2013-04-02 Catherine Moore <clm@codesourcery.com>
[official-gcc.git] / libgfortran / intrinsics / erfc_scaled_inc.c
blob57a6b71f995dd85bb3bf29e14c34cfe199fafd52
1 /* Implementation of the ERFC_SCALED intrinsic, to be included by erfc_scaled.c
2 Copyright (C) 2008-2013 Free Software Foundation, Inc.
4 This file is part of the GNU Fortran runtime library (libgfortran).
6 Libgfortran is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public
8 License as published by the Free Software Foundation; either
9 version 3 of the License, or (at your option) any later version.
11 Libgfortran is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR a PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 Under Section 7 of GPL version 3, you are granted additional
17 permissions described in the GCC Runtime Library Exception, version
18 3.1, as published by the Free Software Foundation.
20 You should have received a copy of the GNU General Public License and
21 a copy of the GCC Runtime Library Exception along with this program;
22 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 <http://www.gnu.org/licenses/>. */
25 /* This implementation of ERFC_SCALED is based on the netlib algorithm
26 available at http://www.netlib.org/specfun/erf */
28 #define TYPE KIND_SUFFIX(GFC_REAL_,KIND)
29 #define CONCAT(x,y) x ## y
30 #define KIND_SUFFIX(x,y) CONCAT(x,y)
32 #if (KIND == 4)
34 # define EXP(x) expf(x)
35 # define TRUNC(x) truncf(x)
37 #elif (KIND == 8)
39 # define EXP(x) exp(x)
40 # define TRUNC(x) trunc(x)
42 #elif (KIND == 10) || (KIND == 16 && defined(GFC_REAL_16_IS_LONG_DOUBLE))
44 # ifdef HAVE_EXPL
45 # define EXP(x) expl(x)
46 # endif
47 # ifdef HAVE_TRUNCL
48 # define TRUNC(x) truncl(x)
49 # endif
51 #elif (KIND == 16 && defined(GFC_REAL_16_IS_FLOAT128))
53 # define EXP(x) expq(x)
54 # define TRUNC(x) truncq(x)
56 #else
58 # error "What exactly is it that you want me to do?"
60 #endif
62 #if defined(EXP) && defined(TRUNC)
64 extern TYPE KIND_SUFFIX(erfc_scaled_r,KIND) (TYPE);
65 export_proto(KIND_SUFFIX(erfc_scaled_r,KIND));
67 TYPE
68 KIND_SUFFIX(erfc_scaled_r,KIND) (TYPE x)
70 /* The main computation evaluates near-minimax approximations
71 from "Rational Chebyshev approximations for the error function"
72 by W. J. Cody, Math. Comp., 1969, PP. 631-638. This
73 transportable program uses rational functions that theoretically
74 approximate erf(x) and erfc(x) to at least 18 significant
75 decimal digits. The accuracy achieved depends on the arithmetic
76 system, the compiler, the intrinsic functions, and proper
77 selection of the machine-dependent constants. */
79 int i;
80 TYPE del, res, xden, xnum, y, ysq;
82 #if (KIND == 4)
83 static TYPE xneg = -9.382, xsmall = 5.96e-8,
84 xbig = 9.194, xhuge = 2.90e+3, xmax = 4.79e+37;
85 #else
86 static TYPE xneg = -26.628, xsmall = 1.11e-16,
87 xbig = 26.543, xhuge = 6.71e+7, xmax = 2.53e+307;
88 #endif
90 #define SQRPI ((TYPE) 0.56418958354775628695L)
91 #define THRESH ((TYPE) 0.46875L)
93 static TYPE a[5] = { 3.16112374387056560l, 113.864154151050156l,
94 377.485237685302021l, 3209.37758913846947l, 0.185777706184603153l };
96 static TYPE b[4] = { 23.6012909523441209l, 244.024637934444173l,
97 1282.61652607737228l, 2844.23683343917062l };
99 static TYPE c[9] = { 0.564188496988670089l, 8.88314979438837594l,
100 66.1191906371416295l, 298.635138197400131l, 881.952221241769090l,
101 1712.04761263407058l, 2051.07837782607147l, 1230.33935479799725l,
102 2.15311535474403846e-8l };
104 static TYPE d[8] = { 15.7449261107098347l, 117.693950891312499l,
105 537.181101862009858l, 1621.38957456669019l, 3290.79923573345963l,
106 4362.61909014324716l, 3439.36767414372164l, 1230.33935480374942l };
108 static TYPE p[6] = { 0.305326634961232344l, 0.360344899949804439l,
109 0.125781726111229246l, 0.0160837851487422766l,
110 0.000658749161529837803l, 0.0163153871373020978l };
112 static TYPE q[5] = { 2.56852019228982242l, 1.87295284992346047l,
113 0.527905102951428412l, 0.0605183413124413191l,
114 0.00233520497626869185l };
116 y = (x > 0 ? x : -x);
117 if (y <= THRESH)
119 ysq = 0;
120 if (y > xsmall)
121 ysq = y * y;
122 xnum = a[4]*ysq;
123 xden = ysq;
124 for (i = 0; i <= 2; i++)
126 xnum = (xnum + a[i]) * ysq;
127 xden = (xden + b[i]) * ysq;
129 res = x * (xnum + a[3]) / (xden + b[3]);
130 res = 1 - res;
131 res = EXP(ysq) * res;
132 return res;
134 else if (y <= 4)
136 xnum = c[8]*y;
137 xden = y;
138 for (i = 0; i <= 6; i++)
140 xnum = (xnum + c[i]) * y;
141 xden = (xden + d[i]) * y;
143 res = (xnum + c[7]) / (xden + d[7]);
145 else
147 res = 0;
148 if (y >= xbig)
150 if (y >= xmax)
151 goto finish;
152 if (y >= xhuge)
154 res = SQRPI / y;
155 goto finish;
158 ysq = ((TYPE) 1) / (y * y);
159 xnum = p[5]*ysq;
160 xden = ysq;
161 for (i = 0; i <= 3; i++)
163 xnum = (xnum + p[i]) * ysq;
164 xden = (xden + q[i]) * ysq;
166 res = ysq *(xnum + p[4]) / (xden + q[4]);
167 res = (SQRPI - res) / y;
170 finish:
171 if (x < 0)
173 if (x < xneg)
174 res = __builtin_inf ();
175 else
177 ysq = TRUNC (x*((TYPE) 16))/((TYPE) 16);
178 del = (x-ysq)*(x+ysq);
179 y = EXP(ysq*ysq) * EXP(del);
180 res = (y+y) - res;
183 return res;
186 #endif
188 #undef EXP
189 #undef TRUNC
191 #undef CONCAT
192 #undef TYPE
193 #undef KIND_SUFFIX