->decl));
246 if (e->inline_failed == CIF_OPTIMIZATION_MISMATCH)
247 cl_optimization_print_diff
248 (dump_file, 2, opts_for_fn (e->caller->decl),
249 opts_for_fn (e->callee->ultimate_alias_target ()->decl));
253 /* Decide whether sanitizer-related attributes allow inlining. */
255 static bool
256 sanitize_attrs_match_for_inline_p (const_tree caller, const_tree callee)
258 /* Don't care if sanitizer is disabled */
259 if (!(flag_sanitize & SANITIZE_ADDRESS))
260 return true;
262 if (!caller || !callee)
263 return true;
265 return !!lookup_attribute ("no_sanitize_address",
266 DECL_ATTRIBUTES (caller)) ==
267 !!lookup_attribute ("no_sanitize_address",
268 DECL_ATTRIBUTES (callee));
271 /* Used for flags where it is safe to inline when caller's value is
272 grater than callee's. */
273 #define check_maybe_up(flag) \
274 (opts_for_fn (caller->decl)->x_##flag \
275 != opts_for_fn (callee->decl)->x_##flag \
276 && (!always_inline \
277 || opts_for_fn (caller->decl)->x_##flag \
278 < opts_for_fn (callee->decl)->x_##flag))
279 /* Used for flags where it is safe to inline when caller's value is
280 smaller than callee's. */
281 #define check_maybe_down(flag) \
282 (opts_for_fn (caller->decl)->x_##flag \
283 != opts_for_fn (callee->decl)->x_##flag \
284 && (!always_inline \
285 || opts_for_fn (caller->decl)->x_##flag \
286 > opts_for_fn (callee->decl)->x_##flag))
287 /* Used for flags where exact match is needed for correctness. */
288 #define check_match(flag) \
289 (opts_for_fn (caller->decl)->x_##flag \
290 != opts_for_fn (callee->decl)->x_##flag)
292 /* Decide if we can inline the edge and possibly update
293 inline_failed reason.
294 We check whether inlining is possible at all and whether
295 caller growth limits allow doing so.
297 if REPORT is true, output reason to the dump file.
299 if DISREGARD_LIMITS is true, ignore size limits.*/
301 static bool
302 can_inline_edge_p (struct cgraph_edge *e, bool report,
303 bool disregard_limits = false, bool early = false)
305 gcc_checking_assert (e->inline_failed);
307 if (cgraph_inline_failed_type (e->inline_failed) == CIF_FINAL_ERROR)
309 if (report)
310 report_inline_failed_reason (e);
311 return false;
314 bool inlinable = true;
315 enum availability avail;
316 cgraph_node *caller = e->caller->global.inlined_to
317 ? e->caller->global.inlined_to : e->caller;
318 cgraph_node *callee = e->callee->ultimate_alias_target (&avail, caller);
319 tree caller_tree = DECL_FUNCTION_SPECIFIC_OPTIMIZATION (caller->decl);
320 tree callee_tree
321 = callee ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (callee->decl) : NULL;
323 if (!callee->definition)
325 e->inline_failed = CIF_BODY_NOT_AVAILABLE;
326 inlinable = false;
328 else if (callee->calls_comdat_local)
330 e->inline_failed = CIF_USES_COMDAT_LOCAL;
331 inlinable = false;
333 else if (avail <= AVAIL_INTERPOSABLE)
335 e->inline_failed = CIF_OVERWRITABLE;
336 inlinable = false;
338 else if (e->call_stmt_cannot_inline_p)
340 if (e->inline_failed != CIF_FUNCTION_NOT_OPTIMIZED)
341 e->inline_failed = CIF_MISMATCHED_ARGUMENTS;
342 inlinable = false;
344 /* Don't inline if the functions have different EH personalities. */
345 else if (DECL_FUNCTION_PERSONALITY (caller->decl)
346 && DECL_FUNCTION_PERSONALITY (callee->decl)
347 && (DECL_FUNCTION_PERSONALITY (caller->decl)
348 != DECL_FUNCTION_PERSONALITY (callee->decl)))
350 e->inline_failed = CIF_EH_PERSONALITY;
351 inlinable = false;
353 /* TM pure functions should not be inlined into non-TM_pure
354 functions. */
355 else if (is_tm_pure (callee->decl) && !is_tm_pure (caller->decl))
357 e->inline_failed = CIF_UNSPECIFIED;
358 inlinable = false;
360 /* Check compatibility of target optimization options. */
361 else if (!targetm.target_option.can_inline_p (caller->decl,
362 callee->decl))
364 e->inline_failed = CIF_TARGET_OPTION_MISMATCH;
365 inlinable = false;
367 else if (!inline_summaries->get (callee)->inlinable)
369 e->inline_failed = CIF_FUNCTION_NOT_INLINABLE;
370 inlinable = false;
372 else if (inline_summaries->get (caller)->contains_cilk_spawn)
374 e->inline_failed = CIF_CILK_SPAWN;
375 inlinable = false;
377 /* Don't inline a function with mismatched sanitization attributes. */
378 else if (!sanitize_attrs_match_for_inline_p (caller->decl, callee->decl))
380 e->inline_failed = CIF_ATTRIBUTE_MISMATCH;
381 inlinable = false;
383 /* Check if caller growth allows the inlining. */
384 else if (!DECL_DISREGARD_INLINE_LIMITS (callee->decl)
385 && !disregard_limits
386 && !lookup_attribute ("flatten",
387 DECL_ATTRIBUTES (caller->decl))
388 && !caller_growth_limits (e))
389 inlinable = false;
390 /* Don't inline a function with a higher optimization level than the
391 caller. FIXME: this is really just tip of iceberg of handling
392 optimization attribute. */
393 else if (caller_tree != callee_tree)
395 bool always_inline =
396 (DECL_DISREGARD_INLINE_LIMITS (callee->decl)
397 && lookup_attribute ("always_inline",
398 DECL_ATTRIBUTES (callee->decl)));
400 /* Until GCC 4.9 we did not check the semantics alterning flags
401 bellow and inline across optimization boundry.
402 Enabling checks bellow breaks several packages by refusing
403 to inline library always_inline functions. See PR65873.
404 Disable the check for early inlining for now until better solution
405 is found. */
406 if (always_inline && early)
408 /* There are some options that change IL semantics which means
409 we cannot inline in these cases for correctness reason.
410 Not even for always_inline declared functions. */
411 /* Strictly speaking only when the callee contains signed integer
412 math where overflow is undefined. */
413 else if ((check_maybe_up (flag_strict_overflow)
414 /* this flag is set by optimize. Allow inlining across
415 optimize boundary. */
416 && (!opt_for_fn (caller->decl, optimize)
417 == !opt_for_fn (callee->decl, optimize) || !always_inline))
418 || check_match (flag_wrapv)
419 || check_match (flag_trapv)
420 /* Strictly speaking only when the callee uses FP math. */
421 || check_maybe_up (flag_rounding_math)
422 || check_maybe_up (flag_trapping_math)
423 || check_maybe_down (flag_unsafe_math_optimizations)
424 || check_maybe_down (flag_finite_math_only)
425 || check_maybe_up (flag_signaling_nans)
426 || check_maybe_down (flag_cx_limited_range)
427 || check_maybe_up (flag_signed_zeros)
428 || check_maybe_down (flag_associative_math)
429 || check_maybe_down (flag_reciprocal_math)
430 /* We do not want to make code compiled with exceptions to be
431 brought into a non-EH function unless we know that the callee
432 does not throw.
433 This is tracked by DECL_FUNCTION_PERSONALITY. */
434 || (check_maybe_up (flag_non_call_exceptions)
435 && DECL_FUNCTION_PERSONALITY (callee->decl))
436 || (check_maybe_up (flag_exceptions)
437 && DECL_FUNCTION_PERSONALITY (callee->decl))
438 /* Strictly speaking only when the callee contains function
439 calls that may end up setting errno. */
440 || check_maybe_up (flag_errno_math)
441 /* When devirtualization is diabled for callee, it is not safe
442 to inline it as we possibly mangled the type info.
443 Allow early inlining of always inlines. */
444 || (!early && check_maybe_down (flag_devirtualize)))
446 e->inline_failed = CIF_OPTIMIZATION_MISMATCH;
447 inlinable = false;
449 /* gcc.dg/pr43564.c. Apply user-forced inline even at -O0. */
450 else if (always_inline)
452 /* When user added an attribute to the callee honor it. */
453 else if (lookup_attribute ("optimize", DECL_ATTRIBUTES (callee->decl))
454 && opts_for_fn (caller->decl) != opts_for_fn (callee->decl))
456 e->inline_failed = CIF_OPTIMIZATION_MISMATCH;
457 inlinable = false;
459 /* If explicit optimize attribute are not used, the mismatch is caused
460 by different command line options used to build different units.
461 Do not care about COMDAT functions - those are intended to be
462 optimized with the optimization flags of module they are used in.
