* target-def.h (TARGET_HAVE_NAMED_SECTIONS): Move to
[official-gcc.git] / gcc / explow.c
blobc7d818380332beceb8c3afb03e496f3327d9098b
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "diagnostic-core.h"
28 #include "rtl.h"
29 #include "tree.h"
30 #include "tm_p.h"
31 #include "flags.h"
32 #include "except.h"
33 #include "function.h"
34 #include "expr.h"
35 #include "optabs.h"
36 #include "libfuncs.h"
37 #include "hard-reg-set.h"
38 #include "insn-config.h"
39 #include "ggc.h"
40 #include "recog.h"
41 #include "langhooks.h"
42 #include "target.h"
43 #include "common/common-target.h"
44 #include "output.h"
46 static rtx break_out_memory_refs (rtx);
49 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
51 HOST_WIDE_INT
52 trunc_int_for_mode (HOST_WIDE_INT c, enum machine_mode mode)
54 int width = GET_MODE_BITSIZE (mode);
56 /* You want to truncate to a _what_? */
57 gcc_assert (SCALAR_INT_MODE_P (mode));
59 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
60 if (mode == BImode)
61 return c & 1 ? STORE_FLAG_VALUE : 0;
63 /* Sign-extend for the requested mode. */
65 if (width < HOST_BITS_PER_WIDE_INT)
67 HOST_WIDE_INT sign = 1;
68 sign <<= width - 1;
69 c &= (sign << 1) - 1;
70 c ^= sign;
71 c -= sign;
74 return c;
77 /* Return an rtx for the sum of X and the integer C. */
79 rtx
80 plus_constant (rtx x, HOST_WIDE_INT c)
82 RTX_CODE code;
83 rtx y;
84 enum machine_mode mode;
85 rtx tem;
86 int all_constant = 0;
88 if (c == 0)
89 return x;
91 restart:
93 code = GET_CODE (x);
94 mode = GET_MODE (x);
95 y = x;
97 switch (code)
99 case CONST_INT:
100 return GEN_INT (INTVAL (x) + c);
102 case CONST_DOUBLE:
104 unsigned HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
105 HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
106 unsigned HOST_WIDE_INT l2 = c;
107 HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
108 unsigned HOST_WIDE_INT lv;
109 HOST_WIDE_INT hv;
111 add_double (l1, h1, l2, h2, &lv, &hv);
113 return immed_double_const (lv, hv, VOIDmode);
116 case MEM:
117 /* If this is a reference to the constant pool, try replacing it with
118 a reference to a new constant. If the resulting address isn't
119 valid, don't return it because we have no way to validize it. */
120 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
121 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
124 = force_const_mem (GET_MODE (x),
125 plus_constant (get_pool_constant (XEXP (x, 0)),
126 c));
127 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
128 return tem;
130 break;
132 case CONST:
133 /* If adding to something entirely constant, set a flag
134 so that we can add a CONST around the result. */
135 x = XEXP (x, 0);
136 all_constant = 1;
137 goto restart;
139 case SYMBOL_REF:
140 case LABEL_REF:
141 all_constant = 1;
142 break;
144 case PLUS:
145 /* The interesting case is adding the integer to a sum.
146 Look for constant term in the sum and combine
147 with C. For an integer constant term, we make a combined
148 integer. For a constant term that is not an explicit integer,
149 we cannot really combine, but group them together anyway.
151 Restart or use a recursive call in case the remaining operand is
152 something that we handle specially, such as a SYMBOL_REF.
