ada: Fix wrong finalization for call to BIP function in conditional expression
[official-gcc.git] / gcc / tree-loop-distribution.cc
blob6291f941a21a0f763c976355ecfd57db4fa1137c
1 /* Loop distribution.
2 Copyright (C) 2006-2023 Free Software Foundation, Inc.
3 Contributed by Georges-Andre Silber <Georges-Andre.Silber@ensmp.fr>
4 and Sebastian Pop <sebastian.pop@amd.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by the
10 Free Software Foundation; either version 3, or (at your option) any
11 later version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This pass performs loop distribution: for example, the loop
24 |DO I = 2, N
25 | A(I) = B(I) + C
26 | D(I) = A(I-1)*E
27 |ENDDO
29 is transformed to
31 |DOALL I = 2, N
32 | A(I) = B(I) + C
33 |ENDDO
35 |DOALL I = 2, N
36 | D(I) = A(I-1)*E
37 |ENDDO
39 Loop distribution is the dual of loop fusion. It separates statements
40 of a loop (or loop nest) into multiple loops (or loop nests) with the
41 same loop header. The major goal is to separate statements which may
42 be vectorized from those that can't. This pass implements distribution
43 in the following steps:
45 1) Seed partitions with specific type statements. For now we support
46 two types seed statements: statement defining variable used outside
47 of loop; statement storing to memory.
48 2) Build reduced dependence graph (RDG) for loop to be distributed.
49 The vertices (RDG:V) model all statements in the loop and the edges
50 (RDG:E) model flow and control dependencies between statements.
51 3) Apart from RDG, compute data dependencies between memory references.
52 4) Starting from seed statement, build up partition by adding depended
53 statements according to RDG's dependence information. Partition is
54 classified as parallel type if it can be executed paralleled; or as
55 sequential type if it can't. Parallel type partition is further
56 classified as different builtin kinds if it can be implemented as
57 builtin function calls.
58 5) Build partition dependence graph (PG) based on data dependencies.
59 The vertices (PG:V) model all partitions and the edges (PG:E) model
60 all data dependencies between every partitions pair. In general,
61 data dependence is either compilation time known or unknown. In C
62 family languages, there exists quite amount compilation time unknown
63 dependencies because of possible alias relation of data references.
64 We categorize PG's edge to two types: "true" edge that represents
65 compilation time known data dependencies; "alias" edge for all other
66 data dependencies.
67 6) Traverse subgraph of PG as if all "alias" edges don't exist. Merge
68 partitions in each strong connected component (SCC) correspondingly.
69 Build new PG for merged partitions.
70 7) Traverse PG again and this time with both "true" and "alias" edges
71 included. We try to break SCCs by removing some edges. Because
72 SCCs by "true" edges are all fused in step 6), we can break SCCs
73 by removing some "alias" edges. It's NP-hard to choose optimal
74 edge set, fortunately simple approximation is good enough for us
75 given the small problem scale.
76 8) Collect all data dependencies of the removed "alias" edges. Create
77 runtime alias checks for collected data dependencies.
78 9) Version loop under the condition of runtime alias checks. Given
79 loop distribution generally introduces additional overhead, it is
80 only useful if vectorization is achieved in distributed loop. We
81 version loop with internal function call IFN_LOOP_DIST_ALIAS. If
82 no distributed loop can be vectorized, we simply remove distributed
83 loops and recover to the original one.
85 TODO:
86 1) We only distribute innermost two-level loop nest now. We should
87 extend it for arbitrary loop nests in the future.
88 2) We only fuse partitions in SCC now. A better fusion algorithm is
89 desired to minimize loop overhead, maximize parallelism and maximize
90 data reuse. */
92 #include "config.h"
93 #include "system.h"
94 #include "coretypes.h"
95 #include "backend.h"
96 #include "tree.h"
97 #include "gimple.h"
98 #include "cfghooks.h"
99 #include "tree-pass.h"
100 #include "ssa.h"
101 #include "gimple-pretty-print.h"
102 #include "fold-const.h"
103 #include "cfganal.h"
104 #include "gimple-iterator.h"
105 #include "gimplify-me.h"
106 #include "stor-layout.h"
107 #include "tree-cfg.h"
108 #include "tree-ssa-loop-manip.h"
109 #include "tree-ssa-loop-ivopts.h"
110 #include "tree-ssa-loop.h"
111 #include "tree-into-ssa.h"
112 #include "tree-ssa.h"
113 #include "cfgloop.h"
114 #include "tree-scalar-evolution.h"
115 #include "tree-vectorizer.h"
116 #include "tree-eh.h"
117 #include "gimple-fold.h"
118 #include "tree-affine.h"
119 #include "intl.h"
120 #include "rtl.h"
121 #include "memmodel.h"
122 #include "optabs.h"
125 #define MAX_DATAREFS_NUM \
126 ((unsigned) param_loop_max_datarefs_for_datadeps)
128 /* Threshold controlling number of distributed partitions. Given it may
129 be unnecessary if a memory stream cost model is invented in the future,
130 we define it as a temporary macro, rather than a parameter. */
131 #define NUM_PARTITION_THRESHOLD (4)
133 /* Hashtable helpers. */
135 struct ddr_hasher : nofree_ptr_hash <struct data_dependence_relation>
137 static inline hashval_t hash (const data_dependence_relation *);
138 static inline bool equal (const data_dependence_relation *,
139 const data_dependence_relation *);
142 /* Hash function for data dependence. */
144 inline hashval_t
145 ddr_hasher::hash (const data_dependence_relation *ddr)
147 inchash::hash h;
148 h.add_ptr (DDR_A (ddr));
149 h.add_ptr (DDR_B (ddr));
150 return h.end ();
153 /* Hash table equality function for data dependence. */
155 inline bool
156 ddr_hasher::equal (const data_dependence_relation *ddr1,
157 const data_dependence_relation *ddr2)
159 return (DDR_A (ddr1) == DDR_A (ddr2) && DDR_B (ddr1) == DDR_B (ddr2));
164 #define DR_INDEX(dr) ((uintptr_t) (dr)->aux)
166 /* A Reduced Dependence Graph (RDG) vertex representing a statement. */
167 struct rdg_vertex
169 /* The statement represented by this vertex. */
170 gimple *stmt;
172 /* Vector of data-references in this statement. */
173 vec<data_reference_p> datarefs;
175 /* True when the statement contains a write to memory. */
176 bool has_mem_write;
178 /* True when the statement contains a read from memory. */
179 bool has_mem_reads;
182 #define RDGV_STMT(V) ((struct rdg_vertex *) ((V)->data))->stmt
183 #define RDGV_DATAREFS(V) ((struct rdg_vertex *) ((V)->data))->datarefs
184 #define RDGV_HAS_MEM_WRITE(V) ((struct rdg_vertex *) ((V)->data))->has_mem_write
185 #define RDGV_HAS_MEM_READS(V) ((struct rdg_vertex *) ((V)->data))->has_mem_reads
186 #define RDG_STMT(RDG, I) RDGV_STMT (&(RDG->vertices[I]))
187 #define RDG_DATAREFS(RDG, I) RDGV_DATAREFS (&(RDG->vertices[I]))
188 #define RDG_MEM_WRITE_STMT(RDG, I) RDGV_HAS_MEM_WRITE (&(RDG->vertices[I]))
189 #define RDG_MEM_READS_STMT(RDG, I) RDGV_HAS_MEM_READS (&(RDG->vertices[I]))
191 /* Data dependence type. */
193 enum rdg_dep_type
195 /* Read After Write (RAW). */
196 flow_dd = 'f',
198 /* Control dependence (execute conditional on). */
199 control_dd = 'c'
202 /* Dependence information attached to an edge of the RDG. */
204 struct rdg_edge
206 /* Type of the dependence. */
207 enum rdg_dep_type type;
210 #define RDGE_TYPE(E) ((struct rdg_edge *) ((E)->data))->type
212 /* Kind of distributed loop. */
213 enum partition_kind {
214 PKIND_NORMAL,
215 /* Partial memset stands for a paritition can be distributed into a loop
216 of memset calls, rather than a single memset call. It's handled just
217 like a normal parition, i.e, distributed as separate loop, no memset
218 call is generated.
220 Note: This is a hacking fix trying to distribute ZERO-ing stmt in a
221 loop nest as deep as possible. As a result, parloop achieves better
222 parallelization by parallelizing deeper loop nest. This hack should
223 be unnecessary and removed once distributed memset can be understood
224 and analyzed in data reference analysis. See PR82604 for more. */
225 PKIND_PARTIAL_MEMSET,
226 PKIND_MEMSET, PKIND_MEMCPY, PKIND_MEMMOVE
229 /* Type of distributed loop. */
230 enum partition_type {
231 /* The distributed loop can be executed parallelly. */
232 PTYPE_PARALLEL = 0,
233 /* The distributed loop has to be executed sequentially. */
234 PTYPE_SEQUENTIAL
237 /* Builtin info for loop distribution. */
238 struct builtin_info
240 /* data-references a kind != PKIND_NORMAL partition is about. */
241 data_reference_p dst_dr;
242 data_reference_p src_dr;
243 /* Base address and size of memory objects operated by the builtin. Note
244 both dest and source memory objects must have the same size. */
245 tree dst_base;
246 tree src_base;
247 tree size;
248 /* Base and offset part of dst_base after stripping constant offset. This
249 is only used in memset builtin distribution for now. */
250 tree dst_base_base;
251 unsigned HOST_WIDE_INT dst_base_offset;
254 /* Partition for loop distribution. */
255 struct partition
257 /* Statements of the partition. */
258 bitmap stmts;
259 /* True if the partition defines variable which is used outside of loop. */
260 bool reduction_p;
261 location_t loc;
262 enum partition_kind kind;
263 enum partition_type type;
264 /* Data references in the partition. */
265 bitmap datarefs;
266 /* Information of builtin parition. */
267 struct builtin_info *builtin;
270 /* Partitions are fused because of different reasons. */
271 enum fuse_type
273 FUSE_NON_BUILTIN = 0,
274 FUSE_REDUCTION = 1,
275 FUSE_SHARE_REF = 2,
276 FUSE_SAME_SCC = 3,
277 FUSE_FINALIZE = 4
280 /* Description on different fusing reason. */
281 static const char *fuse_message[] = {
282 "they are non-builtins",
283 "they have reductions",
284 "they have shared memory refs",
285 "they are in the same dependence scc",
286 "there is no point to distribute loop"};
289 /* Dump vertex I in RDG to FILE. */
291 static void
292 dump_rdg_vertex (FILE *file, struct graph *rdg, int i)
294 struct vertex *v = &(rdg->vertices[i]);
295 struct graph_edge *e;
297 fprintf (file, "(vertex %d: (%s%s) (in:", i,
298 RDG_MEM_WRITE_STMT (rdg, i) ? "w" : "",
299 RDG_MEM_READS_STMT (rdg, i) ? "r" : "");
301 if (v->pred)
302 for (e = v->pred; e; e = e->pred_next)
303 fprintf (file, " %d", e->src);
305 fprintf (file, ") (out:");
307 if (v->succ)
308 for (e = v->succ; e; e = e->succ_next)
309 fprintf (file, " %d", e->dest);
311 fprintf (file, ")\n");
312 print_gimple_stmt (file, RDGV_STMT (v), 0, TDF_VOPS|TDF_MEMSYMS);
313 fprintf (file, ")\n");
316 /* Call dump_rdg_vertex on stderr. */
318 DEBUG_FUNCTION void
319 debug_rdg_vertex (struct graph *rdg, int i)
321 dump_rdg_vertex (stderr, rdg, i);
324 /* Dump the reduced dependence graph RDG to FILE. */
326 static void
327 dump_rdg (FILE *file, struct graph *rdg)
329 fprintf (file, "(rdg\n");
330 for (int i = 0; i < rdg->n_vertices; i++)
331 dump_rdg_vertex (file, rdg, i);
332 fprintf (file, ")\n");
335 /* Call dump_rdg on stderr. */
337 DEBUG_FUNCTION void
338 debug_rdg (struct graph *rdg)
340 dump_rdg (stderr, rdg);
343 static void
344 dot_rdg_1 (FILE *file, struct graph *rdg)
346 int i;
347 pretty_printer buffer;
348 pp_needs_newline (&buffer) = false;
349 buffer.buffer->stream = file;
351 fprintf (file, "digraph RDG {\n");
353 for (i = 0; i < rdg->n_vertices; i++)
355 struct vertex *v = &(rdg->vertices[i]);
356 struct graph_edge *e;
358 fprintf (file, "%d [label=\"[%d] ", i, i);
359 pp_gimple_stmt_1 (&buffer, RDGV_STMT (v), 0, TDF_SLIM);
360 pp_flush (&buffer);
361 fprintf (file, "\"]\n");
363 /* Highlight reads from memory. */
364 if (RDG_MEM_READS_STMT (rdg, i))
365 fprintf (file, "%d [style=filled, fillcolor=green]\n", i);
367 /* Highlight stores to memory. */
368 if (RDG_MEM_WRITE_STMT (rdg, i))
369 fprintf (file, "%d [style=filled, fillcolor=red]\n", i);
371 if (v->succ)
372 for (e = v->succ; e; e = e->succ_next)
373 switch (RDGE_TYPE (e))
375 case flow_dd:
376 /* These are the most common dependences: don't print these. */
377 fprintf (file, "%d -> %d \n", i, e->dest);
378 break;
380 case control_dd:
381 fprintf (file, "%d -> %d [label=control] \n", i, e->dest);
382 break;
384 default:
385 gcc_unreachable ();
389 fprintf (file, "}\n\n");
392 /* Display the Reduced Dependence Graph using dotty. */
394 DEBUG_FUNCTION void
395 dot_rdg (struct graph *rdg)
397 /* When debugging, you may want to enable the following code. */
398 #ifdef HAVE_POPEN
399 FILE *file = popen ("dot -Tx11", "w");
400 if (!file)
401 return;
402 dot_rdg_1 (file, rdg);
403 fflush (file);
404 close (fileno (file));
405 pclose (file);
406 #else
407 dot_rdg_1 (stderr, rdg);
408 #endif
411 /* Returns the index of STMT in RDG. */
413 static int
414 rdg_vertex_for_stmt (struct graph *rdg ATTRIBUTE_UNUSED, gimple *stmt)
416 int index = gimple_uid (stmt);
417 gcc_checking_assert (index == -1 || RDG_STMT (rdg, index) == stmt);
418 return index;
421 /* Creates dependence edges in RDG for all the uses of DEF. IDEF is
422 the index of DEF in RDG. */
424 static void
425 create_rdg_edges_for_scalar (struct graph *rdg, tree def, int idef)
427 use_operand_p imm_use_p;
428 imm_use_iterator iterator;
430 FOR_EACH_IMM_USE_FAST (imm_use_p, iterator, def)
432 struct graph_edge *e;
433 int use = rdg_vertex_for_stmt (rdg, USE_STMT (imm_use_p));
435 if (use < 0)
436 continue;
438 e = add_edge (rdg, idef, use);
439 e->data = XNEW (struct rdg_edge);
440 RDGE_TYPE (e) = flow_dd;
444 /* Creates an edge for the control dependences of BB to the vertex V. */
446 static void
447 create_edge_for_control_dependence (struct graph *rdg, basic_block bb,
448 int v, control_dependences *cd)
450 bitmap_iterator bi;
451 unsigned edge_n;
452 EXECUTE_IF_SET_IN_BITMAP (cd->get_edges_dependent_on (bb->index),
453 0, edge_n, bi)
455 basic_block cond_bb = cd->get_edge_src (edge_n);
456 gimple *stmt = *gsi_last_bb (cond_bb);
457 if (stmt && is_ctrl_stmt (stmt))
459 struct graph_edge *e;
460 int c = rdg_vertex_for_stmt (rdg, stmt);
461 if (c < 0)
462 continue;
464 e = add_edge (rdg, c, v);
465 e->data = XNEW (struct rdg_edge);
466 RDGE_TYPE (e) = control_dd;
471 /* Creates the edges of the reduced dependence graph RDG. */
473 static void
474 create_rdg_flow_edges (struct graph *rdg)
476 int i;
477 def_operand_p def_p;
478 ssa_op_iter iter;
480 for (i = 0; i < rdg->n_vertices; i++)
481 FOR_EACH_PHI_OR_STMT_DEF (def_p, RDG_STMT (rdg, i),
482 iter, SSA_OP_DEF)
483 create_rdg_edges_for_scalar (rdg, DEF_FROM_PTR (def_p), i);
486 /* Creates the edges of the reduced dependence graph RDG. */
488 static void
489 create_rdg_cd_edges (struct graph *rdg, control_dependences *cd, loop_p loop)
491 int i;
493 for (i = 0; i < rdg->n_vertices; i++)
495 gimple *stmt = RDG_STMT (rdg, i);
496 if (gimple_code (stmt) == GIMPLE_PHI)
498 edge_iterator ei;
499 edge e;
500 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->preds)
501 if (flow_bb_inside_loop_p (loop, e->src))
502 create_edge_for_control_dependence (rdg, e->src, i, cd);
504 else
505 create_edge_for_control_dependence (rdg, gimple_bb (stmt), i, cd);
510 class loop_distribution
512 private:
513 /* The loop (nest) to be distributed. */
514 vec<loop_p> loop_nest;
516 /* Vector of data references in the loop to be distributed. */
517 vec<data_reference_p> datarefs_vec;
519 /* If there is nonaddressable data reference in above vector. */
520 bool has_nonaddressable_dataref_p;
522 /* Store index of data reference in aux field. */
524 /* Hash table for data dependence relation in the loop to be distributed. */
525 hash_table<ddr_hasher> *ddrs_table;
527 /* Array mapping basic block's index to its topological order. */
528 int *bb_top_order_index;
529 /* And size of the array. */
530 int bb_top_order_index_size;
532 /* Build the vertices of the reduced dependence graph RDG. Return false
533 if that failed. */
534 bool create_rdg_vertices (struct graph *rdg, const vec<gimple *> &stmts,
535 loop_p loop);
537 /* Initialize STMTS with all the statements of LOOP. We use topological
538 order to discover all statements. The order is important because
539 generate_loops_for_partition is using the same traversal for identifying
540 statements in loop copies. */
541 void stmts_from_loop (class loop *loop, vec<gimple *> *stmts);
544 /* Build the Reduced Dependence Graph (RDG) with one vertex per statement of
545 LOOP, and one edge per flow dependence or control dependence from control
546 dependence CD. During visiting each statement, data references are also
547 collected and recorded in global data DATAREFS_VEC. */
548 struct graph * build_rdg (class loop *loop, control_dependences *cd);
550 /* Merge PARTITION into the partition DEST. RDG is the reduced dependence
551 graph and we update type for result partition if it is non-NULL. */
552 void partition_merge_into (struct graph *rdg,
553 partition *dest, partition *partition,
554 enum fuse_type ft);
557 /* Return data dependence relation for data references A and B. The two
558 data references must be in lexicographic order wrto reduced dependence
559 graph RDG. We firstly try to find ddr from global ddr hash table. If
560 it doesn't exist, compute the ddr and cache it. */
561 data_dependence_relation * get_data_dependence (struct graph *rdg,
562 data_reference_p a,
563 data_reference_p b);
566 /* In reduced dependence graph RDG for loop distribution, return true if
567 dependence between references DR1 and DR2 leads to a dependence cycle
568 and such dependence cycle can't be resolved by runtime alias check. */
569 bool data_dep_in_cycle_p (struct graph *rdg, data_reference_p dr1,
570 data_reference_p dr2);
573 /* Given reduced dependence graph RDG, PARTITION1 and PARTITION2, update
574 PARTITION1's type after merging PARTITION2 into PARTITION1. */
575 void update_type_for_merge (struct graph *rdg,
576 partition *partition1, partition *partition2);
579 /* Returns a partition with all the statements needed for computing
580 the vertex V of the RDG, also including the loop exit conditions. */
581 partition *build_rdg_partition_for_vertex (struct graph *rdg, int v);
583 /* Given data references DST_DR and SRC_DR in loop nest LOOP and RDG, classify
584 if it forms builtin memcpy or memmove call. */
585 void classify_builtin_ldst (loop_p loop, struct graph *rdg, partition *partition,
586 data_reference_p dst_dr, data_reference_p src_dr);
588 /* Classifies the builtin kind we can generate for PARTITION of RDG and LOOP.
