PR tree-optimization/87022
[official-gcc.git] / gcc / tree-loop-distribution.c
blob1e8a9f0991be608d6d43c2368b61d66f526d80ec
1 /* Loop distribution.
2 Copyright (C) 2006-2018 Free Software Foundation, Inc.
3 Contributed by Georges-Andre Silber <Georges-Andre.Silber@ensmp.fr>
4 and Sebastian Pop <sebastian.pop@amd.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by the
10 Free Software Foundation; either version 3, or (at your option) any
11 later version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This pass performs loop distribution: for example, the loop
24 |DO I = 2, N
25 | A(I) = B(I) + C
26 | D(I) = A(I-1)*E
27 |ENDDO
29 is transformed to
31 |DOALL I = 2, N
32 | A(I) = B(I) + C
33 |ENDDO
35 |DOALL I = 2, N
36 | D(I) = A(I-1)*E
37 |ENDDO
39 Loop distribution is the dual of loop fusion. It separates statements
40 of a loop (or loop nest) into multiple loops (or loop nests) with the
41 same loop header. The major goal is to separate statements which may
42 be vectorized from those that can't. This pass implements distribution
43 in the following steps:
45 1) Seed partitions with specific type statements. For now we support
46 two types seed statements: statement defining variable used outside
47 of loop; statement storing to memory.
48 2) Build reduced dependence graph (RDG) for loop to be distributed.
49 The vertices (RDG:V) model all statements in the loop and the edges
50 (RDG:E) model flow and control dependencies between statements.
51 3) Apart from RDG, compute data dependencies between memory references.
52 4) Starting from seed statement, build up partition by adding depended
53 statements according to RDG's dependence information. Partition is
54 classified as parallel type if it can be executed paralleled; or as
55 sequential type if it can't. Parallel type partition is further
56 classified as different builtin kinds if it can be implemented as
57 builtin function calls.
58 5) Build partition dependence graph (PG) based on data dependencies.
59 The vertices (PG:V) model all partitions and the edges (PG:E) model
60 all data dependencies between every partitions pair. In general,
61 data dependence is either compilation time known or unknown. In C
62 family languages, there exists quite amount compilation time unknown
63 dependencies because of possible alias relation of data references.
64 We categorize PG's edge to two types: "true" edge that represents
65 compilation time known data dependencies; "alias" edge for all other
66 data dependencies.
67 6) Traverse subgraph of PG as if all "alias" edges don't exist. Merge
68 partitions in each strong connected component (SCC) correspondingly.
69 Build new PG for merged partitions.
70 7) Traverse PG again and this time with both "true" and "alias" edges
71 included. We try to break SCCs by removing some edges. Because
72 SCCs by "true" edges are all fused in step 6), we can break SCCs
73 by removing some "alias" edges. It's NP-hard to choose optimal
74 edge set, fortunately simple approximation is good enough for us
75 given the small problem scale.
76 8) Collect all data dependencies of the removed "alias" edges. Create
77 runtime alias checks for collected data dependencies.
78 9) Version loop under the condition of runtime alias checks. Given
79 loop distribution generally introduces additional overhead, it is
80 only useful if vectorization is achieved in distributed loop. We
81 version loop with internal function call IFN_LOOP_DIST_ALIAS. If
82 no distributed loop can be vectorized, we simply remove distributed
83 loops and recover to the original one.
85 TODO:
86 1) We only distribute innermost two-level loop nest now. We should
87 extend it for arbitrary loop nests in the future.
88 2) We only fuse partitions in SCC now. A better fusion algorithm is
89 desired to minimize loop overhead, maximize parallelism and maximize
90 data reuse. */
92 #include "config.h"
93 #include "system.h"
94 #include "coretypes.h"
95 #include "backend.h"
96 #include "tree.h"
97 #include "gimple.h"
98 #include "cfghooks.h"
99 #include "tree-pass.h"
100 #include "ssa.h"
101 #include "gimple-pretty-print.h"
102 #include "fold-const.h"
103 #include "cfganal.h"
104 #include "gimple-iterator.h"
105 #include "gimplify-me.h"
106 #include "stor-layout.h"
107 #include "tree-cfg.h"
108 #include "tree-ssa-loop-manip.h"
109 #include "tree-ssa-loop-ivopts.h"
110 #include "tree-ssa-loop.h"
111 #include "tree-into-ssa.h"
112 #include "tree-ssa.h"
113 #include "cfgloop.h"
114 #include "tree-scalar-evolution.h"
115 #include "params.h"
116 #include "tree-vectorizer.h"
119 #define MAX_DATAREFS_NUM \
120 ((unsigned) PARAM_VALUE (PARAM_LOOP_MAX_DATAREFS_FOR_DATADEPS))
122 /* Threshold controlling number of distributed partitions. Given it may
123 be unnecessary if a memory stream cost model is invented in the future,
124 we define it as a temporary macro, rather than a parameter. */
125 #define NUM_PARTITION_THRESHOLD (4)
127 /* Hashtable helpers. */
129 struct ddr_hasher : nofree_ptr_hash <struct data_dependence_relation>
131 static inline hashval_t hash (const data_dependence_relation *);
132 static inline bool equal (const data_dependence_relation *,
133 const data_dependence_relation *);
136 /* Hash function for data dependence. */
138 inline hashval_t
139 ddr_hasher::hash (const data_dependence_relation *ddr)
141 inchash::hash h;
142 h.add_ptr (DDR_A (ddr));
143 h.add_ptr (DDR_B (ddr));
144 return h.end ();
147 /* Hash table equality function for data dependence. */
149 inline bool
150 ddr_hasher::equal (const data_dependence_relation *ddr1,
151 const data_dependence_relation *ddr2)
153 return (DDR_A (ddr1) == DDR_A (ddr2) && DDR_B (ddr1) == DDR_B (ddr2));
156 /* The loop (nest) to be distributed. */
157 static vec<loop_p> loop_nest;
159 /* Vector of data references in the loop to be distributed. */
160 static vec<data_reference_p> datarefs_vec;
162 /* Store index of data reference in aux field. */
163 #define DR_INDEX(dr) ((uintptr_t) (dr)->aux)
165 /* Hash table for data dependence relation in the loop to be distributed. */
166 static hash_table<ddr_hasher> *ddrs_table;
168 /* A Reduced Dependence Graph (RDG) vertex representing a statement. */
169 struct rdg_vertex
171 /* The statement represented by this vertex. */
172 gimple *stmt;
174 /* Vector of data-references in this statement. */
175 vec<data_reference_p> datarefs;
177 /* True when the statement contains a write to memory. */
178 bool has_mem_write;
180 /* True when the statement contains a read from memory. */
181 bool has_mem_reads;
184 #define RDGV_STMT(V) ((struct rdg_vertex *) ((V)->data))->stmt
185 #define RDGV_DATAREFS(V) ((struct rdg_vertex *) ((V)->data))->datarefs
186 #define RDGV_HAS_MEM_WRITE(V) ((struct rdg_vertex *) ((V)->data))->has_mem_write
187 #define RDGV_HAS_MEM_READS(V) ((struct rdg_vertex *) ((V)->data))->has_mem_reads
188 #define RDG_STMT(RDG, I) RDGV_STMT (&(RDG->vertices[I]))
189 #define RDG_DATAREFS(RDG, I) RDGV_DATAREFS (&(RDG->vertices[I]))
190 #define RDG_MEM_WRITE_STMT(RDG, I) RDGV_HAS_MEM_WRITE (&(RDG->vertices[I]))
191 #define RDG_MEM_READS_STMT(RDG, I) RDGV_HAS_MEM_READS (&(RDG->vertices[I]))
193 /* Data dependence type. */
195 enum rdg_dep_type
197 /* Read After Write (RAW). */
198 flow_dd = 'f',
200 /* Control dependence (execute conditional on). */
201 control_dd = 'c'
204 /* Dependence information attached to an edge of the RDG. */
206 struct rdg_edge
208 /* Type of the dependence. */
209 enum rdg_dep_type type;
212 #define RDGE_TYPE(E) ((struct rdg_edge *) ((E)->data))->type
214 /* Dump vertex I in RDG to FILE. */
216 static void
217 dump_rdg_vertex (FILE *file, struct graph *rdg, int i)
219 struct vertex *v = &(rdg->vertices[i]);
220 struct graph_edge *e;
222 fprintf (file, "(vertex %d: (%s%s) (in:", i,
223 RDG_MEM_WRITE_STMT (rdg, i) ? "w" : "",
224 RDG_MEM_READS_STMT (rdg, i) ? "r" : "");
226 if (v->pred)
227 for (e = v->pred; e; e = e->pred_next)
228 fprintf (file, " %d", e->src);
230 fprintf (file, ") (out:");
232 if (v->succ)
233 for (e = v->succ; e; e = e->succ_next)
234 fprintf (file, " %d", e->dest);
236 fprintf (file, ")\n");
237 print_gimple_stmt (file, RDGV_STMT (v), 0, TDF_VOPS|TDF_MEMSYMS);
238 fprintf (file, ")\n");
241 /* Call dump_rdg_vertex on stderr. */
243 DEBUG_FUNCTION void
244 debug_rdg_vertex (struct graph *rdg, int i)
246 dump_rdg_vertex (stderr, rdg, i);
249 /* Dump the reduced dependence graph RDG to FILE. */
251 static void
252 dump_rdg (FILE *file, struct graph *rdg)
254 fprintf (file, "(rdg\n");
255 for (int i = 0; i < rdg->n_vertices; i++)
256 dump_rdg_vertex (file, rdg, i);
257 fprintf (file, ")\n");
260 /* Call dump_rdg on stderr. */
262 DEBUG_FUNCTION void
263 debug_rdg (struct graph *rdg)
265 dump_rdg (stderr, rdg);
268 static void
269 dot_rdg_1 (FILE *file, struct graph *rdg)
271 int i;
272 pretty_printer buffer;
273 pp_needs_newline (&buffer) = false;
274 buffer.buffer->stream = file;
276 fprintf (file, "digraph RDG {\n");
278 for (i = 0; i < rdg->n_vertices; i++)
280 struct vertex *v = &(rdg->vertices[i]);
281 struct graph_edge *e;
283 fprintf (file, "%d [label=\"[%d] ", i, i);
284 pp_gimple_stmt_1 (&buffer, RDGV_STMT (v), 0, TDF_SLIM);
285 pp_flush (&buffer);
286 fprintf (file, "\"]\n");
288 /* Highlight reads from memory. */
289 if (RDG_MEM_READS_STMT (rdg, i))
290 fprintf (file, "%d [style=filled, fillcolor=green]\n", i);
292 /* Highlight stores to memory. */
293 if (RDG_MEM_WRITE_STMT (rdg, i))
294 fprintf (file, "%d [style=filled, fillcolor=red]\n", i);
296 if (v->succ)
297 for (e = v->succ; e; e = e->succ_next)
298 switch (RDGE_TYPE (e))
300 case flow_dd:
301 /* These are the most common dependences: don't print these. */
302 fprintf (file, "%d -> %d \n", i, e->dest);
303 break;
305 case control_dd:
306 fprintf (file, "%d -> %d [label=control] \n", i, e->dest);
307 break;
309 default:
310 gcc_unreachable ();
314 fprintf (file, "}\n\n");
317 /* Display the Reduced Dependence Graph using dotty. */
319 DEBUG_FUNCTION void
320 dot_rdg (struct graph *rdg)
322 /* When debugging, you may want to enable the following code. */
323 #ifdef HAVE_POPEN
324 FILE *file = popen ("dot -Tx11", "w");
325 if (!file)
326 return;
327 dot_rdg_1 (file, rdg);
328 fflush (file);
329 close (fileno (file));
330 pclose (file);
331 #else
332 dot_rdg_1 (stderr, rdg);
333 #endif
336 /* Returns the index of STMT in RDG. */
338 static int
339 rdg_vertex_for_stmt (struct graph *rdg ATTRIBUTE_UNUSED, gimple *stmt)
341 int index = gimple_uid (stmt);
342 gcc_checking_assert (index == -1 || RDG_STMT (rdg, index) == stmt);
343 return index;
346 /* Creates dependence edges in RDG for all the uses of DEF. IDEF is
347 the index of DEF in RDG. */
349 static void
350 create_rdg_edges_for_scalar (struct graph *rdg, tree def, int idef)
352 use_operand_p imm_use_p;
353 imm_use_iterator iterator;
355 FOR_EACH_IMM_USE_FAST (imm_use_p, iterator, def)
357 struct graph_edge *e;
358 int use = rdg_vertex_for_stmt (rdg, USE_STMT (imm_use_p));
360 if (use < 0)
361 continue;
363 e = add_edge (rdg, idef, use);
364 e->data = XNEW (struct rdg_edge);
365 RDGE_TYPE (e) = flow_dd;
369 /* Creates an edge for the control dependences of BB to the vertex V. */
371 static void
372 create_edge_for_control_dependence (struct graph *rdg, basic_block bb,
373 int v, control_dependences *cd)
375 bitmap_iterator bi;
376 unsigned edge_n;
377 EXECUTE_IF_SET_IN_BITMAP (cd->get_edges_dependent_on (bb->index),
378 0, edge_n, bi)
380 basic_block cond_bb = cd->get_edge_src (edge_n);
381 gimple *stmt = last_stmt (cond_bb);
382 if (stmt && is_ctrl_stmt (stmt))
384 struct graph_edge *e;
385 int c = rdg_vertex_for_stmt (rdg, stmt);
386 if (c < 0)
387 continue;
389 e = add_edge (rdg, c, v);
390 e->data = XNEW (struct rdg_edge);
391 RDGE_TYPE (e) = control_dd;
396 /* Creates the edges of the reduced dependence graph RDG. */
398 static void
399 create_rdg_flow_edges (struct graph *rdg)
401 int i;
402 def_operand_p def_p;
403 ssa_op_iter iter;
405 for (i = 0; i < rdg->n_vertices; i++)
406 FOR_EACH_PHI_OR_STMT_DEF (def_p, RDG_STMT (rdg, i),
407 iter, SSA_OP_DEF)
408 create_rdg_edges_for_scalar (rdg, DEF_FROM_PTR (def_p), i);
411 /* Creates the edges of the reduced dependence graph RDG. */
413 static void
414 create_rdg_cd_edges (struct graph *rdg, control_dependences *cd, loop_p loop)
416 int i;
418 for (i = 0; i < rdg->n_vertices; i++)
420 gimple *stmt = RDG_STMT (rdg, i);
421 if (gimple_code (stmt) == GIMPLE_PHI)
423 edge_iterator ei;
424 edge e;
425 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->preds)
426 if (flow_bb_inside_loop_p (loop, e->src))
427 create_edge_for_control_dependence (rdg, e->src, i, cd);
429 else
430 create_edge_for_control_dependence (rdg, gimple_bb (stmt), i, cd);
434 /* Build the vertices of the reduced dependence graph RDG. Return false
435 if that failed. */
437 static bool
438 create_rdg_vertices (struct graph *rdg, vec<gimple *> stmts, loop_p loop)
440 int i;
441 gimple *stmt;
443 FOR_EACH_VEC_ELT (stmts, i, stmt)
445 struct vertex *v = &(rdg->vertices[i]);