154 We may not immediately return from the recursive call here, lest
155 all_constant gets lost. */
157 if (CONST_INT_P (XEXP (x, 1)))
159 c += INTVAL (XEXP (x, 1));
161 if (GET_MODE (x) != VOIDmode)
162 c = trunc_int_for_mode (c, GET_MODE (x));
164 x = XEXP (x, 0);
165 goto restart;
167 else if (CONSTANT_P (XEXP (x, 1)))
169 x = gen_rtx_PLUS (mode, XEXP (x, 0), plus_constant (XEXP (x, 1), c));
170 c = 0;
172 else if (find_constant_term_loc (&y))
174 /* We need to be careful since X may be shared and we can't
175 modify it in place. */
176 rtx copy = copy_rtx (x);
177 rtx *const_loc = find_constant_term_loc (&copy);
179 *const_loc = plus_constant (*const_loc, c);
180 x = copy;
181 c = 0;
183 break;
185 default:
186 break;
189 if (c != 0)
190 x = gen_rtx_PLUS (mode, x, GEN_INT (c));
192 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
193 return x;
194 else if (all_constant)
195 return gen_rtx_CONST (mode, x);
196 else
197 return x;
200 /* If X is a sum, return a new sum like X but lacking any constant terms.
201 Add all the removed constant terms into *CONSTPTR.
202 X itself is not altered. The result != X if and only if
203 it is not isomorphic to X. */
206 eliminate_constant_term (rtx x, rtx *constptr)
208 rtx x0, x1;
209 rtx tem;
211 if (GET_CODE (x) != PLUS)
212 return x;
214 /* First handle constants appearing at this level explicitly. */
215 if (CONST_INT_P (XEXP (x, 1))
216 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
217 XEXP (x, 1)))
218 && CONST_INT_P (tem))
220 *constptr = tem;
221 return eliminate_constant_term (XEXP (x, 0), constptr);
224 tem = const0_rtx;
225 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
226 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
227 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
228 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
229 *constptr, tem))
230 && CONST_INT_P (tem))
232 *constptr = tem;
233 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
236 return x;
239 /* Return an rtx for the size in bytes of the value of EXP. */
242 expr_size (tree exp)
244 tree size;
246 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
247 size = TREE_OPERAND (exp, 1);
248 else
250 size = tree_expr_size (exp);
251 gcc_assert (size);
252 gcc_assert (size == SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, exp));
255 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), EXPAND_NORMAL);
258 /* Return a wide integer for the size in bytes of the value of EXP, or -1
259 if the size can vary or is larger than an integer. */
261 HOST_WIDE_INT
262 int_expr_size (tree exp)
264 tree size;
266 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
267 size = TREE_OPERAND (exp, 1);
268 else
270 size = tree_expr_size (exp);
271 gcc_assert (size);
274 if (size == 0 || !host_integerp (size, 0))
275 return -1;
277 return tree_low_cst (size, 0);
280 /* Return a copy of X in which all memory references
281 and all constants that involve symbol refs
282 have been replaced with new temporary registers.
283 Also emit code to load the memory locations and constants
284 into those registers.
286 If X contains no such constants or memory references,
287 X itself (not a copy) is returned.
289 If a constant is found in the address that is not a legitimate constant
290 in an insn, it is left alone in the hope that it might be valid in the
291 address.