463 Also do not care about mixing up size/speed optimization when
464 DECL_DISREGARD_INLINE_LIMITS is set. */
465 else if ((callee->merged_comdat
466 && !lookup_attribute ("optimize",
467 DECL_ATTRIBUTES (caller->decl)))
468 || DECL_DISREGARD_INLINE_LIMITS (callee->decl))
470 /* If mismatch is caused by merging two LTO units with different
471 optimizationflags we want to be bit nicer. However never inline
472 if one of functions is not optimized at all. */
473 else if (!opt_for_fn (callee->decl, optimize)
474 || !opt_for_fn (caller->decl, optimize))
476 e->inline_failed = CIF_OPTIMIZATION_MISMATCH;
477 inlinable = false;
479 /* If callee is optimized for size and caller is not, allow inlining if
480 code shrinks or we are in MAX_INLINE_INSNS_SINGLE limit and callee
481 is inline (and thus likely an unified comdat). This will allow caller
482 to run faster. */
483 else if (opt_for_fn (callee->decl, optimize_size)
484 > opt_for_fn (caller->decl, optimize_size))
486 int growth = estimate_edge_growth (e);
487 if (growth > 0
488 && (!DECL_DECLARED_INLINE_P (callee->decl)
489 && growth >= MAX (MAX_INLINE_INSNS_SINGLE,
490 MAX_INLINE_INSNS_AUTO)))
492 e->inline_failed = CIF_OPTIMIZATION_MISMATCH;
493 inlinable = false;
496 /* If callee is more aggressively optimized for performance than caller,
497 we generally want to inline only cheap (runtime wise) functions. */
498 else if (opt_for_fn (callee->decl, optimize_size)
499 < opt_for_fn (caller->decl, optimize_size)
500 || (opt_for_fn (callee->decl, optimize)
501 > opt_for_fn (caller->decl, optimize)))
503 if (estimate_edge_time (e)
504 >= 20 + inline_edge_summary (e)->call_stmt_time)
506 e->inline_failed = CIF_OPTIMIZATION_MISMATCH;
507 inlinable = false;
513 if (!inlinable && report)
514 report_inline_failed_reason (e);
515 return inlinable;
519 /* Return true if the edge E is inlinable during early inlining. */
521 static bool
522 can_early_inline_edge_p (struct cgraph_edge *e)
524 struct cgraph_node *callee = e->callee->ultimate_alias_target ();
525 /* Early inliner might get called at WPA stage when IPA pass adds new
526 function. In this case we can not really do any of early inlining
527 because function bodies are missing. */
528 if (!gimple_has_body_p (callee->decl))
530 e->inline_failed = CIF_BODY_NOT_AVAILABLE;
531 return false;
533 /* In early inliner some of callees may not be in SSA form yet
534 (i.e. the callgraph is cyclic and we did not process
535 the callee by early inliner, yet). We don't have CIF code for this
536 case; later we will re-do the decision in the real inliner. */
537 if (!gimple_in_ssa_p (DECL_STRUCT_FUNCTION (e->caller->decl))
538 || !gimple_in_ssa_p (DECL_STRUCT_FUNCTION (callee->decl)))
540 if (dump_file)
541 fprintf (dump_file, " edge not inlinable: not in SSA form\n");
542 return false;
544 if (!can_inline_edge_p (e, true, false, true))
545 return false;
546 return true;
550 /* Return number of calls in N. Ignore cheap builtins. */
552 static int
553 num_calls (struct cgraph_node *n)
555 struct cgraph_edge *e;
556 int num = 0;
558 for (e = n->callees; e; e = e->next_callee)
559 if (!is_inexpensive_builtin (e->callee->decl))
560 num++;
561 return num;
565 /* Return true if we are interested in inlining small function. */
567 static bool
568 want_early_inline_function_p (struct cgraph_edge *e)
570 bool want_inline = true;
571 struct cgraph_node *callee = e->callee->ultimate_alias_target ();
573 if (DECL_DISREGARD_INLINE_LIMITS (callee->decl))
575 /* For AutoFDO, we need to make sure that before profile summary, all
576 hot paths' IR look exactly the same as profiled binary. As a result,
577 in einliner, we will disregard size limit and inline those callsites
578 that are:
579 * inlined in the profiled binary, and
580 * the cloned callee has enough samples to be considered "hot". */
581 else if (flag_auto_profile && afdo_callsite_hot_enough_for_early_inline (e))
583 else if (!DECL_DECLARED_INLINE_P (callee->decl)
584 && !opt_for_fn (e->caller->decl, flag_inline_small_functions))
586 e->inline_failed = CIF_FUNCTION_NOT_INLINE_CANDIDATE;
587 report_inline_failed_reason (e);
588 want_inline = false;
590 else
592 int growth = estimate_edge_growth (e);
593 int n;
595 if (growth <= 0)
597 else if (!e->maybe_hot_p ()
598 && growth > 0)
600 if (dump_file)
601 fprintf (dump_file, " will not early inline: %s/%i->%s/%i, "
602 "call is cold and code would grow by %i\n",
603 xstrdup_for_dump (e->caller->name ()),
604 e->caller->order,
605 xstrdup_for_dump (callee->name ()), callee->order,
606 growth);
607 want_inline = false;
609 else if (growth > PARAM_VALUE (PARAM_EARLY_INLINING_INSNS))
611 if (dump_file)
612 fprintf (dump_file, " will not early inline: %s/%i->%s/%i, "
613 "growth %i exceeds --param early-inlining-insns\n",
614 xstrdup_for_dump (e->caller->name ()),
615 e->caller->order,
616 xstrdup_for_dump (callee->name ()), callee->order,
617 growth);
618 want_inline = false;
620 else if ((n = num_calls (callee)) != 0
621 && growth * (n + 1) > PARAM_VALUE (PARAM_EARLY_INLINING_INSNS))
623 if (dump_file)
624 fprintf (dump_file, " will not early inline: %s/%i->%s/%i, "
625 "growth %i exceeds --param early-inlining-insns "
626 "divided by number of calls\n",
627 xstrdup_for_dump (e->caller->name ()),
628 e->caller->order,
629 xstrdup_for_dump (callee->name ()), callee->order,
630 growth);
631 want_inline = false;
634 return want_inline;
637 /* Compute time of the edge->caller + edge->callee execution when inlining
638 does not happen. */
640 inline sreal
641 compute_uninlined_call_time (struct inline_summary *callee_info,
642 struct cgraph_edge *edge)
644 sreal uninlined_call_time = (sreal)callee_info->time;
645 cgraph_node *caller = (edge->caller->global.inlined_to
646 ? edge->caller->global.inlined_to
647 : edge->caller);
649 if (edge->count && caller->count)
650 uninlined_call_time *= (sreal)edge->count / caller->count;
651 if (edge->frequency)
652 uninlined_call_time *= cgraph_freq_base_rec * edge->frequency;
653 else
654 uninlined_call_time = uninlined_call_time >> 11;
656 int caller_time = inline_summaries->get (caller)->time;
657 return uninlined_call_time + caller_time;
660 /* Same as compute_uinlined_call_time but compute time when inlining
661 does happen. */
663 inline sreal
664 compute_inlined_call_time (struct cgraph_edge *edge,
665 int edge_time)
667 cgraph_node *caller = (edge->caller->global.inlined_to
668 ? edge->caller->global.inlined_to
669 : edge->caller);
670 int caller_time = inline_summaries->get (caller)->time;
671 sreal time = edge_time;
673 if (edge->count && caller->count)
674 time *= (sreal)edge->count / caller->count;
675 if (edge->frequency)
676 time *= cgraph_freq_base_rec * edge->frequency;
677 else
678 time = time >> 11;
680 /* This calculation should match one in ipa-inline-analysis.
681 FIXME: Once ipa-inline-analysis is converted to sreal this can be
682 simplified. */
683 time -= (sreal) ((gcov_type) edge->frequency
684 * inline_edge_summary (edge)->call_stmt_time
685 * (INLINE_TIME_SCALE / CGRAPH_FREQ_BASE)) / INLINE_TIME_SCALE;
686 time += caller_time;
687 if (time <= 0)
688 time = ((sreal) 1) >> 8;
689 gcc_checking_assert (time >= 0);
690 return time;
693 /* Return true if the speedup for inlining E is bigger than
694 PARAM_MAX_INLINE_MIN_SPEEDUP. */
696 static bool
697 big_speedup_p (struct cgraph_edge *e)
699 sreal time = compute_uninlined_call_time (inline_summaries->get (e->callee),
701 sreal inlined_time = compute_inlined_call_time (e, estimate_edge_time (e));
703 if (time - inlined_time
704 > (sreal) time * PARAM_VALUE (PARAM_INLINE_MIN_SPEEDUP)
705 * percent_rec)
706 return true;
707 return false;
710 /* Return true if we are interested in inlining small function.
711 When REPORT is true, report reason to dump file. */
713 static bool
714 want_inline_small_function_p (struct cgraph_edge *e, bool report)
716 bool want_inline = true;
717 struct cgraph_node *callee = e->callee->ultimate_alias_target ();
719 if (DECL_DISREGARD_INLINE_LIMITS (callee->decl))
721 else if (!DECL_DECLARED_INLINE_P (callee->decl)
722 && !opt_for_fn (e->caller->decl, flag_inline_small_functions))
724 e->inline_failed = CIF_FUNCTION_NOT_INLINE_CANDIDATE;
725 want_inline = false;
727 /* Do fast and conservative check if the function can be good
728 inline candidate. At the moment we allow inline hints to
729 promote non-inline functions to inline and we increase
730 MAX_INLINE_INSNS_SINGLE 16-fold for inline functions. */
731 else if ((!DECL_DECLARED_INLINE_P (callee->decl)
732 && (!e->count || !e->maybe_hot_p ()))
733 && inline_summaries->get (callee)->min_size
734 - inline_edge_summary (e)->call_stmt_size
735 > MAX (MAX_INLINE_INSNS_SINGLE, MAX_INLINE_INSNS_AUTO))
737 e->inline_failed = CIF_MAX_INLINE_INSNS_AUTO_LIMIT;
738 want_inline = false;
740 else if ((DECL_DECLARED_INLINE_P (callee->decl) || e->count)
741 && inline_summaries->get (callee)->min_size
742 - inline_edge_summary (e)->call_stmt_size
743 > 16 * MAX_INLINE_INSNS_SINGLE)
745 e->inline_failed = (DECL_DECLARED_INLINE_P (callee->decl)
746 ? CIF_MAX_INLINE_INSNS_SINGLE_LIMIT
747 : CIF_MAX_INLINE_INSNS_AUTO_LIMIT);
748 want_inline = false;
750 else
752 int growth = estimate_edge_growth (e);
753 inline_hints hints = estimate_edge_hints (e);
754 bool big_speedup = big_speedup_p (e);
756 if (growth <= 0)
758 /* Apply MAX_INLINE_INSNS_SINGLE limit. Do not do so when
759 hints suggests that inlining given function is very profitable. */
760 else if (DECL_DECLARED_INLINE_P (callee->decl)
761 && growth >= MAX_INLINE_INSNS_SINGLE
762 && ((!big_speedup
763 && !(hints & (INLINE_HINT_indirect_call
764 | INLINE_HINT_known_hot
765 | INLINE_HINT_loop_iterations
766 | INLINE_HINT_array_index
767 | INLINE_HINT_loop_stride)))
768 || growth >= MAX_INLINE_INSNS_SINGLE * 16))
770 e->inline_failed = CIF_MAX_INLINE_INSNS_SINGLE_LIMIT;
771 want_inline = false;
773 else if (!DECL_DECLARED_INLINE_P (callee->decl)
774 && !opt_for_fn (e->caller->decl, flag_inline_functions))
776 /* growth_likely_positive is expensive, always test it last. */
777 if (growth >= MAX_INLINE_INSNS_SINGLE
778 || growth_likely_positive (callee, growth))
780 e->inline_failed = CIF_NOT_DECLARED_INLINED;
781 want_inline = false;
784 /* Apply MAX_INLINE_INSNS_AUTO limit for functions not declared inline
785 Upgrade it to MAX_INLINE_INSNS_SINGLE when hints suggests that
786 inlining given function is very profitable. */
787 else if (!DECL_DECLARED_INLINE_P (callee->decl)
788 && !big_speedup
789 && !(hints & INLINE_HINT_known_hot)
790 && growth >= ((hints & (INLINE_HINT_indirect_call
791 | INLINE_HINT_loop_iterations
792 | INLINE_HINT_array_index
793 | INLINE_HINT_loop_stride))
794 ? MAX (MAX_INLINE_INSNS_AUTO,
795 MAX_INLINE_INSNS_SINGLE)
796 : MAX_INLINE_INSNS_AUTO))
798 /* growth_likely_positive is expensive, always test it last. */
799 if (growth >= MAX_INLINE_INSNS_SINGLE
800 || growth_likely_positive (callee, growth))
802 e->inline_failed = CIF_MAX_INLINE_INSNS_AUTO_LIMIT;
803 want_inline = false;
806 /* If call is cold, do not inline when function body would grow. */
807 else if (!e->maybe_hot_p ()
808 && (growth >= MAX_INLINE_INSNS_SINGLE
809 || growth_likely_positive (callee, growth)))
811 e->inline_failed = CIF_UNLIKELY_CALL;
812 want_inline = false;
815 if (!want_inline && report)
816 report_inline_failed_reason (e);
817 return want_inline;
820 /* EDGE is self recursive edge.
821 We hand two cases - when function A is inlining into itself
822 or when function A is being inlined into another inliner copy of function
823 A within function B.
825 In first case OUTER_NODE points to the toplevel copy of A, while
826 in the second case OUTER_NODE points to the outermost copy of A in B.