447 /* Record statement to vertex mapping. */
448 gimple_set_uid (stmt, i);
450 v->data = XNEW (struct rdg_vertex);
451 RDGV_STMT (v) = stmt;
452 RDGV_DATAREFS (v).create (0);
453 RDGV_HAS_MEM_WRITE (v) = false;
454 RDGV_HAS_MEM_READS (v) = false;
455 if (gimple_code (stmt) == GIMPLE_PHI)
456 continue;
458 unsigned drp = datarefs_vec.length ();
459 if (!find_data_references_in_stmt (loop, stmt, &datarefs_vec))
460 return false;
461 for (unsigned j = drp; j < datarefs_vec.length (); ++j)
463 data_reference_p dr = datarefs_vec[j];
464 if (DR_IS_READ (dr))
465 RDGV_HAS_MEM_READS (v) = true;
466 else
467 RDGV_HAS_MEM_WRITE (v) = true;
468 RDGV_DATAREFS (v).safe_push (dr);
471 return true;
474 /* Array mapping basic block's index to its topological order. */
475 static int *bb_top_order_index;
476 /* And size of the array. */
477 static int bb_top_order_index_size;
479 /* If X has a smaller topological sort number than Y, returns -1;
480 if greater, returns 1. */
482 static int
483 bb_top_order_cmp (const void *x, const void *y)
485 basic_block bb1 = *(const basic_block *) x;
486 basic_block bb2 = *(const basic_block *) y;
488 gcc_assert (bb1->index < bb_top_order_index_size
489 && bb2->index < bb_top_order_index_size);
490 gcc_assert (bb1 == bb2
491 || bb_top_order_index[bb1->index]
492 != bb_top_order_index[bb2->index]);
494 return (bb_top_order_index[bb1->index] - bb_top_order_index[bb2->index]);
497 /* Initialize STMTS with all the statements of LOOP. We use topological
498 order to discover all statements. The order is important because
499 generate_loops_for_partition is using the same traversal for identifying
500 statements in loop copies. */
502 static void
503 stmts_from_loop (struct loop *loop, vec<gimple *> *stmts)
505 unsigned int i;
506 basic_block *bbs = get_loop_body_in_custom_order (loop, bb_top_order_cmp);
508 for (i = 0; i < loop->num_nodes; i++)
510 basic_block bb = bbs[i];
512 for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (bsi);
513 gsi_next (&bsi))
514 if (!virtual_operand_p (gimple_phi_result (bsi.phi ())))
515 stmts->safe_push (bsi.phi ());
517 for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (bsi);
518 gsi_next (&bsi))
520 gimple *stmt = gsi_stmt (bsi);
521 if (gimple_code (stmt) != GIMPLE_LABEL && !is_gimple_debug (stmt))
522 stmts->safe_push (stmt);
526 free (bbs);
529 /* Free the reduced dependence graph RDG. */
531 static void
532 free_rdg (struct graph *rdg)
534 int i;
536 for (i = 0; i < rdg->n_vertices; i++)
538 struct vertex *v = &(rdg->vertices[i]);
539 struct graph_edge *e;
541 for (e = v->succ; e; e = e->succ_next)
542 free (e->data);
544 if (v->data)
546 gimple_set_uid (RDGV_STMT (v), -1);
547 (RDGV_DATAREFS (v)).release ();
548 free (v->data);
552 free_graph (rdg);
555 /* Build the Reduced Dependence Graph (RDG) with one vertex per statement of
556 LOOP, and one edge per flow dependence or control dependence from control
557 dependence CD. During visiting each statement, data references are also
558 collected and recorded in global data DATAREFS_VEC. */
560 static struct graph *
561 build_rdg (struct loop *loop, control_dependences *cd)
563 struct graph *rdg;
565 /* Create the RDG vertices from the stmts of the loop nest. */
566 auto_vec<gimple *, 10> stmts;
567 stmts_from_loop (loop, &stmts);
568 rdg = new_graph (stmts.length ());
569 if (!create_rdg_vertices (rdg, stmts, loop))
571 free_rdg (rdg);
572 return NULL;
574 stmts.release ();
576 create_rdg_flow_edges (rdg);
577 if (cd)
578 create_rdg_cd_edges (rdg, cd, loop);
580 return rdg;
584 /* Kind of distributed loop. */
585 enum partition_kind {
586 PKIND_NORMAL,
587 /* Partial memset stands for a paritition can be distributed into a loop
588 of memset calls, rather than a single memset call. It's handled just
589 like a normal parition, i.e, distributed as separate loop, no memset
590 call is generated.
592 Note: This is a hacking fix trying to distribute ZERO-ing stmt in a
593 loop nest as deep as possible. As a result, parloop achieves better
594 parallelization by parallelizing deeper loop nest. This hack should
595 be unnecessary and removed once distributed memset can be understood
596 and analyzed in data reference analysis. See PR82604 for more. */
597 PKIND_PARTIAL_MEMSET,
598 PKIND_MEMSET, PKIND_MEMCPY, PKIND_MEMMOVE
601 /* Type of distributed loop. */
602 enum partition_type {
603 /* The distributed loop can be executed parallelly. */
604 PTYPE_PARALLEL = 0,
605 /* The distributed loop has to be executed sequentially. */
606 PTYPE_SEQUENTIAL
609 /* Builtin info for loop distribution. */
610 struct builtin_info
612 /* data-references a kind != PKIND_NORMAL partition is about. */
613 data_reference_p dst_dr;
614 data_reference_p src_dr;
615 /* Base address and size of memory objects operated by the builtin. Note
616 both dest and source memory objects must have the same size. */
617 tree dst_base;
618 tree src_base;
619 tree size;
620 /* Base and offset part of dst_base after stripping constant offset. This
621 is only used in memset builtin distribution for now. */
622 tree dst_base_base;
623 unsigned HOST_WIDE_INT dst_base_offset;
626 /* Partition for loop distribution. */
627 struct partition
629 /* Statements of the partition. */
630 bitmap stmts;
631 /* True if the partition defines variable which is used outside of loop. */
632 bool reduction_p;
633 enum partition_kind kind;
634 enum partition_type type;
635 /* Data references in the partition. */
636 bitmap datarefs;
637 /* Information of builtin parition. */
638 struct builtin_info *builtin;
642 /* Allocate and initialize a partition from BITMAP. */
644 static partition *
645 partition_alloc (void)
647 partition *partition = XCNEW (struct partition);
648 partition->stmts = BITMAP_ALLOC (NULL);
649 partition->reduction_p = false;
650 partition->kind = PKIND_NORMAL;
651 partition->datarefs = BITMAP_ALLOC (NULL);
652 return partition;
655 /* Free PARTITION. */
657 static void
658 partition_free (partition *partition)
660 BITMAP_FREE (partition->stmts);
661 BITMAP_FREE (partition->datarefs);
662 if (partition->builtin)
663 free (partition->builtin);
665 free (partition);
668 /* Returns true if the partition can be generated as a builtin. */
670 static bool
671 partition_builtin_p (partition *partition)
673 return partition->kind > PKIND_PARTIAL_MEMSET;
676 /* Returns true if the partition contains a reduction. */
678 static bool
679 partition_reduction_p (partition *partition)
681 return partition->reduction_p;
684 /* Partitions are fused because of different reasons. */
685 enum fuse_type
687 FUSE_NON_BUILTIN = 0,
688 FUSE_REDUCTION = 1,
689 FUSE_SHARE_REF = 2,
690 FUSE_SAME_SCC = 3,
691 FUSE_FINALIZE = 4
694 /* Description on different fusing reason. */
695 static const char *fuse_message[] = {
696 "they are non-builtins",
697 "they have reductions",
698 "they have shared memory refs",
699 "they are in the same dependence scc",
700 "there is no point to distribute loop"};
702 static void
703 update_type_for_merge (struct graph *, partition *, partition *);
705 /* Merge PARTITION into the partition DEST. RDG is the reduced dependence
706 graph and we update type for result partition if it is non-NULL. */
708 static void
709 partition_merge_into (struct graph *rdg, partition *dest,
710 partition *partition, enum fuse_type ft)
712 if (dump_file && (dump_flags & TDF_DETAILS))
714 fprintf (dump_file, "Fuse partitions because %s:\n", fuse_message[ft]);
715 fprintf (dump_file, " Part 1: ");
716 dump_bitmap (dump_file, dest->stmts);
717 fprintf (dump_file, " Part 2: ");
718 dump_bitmap (dump_file, partition->stmts);
721 dest->kind = PKIND_NORMAL;
722 if (dest->type == PTYPE_PARALLEL)
723 dest->type = partition->type;
725 bitmap_ior_into (dest->stmts, partition->stmts);
726 if (partition_reduction_p (partition))
727 dest->reduction_p = true;
729 /* Further check if any data dependence prevents us from executing the
730 new partition parallelly. */
731 if (dest->type == PTYPE_PARALLEL && rdg != NULL)
732 update_type_for_merge (rdg, dest, partition);
734 bitmap_ior_into (dest->datarefs, partition->datarefs);
738 /* Returns true when DEF is an SSA_NAME defined in LOOP and used after
739 the LOOP. */
741 static bool
742 ssa_name_has_uses_outside_loop_p (tree def, loop_p loop)
744 imm_use_iterator imm_iter;
745 use_operand_p use_p;
747 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, def)
749 if (is_gimple_debug (USE_STMT (use_p)))
750 continue;
752 basic_block use_bb = gimple_bb (USE_STMT (use_p));
753 if (!flow_bb_inside_loop_p (loop, use_bb))
754 return true;
757 return false;
760 /* Returns true when STMT defines a scalar variable used after the
761 loop LOOP. */
763 static bool
764 stmt_has_scalar_dependences_outside_loop (loop_p loop, gimple *stmt)
766 def_operand_p def_p;
767 ssa_op_iter op_iter;
769 if (gimple_code (stmt) == GIMPLE_PHI)
770 return ssa_name_has_uses_outside_loop_p (gimple_phi_result (stmt), loop);
772 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, op_iter, SSA_OP_DEF)
773 if (ssa_name_has_uses_outside_loop_p (DEF_FROM_PTR (def_p), loop))
774 return true;
776 return false;
779 /* Return a copy of LOOP placed before LOOP. */
781 static struct loop *
782 copy_loop_before (struct loop *loop)
784 struct loop *res;
785 edge preheader = loop_preheader_edge (loop);
787 initialize_original_copy_tables ();
788 res = slpeel_tree_duplicate_loop_to_edge_cfg (loop, NULL, preheader);
789 gcc_assert (res != NULL);
790 free_original_copy_tables ();
791 delete_update_ssa ();
793 return res;
796 /* Creates an empty basic block after LOOP. */
798 static void
799 create_bb_after_loop (struct loop *loop)
801 edge exit = single_exit (loop);
803 if (!exit)
804 return;
806 split_edge (exit);
809 /* Generate code for PARTITION from the code in LOOP. The loop is
810 copied when COPY_P is true. All the statements not flagged in the
811 PARTITION bitmap are removed from the loop or from its copy. The
812 statements are indexed in sequence inside a basic block, and the
813 basic blocks of a loop are taken in dom order. */
815 static void
816 generate_loops_for_partition (struct loop *loop, partition *partition,
817 bool copy_p)
819 unsigned i;
820 basic_block *bbs;
822 if (copy_p)
824 int orig_loop_num = loop->orig_loop_num;
825 loop = copy_loop_before (loop);
826 gcc_assert (loop != NULL);
827 loop->orig_loop_num = orig_loop_num;
828 create_preheader (loop, CP_SIMPLE_PREHEADERS);
829 create_bb_after_loop (loop);
831 else
833 /* Origin number is set to the new versioned loop's num. */
834 gcc_assert (loop->orig_loop_num != loop->num);
837 /* Remove stmts not in the PARTITION bitmap. */
838 bbs = get_loop_body_in_dom_order (loop);
840 if (MAY_HAVE_DEBUG_BIND_STMTS)
841 for (i = 0; i < loop->num_nodes; i++)
843 basic_block bb = bbs[i];
845 for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (bsi);
846 gsi_next (&bsi))
848 gphi *phi = bsi.phi ();
849 if (!virtual_operand_p (gimple_phi_result (phi))
850 && !bitmap_bit_p (partition->stmts, gimple_uid (phi)))
851 reset_debug_uses (phi);
854 for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
856 gimple *stmt = gsi_stmt (bsi);
857 if (gimple_code (stmt) != GIMPLE_LABEL
858 && !is_gimple_debug (stmt)
859 && !bitmap_bit_p (partition->stmts, gimple_uid (stmt)))
860 reset_debug_uses (stmt);
864 for (i = 0; i < loop->num_nodes; i++)
866 basic_block bb = bbs[i];
867 edge inner_exit = NULL;
869 if (loop != bb->loop_father)
870 inner_exit = single_exit (bb->loop_father);
872 for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (bsi);)
874 gphi *phi = bsi.phi ();
875 if (!virtual_operand_p (gimple_phi_result (phi))
876 && !bitmap_bit_p (partition->stmts, gimple_uid (phi)))
877 remove_phi_node (&bsi, true);
878 else
879 gsi_next (&bsi);
882 for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (bsi);)
884 gimple *stmt = gsi_stmt (bsi);
885 if (gimple_code (stmt) != GIMPLE_LABEL
886 && !is_gimple_debug (stmt)
887 && !bitmap_bit_p (partition->stmts, gimple_uid (stmt)))
889 /* In distribution of loop nest, if bb is inner loop's exit_bb,
890 we choose its exit edge/path in order to avoid generating
891 infinite loop. For all other cases, we choose an arbitrary
892 path through the empty CFG part that this unnecessary
893 control stmt controls. */
894 if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
896 if (inner_exit && inner_exit->flags & EDGE_TRUE_VALUE)
897 gimple_cond_make_true (cond_stmt);
898 else
899 gimple_cond_make_false (cond_stmt);
900 update_stmt (stmt);
902 else if (gimple_code (stmt) == GIMPLE_SWITCH)
904 gswitch *switch_stmt = as_a <gswitch *> (stmt);
905 gimple_switch_set_index
906 (switch_stmt, CASE_LOW (gimple_switch_label (switch_stmt, 1)));
907 update_stmt (stmt);
909 else
911 unlink_stmt_vdef (stmt);
912 gsi_remove (&bsi, true);
913 release_defs (stmt);
914 continue;
917 gsi_next (&bsi);
921 free (bbs);
924 /* If VAL memory representation contains the same value in all bytes,
925 return that value, otherwise return -1.