293 X may contain no arithmetic except addition, subtraction and multiplication.
294 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
296 static rtx
297 break_out_memory_refs (rtx x)
299 if (MEM_P (x)
300 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
301 && GET_MODE (x) != VOIDmode))
302 x = force_reg (GET_MODE (x), x);
303 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
304 || GET_CODE (x) == MULT)
306 rtx op0 = break_out_memory_refs (XEXP (x, 0));
307 rtx op1 = break_out_memory_refs (XEXP (x, 1));
309 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
310 x = simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
313 return x;
316 /* Given X, a memory address in address space AS' pointer mode, convert it to
317 an address in the address space's address mode, or vice versa (TO_MODE says
318 which way). We take advantage of the fact that pointers are not allowed to
319 overflow by commuting arithmetic operations over conversions so that address
320 arithmetic insns can be used. */
323 convert_memory_address_addr_space (enum machine_mode to_mode ATTRIBUTE_UNUSED,
324 rtx x, addr_space_t as ATTRIBUTE_UNUSED)
326 #ifndef POINTERS_EXTEND_UNSIGNED
327 gcc_assert (GET_MODE (x) == to_mode || GET_MODE (x) == VOIDmode);
328 return x;
329 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
330 enum machine_mode pointer_mode, address_mode, from_mode;
331 rtx temp;
332 enum rtx_code code;
334 /* If X already has the right mode, just return it. */
335 if (GET_MODE (x) == to_mode)
336 return x;
338 pointer_mode = targetm.addr_space.pointer_mode (as);
339 address_mode = targetm.addr_space.address_mode (as);
340 from_mode = to_mode == pointer_mode ? address_mode : pointer_mode;
342 /* Here we handle some special cases. If none of them apply, fall through
343 to the default case. */
344 switch (GET_CODE (x))
346 case CONST_INT:
347 case CONST_DOUBLE:
348 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
349 code = TRUNCATE;
350 else if (POINTERS_EXTEND_UNSIGNED < 0)
351 break;
352 else if (POINTERS_EXTEND_UNSIGNED > 0)
353 code = ZERO_EXTEND;
354 else
355 code = SIGN_EXTEND;
356 temp = simplify_unary_operation (code, to_mode, x, from_mode);
357 if (temp)
358 return temp;
359 break;
361 case SUBREG:
362 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
363 && GET_MODE (SUBREG_REG (x)) == to_mode)
364 return SUBREG_REG (x);
365 break;
367 case LABEL_REF:
368 temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
369 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
370 return temp;
371 break;
373 case SYMBOL_REF:
374 temp = shallow_copy_rtx (x);
375 PUT_MODE (temp, to_mode);
376 return temp;
377 break;
379 case CONST:
380 return gen_rtx_CONST (to_mode,
381 convert_memory_address_addr_space
382 (to_mode, XEXP (x, 0), as));
383 break;
385 case PLUS:
386 case MULT:
387 /* For addition we can safely permute the conversion and addition
388 operation if one operand is a constant and converting the constant
389 does not change it or if one operand is a constant and we are
390 using a ptr_extend instruction (POINTERS_EXTEND_UNSIGNED < 0).
391 We can always safely permute them if we are making the address
392 narrower. */
393 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
394 || (GET_CODE (x) == PLUS
395 && CONST_INT_P (XEXP (x, 1))
396 && (XEXP (x, 1) == convert_memory_address_addr_space
397 (to_mode, XEXP (x, 1), as)
398 || POINTERS_EXTEND_UNSIGNED < 0)))
399 return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
400 convert_memory_address_addr_space
401 (to_mode, XEXP (x, 0), as),
402 XEXP (x, 1));
403 break;
405 default:
406 break;
409 return convert_modes (to_mode, from_mode,
410 x, POINTERS_EXTEND_UNSIGNED);
411 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
414 /* Return something equivalent to X but valid as a memory address for something
415 of mode MODE in the named address space AS. When X is not itself valid,
416 this works by copying X or subexpressions of it into registers. */
419 memory_address_addr_space (enum machine_mode mode, rtx x, addr_space_t as)
421 rtx oldx = x;
422 enum machine_mode address_mode = targetm.addr_space.address_mode (as);
424 x = convert_memory_address_addr_space (address_mode, x, as);
426 /* By passing constant addresses through registers
427 we get a chance to cse them. */
428 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
429 x = force_reg (address_mode, x);
431 /* We get better cse by rejecting indirect addressing at this stage.
