ada: Fix wrong finalization for call to BIP function in conditional expression
[official-gcc.git] / gcc / real.h
blob9ed6c372b14d66ea7953679959b67b6e08ffb8db
1 /* Definitions of floating-point access for GNU compiler.
2 Copyright (C) 1989-2023 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #ifndef GCC_REAL_H
21 #define GCC_REAL_H
23 /* An expanded form of the represented number. */
25 /* Enumerate the special cases of numbers that we encounter. */
26 enum real_value_class {
27 rvc_zero,
28 rvc_normal,
29 rvc_inf,
30 rvc_nan
33 #define SIGNIFICAND_BITS (128 + HOST_BITS_PER_LONG)
34 #define EXP_BITS (32 - 6)
35 #define MAX_EXP ((1 << (EXP_BITS - 1)) - 1)
36 #define SIGSZ (SIGNIFICAND_BITS / HOST_BITS_PER_LONG)
37 #define SIG_MSB ((unsigned long)1 << (HOST_BITS_PER_LONG - 1))
39 struct GTY(()) real_value {
40 /* Use the same underlying type for all bit-fields, so as to make
41 sure they're packed together, otherwise REAL_VALUE_TYPE_SIZE will
42 be miscomputed. */
43 unsigned int /* ENUM_BITFIELD (real_value_class) */ cl : 2;
44 /* 1 if number is decimal floating point. */
45 unsigned int decimal : 1;
46 /* 1 if number is negative. */
47 unsigned int sign : 1;
48 /* 1 if number is signalling. */
49 unsigned int signalling : 1;
50 /* 1 if number is canonical
51 All are generally used for handling cases in real.cc. */
52 unsigned int canonical : 1;
53 /* unbiased exponent of the number. */
54 unsigned int uexp : EXP_BITS;
55 /* significand of the number. */
56 unsigned long sig[SIGSZ];
59 #define REAL_EXP(REAL) \
60 ((int)((REAL)->uexp ^ (unsigned int)(1 << (EXP_BITS - 1))) \
61 - (1 << (EXP_BITS - 1)))
62 #define SET_REAL_EXP(REAL, EXP) \
63 ((REAL)->uexp = ((unsigned int)(EXP) & (unsigned int)((1 << EXP_BITS) - 1)))
65 /* Various headers condition prototypes on #ifdef REAL_VALUE_TYPE, so it
66 needs to be a macro. We do need to continue to have a structure tag
67 so that other headers can forward declare it. */
68 #define REAL_VALUE_TYPE struct real_value
70 /* We store a REAL_VALUE_TYPE into an rtx, and we do this by putting it in
71 consecutive "w" slots. Moreover, we've got to compute the number of "w"
72 slots at preprocessor time, which means we can't use sizeof. Guess. */
74 #define REAL_VALUE_TYPE_SIZE (SIGNIFICAND_BITS + 32)
75 #define REAL_WIDTH \
76 (REAL_VALUE_TYPE_SIZE/HOST_BITS_PER_WIDE_INT \
77 + (REAL_VALUE_TYPE_SIZE%HOST_BITS_PER_WIDE_INT ? 1 : 0)) /* round up */
79 /* Verify the guess. */
80 extern char test_real_width
81 [sizeof (REAL_VALUE_TYPE) <= REAL_WIDTH * sizeof (HOST_WIDE_INT) ? 1 : -1];
83 /* Calculate the format for CONST_DOUBLE. We need as many slots as
84 are necessary to overlay a REAL_VALUE_TYPE on them. This could be
85 as many as four (32-bit HOST_WIDE_INT, 128-bit REAL_VALUE_TYPE).