589 For the moment we detect memset, memcpy and memmove patterns. Bitmap
590 STMT_IN_ALL_PARTITIONS contains statements belonging to all partitions.
591 Returns true if there is a reduction in all partitions and we
592 possibly did not mark PARTITION as having one for this reason. */
594 bool
595 classify_partition (loop_p loop,
596 struct graph *rdg, partition *partition,
597 bitmap stmt_in_all_partitions);
600 /* Returns true when PARTITION1 and PARTITION2 access the same memory
601 object in RDG. */
602 bool share_memory_accesses (struct graph *rdg,
603 partition *partition1, partition *partition2);
605 /* For each seed statement in STARTING_STMTS, this function builds
606 partition for it by adding depended statements according to RDG.
607 All partitions are recorded in PARTITIONS. */
608 void rdg_build_partitions (struct graph *rdg,
609 vec<gimple *> starting_stmts,
610 vec<partition *> *partitions);
612 /* Compute partition dependence created by the data references in DRS1
613 and DRS2, modify and return DIR according to that. IF ALIAS_DDR is
614 not NULL, we record dependence introduced by possible alias between
615 two data references in ALIAS_DDRS; otherwise, we simply ignore such
616 dependence as if it doesn't exist at all. */
617 int pg_add_dependence_edges (struct graph *rdg, int dir, bitmap drs1,
618 bitmap drs2, vec<ddr_p> *alias_ddrs);
621 /* Build and return partition dependence graph for PARTITIONS. RDG is
622 reduced dependence graph for the loop to be distributed. If IGNORE_ALIAS_P
623 is true, data dependence caused by possible alias between references
624 is ignored, as if it doesn't exist at all; otherwise all depdendences
625 are considered. */
626 struct graph *build_partition_graph (struct graph *rdg,
627 vec<struct partition *> *partitions,
628 bool ignore_alias_p);
630 /* Given reduced dependence graph RDG merge strong connected components
631 of PARTITIONS. If IGNORE_ALIAS_P is true, data dependence caused by
632 possible alias between references is ignored, as if it doesn't exist
633 at all; otherwise all depdendences are considered. */
634 void merge_dep_scc_partitions (struct graph *rdg, vec<struct partition *>
635 *partitions, bool ignore_alias_p);
637 /* This is the main function breaking strong conected components in
638 PARTITIONS giving reduced depdendence graph RDG. Store data dependence
639 relations for runtime alias check in ALIAS_DDRS. */
640 void break_alias_scc_partitions (struct graph *rdg, vec<struct partition *>
641 *partitions, vec<ddr_p> *alias_ddrs);
644 /* Fuse PARTITIONS of LOOP if necessary before finalizing distribution.
645 ALIAS_DDRS contains ddrs which need runtime alias check. */
646 void finalize_partitions (class loop *loop, vec<struct partition *>
647 *partitions, vec<ddr_p> *alias_ddrs);
649 /* Distributes the code from LOOP in such a way that producer statements
650 are placed before consumer statements. Tries to separate only the
651 statements from STMTS into separate loops. Returns the number of
652 distributed loops. Set NB_CALLS to number of generated builtin calls.
653 Set *DESTROY_P to whether LOOP needs to be destroyed. */
654 int distribute_loop (class loop *loop, const vec<gimple *> &stmts,
655 control_dependences *cd, int *nb_calls, bool *destroy_p,
656 bool only_patterns_p);
658 /* Transform loops which mimic the effects of builtins rawmemchr or strlen and
659 replace them accordingly. */
660 bool transform_reduction_loop (loop_p loop);
662 /* Compute topological order for basic blocks. Topological order is
663 needed because data dependence is computed for data references in
664 lexicographical order. */
665 void bb_top_order_init (void);
667 void bb_top_order_destroy (void);
669 public:
671 /* Getter for bb_top_order. */
673 inline int get_bb_top_order_index_size (void)
675 return bb_top_order_index_size;
678 inline int get_bb_top_order_index (int i)
680 return bb_top_order_index[i];
683 unsigned int execute (function *fun);
687 /* If X has a smaller topological sort number than Y, returns -1;
688 if greater, returns 1. */
689 static int
690 bb_top_order_cmp_r (const void *x, const void *y, void *loop)
692 loop_distribution *_loop =
693 (loop_distribution *) loop;
695 basic_block bb1 = *(const basic_block *) x;
696 basic_block bb2 = *(const basic_block *) y;
698 int bb_top_order_index_size = _loop->get_bb_top_order_index_size ();
700 gcc_assert (bb1->index < bb_top_order_index_size
701 && bb2->index < bb_top_order_index_size);
702 gcc_assert (bb1 == bb2
703 || _loop->get_bb_top_order_index(bb1->index)
704 != _loop->get_bb_top_order_index(bb2->index));
706 return (_loop->get_bb_top_order_index(bb1->index) -
707 _loop->get_bb_top_order_index(bb2->index));
710 bool
711 loop_distribution::create_rdg_vertices (struct graph *rdg,
712 const vec<gimple *> &stmts,
713 loop_p loop)
715 int i;
716 gimple *stmt;
718 FOR_EACH_VEC_ELT (stmts, i, stmt)
720 struct vertex *v = &(rdg->vertices[i]);
722 /* Record statement to vertex mapping. */
723 gimple_set_uid (stmt, i);
725 v->data = XNEW (struct rdg_vertex);
726 RDGV_STMT (v) = stmt;
727 RDGV_DATAREFS (v).create (0);
728 RDGV_HAS_MEM_WRITE (v) = false;
729 RDGV_HAS_MEM_READS (v) = false;
730 if (gimple_code (stmt) == GIMPLE_PHI)
731 continue;
733 unsigned drp = datarefs_vec.length ();
734 if (!find_data_references_in_stmt (loop, stmt, &datarefs_vec))
735 return false;
736 for (unsigned j = drp; j < datarefs_vec.length (); ++j)
738 data_reference_p dr = datarefs_vec[j];
739 if (DR_IS_READ (dr))
740 RDGV_HAS_MEM_READS (v) = true;
741 else
742 RDGV_HAS_MEM_WRITE (v) = true;
743 RDGV_DATAREFS (v).safe_push (dr);
744 has_nonaddressable_dataref_p |= may_be_nonaddressable_p (dr->ref);
747 return true;
750 void
751 loop_distribution::stmts_from_loop (class loop *loop, vec<gimple *> *stmts)
753 unsigned int i;
754 basic_block *bbs = get_loop_body_in_custom_order (loop, this, bb_top_order_cmp_r);
756 for (i = 0; i < loop->num_nodes; i++)
758 basic_block bb = bbs[i];
760 for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (bsi);
761 gsi_next (&bsi))
762 if (!virtual_operand_p (gimple_phi_result (bsi.phi ())))
763 stmts->safe_push (bsi.phi ());
765 for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (bsi);
766 gsi_next (&bsi))
768 gimple *stmt = gsi_stmt (bsi);
769 if (gimple_code (stmt) != GIMPLE_LABEL && !is_gimple_debug (stmt))
770 stmts->safe_push (stmt);
774 free (bbs);
777 /* Free the reduced dependence graph RDG. */
779 static void
780 free_rdg (struct graph *rdg)
782 int i;
784 for (i = 0; i < rdg->n_vertices; i++)
786 struct vertex *v = &(rdg->vertices[i]);
787 struct graph_edge *e;
789 for (e = v->succ; e; e = e->succ_next)
790 free (e->data);
792 if (v->data)
794 gimple_set_uid (RDGV_STMT (v), -1);
795 (RDGV_DATAREFS (v)).release ();
796 free (v->data);
800 free_graph (rdg);
803 struct graph *
804 loop_distribution::build_rdg (class loop *loop, control_dependences *cd)
806 struct graph *rdg;
808 /* Create the RDG vertices from the stmts of the loop nest. */
809 auto_vec<gimple *, 10> stmts;
810 stmts_from_loop (loop, &stmts);
811 rdg = new_graph (stmts.length ());
812 if (!create_rdg_vertices (rdg, stmts, loop))
814 free_rdg (rdg);
815 return NULL;
817 stmts.release ();
819 create_rdg_flow_edges (rdg);
820 if (cd)
821 create_rdg_cd_edges (rdg, cd, loop);
823 return rdg;
827 /* Allocate and initialize a partition from BITMAP. */
829 static partition *
830 partition_alloc (void)
832 partition *partition = XCNEW (struct partition);
833 partition->stmts = BITMAP_ALLOC (NULL);
834 partition->reduction_p = false;
835 partition->loc = UNKNOWN_LOCATION;
836 partition->kind = PKIND_NORMAL;
837 partition->type = PTYPE_PARALLEL;
838 partition->datarefs = BITMAP_ALLOC (NULL);
839 return partition;
842 /* Free PARTITION. */
844 static void
845 partition_free (partition *partition)
847 BITMAP_FREE (partition->stmts);
848 BITMAP_FREE (partition->datarefs);
849 if (partition->builtin)
850 free (partition->builtin);
852 free (partition);
855 /* Returns true if the partition can be generated as a builtin. */
857 static bool
858 partition_builtin_p (partition *partition)
860 return partition->kind > PKIND_PARTIAL_MEMSET;
863 /* Returns true if the partition contains a reduction. */
865 static bool
866 partition_reduction_p (partition *partition)
868 return partition->reduction_p;
871 void
872 loop_distribution::partition_merge_into (struct graph *rdg,
873 partition *dest, partition *partition, enum fuse_type ft)
875 if (dump_file && (dump_flags & TDF_DETAILS))
877 fprintf (dump_file, "Fuse partitions because %s:\n", fuse_message[ft]);
878 fprintf (dump_file, " Part 1: ");
879 dump_bitmap (dump_file, dest->stmts);
880 fprintf (dump_file, " Part 2: ");
881 dump_bitmap (dump_file, partition->stmts);
884 dest->kind = PKIND_NORMAL;
885 if (dest->type == PTYPE_PARALLEL)
886 dest->type = partition->type;
888 bitmap_ior_into (dest->stmts, partition->stmts);
889 if (partition_reduction_p (partition))
890 dest->reduction_p = true;
892 /* Further check if any data dependence prevents us from executing the
893 new partition parallelly. */
894 if (dest->type == PTYPE_PARALLEL && rdg != NULL)
895 update_type_for_merge (rdg, dest, partition);
897 bitmap_ior_into (dest->datarefs, partition->datarefs);
901 /* Returns true when DEF is an SSA_NAME defined in LOOP and used after
902 the LOOP. */
904 static bool
905 ssa_name_has_uses_outside_loop_p (tree def, loop_p loop)
907 imm_use_iterator imm_iter;
908 use_operand_p use_p;
910 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, def)
912 if (is_gimple_debug (USE_STMT (use_p)))
913 continue;
915 basic_block use_bb = gimple_bb (USE_STMT (use_p));
916 if (!flow_bb_inside_loop_p (loop, use_bb))
917 return true;
920 return false;
923 /* Returns true when STMT defines a scalar variable used after the
924 loop LOOP. */
926 static bool
927 stmt_has_scalar_dependences_outside_loop (loop_p loop, gimple *stmt)
929 def_operand_p def_p;
930 ssa_op_iter op_iter;
932 if (gimple_code (stmt) == GIMPLE_PHI)
933 return ssa_name_has_uses_outside_loop_p (gimple_phi_result (stmt), loop);
935 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, op_iter, SSA_OP_DEF)
936 if (ssa_name_has_uses_outside_loop_p (DEF_FROM_PTR (def_p), loop))
937 return true;
939 return false;
942 /* Return a copy of LOOP placed before LOOP. */
944 static class loop *
945 copy_loop_before (class loop *loop, bool redirect_lc_phi_defs)
947 class loop *res;
948 edge preheader = loop_preheader_edge (loop);
950 initialize_original_copy_tables ();
951 res = slpeel_tree_duplicate_loop_to_edge_cfg (loop, NULL, preheader);
952 gcc_assert (res != NULL);
954 /* When a not last partition is supposed to keep the LC PHIs computed
955 adjust their definitions. */
956 if (redirect_lc_phi_defs)
958 edge exit = single_exit (loop);
959 for (gphi_iterator si = gsi_start_phis (exit->dest); !gsi_end_p (si);
960 gsi_next (&si))
962 gphi *phi = si.phi ();
963 if (virtual_operand_p (gimple_phi_result (phi)))
964 continue;
965 use_operand_p use_p = PHI_ARG_DEF_PTR_FROM_EDGE (phi, exit);
966 tree new_def = get_current_def (USE_FROM_PTR (use_p));
967 SET_USE (use_p, new_def);
971 free_original_copy_tables ();
972 delete_update_ssa ();
974 return res;
977 /* Creates an empty basic block after LOOP. */
979 static void
980 create_bb_after_loop (class loop *loop)
982 edge exit = single_exit (loop);
984 if (!exit)
985 return;
987 split_edge (exit);
990 /* Generate code for PARTITION from the code in LOOP. The loop is
991 copied when COPY_P is true. All the statements not flagged in the
992 PARTITION bitmap are removed from the loop or from its copy. The
993 statements are indexed in sequence inside a basic block, and the
994 basic blocks of a loop are taken in dom order. */
996 static void
997 generate_loops_for_partition (class loop *loop, partition *partition,
998 bool copy_p, bool keep_lc_phis_p)
1000 unsigned i;
1001 basic_block *bbs;
1003 if (copy_p)
1005 int orig_loop_num = loop->orig_loop_num;
1006 loop = copy_loop_before (loop, keep_lc_phis_p);
1007 gcc_assert (loop != NULL);
1008 loop->orig_loop_num = orig_loop_num;
1009 create_preheader (loop, CP_SIMPLE_PREHEADERS);
1010 create_bb_after_loop (loop);
1012 else
1014 /* Origin number is set to the new versioned loop's num. */
1015 gcc_assert (loop->orig_loop_num != loop->num);
1018 /* Remove stmts not in the PARTITION bitmap. */
1019 bbs = get_loop_body_in_dom_order (loop);
1021 if (MAY_HAVE_DEBUG_BIND_STMTS)
1022 for (i = 0; i < loop->num_nodes; i++)
1024 basic_block bb = bbs[i];
1026 for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (bsi);
1027 gsi_next (&bsi))
1029 gphi *phi = bsi.phi ();
1030 if (!virtual_operand_p (gimple_phi_result (phi))
1031 && !bitmap_bit_p (partition->stmts, gimple_uid (phi)))
1032 reset_debug_uses (phi);
1035 for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1037 gimple *stmt = gsi_stmt (bsi);
1038 if (gimple_code (stmt) != GIMPLE_LABEL
1039 && !is_gimple_debug (stmt)
1040 && !bitmap_bit_p (partition->stmts, gimple_uid (stmt)))
1041 reset_debug_uses (stmt);
1045 for (i = 0; i < loop->num_nodes; i++)
1047 basic_block bb = bbs[i];
1048 edge inner_exit = NULL;
1050 if (loop != bb->loop_father)
1051 inner_exit = single_exit (bb->loop_father);
1053 for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (bsi);)
1055 gphi *phi = bsi.phi ();
1056 if (!virtual_operand_p (gimple_phi_result (phi))
1057 && !bitmap_bit_p (partition->stmts, gimple_uid (phi)))
1058 remove_phi_node (&bsi, true);
1059 else
1060 gsi_next (&bsi);
1063 for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (bsi);)
1065 gimple *stmt = gsi_stmt (bsi);
1066 if (gimple_code (stmt) != GIMPLE_LABEL
1067 && !is_gimple_debug (stmt)
1068 && !bitmap_bit_p (partition->stmts, gimple_uid (stmt)))
1070 /* In distribution of loop nest, if bb is inner loop's exit_bb,
1071 we choose its exit edge/path in order to avoid generating
1072 infinite loop. For all other cases, we choose an arbitrary
1073 path through the empty CFG part that this unnecessary
1074 control stmt controls. */
1075 if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
1077 if (inner_exit && inner_exit->flags & EDGE_TRUE_VALUE)
1078 gimple_cond_make_true (cond_stmt);
1079 else
1080 gimple_cond_make_false (cond_stmt);
1081 update_stmt (stmt);
1083 else if (gimple_code (stmt) == GIMPLE_SWITCH)
1085 gswitch *switch_stmt = as_a <gswitch *> (stmt);
1086 gimple_switch_set_index
1087 (switch_stmt, CASE_LOW (gimple_switch_label (switch_stmt, 1)));
1088 update_stmt (stmt);
1090 else
1092 unlink_stmt_vdef (stmt);
1093 gsi_remove (&bsi, true);
1094 release_defs (stmt);
1095 continue;
1098 gsi_next (&bsi);
1102 free (bbs);
1105 /* If VAL memory representation contains the same value in all bytes,
1106 return that value, otherwise return -1.