432 Let the combiner create indirect addresses where appropriate.
433 For now, generate the code so that the subexpressions useful to share
434 are visible. But not if cse won't be done! */
435 else
437 if (! cse_not_expected && !REG_P (x))
438 x = break_out_memory_refs (x);
440 /* At this point, any valid address is accepted. */
441 if (memory_address_addr_space_p (mode, x, as))
442 goto done;
444 /* If it was valid before but breaking out memory refs invalidated it,
445 use it the old way. */
446 if (memory_address_addr_space_p (mode, oldx, as))
448 x = oldx;
449 goto done;
452 /* Perform machine-dependent transformations on X
453 in certain cases. This is not necessary since the code
454 below can handle all possible cases, but machine-dependent
455 transformations can make better code. */
457 rtx orig_x = x;
458 x = targetm.addr_space.legitimize_address (x, oldx, mode, as);
459 if (orig_x != x && memory_address_addr_space_p (mode, x, as))
460 goto done;
463 /* PLUS and MULT can appear in special ways
464 as the result of attempts to make an address usable for indexing.
465 Usually they are dealt with by calling force_operand, below.
466 But a sum containing constant terms is special
467 if removing them makes the sum a valid address:
468 then we generate that address in a register
469 and index off of it. We do this because it often makes
470 shorter code, and because the addresses thus generated
471 in registers often become common subexpressions. */
472 if (GET_CODE (x) == PLUS)
474 rtx constant_term = const0_rtx;
475 rtx y = eliminate_constant_term (x, &constant_term);
476 if (constant_term == const0_rtx
477 || ! memory_address_addr_space_p (mode, y, as))
478 x = force_operand (x, NULL_RTX);
479 else
481 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
482 if (! memory_address_addr_space_p (mode, y, as))
483 x = force_operand (x, NULL_RTX);
484 else
485 x = y;
489 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
490 x = force_operand (x, NULL_RTX);
492 /* If we have a register that's an invalid address,
493 it must be a hard reg of the wrong class. Copy it to a pseudo. */
494 else if (REG_P (x))
495 x = copy_to_reg (x);
497 /* Last resort: copy the value to a register, since
498 the register is a valid address. */
499 else
500 x = force_reg (address_mode, x);
503 done:
505 gcc_assert (memory_address_addr_space_p (mode, x, as));
506 /* If we didn't change the address, we are done. Otherwise, mark
507 a reg as a pointer if we have REG or REG + CONST_INT. */
508 if (oldx == x)
509 return x;
510 else if (REG_P (x))
511 mark_reg_pointer (x, BITS_PER_UNIT);
512 else if (GET_CODE (x) == PLUS
513 && REG_P (XEXP (x, 0))
514 && CONST_INT_P (XEXP (x, 1)))
515 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
517 /* OLDX may have been the address on a temporary. Update the address
518 to indicate that X is now used. */
519 update_temp_slot_address (oldx, x);
521 return x;
524 /* Convert a mem ref into one with a valid memory address.
525 Pass through anything else unchanged. */
528 validize_mem (rtx ref)
530 if (!MEM_P (ref))
531 return ref;
532 ref = use_anchored_address (ref);
533 if (memory_address_addr_space_p (GET_MODE (ref), XEXP (ref, 0),
534 MEM_ADDR_SPACE (ref)))
535 return ref;
537 /* Don't alter REF itself, since that is probably a stack slot. */
538 return replace_equiv_address (ref, XEXP (ref, 0));
541 /* If X is a memory reference to a member of an object block, try rewriting
542 it to use an anchor instead. Return the new memory reference on success
543 and the old one on failure. */
546 use_anchored_address (rtx x)
548 rtx base;
549 HOST_WIDE_INT offset;
551 if (!flag_section_anchors)
552 return x;
554 if (!MEM_P (x))
555 return x;
557 /* Split the address into a base and offset. */
558 base = XEXP (x, 0);
559 offset = 0;
560 if (GET_CODE (base) == CONST
561 && GET_CODE (XEXP (base, 0)) == PLUS
562 && CONST_INT_P (XEXP (XEXP (base, 0), 1)))
564 offset += INTVAL (XEXP (XEXP (base, 0), 1));
565 base = XEXP (XEXP (base, 0), 0);
568 /* Check whether BASE is suitable for anchors. */
569 if (GET_CODE (base) != SYMBOL_REF
570 || !SYMBOL_REF_HAS_BLOCK_INFO_P (base)
571 || SYMBOL_REF_ANCHOR_P (base)
572 || SYMBOL_REF_BLOCK (base) == NULL
573 || !targetm.use_anchors_for_symbol_p (base))
574 return x;
576 /* Decide where BASE is going to be. */
577 place_block_symbol (base);
579 /* Get the anchor we need to use. */
580 offset += SYMBOL_REF_BLOCK_OFFSET (base);
581 base = get_section_anchor (SYMBOL_REF_BLOCK (base), offset,
582 SYMBOL_REF_TLS_MODEL (base));
584 /* Work out the offset from the anchor. */
585 offset -= SYMBOL_REF_BLOCK_OFFSET (base);
587 /* If we're going to run a CSE pass, force the anchor into a register.