926 E.g. for 0x24242424 return 0x24, for IEEE double
927 747708026454360457216.0 return 0x44, etc. */
929 static int
930 const_with_all_bytes_same (tree val)
932 unsigned char buf[64];
933 int i, len;
935 if (integer_zerop (val)
936 || (TREE_CODE (val) == CONSTRUCTOR
937 && !TREE_CLOBBER_P (val)
938 && CONSTRUCTOR_NELTS (val) == 0))
939 return 0;
941 if (real_zerop (val))
943 /* Only return 0 for +0.0, not for -0.0, which doesn't have
944 an all bytes same memory representation. Don't transform
945 -0.0 stores into +0.0 even for !HONOR_SIGNED_ZEROS. */
946 switch (TREE_CODE (val))
948 case REAL_CST:
949 if (!real_isneg (TREE_REAL_CST_PTR (val)))
950 return 0;
951 break;
952 case COMPLEX_CST:
953 if (!const_with_all_bytes_same (TREE_REALPART (val))
954 && !const_with_all_bytes_same (TREE_IMAGPART (val)))
955 return 0;
956 break;
957 case VECTOR_CST:
959 unsigned int count = vector_cst_encoded_nelts (val);
960 unsigned int j;
961 for (j = 0; j < count; ++j)
962 if (const_with_all_bytes_same (VECTOR_CST_ENCODED_ELT (val, j)))
963 break;
964 if (j == count)
965 return 0;
966 break;
968 default:
969 break;
973 if (CHAR_BIT != 8 || BITS_PER_UNIT != 8)
974 return -1;
976 len = native_encode_expr (val, buf, sizeof (buf));
977 if (len == 0)
978 return -1;
979 for (i = 1; i < len; i++)
980 if (buf[i] != buf[0])
981 return -1;
982 return buf[0];
985 /* Generate a call to memset for PARTITION in LOOP. */
987 static void
988 generate_memset_builtin (struct loop *loop, partition *partition)
990 gimple_stmt_iterator gsi;
991 tree mem, fn, nb_bytes;
992 tree val;
993 struct builtin_info *builtin = partition->builtin;
994 gimple *fn_call;
996 /* The new statements will be placed before LOOP. */
997 gsi = gsi_last_bb (loop_preheader_edge (loop)->src);
999 nb_bytes = builtin->size;
1000 nb_bytes = force_gimple_operand_gsi (&gsi, nb_bytes, true, NULL_TREE,
1001 false, GSI_CONTINUE_LINKING);
1002 mem = builtin->dst_base;
1003 mem = force_gimple_operand_gsi (&gsi, mem, true, NULL_TREE,
1004 false, GSI_CONTINUE_LINKING);
1006 /* This exactly matches the pattern recognition in classify_partition. */
1007 val = gimple_assign_rhs1 (DR_STMT (builtin->dst_dr));
1008 /* Handle constants like 0x15151515 and similarly
1009 floating point constants etc. where all bytes are the same. */
1010 int bytev = const_with_all_bytes_same (val);
1011 if (bytev != -1)
1012 val = build_int_cst (integer_type_node, bytev);
1013 else if (TREE_CODE (val) == INTEGER_CST)
1014 val = fold_convert (integer_type_node, val);
1015 else if (!useless_type_conversion_p (integer_type_node, TREE_TYPE (val)))
1017 tree tem = make_ssa_name (integer_type_node);
1018 gimple *cstmt = gimple_build_assign (tem, NOP_EXPR, val);
1019 gsi_insert_after (&gsi, cstmt, GSI_CONTINUE_LINKING);
1020 val = tem;
1023 fn = build_fold_addr_expr (builtin_decl_implicit (BUILT_IN_MEMSET));
1024 fn_call = gimple_build_call (fn, 3, mem, val, nb_bytes);
1025 gsi_insert_after (&gsi, fn_call, GSI_CONTINUE_LINKING);
1027 if (dump_file && (dump_flags & TDF_DETAILS))
1029 fprintf (dump_file, "generated memset");
1030 if (bytev == 0)
1031 fprintf (dump_file, " zero\n");
1032 else
1033 fprintf (dump_file, "\n");
1037 /* Generate a call to memcpy for PARTITION in LOOP. */
1039 static void
1040 generate_memcpy_builtin (struct loop *loop, partition *partition)
1042 gimple_stmt_iterator gsi;
1043 gimple *fn_call;
1044 tree dest, src, fn, nb_bytes;
1045 enum built_in_function kind;
1046 struct builtin_info *builtin = partition->builtin;
1048 /* The new statements will be placed before LOOP. */
1049 gsi = gsi_last_bb (loop_preheader_edge (loop)->src);
1051 nb_bytes = builtin->size;
1052 nb_bytes = force_gimple_operand_gsi (&gsi, nb_bytes, true, NULL_TREE,
1053 false, GSI_CONTINUE_LINKING);
1054 dest = builtin->dst_base;
1055 src = builtin->src_base;
1056 if (partition->kind == PKIND_MEMCPY
1057 || ! ptr_derefs_may_alias_p (dest, src))
1058 kind = BUILT_IN_MEMCPY;
1059 else
1060 kind = BUILT_IN_MEMMOVE;
1062 dest = force_gimple_operand_gsi (&gsi, dest, true, NULL_TREE,
1063 false, GSI_CONTINUE_LINKING);
1064 src = force_gimple_operand_gsi (&gsi, src, true, NULL_TREE,
1065 false, GSI_CONTINUE_LINKING);
1066 fn = build_fold_addr_expr (builtin_decl_implicit (kind));
1067 fn_call = gimple_build_call (fn, 3, dest, src, nb_bytes);
1068 gsi_insert_after (&gsi, fn_call, GSI_CONTINUE_LINKING);
1070 if (dump_file && (dump_flags & TDF_DETAILS))
1072 if (kind == BUILT_IN_MEMCPY)
1073 fprintf (dump_file, "generated memcpy\n");
1074 else
1075 fprintf (dump_file, "generated memmove\n");
1079 /* Remove and destroy the loop LOOP. */
1081 static void
1082 destroy_loop (struct loop *loop)
1084 unsigned nbbs = loop->num_nodes;
1085 edge exit = single_exit (loop);
1086 basic_block src = loop_preheader_edge (loop)->src, dest = exit->dest;
1087 basic_block *bbs;
1088 unsigned i;
1090 bbs = get_loop_body_in_dom_order (loop);
1092 redirect_edge_pred (exit, src);
1093 exit->flags &= ~(EDGE_TRUE_VALUE|EDGE_FALSE_VALUE);
1094 exit->flags |= EDGE_FALLTHRU;
1095 cancel_loop_tree (loop);
1096 rescan_loop_exit (exit, false, true);
1098 i = nbbs;
1101 /* We have made sure to not leave any dangling uses of SSA
1102 names defined in the loop. With the exception of virtuals.
1103 Make sure we replace all uses of virtual defs that will remain
1104 outside of the loop with the bare symbol as delete_basic_block
1105 will release them. */
1106 --i;
1107 for (gphi_iterator gsi = gsi_start_phis (bbs[i]); !gsi_end_p (gsi);
1108 gsi_next (&gsi))
1110 gphi *phi = gsi.phi ();
1111 if (virtual_operand_p (gimple_phi_result (phi)))
1112 mark_virtual_phi_result_for_renaming (phi);
1114 for (gimple_stmt_iterator gsi = gsi_start_bb (bbs[i]); !gsi_end_p (gsi);
1115 gsi_next (&gsi))
1117 gimple *stmt = gsi_stmt (gsi);
1118 tree vdef = gimple_vdef (stmt);
1119 if (vdef && TREE_CODE (vdef) == SSA_NAME)
1120 mark_virtual_operand_for_renaming (vdef);
1122 delete_basic_block (bbs[i]);
1124 while (i != 0);
1126 free (bbs);
1128 set_immediate_dominator (CDI_DOMINATORS, dest,
1129 recompute_dominator (CDI_DOMINATORS, dest));
1132 /* Generates code for PARTITION. Return whether LOOP needs to be destroyed. */
1134 static bool
1135 generate_code_for_partition (struct loop *loop,
1136 partition *partition, bool copy_p)
1138 switch (partition->kind)
1140 case PKIND_NORMAL:
1141 case PKIND_PARTIAL_MEMSET:
1142 /* Reductions all have to be in the last partition. */
1143 gcc_assert (!partition_reduction_p (partition)
1144 || !copy_p);
1145 generate_loops_for_partition (loop, partition, copy_p);
1146 return false;
1148 case PKIND_MEMSET:
1149 generate_memset_builtin (loop, partition);
1150 break;
1152 case PKIND_MEMCPY:
1153 case PKIND_MEMMOVE:
1154 generate_memcpy_builtin (loop, partition);
1155 break;
1157 default:
1158 gcc_unreachable ();
1161 /* Common tail for partitions we turn into a call. If this was the last
1162 partition for which we generate code, we have to destroy the loop. */
1163 if (!copy_p)
1164 return true;
1165 return false;
1168 /* Return data dependence relation for data references A and B. The two
1169 data references must be in lexicographic order wrto reduced dependence
1170 graph RDG. We firstly try to find ddr from global ddr hash table. If
1171 it doesn't exist, compute the ddr and cache it. */
1173 static data_dependence_relation *
1174 get_data_dependence (struct graph *rdg, data_reference_p a, data_reference_p b)
1176 struct data_dependence_relation ent, **slot;
1177 struct data_dependence_relation *ddr;
1179 gcc_assert (DR_IS_WRITE (a) || DR_IS_WRITE (b));
1180 gcc_assert (rdg_vertex_for_stmt (rdg, DR_STMT (a))
1181 <= rdg_vertex_for_stmt (rdg, DR_STMT (b)));
1182 ent.a = a;
1183 ent.b = b;
1184 slot = ddrs_table->find_slot (&ent, INSERT);
1185 if (*slot == NULL)
1187 ddr = initialize_data_dependence_relation (a, b, loop_nest);
1188 compute_affine_dependence (ddr, loop_nest[0]);
1189 *slot = ddr;
1192 return *slot;
1195 /* In reduced dependence graph RDG for loop distribution, return true if
1196 dependence between references DR1 and DR2 leads to a dependence cycle
1197 and such dependence cycle can't be resolved by runtime alias check. */
1199 static bool
1200 data_dep_in_cycle_p (struct graph *rdg,
1201 data_reference_p dr1, data_reference_p dr2)
1203 struct data_dependence_relation *ddr;
1205 /* Re-shuffle data-refs to be in topological order. */
1206 if (rdg_vertex_for_stmt (rdg, DR_STMT (dr1))
1207 > rdg_vertex_for_stmt (rdg, DR_STMT (dr2)))
1208 std::swap (dr1, dr2);
1210 ddr = get_data_dependence (rdg, dr1, dr2);
1212 /* In case of no data dependence. */
1213 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
1214 return false;
1215 /* For unknown data dependence or known data dependence which can't be
1216 expressed in classic distance vector, we check if it can be resolved
1217 by runtime alias check. If yes, we still consider data dependence
1218 as won't introduce data dependence cycle. */
1219 else if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know
1220 || DDR_NUM_DIST_VECTS (ddr) == 0)
1221 return !runtime_alias_check_p (ddr, NULL, true);
1222 else if (DDR_NUM_DIST_VECTS (ddr) > 1)
1223 return true;
1224 else if (DDR_REVERSED_P (ddr)
1225 || lambda_vector_zerop (DDR_DIST_VECT (ddr, 0), 1))
1226 return false;
1228 return true;
1231 /* Given reduced dependence graph RDG, PARTITION1 and PARTITION2, update
1232 PARTITION1's type after merging PARTITION2 into PARTITION1. */
1234 static void
1235 update_type_for_merge (struct graph *rdg,
1236 partition *partition1, partition *partition2)
1238 unsigned i, j;
1239 bitmap_iterator bi, bj;
1240 data_reference_p dr1, dr2;
1242 EXECUTE_IF_SET_IN_BITMAP (partition1->datarefs, 0, i, bi)
1244 unsigned start = (partition1 == partition2) ? i + 1 : 0;
1246 dr1 = datarefs_vec[i];
1247 EXECUTE_IF_SET_IN_BITMAP (partition2->datarefs, start, j, bj)
1249 dr2 = datarefs_vec[j];
1250 if (DR_IS_READ (dr1) && DR_IS_READ (dr2))
1251 continue;
1253 /* Partition can only be executed sequentially if there is any
1254 data dependence cycle. */
1255 if (data_dep_in_cycle_p (rdg, dr1, dr2))
1257 partition1->type = PTYPE_SEQUENTIAL;
1258 return;
1264 /* Returns a partition with all the statements needed for computing
1265 the vertex V of the RDG, also including the loop exit conditions. */
1267 static partition *
1268 build_rdg_partition_for_vertex (struct graph *rdg, int v)
1270 partition *partition = partition_alloc ();
1271 auto_vec<int, 3> nodes;
1272 unsigned i, j;
1273 int x;
1274 data_reference_p dr;
1276 graphds_dfs (rdg, &v, 1, &nodes, false, NULL);
1278 FOR_EACH_VEC_ELT (nodes, i, x)
1280 bitmap_set_bit (partition->stmts, x);
1282 for (j = 0; RDG_DATAREFS (rdg, x).iterate (j, &dr); ++j)
1284 unsigned idx = (unsigned) DR_INDEX (dr);
1285 gcc_assert (idx < datarefs_vec.length ());
1287 /* Partition can only be executed sequentially if there is any
1288 unknown data reference. */
1289 if (!DR_BASE_ADDRESS (dr) || !DR_OFFSET (dr)