1107 E.g. for 0x24242424 return 0x24, for IEEE double
1108 747708026454360457216.0 return 0x44, etc. */
1110 static int
1111 const_with_all_bytes_same (tree val)
1113 unsigned char buf[64];
1114 int i, len;
1116 if (integer_zerop (val)
1117 || (TREE_CODE (val) == CONSTRUCTOR
1118 && !TREE_CLOBBER_P (val)
1119 && CONSTRUCTOR_NELTS (val) == 0))
1120 return 0;
1122 if (real_zerop (val))
1124 /* Only return 0 for +0.0, not for -0.0, which doesn't have
1125 an all bytes same memory representation. Don't transform
1126 -0.0 stores into +0.0 even for !HONOR_SIGNED_ZEROS. */
1127 switch (TREE_CODE (val))
1129 case REAL_CST:
1130 if (!real_isneg (TREE_REAL_CST_PTR (val)))
1131 return 0;
1132 break;
1133 case COMPLEX_CST:
1134 if (!const_with_all_bytes_same (TREE_REALPART (val))
1135 && !const_with_all_bytes_same (TREE_IMAGPART (val)))
1136 return 0;
1137 break;
1138 case VECTOR_CST:
1140 unsigned int count = vector_cst_encoded_nelts (val);
1141 unsigned int j;
1142 for (j = 0; j < count; ++j)
1143 if (const_with_all_bytes_same (VECTOR_CST_ENCODED_ELT (val, j)))
1144 break;
1145 if (j == count)
1146 return 0;
1147 break;
1149 default:
1150 break;
1154 if (CHAR_BIT != 8 || BITS_PER_UNIT != 8)
1155 return -1;
1157 len = native_encode_expr (val, buf, sizeof (buf));
1158 if (len == 0)
1159 return -1;
1160 for (i = 1; i < len; i++)
1161 if (buf[i] != buf[0])
1162 return -1;
1163 return buf[0];
1166 /* Generate a call to memset for PARTITION in LOOP. */
1168 static void
1169 generate_memset_builtin (class loop *loop, partition *partition)
1171 gimple_stmt_iterator gsi;
1172 tree mem, fn, nb_bytes;
1173 tree val;
1174 struct builtin_info *builtin = partition->builtin;
1175 gimple *fn_call;
1177 /* The new statements will be placed before LOOP. */
1178 gsi = gsi_last_bb (loop_preheader_edge (loop)->src);
1180 nb_bytes = rewrite_to_non_trapping_overflow (builtin->size);
1181 nb_bytes = force_gimple_operand_gsi (&gsi, nb_bytes, true, NULL_TREE,
1182 false, GSI_CONTINUE_LINKING);
1183 mem = rewrite_to_non_trapping_overflow (builtin->dst_base);
1184 mem = force_gimple_operand_gsi (&gsi, mem, true, NULL_TREE,
1185 false, GSI_CONTINUE_LINKING);
1187 /* This exactly matches the pattern recognition in classify_partition. */
1188 val = gimple_assign_rhs1 (DR_STMT (builtin->dst_dr));
1189 /* Handle constants like 0x15151515 and similarly
1190 floating point constants etc. where all bytes are the same. */
1191 int bytev = const_with_all_bytes_same (val);
1192 if (bytev != -1)
1193 val = build_int_cst (integer_type_node, bytev);
1194 else if (TREE_CODE (val) == INTEGER_CST)
1195 val = fold_convert (integer_type_node, val);
1196 else if (!useless_type_conversion_p (integer_type_node, TREE_TYPE (val)))
1198 tree tem = make_ssa_name (integer_type_node);
1199 gimple *cstmt = gimple_build_assign (tem, NOP_EXPR, val);
1200 gsi_insert_after (&gsi, cstmt, GSI_CONTINUE_LINKING);
1201 val = tem;
1204 fn = build_fold_addr_expr (builtin_decl_implicit (BUILT_IN_MEMSET));
1205 fn_call = gimple_build_call (fn, 3, mem, val, nb_bytes);
1206 gimple_set_location (fn_call, partition->loc);
1207 gsi_insert_after (&gsi, fn_call, GSI_CONTINUE_LINKING);
1208 fold_stmt (&gsi);
1210 if (dump_file && (dump_flags & TDF_DETAILS))
1212 fprintf (dump_file, "generated memset");
1213 if (bytev == 0)
1214 fprintf (dump_file, " zero\n");
1215 else
1216 fprintf (dump_file, "\n");
1220 /* Generate a call to memcpy for PARTITION in LOOP. */
1222 static void
1223 generate_memcpy_builtin (class loop *loop, partition *partition)
1225 gimple_stmt_iterator gsi;
1226 gimple *fn_call;
1227 tree dest, src, fn, nb_bytes;
1228 enum built_in_function kind;
1229 struct builtin_info *builtin = partition->builtin;
1231 /* The new statements will be placed before LOOP. */
1232 gsi = gsi_last_bb (loop_preheader_edge (loop)->src);
1234 nb_bytes = rewrite_to_non_trapping_overflow (builtin->size);
1235 nb_bytes = force_gimple_operand_gsi (&gsi, nb_bytes, true, NULL_TREE,
1236 false, GSI_CONTINUE_LINKING);
1237 dest = rewrite_to_non_trapping_overflow (builtin->dst_base);
1238 src = rewrite_to_non_trapping_overflow (builtin->src_base);
1239 if (partition->kind == PKIND_MEMCPY
1240 || ! ptr_derefs_may_alias_p (dest, src))
1241 kind = BUILT_IN_MEMCPY;
1242 else
1243 kind = BUILT_IN_MEMMOVE;
1244 /* Try harder if we're copying a constant size. */
1245 if (kind == BUILT_IN_MEMMOVE && poly_int_tree_p (nb_bytes))
1247 aff_tree asrc, adest;
1248 tree_to_aff_combination (src, ptr_type_node, &asrc);
1249 tree_to_aff_combination (dest, ptr_type_node, &adest);
1250 aff_combination_scale (&adest, -1);
1251 aff_combination_add (&asrc, &adest);
1252 if (aff_comb_cannot_overlap_p (&asrc, wi::to_poly_widest (nb_bytes),
1253 wi::to_poly_widest (nb_bytes)))
1254 kind = BUILT_IN_MEMCPY;
1257 dest = force_gimple_operand_gsi (&gsi, dest, true, NULL_TREE,
1258 false, GSI_CONTINUE_LINKING);
1259 src = force_gimple_operand_gsi (&gsi, src, true, NULL_TREE,
1260 false, GSI_CONTINUE_LINKING);
1261 fn = build_fold_addr_expr (builtin_decl_implicit (kind));
1262 fn_call = gimple_build_call (fn, 3, dest, src, nb_bytes);
1263 gimple_set_location (fn_call, partition->loc);
1264 gsi_insert_after (&gsi, fn_call, GSI_CONTINUE_LINKING);
1265 fold_stmt (&gsi);
1267 if (dump_file && (dump_flags & TDF_DETAILS))
1269 if (kind == BUILT_IN_MEMCPY)
1270 fprintf (dump_file, "generated memcpy\n");
1271 else
1272 fprintf (dump_file, "generated memmove\n");
1276 /* Remove and destroy the loop LOOP. */
1278 static void
1279 destroy_loop (class loop *loop)
1281 unsigned nbbs = loop->num_nodes;
1282 edge exit = single_exit (loop);
1283 basic_block src = loop_preheader_edge (loop)->src, dest = exit->dest;
1284 basic_block *bbs;
1285 unsigned i;
1287 bbs = get_loop_body_in_dom_order (loop);
1289 gimple_stmt_iterator dst_gsi = gsi_after_labels (exit->dest);
1290 bool safe_p = single_pred_p (exit->dest);
1291 for (unsigned i = 0; i < nbbs; ++i)
1293 /* We have made sure to not leave any dangling uses of SSA
1294 names defined in the loop. With the exception of virtuals.
1295 Make sure we replace all uses of virtual defs that will remain
1296 outside of the loop with the bare symbol as delete_basic_block
1297 will release them. */
1298 for (gphi_iterator gsi = gsi_start_phis (bbs[i]); !gsi_end_p (gsi);
1299 gsi_next (&gsi))
1301 gphi *phi = gsi.phi ();
1302 if (virtual_operand_p (gimple_phi_result (phi)))
1303 mark_virtual_phi_result_for_renaming (phi);
1305 for (gimple_stmt_iterator gsi = gsi_start_bb (bbs[i]); !gsi_end_p (gsi);)
1307 gimple *stmt = gsi_stmt (gsi);
1308 tree vdef = gimple_vdef (stmt);
1309 if (vdef && TREE_CODE (vdef) == SSA_NAME)
1310 mark_virtual_operand_for_renaming (vdef);
1311 /* Also move and eventually reset debug stmts. We can leave
1312 constant values in place in case the stmt dominates the exit.
1313 ??? Non-constant values from the last iteration can be
1314 replaced with final values if we can compute them. */
1315 if (gimple_debug_bind_p (stmt))
1317 tree val = gimple_debug_bind_get_value (stmt);
1318 gsi_move_before (&gsi, &dst_gsi);
1319 if (val
1320 && (!safe_p
1321 || !is_gimple_min_invariant (val)
1322 || !dominated_by_p (CDI_DOMINATORS, exit->src, bbs[i])))
1324 gimple_debug_bind_reset_value (stmt);
1325 update_stmt (stmt);
1328 else
1329 gsi_next (&gsi);
1333 redirect_edge_pred (exit, src);
1334 exit->flags &= ~(EDGE_TRUE_VALUE|EDGE_FALSE_VALUE);
1335 exit->flags |= EDGE_FALLTHRU;
1336 cancel_loop_tree (loop);
1337 rescan_loop_exit (exit, false, true);
1339 i = nbbs;
1342 --i;
1343 delete_basic_block (bbs[i]);
1345 while (i != 0);
1347 free (bbs);
1349 set_immediate_dominator (CDI_DOMINATORS, dest,
1350 recompute_dominator (CDI_DOMINATORS, dest));
1353 /* Generates code for PARTITION. Return whether LOOP needs to be destroyed. */
1355 static bool
1356 generate_code_for_partition (class loop *loop,
1357 partition *partition, bool copy_p,
1358 bool keep_lc_phis_p)
1360 switch (partition->kind)
1362 case PKIND_NORMAL:
1363 case PKIND_PARTIAL_MEMSET:
1364 /* Reductions all have to be in the last partition. */
1365 gcc_assert (!partition_reduction_p (partition)
1366 || !copy_p);
1367 generate_loops_for_partition (loop, partition, copy_p,
1368 keep_lc_phis_p);
1369 return false;
1371 case PKIND_MEMSET:
1372 generate_memset_builtin (loop, partition);
1373 break;
1375 case PKIND_MEMCPY:
1376 case PKIND_MEMMOVE:
1377 generate_memcpy_builtin (loop, partition);
1378 break;
1380 default:
1381 gcc_unreachable ();
1384 /* Common tail for partitions we turn into a call. If this was the last
1385 partition for which we generate code, we have to destroy the loop. */
1386 if (!copy_p)
1387 return true;
1388 return false;
1391 data_dependence_relation *
1392 loop_distribution::get_data_dependence (struct graph *rdg, data_reference_p a,
1393 data_reference_p b)
1395 struct data_dependence_relation ent, **slot;
1396 struct data_dependence_relation *ddr;
1398 gcc_assert (DR_IS_WRITE (a) || DR_IS_WRITE (b));
1399 gcc_assert (rdg_vertex_for_stmt (rdg, DR_STMT (a))
1400 <= rdg_vertex_for_stmt (rdg, DR_STMT (b)));
1401 ent.a = a;
1402 ent.b = b;
1403 slot = ddrs_table->find_slot (&ent, INSERT);
1404 if (*slot == NULL)
1406 ddr = initialize_data_dependence_relation (a, b, loop_nest);
1407 compute_affine_dependence (ddr, loop_nest[0]);
1408 *slot = ddr;
1411 return *slot;
1414 bool
1415 loop_distribution::data_dep_in_cycle_p (struct graph *rdg,
1416 data_reference_p dr1,
1417 data_reference_p dr2)
1419 struct data_dependence_relation *ddr;
1421 /* Re-shuffle data-refs to be in topological order. */
1422 if (rdg_vertex_for_stmt (rdg, DR_STMT (dr1))
1423 > rdg_vertex_for_stmt (rdg, DR_STMT (dr2)))
1424 std::swap (dr1, dr2);
1426 ddr = get_data_dependence (rdg, dr1, dr2);
1428 /* In case of no data dependence. */
1429 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
1430 return false;
1431 /* For unknown data dependence or known data dependence which can't be
1432 expressed in classic distance vector, we check if it can be resolved
1433 by runtime alias check. If yes, we still consider data dependence
1434 as won't introduce data dependence cycle. */
1435 else if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know
1436 || DDR_NUM_DIST_VECTS (ddr) == 0)
1437 return !runtime_alias_check_p (ddr, NULL, true);
1438 else if (DDR_NUM_DIST_VECTS (ddr) > 1)
1439 return true;
1440 else if (DDR_REVERSED_P (ddr)
1441 || lambda_vector_zerop (DDR_DIST_VECT (ddr, 0), 1))
1442 return false;
1444 return true;
1447 void
1448 loop_distribution::update_type_for_merge (struct graph *rdg,
1449 partition *partition1,
1450 partition *partition2)
1452 unsigned i, j;
1453 bitmap_iterator bi, bj;
1454 data_reference_p dr1, dr2;
1456 EXECUTE_IF_SET_IN_BITMAP (partition1->datarefs, 0, i, bi)
1458 unsigned start = (partition1 == partition2) ? i + 1 : 0;
1460 dr1 = datarefs_vec[i];
1461 EXECUTE_IF_SET_IN_BITMAP (partition2->datarefs, start, j, bj)
1463 dr2 = datarefs_vec[j];
1464 if (DR_IS_READ (dr1) && DR_IS_READ (dr2))
1465 continue;
1467 /* Partition can only be executed sequentially if there is any
1468 data dependence cycle. */
1469 if (data_dep_in_cycle_p (rdg, dr1, dr2))
1471 partition1->type = PTYPE_SEQUENTIAL;
1472 return;
1478 partition *
1479 loop_distribution::build_rdg_partition_for_vertex (struct graph *rdg, int v)
1481 partition *partition = partition_alloc ();
1482 auto_vec<int, 3> nodes;
1483 unsigned i, j;
1484 int x;
1485 data_reference_p dr;
1487 graphds_dfs (rdg, &v, 1, &nodes, false, NULL);
1489 FOR_EACH_VEC_ELT (nodes, i, x)
1491 bitmap_set_bit (partition->stmts, x);
1493 for (j = 0; RDG_DATAREFS (rdg, x).iterate (j, &dr); ++j)
1495 unsigned idx = (unsigned) DR_INDEX (dr);
1496 gcc_assert (idx < datarefs_vec.length ());
1498 /* Partition can only be executed sequentially if there is any
1499 unknown data reference. */
1500 if (!DR_BASE_ADDRESS (dr) || !DR_OFFSET (dr)
1501 || !DR_INIT (dr) || !DR_STEP (dr))
1502 partition->type = PTYPE_SEQUENTIAL;
1504 bitmap_set_bit (partition->datarefs, idx);
1508 if (partition->type == PTYPE_SEQUENTIAL)
1509 return partition;
1511 /* Further check if any data dependence prevents us from executing the
1512 partition parallelly. */
1513 update_type_for_merge (rdg, partition, partition);
1515 return partition;
1518 /* Given PARTITION of LOOP and RDG, record single load/store data references
1519 for builtin partition in SRC_DR/DST_DR, return false if there is no such
1520 data references. */
1522 static bool
1523 find_single_drs (class loop *loop, struct graph *rdg, const bitmap &partition_stmts,
1524 data_reference_p *dst_dr, data_reference_p *src_dr)
1526 unsigned i;
1527 data_reference_p single_ld = NULL, single_st = NULL;
1528 bitmap_iterator bi;
1530 EXECUTE_IF_SET_IN_BITMAP (partition_stmts, 0, i, bi)
1532 gimple *stmt = RDG_STMT (rdg, i);
1533 data_reference_p dr;
1535 if (gimple_code (stmt) == GIMPLE_PHI)
1536 continue;
1538 /* Any scalar stmts are ok. */
1539 if (!gimple_vuse (stmt))
1540 continue;
1542 /* Otherwise just regular loads/stores. */
1543 if (!gimple_assign_single_p (stmt))
1544 return false;
1546 /* But exactly one store and/or load. */
1547 for (unsigned j = 0; RDG_DATAREFS (rdg, i).iterate (j, &dr); ++j)
1549 tree type = TREE_TYPE (DR_REF (dr));
1551 /* The memset, memcpy and memmove library calls are only
1552 able to deal with generic address space. */
1553 if (!ADDR_SPACE_GENERIC_P (TYPE_ADDR_SPACE (type)))
1554 return false;
1556 if (DR_IS_READ (dr))
1558 if (single_ld != NULL)
1559 return false;
1560 single_ld = dr;
1562 else
1564 if (single_st != NULL)
1565 return false;
1566 single_st = dr;
1571 if (!single_ld && !single_st)
1572 return false;
1574 basic_block bb_ld = NULL;
1575 basic_block bb_st = NULL;
1577 if (single_ld)
1579 /* Bail out if this is a bitfield memory reference. */
1580 if (TREE_CODE (DR_REF (single_ld)) == COMPONENT_REF
1581 && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (single_ld), 1)))
1582 return false;
1584 /* Data reference must be executed exactly once per iteration of each
1585 loop in the loop nest. We only need to check dominance information
1586 against the outermost one in a perfect loop nest because a bb can't
1587 dominate outermost loop's latch without dominating inner loop's. */
1588 bb_ld = gimple_bb (DR_STMT (single_ld));
1589 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb_ld))
1590 return false;
1593 if (single_st)
1595 /* Bail out if this is a bitfield memory reference. */
1596 if (TREE_CODE (DR_REF (single_st)) == COMPONENT_REF
1597 && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (single_st), 1)))
1598 return false;
1600 /* Data reference must be executed exactly once per iteration.