588 We will then be able to reuse registers for several accesses, if the
589 target costs say that that's worthwhile. */
590 if (!cse_not_expected)
591 base = force_reg (GET_MODE (base), base);
593 return replace_equiv_address (x, plus_constant (base, offset));
596 /* Copy the value or contents of X to a new temp reg and return that reg. */
599 copy_to_reg (rtx x)
601 rtx temp = gen_reg_rtx (GET_MODE (x));
603 /* If not an operand, must be an address with PLUS and MULT so
604 do the computation. */
605 if (! general_operand (x, VOIDmode))
606 x = force_operand (x, temp);
608 if (x != temp)
609 emit_move_insn (temp, x);
611 return temp;
614 /* Like copy_to_reg but always give the new register mode Pmode
615 in case X is a constant. */
618 copy_addr_to_reg (rtx x)
620 return copy_to_mode_reg (Pmode, x);
623 /* Like copy_to_reg but always give the new register mode MODE
624 in case X is a constant. */
627 copy_to_mode_reg (enum machine_mode mode, rtx x)
629 rtx temp = gen_reg_rtx (mode);
631 /* If not an operand, must be an address with PLUS and MULT so
632 do the computation. */
633 if (! general_operand (x, VOIDmode))
634 x = force_operand (x, temp);
636 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
637 if (x != temp)
638 emit_move_insn (temp, x);
639 return temp;
642 /* Load X into a register if it is not already one.
643 Use mode MODE for the register.
644 X should be valid for mode MODE, but it may be a constant which
645 is valid for all integer modes; that's why caller must specify MODE.
647 The caller must not alter the value in the register we return,
648 since we mark it as a "constant" register. */
651 force_reg (enum machine_mode mode, rtx x)
653 rtx temp, insn, set;
655 if (REG_P (x))
656 return x;
658 if (general_operand (x, mode))
660 temp = gen_reg_rtx (mode);
661 insn = emit_move_insn (temp, x);
663 else
665 temp = force_operand (x, NULL_RTX);
666 if (REG_P (temp))
667 insn = get_last_insn ();
668 else
670 rtx temp2 = gen_reg_rtx (mode);
671 insn = emit_move_insn (temp2, temp);
672 temp = temp2;
676 /* Let optimizers know that TEMP's value never changes
677 and that X can be substituted for it. Don't get confused
678 if INSN set something else (such as a SUBREG of TEMP). */
679 if (CONSTANT_P (x)
680 && (set = single_set (insn)) != 0
681 && SET_DEST (set) == temp
682 && ! rtx_equal_p (x, SET_SRC (set)))
683 set_unique_reg_note (insn, REG_EQUAL, x);
685 /* Let optimizers know that TEMP is a pointer, and if so, the
686 known alignment of that pointer. */
688 unsigned align = 0;
689 if (GET_CODE (x) == SYMBOL_REF)
691 align = BITS_PER_UNIT;