828 In both cases we want to be extra selective since
829 inlining the call will just introduce new recursive calls to appear. */
831 static bool
832 want_inline_self_recursive_call_p (struct cgraph_edge *edge,
833 struct cgraph_node *outer_node,
834 bool peeling,
835 int depth)
837 char const *reason = NULL;
838 bool want_inline = true;
839 int caller_freq = CGRAPH_FREQ_BASE;
840 int max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH_AUTO);
842 if (DECL_DECLARED_INLINE_P (edge->caller->decl))
843 max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH);
845 if (!edge->maybe_hot_p ())
847 reason = "recursive call is cold";
848 want_inline = false;
850 else if (max_count && !outer_node->count)
852 reason = "not executed in profile";
853 want_inline = false;
855 else if (depth > max_depth)
857 reason = "--param max-inline-recursive-depth exceeded.";
858 want_inline = false;
861 if (outer_node->global.inlined_to)
862 caller_freq = outer_node->callers->frequency;
864 if (!caller_freq)
866 reason = "function is inlined and unlikely";
867 want_inline = false;
870 if (!want_inline)
872 /* Inlining of self recursive function into copy of itself within other function
873 is transformation similar to loop peeling.
875 Peeling is profitable if we can inline enough copies to make probability
876 of actual call to the self recursive function very small. Be sure that
877 the probability of recursion is small.
879 We ensure that the frequency of recursing is at most 1 - (1/max_depth).
880 This way the expected number of recision is at most max_depth. */
881 else if (peeling)
883 int max_prob = CGRAPH_FREQ_BASE - ((CGRAPH_FREQ_BASE + max_depth - 1)
884 / max_depth);
885 int i;
886 for (i = 1; i < depth; i++)
887 max_prob = max_prob * max_prob / CGRAPH_FREQ_BASE;
888 if (max_count
889 && (edge->count * CGRAPH_FREQ_BASE / outer_node->count
890 >= max_prob))
892 reason = "profile of recursive call is too large";
893 want_inline = false;
895 if (!max_count
896 && (edge->frequency * CGRAPH_FREQ_BASE / caller_freq
897 >= max_prob))
899 reason = "frequency of recursive call is too large";
900 want_inline = false;
903 /* Recursive inlining, i.e. equivalent of unrolling, is profitable if recursion
904 depth is large. We reduce function call overhead and increase chances that
905 things fit in hardware return predictor.
907 Recursive inlining might however increase cost of stack frame setup
908 actually slowing down functions whose recursion tree is wide rather than
909 deep.
911 Deciding reliably on when to do recursive inlining without profile feedback
912 is tricky. For now we disable recursive inlining when probability of self
913 recursion is low.
915 Recursive inlining of self recursive call within loop also results in large loop
916 depths that generally optimize badly. We may want to throttle down inlining
917 in those cases. In particular this seems to happen in one of libstdc++ rb tree
918 methods. */
919 else
921 if (max_count
922 && (edge->count * 100 / outer_node->count
923 <= PARAM_VALUE (PARAM_MIN_INLINE_RECURSIVE_PROBABILITY)))
925 reason = "profile of recursive call is too small";
926 want_inline = false;
928 else if (!max_count
929 && (edge->frequency * 100 / caller_freq
930 <= PARAM_VALUE (PARAM_MIN_INLINE_RECURSIVE_PROBABILITY)))
932 reason = "frequency of recursive call is too small";
933 want_inline = false;
936 if (!want_inline && dump_file)
937 fprintf (dump_file, " not inlining recursively: %s\n", reason);
938 return want_inline;
941 /* Return true when NODE has uninlinable caller;
942 set HAS_HOT_CALL if it has hot call.
943 Worker for cgraph_for_node_and_aliases. */
945 static bool
946 check_callers (struct cgraph_node *node, void *has_hot_call)
948 struct cgraph_edge *e;
949 for (e = node->callers; e; e = e->next_caller)
951 if (!opt_for_fn (e->caller->decl, flag_inline_functions_called_once))
952 return true;
953 if (!can_inline_edge_p (e, true))
954 return true;
955 if (e->recursive_p ())
956 return true;
957 if (!(*(bool *)has_hot_call) && e->maybe_hot_p ())
958 *(bool *)has_hot_call = true;
960 return false;
963 /* If NODE has a caller, return true. */
965 static bool
966 has_caller_p (struct cgraph_node *node, void *data ATTRIBUTE_UNUSED)
968 if (node->callers)
969 return true;
970 return false;
973 /* Decide if inlining NODE would reduce unit size by eliminating
974 the offline copy of function.
975 When COLD is true the cold calls are considered, too. */
977 static bool
978 want_inline_function_to_all_callers_p (struct cgraph_node *node, bool cold)
980 bool has_hot_call = false;
982 /* Aliases gets inlined along with the function they alias. */
983 if (node->alias)
984 return false;
985 /* Already inlined? */
986 if (node->global.inlined_to)
987 return false;
988 /* Does it have callers? */
989 if (!node->call_for_symbol_and_aliases (has_caller_p, NULL, true))
990 return false;
991 /* Inlining into all callers would increase size? */
992 if (estimate_growth (node) > 0)
993 return false;
994 /* All inlines must be possible. */
995 if (node->call_for_symbol_and_aliases (check_callers, &has_hot_call,
996 true))
997 return false;
998 if (!cold && !has_hot_call)
999 return false;
1000 return true;
1003 /* A cost model driving the inlining heuristics in a way so the edges with
1004 smallest badness are inlined first. After each inlining is performed
1005 the costs of all caller edges of nodes affected are recomputed so the
1006 metrics may accurately depend on values such as number of inlinable callers
1007 of the function or function body size. */
1009 static sreal
1010 edge_badness (struct cgraph_edge *edge, bool dump)
1012 sreal badness;
1013 int growth, edge_time;
1014 struct cgraph_node *callee = edge->callee->ultimate_alias_target ();
1015 struct inline_summary *callee_info = inline_summaries->get (callee);
1016 inline_hints hints;
1017 cgraph_node *caller = (edge->caller->global.inlined_to
1018 ? edge->caller->global.inlined_to
1019 : edge->caller);
1021 growth = estimate_edge_growth (edge);
1022 edge_time = estimate_edge_time (edge);
1023 hints = estimate_edge_hints (edge);
1024 gcc_checking_assert (edge_time >= 0);
1025 gcc_checking_assert (edge_time <= callee_info->time);
1026 gcc_checking_assert (growth <= callee_info->size);
1028 if (dump)
1030 fprintf (dump_file, " Badness calculation for %s/%i -> %s/%i\n",
1031 xstrdup_for_dump (edge->caller->name ()),
1032 edge->caller->order,
1033 xstrdup_for_dump (callee->name ()),
1034 edge->callee->order);
1035 fprintf (dump_file, " size growth %i, time %i ",
1036 growth,
1037 edge_time);
1038 dump_inline_hints (dump_file, hints);
1039 if (big_speedup_p (edge))
1040 fprintf (dump_file, " big_speedup");
1041 fprintf (dump_file, "\n");
1044 /* Always prefer inlining saving code size. */
1045 if (growth <= 0)
1047 badness = (sreal) (-SREAL_MIN_SIG + growth) << (SREAL_MAX_EXP / 256);
1048 if (dump)
1049 fprintf (dump_file, " %f: Growth %d <= 0\n", badness.to_double (),
1050 growth);
1052 /* Inlining into EXTERNAL functions is not going to change anything unless
1053 they are themselves inlined. */
1054 else if (DECL_EXTERNAL (caller->decl))
1056 if (dump)
1057 fprintf (dump_file, " max: function is external\n");
1058 return sreal::max ();
1060 /* When profile is available. Compute badness as:
1062 time_saved * caller_count
1063 goodness = -------------------------------------------------
1064 growth_of_caller * overall_growth * combined_size
1066 badness = - goodness
1068 Again use negative value to make calls with profile appear hotter
1069 then calls without.
1071 else if (opt_for_fn (caller->decl, flag_guess_branch_prob) || caller->count)
1073 sreal numerator, denominator;
1074 int overall_growth;
1076 numerator = (compute_uninlined_call_time (callee_info, edge)
1077 - compute_inlined_call_time (edge, edge_time));
1078 if (numerator == 0)
1079 numerator = ((sreal) 1 >> 8);
1080 if (caller->count)
1081 numerator *= caller->count;
1082 else if (opt_for_fn (caller->decl, flag_branch_probabilities))
1083 numerator = numerator >> 11;
1084 denominator = growth;
1086 overall_growth = callee_info->growth;
1088 /* Look for inliner wrappers of the form:
1090 inline_caller ()
1092 do_fast_job...
1093 if (need_more_work)
1094 noninline_callee ();
1096 Withhout panilizing this case, we usually inline noninline_callee
1097 into the inline_caller because overall_growth is small preventing
1098 further inlining of inline_caller.
1100 Penalize only callgraph edges to functions with small overall
1101 growth ...
1103 if (growth > overall_growth
1104 /* ... and having only one caller which is not inlined ... */
1105 && callee_info->single_caller
1106 && !edge->caller->global.inlined_to
1107 /* ... and edges executed only conditionally ... */
1108 && edge->frequency < CGRAPH_FREQ_BASE
1109 /* ... consider case where callee is not inline but caller is ... */
1110 && ((!DECL_DECLARED_INLINE_P (edge->callee->decl)
1111 && DECL_DECLARED_INLINE_P (caller->decl))
1112 /* ... or when early optimizers decided to split and edge
1113 frequency still indicates splitting is a win ... */
1114 || (callee->split_part && !caller->split_part
1115 && edge->frequency
1116 < CGRAPH_FREQ_BASE
1117 * PARAM_VALUE
1118 (PARAM_PARTIAL_INLINING_ENTRY_PROBABILITY) / 100
1119 /* ... and do not overwrite user specified hints. */
1120 && (!DECL_DECLARED_INLINE_P (edge->callee->decl)
1121 || DECL_DECLARED_INLINE_P (caller->decl)))))
1123 struct inline_summary *caller_info = inline_summaries->get (caller);
1124 int caller_growth = caller_info->growth;
1126 /* Only apply the penalty when caller looks like inline candidate,
1127 and it is not called once and. */
1128 if (!caller_info->single_caller && overall_growth < caller_growth
1129 && caller_info->inlinable
1130 && caller_info->size
1131 < (DECL_DECLARED_INLINE_P (caller->decl)
1132 ? MAX_INLINE_INSNS_SINGLE : MAX_INLINE_INSNS_AUTO))
1134 if (dump)
1135 fprintf (dump_file,
1136 " Wrapper penalty. Increasing growth %i to %i\n",
1137 overall_growth, caller_growth);
1138 overall_growth = caller_growth;
1141 if (overall_growth > 0)
1143 /* Strongly preffer functions with few callers that can be inlined
1144 fully. The square root here leads to smaller binaries at average.