1290 || !DR_INIT (dr) || !DR_STEP (dr))
1291 partition->type = PTYPE_SEQUENTIAL;
1293 bitmap_set_bit (partition->datarefs, idx);
1297 if (partition->type == PTYPE_SEQUENTIAL)
1298 return partition;
1300 /* Further check if any data dependence prevents us from executing the
1301 partition parallelly. */
1302 update_type_for_merge (rdg, partition, partition);
1304 return partition;
1307 /* Given PARTITION of LOOP and RDG, record single load/store data references
1308 for builtin partition in SRC_DR/DST_DR, return false if there is no such
1309 data references. */
1311 static bool
1312 find_single_drs (struct loop *loop, struct graph *rdg, partition *partition,
1313 data_reference_p *dst_dr, data_reference_p *src_dr)
1315 unsigned i;
1316 data_reference_p single_ld = NULL, single_st = NULL;
1317 bitmap_iterator bi;
1319 EXECUTE_IF_SET_IN_BITMAP (partition->stmts, 0, i, bi)
1321 gimple *stmt = RDG_STMT (rdg, i);
1322 data_reference_p dr;
1324 if (gimple_code (stmt) == GIMPLE_PHI)
1325 continue;
1327 /* Any scalar stmts are ok. */
1328 if (!gimple_vuse (stmt))
1329 continue;
1331 /* Otherwise just regular loads/stores. */
1332 if (!gimple_assign_single_p (stmt))
1333 return false;
1335 /* But exactly one store and/or load. */
1336 for (unsigned j = 0; RDG_DATAREFS (rdg, i).iterate (j, &dr); ++j)
1338 tree type = TREE_TYPE (DR_REF (dr));
1340 /* The memset, memcpy and memmove library calls are only
1341 able to deal with generic address space. */
1342 if (!ADDR_SPACE_GENERIC_P (TYPE_ADDR_SPACE (type)))
1343 return false;
1345 if (DR_IS_READ (dr))
1347 if (single_ld != NULL)
1348 return false;
1349 single_ld = dr;
1351 else
1353 if (single_st != NULL)
1354 return false;
1355 single_st = dr;
1360 if (!single_st)
1361 return false;
1363 /* Bail out if this is a bitfield memory reference. */
1364 if (TREE_CODE (DR_REF (single_st)) == COMPONENT_REF
1365 && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (single_st), 1)))
1366 return false;
1368 /* Data reference must be executed exactly once per iteration of each
1369 loop in the loop nest. We only need to check dominance information
1370 against the outermost one in a perfect loop nest because a bb can't
1371 dominate outermost loop's latch without dominating inner loop's. */
1372 basic_block bb_st = gimple_bb (DR_STMT (single_st));
1373 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb_st))
1374 return false;
1376 if (single_ld)
1378 gimple *store = DR_STMT (single_st), *load = DR_STMT (single_ld);
1379 /* Direct aggregate copy or via an SSA name temporary. */
1380 if (load != store
1381 && gimple_assign_lhs (load) != gimple_assign_rhs1 (store))
1382 return false;
1384 /* Bail out if this is a bitfield memory reference. */
1385 if (TREE_CODE (DR_REF (single_ld)) == COMPONENT_REF
1386 && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (single_ld), 1)))
1387 return false;
1389 /* Load and store must be in the same loop nest. */
1390 basic_block bb_ld = gimple_bb (DR_STMT (single_ld));
1391 if (bb_st->loop_father != bb_ld->loop_father)
1392 return false;
1394 /* Data reference must be executed exactly once per iteration.
1395 Same as single_st, we only need to check against the outermost
1396 loop. */
1397 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb_ld))
1398 return false;
1400 edge e = single_exit (bb_st->loop_father);
1401 bool dom_ld = dominated_by_p (CDI_DOMINATORS, e->src, bb_ld);
1402 bool dom_st = dominated_by_p (CDI_DOMINATORS, e->src, bb_st);
1403 if (dom_ld != dom_st)
1404 return false;
1407 *src_dr = single_ld;
1408 *dst_dr = single_st;
1409 return true;
1412 /* Given data reference DR in LOOP_NEST, this function checks the enclosing
1413 loops from inner to outer to see if loop's step equals to access size at
1414 each level of loop. Return 2 if we can prove this at all level loops;
1415 record access base and size in BASE and SIZE; save loop's step at each
1416 level of loop in STEPS if it is not null. For example:
1418 int arr[100][100][100];
1419 for (i = 0; i < 100; i++) ;steps[2] = 40000
1420 for (j = 100; j > 0; j--) ;steps[1] = -400
1421 for (k = 0; k < 100; k++) ;steps[0] = 4
1422 arr[i][j - 1][k] = 0; ;base = &arr, size = 4000000
1424 Return 1 if we can prove the equality at the innermost loop, but not all
1425 level loops. In this case, no information is recorded.
1427 Return 0 if no equality can be proven at any level loops. */
1429 static int
1430 compute_access_range (loop_p loop_nest, data_reference_p dr, tree *base,
1431 tree *size, vec<tree> *steps = NULL)
1433 location_t loc = gimple_location (DR_STMT (dr));
1434 basic_block bb = gimple_bb (DR_STMT (dr));
1435 struct loop *loop = bb->loop_father;
1436 tree ref = DR_REF (dr);
1437 tree access_base = build_fold_addr_expr (ref);
1438 tree access_size = TYPE_SIZE_UNIT (TREE_TYPE (ref));
1439 int res = 0;
1441 do {
1442 tree scev_fn = analyze_scalar_evolution (loop, access_base);
1443 if (TREE_CODE (scev_fn) != POLYNOMIAL_CHREC)
1444 return res;
1446 access_base = CHREC_LEFT (scev_fn);
1447 if (tree_contains_chrecs (access_base, NULL))
1448 return res;
1450 tree scev_step = CHREC_RIGHT (scev_fn);
1451 /* Only support constant steps. */
1452 if (TREE_CODE (scev_step) != INTEGER_CST)
1453 return res;
1455 enum ev_direction access_dir = scev_direction (scev_fn);
1456 if (access_dir == EV_DIR_UNKNOWN)
1457 return res;
1459 if (steps != NULL)
1460 steps->safe_push (scev_step);
1462 scev_step = fold_convert_loc (loc, sizetype, scev_step);
1463 /* Compute absolute value of scev step. */
1464 if (access_dir == EV_DIR_DECREASES)
1465 scev_step = fold_build1_loc (loc, NEGATE_EXPR, sizetype, scev_step);
1467 /* At each level of loop, scev step must equal to access size. In other
1468 words, DR must access consecutive memory between loop iterations. */
1469 if (!operand_equal_p (scev_step, access_size, 0))
1470 return res;
1472 /* Access stride can be computed for data reference at least for the
1473 innermost loop. */
1474 res = 1;
1476 /* Compute DR's execution times in loop. */
1477 tree niters = number_of_latch_executions (loop);
1478 niters = fold_convert_loc (loc, sizetype, niters);
1479 if (dominated_by_p (CDI_DOMINATORS, single_exit (loop)->src, bb))
1480 niters = size_binop_loc (loc, PLUS_EXPR, niters, size_one_node);
1482 /* Compute DR's overall access size in loop. */
1483 access_size = fold_build2_loc (loc, MULT_EXPR, sizetype,
1484 niters, scev_step);
1485 /* Adjust base address in case of negative step. */
1486 if (access_dir == EV_DIR_DECREASES)
1488 tree adj = fold_build2_loc (loc, MINUS_EXPR, sizetype,
1489 scev_step, access_size);
1490 access_base = fold_build_pointer_plus_loc (loc, access_base, adj);
1492 } while (loop != loop_nest && (loop = loop_outer (loop)) != NULL);
1494 *base = access_base;
1495 *size = access_size;
1496 /* Access stride can be computed for data reference at each level loop. */
1497 return 2;
1500 /* Allocate and return builtin struct. Record information like DST_DR,
1501 SRC_DR, DST_BASE, SRC_BASE and SIZE in the allocated struct. */
1503 static struct builtin_info *
1504 alloc_builtin (data_reference_p dst_dr, data_reference_p src_dr,
1505 tree dst_base, tree src_base, tree size)
1507 struct builtin_info *builtin = XNEW (struct builtin_info);
1508 builtin->dst_dr = dst_dr;
1509 builtin->src_dr = src_dr;
1510 builtin->dst_base = dst_base;
1511 builtin->src_base = src_base;
1512 builtin->size = size;
1513 return builtin;
1516 /* Given data reference DR in loop nest LOOP, classify if it forms builtin
1517 memset call. */
1519 static void
1520 classify_builtin_st (loop_p loop, partition *partition, data_reference_p dr)
1522 gimple *stmt = DR_STMT (dr);
1523 tree base, size, rhs = gimple_assign_rhs1 (stmt);
1525 if (const_with_all_bytes_same (rhs) == -1
1526 && (!INTEGRAL_TYPE_P (TREE_TYPE (rhs))
1527 || (TYPE_MODE (TREE_TYPE (rhs))
1528 != TYPE_MODE (unsigned_char_type_node))))
1529 return;
1531 if (TREE_CODE (rhs) == SSA_NAME
1532 && !SSA_NAME_IS_DEFAULT_DEF (rhs)
1533 && flow_bb_inside_loop_p (loop, gimple_bb (SSA_NAME_DEF_STMT (rhs))))
1534 return;
1536 int res = compute_access_range (loop, dr, &base, &size);
1537 if (res == 0)
1538 return;
1539 if (res == 1)
1541 partition->kind = PKIND_PARTIAL_MEMSET;
1542 return;
1545 poly_uint64 base_offset;
1546 unsigned HOST_WIDE_INT const_base_offset;
1547 tree base_base = strip_offset (base, &base_offset);
1548 if (!base_offset.is_constant (&const_base_offset))
1549 return;
1551 struct builtin_info *builtin;
1552 builtin = alloc_builtin (dr, NULL, base, NULL_TREE, size);
1553 builtin->dst_base_base = base_base;
1554 builtin->dst_base_offset = const_base_offset;
1555 partition->builtin = builtin;
1556 partition->kind = PKIND_MEMSET;
1559 /* Given data references DST_DR and SRC_DR in loop nest LOOP and RDG, classify
1560 if it forms builtin memcpy or memmove call. */
1562 static void
1563 classify_builtin_ldst (loop_p loop, struct graph *rdg, partition *partition,
1564 data_reference_p dst_dr, data_reference_p src_dr)
1566 tree base, size, src_base, src_size;
1567 auto_vec<tree> dst_steps, src_steps;
1569 /* Compute access range of both load and store. */
1570 int res = compute_access_range (loop, dst_dr, &base, &size, &dst_steps);
1571 if (res != 2)
1572 return;
1573 res = compute_access_range (loop, src_dr, &src_base, &src_size, &src_steps);
1574 if (res != 2)
1575 return;
1577 /* They much have the same access size. */
1578 if (!operand_equal_p (size, src_size, 0))
1579 return;
1581 /* Load and store in loop nest must access memory in the same way, i.e,
1582 their must have the same steps in each loop of the nest. */
1583 if (dst_steps.length () != src_steps.length ())
1584 return;
1585 for (unsigned i = 0; i < dst_steps.length (); ++i)
1586 if (!operand_equal_p (dst_steps[i], src_steps[i], 0))
1587 return;
1589 /* Now check that if there is a dependence. */
1590 ddr_p ddr = get_data_dependence (rdg, src_dr, dst_dr);
1592 /* Classify as memcpy if no dependence between load and store. */
1593 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
1595 partition->builtin = alloc_builtin (dst_dr, src_dr, base, src_base, size);
1596 partition->kind = PKIND_MEMCPY;
1597 return;
1600 /* Can't do memmove in case of unknown dependence or dependence without
1601 classical distance vector. */
1602 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know
1603 || DDR_NUM_DIST_VECTS (ddr) == 0)
1604 return;
1606 unsigned i;
1607 lambda_vector dist_v;
1608 int num_lev = (DDR_LOOP_NEST (ddr)).length ();
1609 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
1611 unsigned dep_lev = dependence_level (dist_v, num_lev);
1612 /* Can't do memmove if load depends on store. */
1613 if (dep_lev > 0 && dist_v[dep_lev - 1] > 0 && !DDR_REVERSED_P (ddr))
1614 return;
1617 partition->builtin = alloc_builtin (dst_dr, src_dr, base, src_base, size);
1618 partition->kind = PKIND_MEMMOVE;
1619 return;
1622 /* Classifies the builtin kind we can generate for PARTITION of RDG and LOOP.