87 A number of places assume that there are always at least two 'w'
88 slots in a CONST_DOUBLE, so we provide them even if one would suffice. */
90 #if REAL_WIDTH == 1
91 # define CONST_DOUBLE_FORMAT "ww"
92 #else
93 # if REAL_WIDTH == 2
94 # define CONST_DOUBLE_FORMAT "ww"
95 # else
96 # if REAL_WIDTH == 3
97 # define CONST_DOUBLE_FORMAT "www"
98 # else
99 # if REAL_WIDTH == 4
100 # define CONST_DOUBLE_FORMAT "wwww"
101 # else
102 # if REAL_WIDTH == 5
103 # define CONST_DOUBLE_FORMAT "wwwww"
104 # else
105 # if REAL_WIDTH == 6
106 # define CONST_DOUBLE_FORMAT "wwwwww"
107 # else
108 #error "REAL_WIDTH > 6 not supported"
109 # endif
110 # endif
111 # endif
112 # endif
113 # endif
114 #endif
117 /* Describes the properties of the specific target format in use. */
118 struct real_format
120 /* Move to and from the target bytes. */
121 void (*encode) (const struct real_format *, long *,
122 const REAL_VALUE_TYPE *);
123 void (*decode) (const struct real_format *, REAL_VALUE_TYPE *,
124 const long *);
126 /* The radix of the exponent and digits of the significand. */
127 int b;
129 /* Size of the significand in digits of radix B. */
130 int p;
132 /* Size of the significant of a NaN, in digits of radix B. */
133 int pnan;
135 /* The minimum negative integer, x, such that b**(x-1) is normalized. */
136 int emin;
138 /* The maximum integer, x, such that b**(x-1) is representable. */
139 int emax;
141 /* The bit position of the sign bit, for determining whether a value
142 is positive/negative, or -1 for a complex encoding. */
143 int signbit_ro;
145 /* The bit position of the sign bit, for changing the sign of a number,
146 or -1 for a complex encoding. */
147 int signbit_rw;
149 /* If this is an IEEE interchange format, the number of bits in the
150 format; otherwise, if it is an IEEE extended format, one more
151 than the greatest number of bits in an interchange format it
152 extends; otherwise 0. Formats need not follow the IEEE 754-2008
153 recommended practice regarding how signaling NaNs are identified,
154 and may vary in the choice of default NaN, but must follow other
155 IEEE practice regarding having NaNs, infinities and subnormal
156 values, and the relation of minimum and maximum exponents, and,
157 for interchange formats, the details of the encoding. */
158 int ieee_bits;
160 /* Default rounding mode for operations on this format. */
161 bool round_towards_zero;
162 bool has_sign_dependent_rounding;
164 /* Properties of the format. */
165 bool has_nans;
166 bool has_inf;
167 bool has_denorm;
168 bool has_signed_zero;
169 bool qnan_msb_set;
170 bool canonical_nan_lsbs_set;
171 const char *name;
175 /* The target format used for each floating point mode.
176 Float modes are followed by decimal float modes, with entries for
177 float modes indexed by (MODE - first float mode), and entries for
178 decimal float modes indexed by (MODE - first decimal float mode) +
179 the number of float modes. */
180 extern const struct real_format *
181 real_format_for_mode[NUM_MODE_FLOAT + NUM_MODE_DECIMAL_FLOAT];
183 #define REAL_MODE_FORMAT(MODE) \
184 (real_format_for_mode[DECIMAL_FLOAT_MODE_P (MODE) \
185 ? (((MODE) - MIN_MODE_DECIMAL_FLOAT) \
186 + NUM_MODE_FLOAT) \
187 : GET_MODE_CLASS (MODE) == MODE_FLOAT \
188 ? ((MODE) - MIN_MODE_FLOAT) \
189 : (gcc_unreachable (), 0)])
191 #define FLOAT_MODE_FORMAT(MODE) \
192 (REAL_MODE_FORMAT (as_a <scalar_float_mode> (GET_MODE_INNER (MODE))))
194 /* The following macro determines whether the floating point format is
195 composite, i.e. may contain non-consecutive mantissa bits, in which
196 case compile-time FP overflow may not model run-time overflow. */
197 #define MODE_COMPOSITE_P(MODE) \
198 (FLOAT_MODE_P (MODE) \
199 && FLOAT_MODE_FORMAT (MODE)->pnan < FLOAT_MODE_FORMAT (MODE)->p)
201 /* Accessor macros for format properties. */