1145 Watch however for extreme cases and return to linear function
1146 when growth is large. */
1147 if (overall_growth < 256)
1148 overall_growth *= overall_growth;
1149 else
1150 overall_growth += 256 * 256 - 256;
1151 denominator *= overall_growth;
1153 denominator *= inline_summaries->get (caller)->self_size + growth;
1155 badness = - numerator / denominator;
1157 if (dump)
1159 fprintf (dump_file,
1160 " %f: guessed profile. frequency %f, count %" PRId64
1161 " caller count %" PRId64
1162 " time w/o inlining %f, time w inlining %f"
1163 " overall growth %i (current) %i (original)"
1164 " %i (compensated)\n",
1165 badness.to_double (),
1166 (double)edge->frequency / CGRAPH_FREQ_BASE,
1167 edge->count, caller->count,
1168 compute_uninlined_call_time (callee_info, edge).to_double (),
1169 compute_inlined_call_time (edge, edge_time).to_double (),
1170 estimate_growth (callee),
1171 callee_info->growth, overall_growth);
1174 /* When function local profile is not available or it does not give
1175 useful information (ie frequency is zero), base the cost on
1176 loop nest and overall size growth, so we optimize for overall number
1177 of functions fully inlined in program. */
1178 else
1180 int nest = MIN (inline_edge_summary (edge)->loop_depth, 8);
1181 badness = growth;
1183 /* Decrease badness if call is nested. */
1184 if (badness > 0)
1185 badness = badness >> nest;
1186 else
1187 badness = badness << nest;
1188 if (dump)
1189 fprintf (dump_file, " %f: no profile. nest %i\n",
1190 badness.to_double (), nest);
1192 gcc_checking_assert (badness != 0);
1194 if (edge->recursive_p ())
1195 badness = badness.shift (badness > 0 ? 4 : -4);
1196 if ((hints & (INLINE_HINT_indirect_call
1197 | INLINE_HINT_loop_iterations
1198 | INLINE_HINT_array_index
1199 | INLINE_HINT_loop_stride))
1200 || callee_info->growth <= 0)
1201 badness = badness.shift (badness > 0 ? -2 : 2);
1202 if (hints & (INLINE_HINT_same_scc))
1203 badness = badness.shift (badness > 0 ? 3 : -3);
1204 else if (hints & (INLINE_HINT_in_scc))
1205 badness = badness.shift (badness > 0 ? 2 : -2);
1206 else if (hints & (INLINE_HINT_cross_module))
1207 badness = badness.shift (badness > 0 ? 1 : -1);
1208 if (DECL_DISREGARD_INLINE_LIMITS (callee->decl))
1209 badness = badness.shift (badness > 0 ? -4 : 4);
1210 else if ((hints & INLINE_HINT_declared_inline))
1211 badness = badness.shift (badness > 0 ? -3 : 3);
1212 if (dump)
1213 fprintf (dump_file, " Adjusted by hints %f\n", badness.to_double ());
1214 return badness;
1217 /* Recompute badness of EDGE and update its key in HEAP if needed. */
1218 static inline void
1219 update_edge_key (edge_heap_t *heap, struct cgraph_edge *edge)
1221 sreal badness = edge_badness (edge, false);
1222 if (edge->aux)
1224 edge_heap_node_t *n = (edge_heap_node_t *) edge->aux;
1225 gcc_checking_assert (n->get_data () == edge);
1227 /* fibonacci_heap::replace_key does busy updating of the
1228 heap that is unnecesarily expensive.
1229 We do lazy increases: after extracting minimum if the key
1230 turns out to be out of date, it is re-inserted into heap
1231 with correct value. */
1232 if (badness < n->get_key ())
1234 if (dump_file && (dump_flags & TDF_DETAILS))
1236 fprintf (dump_file,
1237 " decreasing badness %s/%i -> %s/%i, %f"
1238 " to %f\n",
1239 xstrdup_for_dump (edge->caller->name ()),
1240 edge->caller->order,
1241 xstrdup_for_dump (edge->callee->name ()),
1242 edge->callee->order,
1243 n->get_key ().to_double (),
1244 badness.to_double ());
1246 heap->decrease_key (n, badness);
1249 else
1251 if (dump_file && (dump_flags & TDF_DETAILS))
1253 fprintf (dump_file,
1254 " enqueuing call %s/%i -> %s/%i, badness %f\n",
1255 xstrdup_for_dump (edge->caller->name ()),
1256 edge->caller->order,
1257 xstrdup_for_dump (edge->callee->name ()),
1258 edge->callee->order,
1259 badness.to_double ());
1261 edge->aux = heap->insert (badness, edge);
1266 /* NODE was inlined.
1267 All caller edges needs to be resetted because
1268 size estimates change. Similarly callees needs reset
1269 because better context may be known. */
1271 static void
1272 reset_edge_caches (struct cgraph_node *node)
1274 struct cgraph_edge *edge;
1275 struct cgraph_edge *e = node->callees;
1276 struct cgraph_node *where = node;
1277 struct ipa_ref *ref;
1279 if (where->global.inlined_to)
1280 where = where->global.inlined_to;
1282 for (edge = where->callers; edge; edge = edge->next_caller)
1283 if (edge->inline_failed)
1284 reset_edge_growth_cache (edge);
1286 FOR_EACH_ALIAS (where, ref)
1287 reset_edge_caches (dyn_cast <cgraph_node *> (ref->referring));
1289 if (!e)
1290 return;
1292 while (true)
1293 if (!e->inline_failed && e->callee->callees)
1294 e = e->callee->callees;
1295 else
1297 if (e->inline_failed)
1298 reset_edge_growth_cache (e);
1299 if (e->next_callee)
1300 e = e->next_callee;
1301 else
1305 if (e->caller == node)
1306 return;
1307 e = e->caller->callers;
1309 while (!e->next_callee);
1310 e = e->next_callee;
1315 /* Recompute HEAP nodes for each of caller of NODE.
1316 UPDATED_NODES track nodes we already visited, to avoid redundant work.
1317 When CHECK_INLINABLITY_FOR is set, re-check for specified edge that
1318 it is inlinable. Otherwise check all edges. */
1320 static void
1321 update_caller_keys (edge_heap_t *heap, struct cgraph_node *node,
1322 bitmap updated_nodes,
1323 struct cgraph_edge *check_inlinablity_for)
1325 struct cgraph_edge *edge;
1326 struct ipa_ref *ref;
1328 if ((!node->alias && !inline_summaries->get (node)->inlinable)
1329 || node->global.inlined_to)
1330 return;
1331 if (!bitmap_set_bit (updated_nodes, node->uid))
1332 return;
1334 FOR_EACH_ALIAS (node, ref)
1336 struct cgraph_node *alias = dyn_cast <cgraph_node *> (ref->referring);
1337 update_caller_keys (heap, alias, updated_nodes, check_inlinablity_for);
1340 for (edge = node->callers; edge; edge = edge->next_caller)
1341 if (edge->inline_failed)
1343 if (!check_inlinablity_for
1344 || check_inlinablity_for == edge)
1346 if (can_inline_edge_p (edge, false)
1347 && want_inline_small_function_p (edge, false))
1348 update_edge_key (heap, edge);
1349 else if (edge->aux)
1351 report_inline_failed_reason (edge);
1352 heap->delete_node ((edge_heap_node_t *) edge->aux);
1353 edge->aux = NULL;
1356 else if (edge->aux)
1357 update_edge_key (heap, edge);
1361 /* Recompute HEAP nodes for each uninlined call in NODE.
1362 This is used when we know that edge badnesses are going only to increase
1363 (we introduced new call site) and thus all we need is to insert newly
1364 created edges into heap. */
1366 static void
1367 update_callee_keys (edge_heap_t *heap, struct cgraph_node *node,
1368 bitmap updated_nodes)
1370 struct cgraph_edge *e = node->callees;
1372 if (!e)
1373 return;
1374 while (true)
1375 if (!e->inline_failed && e->callee->callees)
1376 e = e->callee->callees;
1377 else
1379 enum availability avail;
1380 struct cgraph_node *callee;
1381 /* We do not reset callee growth cache here. Since we added a new call,
1382 growth chould have just increased and consequentely badness metric
1383 don't need updating. */
1384 if (e->inline_failed
1385 && (callee = e->callee->ultimate_alias_target (&avail, e->caller))
1386 && inline_summaries->get (callee)->inlinable
1387 && avail >= AVAIL_AVAILABLE
1388 && !bitmap_bit_p (updated_nodes, callee->uid))
1390 if (can_inline_edge_p (e, false)
1391 && want_inline_small_function_p (e, false))
1392 update_edge_key (heap, e);
1393 else if (e->aux)
1395 report_inline_failed_reason (e);
1396 heap->delete_node ((edge_heap_node_t *) e->aux);
1397 e->aux = NULL;
1400 if (e->next_callee)
1401 e = e->next_callee;
1402 else
1406 if (e->caller == node)
1407 return;
1408 e = e->caller->callers;
1410 while (!e->next_callee);
1411 e = e->next_callee;
1416 /* Enqueue all recursive calls from NODE into priority queue depending on
1417 how likely we want to recursively inline the call. */
1419 static void
1420 lookup_recursive_calls (struct cgraph_node *node, struct cgraph_node *where,
1421 edge_heap_t *heap)
1423 struct cgraph_edge *e;
1424 enum availability avail;
1426 for (e = where->callees; e; e = e->next_callee)
1427 if (e->callee == node
1428 || (e->callee->ultimate_alias_target (&avail, e->caller) == node
1429 && avail > AVAIL_INTERPOSABLE))
1431 /* When profile feedback is available, prioritize by expected number
1432 of calls. */
1433 heap->insert (!max_count ? -e->frequency
1434 : -(e->count / ((max_count + (1<<24) - 1) / (1<<24))),
1437 for (e = where->callees; e; e = e->next_callee)
1438 if (!e->inline_failed)
1439 lookup_recursive_calls (node, e->callee, heap);
1442 /* Decide on recursive inlining: in the case function has recursive calls,
1443 inline until body size reaches given argument. If any new indirect edges
1444 are discovered in the process, add them to *NEW_EDGES, unless NEW_EDGES
1445 is NULL. */
1447 static bool
1448 recursive_inlining (struct cgraph_edge *edge,
1449 vec<cgraph_edge *> *new_edges)
1451 int limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE_AUTO);
1452 edge_heap_t heap (sreal::min ());
1453 struct cgraph_node *node;
1454 struct cgraph_edge *e;
1455 struct cgraph_node *master_clone = NULL, *next;
1456 int depth = 0;
1457 int n = 0;
1459 node = edge->caller;
1460 if (node->global.inlined_to)
1461 node = node->global.inlined_to;
1463 if (DECL_DECLARED_INLINE_P (node->decl))
1464 limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE);
1466 /* Make sure that function is small enough to be considered for inlining. */
1467 if (estimate_size_after_inlining (node, edge) >= limit)
1468 return false;
1469 lookup_recursive_calls (node, node, &heap);
1470 if (heap.empty ())
1471 return false;
1473 if (dump_file)
1474 fprintf (dump_file,
1475 " Performing recursive inlining on %s\n",
1476 node->name ());
1478 /* Do the inlining and update list of recursive call during process. */
1479 while (!heap.empty ())
1481 struct cgraph_edge *curr = heap.extract_min ();
1482 struct cgraph_node *cnode, *dest = curr->callee;
1484 if (!can_inline_edge_p (curr, true))
1485 continue;
1487 /* MASTER_CLONE is produced in the case we already started modified
1488 the function. Be sure to redirect edge to the original body before
1489 estimating growths otherwise we will be seeing growths after inlining
1490 the already modified body. */
1491 if (master_clone)
1493 curr->redirect_callee (master_clone);
1494 reset_edge_growth_cache (curr);
1497 if (estimate_size_after_inlining (node, curr) > limit)
1499 curr->redirect_callee (dest);
1500 reset_edge_growth_cache (curr);
1501 break;
1504 depth = 1;
1505 for (cnode = curr->caller;
1506 cnode->global.inlined_to; cnode = cnode->callers->caller)
1507 if (node->decl
1508 == curr->callee->ultimate_alias_target ()->decl)
1509 depth++;
1511 if (!want_inline_self_recursive_call_p (curr, node, false, depth))
1513 curr->redirect_callee (dest);
1514 reset_edge_growth_cache (curr);
1515 continue;
1518 if (dump_file)