692 if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
693 align = DECL_ALIGN (SYMBOL_REF_DECL (x));
695 else if (GET_CODE (x) == LABEL_REF)
696 align = BITS_PER_UNIT;
697 else if (GET_CODE (x) == CONST
698 && GET_CODE (XEXP (x, 0)) == PLUS
699 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
700 && CONST_INT_P (XEXP (XEXP (x, 0), 1)))
702 rtx s = XEXP (XEXP (x, 0), 0);
703 rtx c = XEXP (XEXP (x, 0), 1);
704 unsigned sa, ca;
706 sa = BITS_PER_UNIT;
707 if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
708 sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
710 if (INTVAL (c) == 0)
711 align = sa;
712 else
714 ca = ctz_hwi (INTVAL (c)) * BITS_PER_UNIT;
715 align = MIN (sa, ca);
719 if (align || (MEM_P (x) && MEM_POINTER (x)))
720 mark_reg_pointer (temp, align);
723 return temp;
726 /* If X is a memory ref, copy its contents to a new temp reg and return
727 that reg. Otherwise, return X. */
730 force_not_mem (rtx x)
732 rtx temp;
734 if (!MEM_P (x) || GET_MODE (x) == BLKmode)
735 return x;
737 temp = gen_reg_rtx (GET_MODE (x));
739 if (MEM_POINTER (x))
740 REG_POINTER (temp) = 1;
742 emit_move_insn (temp, x);
743 return temp;
746 /* Copy X to TARGET (if it's nonzero and a reg)
747 or to a new temp reg and return that reg.
748 MODE is the mode to use for X in case it is a constant. */
751 copy_to_suggested_reg (rtx x, rtx target, enum machine_mode mode)
753 rtx temp;
755 if (target && REG_P (target))
756 temp = target;
757 else
758 temp = gen_reg_rtx (mode);
760 emit_move_insn (temp, x);
761 return temp;
764 /* Return the mode to use to pass or return a scalar of TYPE and MODE.
765 PUNSIGNEDP points to the signedness of the type and may be adjusted
766 to show what signedness to use on extension operations.
768 FOR_RETURN is nonzero if the caller is promoting the return value
769 of FNDECL, else it is for promoting args. */
771 enum machine_mode
772 promote_function_mode (const_tree type, enum machine_mode mode, int *punsignedp,
773 const_tree funtype, int for_return)
775 /* Called without a type node for a libcall. */
776 if (type == NULL_TREE)
778 if (INTEGRAL_MODE_P (mode))
779 return targetm.calls.promote_function_mode (NULL_TREE, mode,
780 punsignedp, funtype,
781 for_return);
782 else
783 return mode;
786 switch (TREE_CODE (type))
788 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
789 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
790 case POINTER_TYPE: case REFERENCE_TYPE:
791 return targetm.calls.promote_function_mode (type, mode, punsignedp, funtype,
792 for_return);
794 default:
795 return mode;
798 /* Return the mode to use to store a scalar of TYPE and MODE.