202 #define MODE_HAS_NANS(MODE) \
203 (FLOAT_MODE_P (MODE) && FLOAT_MODE_FORMAT (MODE)->has_nans)
204 #define MODE_HAS_INFINITIES(MODE) \
205 (FLOAT_MODE_P (MODE) && FLOAT_MODE_FORMAT (MODE)->has_inf)
206 #define MODE_HAS_SIGNED_ZEROS(MODE) \
207 (FLOAT_MODE_P (MODE) && FLOAT_MODE_FORMAT (MODE)->has_signed_zero)
208 #define MODE_HAS_SIGN_DEPENDENT_ROUNDING(MODE) \
209 (FLOAT_MODE_P (MODE) \
210 && FLOAT_MODE_FORMAT (MODE)->has_sign_dependent_rounding)
212 /* This class allows functions in this file to accept a floating-point
213 format as either a mode or an explicit real_format pointer. In the
214 former case the mode must be VOIDmode (which means "no particular
215 format") or must satisfy SCALAR_FLOAT_MODE_P. */
216 class format_helper
218 public:
219 format_helper (const real_format *format) : m_format (format) {}
220 template<typename T> format_helper (const T &);
221 const real_format *operator-> () const { return m_format; }
222 operator const real_format *() const { return m_format; }
224 bool decimal_p () const { return m_format && m_format->b == 10; }
225 bool can_represent_integral_type_p (tree type) const;
227 private:
228 const real_format *m_format;
231 template<typename T>
232 inline format_helper::format_helper (const T &m)
233 : m_format (m == VOIDmode ? 0 : REAL_MODE_FORMAT (m))
236 /* Declare functions in real.cc. */
238 /* True if the given mode has a NaN representation and the treatment of
239 NaN operands is important. Certain optimizations, such as folding
240 x * 0 into 0, are not correct for NaN operands, and are normally
241 disabled for modes with NaNs. The user can ask for them to be
242 done anyway using the -funsafe-math-optimizations switch. */
243 extern bool HONOR_NANS (machine_mode);
244 extern bool HONOR_NANS (const_tree);
245 extern bool HONOR_NANS (const_rtx);
247 /* Like HONOR_NANs, but true if we honor signaling NaNs (or sNaNs). */
248 extern bool HONOR_SNANS (machine_mode);
249 extern bool HONOR_SNANS (const_tree);
250 extern bool HONOR_SNANS (const_rtx);
252 /* As for HONOR_NANS, but true if the mode can represent infinity and
253 the treatment of infinite values is important. */
254 extern bool HONOR_INFINITIES (machine_mode);
255 extern bool HONOR_INFINITIES (const_tree);
256 extern bool HONOR_INFINITIES (const_rtx);
258 /* Like HONOR_NANS, but true if the given mode distinguishes between
259 positive and negative zero, and the sign of zero is important. */
260 extern bool HONOR_SIGNED_ZEROS (machine_mode);
261 extern bool HONOR_SIGNED_ZEROS (const_tree);
262 extern bool HONOR_SIGNED_ZEROS (const_rtx);
264 /* Like HONOR_NANS, but true if given mode supports sign-dependent rounding,
265 and the rounding mode is important. */
266 extern bool HONOR_SIGN_DEPENDENT_ROUNDING (machine_mode);
267 extern bool HONOR_SIGN_DEPENDENT_ROUNDING (const_tree);
268 extern bool HONOR_SIGN_DEPENDENT_ROUNDING (const_rtx);
270 /* Binary or unary arithmetic on tree_code. */
271 extern bool real_arithmetic (REAL_VALUE_TYPE *, int, const REAL_VALUE_TYPE *,
272 const REAL_VALUE_TYPE *);
274 /* Compare reals by tree_code. */
275 extern bool real_compare (int, const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
277 /* Determine whether a floating-point value X is infinite. */
278 extern bool real_isinf (const REAL_VALUE_TYPE *);
280 /* Determine whether a floating-point value X is infinite with SIGN. */
281 extern bool real_isinf (const REAL_VALUE_TYPE *, bool sign);
283 /* Determine whether a floating-point value X is a NaN. */
284 extern bool real_isnan (const REAL_VALUE_TYPE *);
286 /* Determine whether a floating-point value X is a signaling NaN. */
287 extern bool real_issignaling_nan (const REAL_VALUE_TYPE *);
289 /* Determine whether floating-point value R is a denormal. This
290 function is only valid for normalized values. */