1520 fprintf (dump_file,
1521 " Inlining call of depth %i", depth);
1522 if (node->count)
1524 fprintf (dump_file, " called approx. %.2f times per call",
1525 (double)curr->count / node->count);
1527 fprintf (dump_file, "\n");
1529 if (!master_clone)
1531 /* We need original clone to copy around. */
1532 master_clone = node->create_clone (node->decl, node->count,
1533 CGRAPH_FREQ_BASE, false, vNULL,
1534 true, NULL, NULL);
1535 for (e = master_clone->callees; e; e = e->next_callee)
1536 if (!e->inline_failed)
1537 clone_inlined_nodes (e, true, false, NULL, CGRAPH_FREQ_BASE);
1538 curr->redirect_callee (master_clone);
1539 reset_edge_growth_cache (curr);
1542 inline_call (curr, false, new_edges, &overall_size, true);
1543 lookup_recursive_calls (node, curr->callee, &heap);
1544 n++;
1547 if (!heap.empty () && dump_file)
1548 fprintf (dump_file, " Recursive inlining growth limit met.\n");
1550 if (!master_clone)
1551 return false;
1553 if (dump_file)
1554 fprintf (dump_file,
1555 "\n Inlined %i times, "
1556 "body grown from size %i to %i, time %i to %i\n", n,
1557 inline_summaries->get (master_clone)->size, inline_summaries->get (node)->size,
1558 inline_summaries->get (master_clone)->time, inline_summaries->get (node)->time);
1560 /* Remove master clone we used for inlining. We rely that clones inlined
1561 into master clone gets queued just before master clone so we don't
1562 need recursion. */
1563 for (node = symtab->first_function (); node != master_clone;
1564 node = next)
1566 next = symtab->next_function (node);
1567 if (node->global.inlined_to == master_clone)
1568 node->remove ();
1570 master_clone->remove ();
1571 return true;
1575 /* Given whole compilation unit estimate of INSNS, compute how large we can
1576 allow the unit to grow. */
1578 static int
1579 compute_max_insns (int insns)
1581 int max_insns = insns;
1582 if (max_insns < PARAM_VALUE (PARAM_LARGE_UNIT_INSNS))
1583 max_insns = PARAM_VALUE (PARAM_LARGE_UNIT_INSNS);
1585 return ((int64_t) max_insns
1586 * (100 + PARAM_VALUE (PARAM_INLINE_UNIT_GROWTH)) / 100);
1590 /* Compute badness of all edges in NEW_EDGES and add them to the HEAP. */
1592 static void
1593 add_new_edges_to_heap (edge_heap_t *heap, vec<cgraph_edge *> new_edges)
1595 while (new_edges.length () > 0)
1597 struct cgraph_edge *edge = new_edges.pop ();
1599 gcc_assert (!edge->aux);
1600 if (edge->inline_failed
1601 && can_inline_edge_p (edge, true)
1602 && want_inline_small_function_p (edge, true))
1603 edge->aux = heap->insert (edge_badness (edge, false), edge);
1607 /* Remove EDGE from the fibheap. */
1609 static void
1610 heap_edge_removal_hook (struct cgraph_edge *e, void *data)
1612 if (e->aux)
1614 ((edge_heap_t *)data)->delete_node ((edge_heap_node_t *)e->aux);
1615 e->aux = NULL;
1619 /* Return true if speculation of edge E seems useful.
1620 If ANTICIPATE_INLINING is true, be conservative and hope that E
1621 may get inlined. */
1623 bool
1624 speculation_useful_p (struct cgraph_edge *e, bool anticipate_inlining)
1626 enum availability avail;
1627 struct cgraph_node *target = e->callee->ultimate_alias_target (&avail,
1628 e->caller);
1629 struct cgraph_edge *direct, *indirect;
1630 struct ipa_ref *ref;
1632 gcc_assert (e->speculative && !e->indirect_unknown_callee);
1634 if (!e->maybe_hot_p ())
1635 return false;
1637 /* See if IP optimizations found something potentially useful about the
1638 function. For now we look only for CONST/PURE flags. Almost everything
1639 else we propagate is useless. */
1640 if (avail >= AVAIL_AVAILABLE)
1642 int ecf_flags = flags_from_decl_or_type (target->decl);
1643 if (ecf_flags & ECF_CONST)
1645 e->speculative_call_info (direct, indirect, ref);
1646 if (!(indirect->indirect_info->ecf_flags & ECF_CONST))
1647 return true;
1649 else if (ecf_flags & ECF_PURE)
1651 e->speculative_call_info (direct, indirect, ref);
1652 if (!(indirect->indirect_info->ecf_flags & ECF_PURE))
1653 return true;
1656 /* If we did not managed to inline the function nor redirect
1657 to an ipa-cp clone (that are seen by having local flag set),
1658 it is probably pointless to inline it unless hardware is missing
1659 indirect call predictor. */
1660 if (!anticipate_inlining && e->inline_failed && !target->local.local)
1661 return false;
1662 /* For overwritable targets there is not much to do. */
1663 if (e->inline_failed && !can_inline_edge_p (e, false, true))
1664 return false;
1665 /* OK, speculation seems interesting. */
1666 return true;
1669 /* We know that EDGE is not going to be inlined.
1670 See if we can remove speculation. */
1672 static void
1673 resolve_noninline_speculation (edge_heap_t *edge_heap, struct cgraph_edge *edge)
1675 if (edge->speculative && !speculation_useful_p (edge, false))
1677 struct cgraph_node *node = edge->caller;
1678 struct cgraph_node *where = node->global.inlined_to
1679 ? node->global.inlined_to : node;
1680 bitmap updated_nodes = BITMAP_ALLOC (NULL);
1682 spec_rem += edge->count;
1683 edge->resolve_speculation ();
1684 reset_edge_caches (where);
1685 inline_update_overall_summary (where);
1686 update_caller_keys (edge_heap, where,
1687 updated_nodes, NULL);
1688 update_callee_keys (edge_heap, where,
1689 updated_nodes);
1690 BITMAP_FREE (updated_nodes);
1694 /* Return true if NODE should be accounted for overall size estimate.
1695 Skip all nodes optimized for size so we can measure the growth of hot
1696 part of program no matter of the padding. */
1698 bool
1699 inline_account_function_p (struct cgraph_node *node)
1701 return (!DECL_EXTERNAL (node->decl)
1702 && !opt_for_fn (node->decl, optimize_size)
1703 && node->frequency != NODE_FREQUENCY_UNLIKELY_EXECUTED);
1706 /* Count number of callers of NODE and store it into DATA (that
1707 points to int. Worker for cgraph_for_node_and_aliases. */
1709 static bool
1710 sum_callers (struct cgraph_node *node, void *data)
1712 struct cgraph_edge *e;
1713 int *num_calls = (int *)data;
1715 for (e = node->callers; e; e = e->next_caller)
1716 (*num_calls)++;
1717 return false;
1720 /* We use greedy algorithm for inlining of small functions:
1721 All inline candidates are put into prioritized heap ordered in
1722 increasing badness.
1724 The inlining of small functions is bounded by unit growth parameters. */
1726 static void
1727 inline_small_functions (void)
1729 struct cgraph_node *node;
1730 struct cgraph_edge *edge;
1731 edge_heap_t edge_heap (sreal::min ());
1732 bitmap updated_nodes = BITMAP_ALLOC (NULL);
1733 int min_size, max_size;
1734 auto_vec<cgraph_edge *> new_indirect_edges;
1735 int initial_size = 0;
1736 struct cgraph_node **order = XCNEWVEC (cgraph_node *, symtab->cgraph_count);
1737 struct cgraph_edge_hook_list *edge_removal_hook_holder;
1738 new_indirect_edges.create (8);
1740 edge_removal_hook_holder
1741 = symtab->add_edge_removal_hook (&heap_edge_removal_hook, &edge_heap);
1743 /* Compute overall unit size and other global parameters used by badness
1744 metrics. */
1746 max_count = 0;
1747 ipa_reduced_postorder (order, true, true, NULL);
1748 free (order);
1750 FOR_EACH_DEFINED_FUNCTION (node)
1751 if (!node->global.inlined_to)
1753 if (!node->alias && node->analyzed
1754 && (node->has_gimple_body_p () || node->thunk.thunk_p))
1756 struct inline_summary *info = inline_summaries->get (node);
1757 struct ipa_dfs_info *dfs = (struct ipa_dfs_info *) node->aux;
1759 /* Do not account external functions, they will be optimized out
1760 if not inlined. Also only count the non-cold portion of program. */
1761 if (inline_account_function_p (node))
1762 initial_size += info->size;
1763 info->growth = estimate_growth (node);
1765 int num_calls = 0;
1766 node->call_for_symbol_and_aliases (sum_callers, &num_calls,
1767 true);
1768 if (num_calls == 1)
1769 info->single_caller = true;
1770 if (dfs && dfs->next_cycle)
1772 struct cgraph_node *n2;
1773 int id = dfs->scc_no + 1;
1774 for (n2 = node; n2;
1775 n2 = ((struct ipa_dfs_info *) node->aux)->next_cycle)
1777 struct inline_summary *info2 = inline_summaries->get (n2);
1778 if (info2->scc_no)
1779 break;
1780 info2->scc_no = id;
1785 for (edge = node->callers; edge; edge = edge->next_caller)
1786 if (max_count < edge->count)
1787 max_count = edge->count;
1789 ipa_free_postorder_info ();
1790 initialize_growth_caches ();
1792 if (dump_file)
1793 fprintf (dump_file,
1794 "\nDeciding on inlining of small functions. Starting with size %i.\n",
1795 initial_size);
1797 overall_size = initial_size;
1798 max_size = compute_max_insns (overall_size);
1799 min_size = overall_size;
1801 /* Populate the heap with all edges we might inline. */
1803 FOR_EACH_DEFINED_FUNCTION (node)
1805 bool update = false;
1806 struct cgraph_edge *next = NULL;
1807 bool has_speculative = false;
1809 if (dump_file)
1810 fprintf (dump_file, "Enqueueing calls in %s/%i.\n",
1811 node->name (), node->order);
1813 for (edge = node->callees; edge; edge = next)
1815 next = edge->next_callee;
1816 if (edge->inline_failed
1817 && !edge->aux
1818 && can_inline_edge_p (edge, true)
1819 && want_inline_small_function_p (edge, true)
1820 && edge->inline_failed)
1822 gcc_assert (!edge->aux);
1823 update_edge_key (&edge_heap, edge);
1825 if (edge->speculative)
1826 has_speculative = true;
1828 if (has_speculative)
1829 for (edge = node->callees; edge; edge = next)
1830 if (edge->speculative && !speculation_useful_p (edge,
1831 edge->aux != NULL))
1833 edge->resolve_speculation ();
1834 update = true;
1836 if (update)
1838 struct cgraph_node *where = node->global.inlined_to
1839 ? node->global.inlined_to : node;
1840 inline_update_overall_summary (where);
1841 reset_edge_caches (where);
1842 update_caller_keys (&edge_heap, where,
1843 updated_nodes, NULL);
1844 update_callee_keys (&edge_heap, where,
1845 updated_nodes);
1846 bitmap_clear (updated_nodes);
1850 gcc_assert (in_lto_p
1851 || !max_count
1852 || (profile_info && flag_branch_probabilities));
1854 while (!edge_heap.empty ())
1856 int old_size = overall_size;
1857 struct cgraph_node *where, *callee;
1858 sreal badness = edge_heap.min_key ();
1859 sreal current_badness;
1860 int growth;
1862 edge = edge_heap.extract_min ();
1863 gcc_assert (edge->aux);
1864 edge->aux = NULL;
1865 if (!edge->inline_failed || !edge->callee->analyzed)
1866 continue;
1868 #if CHECKING_P
1869 /* Be sure that caches are maintained consistent. */
1870 sreal cached_badness = edge_badness (edge, false);
1872 int old_size_est = estimate_edge_size (edge);
1873 int old_time_est = estimate_edge_time (edge);
1874 int old_hints_est = estimate_edge_hints (edge);
1876 reset_edge_growth_cache (edge);
1877 gcc_assert (old_size_est == estimate_edge_size (edge));
1878 gcc_assert (old_time_est == estimate_edge_time (edge));
1879 /* FIXME:
1881 gcc_assert (old_hints_est == estimate_edge_hints (edge));
1883 fails with profile feedback because some hints depends on
1884 maybe_hot_edge_p predicate and because callee gets inlined to other
1885 calls, the edge may become cold.