1601 Same as single_ld, we only need to check against the outermost
1602 loop. */
1603 bb_st = gimple_bb (DR_STMT (single_st));
1604 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb_st))
1605 return false;
1608 if (single_ld && single_st)
1610 /* Load and store must be in the same loop nest. */
1611 if (bb_st->loop_father != bb_ld->loop_father)
1612 return false;
1614 edge e = single_exit (bb_st->loop_father);
1615 bool dom_ld = dominated_by_p (CDI_DOMINATORS, e->src, bb_ld);
1616 bool dom_st = dominated_by_p (CDI_DOMINATORS, e->src, bb_st);
1617 if (dom_ld != dom_st)
1618 return false;
1621 *src_dr = single_ld;
1622 *dst_dr = single_st;
1623 return true;
1626 /* Given data reference DR in LOOP_NEST, this function checks the enclosing
1627 loops from inner to outer to see if loop's step equals to access size at
1628 each level of loop. Return 2 if we can prove this at all level loops;
1629 record access base and size in BASE and SIZE; save loop's step at each
1630 level of loop in STEPS if it is not null. For example:
1632 int arr[100][100][100];
1633 for (i = 0; i < 100; i++) ;steps[2] = 40000
1634 for (j = 100; j > 0; j--) ;steps[1] = -400
1635 for (k = 0; k < 100; k++) ;steps[0] = 4
1636 arr[i][j - 1][k] = 0; ;base = &arr, size = 4000000
1638 Return 1 if we can prove the equality at the innermost loop, but not all
1639 level loops. In this case, no information is recorded.
1641 Return 0 if no equality can be proven at any level loops. */
1643 static int
1644 compute_access_range (loop_p loop_nest, data_reference_p dr, tree *base,
1645 tree *size, vec<tree> *steps = NULL)
1647 location_t loc = gimple_location (DR_STMT (dr));
1648 basic_block bb = gimple_bb (DR_STMT (dr));
1649 class loop *loop = bb->loop_father;
1650 tree ref = DR_REF (dr);
1651 tree access_base = build_fold_addr_expr (ref);
1652 tree access_size = TYPE_SIZE_UNIT (TREE_TYPE (ref));
1653 int res = 0;
1655 do {
1656 tree scev_fn = analyze_scalar_evolution (loop, access_base);
1657 if (TREE_CODE (scev_fn) != POLYNOMIAL_CHREC)
1658 return res;
1660 access_base = CHREC_LEFT (scev_fn);
1661 if (tree_contains_chrecs (access_base, NULL))
1662 return res;
1664 tree scev_step = CHREC_RIGHT (scev_fn);
1665 /* Only support constant steps. */
1666 if (TREE_CODE (scev_step) != INTEGER_CST)
1667 return res;
1669 enum ev_direction access_dir = scev_direction (scev_fn);
1670 if (access_dir == EV_DIR_UNKNOWN)
1671 return res;
1673 if (steps != NULL)
1674 steps->safe_push (scev_step);
1676 scev_step = fold_convert_loc (loc, sizetype, scev_step);
1677 /* Compute absolute value of scev step. */
1678 if (access_dir == EV_DIR_DECREASES)
1679 scev_step = fold_build1_loc (loc, NEGATE_EXPR, sizetype, scev_step);
1681 /* At each level of loop, scev step must equal to access size. In other
1682 words, DR must access consecutive memory between loop iterations. */
1683 if (!operand_equal_p (scev_step, access_size, 0))
1684 return res;
1686 /* Access stride can be computed for data reference at least for the
1687 innermost loop. */
1688 res = 1;
1690 /* Compute DR's execution times in loop. */
1691 tree niters = number_of_latch_executions (loop);
1692 niters = fold_convert_loc (loc, sizetype, niters);
1693 if (dominated_by_p (CDI_DOMINATORS, single_exit (loop)->src, bb))
1694 niters = size_binop_loc (loc, PLUS_EXPR, niters, size_one_node);
1696 /* Compute DR's overall access size in loop. */
1697 access_size = fold_build2_loc (loc, MULT_EXPR, sizetype,
1698 niters, scev_step);
1699 /* Adjust base address in case of negative step. */
1700 if (access_dir == EV_DIR_DECREASES)
1702 tree adj = fold_build2_loc (loc, MINUS_EXPR, sizetype,
1703 scev_step, access_size);
1704 access_base = fold_build_pointer_plus_loc (loc, access_base, adj);
1706 } while (loop != loop_nest && (loop = loop_outer (loop)) != NULL);
1708 *base = access_base;
1709 *size = access_size;
1710 /* Access stride can be computed for data reference at each level loop. */
1711 return 2;
1714 /* Allocate and return builtin struct. Record information like DST_DR,
1715 SRC_DR, DST_BASE, SRC_BASE and SIZE in the allocated struct. */
1717 static struct builtin_info *
1718 alloc_builtin (data_reference_p dst_dr, data_reference_p src_dr,
1719 tree dst_base, tree src_base, tree size)
1721 struct builtin_info *builtin = XNEW (struct builtin_info);
1722 builtin->dst_dr = dst_dr;
1723 builtin->src_dr = src_dr;
1724 builtin->dst_base = dst_base;
1725 builtin->src_base = src_base;
1726 builtin->size = size;
1727 return builtin;
1730 /* Given data reference DR in loop nest LOOP, classify if it forms builtin
1731 memset call. */
1733 static void
1734 classify_builtin_st (loop_p loop, partition *partition, data_reference_p dr)
1736 gimple *stmt = DR_STMT (dr);
1737 tree base, size, rhs = gimple_assign_rhs1 (stmt);
1739 if (const_with_all_bytes_same (rhs) == -1
1740 && (!INTEGRAL_TYPE_P (TREE_TYPE (rhs))
1741 || (TYPE_MODE (TREE_TYPE (rhs))
1742 != TYPE_MODE (unsigned_char_type_node))))
1743 return;
1745 if (TREE_CODE (rhs) == SSA_NAME
1746 && !SSA_NAME_IS_DEFAULT_DEF (rhs)
1747 && flow_bb_inside_loop_p (loop, gimple_bb (SSA_NAME_DEF_STMT (rhs))))
1748 return;
1750 int res = compute_access_range (loop, dr, &base, &size);
1751 if (res == 0)
1752 return;
1753 if (res == 1)
1755 partition->kind = PKIND_PARTIAL_MEMSET;
1756 return;
1759 poly_uint64 base_offset;
1760 unsigned HOST_WIDE_INT const_base_offset;
1761 tree base_base = strip_offset (base, &base_offset);
1762 if (!base_offset.is_constant (&const_base_offset))
1763 return;
1765 struct builtin_info *builtin;
1766 builtin = alloc_builtin (dr, NULL, base, NULL_TREE, size);
1767 builtin->dst_base_base = base_base;
1768 builtin->dst_base_offset = const_base_offset;
1769 partition->builtin = builtin;
1770 partition->kind = PKIND_MEMSET;
1773 /* Given data references DST_DR and SRC_DR in loop nest LOOP and RDG, classify
1774 if it forms builtin memcpy or memmove call. */
1776 void
1777 loop_distribution::classify_builtin_ldst (loop_p loop, struct graph *rdg,
1778 partition *partition,
1779 data_reference_p dst_dr,
1780 data_reference_p src_dr)
1782 tree base, size, src_base, src_size;
1783 auto_vec<tree> dst_steps, src_steps;
1785 /* Compute access range of both load and store. */
1786 int res = compute_access_range (loop, dst_dr, &base, &size, &dst_steps);
1787 if (res != 2)
1788 return;
1789 res = compute_access_range (loop, src_dr, &src_base, &src_size, &src_steps);
1790 if (res != 2)
1791 return;
1793 /* They must have the same access size. */
1794 if (!operand_equal_p (size, src_size, 0))
1795 return;
1797 /* They must have the same storage order. */
1798 if (reverse_storage_order_for_component_p (DR_REF (dst_dr))
1799 != reverse_storage_order_for_component_p (DR_REF (src_dr)))
1800 return;
1802 /* Load and store in loop nest must access memory in the same way, i.e,
1803 their must have the same steps in each loop of the nest. */
1804 if (dst_steps.length () != src_steps.length ())
1805 return;
1806 for (unsigned i = 0; i < dst_steps.length (); ++i)
1807 if (!operand_equal_p (dst_steps[i], src_steps[i], 0))
1808 return;
1810 /* Now check that if there is a dependence. */
1811 ddr_p ddr = get_data_dependence (rdg, src_dr, dst_dr);
1813 /* Classify as memmove if no dependence between load and store. */
1814 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
1816 partition->builtin = alloc_builtin (dst_dr, src_dr, base, src_base, size);
1817 partition->kind = PKIND_MEMMOVE;
1818 return;
1821 /* Can't do memmove in case of unknown dependence or dependence without
1822 classical distance vector. */
1823 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know
1824 || DDR_NUM_DIST_VECTS (ddr) == 0)
1825 return;
1827 unsigned i;
1828 lambda_vector dist_v;
1829 int num_lev = (DDR_LOOP_NEST (ddr)).length ();
1830 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
1832 unsigned dep_lev = dependence_level (dist_v, num_lev);
1833 /* Can't do memmove if load depends on store. */
1834 if (dep_lev > 0 && dist_v[dep_lev - 1] > 0 && !DDR_REVERSED_P (ddr))
1835 return;
1838 partition->builtin = alloc_builtin (dst_dr, src_dr, base, src_base, size);
1839 partition->kind = PKIND_MEMMOVE;
1840 return;
1843 bool
1844 loop_distribution::classify_partition (loop_p loop,
1845 struct graph *rdg, partition *partition,
1846 bitmap stmt_in_all_partitions)
1848 bitmap_iterator bi;
1849 unsigned i;
1850 data_reference_p single_ld = NULL, single_st = NULL;
1851 bool volatiles_p = false, has_reduction = false;
1853 EXECUTE_IF_SET_IN_BITMAP (partition->stmts, 0, i, bi)
1855 gimple *stmt = RDG_STMT (rdg, i);
1857 if (gimple_has_volatile_ops (stmt))
1858 volatiles_p = true;
1860 /* If the stmt is not included by all partitions and there is uses
1861 outside of the loop, then mark the partition as reduction. */
1862 if (stmt_has_scalar_dependences_outside_loop (loop, stmt))
1864 /* Due to limitation in the transform phase we have to fuse all
1865 reduction partitions. As a result, this could cancel valid
1866 loop distribution especially for loop that induction variable
1867 is used outside of loop. To workaround this issue, we skip
1868 marking partition as reudction if the reduction stmt belongs
1869 to all partitions. In such case, reduction will be computed
1870 correctly no matter how partitions are fused/distributed. */
1871 if (!bitmap_bit_p (stmt_in_all_partitions, i))
1872 partition->reduction_p = true;
1873 else
1874 has_reduction = true;
1878 /* Simple workaround to prevent classifying the partition as builtin
1879 if it contains any use outside of loop. For the case where all
1880 partitions have the reduction this simple workaround is delayed
1881 to only affect the last partition. */
1882 if (partition->reduction_p)
1883 return has_reduction;
1885 /* Perform general partition disqualification for builtins. */
1886 if (volatiles_p
1887 || !flag_tree_loop_distribute_patterns)
1888 return has_reduction;
1890 /* Find single load/store data references for builtin partition. */
1891 if (!find_single_drs (loop, rdg, partition->stmts, &single_st, &single_ld)
1892 || !single_st)
1893 return has_reduction;
1895 if (single_ld && single_st)
1897 gimple *store = DR_STMT (single_st), *load = DR_STMT (single_ld);
1898 /* Direct aggregate copy or via an SSA name temporary. */
1899 if (load != store
1900 && gimple_assign_lhs (load) != gimple_assign_rhs1 (store))
1901 return has_reduction;
1904 partition->loc = gimple_location (DR_STMT (single_st));
1906 /* Classify the builtin kind. */
1907 if (single_ld == NULL)
1908 classify_builtin_st (loop, partition, single_st);
1909 else
1910 classify_builtin_ldst (loop, rdg, partition, single_st, single_ld);
1911 return has_reduction;
1914 bool
1915 loop_distribution::share_memory_accesses (struct graph *rdg,
1916 partition *partition1, partition *partition2)
1918 unsigned i, j;
1919 bitmap_iterator bi, bj;
1920 data_reference_p dr1, dr2;
1922 /* First check whether in the intersection of the two partitions are
1923 any loads or stores. Common loads are the situation that happens
1924 most often. */
1925 EXECUTE_IF_AND_IN_BITMAP (partition1->stmts, partition2->stmts, 0, i, bi)
1926 if (RDG_MEM_WRITE_STMT (rdg, i)
1927 || RDG_MEM_READS_STMT (rdg, i))
1928 return true;
1930 /* Then check whether the two partitions access the same memory object. */
1931 EXECUTE_IF_SET_IN_BITMAP (partition1->datarefs, 0, i, bi)
1933 dr1 = datarefs_vec[i];
1935 if (!DR_BASE_ADDRESS (dr1)
1936 || !DR_OFFSET (dr1) || !DR_INIT (dr1) || !DR_STEP (dr1))
1937 continue;
1939 EXECUTE_IF_SET_IN_BITMAP (partition2->datarefs, 0, j, bj)
1941 dr2 = datarefs_vec[j];
1943 if (!DR_BASE_ADDRESS (dr2)
1944 || !DR_OFFSET (dr2) || !DR_INIT (dr2) || !DR_STEP (dr2))
1945 continue;
1947 if (operand_equal_p (DR_BASE_ADDRESS (dr1), DR_BASE_ADDRESS (dr2), 0)
1948 && operand_equal_p (DR_OFFSET (dr1), DR_OFFSET (dr2), 0)
1949 && operand_equal_p (DR_INIT (dr1), DR_INIT (dr2), 0)
1950 && operand_equal_p (DR_STEP (dr1), DR_STEP (dr2), 0))
1951 return true;
1955 return false;
1958 /* For each seed statement in STARTING_STMTS, this function builds
1959 partition for it by adding depended statements according to RDG.