291 inline bool
292 real_isdenormal (const REAL_VALUE_TYPE *r, machine_mode mode)
294 return r->cl == rvc_normal && REAL_EXP (r) < REAL_MODE_FORMAT (mode)->emin;
297 /* Determine whether a floating-point value X is finite. */
298 extern bool real_isfinite (const REAL_VALUE_TYPE *);
300 /* Determine whether a floating-point value X is negative. */
301 extern bool real_isneg (const REAL_VALUE_TYPE *);
303 /* Determine whether a floating-point value X is minus zero. */
304 extern bool real_isnegzero (const REAL_VALUE_TYPE *);
306 /* Determine whether a floating-point value X is plus or minus zero. */
307 extern bool real_iszero (const REAL_VALUE_TYPE *);
309 /* Determine whether a floating-point value X is zero with SIGN. */
310 extern bool real_iszero (const REAL_VALUE_TYPE *, bool sign);
312 /* Test relationships between reals. */
313 extern bool real_identical (const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
314 extern bool real_equal (const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
315 extern bool real_less (const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
317 /* Extend or truncate to a new format. */
318 extern void real_convert (REAL_VALUE_TYPE *, format_helper,
319 const REAL_VALUE_TYPE *);
321 /* Return true if truncating to NEW is exact. */
322 extern bool exact_real_truncate (format_helper, const REAL_VALUE_TYPE *);
324 /* Render R as a decimal floating point constant. */
325 extern void real_to_decimal (char *, const REAL_VALUE_TYPE *, size_t,
326 size_t, int);
328 /* Render R as a decimal floating point constant, rounded so as to be
329 parsed back to the same value when interpreted in mode MODE. */
330 extern void real_to_decimal_for_mode (char *, const REAL_VALUE_TYPE *, size_t,
331 size_t, int, machine_mode);
333 /* Render R as a hexadecimal floating point constant. */
334 extern void real_to_hexadecimal (char *, const REAL_VALUE_TYPE *,
335 size_t, size_t, int);
337 /* Render R as an integer. */
338 extern HOST_WIDE_INT real_to_integer (const REAL_VALUE_TYPE *);
340 /* Initialize R from a decimal or hexadecimal string. Return -1 if
341 the value underflows, +1 if overflows, and 0 otherwise. */
342 extern int real_from_string (REAL_VALUE_TYPE *, const char *);
343 /* Wrapper to allow different internal representation for decimal floats. */
344 extern void real_from_string3 (REAL_VALUE_TYPE *, const char *, format_helper);
346 extern long real_to_target (long *, const REAL_VALUE_TYPE *, format_helper);
348 extern void real_from_target (REAL_VALUE_TYPE *, const long *,
349 format_helper);
351 extern void real_inf (REAL_VALUE_TYPE *, bool sign = false);
353 extern bool real_nan (REAL_VALUE_TYPE *, const char *, int, format_helper);
355 extern void real_maxval (REAL_VALUE_TYPE *, int, machine_mode);
357 extern void real_2expN (REAL_VALUE_TYPE *, int, format_helper);
359 extern unsigned int real_hash (const REAL_VALUE_TYPE *);
362 /* Target formats defined in real.cc. */
363 extern const struct real_format ieee_single_format;
364 extern const struct real_format mips_single_format;
365 extern const struct real_format motorola_single_format;
366 extern const struct real_format spu_single_format;
367 extern const struct real_format ieee_double_format;
368 extern const struct real_format mips_double_format;
369 extern const struct real_format motorola_double_format;
370 extern const struct real_format ieee_extended_motorola_format;
371 extern const struct real_format ieee_extended_intel_96_format;
372 extern const struct real_format ieee_extended_intel_96_round_53_format;
373 extern const struct real_format ieee_extended_intel_128_format;
374 extern const struct real_format ibm_extended_format;
375 extern const struct real_format mips_extended_format;
376 extern const struct real_format ieee_quad_format;
377 extern const struct real_format mips_quad_format;