1886 This ought to be fixed by computing relative probabilities
1887 for given invocation but that will be better done once whole
1888 code is converted to sreals. Disable for now and revert to "wrong"
1889 value so enable/disable checking paths agree. */
1890 edge_growth_cache[edge->uid].hints = old_hints_est + 1;
1892 /* When updating the edge costs, we only decrease badness in the keys.
1893 Increases of badness are handled lazilly; when we see key with out
1894 of date value on it, we re-insert it now. */
1895 current_badness = edge_badness (edge, false);
1896 /* Disable checking for profile because roundoff errors may cause slight
1897 deviations in the order. */
1898 gcc_assert (max_count || cached_badness == current_badness);
1899 gcc_assert (current_badness >= badness);
1900 #else
1901 current_badness = edge_badness (edge, false);
1902 #endif
1903 if (current_badness != badness)
1905 if (edge_heap.min () && current_badness > edge_heap.min_key ())
1907 edge->aux = edge_heap.insert (current_badness, edge);
1908 continue;
1910 else
1911 badness = current_badness;
1914 if (!can_inline_edge_p (edge, true))
1916 resolve_noninline_speculation (&edge_heap, edge);
1917 continue;
1920 callee = edge->callee->ultimate_alias_target ();
1921 growth = estimate_edge_growth (edge);
1922 if (dump_file)
1924 fprintf (dump_file,
1925 "\nConsidering %s/%i with %i size\n",
1926 callee->name (), callee->order,
1927 inline_summaries->get (callee)->size);
1928 fprintf (dump_file,
1929 " to be inlined into %s/%i in %s:%i\n"
1930 " Estimated badness is %f, frequency %.2f.\n",
1931 edge->caller->name (), edge->caller->order,
1932 edge->call_stmt
1933 && (LOCATION_LOCUS (gimple_location ((const gimple *)
1934 edge->call_stmt))
1935 > BUILTINS_LOCATION)
1936 ? gimple_filename ((const gimple *) edge->call_stmt)
1937 : "unknown",
1938 edge->call_stmt
1939 ? gimple_lineno ((const gimple *) edge->call_stmt)
1940 : -1,
1941 badness.to_double (),
1942 edge->frequency / (double)CGRAPH_FREQ_BASE);
1943 if (edge->count)
1944 fprintf (dump_file," Called %" PRId64"x\n",
1945 edge->count);
1946 if (dump_flags & TDF_DETAILS)
1947 edge_badness (edge, true);
1950 if (overall_size + growth > max_size
1951 && !DECL_DISREGARD_INLINE_LIMITS (callee->decl))
1953 edge->inline_failed = CIF_INLINE_UNIT_GROWTH_LIMIT;
1954 report_inline_failed_reason (edge);
1955 resolve_noninline_speculation (&edge_heap, edge);
1956 continue;
1959 if (!want_inline_small_function_p (edge, true))
1961 resolve_noninline_speculation (&edge_heap, edge);
1962 continue;
1965 /* Heuristics for inlining small functions work poorly for
1966 recursive calls where we do effects similar to loop unrolling.
1967 When inlining such edge seems profitable, leave decision on
1968 specific inliner. */
1969 if (edge->recursive_p ())
1971 where = edge->caller;
1972 if (where->global.inlined_to)
1973 where = where->global.inlined_to;
1974 if (!recursive_inlining (edge,
1975 opt_for_fn (edge->caller->decl,
1976 flag_indirect_inlining)
1977 ? &new_indirect_edges : NULL))
1979 edge->inline_failed = CIF_RECURSIVE_INLINING;
1980 resolve_noninline_speculation (&edge_heap, edge);
1981 continue;
1983 reset_edge_caches (where);
1984 /* Recursive inliner inlines all recursive calls of the function
1985 at once. Consequently we need to update all callee keys. */
1986 if (opt_for_fn (edge->caller->decl, flag_indirect_inlining))
1987 add_new_edges_to_heap (&edge_heap, new_indirect_edges);
1988 update_callee_keys (&edge_heap, where, updated_nodes);
1989 bitmap_clear (updated_nodes);
1991 else
1993 struct cgraph_node *outer_node = NULL;
1994 int depth = 0;
1996 /* Consider the case where self recursive function A is inlined
1997 into B. This is desired optimization in some cases, since it
1998 leads to effect similar of loop peeling and we might completely
1999 optimize out the recursive call. However we must be extra
2000 selective. */
2002 where = edge->caller;
2003 while (where->global.inlined_to)
2005 if (where->decl == callee->decl)
2006 outer_node = where, depth++;
2007 where = where->callers->caller;
2009 if (outer_node
2010 && !want_inline_self_recursive_call_p (edge, outer_node,
2011 true, depth))
2013 edge->inline_failed
2014 = (DECL_DISREGARD_INLINE_LIMITS (edge->callee->decl)
2015 ? CIF_RECURSIVE_INLINING : CIF_UNSPECIFIED);
2016 resolve_noninline_speculation (&edge_heap, edge);
2017 continue;
2019 else if (depth && dump_file)
2020 fprintf (dump_file, " Peeling recursion with depth %i\n", depth);
2022 gcc_checking_assert (!callee->global.inlined_to);
2023 inline_call (edge, true, &new_indirect_edges, &overall_size, true);
2024 add_new_edges_to_heap (&edge_heap, new_indirect_edges);
2026 reset_edge_caches (edge->callee->function_symbol ());
2028 update_callee_keys (&edge_heap, where, updated_nodes);
2030 where = edge->caller;
2031 if (where->global.inlined_to)
2032 where = where->global.inlined_to;
2034 /* Our profitability metric can depend on local properties
2035 such as number of inlinable calls and size of the function body.
2036 After inlining these properties might change for the function we
2037 inlined into (since it's body size changed) and for the functions
2038 called by function we inlined (since number of it inlinable callers
2039 might change). */
2040 update_caller_keys (&edge_heap, where, updated_nodes, NULL);
2041 /* Offline copy count has possibly changed, recompute if profile is
2042 available. */
2043 if (max_count)
2045 struct cgraph_node *n = cgraph_node::get (edge->callee->decl);
2046 if (n != edge->callee && n->analyzed)
2047 update_callee_keys (&edge_heap, n, updated_nodes);
2049 bitmap_clear (updated_nodes);
2051 if (dump_file)
2053 fprintf (dump_file,
2054 " Inlined into %s which now has time %i and size %i,"
2055 "net change of %+i.\n",
2056 edge->caller->name (),
2057 inline_summaries->get (edge->caller)->time,
2058 inline_summaries->get (edge->caller)->size,
2059 overall_size - old_size);
2061 if (min_size > overall_size)
2063 min_size = overall_size;
2064 max_size = compute_max_insns (min_size);
2066 if (dump_file)
2067 fprintf (dump_file, "New minimal size reached: %i\n", min_size);
2071 free_growth_caches ();
2072 if (dump_file)
2073 fprintf (dump_file,
2074 "Unit growth for small function inlining: %i->%i (%i%%)\n",
2075 initial_size, overall_size,
2076 initial_size ? overall_size * 100 / (initial_size) - 100: 0);
2077 BITMAP_FREE (updated_nodes);
2078 symtab->remove_edge_removal_hook (edge_removal_hook_holder);
2081 /* Flatten NODE. Performed both during early inlining and
2082 at IPA inlining time. */
2084 static void
2085 flatten_function (struct cgraph_node *node, bool early)
2087 struct cgraph_edge *e;
2089 /* We shouldn't be called recursively when we are being processed. */
2090 gcc_assert (node->aux == NULL);
2092 node->aux = (void *) node;
2094 for (e = node->callees; e; e = e->next_callee)
2096 struct cgraph_node *orig_callee;
2097 struct cgraph_node *callee = e->callee->ultimate_alias_target ();
2099 /* We've hit cycle? It is time to give up. */
2100 if (callee->aux)
2102 if (dump_file)
2103 fprintf (dump_file,
2104 "Not inlining %s into %s to avoid cycle.\n",
2105 xstrdup_for_dump (callee->name ()),
2106 xstrdup_for_dump (e->caller->name ()));
2107 e->inline_failed = CIF_RECURSIVE_INLINING;
2108 continue;
2111 /* When the edge is already inlined, we just need to recurse into
2112 it in order to fully flatten the leaves. */
2113 if (!e->inline_failed)
2115 flatten_function (callee, early);
2116 continue;
2119 /* Flatten attribute needs to be processed during late inlining. For
2120 extra code quality we however do flattening during early optimization,
2121 too. */
2122 if (!early
2123 ? !can_inline_edge_p (e, true)
2124 : !can_early_inline_edge_p (e))
2125 continue;
2127 if (e->recursive_p ())
2129 if (dump_file)
2130 fprintf (dump_file, "Not inlining: recursive call.\n");
2131 continue;
2134 if (gimple_in_ssa_p (DECL_STRUCT_FUNCTION (node->decl))
2135 != gimple_in_ssa_p (DECL_STRUCT_FUNCTION (callee->decl)))
2137 if (dump_file)
2138 fprintf (dump_file, "Not inlining: SSA form does not match.\n");
2139 continue;
2142 /* Inline the edge and flatten the inline clone. Avoid
2143 recursing through the original node if the node was cloned. */
2144 if (dump_file)
2145 fprintf (dump_file, " Inlining %s into %s.\n",
2146 xstrdup_for_dump (callee->name ()),
2147 xstrdup_for_dump (e->caller->name ()));
2148 orig_callee = callee;
2149 inline_call (e, true, NULL, NULL, false);
2150 if (e->callee != orig_callee)
2151 orig_callee->aux = (void *) node;
2152 flatten_function (e->callee, early);
2153 if (e->callee != orig_callee)
2154 orig_callee->aux = NULL;
2157 node->aux = NULL;
2158 if (!node->global.inlined_to)
2159 inline_update_overall_summary (node);
2162 /* Inline NODE to all callers. Worker for cgraph_for_node_and_aliases.