1960 All partitions are recorded in PARTITIONS. */
1962 void
1963 loop_distribution::rdg_build_partitions (struct graph *rdg,
1964 vec<gimple *> starting_stmts,
1965 vec<partition *> *partitions)
1967 auto_bitmap processed;
1968 int i;
1969 gimple *stmt;
1971 FOR_EACH_VEC_ELT (starting_stmts, i, stmt)
1973 int v = rdg_vertex_for_stmt (rdg, stmt);
1975 if (dump_file && (dump_flags & TDF_DETAILS))
1976 fprintf (dump_file,
1977 "ldist asked to generate code for vertex %d\n", v);
1979 /* If the vertex is already contained in another partition so
1980 is the partition rooted at it. */
1981 if (bitmap_bit_p (processed, v))
1982 continue;
1984 partition *partition = build_rdg_partition_for_vertex (rdg, v);
1985 bitmap_ior_into (processed, partition->stmts);
1987 if (dump_file && (dump_flags & TDF_DETAILS))
1989 fprintf (dump_file, "ldist creates useful %s partition:\n",
1990 partition->type == PTYPE_PARALLEL ? "parallel" : "sequent");
1991 bitmap_print (dump_file, partition->stmts, " ", "\n");
1994 partitions->safe_push (partition);
1997 /* All vertices should have been assigned to at least one partition now,
1998 other than vertices belonging to dead code. */
2001 /* Dump to FILE the PARTITIONS. */
2003 static void
2004 dump_rdg_partitions (FILE *file, const vec<partition *> &partitions)
2006 int i;
2007 partition *partition;
2009 FOR_EACH_VEC_ELT (partitions, i, partition)
2010 debug_bitmap_file (file, partition->stmts);
2013 /* Debug PARTITIONS. */
2014 extern void debug_rdg_partitions (const vec<partition *> &);
2016 DEBUG_FUNCTION void
2017 debug_rdg_partitions (const vec<partition *> &partitions)
2019 dump_rdg_partitions (stderr, partitions);
2022 /* Returns the number of read and write operations in the RDG. */
2024 static int
2025 number_of_rw_in_rdg (struct graph *rdg)
2027 int i, res = 0;
2029 for (i = 0; i < rdg->n_vertices; i++)
2031 if (RDG_MEM_WRITE_STMT (rdg, i))
2032 ++res;
2034 if (RDG_MEM_READS_STMT (rdg, i))
2035 ++res;
2038 return res;
2041 /* Returns the number of read and write operations in a PARTITION of
2042 the RDG. */
2044 static int
2045 number_of_rw_in_partition (struct graph *rdg, partition *partition)
2047 int res = 0;
2048 unsigned i;
2049 bitmap_iterator ii;
2051 EXECUTE_IF_SET_IN_BITMAP (partition->stmts, 0, i, ii)
2053 if (RDG_MEM_WRITE_STMT (rdg, i))
2054 ++res;
2056 if (RDG_MEM_READS_STMT (rdg, i))
2057 ++res;
2060 return res;
2063 /* Returns true when one of the PARTITIONS contains all the read or
2064 write operations of RDG. */
2066 static bool
2067 partition_contains_all_rw (struct graph *rdg,
2068 const vec<partition *> &partitions)
2070 int i;
2071 partition *partition;
2072 int nrw = number_of_rw_in_rdg (rdg);
2074 FOR_EACH_VEC_ELT (partitions, i, partition)
2075 if (nrw == number_of_rw_in_partition (rdg, partition))
2076 return true;
2078 return false;
2082 loop_distribution::pg_add_dependence_edges (struct graph *rdg, int dir,
2083 bitmap drs1, bitmap drs2, vec<ddr_p> *alias_ddrs)
2085 unsigned i, j;
2086 bitmap_iterator bi, bj;
2087 data_reference_p dr1, dr2, saved_dr1;
2089 /* dependence direction - 0 is no dependence, -1 is back,
2090 1 is forth, 2 is both (we can stop then, merging will occur). */
2091 EXECUTE_IF_SET_IN_BITMAP (drs1, 0, i, bi)
2093 dr1 = datarefs_vec[i];
2095 EXECUTE_IF_SET_IN_BITMAP (drs2, 0, j, bj)
2097 int res, this_dir = 1;
2098 ddr_p ddr;
2100 dr2 = datarefs_vec[j];
2102 /* Skip all <read, read> data dependence. */
2103 if (DR_IS_READ (dr1) && DR_IS_READ (dr2))
2104 continue;
2106 saved_dr1 = dr1;
2107 /* Re-shuffle data-refs to be in topological order. */
2108 if (rdg_vertex_for_stmt (rdg, DR_STMT (dr1))
2109 > rdg_vertex_for_stmt (rdg, DR_STMT (dr2)))
2111 std::swap (dr1, dr2);
2112 this_dir = -this_dir;
2114 ddr = get_data_dependence (rdg, dr1, dr2);
2115 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
2117 this_dir = 0;
2118 res = data_ref_compare_tree (DR_BASE_ADDRESS (dr1),
2119 DR_BASE_ADDRESS (dr2));
2120 /* Be conservative. If data references are not well analyzed,
2121 or the two data references have the same base address and
2122 offset, add dependence and consider it alias to each other.
2123 In other words, the dependence cannot be resolved by
2124 runtime alias check. */
2125 if (!DR_BASE_ADDRESS (dr1) || !DR_BASE_ADDRESS (dr2)
2126 || !DR_OFFSET (dr1) || !DR_OFFSET (dr2)
2127 || !DR_INIT (dr1) || !DR_INIT (dr2)
2128 || !DR_STEP (dr1) || !tree_fits_uhwi_p (DR_STEP (dr1))
2129 || !DR_STEP (dr2) || !tree_fits_uhwi_p (DR_STEP (dr2))
2130 || res == 0)
2131 this_dir = 2;
2132 /* Data dependence could be resolved by runtime alias check,
2133 record it in ALIAS_DDRS. */
2134 else if (alias_ddrs != NULL)
2135 alias_ddrs->safe_push (ddr);
2136 /* Or simply ignore it. */
2138 else if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
2140 if (DDR_REVERSED_P (ddr))
2141 this_dir = -this_dir;
2143 /* Known dependences can still be unordered througout the
2144 iteration space, see gcc.dg/tree-ssa/ldist-16.c and
2145 gcc.dg/tree-ssa/pr94969.c. */
2146 if (DDR_NUM_DIST_VECTS (ddr) != 1)
2147 this_dir = 2;
2148 /* If the overlap is exact preserve stmt order. */
2149 else if (lambda_vector_zerop (DDR_DIST_VECT (ddr, 0),
2150 DDR_NB_LOOPS (ddr)))
2152 /* Else as the distance vector is lexicographic positive swap
2153 the dependence direction. */
2154 else
2155 this_dir = -this_dir;
2157 else
2158 this_dir = 0;
2159 if (this_dir == 2)
2160 return 2;
2161 else if (dir == 0)
2162 dir = this_dir;
2163 else if (this_dir != 0 && dir != this_dir)
2164 return 2;
2165 /* Shuffle "back" dr1. */
2166 dr1 = saved_dr1;
2169 return dir;
2172 /* Compare postorder number of the partition graph vertices V1 and V2. */
2174 static int
2175 pgcmp (const void *v1_, const void *v2_)
2177 const vertex *v1 = (const vertex *)v1_;
2178 const vertex *v2 = (const vertex *)v2_;
2179 return v2->post - v1->post;
2182 /* Data attached to vertices of partition dependence graph. */
2183 struct pg_vdata
2185 /* ID of the corresponding partition. */
2186 int id;
2187 /* The partition. */
2188 struct partition *partition;
2191 /* Data attached to edges of partition dependence graph. */
2192 struct pg_edata
2194 /* If the dependence edge can be resolved by runtime alias check,
2195 this vector contains data dependence relations for runtime alias
2196 check. On the other hand, if the dependence edge is introduced
2197 because of compilation time known data dependence, this vector
2198 contains nothing. */
2199 vec<ddr_p> alias_ddrs;
2202 /* Callback data for traversing edges in graph. */
2203 struct pg_edge_callback_data
2205 /* Bitmap contains strong connected components should be merged. */
2206 bitmap sccs_to_merge;
2207 /* Array constains component information for all vertices. */
2208 int *vertices_component;
2209 /* Vector to record all data dependence relations which are needed
2210 to break strong connected components by runtime alias checks. */
2211 vec<ddr_p> *alias_ddrs;
2214 /* Initialize vertice's data for partition dependence graph PG with
2215 PARTITIONS. */
2217 static void
2218 init_partition_graph_vertices (struct graph *pg,
2219 vec<struct partition *> *partitions)
2221 int i;
2222 partition *partition;
2223 struct pg_vdata *data;
2225 for (i = 0; partitions->iterate (i, &partition); ++i)
2227 data = new pg_vdata;
2228 pg->vertices[i].data = data;
2229 data->id = i;
2230 data->partition = partition;
2234 /* Add edge <I, J> to partition dependence graph PG. Attach vector of data
2235 dependence relations to the EDGE if DDRS isn't NULL. */
2237 static void
2238 add_partition_graph_edge (struct graph *pg, int i, int j, vec<ddr_p> *ddrs)
2240 struct graph_edge *e = add_edge (pg, i, j);
2242 /* If the edge is attached with data dependence relations, it means this
2243 dependence edge can be resolved by runtime alias checks. */
2244 if (ddrs != NULL)
2246 struct pg_edata *data = new pg_edata;
2248 gcc_assert (ddrs->length () > 0);
2249 e->data = data;
2250 data->alias_ddrs = vNULL;
2251 data->alias_ddrs.safe_splice (*ddrs);
2255 /* Callback function for graph travesal algorithm. It returns true
2256 if edge E should skipped when traversing the graph. */
2258 static bool
2259 pg_skip_alias_edge (struct graph_edge *e)
2261 struct pg_edata *data = (struct pg_edata *)e->data;
2262 return (data != NULL && data->alias_ddrs.length () > 0);
2265 /* Callback function freeing data attached to edge E of graph. */
2267 static void
2268 free_partition_graph_edata_cb (struct graph *, struct graph_edge *e, void *)
2270 if (e->data != NULL)
2272 struct pg_edata *data = (struct pg_edata *)e->data;
2273 data->alias_ddrs.release ();
2274 delete data;
2278 /* Free data attached to vertice of partition dependence graph PG. */
2280 static void
2281 free_partition_graph_vdata (struct graph *pg)
2283 int i;
2284 struct pg_vdata *data;
2286 for (i = 0; i < pg->n_vertices; ++i)
2288 data = (struct pg_vdata *)pg->vertices[i].data;
2289 delete data;
2293 /* Build and return partition dependence graph for PARTITIONS. RDG is
2294 reduced dependence graph for the loop to be distributed. If IGNORE_ALIAS_P
2295 is true, data dependence caused by possible alias between references
2296 is ignored, as if it doesn't exist at all; otherwise all depdendences
2297 are considered. */
2299 struct graph *
2300 loop_distribution::build_partition_graph (struct graph *rdg,
2301 vec<struct partition *> *partitions,
2302 bool ignore_alias_p)
2304 int i, j;
2305 struct partition *partition1, *partition2;
2306 graph *pg = new_graph (partitions->length ());
2307 auto_vec<ddr_p> alias_ddrs, *alias_ddrs_p;
2309 alias_ddrs_p = ignore_alias_p ? NULL : &alias_ddrs;
2311 init_partition_graph_vertices (pg, partitions);
2313 for (i = 0; partitions->iterate (i, &partition1); ++i)
2315 for (j = i + 1; partitions->iterate (j, &partition2); ++j)
2317 /* dependence direction - 0 is no dependence, -1 is back,
2318 1 is forth, 2 is both (we can stop then, merging will occur). */
2319 int dir = 0;
2321 /* If the first partition has reduction, add back edge; if the
2322 second partition has reduction, add forth edge. This makes
2323 sure that reduction partition will be sorted as the last one. */
2324 if (partition_reduction_p (partition1))
2325 dir = -1;
2326 else if (partition_reduction_p (partition2))
2327 dir = 1;
2329 /* Cleanup the temporary vector. */
2330 alias_ddrs.truncate (0);
2332 dir = pg_add_dependence_edges (rdg, dir, partition1->datarefs,
2333 partition2->datarefs, alias_ddrs_p);
2335 /* Add edge to partition graph if there exists dependence. There
2336 are two types of edges. One type edge is caused by compilation
2337 time known dependence, this type cannot be resolved by runtime
2338 alias check. The other type can be resolved by runtime alias
2339 check. */
2340 if (dir == 1 || dir == 2
2341 || alias_ddrs.length () > 0)
2343 /* Attach data dependence relations to edge that can be resolved
2344 by runtime alias check. */
2345 bool alias_edge_p = (dir != 1 && dir != 2);
2346 add_partition_graph_edge (pg, i, j,
2347 (alias_edge_p) ? &alias_ddrs : NULL);
2349 if (dir == -1 || dir == 2
2350 || alias_ddrs.length () > 0)
2352 /* Attach data dependence relations to edge that can be resolved
2353 by runtime alias check. */
2354 bool alias_edge_p = (dir != -1 && dir != 2);
2355 add_partition_graph_edge (pg, j, i,
2356 (alias_edge_p) ? &alias_ddrs : NULL);
2360 return pg;
2363 /* Sort partitions in PG in descending post order and store them in
2364 PARTITIONS. */
2366 static void
2367 sort_partitions_by_post_order (struct graph *pg,
2368 vec<struct partition *> *partitions)
2370 int i;
2371 struct pg_vdata *data;
2373 /* Now order the remaining nodes in descending postorder. */
2374 qsort (pg->vertices, pg->n_vertices, sizeof (vertex), pgcmp);
2375 partitions->truncate (0);
2376 for (i = 0; i < pg->n_vertices; ++i)
2378 data = (struct pg_vdata *)pg->vertices[i].data;
2379 if (data->partition)
2380 partitions->safe_push (data->partition);
2384 void
2385 loop_distribution::merge_dep_scc_partitions (struct graph *rdg,
2386 vec<struct partition *> *partitions,
2387 bool ignore_alias_p)
2389 struct partition *partition1, *partition2;
2390 struct pg_vdata *data;
2391 graph *pg = build_partition_graph (rdg, partitions, ignore_alias_p);
2392 int i, j, num_sccs = graphds_scc (pg, NULL);
2394 /* Strong connected compoenent means dependence cycle, we cannot distribute
2395 them. So fuse them together. */
2396 if ((unsigned) num_sccs < partitions->length ())
2398 for (i = 0; i < num_sccs; ++i)
2400 for (j = 0; partitions->iterate (j, &partition1); ++j)
2401 if (pg->vertices[j].component == i)
2402 break;
2403 for (j = j + 1; partitions->iterate (j, &partition2); ++j)
2404 if (pg->vertices[j].component == i)
2406 partition_merge_into (NULL, partition1,
2407 partition2, FUSE_SAME_SCC);
2408 partition1->type = PTYPE_SEQUENTIAL;
2409 (*partitions)[j] = NULL;
2410 partition_free (partition2);
2411 data = (struct pg_vdata *)pg->vertices[j].data;
2412 data->partition = NULL;
2417 sort_partitions_by_post_order (pg, partitions);
2418 gcc_assert (partitions->length () == (unsigned)num_sccs);
2419 free_partition_graph_vdata (pg);
2420 for_each_edge (pg, free_partition_graph_edata_cb, NULL);
2421 free_graph (pg);
2424 /* Callback function for traversing edge E in graph G. DATA is private
2425 callback data. */
2427 static void
2428 pg_collect_alias_ddrs (struct graph *g, struct graph_edge *e, void *data)
2430 int i, j, component;
2431 struct pg_edge_callback_data *cbdata;
2432 struct pg_edata *edata = (struct pg_edata *) e->data;
2434 /* If the edge doesn't have attached data dependence, it represents
2435 compilation time known dependences. This type dependence cannot
2436 be resolved by runtime alias check. */
2437 if (edata == NULL || edata->alias_ddrs.length () == 0)
2438 return;
2440 cbdata = (struct pg_edge_callback_data *) data;
2441 i = e->src;
2442 j = e->dest;
2443 component = cbdata->vertices_component[i];
2444 /* Vertices are topologically sorted according to compilation time
2445 known dependences, so we can break strong connected components
2446 by removing edges of the opposite direction, i.e, edges pointing
2447 from vertice with smaller post number to vertice with bigger post
2448 number. */
2449 if (g->vertices[i].post < g->vertices[j].post
2450 /* We only need to remove edges connecting vertices in the same
2451 strong connected component to break it. */
2452 && component == cbdata->vertices_component[j]
2453 /* Check if we want to break the strong connected component or not. */
2454 && !bitmap_bit_p (cbdata->sccs_to_merge, component))
2455 cbdata->alias_ddrs->safe_splice (edata->alias_ddrs);
2458 /* Callback function for traversing edge E. DATA is private
2459 callback data. */
2461 static void
2462 pg_unmark_merged_alias_ddrs (struct graph *, struct graph_edge *e, void *data)
2464 int i, j, component;
2465 struct pg_edge_callback_data *cbdata;
2466 struct pg_edata *edata = (struct pg_edata *) e->data;
2468 if (edata == NULL || edata->alias_ddrs.length () == 0)
2469 return;
2471 cbdata = (struct pg_edge_callback_data *) data;
2472 i = e->src;
2473 j = e->dest;
2474 component = cbdata->vertices_component[i];
2475 /* Make sure to not skip vertices inside SCCs we are going to merge. */
2476 if (component == cbdata->vertices_component[j]
2477 && bitmap_bit_p (cbdata->sccs_to_merge, component))
2479 edata->alias_ddrs.release ();
2480 delete edata;
2481 e->data = NULL;
2485 /* This is the main function breaking strong conected components in
2486 PARTITIONS giving reduced depdendence graph RDG. Store data dependence
2487 relations for runtime alias check in ALIAS_DDRS. */
2488 void
2489 loop_distribution::break_alias_scc_partitions (struct graph *rdg,
2490 vec<struct partition *> *partitions,
2491 vec<ddr_p> *alias_ddrs)
2493 int i, j, k, num_sccs, num_sccs_no_alias = 0;
2494 /* Build partition dependence graph. */
2495 graph *pg = build_partition_graph (rdg, partitions, false);
2497 alias_ddrs->truncate (0);
2498 /* Find strong connected components in the graph, with all dependence edges
2499 considered. */
2500 num_sccs = graphds_scc (pg, NULL);
2501 /* All SCCs now can be broken by runtime alias checks because SCCs caused by
2502 compilation time known dependences are merged before this function. */
2503 if ((unsigned) num_sccs < partitions->length ())
2505 struct pg_edge_callback_data cbdata;
2506 auto_bitmap sccs_to_merge;
2507 auto_vec<enum partition_type> scc_types;
2508 struct partition *partition, *first;
2510 /* If all partitions in a SCC have the same type, we can simply merge the
2511 SCC. This loop finds out such SCCS and record them in bitmap. */
2512 bitmap_set_range (sccs_to_merge, 0, (unsigned) num_sccs);
2513 for (i = 0; i < num_sccs; ++i)
2515 for (j = 0; partitions->iterate (j, &first); ++j)
2516 if (pg->vertices[j].component == i)
2517 break;
2519 bool same_type = true, all_builtins = partition_builtin_p (first);
2520 for (++j; partitions->iterate (j, &partition); ++j)
2522 if (pg->vertices[j].component != i)
2523 continue;
2525 if (first->type != partition->type)
2527 same_type = false;
2528 break;
2530 all_builtins &= partition_builtin_p (partition);
2532 /* Merge SCC if all partitions in SCC have the same type, though the
2533 result partition is sequential, because vectorizer can do better
2534 runtime alias check. One expecption is all partitions in SCC are
2535 builtins. */
2536 if (!same_type || all_builtins)
2537 bitmap_clear_bit (sccs_to_merge, i);
2540 /* Initialize callback data for traversing. */
2541 cbdata.sccs_to_merge = sccs_to_merge;
2542 cbdata.alias_ddrs = alias_ddrs;
2543 cbdata.vertices_component = XNEWVEC (int, pg->n_vertices);
2544 /* Record the component information which will be corrupted by next
2545 graph scc finding call. */
2546 for (i = 0; i < pg->n_vertices; ++i)
2547 cbdata.vertices_component[i] = pg->vertices[i].component;
2549 /* Collect data dependences for runtime alias checks to break SCCs. */
2550 if (bitmap_count_bits (sccs_to_merge) != (unsigned) num_sccs)
2552 /* For SCCs we want to merge clear all alias_ddrs for edges
2553 inside the component. */
2554 for_each_edge (pg, pg_unmark_merged_alias_ddrs, &cbdata);
2556 /* Run SCC finding algorithm again, with alias dependence edges
2557 skipped. This is to topologically sort partitions according to
2558 compilation time known dependence. Note the topological order
2559 is stored in the form of pg's post order number. */
2560 num_sccs_no_alias = graphds_scc (pg, NULL, pg_skip_alias_edge);
2561 /* We cannot assert partitions->length () == num_sccs_no_alias
2562 since we are not ignoring alias edges in cycles we are
2563 going to merge. That's required to compute correct postorder. */
2564 /* With topological order, we can construct two subgraphs L and R.