1623 For the moment we detect memset, memcpy and memmove patterns. Bitmap
1624 STMT_IN_ALL_PARTITIONS contains statements belonging to all partitions. */
1626 static void
1627 classify_partition (loop_p loop, struct graph *rdg, partition *partition,
1628 bitmap stmt_in_all_partitions)
1630 bitmap_iterator bi;
1631 unsigned i;
1632 data_reference_p single_ld = NULL, single_st = NULL;
1633 bool volatiles_p = false, has_reduction = false;
1635 EXECUTE_IF_SET_IN_BITMAP (partition->stmts, 0, i, bi)
1637 gimple *stmt = RDG_STMT (rdg, i);
1639 if (gimple_has_volatile_ops (stmt))
1640 volatiles_p = true;
1642 /* If the stmt is not included by all partitions and there is uses
1643 outside of the loop, then mark the partition as reduction. */
1644 if (stmt_has_scalar_dependences_outside_loop (loop, stmt))
1646 /* Due to limitation in the transform phase we have to fuse all
1647 reduction partitions. As a result, this could cancel valid
1648 loop distribution especially for loop that induction variable
1649 is used outside of loop. To workaround this issue, we skip
1650 marking partition as reudction if the reduction stmt belongs
1651 to all partitions. In such case, reduction will be computed
1652 correctly no matter how partitions are fused/distributed. */
1653 if (!bitmap_bit_p (stmt_in_all_partitions, i))
1655 partition->reduction_p = true;
1656 return;
1658 has_reduction = true;
1662 /* Perform general partition disqualification for builtins. */
1663 if (volatiles_p
1664 /* Simple workaround to prevent classifying the partition as builtin
1665 if it contains any use outside of loop. */
1666 || has_reduction
1667 || !flag_tree_loop_distribute_patterns)
1668 return;
1670 /* Find single load/store data references for builtin partition. */
1671 if (!find_single_drs (loop, rdg, partition, &single_st, &single_ld))
1672 return;
1674 /* Classify the builtin kind. */
1675 if (single_ld == NULL)
1676 classify_builtin_st (loop, partition, single_st);
1677 else
1678 classify_builtin_ldst (loop, rdg, partition, single_st, single_ld);
1681 /* Returns true when PARTITION1 and PARTITION2 access the same memory
1682 object in RDG. */
1684 static bool
1685 share_memory_accesses (struct graph *rdg,
1686 partition *partition1, partition *partition2)
1688 unsigned i, j;
1689 bitmap_iterator bi, bj;
1690 data_reference_p dr1, dr2;
1692 /* First check whether in the intersection of the two partitions are
1693 any loads or stores. Common loads are the situation that happens
1694 most often. */
1695 EXECUTE_IF_AND_IN_BITMAP (partition1->stmts, partition2->stmts, 0, i, bi)
1696 if (RDG_MEM_WRITE_STMT (rdg, i)
1697 || RDG_MEM_READS_STMT (rdg, i))
1698 return true;
1700 /* Then check whether the two partitions access the same memory object. */
1701 EXECUTE_IF_SET_IN_BITMAP (partition1->datarefs, 0, i, bi)
1703 dr1 = datarefs_vec[i];
1705 if (!DR_BASE_ADDRESS (dr1)
1706 || !DR_OFFSET (dr1) || !DR_INIT (dr1) || !DR_STEP (dr1))
1707 continue;
1709 EXECUTE_IF_SET_IN_BITMAP (partition2->datarefs, 0, j, bj)
1711 dr2 = datarefs_vec[j];
1713 if (!DR_BASE_ADDRESS (dr2)
1714 || !DR_OFFSET (dr2) || !DR_INIT (dr2) || !DR_STEP (dr2))
1715 continue;
1717 if (operand_equal_p (DR_BASE_ADDRESS (dr1), DR_BASE_ADDRESS (dr2), 0)
1718 && operand_equal_p (DR_OFFSET (dr1), DR_OFFSET (dr2), 0)
1719 && operand_equal_p (DR_INIT (dr1), DR_INIT (dr2), 0)
1720 && operand_equal_p (DR_STEP (dr1), DR_STEP (dr2), 0))
1721 return true;
1725 return false;
1728 /* For each seed statement in STARTING_STMTS, this function builds
1729 partition for it by adding depended statements according to RDG.
1730 All partitions are recorded in PARTITIONS. */
1732 static void
1733 rdg_build_partitions (struct graph *rdg,
1734 vec<gimple *> starting_stmts,
1735 vec<partition *> *partitions)
1737 auto_bitmap processed;
1738 int i;
1739 gimple *stmt;
1741 FOR_EACH_VEC_ELT (starting_stmts, i, stmt)
1743 int v = rdg_vertex_for_stmt (rdg, stmt);
1745 if (dump_file && (dump_flags & TDF_DETAILS))
1746 fprintf (dump_file,
1747 "ldist asked to generate code for vertex %d\n", v);
1749 /* If the vertex is already contained in another partition so
1750 is the partition rooted at it. */
1751 if (bitmap_bit_p (processed, v))
1752 continue;
1754 partition *partition = build_rdg_partition_for_vertex (rdg, v);
1755 bitmap_ior_into (processed, partition->stmts);
1757 if (dump_file && (dump_flags & TDF_DETAILS))
1759 fprintf (dump_file, "ldist creates useful %s partition:\n",
1760 partition->type == PTYPE_PARALLEL ? "parallel" : "sequent");
1761 bitmap_print (dump_file, partition->stmts, " ", "\n");
1764 partitions->safe_push (partition);
1767 /* All vertices should have been assigned to at least one partition now,
1768 other than vertices belonging to dead code. */
1771 /* Dump to FILE the PARTITIONS. */
1773 static void
1774 dump_rdg_partitions (FILE *file, vec<partition *> partitions)
1776 int i;
1777 partition *partition;
1779 FOR_EACH_VEC_ELT (partitions, i, partition)
1780 debug_bitmap_file (file, partition->stmts);
1783 /* Debug PARTITIONS. */
1784 extern void debug_rdg_partitions (vec<partition *> );
1786 DEBUG_FUNCTION void
1787 debug_rdg_partitions (vec<partition *> partitions)
1789 dump_rdg_partitions (stderr, partitions);
1792 /* Returns the number of read and write operations in the RDG. */
1794 static int
1795 number_of_rw_in_rdg (struct graph *rdg)
1797 int i, res = 0;
1799 for (i = 0; i < rdg->n_vertices; i++)
1801 if (RDG_MEM_WRITE_STMT (rdg, i))
1802 ++res;
1804 if (RDG_MEM_READS_STMT (rdg, i))
1805 ++res;
1808 return res;
1811 /* Returns the number of read and write operations in a PARTITION of
1812 the RDG. */
1814 static int
1815 number_of_rw_in_partition (struct graph *rdg, partition *partition)
1817 int res = 0;
1818 unsigned i;
1819 bitmap_iterator ii;
1821 EXECUTE_IF_SET_IN_BITMAP (partition->stmts, 0, i, ii)
1823 if (RDG_MEM_WRITE_STMT (rdg, i))
1824 ++res;
1826 if (RDG_MEM_READS_STMT (rdg, i))
1827 ++res;
1830 return res;
1833 /* Returns true when one of the PARTITIONS contains all the read or
1834 write operations of RDG. */
1836 static bool
1837 partition_contains_all_rw (struct graph *rdg,
1838 vec<partition *> partitions)
1840 int i;
1841 partition *partition;
1842 int nrw = number_of_rw_in_rdg (rdg);
1844 FOR_EACH_VEC_ELT (partitions, i, partition)
1845 if (nrw == number_of_rw_in_partition (rdg, partition))
1846 return true;
1848 return false;
1851 /* Compute partition dependence created by the data references in DRS1
1852 and DRS2, modify and return DIR according to that. IF ALIAS_DDR is
1853 not NULL, we record dependence introduced by possible alias between
1854 two data references in ALIAS_DDRS; otherwise, we simply ignore such
1855 dependence as if it doesn't exist at all. */
1857 static int
1858 pg_add_dependence_edges (struct graph *rdg, int dir,
1859 bitmap drs1, bitmap drs2, vec<ddr_p> *alias_ddrs)
1861 unsigned i, j;
1862 bitmap_iterator bi, bj;
1863 data_reference_p dr1, dr2, saved_dr1;
1865 /* dependence direction - 0 is no dependence, -1 is back,
1866 1 is forth, 2 is both (we can stop then, merging will occur). */
1867 EXECUTE_IF_SET_IN_BITMAP (drs1, 0, i, bi)
1869 dr1 = datarefs_vec[i];
1871 EXECUTE_IF_SET_IN_BITMAP (drs2, 0, j, bj)
1873 int res, this_dir = 1;
1874 ddr_p ddr;
1876 dr2 = datarefs_vec[j];
1878 /* Skip all <read, read> data dependence. */
1879 if (DR_IS_READ (dr1) && DR_IS_READ (dr2))
1880 continue;
1882 saved_dr1 = dr1;
1883 /* Re-shuffle data-refs to be in topological order. */
1884 if (rdg_vertex_for_stmt (rdg, DR_STMT (dr1))
1885 > rdg_vertex_for_stmt (rdg, DR_STMT (dr2)))
1887 std::swap (dr1, dr2);
1888 this_dir = -this_dir;
1890 ddr = get_data_dependence (rdg, dr1, dr2);
1891 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
1893 this_dir = 0;
1894 res = data_ref_compare_tree (DR_BASE_ADDRESS (dr1),
1895 DR_BASE_ADDRESS (dr2));
1896 /* Be conservative. If data references are not well analyzed,
1897 or the two data references have the same base address and
1898 offset, add dependence and consider it alias to each other.
1899 In other words, the dependence can not be resolved by
1900 runtime alias check. */
1901 if (!DR_BASE_ADDRESS (dr1) || !DR_BASE_ADDRESS (dr2)
1902 || !DR_OFFSET (dr1) || !DR_OFFSET (dr2)
1903 || !DR_INIT (dr1) || !DR_INIT (dr2)
1904 || !DR_STEP (dr1) || !tree_fits_uhwi_p (DR_STEP (dr1))
1905 || !DR_STEP (dr2) || !tree_fits_uhwi_p (DR_STEP (dr2))
1906 || res == 0)
1907 this_dir = 2;
1908 /* Data dependence could be resolved by runtime alias check,
1909 record it in ALIAS_DDRS. */
1910 else if (alias_ddrs != NULL)
1911 alias_ddrs->safe_push (ddr);
1912 /* Or simply ignore it. */
1914 else if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
1916 if (DDR_REVERSED_P (ddr))
1917 this_dir = -this_dir;
1919 /* Known dependences can still be unordered througout the
1920 iteration space, see gcc.dg/tree-ssa/ldist-16.c. */
1921 if (DDR_NUM_DIST_VECTS (ddr) != 1)
1922 this_dir = 2;
1923 /* If the overlap is exact preserve stmt order. */
1924 else if (lambda_vector_zerop (DDR_DIST_VECT (ddr, 0),
1925 DDR_NB_LOOPS (ddr)))
1927 /* Else as the distance vector is lexicographic positive swap
1928 the dependence direction. */
1929 else
1930 this_dir = -this_dir;
1932 else
1933 this_dir = 0;
1934 if (this_dir == 2)
1935 return 2;
1936 else if (dir == 0)
1937 dir = this_dir;
1938 else if (this_dir != 0 && dir != this_dir)
1939 return 2;
1940 /* Shuffle "back" dr1. */
1941 dr1 = saved_dr1;
1944 return dir;
1947 /* Compare postorder number of the partition graph vertices V1 and V2. */
1949 static int
1950 pgcmp (const void *v1_, const void *v2_)
1952 const vertex *v1 = (const vertex *)v1_;
1953 const vertex *v2 = (const vertex *)v2_;
1954 return v2->post - v1->post;
1957 /* Data attached to vertices of partition dependence graph. */
1958 struct pg_vdata
1960 /* ID of the corresponding partition. */
1961 int id;
1962 /* The partition. */
1963 struct partition *partition;
1966 /* Data attached to edges of partition dependence graph. */
1967 struct pg_edata
1969 /* If the dependence edge can be resolved by runtime alias check,
1970 this vector contains data dependence relations for runtime alias
1971 check. On the other hand, if the dependence edge is introduced
1972 because of compilation time known data dependence, this vector
1973 contains nothing. */
1974 vec<ddr_p> alias_ddrs;
1977 /* Callback data for traversing edges in graph. */
1978 struct pg_edge_callback_data
1980 /* Bitmap contains strong connected components should be merged. */
1981 bitmap sccs_to_merge;
1982 /* Array constains component information for all vertices. */
1983 int *vertices_component;
1984 /* Vector to record all data dependence relations which are needed
1985 to break strong connected components by runtime alias checks. */
1986 vec<ddr_p> *alias_ddrs;
1989 /* Initialize vertice's data for partition dependence graph PG with