2163 DATA points to number of calls originally found so we avoid infinite
2164 recursion. */
2166 static bool
2167 inline_to_all_callers_1 (struct cgraph_node *node, void *data,
2168 hash_set<cgraph_node *> *callers)
2170 int *num_calls = (int *)data;
2171 bool callee_removed = false;
2173 while (node->callers && !node->global.inlined_to)
2175 struct cgraph_node *caller = node->callers->caller;
2177 if (!can_inline_edge_p (node->callers, true)
2178 || node->callers->recursive_p ())
2180 if (dump_file)
2181 fprintf (dump_file, "Uninlinable call found; giving up.\n");
2182 *num_calls = 0;
2183 return false;
2186 if (dump_file)
2188 fprintf (dump_file,
2189 "\nInlining %s size %i.\n",
2190 node->name (),
2191 inline_summaries->get (node)->size);
2192 fprintf (dump_file,
2193 " Called once from %s %i insns.\n",
2194 node->callers->caller->name (),
2195 inline_summaries->get (node->callers->caller)->size);
2198 /* Remember which callers we inlined to, delaying updating the
2199 overall summary. */
2200 callers->add (node->callers->caller);
2201 inline_call (node->callers, true, NULL, NULL, false, &callee_removed);
2202 if (dump_file)
2203 fprintf (dump_file,
2204 " Inlined into %s which now has %i size\n",
2205 caller->name (),
2206 inline_summaries->get (caller)->size);
2207 if (!(*num_calls)--)
2209 if (dump_file)
2210 fprintf (dump_file, "New calls found; giving up.\n");
2211 return callee_removed;
2213 if (callee_removed)
2214 return true;
2216 return false;
2219 /* Wrapper around inline_to_all_callers_1 doing delayed overall summary
2220 update. */
2222 static bool
2223 inline_to_all_callers (struct cgraph_node *node, void *data)
2225 hash_set<cgraph_node *> callers;
2226 bool res = inline_to_all_callers_1 (node, data, &callers);
2227 /* Perform the delayed update of the overall summary of all callers
2228 processed. This avoids quadratic behavior in the cases where
2229 we have a lot of calls to the same function. */
2230 for (hash_set<cgraph_node *>::iterator i = callers.begin ();
2231 i != callers.end (); ++i)
2232 inline_update_overall_summary (*i);
2233 return res;
2236 /* Output overall time estimate. */
2237 static void
2238 dump_overall_stats (void)
2240 int64_t sum_weighted = 0, sum = 0;
2241 struct cgraph_node *node;
2243 FOR_EACH_DEFINED_FUNCTION (node)
2244 if (!node->global.inlined_to
2245 && !node->alias)
2247 int time = inline_summaries->get (node)->time;
2248 sum += time;
2249 sum_weighted += time * node->count;
2251 fprintf (dump_file, "Overall time estimate: "
2252 "%" PRId64" weighted by profile: "
2253 "%" PRId64"\n", sum, sum_weighted);
2256 /* Output some useful stats about inlining. */
2258 static void
2259 dump_inline_stats (void)
2261 int64_t inlined_cnt = 0, inlined_indir_cnt = 0;
2262 int64_t inlined_virt_cnt = 0, inlined_virt_indir_cnt = 0;
2263 int64_t noninlined_cnt = 0, noninlined_indir_cnt = 0;
2264 int64_t noninlined_virt_cnt = 0, noninlined_virt_indir_cnt = 0;
2265 int64_t inlined_speculative = 0, inlined_speculative_ply = 0;
2266 int64_t indirect_poly_cnt = 0, indirect_cnt = 0;
2267 int64_t reason[CIF_N_REASONS][3];
2268 int i;
2269 struct cgraph_node *node;
2271 memset (reason, 0, sizeof (reason));
2272 FOR_EACH_DEFINED_FUNCTION (node)
2274 struct cgraph_edge *e;
2275 for (e = node->callees; e; e = e->next_callee)
2277 if (e->inline_failed)
2279 reason[(int) e->inline_failed][0] += e->count;
2280 reason[(int) e->inline_failed][1] += e->frequency;
2281 reason[(int) e->inline_failed][2] ++;
2282 if (DECL_VIRTUAL_P (e->callee->decl))
2284 if (e->indirect_inlining_edge)
2285 noninlined_virt_indir_cnt += e->count;
2286 else
2287 noninlined_virt_cnt += e->count;
2289 else
2291 if (e->indirect_inlining_edge)
2292 noninlined_indir_cnt += e->count;
2293 else
2294 noninlined_cnt += e->count;
2297 else
2299 if (e->speculative)
2301 if (DECL_VIRTUAL_P (e->callee->decl))
2302 inlined_speculative_ply += e->count;
2303 else
2304 inlined_speculative += e->count;
2306 else if (DECL_VIRTUAL_P (e->callee->decl))
2308 if (e->indirect_inlining_edge)
2309 inlined_virt_indir_cnt += e->count;
2310 else
2311 inlined_virt_cnt += e->count;
2313 else
2315 if (e->indirect_inlining_edge)
2316 inlined_indir_cnt += e->count;
2317 else
2318 inlined_cnt += e->count;
2322 for (e = node->indirect_calls; e; e = e->next_callee)
2323 if (e->indirect_info->polymorphic)
2324 indirect_poly_cnt += e->count;
2325 else
2326 indirect_cnt += e->count;
2328 if (max_count)
2330 fprintf (dump_file,
2331 "Inlined %" PRId64 " + speculative "
2332 "%" PRId64 " + speculative polymorphic "
2333 "%" PRId64 " + previously indirect "
2334 "%" PRId64 " + virtual "
2335 "%" PRId64 " + virtual and previously indirect "
2336 "%" PRId64 "\n" "Not inlined "
2337 "%" PRId64 " + previously indirect "
2338 "%" PRId64 " + virtual "
2339 "%" PRId64 " + virtual and previously indirect "
2340 "%" PRId64 " + stil indirect "
2341 "%" PRId64 " + still indirect polymorphic "
2342 "%" PRId64 "\n", inlined_cnt,
2343 inlined_speculative, inlined_speculative_ply,
2344 inlined_indir_cnt, inlined_virt_cnt, inlined_virt_indir_cnt,
2345 noninlined_cnt, noninlined_indir_cnt, noninlined_virt_cnt,
2346 noninlined_virt_indir_cnt, indirect_cnt, indirect_poly_cnt);
2347 fprintf (dump_file,
2348 "Removed speculations %" PRId64 "\n",
2349 spec_rem);
2351 dump_overall_stats ();
2352 fprintf (dump_file, "\nWhy inlining failed?\n");
2353 for (i = 0; i < CIF_N_REASONS; i++)
2354 if (reason[i][2])
2355 fprintf (dump_file, "%-50s: %8i calls, %8i freq, %" PRId64" count\n",
2356 cgraph_inline_failed_string ((cgraph_inline_failed_t) i),
2357 (int) reason[i][2], (int) reason[i][1], reason[i][0]);
2360 /* Decide on the inlining. We do so in the topological order to avoid
2361 expenses on updating data structures. */
2363 static unsigned int
2364 ipa_inline (void)
2366 struct cgraph_node *node;
2367 int nnodes;
2368 struct cgraph_node **order;
2369 int i;
2370 int cold;
2371 bool remove_functions = false;
2373 if (!optimize)
2374 return 0;
2376 cgraph_freq_base_rec = (sreal) 1 / (sreal) CGRAPH_FREQ_BASE;
2377 percent_rec = (sreal) 1 / (sreal) 100;
2379 order = XCNEWVEC (struct cgraph_node *, symtab->cgraph_count);
2381 if (in_lto_p && optimize)
2382 ipa_update_after_lto_read ();
2384 if (dump_file)
2385 dump_inline_summaries (dump_file);
2387 nnodes = ipa_reverse_postorder (order);
2389 FOR_EACH_FUNCTION (node)
2391 node->aux = 0;
2393 /* Recompute the default reasons for inlining because they may have
2394 changed during merging. */
2395 if (in_lto_p)
2397 for (cgraph_edge *e = node->callees; e; e = e->next_callee)
2399 gcc_assert (e->inline_failed);
2400 initialize_inline_failed (e);
2402 for (cgraph_edge *e = node->indirect_calls; e; e = e->next_callee)
2403 initialize_inline_failed (e);
2407 if (dump_file)
2408 fprintf (dump_file, "\nFlattening functions:\n");
2410 /* In the first pass handle functions to be flattened. Do this with
2411 a priority so none of our later choices will make this impossible. */
2412 for (i = nnodes - 1; i >= 0; i--)
2414 node = order[i];
2416 /* Handle nodes to be flattened.
2417 Ideally when processing callees we stop inlining at the
2418 entry of cycles, possibly cloning that entry point and
2419 try to flatten itself turning it into a self-recursive
2420 function. */
2421 if (lookup_attribute ("flatten",
2422 DECL_ATTRIBUTES (node->decl)) != NULL)
2424 if (dump_file)
2425 fprintf (dump_file,
2426 "Flattening %s\n", node->name ());
2427 flatten_function (node, false);
2430 if (dump_file)
2431 dump_overall_stats ();
2433 inline_small_functions ();
2435 gcc_assert (symtab->state == IPA_SSA);
2436 symtab->state = IPA_SSA_AFTER_INLINING;
2437 /* Do first after-inlining removal. We want to remove all "stale" extern
2438 inline functions and virtual functions so we really know what is called
2439 once. */
2440 symtab->remove_unreachable_nodes (dump_file);
2441 free (order);
2443 /* Inline functions with a property that after inlining into all callers the
2444 code size will shrink because the out-of-line copy is eliminated.
2445 We do this regardless on the callee size as long as function growth limits
2446 are met. */
2447 if (dump_file)
2448 fprintf (dump_file,
2449 "\nDeciding on functions to be inlined into all callers and "
2450 "removing useless speculations:\n");
2452 /* Inlining one function called once has good chance of preventing
2453 inlining other function into the same callee. Ideally we should
2454 work in priority order, but probably inlining hot functions first
2455 is good cut without the extra pain of maintaining the queue.
2457 ??? this is not really fitting the bill perfectly: inlining function
2458 into callee often leads to better optimization of callee due to
2459 increased context for optimization.
2460 For example if main() function calls a function that outputs help
2461 and then function that does the main optmization, we should inline
2462 the second with priority even if both calls are cold by themselves.