378 extern const struct real_format vax_f_format;
379 extern const struct real_format vax_d_format;
380 extern const struct real_format vax_g_format;
381 extern const struct real_format real_internal_format;
382 extern const struct real_format decimal_single_format;
383 extern const struct real_format decimal_double_format;
384 extern const struct real_format decimal_quad_format;
385 extern const struct real_format ieee_half_format;
386 extern const struct real_format arm_half_format;
387 extern const struct real_format arm_bfloat_half_format;
390 /* ====================================================================== */
391 /* Crap. */
393 /* Determine whether a floating-point value X is infinite. */
394 #define REAL_VALUE_ISINF(x) real_isinf (&(x))
396 /* Determine whether a floating-point value X is a NaN. */
397 #define REAL_VALUE_ISNAN(x) real_isnan (&(x))
399 /* Determine whether a floating-point value X is a signaling NaN. */
400 #define REAL_VALUE_ISSIGNALING_NAN(x) real_issignaling_nan (&(x))
402 /* Determine whether a floating-point value X is negative. */
403 #define REAL_VALUE_NEGATIVE(x) real_isneg (&(x))
405 /* Determine whether a floating-point value X is minus zero. */
406 #define REAL_VALUE_MINUS_ZERO(x) real_isnegzero (&(x))
408 /* IN is a REAL_VALUE_TYPE. OUT is an array of longs. */
409 #define REAL_VALUE_TO_TARGET_LONG_DOUBLE(IN, OUT) \
410 real_to_target (OUT, &(IN), \
411 float_mode_for_size (LONG_DOUBLE_TYPE_SIZE).require ())
413 #define REAL_VALUE_TO_TARGET_DOUBLE(IN, OUT) \
414 real_to_target (OUT, &(IN), float_mode_for_size (64).require ())
416 /* IN is a REAL_VALUE_TYPE. OUT is a long. */
417 #define REAL_VALUE_TO_TARGET_SINGLE(IN, OUT) \
418 ((OUT) = real_to_target (NULL, &(IN), float_mode_for_size (32).require ()))
420 /* Real values to IEEE 754 decimal floats. */
422 /* IN is a REAL_VALUE_TYPE. OUT is an array of longs. */
423 #define REAL_VALUE_TO_TARGET_DECIMAL128(IN, OUT) \
424 real_to_target (OUT, &(IN), decimal_float_mode_for_size (128).require ())
426 #define REAL_VALUE_TO_TARGET_DECIMAL64(IN, OUT) \
427 real_to_target (OUT, &(IN), decimal_float_mode_for_size (64).require ())
429 /* IN is a REAL_VALUE_TYPE. OUT is a long. */
430 #define REAL_VALUE_TO_TARGET_DECIMAL32(IN, OUT) \
431 ((OUT) = real_to_target (NULL, &(IN), \
432 decimal_float_mode_for_size (32).require ()))
434 extern REAL_VALUE_TYPE real_value_truncate (format_helper, REAL_VALUE_TYPE);
436 extern REAL_VALUE_TYPE real_value_negate (const REAL_VALUE_TYPE *);
437 extern REAL_VALUE_TYPE real_value_abs (const REAL_VALUE_TYPE *);
439 extern int significand_size (format_helper);
441 extern REAL_VALUE_TYPE real_from_string2 (const char *, format_helper);
443 #define REAL_VALUE_ATOF(s, m) \
444 real_from_string2 (s, m)
446 #define CONST_DOUBLE_ATOF(s, m) \
447 const_double_from_real_value (real_from_string2 (s, m), m)
449 #define REAL_VALUE_FIX(r) \
450 real_to_integer (&(r))
452 /* ??? Not quite right. */
453 #define REAL_VALUE_UNSIGNED_FIX(r) \
454 real_to_integer (&(r))
456 /* ??? These were added for Paranoia support. */
458 /* Return floor log2(R). */
459 extern int real_exponent (const REAL_VALUE_TYPE *);
461 /* R = A * 2**EXP. */
462 extern void real_ldexp (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *, int);
464 /* **** End of software floating point emulator interface macros **** */
466 /* Constant real values 0, 1, 2, -1 and 0.5. */
468 extern REAL_VALUE_TYPE dconst0;
469 extern REAL_VALUE_TYPE dconst1;
470 extern REAL_VALUE_TYPE dconst2;
471 extern REAL_VALUE_TYPE dconstm0;
472 extern REAL_VALUE_TYPE dconstm1;
473 extern REAL_VALUE_TYPE dconsthalf;
474 extern REAL_VALUE_TYPE dconstinf;
475 extern REAL_VALUE_TYPE dconstninf;
477 #define dconst_e() (*dconst_e_ptr ())
478 #define dconst_third() (*dconst_third_ptr ())