2565 L contains edge <x, y> where x < y in terms of post order, while
2566 R contains edge <x, y> where x > y. Edges for compilation time
2567 known dependence all fall in R, so we break SCCs by removing all
2568 (alias) edges of in subgraph L. */
2569 for_each_edge (pg, pg_collect_alias_ddrs, &cbdata);
2572 /* For SCC that doesn't need to be broken, merge it. */
2573 for (i = 0; i < num_sccs; ++i)
2575 if (!bitmap_bit_p (sccs_to_merge, i))
2576 continue;
2578 for (j = 0; partitions->iterate (j, &first); ++j)
2579 if (cbdata.vertices_component[j] == i)
2580 break;
2581 for (k = j + 1; partitions->iterate (k, &partition); ++k)
2583 struct pg_vdata *data;
2585 if (cbdata.vertices_component[k] != i)
2586 continue;
2588 partition_merge_into (NULL, first, partition, FUSE_SAME_SCC);
2589 (*partitions)[k] = NULL;
2590 partition_free (partition);
2591 data = (struct pg_vdata *)pg->vertices[k].data;
2592 gcc_assert (data->id == k);
2593 data->partition = NULL;
2594 /* The result partition of merged SCC must be sequential. */
2595 first->type = PTYPE_SEQUENTIAL;
2598 /* If reduction partition's SCC is broken by runtime alias checks,
2599 we force a negative post order to it making sure it will be scheduled
2600 in the last. */
2601 if (num_sccs_no_alias > 0)
2603 j = -1;
2604 for (i = 0; i < pg->n_vertices; ++i)
2606 struct pg_vdata *data = (struct pg_vdata *)pg->vertices[i].data;
2607 if (data->partition && partition_reduction_p (data->partition))
2609 gcc_assert (j == -1);
2610 j = i;
2613 if (j >= 0)
2614 pg->vertices[j].post = -1;
2617 free (cbdata.vertices_component);
2620 sort_partitions_by_post_order (pg, partitions);
2621 free_partition_graph_vdata (pg);
2622 for_each_edge (pg, free_partition_graph_edata_cb, NULL);
2623 free_graph (pg);
2625 if (dump_file && (dump_flags & TDF_DETAILS))
2627 fprintf (dump_file, "Possible alias data dependence to break:\n");
2628 dump_data_dependence_relations (dump_file, *alias_ddrs);
2632 /* Compute and return an expression whose value is the segment length which
2633 will be accessed by DR in NITERS iterations. */
2635 static tree
2636 data_ref_segment_size (struct data_reference *dr, tree niters)
2638 niters = size_binop (MINUS_EXPR,
2639 fold_convert (sizetype, niters),
2640 size_one_node);
2641 return size_binop (MULT_EXPR,
2642 fold_convert (sizetype, DR_STEP (dr)),
2643 fold_convert (sizetype, niters));
2646 /* Return true if LOOP's latch is dominated by statement for data reference
2647 DR. */
2649 static inline bool
2650 latch_dominated_by_data_ref (class loop *loop, data_reference *dr)
2652 return dominated_by_p (CDI_DOMINATORS, single_exit (loop)->src,
2653 gimple_bb (DR_STMT (dr)));
2656 /* Compute alias check pairs and store them in COMP_ALIAS_PAIRS for LOOP's
2657 data dependence relations ALIAS_DDRS. */
2659 static void
2660 compute_alias_check_pairs (class loop *loop, vec<ddr_p> *alias_ddrs,
2661 vec<dr_with_seg_len_pair_t> *comp_alias_pairs)
2663 unsigned int i;
2664 unsigned HOST_WIDE_INT factor = 1;
2665 tree niters_plus_one, niters = number_of_latch_executions (loop);
2667 gcc_assert (niters != NULL_TREE && niters != chrec_dont_know);
2668 niters = fold_convert (sizetype, niters);
2669 niters_plus_one = size_binop (PLUS_EXPR, niters, size_one_node);
2671 if (dump_file && (dump_flags & TDF_DETAILS))
2672 fprintf (dump_file, "Creating alias check pairs:\n");
2674 /* Iterate all data dependence relations and compute alias check pairs. */
2675 for (i = 0; i < alias_ddrs->length (); i++)
2677 ddr_p ddr = (*alias_ddrs)[i];
2678 struct data_reference *dr_a = DDR_A (ddr);
2679 struct data_reference *dr_b = DDR_B (ddr);
2680 tree seg_length_a, seg_length_b;
2682 if (latch_dominated_by_data_ref (loop, dr_a))
2683 seg_length_a = data_ref_segment_size (dr_a, niters_plus_one);
2684 else
2685 seg_length_a = data_ref_segment_size (dr_a, niters);
2687 if (latch_dominated_by_data_ref (loop, dr_b))
2688 seg_length_b = data_ref_segment_size (dr_b, niters_plus_one);
2689 else
2690 seg_length_b = data_ref_segment_size (dr_b, niters);
2692 unsigned HOST_WIDE_INT access_size_a
2693 = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_a))));
2694 unsigned HOST_WIDE_INT access_size_b
2695 = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_b))));
2696 unsigned int align_a = TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr_a)));
2697 unsigned int align_b = TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr_b)));
2699 dr_with_seg_len_pair_t dr_with_seg_len_pair
2700 (dr_with_seg_len (dr_a, seg_length_a, access_size_a, align_a),
2701 dr_with_seg_len (dr_b, seg_length_b, access_size_b, align_b),
2702 /* ??? Would WELL_ORDERED be safe? */
2703 dr_with_seg_len_pair_t::REORDERED);
2705 comp_alias_pairs->safe_push (dr_with_seg_len_pair);
2708 if (tree_fits_uhwi_p (niters))
2709 factor = tree_to_uhwi (niters);
2711 /* Prune alias check pairs. */
2712 prune_runtime_alias_test_list (comp_alias_pairs, factor);
2713 if (dump_file && (dump_flags & TDF_DETAILS))
2714 fprintf (dump_file,
2715 "Improved number of alias checks from %d to %d\n",
2716 alias_ddrs->length (), comp_alias_pairs->length ());
2719 /* Given data dependence relations in ALIAS_DDRS, generate runtime alias
2720 checks and version LOOP under condition of these runtime alias checks. */
2722 static void
2723 version_loop_by_alias_check (vec<struct partition *> *partitions,
2724 class loop *loop, vec<ddr_p> *alias_ddrs)
2726 profile_probability prob;
2727 basic_block cond_bb;
2728 class loop *nloop;
2729 tree lhs, arg0, cond_expr = NULL_TREE;
2730 gimple_seq cond_stmts = NULL;
2731 gimple *call_stmt = NULL;
2732 auto_vec<dr_with_seg_len_pair_t> comp_alias_pairs;
2734 /* Generate code for runtime alias checks if necessary. */
2735 gcc_assert (alias_ddrs->length () > 0);
2737 if (dump_file && (dump_flags & TDF_DETAILS))
2738 fprintf (dump_file,
2739 "Version loop <%d> with runtime alias check\n", loop->num);
2741 compute_alias_check_pairs (loop, alias_ddrs, &comp_alias_pairs);
2742 create_runtime_alias_checks (loop, &comp_alias_pairs, &cond_expr);
2743 cond_expr = force_gimple_operand_1 (cond_expr, &cond_stmts,
2744 is_gimple_val, NULL_TREE);
2746 /* Depend on vectorizer to fold IFN_LOOP_DIST_ALIAS. */
2747 bool cancelable_p = flag_tree_loop_vectorize;
2748 if (cancelable_p)
2750 unsigned i = 0;
2751 struct partition *partition;
2752 for (; partitions->iterate (i, &partition); ++i)
2753 if (!partition_builtin_p (partition))
2754 break;
2756 /* If all partitions are builtins, distributing it would be profitable and
2757 we don't want to cancel the runtime alias checks. */
2758 if (i == partitions->length ())
2759 cancelable_p = false;
2762 /* Generate internal function call for loop distribution alias check if the
2763 runtime alias check should be cancelable. */
2764 if (cancelable_p)
2766 call_stmt = gimple_build_call_internal (IFN_LOOP_DIST_ALIAS,
2767 2, NULL_TREE, cond_expr);
2768 lhs = make_ssa_name (boolean_type_node);
2769 gimple_call_set_lhs (call_stmt, lhs);
2771 else
2772 lhs = cond_expr;
2774 prob = profile_probability::guessed_always ().apply_scale (9, 10);
2775 initialize_original_copy_tables ();
2776 nloop = loop_version (loop, lhs, &cond_bb, prob, prob.invert (),
2777 prob, prob.invert (), true);
2778 free_original_copy_tables ();
2779 /* Record the original loop number in newly generated loops. In case of
2780 distribution, the original loop will be distributed and the new loop
2781 is kept. */
2782 loop->orig_loop_num = nloop->num;
2783 nloop->orig_loop_num = nloop->num;
2784 nloop->dont_vectorize = true;
2785 nloop->force_vectorize = false;
2787 if (call_stmt)
2789 /* Record new loop's num in IFN_LOOP_DIST_ALIAS because the original
2790 loop could be destroyed. */
2791 arg0 = build_int_cst (integer_type_node, loop->orig_loop_num);
2792 gimple_call_set_arg (call_stmt, 0, arg0);
2793 gimple_seq_add_stmt_without_update (&cond_stmts, call_stmt);
2796 if (cond_stmts)
2798 gimple_stmt_iterator cond_gsi = gsi_last_bb (cond_bb);
2799 gsi_insert_seq_before (&cond_gsi, cond_stmts, GSI_SAME_STMT);
2801 update_ssa (TODO_update_ssa_no_phi);
2804 /* Return true if loop versioning is needed to distrubute PARTITIONS.
2805 ALIAS_DDRS are data dependence relations for runtime alias check. */
2807 static inline bool
2808 version_for_distribution_p (vec<struct partition *> *partitions,
2809 vec<ddr_p> *alias_ddrs)
2811 /* No need to version loop if we have only one partition. */
2812 if (partitions->length () == 1)
2813 return false;
2815 /* Need to version loop if runtime alias check is necessary. */
2816 return (alias_ddrs->length () > 0);
2819 /* Compare base offset of builtin mem* partitions P1 and P2. */
2821 static int
2822 offset_cmp (const void *vp1, const void *vp2)
2824 struct partition *p1 = *(struct partition *const *) vp1;
2825 struct partition *p2 = *(struct partition *const *) vp2;
2826 unsigned HOST_WIDE_INT o1 = p1->builtin->dst_base_offset;
2827 unsigned HOST_WIDE_INT o2 = p2->builtin->dst_base_offset;
2828 return (o2 < o1) - (o1 < o2);
2831 /* Fuse adjacent memset builtin PARTITIONS if possible. This is a special
2832 case optimization transforming below code:
2834 __builtin_memset (&obj, 0, 100);
2835 _1 = &obj + 100;
2836 __builtin_memset (_1, 0, 200);
2837 _2 = &obj + 300;
2838 __builtin_memset (_2, 0, 100);
2840 into:
2842 __builtin_memset (&obj, 0, 400);
2844 Note we don't have dependence information between different partitions
2845 at this point, as a result, we can't handle nonadjacent memset builtin
2846 partitions since dependence might be broken. */
2848 static void
2849 fuse_memset_builtins (vec<struct partition *> *partitions)
2851 unsigned i, j;
2852 struct partition *part1, *part2;
2853 tree rhs1, rhs2;
2855 for (i = 0; partitions->iterate (i, &part1);)
2857 if (part1->kind != PKIND_MEMSET)
2859 i++;
2860 continue;
2863 /* Find sub-array of memset builtins of the same base. Index range
2864 of the sub-array is [i, j) with "j > i". */
2865 for (j = i + 1; partitions->iterate (j, &part2); ++j)
2867 if (part2->kind != PKIND_MEMSET
2868 || !operand_equal_p (part1->builtin->dst_base_base,
2869 part2->builtin->dst_base_base, 0))
2870 break;
2872 /* Memset calls setting different values can't be merged. */
2873 rhs1 = gimple_assign_rhs1 (DR_STMT (part1->builtin->dst_dr));
2874 rhs2 = gimple_assign_rhs1 (DR_STMT (part2->builtin->dst_dr));
2875 if (!operand_equal_p (rhs1, rhs2, 0))
2876 break;
2879 /* Stable sort is required in order to avoid breaking dependence. */
2880 gcc_stablesort (&(*partitions)[i], j - i, sizeof (*partitions)[i],
2881 offset_cmp);
2882 /* Continue with next partition. */
2883 i = j;
2886 /* Merge all consecutive memset builtin partitions. */
2887 for (i = 0; i < partitions->length () - 1;)
2889 part1 = (*partitions)[i];
2890 if (part1->kind != PKIND_MEMSET)
2892 i++;
2893 continue;
2896 part2 = (*partitions)[i + 1];
2897 /* Only merge memset partitions of the same base and with constant
2898 access sizes. */
2899 if (part2->kind != PKIND_MEMSET
2900 || TREE_CODE (part1->builtin->size) != INTEGER_CST
2901 || TREE_CODE (part2->builtin->size) != INTEGER_CST
2902 || !operand_equal_p (part1->builtin->dst_base_base,
2903 part2->builtin->dst_base_base, 0))
2905 i++;
2906 continue;
2908 rhs1 = gimple_assign_rhs1 (DR_STMT (part1->builtin->dst_dr));
2909 rhs2 = gimple_assign_rhs1 (DR_STMT (part2->builtin->dst_dr));
2910 int bytev1 = const_with_all_bytes_same (rhs1);
2911 int bytev2 = const_with_all_bytes_same (rhs2);
2912 /* Only merge memset partitions of the same value. */
2913 if (bytev1 != bytev2 || bytev1 == -1)
2915 i++;
2916 continue;
2918 wide_int end1 = wi::add (part1->builtin->dst_base_offset,
2919 wi::to_wide (part1->builtin->size));
2920 /* Only merge adjacent memset partitions. */
2921 if (wi::ne_p (end1, part2->builtin->dst_base_offset))
2923 i++;
2924 continue;
2926 /* Merge partitions[i] and partitions[i+1]. */
2927 part1->builtin->size = fold_build2 (PLUS_EXPR, sizetype,
2928 part1->builtin->size,
2929 part2->builtin->size);
2930 partition_free (part2);
2931 partitions->ordered_remove (i + 1);
2935 void
2936 loop_distribution::finalize_partitions (class loop *loop,
2937 vec<struct partition *> *partitions,
2938 vec<ddr_p> *alias_ddrs)
2940 unsigned i;
2941 struct partition *partition, *a;
2943 if (partitions->length () == 1
2944 || alias_ddrs->length () > 0)
2945 return;
2947 unsigned num_builtin = 0, num_normal = 0, num_partial_memset = 0;
2948 bool same_type_p = true;
2949 enum partition_type type = ((*partitions)[0])->type;
2950 for (i = 0; partitions->iterate (i, &partition); ++i)
2952 same_type_p &= (type == partition->type);
2953 if (partition_builtin_p (partition))
2955 num_builtin++;
2956 continue;
2958 num_normal++;
2959 if (partition->kind == PKIND_PARTIAL_MEMSET)
2960 num_partial_memset++;
2963 /* Don't distribute current loop into too many loops given we don't have
2964 memory stream cost model. Be even more conservative in case of loop
2965 nest distribution. */
2966 if ((same_type_p && num_builtin == 0
2967 && (loop->inner == NULL || num_normal != 2 || num_partial_memset != 1))
2968 || (loop->inner != NULL
2969 && i >= NUM_PARTITION_THRESHOLD && num_normal > 1)
2970 || (loop->inner == NULL
2971 && i >= NUM_PARTITION_THRESHOLD && num_normal > num_builtin))
2973 a = (*partitions)[0];
2974 for (i = 1; partitions->iterate (i, &partition); ++i)
2976 partition_merge_into (NULL, a, partition, FUSE_FINALIZE);
2977 partition_free (partition);
2979 partitions->truncate (1);
2982 /* Fuse memset builtins if possible. */
2983 if (partitions->length () > 1)
2984 fuse_memset_builtins (partitions);
2987 /* Distributes the code from LOOP in such a way that producer statements
2988 are placed before consumer statements. Tries to separate only the
2989 statements from STMTS into separate loops. Returns the number of
2990 distributed loops. Set NB_CALLS to number of generated builtin calls.