2464 We probably want to implement new predicate replacing our use of
2465 maybe_hot_edge interpreted as maybe_hot_edge || callee is known
2466 to be hot. */
2467 for (cold = 0; cold <= 1; cold ++)
2469 FOR_EACH_DEFINED_FUNCTION (node)
2471 struct cgraph_edge *edge, *next;
2472 bool update=false;
2474 for (edge = node->callees; edge; edge = next)
2476 next = edge->next_callee;
2477 if (edge->speculative && !speculation_useful_p (edge, false))
2479 edge->resolve_speculation ();
2480 spec_rem += edge->count;
2481 update = true;
2482 remove_functions = true;
2485 if (update)
2487 struct cgraph_node *where = node->global.inlined_to
2488 ? node->global.inlined_to : node;
2489 reset_edge_caches (where);
2490 inline_update_overall_summary (where);
2492 if (want_inline_function_to_all_callers_p (node, cold))
2494 int num_calls = 0;
2495 node->call_for_symbol_and_aliases (sum_callers, &num_calls,
2496 true);
2497 while (node->call_for_symbol_and_aliases
2498 (inline_to_all_callers, &num_calls, true))
2500 remove_functions = true;
2505 /* Free ipa-prop structures if they are no longer needed. */
2506 if (optimize)
2507 ipa_free_all_structures_after_iinln ();
2509 if (dump_file)
2511 fprintf (dump_file,
2512 "\nInlined %i calls, eliminated %i functions\n\n",
2513 ncalls_inlined, nfunctions_inlined);
2514 dump_inline_stats ();
2517 if (dump_file)
2518 dump_inline_summaries (dump_file);
2519 /* In WPA we use inline summaries for partitioning process. */
2520 if (!flag_wpa)
2521 inline_free_summary ();
2522 return remove_functions ? TODO_remove_functions : 0;
2525 /* Inline always-inline function calls in NODE. */
2527 static bool
2528 inline_always_inline_functions (struct cgraph_node *node)
2530 struct cgraph_edge *e;
2531 bool inlined = false;
2533 for (e = node->callees; e; e = e->next_callee)
2535 struct cgraph_node *callee = e->callee->ultimate_alias_target ();
2536 if (!DECL_DISREGARD_INLINE_LIMITS (callee->decl))
2537 continue;
2539 if (e->recursive_p ())
2541 if (dump_file)
2542 fprintf (dump_file, " Not inlining recursive call to %s.\n",
2543 e->callee->name ());
2544 e->inline_failed = CIF_RECURSIVE_INLINING;
2545 continue;
2548 if (!can_early_inline_edge_p (e))
2550 /* Set inlined to true if the callee is marked "always_inline" but
2551 is not inlinable. This will allow flagging an error later in
2552 expand_call_inline in tree-inline.c. */
2553 if (lookup_attribute ("always_inline",
2554 DECL_ATTRIBUTES (callee->decl)) != NULL)
2555 inlined = true;
2556 continue;
2559 if (dump_file)
2560 fprintf (dump_file, " Inlining %s into %s (always_inline).\n",
2561 xstrdup_for_dump (e->callee->name ()),
2562 xstrdup_for_dump (e->caller->name ()));
2563 inline_call (e, true, NULL, NULL, false);
2564 inlined = true;
2566 if (inlined)
2567 inline_update_overall_summary (node);
2569 return inlined;
2572 /* Decide on the inlining. We do so in the topological order to avoid
2573 expenses on updating data structures. */
2575 static bool
2576 early_inline_small_functions (struct cgraph_node *node)
2578 struct cgraph_edge *e;
2579 bool inlined = false;
2581 for (e = node->callees; e; e = e->next_callee)
2583 struct cgraph_node *callee = e->callee->ultimate_alias_target ();
2584 if (!inline_summaries->get (callee)->inlinable
2585 || !e->inline_failed)
2586 continue;
2588 /* Do not consider functions not declared inline. */
2589 if (!DECL_DECLARED_INLINE_P (callee->decl)
2590 && !opt_for_fn (node->decl, flag_inline_small_functions)
2591 && !opt_for_fn (node->decl, flag_inline_functions))
2592 continue;
2594 if (dump_file)
2595 fprintf (dump_file, "Considering inline candidate %s.\n",
2596 callee->name ());
2598 if (!can_early_inline_edge_p (e))
2599 continue;
2601 if (e->recursive_p ())
2603 if (dump_file)
2604 fprintf (dump_file, " Not inlining: recursive call.\n");
2605 continue;
2608 if (!want_early_inline_function_p (e))
2609 continue;
2611 if (dump_file)
2612 fprintf (dump_file, " Inlining %s into %s.\n",
2613 xstrdup_for_dump (callee->name ()),
2614 xstrdup_for_dump (e->caller->name ()));
2615 inline_call (e, true, NULL, NULL, false);
2616 inlined = true;
2619 if (inlined)
2620 inline_update_overall_summary (node);
2622 return inlined;
2625 unsigned int
2626 early_inliner (function *fun)
2628 struct cgraph_node *node = cgraph_node::get (current_function_decl);
2629 struct cgraph_edge *edge;
2630 unsigned int todo = 0;
2631 int iterations = 0;
2632 bool inlined = false;
2634 if (seen_error ())
2635 return 0;
2637 /* Do nothing if datastructures for ipa-inliner are already computed. This
2638 happens when some pass decides to construct new function and
2639 cgraph_add_new_function calls lowering passes and early optimization on
2640 it. This may confuse ourself when early inliner decide to inline call to
2641 function clone, because function clones don't have parameter list in
2642 ipa-prop matching their signature. */
2643 if (ipa_node_params_sum)
2644 return 0;
2646 if (flag_checking)
2647 node->verify ();
2648 node->remove_all_references ();
2650 /* Rebuild this reference because it dosn't depend on
2651 function's body and it's required to pass cgraph_node
2652 verification. */
2653 if (node->instrumented_version
2654 && !node->instrumentation_clone)
2655 node->create_reference (node->instrumented_version, IPA_REF_CHKP, NULL);
2657 /* Even when not optimizing or not inlining inline always-inline
2658 functions. */
2659 inlined = inline_always_inline_functions (node);
2661 if (!optimize
2662 || flag_no_inline
2663 || !flag_early_inlining
2664 /* Never inline regular functions into always-inline functions
2665 during incremental inlining. This sucks as functions calling
2666 always inline functions will get less optimized, but at the
2667 same time inlining of functions calling always inline
2668 function into an always inline function might introduce
2669 cycles of edges to be always inlined in the callgraph.
2671 We might want to be smarter and just avoid this type of inlining. */
2672 || (DECL_DISREGARD_INLINE_LIMITS (node->decl)
2673 && lookup_attribute ("always_inline",
2674 DECL_ATTRIBUTES (node->decl))))
2676 else if (lookup_attribute ("flatten",
2677 DECL_ATTRIBUTES (node->decl)) != NULL)
2679 /* When the function is marked to be flattened, recursively inline
2680 all calls in it. */
2681 if (dump_file)
2682 fprintf (dump_file,
2683 "Flattening %s\n", node->name ());
2684 flatten_function (node, true);
2685 inlined = true;
2687 else
2689 /* If some always_inline functions was inlined, apply the changes.
2690 This way we will not account always inline into growth limits and
2691 moreover we will inline calls from always inlines that we skipped
2692 previously because of conditional above. */
2693 if (inlined)
2695 timevar_push (TV_INTEGRATION);
2696 todo |= optimize_inline_calls (current_function_decl);
2697 /* optimize_inline_calls call above might have introduced new
2698 statements that don't have inline parameters computed. */
2699 for (edge = node->callees; edge; edge = edge->next_callee)
2701 if (inline_edge_summary_vec.length () > (unsigned) edge->uid)
2703 struct inline_edge_summary *es = inline_edge_summary (edge);
2704 es->call_stmt_size
2705 = estimate_num_insns (edge->call_stmt, &eni_size_weights);
2706 es->call_stmt_time
2707 = estimate_num_insns (edge->call_stmt, &eni_time_weights);
2710 inline_update_overall_summary (node);
2711 inlined = false;
2712 timevar_pop (TV_INTEGRATION);
2714 /* We iterate incremental inlining to get trivial cases of indirect
2715 inlining. */
2716 while (iterations < PARAM_VALUE (PARAM_EARLY_INLINER_MAX_ITERATIONS)
2717 && early_inline_small_functions (node))
2719 timevar_push (TV_INTEGRATION);
2720 todo |= optimize_inline_calls (current_function_decl);
2722 /* Technically we ought to recompute inline parameters so the new
2723 iteration of early inliner works as expected. We however have
2724 values approximately right and thus we only need to update edge
2725 info that might be cleared out for newly discovered edges. */
2726 for (edge = node->callees; edge; edge = edge->next_callee)
2728 /* We have no summary for new bound store calls yet. */
2729 if (inline_edge_summary_vec.length () > (unsigned)edge->uid)
2731 struct inline_edge_summary *es = inline_edge_summary (edge);
2732 es->call_stmt_size
2733 = estimate_num_insns (edge->call_stmt, &eni_size_weights);
2734 es->call_stmt_time
2735 = estimate_num_insns (edge->call_stmt, &eni_time_weights);
2737 if (edge->callee->decl
2738 && !gimple_check_call_matching_types (
2739 edge->call_stmt, edge->callee->decl, false))
2740 edge->call_stmt_cannot_inline_p = true;
2742 if (iterations < PARAM_VALUE (PARAM_EARLY_INLINER_MAX_ITERATIONS) - 1)
2743 inline_update_overall_summary (node);
2744 timevar_pop (TV_INTEGRATION);
2745 iterations++;
2746 inlined = false;
2748 if (dump_file)
2749 fprintf (dump_file, "Iterations: %i\n", iterations);
2752 if (inlined)
2754 timevar_push (TV_INTEGRATION);
2755 todo |= optimize_inline_calls (current_function_decl);
2756 timevar_pop (TV_INTEGRATION);
2759 fun->always_inline_functions_inlined = true;
2761 return todo;
2764 /* Do inlining of small functions. Doing so early helps profiling and other
2765 passes to be somewhat more effective and avoids some code duplication in
2766 later real inlining pass for testcases with very many function calls. */
2768 namespace {
2770 const pass_data pass_data_early_inline =
2772 GIMPLE_PASS, /* type */
2773 "einline", /* name */
2774 OPTGROUP_INLINE, /* optinfo_flags */
2775 TV_EARLY_INLINING, /* tv_id */
2776 PROP_ssa, /* properties_required */
2777 0, /* properties_provided */
2778 0, /* properties_destroyed */
2779 0, /* todo_flags_start */
2780 0, /* todo_flags_finish */
2783 class pass_early_inline : public gimple_opt_pass
2785 public:
2786 pass_early_inline (gcc::context *ctxt)
2787 : gimple_opt_pass (pass_data_early_inline, ctxt)
2790 /* opt_pass methods: */
2791 virtual unsigned int execute (function *);
2793 }; // class pass_early_inline
2795 unsigned int
2796 pass_early_inline::execute (function *fun)
2798 return early_inliner (fun);
2801 } // anon namespace
2803 gimple_opt_pass *
2804 make_pass_early_inline (gcc::context *ctxt)
2806 return new pass_early_inline (ctxt);
2809 namespace {
2811 const pass_data pass_data_ipa_inline =
2813 IPA_PASS, /* type */
2814 "inline", /* name */
2815 OPTGROUP_INLINE, /* optinfo_flags */
2816 TV_IPA_INLINING, /* tv_id */
2817 0, /* properties_required */
2818 0, /* properties_provided */
2819 0, /* properties_destroyed */
2820 0, /* todo_flags_start */
2821 ( TODO_dump_symtab ), /* todo_flags_finish */
2824 class pass_ipa_inline : public ipa_opt_pass_d
2826 public:
2827 pass_ipa_inline (gcc::context *ctxt)
2828 : ipa_opt_pass_d (pass_data_ipa_inline, ctxt,
2829 inline_generate_summary, /* generate_summary */
2830 inline_write_summary, /* write_summary */
2831 inline_read_summary, /* read_summary */
2832 NULL, /* write_optimization_summary */
2833 NULL, /* read_optimization_summary */
2834 NULL, /* stmt_fixup */
2835 0, /* function_transform_todo_flags_start */
2836 inline_transform, /* function_transform */
2837 NULL) /* variable_transform */
2840 /* opt_pass methods: */
2841 virtual unsigned int execute (function *) { return ipa_inline (); }
2843 }; // class pass_ipa_inline
2845 } // anon namespace
2847 ipa_opt_pass_d *
2848 make_pass_ipa_inline (gcc::context *ctxt)
2850 return new pass_ipa_inline (ctxt);