1990 PARTITIONS. */
1992 static void
1993 init_partition_graph_vertices (struct graph *pg,
1994 vec<struct partition *> *partitions)
1996 int i;
1997 partition *partition;
1998 struct pg_vdata *data;
2000 for (i = 0; partitions->iterate (i, &partition); ++i)
2002 data = new pg_vdata;
2003 pg->vertices[i].data = data;
2004 data->id = i;
2005 data->partition = partition;
2009 /* Add edge <I, J> to partition dependence graph PG. Attach vector of data
2010 dependence relations to the EDGE if DDRS isn't NULL. */
2012 static void
2013 add_partition_graph_edge (struct graph *pg, int i, int j, vec<ddr_p> *ddrs)
2015 struct graph_edge *e = add_edge (pg, i, j);
2017 /* If the edge is attached with data dependence relations, it means this
2018 dependence edge can be resolved by runtime alias checks. */
2019 if (ddrs != NULL)
2021 struct pg_edata *data = new pg_edata;
2023 gcc_assert (ddrs->length () > 0);
2024 e->data = data;
2025 data->alias_ddrs = vNULL;
2026 data->alias_ddrs.safe_splice (*ddrs);
2030 /* Callback function for graph travesal algorithm. It returns true
2031 if edge E should skipped when traversing the graph. */
2033 static bool
2034 pg_skip_alias_edge (struct graph_edge *e)
2036 struct pg_edata *data = (struct pg_edata *)e->data;
2037 return (data != NULL && data->alias_ddrs.length () > 0);
2040 /* Callback function freeing data attached to edge E of graph. */
2042 static void
2043 free_partition_graph_edata_cb (struct graph *, struct graph_edge *e, void *)
2045 if (e->data != NULL)
2047 struct pg_edata *data = (struct pg_edata *)e->data;
2048 data->alias_ddrs.release ();
2049 delete data;
2053 /* Free data attached to vertice of partition dependence graph PG. */
2055 static void
2056 free_partition_graph_vdata (struct graph *pg)
2058 int i;
2059 struct pg_vdata *data;
2061 for (i = 0; i < pg->n_vertices; ++i)
2063 data = (struct pg_vdata *)pg->vertices[i].data;
2064 delete data;
2068 /* Build and return partition dependence graph for PARTITIONS. RDG is
2069 reduced dependence graph for the loop to be distributed. If IGNORE_ALIAS_P
2070 is true, data dependence caused by possible alias between references
2071 is ignored, as if it doesn't exist at all; otherwise all depdendences
2072 are considered. */
2074 static struct graph *
2075 build_partition_graph (struct graph *rdg,
2076 vec<struct partition *> *partitions,
2077 bool ignore_alias_p)
2079 int i, j;
2080 struct partition *partition1, *partition2;
2081 graph *pg = new_graph (partitions->length ());
2082 auto_vec<ddr_p> alias_ddrs, *alias_ddrs_p;
2084 alias_ddrs_p = ignore_alias_p ? NULL : &alias_ddrs;
2086 init_partition_graph_vertices (pg, partitions);
2088 for (i = 0; partitions->iterate (i, &partition1); ++i)
2090 for (j = i + 1; partitions->iterate (j, &partition2); ++j)
2092 /* dependence direction - 0 is no dependence, -1 is back,
2093 1 is forth, 2 is both (we can stop then, merging will occur). */
2094 int dir = 0;
2096 /* If the first partition has reduction, add back edge; if the
2097 second partition has reduction, add forth edge. This makes
2098 sure that reduction partition will be sorted as the last one. */
2099 if (partition_reduction_p (partition1))
2100 dir = -1;
2101 else if (partition_reduction_p (partition2))
2102 dir = 1;
2104 /* Cleanup the temporary vector. */
2105 alias_ddrs.truncate (0);
2107 dir = pg_add_dependence_edges (rdg, dir, partition1->datarefs,
2108 partition2->datarefs, alias_ddrs_p);
2110 /* Add edge to partition graph if there exists dependence. There
2111 are two types of edges. One type edge is caused by compilation
2112 time known dependence, this type can not be resolved by runtime
2113 alias check. The other type can be resolved by runtime alias
2114 check. */
2115 if (dir == 1 || dir == 2
2116 || alias_ddrs.length () > 0)
2118 /* Attach data dependence relations to edge that can be resolved
2119 by runtime alias check. */
2120 bool alias_edge_p = (dir != 1 && dir != 2);
2121 add_partition_graph_edge (pg, i, j,
2122 (alias_edge_p) ? &alias_ddrs : NULL);
2124 if (dir == -1 || dir == 2
2125 || alias_ddrs.length () > 0)
2127 /* Attach data dependence relations to edge that can be resolved
2128 by runtime alias check. */
2129 bool alias_edge_p = (dir != -1 && dir != 2);
2130 add_partition_graph_edge (pg, j, i,
2131 (alias_edge_p) ? &alias_ddrs : NULL);
2135 return pg;
2138 /* Sort partitions in PG in descending post order and store them in
2139 PARTITIONS. */
2141 static void
2142 sort_partitions_by_post_order (struct graph *pg,
2143 vec<struct partition *> *partitions)
2145 int i;
2146 struct pg_vdata *data;
2148 /* Now order the remaining nodes in descending postorder. */
2149 qsort (pg->vertices, pg->n_vertices, sizeof (vertex), pgcmp);
2150 partitions->truncate (0);
2151 for (i = 0; i < pg->n_vertices; ++i)
2153 data = (struct pg_vdata *)pg->vertices[i].data;
2154 if (data->partition)
2155 partitions->safe_push (data->partition);
2159 /* Given reduced dependence graph RDG merge strong connected components
2160 of PARTITIONS. If IGNORE_ALIAS_P is true, data dependence caused by
2161 possible alias between references is ignored, as if it doesn't exist
2162 at all; otherwise all depdendences are considered. */
2164 static void
2165 merge_dep_scc_partitions (struct graph *rdg,
2166 vec<struct partition *> *partitions,
2167 bool ignore_alias_p)
2169 struct partition *partition1, *partition2;
2170 struct pg_vdata *data;
2171 graph *pg = build_partition_graph (rdg, partitions, ignore_alias_p);
2172 int i, j, num_sccs = graphds_scc (pg, NULL);
2174 /* Strong connected compoenent means dependence cycle, we cannot distribute
2175 them. So fuse them together. */
2176 if ((unsigned) num_sccs < partitions->length ())
2178 for (i = 0; i < num_sccs; ++i)
2180 for (j = 0; partitions->iterate (j, &partition1); ++j)
2181 if (pg->vertices[j].component == i)
2182 break;
2183 for (j = j + 1; partitions->iterate (j, &partition2); ++j)
2184 if (pg->vertices[j].component == i)
2186 partition_merge_into (NULL, partition1,
2187 partition2, FUSE_SAME_SCC);
2188 partition1->type = PTYPE_SEQUENTIAL;
2189 (*partitions)[j] = NULL;
2190 partition_free (partition2);
2191 data = (struct pg_vdata *)pg->vertices[j].data;
2192 data->partition = NULL;
2197 sort_partitions_by_post_order (pg, partitions);
2198 gcc_assert (partitions->length () == (unsigned)num_sccs);
2199 free_partition_graph_vdata (pg);
2200 free_graph (pg);
2203 /* Callback function for traversing edge E in graph G. DATA is private
2204 callback data. */
2206 static void
2207 pg_collect_alias_ddrs (struct graph *g, struct graph_edge *e, void *data)
2209 int i, j, component;
2210 struct pg_edge_callback_data *cbdata;
2211 struct pg_edata *edata = (struct pg_edata *) e->data;
2213 /* If the edge doesn't have attached data dependence, it represents
2214 compilation time known dependences. This type dependence cannot
2215 be resolved by runtime alias check. */
2216 if (edata == NULL || edata->alias_ddrs.length () == 0)
2217 return;
2219 cbdata = (struct pg_edge_callback_data *) data;
2220 i = e->src;
2221 j = e->dest;
2222 component = cbdata->vertices_component[i];
2223 /* Vertices are topologically sorted according to compilation time
2224 known dependences, so we can break strong connected components
2225 by removing edges of the opposite direction, i.e, edges pointing
2226 from vertice with smaller post number to vertice with bigger post
2227 number. */
2228 if (g->vertices[i].post < g->vertices[j].post
2229 /* We only need to remove edges connecting vertices in the same
2230 strong connected component to break it. */
2231 && component == cbdata->vertices_component[j]
2232 /* Check if we want to break the strong connected component or not. */
2233 && !bitmap_bit_p (cbdata->sccs_to_merge, component))
2234 cbdata->alias_ddrs->safe_splice (edata->alias_ddrs);
2237 /* This is the main function breaking strong conected components in
2238 PARTITIONS giving reduced depdendence graph RDG. Store data dependence
2239 relations for runtime alias check in ALIAS_DDRS. */
2241 static void
2242 break_alias_scc_partitions (struct graph *rdg,
2243 vec<struct partition *> *partitions,
2244 vec<ddr_p> *alias_ddrs)
2246 int i, j, k, num_sccs, num_sccs_no_alias;
2247 /* Build partition dependence graph. */
2248 graph *pg = build_partition_graph (rdg, partitions, false);
2250 alias_ddrs->truncate (0);
2251 /* Find strong connected components in the graph, with all dependence edges
2252 considered. */
2253 num_sccs = graphds_scc (pg, NULL);
2254 /* All SCCs now can be broken by runtime alias checks because SCCs caused by
2255 compilation time known dependences are merged before this function. */
2256 if ((unsigned) num_sccs < partitions->length ())
2258 struct pg_edge_callback_data cbdata;
2259 auto_bitmap sccs_to_merge;
2260 auto_vec<enum partition_type> scc_types;
2261 struct partition *partition, *first;
2263 /* If all partitions in a SCC have the same type, we can simply merge the
2264 SCC. This loop finds out such SCCS and record them in bitmap. */
2265 bitmap_set_range (sccs_to_merge, 0, (unsigned) num_sccs);
2266 for (i = 0; i < num_sccs; ++i)
2268 for (j = 0; partitions->iterate (j, &first); ++j)
2269 if (pg->vertices[j].component == i)
2270 break;
2272 bool same_type = true, all_builtins = partition_builtin_p (first);
2273 for (++j; partitions->iterate (j, &partition); ++j)
2275 if (pg->vertices[j].component != i)
2276 continue;
2278 if (first->type != partition->type)
2280 same_type = false;
2281 break;
2283 all_builtins &= partition_builtin_p (partition);
2285 /* Merge SCC if all partitions in SCC have the same type, though the
2286 result partition is sequential, because vectorizer can do better
2287 runtime alias check. One expecption is all partitions in SCC are
2288 builtins. */
2289 if (!same_type || all_builtins)
2290 bitmap_clear_bit (sccs_to_merge, i);
2293 /* Initialize callback data for traversing. */
2294 cbdata.sccs_to_merge = sccs_to_merge;
2295 cbdata.alias_ddrs = alias_ddrs;
2296 cbdata.vertices_component = XNEWVEC (int, pg->n_vertices);
2297 /* Record the component information which will be corrupted by next
2298 graph scc finding call. */
2299 for (i = 0; i < pg->n_vertices; ++i)
2300 cbdata.vertices_component[i] = pg->vertices[i].component;
2302 /* Collect data dependences for runtime alias checks to break SCCs. */
2303 if (bitmap_count_bits (sccs_to_merge) != (unsigned) num_sccs)
2305 /* Run SCC finding algorithm again, with alias dependence edges
2306 skipped. This is to topologically sort partitions according to
2307 compilation time known dependence. Note the topological order
2308 is stored in the form of pg's post order number. */
2309 num_sccs_no_alias = graphds_scc (pg, NULL, pg_skip_alias_edge);
2310 gcc_assert (partitions->length () == (unsigned) num_sccs_no_alias);
2311 /* With topological order, we can construct two subgraphs L and R.