2991 Set *DESTROY_P to whether LOOP needs to be destroyed. */
2994 loop_distribution::distribute_loop (class loop *loop,
2995 const vec<gimple *> &stmts,
2996 control_dependences *cd, int *nb_calls, bool *destroy_p,
2997 bool only_patterns_p)
2999 ddrs_table = new hash_table<ddr_hasher> (389);
3000 struct graph *rdg;
3001 partition *partition;
3002 int i, nbp;
3004 *destroy_p = false;
3005 *nb_calls = 0;
3006 loop_nest.create (0);
3007 if (!find_loop_nest (loop, &loop_nest))
3009 loop_nest.release ();
3010 delete ddrs_table;
3011 return 0;
3014 datarefs_vec.create (20);
3015 has_nonaddressable_dataref_p = false;
3016 rdg = build_rdg (loop, cd);
3017 if (!rdg)
3019 if (dump_file && (dump_flags & TDF_DETAILS))
3020 fprintf (dump_file,
3021 "Loop %d not distributed: failed to build the RDG.\n",
3022 loop->num);
3024 loop_nest.release ();
3025 free_data_refs (datarefs_vec);
3026 delete ddrs_table;
3027 return 0;
3030 if (datarefs_vec.length () > MAX_DATAREFS_NUM)
3032 if (dump_file && (dump_flags & TDF_DETAILS))
3033 fprintf (dump_file,
3034 "Loop %d not distributed: too many memory references.\n",
3035 loop->num);
3037 free_rdg (rdg);
3038 loop_nest.release ();
3039 free_data_refs (datarefs_vec);
3040 delete ddrs_table;
3041 return 0;
3044 data_reference_p dref;
3045 for (i = 0; datarefs_vec.iterate (i, &dref); ++i)
3046 dref->aux = (void *) (uintptr_t) i;
3048 if (dump_file && (dump_flags & TDF_DETAILS))
3049 dump_rdg (dump_file, rdg);
3051 auto_vec<struct partition *, 3> partitions;
3052 rdg_build_partitions (rdg, stmts, &partitions);
3054 auto_vec<ddr_p> alias_ddrs;
3056 auto_bitmap stmt_in_all_partitions;
3057 bitmap_copy (stmt_in_all_partitions, partitions[0]->stmts);
3058 for (i = 1; partitions.iterate (i, &partition); ++i)
3059 bitmap_and_into (stmt_in_all_partitions, partitions[i]->stmts);
3061 bool any_builtin = false;
3062 bool reduction_in_all = false;
3063 int reduction_partition_num = -1;
3064 FOR_EACH_VEC_ELT (partitions, i, partition)
3066 reduction_in_all
3067 |= classify_partition (loop, rdg, partition, stmt_in_all_partitions);
3068 any_builtin |= partition_builtin_p (partition);
3071 /* If we are only distributing patterns but did not detect any,
3072 simply bail out. */
3073 if (only_patterns_p
3074 && !any_builtin)
3076 nbp = 0;
3077 goto ldist_done;
3080 /* If we are only distributing patterns fuse all partitions that
3081 were not classified as builtins. This also avoids chopping
3082 a loop into pieces, separated by builtin calls. That is, we
3083 only want no or a single loop body remaining. */
3084 struct partition *into;
3085 if (only_patterns_p)
3087 for (i = 0; partitions.iterate (i, &into); ++i)
3088 if (!partition_builtin_p (into))
3089 break;
3090 for (++i; partitions.iterate (i, &partition); ++i)
3091 if (!partition_builtin_p (partition))
3093 partition_merge_into (NULL, into, partition, FUSE_NON_BUILTIN);
3094 partitions.unordered_remove (i);
3095 partition_free (partition);
3096 i--;
3100 /* Due to limitations in the transform phase we have to fuse all
3101 reduction partitions into the last partition so the existing
3102 loop will contain all loop-closed PHI nodes. */
3103 for (i = 0; partitions.iterate (i, &into); ++i)
3104 if (partition_reduction_p (into))
3105 break;
3106 for (i = i + 1; partitions.iterate (i, &partition); ++i)
3107 if (partition_reduction_p (partition))
3109 partition_merge_into (rdg, into, partition, FUSE_REDUCTION);
3110 partitions.unordered_remove (i);
3111 partition_free (partition);
3112 i--;
3115 /* Apply our simple cost model - fuse partitions with similar
3116 memory accesses. */
3117 for (i = 0; partitions.iterate (i, &into); ++i)
3119 bool changed = false;
3120 for (int j = i + 1; partitions.iterate (j, &partition); ++j)
3122 if (share_memory_accesses (rdg, into, partition))
3124 partition_merge_into (rdg, into, partition, FUSE_SHARE_REF);
3125 partitions.unordered_remove (j);
3126 partition_free (partition);
3127 j--;
3128 changed = true;
3131 /* If we fused 0 1 2 in step 1 to 0,2 1 as 0 and 2 have similar
3132 accesses when 1 and 2 have similar accesses but not 0 and 1
3133 then in the next iteration we will fail to consider merging
3134 1 into 0,2. So try again if we did any merging into 0. */
3135 if (changed)
3136 i--;
3139 /* Put a non-builtin partition last if we need to preserve a reduction.
3140 In most cases this helps to keep a normal partition last avoiding to
3141 spill a reduction result across builtin calls.
3142 ??? The proper way would be to use dependences to see whether we
3143 can move builtin partitions earlier during merge_dep_scc_partitions
3144 and its sort_partitions_by_post_order. Especially when the
3145 dependence graph is composed of multiple independent subgraphs the
3146 heuristic does not work reliably. */
3147 if (reduction_in_all
3148 && partition_builtin_p (partitions.last()))
3149 FOR_EACH_VEC_ELT (partitions, i, partition)
3150 if (!partition_builtin_p (partition))
3152 partitions.unordered_remove (i);
3153 partitions.quick_push (partition);
3154 break;
3157 /* Build the partition dependency graph and fuse partitions in strong
3158 connected component. */
3159 if (partitions.length () > 1)
3161 /* Don't support loop nest distribution under runtime alias check
3162 since it's not likely to enable many vectorization opportunities.
3163 Also if loop has any data reference which may be not addressable
3164 since alias check needs to take, compare address of the object. */
3165 if (loop->inner || has_nonaddressable_dataref_p)
3166 merge_dep_scc_partitions (rdg, &partitions, false);
3167 else
3169 merge_dep_scc_partitions (rdg, &partitions, true);
3170 if (partitions.length () > 1)
3171 break_alias_scc_partitions (rdg, &partitions, &alias_ddrs);
3175 finalize_partitions (loop, &partitions, &alias_ddrs);
3177 /* If there is a reduction in all partitions make sure the last
3178 non-builtin partition provides the LC PHI defs. */
3179 if (reduction_in_all)
3181 FOR_EACH_VEC_ELT (partitions, i, partition)
3182 if (!partition_builtin_p (partition))
3183 reduction_partition_num = i;
3184 if (reduction_partition_num == -1)
3186 /* If all partitions are builtin, force the last one to
3187 be code generated as normal partition. */
3188 partition = partitions.last ();
3189 partition->kind = PKIND_NORMAL;
3193 nbp = partitions.length ();
3194 if (nbp == 0
3195 || (nbp == 1 && !partition_builtin_p (partitions[0]))
3196 || (nbp > 1 && partition_contains_all_rw (rdg, partitions)))
3198 nbp = 0;
3199 goto ldist_done;
3202 if (version_for_distribution_p (&partitions, &alias_ddrs))
3203 version_loop_by_alias_check (&partitions, loop, &alias_ddrs);
3205 if (dump_file && (dump_flags & TDF_DETAILS))
3207 fprintf (dump_file,
3208 "distribute loop <%d> into partitions:\n", loop->num);
3209 dump_rdg_partitions (dump_file, partitions);
3212 FOR_EACH_VEC_ELT (partitions, i, partition)
3214 if (partition_builtin_p (partition))
3215 (*nb_calls)++;
3216 *destroy_p |= generate_code_for_partition (loop, partition, i < nbp - 1,
3217 i == reduction_partition_num);
3220 ldist_done:
3221 loop_nest.release ();
3222 free_data_refs (datarefs_vec);
3223 for (hash_table<ddr_hasher>::iterator iter = ddrs_table->begin ();
3224 iter != ddrs_table->end (); ++iter)
3226 free_dependence_relation (*iter);
3227 *iter = NULL;
3229 delete ddrs_table;
3231 FOR_EACH_VEC_ELT (partitions, i, partition)
3232 partition_free (partition);
3234 free_rdg (rdg);
3235 return nbp - *nb_calls;
3239 void loop_distribution::bb_top_order_init (void)
3241 int rpo_num;
3242 int *rpo = XNEWVEC (int, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
3243 edge entry = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
3244 bitmap exit_bbs = BITMAP_ALLOC (NULL);
3246 bb_top_order_index = XNEWVEC (int, last_basic_block_for_fn (cfun));
3247 bb_top_order_index_size = last_basic_block_for_fn (cfun);
3249 entry->flags &= ~EDGE_DFS_BACK;
3250 bitmap_set_bit (exit_bbs, EXIT_BLOCK);
3251 rpo_num = rev_post_order_and_mark_dfs_back_seme (cfun, entry, exit_bbs, true,
3252 rpo, NULL);
3253 BITMAP_FREE (exit_bbs);
3255 for (int i = 0; i < rpo_num; i++)
3256 bb_top_order_index[rpo[i]] = i;
3258 free (rpo);
3261 void loop_distribution::bb_top_order_destroy ()
3263 free (bb_top_order_index);
3264 bb_top_order_index = NULL;
3265 bb_top_order_index_size = 0;
3269 /* Given LOOP, this function records seed statements for distribution in
3270 WORK_LIST. Return false if there is nothing for distribution. */
3272 static bool
3273 find_seed_stmts_for_distribution (class loop *loop, vec<gimple *> *work_list)
3275 basic_block *bbs = get_loop_body_in_dom_order (loop);
3277 /* Initialize the worklist with stmts we seed the partitions with. */
3278 for (unsigned i = 0; i < loop->num_nodes; ++i)
3280 /* In irreducible sub-regions we don't know how to redirect
3281 conditions, so fail. See PR100492. */
3282 if (bbs[i]->flags & BB_IRREDUCIBLE_LOOP)
3284 if (dump_file && (dump_flags & TDF_DETAILS))
3285 fprintf (dump_file, "loop %d contains an irreducible region.\n",
3286 loop->num);
3287 work_list->truncate (0);
3288 break;
3290 for (gphi_iterator gsi = gsi_start_phis (bbs[i]);
3291 !gsi_end_p (gsi); gsi_next (&gsi))
3293 gphi *phi = gsi.phi ();
3294 if (virtual_operand_p (gimple_phi_result (phi)))
3295 continue;
3296 /* Distribute stmts which have defs that are used outside of
3297 the loop. */
3298 if (!stmt_has_scalar_dependences_outside_loop (loop, phi))
3299 continue;
3300 work_list->safe_push (phi);
3302 for (gimple_stmt_iterator gsi = gsi_start_bb (bbs[i]);
3303 !gsi_end_p (gsi); gsi_next (&gsi))
3305 gimple *stmt = gsi_stmt (gsi);
3307 /* Ignore clobbers, they do not have true side effects. */
3308 if (gimple_clobber_p (stmt))
3309 continue;
3311 /* If there is a stmt with side-effects bail out - we
3312 cannot and should not distribute this loop. */
3313 if (gimple_has_side_effects (stmt))
3315 free (bbs);
3316 return false;
3319 /* Distribute stmts which have defs that are used outside of
3320 the loop. */
3321 if (stmt_has_scalar_dependences_outside_loop (loop, stmt))
3323 /* Otherwise only distribute stores for now. */
3324 else if (!gimple_vdef (stmt))
3325 continue;
3327 work_list->safe_push (stmt);
3330 bool res = work_list->length () > 0;
3331 if (res && !can_copy_bbs_p (bbs, loop->num_nodes))
3333 if (dump_file && (dump_flags & TDF_DETAILS))
3334 fprintf (dump_file, "cannot copy loop %d.\n", loop->num);
3335 res = false;
3337 free (bbs);
3338 return res;
3341 /* A helper function for generate_{rawmemchr,strlen}_builtin functions in order
3342 to place new statements SEQ before LOOP and replace the old reduction
3343 variable with the new one. */
3345 static void
3346 generate_reduction_builtin_1 (loop_p loop, gimple_seq &seq,
3347 tree reduction_var_old, tree reduction_var_new,
3348 const char *info, machine_mode load_mode)
3350 gcc_assert (flag_tree_loop_distribute_patterns);
3352 /* Place new statements before LOOP. */
3353 gimple_stmt_iterator gsi = gsi_last_bb (loop_preheader_edge (loop)->src);
3354 gsi_insert_seq_after (&gsi, seq, GSI_CONTINUE_LINKING);
3356 /* Replace old reduction variable with new one. */
3357 imm_use_iterator iter;
3358 gimple *stmt;
3359 use_operand_p use_p;
3360 FOR_EACH_IMM_USE_STMT (stmt, iter, reduction_var_old)
3362 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3363 SET_USE (use_p, reduction_var_new);
3365 update_stmt (stmt);
3368 if (dump_file && (dump_flags & TDF_DETAILS))
3369 fprintf (dump_file, info, GET_MODE_NAME (load_mode));
3372 /* Generate a call to rawmemchr and place it before LOOP. REDUCTION_VAR is
3373 replaced with a fresh SSA name representing the result of the call. */
3375 static void
3376 generate_rawmemchr_builtin (loop_p loop, tree reduction_var,
3377 data_reference_p store_dr, tree base, tree pattern,
3378 location_t loc)
3380 gimple_seq seq = NULL;
3382 tree mem = force_gimple_operand (base, &seq, true, NULL_TREE);
3383 gimple *fn_call = gimple_build_call_internal (IFN_RAWMEMCHR, 2, mem, pattern);
3384 tree reduction_var_new = copy_ssa_name (reduction_var);
3385 gimple_call_set_lhs (fn_call, reduction_var_new);
3386 gimple_set_location (fn_call, loc);
3387 gimple_seq_add_stmt (&seq, fn_call);
3389 if (store_dr)
3391 gassign *g = gimple_build_assign (DR_REF (store_dr), reduction_var_new);
3392 gimple_seq_add_stmt (&seq, g);
3395 generate_reduction_builtin_1 (loop, seq, reduction_var, reduction_var_new,
3396 "generated rawmemchr%s\n",
3397 TYPE_MODE (TREE_TYPE (TREE_TYPE (base))));
3400 /* Helper function for generate_strlen_builtin(,_using_rawmemchr) */
3402 static void
3403 generate_strlen_builtin_1 (loop_p loop, gimple_seq &seq,
3404 tree reduction_var_old, tree reduction_var_new,
3405 machine_mode mode, tree start_len)
3407 /* REDUCTION_VAR_NEW has either size type or ptrdiff type and must be
3408 converted if types of old and new reduction variable are not compatible. */
3409 reduction_var_new = gimple_convert (&seq, TREE_TYPE (reduction_var_old),
3410 reduction_var_new);
3412 /* Loops of the form `for (i=42; s[i]; ++i);` have an additional start
3413 length. */
3414 if (!integer_zerop (start_len))
3416 tree lhs = make_ssa_name (TREE_TYPE (reduction_var_new));
3417 gimple *g = gimple_build_assign (lhs, PLUS_EXPR, reduction_var_new,
3418 start_len);
3419 gimple_seq_add_stmt (&seq, g);
3420 reduction_var_new = lhs;
3423 generate_reduction_builtin_1 (loop, seq, reduction_var_old, reduction_var_new,
3424 "generated strlen%s\n", mode);
3427 /* Generate a call to strlen and place it before LOOP. REDUCTION_VAR is
3428 replaced with a fresh SSA name representing the result of the call. */
3430 static void
3431 generate_strlen_builtin (loop_p loop, tree reduction_var, tree base,
3432 tree start_len, location_t loc)
3434 gimple_seq seq = NULL;
3436 tree reduction_var_new = make_ssa_name (size_type_node);
3438 tree mem = force_gimple_operand (base, &seq, true, NULL_TREE);
3439 tree fn = build_fold_addr_expr (builtin_decl_implicit (BUILT_IN_STRLEN));
3440 gimple *fn_call = gimple_build_call (fn, 1, mem);
3441 gimple_call_set_lhs (fn_call, reduction_var_new);
3442 gimple_set_location (fn_call, loc);
3443 gimple_seq_add_stmt (&seq, fn_call);
3445 generate_strlen_builtin_1 (loop, seq, reduction_var, reduction_var_new,
3446 QImode, start_len);
3449 /* Generate code in order to mimic the behaviour of strlen but this time over
3450 an array of elements with mode different than QI. REDUCTION_VAR is replaced
3451 with a fresh SSA name representing the result, i.e., the length. */
3453 static void
3454 generate_strlen_builtin_using_rawmemchr (loop_p loop, tree reduction_var,
3455 tree base, tree load_type,
3456 tree start_len, location_t loc)
3458 gimple_seq seq = NULL;
3460 tree start = force_gimple_operand (base, &seq, true, NULL_TREE);
3461 tree zero = build_zero_cst (load_type);
3462 gimple *fn_call = gimple_build_call_internal (IFN_RAWMEMCHR, 2, start, zero);
3463 tree end = make_ssa_name (TREE_TYPE (base));
3464 gimple_call_set_lhs (fn_call, end);
3465 gimple_set_location (fn_call, loc);
3466 gimple_seq_add_stmt (&seq, fn_call);
3468 /* Determine the number of elements between START and END by
3469 evaluating (END - START) / sizeof (*START). */
3470 tree diff = make_ssa_name (ptrdiff_type_node);
3471 gimple *diff_stmt = gimple_build_assign (diff, POINTER_DIFF_EXPR, end, start);
3472 gimple_seq_add_stmt (&seq, diff_stmt);
3473 /* Let SIZE be the size of each character. */
3474 tree size = gimple_convert (&seq, ptrdiff_type_node,
3475 TYPE_SIZE_UNIT (load_type));
3476 tree count = make_ssa_name (ptrdiff_type_node);
3477 gimple *count_stmt = gimple_build_assign (count, TRUNC_DIV_EXPR, diff, size);
3478 gimple_seq_add_stmt (&seq, count_stmt);
3480 generate_strlen_builtin_1 (loop, seq, reduction_var, count,
3481 TYPE_MODE (load_type),
3482 start_len);
3485 /* Return true if we can count at least as many characters by taking pointer
3486 difference as we can count via reduction_var without an overflow. Thus
3487 compute 2^n < (2^(m-1) / s) where n = TYPE_PRECISION (reduction_var_type),
3488 m = TYPE_PRECISION (ptrdiff_type_node), and s = size of each character. */
3489 static bool
3490 reduction_var_overflows_first (tree reduction_var_type, tree load_type)
3492 widest_int n2 = wi::lshift (1, TYPE_PRECISION (reduction_var_type));;
3493 widest_int m2 = wi::lshift (1, TYPE_PRECISION (ptrdiff_type_node) - 1);
3494 widest_int s = wi::to_widest (TYPE_SIZE_UNIT (load_type));
3495 return wi::ltu_p (n2, wi::udiv_trunc (m2, s));
3498 static gimple *
3499 determine_reduction_stmt_1 (const loop_p loop, const basic_block *bbs)
3501 gimple *reduction_stmt = NULL;
3503 for (unsigned i = 0, ninsns = 0; i < loop->num_nodes; ++i)
3505 basic_block bb = bbs[i];
3507 for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (bsi);
3508 gsi_next_nondebug (&bsi))
3510 gphi *phi = bsi.phi ();
3511 if (virtual_operand_p (gimple_phi_result (phi)))
3512 continue;
3513 if (stmt_has_scalar_dependences_outside_loop (loop, phi))
3515 if (reduction_stmt)
3516 return NULL;
3517 reduction_stmt = phi;
3521 for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (bsi);
3522 gsi_next_nondebug (&bsi), ++ninsns)
3524 /* Bail out early for loops which are unlikely to match. */
3525 if (ninsns > 16)
3526 return NULL;
3527 gimple *stmt = gsi_stmt (bsi);
3528 if (gimple_clobber_p (stmt))
3529 continue;
3530 if (gimple_code (stmt) == GIMPLE_LABEL)
3531 continue;
3532 if (gimple_has_volatile_ops (stmt))
3533 return NULL;
3534 if (stmt_has_scalar_dependences_outside_loop (loop, stmt))
3536 if (reduction_stmt)
3537 return NULL;
3538 reduction_stmt = stmt;
3543 return reduction_stmt;
3546 /* If LOOP has a single non-volatile reduction statement, then return a pointer
3547 to it. Otherwise return NULL. */
3548 static gimple *
3549 determine_reduction_stmt (const loop_p loop)
3551 basic_block *bbs = get_loop_body (loop);
3552 gimple *reduction_stmt = determine_reduction_stmt_1 (loop, bbs);
3553 XDELETEVEC (bbs);
3554 return reduction_stmt;
3557 /* Transform loops which mimic the effects of builtins rawmemchr or strlen and
3558 replace them accordingly. For example, a loop of the form
3560 for (; *p != 42; ++p);
3562 is replaced by
3564 p = rawmemchr<MODE> (p, 42);
3566 under the assumption that rawmemchr is available for a particular MODE.
