1 /* Implementation of the ERFC_SCALED intrinsic, to be included by erfc_scaled.c
2 Copyright (C) 2008-2013 Free Software Foundation, Inc.
4 This file is part of the GNU Fortran runtime library (libgfortran).
6 Libgfortran is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public
8 License as published by the Free Software Foundation; either
9 version 3 of the License, or (at your option) any later version.
11 Libgfortran is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR a PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 Under Section 7 of GPL version 3, you are granted additional
17 permissions described in the GCC Runtime Library Exception, version
18 3.1, as published by the Free Software Foundation.
20 You should have received a copy of the GNU General Public License and
21 a copy of the GCC Runtime Library Exception along with this program;
22 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 <http://www.gnu.org/licenses/>. */
25 /* This implementation of ERFC_SCALED is based on the netlib algorithm
26 available at http://www.netlib.org/specfun/erf */
28 #define TYPE KIND_SUFFIX(GFC_REAL_,KIND)
29 #define CONCAT(x,y) x ## y
30 #define KIND_SUFFIX(x,y) CONCAT(x,y)
34 # define EXP(x) expf(x)
35 # define TRUNC(x) truncf(x)
39 # define EXP(x) exp(x)
40 # define TRUNC(x) trunc(x)
42 #elif (KIND == 10) || (KIND == 16 && defined(GFC_REAL_16_IS_LONG_DOUBLE))
45 # define EXP(x) expl(x)
48 # define TRUNC(x) truncl(x)
51 #elif (KIND == 16 && defined(GFC_REAL_16_IS_FLOAT128))
53 # define EXP(x) expq(x)
54 # define TRUNC(x) truncq(x)
58 # error "What exactly is it that you want me to do?"
62 #if defined(EXP) && defined(TRUNC)
64 extern TYPE
KIND_SUFFIX(erfc_scaled_r
,KIND
) (TYPE
);
65 export_proto(KIND_SUFFIX(erfc_scaled_r
,KIND
));
68 KIND_SUFFIX(erfc_scaled_r
,KIND
) (TYPE x
)
70 /* The main computation evaluates near-minimax approximations
71 from "Rational Chebyshev approximations for the error function"
72 by W. J. Cody, Math. Comp., 1969, PP. 631-638. This
73 transportable program uses rational functions that theoretically
74 approximate erf(x) and erfc(x) to at least 18 significant
75 decimal digits. The accuracy achieved depends on the arithmetic
76 system, the compiler, the intrinsic functions, and proper
77 selection of the machine-dependent constants. */
80 TYPE del
, res
, xden
, xnum
, y
, ysq
;
83 static TYPE xneg
= -9.382, xsmall
= 5.96e-8,
84 xbig
= 9.194, xhuge
= 2.90e+3, xmax
= 4.79e+37;
86 static TYPE xneg
= -26.628, xsmall
= 1.11e-16,
87 xbig
= 26.543, xhuge
= 6.71e+7, xmax
= 2.53e+307;
90 #define SQRPI ((TYPE) 0.56418958354775628695L)
91 #define THRESH ((TYPE) 0.46875L)
93 static TYPE a
[5] = { 3.16112374387056560l, 113.864154151050156l,
94 377.485237685302021l, 3209.37758913846947l, 0.185777706184603153l };
96 static TYPE b
[4] = { 23.6012909523441209l, 244.024637934444173l,
97 1282.61652607737228l, 2844.23683343917062l };
99 static TYPE c
[9] = { 0.564188496988670089l, 8.88314979438837594l,
100 66.1191906371416295l, 298.635138197400131l, 881.952221241769090l,
101 1712.04761263407058l, 2051.07837782607147l, 1230.33935479799725l,
102 2.15311535474403846e-8l };
104 static TYPE d
[8] = { 15.7449261107098347l, 117.693950891312499l,
105 537.181101862009858l, 1621.38957456669019l, 3290.79923573345963l,
106 4362.61909014324716l, 3439.36767414372164l, 1230.33935480374942l };
108 static TYPE p
[6] = { 0.305326634961232344l, 0.360344899949804439l,
109 0.125781726111229246l, 0.0160837851487422766l,
110 0.000658749161529837803l, 0.0163153871373020978l };
112 static TYPE q
[5] = { 2.56852019228982242l, 1.87295284992346047l,
113 0.527905102951428412l, 0.0605183413124413191l,
114 0.00233520497626869185l };
116 y
= (x
> 0 ? x
: -x
);
124 for (i
= 0; i
<= 2; i
++)
126 xnum
= (xnum
+ a
[i
]) * ysq
;
127 xden
= (xden
+ b
[i
]) * ysq
;
129 res
= x
* (xnum
+ a
[3]) / (xden
+ b
[3]);
131 res
= EXP(ysq
) * res
;
138 for (i
= 0; i
<= 6; i
++)
140 xnum
= (xnum
+ c
[i
]) * y
;
141 xden
= (xden
+ d
[i
]) * y
;
143 res
= (xnum
+ c
[7]) / (xden
+ d
[7]);
158 ysq
= ((TYPE
) 1) / (y
* y
);
161 for (i
= 0; i
<= 3; i
++)
163 xnum
= (xnum
+ p
[i
]) * ysq
;
164 xden
= (xden
+ q
[i
]) * ysq
;
166 res
= ysq
*(xnum
+ p
[4]) / (xden
+ q
[4]);
167 res
= (SQRPI
- res
) / y
;
174 res
= __builtin_inf ();
177 ysq
= TRUNC (x
*((TYPE
) 16))/((TYPE
) 16);
178 del
= (x
-ysq
)*(x
+ysq
);
179 y
= EXP(ysq
*ysq
) * EXP(del
);