2312 L contains edge <x, y> where x < y in terms of post order, while
2313 R contains edge <x, y> where x > y. Edges for compilation time
2314 known dependence all fall in R, so we break SCCs by removing all
2315 (alias) edges of in subgraph L. */
2316 for_each_edge (pg, pg_collect_alias_ddrs, &cbdata);
2319 /* For SCC that doesn't need to be broken, merge it. */
2320 for (i = 0; i < num_sccs; ++i)
2322 if (!bitmap_bit_p (sccs_to_merge, i))
2323 continue;
2325 for (j = 0; partitions->iterate (j, &first); ++j)
2326 if (cbdata.vertices_component[j] == i)
2327 break;
2328 for (k = j + 1; partitions->iterate (k, &partition); ++k)
2330 struct pg_vdata *data;
2332 if (cbdata.vertices_component[k] != i)
2333 continue;
2335 /* Update postorder number so that merged reduction partition is
2336 sorted after other partitions. */
2337 if (!partition_reduction_p (first)
2338 && partition_reduction_p (partition))
2340 gcc_assert (pg->vertices[k].post < pg->vertices[j].post);
2341 pg->vertices[j].post = pg->vertices[k].post;
2343 partition_merge_into (NULL, first, partition, FUSE_SAME_SCC);
2344 (*partitions)[k] = NULL;
2345 partition_free (partition);
2346 data = (struct pg_vdata *)pg->vertices[k].data;
2347 gcc_assert (data->id == k);
2348 data->partition = NULL;
2349 /* The result partition of merged SCC must be sequential. */
2350 first->type = PTYPE_SEQUENTIAL;
2355 sort_partitions_by_post_order (pg, partitions);
2356 free_partition_graph_vdata (pg);
2357 for_each_edge (pg, free_partition_graph_edata_cb, NULL);
2358 free_graph (pg);
2360 if (dump_file && (dump_flags & TDF_DETAILS))
2362 fprintf (dump_file, "Possible alias data dependence to break:\n");
2363 dump_data_dependence_relations (dump_file, *alias_ddrs);
2367 /* Compute and return an expression whose value is the segment length which
2368 will be accessed by DR in NITERS iterations. */
2370 static tree
2371 data_ref_segment_size (struct data_reference *dr, tree niters)
2373 niters = size_binop (MINUS_EXPR,
2374 fold_convert (sizetype, niters),
2375 size_one_node);
2376 return size_binop (MULT_EXPR,
2377 fold_convert (sizetype, DR_STEP (dr)),
2378 fold_convert (sizetype, niters));
2381 /* Return true if LOOP's latch is dominated by statement for data reference
2382 DR. */
2384 static inline bool
2385 latch_dominated_by_data_ref (struct loop *loop, data_reference *dr)
2387 return dominated_by_p (CDI_DOMINATORS, single_exit (loop)->src,
2388 gimple_bb (DR_STMT (dr)));
2391 /* Compute alias check pairs and store them in COMP_ALIAS_PAIRS for LOOP's
2392 data dependence relations ALIAS_DDRS. */
2394 static void
2395 compute_alias_check_pairs (struct loop *loop, vec<ddr_p> *alias_ddrs,
2396 vec<dr_with_seg_len_pair_t> *comp_alias_pairs)
2398 unsigned int i;
2399 unsigned HOST_WIDE_INT factor = 1;
2400 tree niters_plus_one, niters = number_of_latch_executions (loop);
2402 gcc_assert (niters != NULL_TREE && niters != chrec_dont_know);
2403 niters = fold_convert (sizetype, niters);
2404 niters_plus_one = size_binop (PLUS_EXPR, niters, size_one_node);
2406 if (dump_file && (dump_flags & TDF_DETAILS))
2407 fprintf (dump_file, "Creating alias check pairs:\n");
2409 /* Iterate all data dependence relations and compute alias check pairs. */
2410 for (i = 0; i < alias_ddrs->length (); i++)
2412 ddr_p ddr = (*alias_ddrs)[i];
2413 struct data_reference *dr_a = DDR_A (ddr);
2414 struct data_reference *dr_b = DDR_B (ddr);
2415 tree seg_length_a, seg_length_b;
2416 int comp_res = data_ref_compare_tree (DR_BASE_ADDRESS (dr_a),
2417 DR_BASE_ADDRESS (dr_b));
2419 if (comp_res == 0)
2420 comp_res = data_ref_compare_tree (DR_OFFSET (dr_a), DR_OFFSET (dr_b));
2421 gcc_assert (comp_res != 0);
2423 if (latch_dominated_by_data_ref (loop, dr_a))
2424 seg_length_a = data_ref_segment_size (dr_a, niters_plus_one);
2425 else
2426 seg_length_a = data_ref_segment_size (dr_a, niters);
2428 if (latch_dominated_by_data_ref (loop, dr_b))
2429 seg_length_b = data_ref_segment_size (dr_b, niters_plus_one);
2430 else
2431 seg_length_b = data_ref_segment_size (dr_b, niters);
2433 unsigned HOST_WIDE_INT access_size_a
2434 = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_a))));
2435 unsigned HOST_WIDE_INT access_size_b
2436 = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_b))));
2437 unsigned int align_a = TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr_a)));
2438 unsigned int align_b = TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr_b)));
2440 dr_with_seg_len_pair_t dr_with_seg_len_pair
2441 (dr_with_seg_len (dr_a, seg_length_a, access_size_a, align_a),
2442 dr_with_seg_len (dr_b, seg_length_b, access_size_b, align_b));
2444 /* Canonicalize pairs by sorting the two DR members. */
2445 if (comp_res > 0)
2446 std::swap (dr_with_seg_len_pair.first, dr_with_seg_len_pair.second);
2448 comp_alias_pairs->safe_push (dr_with_seg_len_pair);
2451 if (tree_fits_uhwi_p (niters))
2452 factor = tree_to_uhwi (niters);
2454 /* Prune alias check pairs. */
2455 prune_runtime_alias_test_list (comp_alias_pairs, factor);
2456 if (dump_file && (dump_flags & TDF_DETAILS))
2457 fprintf (dump_file,
2458 "Improved number of alias checks from %d to %d\n",
2459 alias_ddrs->length (), comp_alias_pairs->length ());
2462 /* Given data dependence relations in ALIAS_DDRS, generate runtime alias
2463 checks and version LOOP under condition of these runtime alias checks. */
2465 static void
2466 version_loop_by_alias_check (vec<struct partition *> *partitions,
2467 struct loop *loop, vec<ddr_p> *alias_ddrs)
2469 profile_probability prob;
2470 basic_block cond_bb;
2471 struct loop *nloop;
2472 tree lhs, arg0, cond_expr = NULL_TREE;
2473 gimple_seq cond_stmts = NULL;
2474 gimple *call_stmt = NULL;
2475 auto_vec<dr_with_seg_len_pair_t> comp_alias_pairs;
2477 /* Generate code for runtime alias checks if necessary. */
2478 gcc_assert (alias_ddrs->length () > 0);
2480 if (dump_file && (dump_flags & TDF_DETAILS))
2481 fprintf (dump_file,
2482 "Version loop <%d> with runtime alias check\n", loop->num);
2484 compute_alias_check_pairs (loop, alias_ddrs, &comp_alias_pairs);
2485 create_runtime_alias_checks (loop, &comp_alias_pairs, &cond_expr);
2486 cond_expr = force_gimple_operand_1 (cond_expr, &cond_stmts,
2487 is_gimple_val, NULL_TREE);
2489 /* Depend on vectorizer to fold IFN_LOOP_DIST_ALIAS. */
2490 bool cancelable_p = flag_tree_loop_vectorize;
2491 if (cancelable_p)
2493 unsigned i = 0;
2494 struct partition *partition;
2495 for (; partitions->iterate (i, &partition); ++i)
2496 if (!partition_builtin_p (partition))
2497 break;
2499 /* If all partitions are builtins, distributing it would be profitable and
2500 we don't want to cancel the runtime alias checks. */
2501 if (i == partitions->length ())
2502 cancelable_p = false;
2505 /* Generate internal function call for loop distribution alias check if the
2506 runtime alias check should be cancelable. */
2507 if (cancelable_p)
2509 call_stmt = gimple_build_call_internal (IFN_LOOP_DIST_ALIAS,
2510 2, NULL_TREE, cond_expr);
2511 lhs = make_ssa_name (boolean_type_node);
2512 gimple_call_set_lhs (call_stmt, lhs);
2514 else
2515 lhs = cond_expr;
2517 prob = profile_probability::guessed_always ().apply_scale (9, 10);
2518 initialize_original_copy_tables ();
2519 nloop = loop_version (loop, lhs, &cond_bb, prob, prob.invert (),
2520 prob, prob.invert (), true);
2521 free_original_copy_tables ();
2522 /* Record the original loop number in newly generated loops. In case of
2523 distribution, the original loop will be distributed and the new loop
2524 is kept. */
2525 loop->orig_loop_num = nloop->num;
2526 nloop->orig_loop_num = nloop->num;
2527 nloop->dont_vectorize = true;
2528 nloop->force_vectorize = false;
2530 if (call_stmt)
2532 /* Record new loop's num in IFN_LOOP_DIST_ALIAS because the original
2533 loop could be destroyed. */
2534 arg0 = build_int_cst (integer_type_node, loop->orig_loop_num);
2535 gimple_call_set_arg (call_stmt, 0, arg0);
2536 gimple_seq_add_stmt_without_update (&cond_stmts, call_stmt);
2539 if (cond_stmts)
2541 gimple_stmt_iterator cond_gsi = gsi_last_bb (cond_bb);
2542 gsi_insert_seq_before (&cond_gsi, cond_stmts, GSI_SAME_STMT);
2544 update_ssa (TODO_update_ssa);
2547 /* Return true if loop versioning is needed to distrubute PARTITIONS.
2548 ALIAS_DDRS are data dependence relations for runtime alias check. */
2550 static inline bool
2551 version_for_distribution_p (vec<struct partition *> *partitions,
2552 vec<ddr_p> *alias_ddrs)
2554 /* No need to version loop if we have only one partition. */
2555 if (partitions->length () == 1)
2556 return false;
2558 /* Need to version loop if runtime alias check is necessary. */
2559 return (alias_ddrs->length () > 0);
2562 /* Compare base offset of builtin mem* partitions P1 and P2. */
2564 static int
2565 offset_cmp (const void *vp1, const void *vp2)
2567 struct partition *p1 = *(struct partition *const *) vp1;
2568 struct partition *p2 = *(struct partition *const *) vp2;
2569 unsigned HOST_WIDE_INT o1 = p1->builtin->dst_base_offset;
2570 unsigned HOST_WIDE_INT o2 = p2->builtin->dst_base_offset;
2571 return (o2 < o1) - (o1 < o2);
2574 /* Fuse adjacent memset builtin PARTITIONS if possible. This is a special
2575 case optimization transforming below code:
2577 __builtin_memset (&obj, 0, 100);
2578 _1 = &obj + 100;
2579 __builtin_memset (_1, 0, 200);
2580 _2 = &obj + 300;
2581 __builtin_memset (_2, 0, 100);
2583 into:
2585 __builtin_memset (&obj, 0, 400);
2587 Note we don't have dependence information between different partitions
2588 at this point, as a result, we can't handle nonadjacent memset builtin
2589 partitions since dependence might be broken. */
2591 static void
2592 fuse_memset_builtins (vec<struct partition *> *partitions)
2594 unsigned i, j;
2595 struct partition *part1, *part2;
2596 tree rhs1, rhs2;
2598 for (i = 0; partitions->iterate (i, &part1);)
2600 if (part1->kind != PKIND_MEMSET)
2602 i++;
2603 continue;
2606 /* Find sub-array of memset builtins of the same base. Index range
2607 of the sub-array is [i, j) with "j > i". */
2608 for (j = i + 1; partitions->iterate (j, &part2); ++j)
2610 if (part2->kind != PKIND_MEMSET
2611 || !operand_equal_p (part1->builtin->dst_base_base,
2612 part2->builtin->dst_base_base, 0))
2613 break;
2615 /* Memset calls setting different values can't be merged. */
2616 rhs1 = gimple_assign_rhs1 (DR_STMT (part1->builtin->dst_dr));
2617 rhs2 = gimple_assign_rhs1 (DR_STMT (part2->builtin->dst_dr));
2618 if (!operand_equal_p (rhs1, rhs2, 0))
2619 break;
2622 /* Stable sort is required in order to avoid breaking dependence. */
2623 gcc_stablesort (&(*partitions)[i], j - i, sizeof (*partitions)[i],
2624 offset_cmp);
2625 /* Continue with next partition. */
2626 i = j;
2629 /* Merge all consecutive memset builtin partitions. */
2630 for (i = 0; i < partitions->length () - 1;)
2632 part1 = (*partitions)[i];
2633 if (part1->kind != PKIND_MEMSET)
2635 i++;
2636 continue;
2639 part2 = (*partitions)[i + 1];
2640 /* Only merge memset partitions of the same base and with constant
2641 access sizes. */
2642 if (part2->kind != PKIND_MEMSET
2643 || TREE_CODE (part1->builtin->size) != INTEGER_CST
2644 || TREE_CODE (part2->builtin->size) != INTEGER_CST
2645 || !operand_equal_p (part1->builtin->dst_base_base,
2646 part2->builtin->dst_base_base, 0))
2648 i++;
2649 continue;
2651 rhs1 = gimple_assign_rhs1 (DR_STMT (part1->builtin->dst_dr));
2652 rhs2 = gimple_assign_rhs1 (DR_STMT (part2->builtin->dst_dr));
2653 int bytev1 = const_with_all_bytes_same (rhs1);
2654 int bytev2 = const_with_all_bytes_same (rhs2);
2655 /* Only merge memset partitions of the same value. */
2656 if (bytev1 != bytev2 || bytev1 == -1)
2658 i++;
2659 continue;
2661 wide_int end1 = wi::add (part1->builtin->dst_base_offset,
2662 wi::to_wide (part1->builtin->size));
2663 /* Only merge adjacent memset partitions. */
2664 if (wi::ne_p (end1, part2->builtin->dst_base_offset))
2666 i++;
2667 continue;
2669 /* Merge partitions[i] and partitions[i+1]. */
2670 part1->builtin->size = fold_build2 (PLUS_EXPR, sizetype,
2671 part1->builtin->size,
2672 part2->builtin->size);
2673 partition_free (part2);
2674 partitions->ordered_remove (i + 1);
2678 /* Fuse PARTITIONS of LOOP if necessary before finalizing distribution.
2679 ALIAS_DDRS contains ddrs which need runtime alias check. */
2681 static void
2682 finalize_partitions (struct loop *loop, vec<struct partition *> *partitions,
2683 vec<ddr_p> *alias_ddrs)
2685 unsigned i;
2686 struct partition *partition, *a;
2688 if (partitions->length () == 1
2689 || alias_ddrs->length () > 0)
2690 return;
2692 unsigned num_builtin = 0, num_normal = 0, num_partial_memset = 0;
2693 bool same_type_p = true;
2694 enum partition_type type = ((*partitions)[0])->type;
2695 for (i = 0; partitions->iterate (i, &partition); ++i)
2697 same_type_p &= (type == partition->type);
2698 if (partition_builtin_p (partition))
2700 num_builtin++;
2701 continue;
2703 num_normal++;
2704 if (partition->kind == PKIND_PARTIAL_MEMSET)
2705 num_partial_memset++;
2708 /* Don't distribute current loop into too many loops given we don't have
2709 memory stream cost model. Be even more conservative in case of loop
2710 nest distribution. */
2711 if ((same_type_p && num_builtin == 0
2712 && (loop->inner == NULL || num_normal != 2 || num_partial_memset != 1))
2713 || (loop->inner != NULL
2714 && i >= NUM_PARTITION_THRESHOLD && num_normal > 1)
2715 || (loop->inner == NULL
2716 && i >= NUM_PARTITION_THRESHOLD && num_normal > num_builtin))
2718 a = (*partitions)[0];
2719 for (i = 1; partitions->iterate (i, &partition); ++i)
2721 partition_merge_into (NULL, a, partition, FUSE_FINALIZE);
2722 partition_free (partition);
2724 partitions->truncate (1);
2727 /* Fuse memset builtins if possible. */
2728 if (partitions->length () > 1)
2729 fuse_memset_builtins (partitions);
2732 /* Distributes the code from LOOP in such a way that producer statements
2733 are placed before consumer statements. Tries to separate only the
2734 statements from STMTS into separate loops. Returns the number of
2735 distributed loops. Set NB_CALLS to number of generated builtin calls.