479 #define dconst_quarter() (*dconst_quarter_ptr ())
480 #define dconst_sixth() (*dconst_sixth_ptr ())
481 #define dconst_ninth() (*dconst_ninth_ptr ())
482 #define dconst_sqrt2() (*dconst_sqrt2_ptr ())
483 #define dconst_pi() (*dconst_pi_ptr ())
485 /* Function to return the real value special constant 'e'. */
486 extern const REAL_VALUE_TYPE *dconst_e_ptr (void);
488 /* Function to return the real value special constant 'pi'. */
489 extern const REAL_VALUE_TYPE *dconst_pi_ptr (void);
491 /* Returns a cached REAL_VALUE_TYPE corresponding to 1/n, for various n. */
492 extern const REAL_VALUE_TYPE *dconst_third_ptr (void);
493 extern const REAL_VALUE_TYPE *dconst_quarter_ptr (void);
494 extern const REAL_VALUE_TYPE *dconst_sixth_ptr (void);
495 extern const REAL_VALUE_TYPE *dconst_ninth_ptr (void);
497 /* Returns the special REAL_VALUE_TYPE corresponding to sqrt(2). */
498 extern const REAL_VALUE_TYPE * dconst_sqrt2_ptr (void);
500 /* Function to return a real value (not a tree node)
501 from a given integer constant. */
502 REAL_VALUE_TYPE real_value_from_int_cst (const_tree, const_tree);
504 /* Return a CONST_DOUBLE with value R and mode M. */
505 extern rtx const_double_from_real_value (REAL_VALUE_TYPE, machine_mode);
507 /* Replace R by 1/R in the given format, if the result is exact. */
508 extern bool exact_real_inverse (format_helper, REAL_VALUE_TYPE *);
510 /* Return true if arithmetic on values in IMODE that were promoted
511 from values in TMODE is equivalent to direct arithmetic on values
512 in TMODE. */
513 bool real_can_shorten_arithmetic (machine_mode, machine_mode);
515 /* In tree.cc: wrap up a REAL_VALUE_TYPE in a tree node. */
516 extern tree build_real (tree, REAL_VALUE_TYPE);
518 /* Likewise, but first truncate the value to the type. */
519 extern tree build_real_truncate (tree, REAL_VALUE_TYPE);
521 /* Calculate R as X raised to the integer exponent N in format FMT. */
522 extern bool real_powi (REAL_VALUE_TYPE *, format_helper,
523 const REAL_VALUE_TYPE *, HOST_WIDE_INT);
525 /* Standard round to integer value functions. */
526 extern void real_trunc (REAL_VALUE_TYPE *, format_helper,
527 const REAL_VALUE_TYPE *);
528 extern void real_floor (REAL_VALUE_TYPE *, format_helper,
529 const REAL_VALUE_TYPE *);
530 extern void real_ceil (REAL_VALUE_TYPE *, format_helper,
531 const REAL_VALUE_TYPE *);
532 extern void real_round (REAL_VALUE_TYPE *, format_helper,
533 const REAL_VALUE_TYPE *);
534 extern void real_roundeven (REAL_VALUE_TYPE *, format_helper,
535 const REAL_VALUE_TYPE *);
537 /* Set the sign of R to the sign of X. */
538 extern void real_copysign (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
540 /* Check whether the real constant value given is an integer. */
541 extern bool real_isinteger (const REAL_VALUE_TYPE *, format_helper);
542 extern bool real_isinteger (const REAL_VALUE_TYPE *, HOST_WIDE_INT *);
544 /* Calculate nextafter (X, Y) in format FMT. */
545 extern bool real_nextafter (REAL_VALUE_TYPE *, format_helper,
546 const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
548 /* Write into BUF the maximum representable finite floating-point
549 number, (1 - b**-p) * b**emax for a given FP format FMT as a hex
550 float string. BUF must be large enough to contain the result. */
551 extern void get_max_float (const struct real_format *, char *, size_t, bool);
553 #ifndef GENERATOR_FILE
554 /* real related routines. */
555 extern wide_int real_to_integer (const REAL_VALUE_TYPE *, bool *, int);
556 extern void real_from_integer (REAL_VALUE_TYPE *, format_helper,
557 const wide_int_ref &, signop);
558 #endif
560 /* Fills r with the largest value such that 1 + r*r won't overflow.
561 This is used in both sin (atan (x)) and cos (atan(x)) optimizations. */
562 extern void build_sinatan_real (REAL_VALUE_TYPE *, tree);
564 #endif /* ! GCC_REAL_H */