3567 Another example is
3569 int i;
3570 for (i = 42; s[i]; ++i);
3572 which is replaced by
3574 i = (int)strlen (&s[42]) + 42;
3576 for some character array S. In case array S is not of type character array
3577 we end up with
3579 i = (int)(rawmemchr<MODE> (&s[42], 0) - &s[42]) + 42;
3581 assuming that rawmemchr is available for a particular MODE. */
3583 bool
3584 loop_distribution::transform_reduction_loop (loop_p loop)
3586 gimple *reduction_stmt;
3587 data_reference_p load_dr = NULL, store_dr = NULL;
3589 edge e = single_exit (loop);
3590 gcond *cond = safe_dyn_cast <gcond *> (*gsi_last_bb (e->src));
3591 if (!cond)
3592 return false;
3593 /* Ensure loop condition is an (in)equality test and loop is exited either if
3594 the inequality test fails or the equality test succeeds. */
3595 if (!(e->flags & EDGE_FALSE_VALUE && gimple_cond_code (cond) == NE_EXPR)
3596 && !(e->flags & EDGE_TRUE_VALUE && gimple_cond_code (cond) == EQ_EXPR))
3597 return false;
3598 /* A limitation of the current implementation is that we only support
3599 constant patterns in (in)equality tests. */
3600 tree pattern = gimple_cond_rhs (cond);
3601 if (TREE_CODE (pattern) != INTEGER_CST)
3602 return false;
3604 reduction_stmt = determine_reduction_stmt (loop);
3606 /* A limitation of the current implementation is that we require a reduction
3607 statement. Therefore, loops without a reduction statement as in the
3608 following are not recognized:
3609 int *p;
3610 void foo (void) { for (; *p; ++p); } */
3611 if (reduction_stmt == NULL)
3612 return false;
3614 /* Reduction variables are guaranteed to be SSA names. */
3615 tree reduction_var;
3616 switch (gimple_code (reduction_stmt))
3618 case GIMPLE_ASSIGN:
3619 case GIMPLE_PHI:
3620 reduction_var = gimple_get_lhs (reduction_stmt);
3621 break;
3622 default:
3623 /* Bail out e.g. for GIMPLE_CALL. */
3624 return false;
3627 struct graph *rdg = build_rdg (loop, NULL);
3628 if (rdg == NULL)
3630 if (dump_file && (dump_flags & TDF_DETAILS))
3631 fprintf (dump_file,
3632 "Loop %d not transformed: failed to build the RDG.\n",
3633 loop->num);
3635 return false;
3637 auto_bitmap partition_stmts;
3638 bitmap_set_range (partition_stmts, 0, rdg->n_vertices);
3639 find_single_drs (loop, rdg, partition_stmts, &store_dr, &load_dr);
3640 free_rdg (rdg);
3642 /* Bail out if there is no single load. */
3643 if (load_dr == NULL)
3644 return false;
3646 /* Reaching this point we have a loop with a single reduction variable,
3647 a single load, and an optional single store. */
3649 tree load_ref = DR_REF (load_dr);
3650 tree load_type = TREE_TYPE (load_ref);
3651 tree load_access_base = build_fold_addr_expr (load_ref);
3652 tree load_access_size = TYPE_SIZE_UNIT (load_type);
3653 affine_iv load_iv, reduction_iv;
3655 if (!INTEGRAL_TYPE_P (load_type)
3656 || !type_has_mode_precision_p (load_type))
3657 return false;
3659 /* We already ensured that the loop condition tests for (in)equality where the
3660 rhs is a constant pattern. Now ensure that the lhs is the result of the
3661 load. */
3662 if (gimple_cond_lhs (cond) != gimple_assign_lhs (DR_STMT (load_dr)))
3663 return false;
3665 /* Bail out if no affine induction variable with constant step can be
3666 determined. */
3667 if (!simple_iv (loop, loop, load_access_base, &load_iv, false))
3668 return false;
3670 /* Bail out if memory accesses are not consecutive or not growing. */
3671 if (!operand_equal_p (load_iv.step, load_access_size, 0))
3672 return false;
3674 if (!simple_iv (loop, loop, reduction_var, &reduction_iv, false))
3675 return false;
3677 /* Handle rawmemchr like loops. */
3678 if (operand_equal_p (load_iv.base, reduction_iv.base)
3679 && operand_equal_p (load_iv.step, reduction_iv.step))
3681 if (store_dr)
3683 /* Ensure that we store to X and load from X+I where I>0. */
3684 if (TREE_CODE (load_iv.base) != POINTER_PLUS_EXPR
3685 || !integer_onep (TREE_OPERAND (load_iv.base, 1)))
3686 return false;
3687 tree ptr_base = TREE_OPERAND (load_iv.base, 0);
3688 if (TREE_CODE (ptr_base) != SSA_NAME)
3689 return false;
3690 gimple *def = SSA_NAME_DEF_STMT (ptr_base);
3691 if (!gimple_assign_single_p (def)
3692 || gimple_assign_rhs1 (def) != DR_REF (store_dr))
3693 return false;
3694 /* Ensure that the reduction value is stored. */
3695 if (gimple_assign_rhs1 (DR_STMT (store_dr)) != reduction_var)
3696 return false;
3698 /* Bail out if target does not provide rawmemchr for a certain mode. */
3699 machine_mode mode = TYPE_MODE (load_type);
3700 if (direct_optab_handler (rawmemchr_optab, mode) == CODE_FOR_nothing)
3701 return false;
3702 location_t loc = gimple_location (DR_STMT (load_dr));
3703 generate_rawmemchr_builtin (loop, reduction_var, store_dr, load_iv.base,
3704 pattern, loc);
3705 return true;
3708 /* Handle strlen like loops. */
3709 if (store_dr == NULL
3710 && integer_zerop (pattern)
3711 && INTEGRAL_TYPE_P (TREE_TYPE (reduction_var))
3712 && TREE_CODE (reduction_iv.base) == INTEGER_CST
3713 && TREE_CODE (reduction_iv.step) == INTEGER_CST
3714 && integer_onep (reduction_iv.step))
3716 location_t loc = gimple_location (DR_STMT (load_dr));
3717 tree reduction_var_type = TREE_TYPE (reduction_var);
3718 /* While determining the length of a string an overflow might occur.
3719 If an overflow only occurs in the loop implementation and not in the
3720 strlen implementation, then either the overflow is undefined or the
3721 truncated result of strlen equals the one of the loop. Otherwise if
3722 an overflow may also occur in the strlen implementation, then
3723 replacing a loop by a call to strlen is sound whenever we ensure that
3724 if an overflow occurs in the strlen implementation, then also an
3725 overflow occurs in the loop implementation which is undefined. It
3726 seems reasonable to relax this and assume that the strlen
3727 implementation cannot overflow in case sizetype is big enough in the
3728 sense that an overflow can only happen for string objects which are
3729 bigger than half of the address space; at least for 32-bit targets and
3732 For strlen which makes use of rawmemchr the maximal length of a string
3733 which can be determined without an overflow is PTRDIFF_MAX / S where
3734 each character has size S. Since an overflow for ptrdiff type is
3735 undefined we have to make sure that if an overflow occurs, then an
3736 overflow occurs in the loop implementation, too, and this is
3737 undefined, too. Similar as before we relax this and assume that no
3738 string object is larger than half of the address space; at least for
3739 32-bit targets and up. */
3740 if (TYPE_MODE (load_type) == TYPE_MODE (char_type_node)
3741 && TYPE_PRECISION (load_type) == TYPE_PRECISION (char_type_node)
3742 && ((TYPE_PRECISION (sizetype) >= TYPE_PRECISION (ptr_type_node) - 1
3743 && TYPE_PRECISION (ptr_type_node) >= 32)
3744 || (TYPE_OVERFLOW_UNDEFINED (reduction_var_type)
3745 && TYPE_PRECISION (reduction_var_type) <= TYPE_PRECISION (sizetype)))
3746 && builtin_decl_implicit (BUILT_IN_STRLEN))
3747 generate_strlen_builtin (loop, reduction_var, load_iv.base,
3748 reduction_iv.base, loc);
3749 else if (direct_optab_handler (rawmemchr_optab, TYPE_MODE (load_type))
3750 != CODE_FOR_nothing
3751 && ((TYPE_PRECISION (ptrdiff_type_node) == TYPE_PRECISION (ptr_type_node)
3752 && TYPE_PRECISION (ptrdiff_type_node) >= 32)
3753 || (TYPE_OVERFLOW_UNDEFINED (reduction_var_type)
3754 && reduction_var_overflows_first (reduction_var_type, load_type))))
3755 generate_strlen_builtin_using_rawmemchr (loop, reduction_var,
3756 load_iv.base,
3757 load_type,
3758 reduction_iv.base, loc);
3759 else
3760 return false;
3761 return true;
3764 return false;
3767 /* Given innermost LOOP, return the outermost enclosing loop that forms a
3768 perfect loop nest. */
3770 static class loop *
3771 prepare_perfect_loop_nest (class loop *loop)
3773 class loop *outer = loop_outer (loop);
3774 tree niters = number_of_latch_executions (loop);
3776 /* TODO: We only support the innermost 3-level loop nest distribution
3777 because of compilation time issue for now. This should be relaxed
3778 in the future. Note we only allow 3-level loop nest distribution
3779 when parallelizing loops. */
3780 while ((loop->inner == NULL
3781 || (loop->inner->inner == NULL && flag_tree_parallelize_loops > 1))
3782 && loop_outer (outer)
3783 && outer->inner == loop && loop->next == NULL
3784 && single_exit (outer)
3785 && !chrec_contains_symbols_defined_in_loop (niters, outer->num)
3786 && (niters = number_of_latch_executions (outer)) != NULL_TREE
3787 && niters != chrec_dont_know)
3789 loop = outer;
3790 outer = loop_outer (loop);
3793 return loop;
3797 unsigned int
3798 loop_distribution::execute (function *fun)
3800 bool changed = false;
3801 basic_block bb;
3802 control_dependences *cd = NULL;
3803 auto_vec<loop_p> loops_to_be_destroyed;
3805 if (number_of_loops (fun) <= 1)
3806 return 0;
3808 bb_top_order_init ();
3810 FOR_ALL_BB_FN (bb, fun)
3812 gimple_stmt_iterator gsi;
3813 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3814 gimple_set_uid (gsi_stmt (gsi), -1);
3815 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3816 gimple_set_uid (gsi_stmt (gsi), -1);
3819 /* We can at the moment only distribute non-nested loops, thus restrict
3820 walking to innermost loops. */
3821 for (auto loop : loops_list (cfun, LI_ONLY_INNERMOST))
3823 /* Don't distribute multiple exit edges loop, or cold loop when
3824 not doing pattern detection. */
3825 if (!single_exit (loop)
3826 || (!flag_tree_loop_distribute_patterns
3827 && !optimize_loop_for_speed_p (loop)))
3828 continue;
3830 /* If niters is unknown don't distribute loop but rather try to transform
3831 it to a call to a builtin. */
3832 tree niters = number_of_latch_executions (loop);
3833 if (niters == NULL_TREE || niters == chrec_dont_know)
3835 datarefs_vec.create (20);
3836 if (flag_tree_loop_distribute_patterns
3837 && transform_reduction_loop (loop))
3839 changed = true;
3840 loops_to_be_destroyed.safe_push (loop);
3841 if (dump_enabled_p ())
3843 dump_user_location_t loc = find_loop_location (loop);
3844 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS,
3845 loc, "Loop %d transformed into a builtin.\n",
3846 loop->num);
3849 free_data_refs (datarefs_vec);
3850 continue;
3853 /* Get the perfect loop nest for distribution. */
3854 loop = prepare_perfect_loop_nest (loop);
3855 for (; loop; loop = loop->inner)
3857 auto_vec<gimple *> work_list;
3858 if (!find_seed_stmts_for_distribution (loop, &work_list))
3859 continue;
3861 const char *str = loop->inner ? " nest" : "";
3862 dump_user_location_t loc = find_loop_location (loop);
3863 if (!cd)
3865 calculate_dominance_info (CDI_DOMINATORS);
3866 calculate_dominance_info (CDI_POST_DOMINATORS);
3867 cd = new control_dependences ();
3868 free_dominance_info (CDI_POST_DOMINATORS);
3871 bool destroy_p;
3872 int nb_generated_loops, nb_generated_calls;
3873 nb_generated_loops
3874 = distribute_loop (loop, work_list, cd, &nb_generated_calls,
3875 &destroy_p, (!optimize_loop_for_speed_p (loop)
3876 || !flag_tree_loop_distribution));
3877 if (destroy_p)
3878 loops_to_be_destroyed.safe_push (loop);
3880 if (nb_generated_loops + nb_generated_calls > 0)
3882 changed = true;
3883 if (dump_enabled_p ())
3884 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS,
3885 loc, "Loop%s %d distributed: split to %d loops "
3886 "and %d library calls.\n", str, loop->num,
3887 nb_generated_loops, nb_generated_calls);
3889 break;
3892 if (dump_file && (dump_flags & TDF_DETAILS))
3893 fprintf (dump_file, "Loop%s %d not distributed.\n", str, loop->num);
3897 if (cd)
3898 delete cd;
3900 if (bb_top_order_index != NULL)
3901 bb_top_order_destroy ();
3903 if (changed)
3905 /* Destroy loop bodies that could not be reused. Do this late as we
3906 otherwise can end up refering to stale data in control dependences. */
3907 unsigned i;
3908 class loop *loop;
3909 FOR_EACH_VEC_ELT (loops_to_be_destroyed, i, loop)
3910 destroy_loop (loop);
3912 /* Cached scalar evolutions now may refer to wrong or non-existing
3913 loops. */
3914 scev_reset ();
3915 mark_virtual_operands_for_renaming (fun);
3916 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
3919 checking_verify_loop_structure ();
3921 return changed ? TODO_cleanup_cfg : 0;
3925 /* Distribute all loops in the current function. */
3927 namespace {
3929 const pass_data pass_data_loop_distribution =
3931 GIMPLE_PASS, /* type */
3932 "ldist", /* name */
3933 OPTGROUP_LOOP, /* optinfo_flags */
3934 TV_TREE_LOOP_DISTRIBUTION, /* tv_id */
3935 ( PROP_cfg | PROP_ssa ), /* properties_required */
3936 0, /* properties_provided */
3937 0, /* properties_destroyed */
3938 0, /* todo_flags_start */
3939 0, /* todo_flags_finish */
3942 class pass_loop_distribution : public gimple_opt_pass
3944 public:
3945 pass_loop_distribution (gcc::context *ctxt)
3946 : gimple_opt_pass (pass_data_loop_distribution, ctxt)
3949 /* opt_pass methods: */
3950 bool gate (function *) final override
3952 return flag_tree_loop_distribution
3953 || flag_tree_loop_distribute_patterns;
3956 unsigned int execute (function *) final override;
3958 }; // class pass_loop_distribution
3960 unsigned int
3961 pass_loop_distribution::execute (function *fun)
3963 return loop_distribution ().execute (fun);
3966 } // anon namespace
3968 gimple_opt_pass *
3969 make_pass_loop_distribution (gcc::context *ctxt)
3971 return new pass_loop_distribution (ctxt);