2736 Set *DESTROY_P to whether LOOP needs to be destroyed. */
2738 static int
2739 distribute_loop (struct loop *loop, vec<gimple *> stmts,
2740 control_dependences *cd, int *nb_calls, bool *destroy_p)
2742 ddrs_table = new hash_table<ddr_hasher> (389);
2743 struct graph *rdg;
2744 partition *partition;
2745 bool any_builtin;
2746 int i, nbp;
2748 *destroy_p = false;
2749 *nb_calls = 0;
2750 loop_nest.create (0);
2751 if (!find_loop_nest (loop, &loop_nest))
2753 loop_nest.release ();
2754 delete ddrs_table;
2755 return 0;
2758 datarefs_vec.create (20);
2759 rdg = build_rdg (loop, cd);
2760 if (!rdg)
2762 if (dump_file && (dump_flags & TDF_DETAILS))
2763 fprintf (dump_file,
2764 "Loop %d not distributed: failed to build the RDG.\n",
2765 loop->num);
2767 loop_nest.release ();
2768 free_data_refs (datarefs_vec);
2769 delete ddrs_table;
2770 return 0;
2773 if (datarefs_vec.length () > MAX_DATAREFS_NUM)
2775 if (dump_file && (dump_flags & TDF_DETAILS))
2776 fprintf (dump_file,
2777 "Loop %d not distributed: too many memory references.\n",
2778 loop->num);
2780 free_rdg (rdg);
2781 loop_nest.release ();
2782 free_data_refs (datarefs_vec);
2783 delete ddrs_table;
2784 return 0;
2787 data_reference_p dref;
2788 for (i = 0; datarefs_vec.iterate (i, &dref); ++i)
2789 dref->aux = (void *) (uintptr_t) i;
2791 if (dump_file && (dump_flags & TDF_DETAILS))
2792 dump_rdg (dump_file, rdg);
2794 auto_vec<struct partition *, 3> partitions;
2795 rdg_build_partitions (rdg, stmts, &partitions);
2797 auto_vec<ddr_p> alias_ddrs;
2799 auto_bitmap stmt_in_all_partitions;
2800 bitmap_copy (stmt_in_all_partitions, partitions[0]->stmts);
2801 for (i = 1; partitions.iterate (i, &partition); ++i)
2802 bitmap_and_into (stmt_in_all_partitions, partitions[i]->stmts);
2804 any_builtin = false;
2805 FOR_EACH_VEC_ELT (partitions, i, partition)
2807 classify_partition (loop, rdg, partition, stmt_in_all_partitions);
2808 any_builtin |= partition_builtin_p (partition);
2811 /* If we are only distributing patterns but did not detect any,
2812 simply bail out. */
2813 if (!flag_tree_loop_distribution
2814 && !any_builtin)
2816 nbp = 0;
2817 goto ldist_done;
2820 /* If we are only distributing patterns fuse all partitions that
2821 were not classified as builtins. This also avoids chopping
2822 a loop into pieces, separated by builtin calls. That is, we
2823 only want no or a single loop body remaining. */
2824 struct partition *into;
2825 if (!flag_tree_loop_distribution)
2827 for (i = 0; partitions.iterate (i, &into); ++i)
2828 if (!partition_builtin_p (into))
2829 break;
2830 for (++i; partitions.iterate (i, &partition); ++i)
2831 if (!partition_builtin_p (partition))
2833 partition_merge_into (NULL, into, partition, FUSE_NON_BUILTIN);
2834 partitions.unordered_remove (i);
2835 partition_free (partition);
2836 i--;
2840 /* Due to limitations in the transform phase we have to fuse all
2841 reduction partitions into the last partition so the existing
2842 loop will contain all loop-closed PHI nodes. */
2843 for (i = 0; partitions.iterate (i, &into); ++i)
2844 if (partition_reduction_p (into))
2845 break;
2846 for (i = i + 1; partitions.iterate (i, &partition); ++i)
2847 if (partition_reduction_p (partition))
2849 partition_merge_into (rdg, into, partition, FUSE_REDUCTION);
2850 partitions.unordered_remove (i);
2851 partition_free (partition);
2852 i--;
2855 /* Apply our simple cost model - fuse partitions with similar
2856 memory accesses. */
2857 for (i = 0; partitions.iterate (i, &into); ++i)
2859 bool changed = false;
2860 if (partition_builtin_p (into) || into->kind == PKIND_PARTIAL_MEMSET)
2861 continue;
2862 for (int j = i + 1;
2863 partitions.iterate (j, &partition); ++j)
2865 if (share_memory_accesses (rdg, into, partition))
2867 partition_merge_into (rdg, into, partition, FUSE_SHARE_REF);
2868 partitions.unordered_remove (j);
2869 partition_free (partition);
2870 j--;
2871 changed = true;
2874 /* If we fused 0 1 2 in step 1 to 0,2 1 as 0 and 2 have similar
2875 accesses when 1 and 2 have similar accesses but not 0 and 1
2876 then in the next iteration we will fail to consider merging
2877 1 into 0,2. So try again if we did any merging into 0. */
2878 if (changed)
2879 i--;
2882 /* Build the partition dependency graph and fuse partitions in strong
2883 connected component. */
2884 if (partitions.length () > 1)
2886 /* Don't support loop nest distribution under runtime alias check
2887 since it's not likely to enable many vectorization opportunities. */
2888 if (loop->inner)
2889 merge_dep_scc_partitions (rdg, &partitions, false);
2890 else
2892 merge_dep_scc_partitions (rdg, &partitions, true);
2893 if (partitions.length () > 1)
2894 break_alias_scc_partitions (rdg, &partitions, &alias_ddrs);
2898 finalize_partitions (loop, &partitions, &alias_ddrs);
2900 nbp = partitions.length ();
2901 if (nbp == 0
2902 || (nbp == 1 && !partition_builtin_p (partitions[0]))
2903 || (nbp > 1 && partition_contains_all_rw (rdg, partitions)))
2905 nbp = 0;
2906 goto ldist_done;
2909 if (version_for_distribution_p (&partitions, &alias_ddrs))
2910 version_loop_by_alias_check (&partitions, loop, &alias_ddrs);
2912 if (dump_file && (dump_flags & TDF_DETAILS))
2914 fprintf (dump_file,
2915 "distribute loop <%d> into partitions:\n", loop->num);
2916 dump_rdg_partitions (dump_file, partitions);
2919 FOR_EACH_VEC_ELT (partitions, i, partition)
2921 if (partition_builtin_p (partition))
2922 (*nb_calls)++;
2923 *destroy_p |= generate_code_for_partition (loop, partition, i < nbp - 1);
2926 ldist_done:
2927 loop_nest.release ();
2928 free_data_refs (datarefs_vec);
2929 for (hash_table<ddr_hasher>::iterator iter = ddrs_table->begin ();
2930 iter != ddrs_table->end (); ++iter)
2932 free_dependence_relation (*iter);
2933 *iter = NULL;
2935 delete ddrs_table;
2937 FOR_EACH_VEC_ELT (partitions, i, partition)
2938 partition_free (partition);
2940 free_rdg (rdg);
2941 return nbp - *nb_calls;
2944 /* Distribute all loops in the current function. */
2946 namespace {
2948 const pass_data pass_data_loop_distribution =
2950 GIMPLE_PASS, /* type */
2951 "ldist", /* name */
2952 OPTGROUP_LOOP, /* optinfo_flags */
2953 TV_TREE_LOOP_DISTRIBUTION, /* tv_id */
2954 ( PROP_cfg | PROP_ssa ), /* properties_required */
2955 0, /* properties_provided */
2956 0, /* properties_destroyed */
2957 0, /* todo_flags_start */
2958 0, /* todo_flags_finish */
2961 class pass_loop_distribution : public gimple_opt_pass
2963 public:
2964 pass_loop_distribution (gcc::context *ctxt)
2965 : gimple_opt_pass (pass_data_loop_distribution, ctxt)
2968 /* opt_pass methods: */
2969 virtual bool gate (function *)
2971 return flag_tree_loop_distribution
2972 || flag_tree_loop_distribute_patterns;
2975 virtual unsigned int execute (function *);
2977 }; // class pass_loop_distribution
2980 /* Given LOOP, this function records seed statements for distribution in
2981 WORK_LIST. Return false if there is nothing for distribution. */
2983 static bool
2984 find_seed_stmts_for_distribution (struct loop *loop, vec<gimple *> *work_list)
2986 basic_block *bbs = get_loop_body_in_dom_order (loop);
2988 /* Initialize the worklist with stmts we seed the partitions with. */
2989 for (unsigned i = 0; i < loop->num_nodes; ++i)
2991 for (gphi_iterator gsi = gsi_start_phis (bbs[i]);
2992 !gsi_end_p (gsi); gsi_next (&gsi))
2994 gphi *phi = gsi.phi ();
2995 if (virtual_operand_p (gimple_phi_result (phi)))
2996 continue;
2997 /* Distribute stmts which have defs that are used outside of
2998 the loop. */
2999 if (!stmt_has_scalar_dependences_outside_loop (loop, phi))
3000 continue;
3001 work_list->safe_push (phi);
3003 for (gimple_stmt_iterator gsi = gsi_start_bb (bbs[i]);
3004 !gsi_end_p (gsi); gsi_next (&gsi))
3006 gimple *stmt = gsi_stmt (gsi);
3008 /* If there is a stmt with side-effects bail out - we
3009 cannot and should not distribute this loop. */
3010 if (gimple_has_side_effects (stmt))
3012 free (bbs);
3013 return false;
3016 /* Distribute stmts which have defs that are used outside of
3017 the loop. */
3018 if (stmt_has_scalar_dependences_outside_loop (loop, stmt))
3020 /* Otherwise only distribute stores for now. */
3021 else if (!gimple_vdef (stmt))
3022 continue;
3024 work_list->safe_push (stmt);
3027 free (bbs);
3028 return work_list->length () > 0;
3031 /* Given innermost LOOP, return the outermost enclosing loop that forms a
3032 perfect loop nest. */
3034 static struct loop *
3035 prepare_perfect_loop_nest (struct loop *loop)
3037 struct loop *outer = loop_outer (loop);
3038 tree niters = number_of_latch_executions (loop);
3040 /* TODO: We only support the innermost 3-level loop nest distribution
3041 because of compilation time issue for now. This should be relaxed
3042 in the future. Note we only allow 3-level loop nest distribution
3043 when parallelizing loops. */
3044 while ((loop->inner == NULL
3045 || (loop->inner->inner == NULL && flag_tree_parallelize_loops > 1))
3046 && loop_outer (outer)
3047 && outer->inner == loop && loop->next == NULL
3048 && single_exit (outer)
3049 && optimize_loop_for_speed_p (outer)
3050 && !chrec_contains_symbols_defined_in_loop (niters, outer->num)
3051 && (niters = number_of_latch_executions (outer)) != NULL_TREE
3052 && niters != chrec_dont_know)
3054 loop = outer;
3055 outer = loop_outer (loop);
3058 return loop;
3061 unsigned int
3062 pass_loop_distribution::execute (function *fun)
3064 struct loop *loop;
3065 bool changed = false;
3066 basic_block bb;
3067 control_dependences *cd = NULL;
3068 auto_vec<loop_p> loops_to_be_destroyed;
3070 if (number_of_loops (fun) <= 1)
3071 return 0;
3073 /* Compute topological order for basic blocks. Topological order is
3074 needed because data dependence is computed for data references in
3075 lexicographical order. */
3076 if (bb_top_order_index == NULL)
3078 int rpo_num;
3079 int *rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
3081 bb_top_order_index = XNEWVEC (int, last_basic_block_for_fn (cfun));
3082 bb_top_order_index_size = last_basic_block_for_fn (cfun);
3083 rpo_num = pre_and_rev_post_order_compute_fn (cfun, NULL, rpo, true);
3084 for (int i = 0; i < rpo_num; i++)
3085 bb_top_order_index[rpo[i]] = i;
3087 free (rpo);
3090 FOR_ALL_BB_FN (bb, fun)
3092 gimple_stmt_iterator gsi;
3093 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3094 gimple_set_uid (gsi_stmt (gsi), -1);
3095 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3096 gimple_set_uid (gsi_stmt (gsi), -1);
3099 /* We can at the moment only distribute non-nested loops, thus restrict
3100 walking to innermost loops. */
3101 FOR_EACH_LOOP (loop, LI_ONLY_INNERMOST)
3103 /* Don't distribute multiple exit edges loop, or cold loop. */
3104 if (!single_exit (loop)
3105 || !optimize_loop_for_speed_p (loop))
3106 continue;
3108 /* Don't distribute loop if niters is unknown. */
3109 tree niters = number_of_latch_executions (loop);
3110 if (niters == NULL_TREE || niters == chrec_dont_know)
3111 continue;
3113 /* Get the perfect loop nest for distribution. */
3114 loop = prepare_perfect_loop_nest (loop);
3115 for (; loop; loop = loop->inner)
3117 auto_vec<gimple *> work_list;
3118 if (!find_seed_stmts_for_distribution (loop, &work_list))
3119 break;
3121 const char *str = loop->inner ? " nest" : "";
3122 dump_user_location_t loc = find_loop_location (loop);
3123 if (!cd)
3125 calculate_dominance_info (CDI_DOMINATORS);
3126 calculate_dominance_info (CDI_POST_DOMINATORS);
3127 cd = new control_dependences ();
3128 free_dominance_info (CDI_POST_DOMINATORS);
3131 bool destroy_p;
3132 int nb_generated_loops, nb_generated_calls;
3133 nb_generated_loops = distribute_loop (loop, work_list, cd,
3134 &nb_generated_calls,
3135 &destroy_p);
3136 if (destroy_p)
3137 loops_to_be_destroyed.safe_push (loop);
3139 if (nb_generated_loops + nb_generated_calls > 0)
3141 changed = true;
3142 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS,
3143 loc, "Loop%s %d distributed: split to %d loops "
3144 "and %d library calls.\n", str, loop->num,
3145 nb_generated_loops, nb_generated_calls);
3147 break;
3150 if (dump_file && (dump_flags & TDF_DETAILS))
3151 fprintf (dump_file, "Loop%s %d not distributed.\n", str, loop->num);
3155 if (cd)
3156 delete cd;
3158 if (bb_top_order_index != NULL)
3160 free (bb_top_order_index);
3161 bb_top_order_index = NULL;
3162 bb_top_order_index_size = 0;
3165 if (changed)
3167 /* Destroy loop bodies that could not be reused. Do this late as we
3168 otherwise can end up refering to stale data in control dependences. */
3169 unsigned i;
3170 FOR_EACH_VEC_ELT (loops_to_be_destroyed, i, loop)
3171 destroy_loop (loop);
3173 /* Cached scalar evolutions now may refer to wrong or non-existing
3174 loops. */
3175 scev_reset_htab ();
3176 mark_virtual_operands_for_renaming (fun);
3177 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
3180 checking_verify_loop_structure ();
3182 return changed ? TODO_cleanup_cfg : 0;
3185 } // anon namespace
3187 gimple_opt_pass *
3188 make_pass_loop_distribution (gcc::context *ctxt)
3190 return new pass_loop_distribution (ctxt);