799 PUNSIGNEDP points to the signedness of the type and may be adjusted
800 to show what signedness to use on extension operations. */
802 enum machine_mode
803 promote_mode (const_tree type ATTRIBUTE_UNUSED, enum machine_mode mode,
804 int *punsignedp ATTRIBUTE_UNUSED)
806 #ifdef PROMOTE_MODE
807 enum tree_code code;
808 int unsignedp;
809 #endif
811 /* For libcalls this is invoked without TYPE from the backends
812 TARGET_PROMOTE_FUNCTION_MODE hooks. Don't do anything in that
813 case. */
814 if (type == NULL_TREE)
815 return mode;
817 /* FIXME: this is the same logic that was there until GCC 4.4, but we
818 probably want to test POINTERS_EXTEND_UNSIGNED even if PROMOTE_MODE
819 is not defined. The affected targets are M32C, S390, SPARC. */
820 #ifdef PROMOTE_MODE
821 code = TREE_CODE (type);
822 unsignedp = *punsignedp;
824 switch (code)
826 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
827 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
828 PROMOTE_MODE (mode, unsignedp, type);
829 *punsignedp = unsignedp;
830 return mode;
831 break;
833 #ifdef POINTERS_EXTEND_UNSIGNED
834 case REFERENCE_TYPE:
835 case POINTER_TYPE:
836 *punsignedp = POINTERS_EXTEND_UNSIGNED;
837 return targetm.addr_space.address_mode
838 (TYPE_ADDR_SPACE (TREE_TYPE (type)));
839 break;
840 #endif
842 default:
843 return mode;
845 #else
846 return mode;
847 #endif
851 /* Use one of promote_mode or promote_function_mode to find the promoted
852 mode of DECL. If PUNSIGNEDP is not NULL, store there the unsignedness
853 of DECL after promotion. */
855 enum machine_mode
856 promote_decl_mode (const_tree decl, int *punsignedp)
858 tree type = TREE_TYPE (decl);
859 int unsignedp = TYPE_UNSIGNED (type);
860 enum machine_mode mode = DECL_MODE (decl);
861 enum machine_mode pmode;
863 if (TREE_CODE (decl) == RESULT_DECL
864 || TREE_CODE (decl) == PARM_DECL)
865 pmode = promote_function_mode (type, mode, &unsignedp,
866 TREE_TYPE (current_function_decl), 2);
867 else
868 pmode = promote_mode (type, mode, &unsignedp);
870 if (punsignedp)
871 *punsignedp = unsignedp;
872 return pmode;
876 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
877 This pops when ADJUST is positive. ADJUST need not be constant. */
879 void
880 adjust_stack (rtx adjust)
882 rtx temp;
884 if (adjust == const0_rtx)
885 return;
887 /* We expect all variable sized adjustments to be multiple of
888 PREFERRED_STACK_BOUNDARY. */
889 if (CONST_INT_P (adjust))
890 stack_pointer_delta -= INTVAL (adjust);
892 temp = expand_binop (Pmode,
893 #ifdef STACK_GROWS_DOWNWARD
894 add_optab,
895 #else
896 sub_optab,
897 #endif
898 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
899 OPTAB_LIB_WIDEN);
901 if (temp != stack_pointer_rtx)
902 emit_move_insn (stack_pointer_rtx, temp);
905 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
906 This pushes when ADJUST is positive. ADJUST need not be constant. */
908 void
909 anti_adjust_stack (rtx adjust)
911 rtx temp;
913 if (adjust == const0_rtx)
914 return;
916 /* We expect all variable sized adjustments to be multiple of
917 PREFERRED_STACK_BOUNDARY. */
918 if (CONST_INT_P (adjust))
919 stack_pointer_delta += INTVAL (adjust);
921 temp = expand_binop (Pmode,
922 #ifdef STACK_GROWS_DOWNWARD
923 sub_optab,
924 #else
925 add_optab,
926 #endif
927 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
928 OPTAB_LIB_WIDEN);
930 if (temp != stack_pointer_rtx)
931 emit_move_insn (stack_pointer_rtx, temp);
934 /* Round the size of a block to be pushed up to the boundary required
935 by this machine. SIZE is the desired size, which need not be constant. */
937 static rtx
938 round_push (rtx size)
940 rtx align_rtx, alignm1_rtx;
942 if (!SUPPORTS_STACK_ALIGNMENT
943 || crtl->preferred_stack_boundary == MAX_SUPPORTED_STACK_ALIGNMENT)
945 int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
947 if (align == 1)
948 return size;
950 if (CONST_INT_P (size))
952 HOST_WIDE_INT new_size = (INTVAL (size) + align - 1) / align * align;
954 if (INTVAL (size) != new_size)
955 size = GEN_INT (new_size);
956 return size;
959 align_rtx = GEN_INT (align);
960 alignm1_rtx = GEN_INT (align - 1);
962 else
964 /* If crtl->preferred_stack_boundary might still grow, use
965 virtual_preferred_stack_boundary_rtx instead. This will be
966 substituted by the right value in vregs pass and optimized
967 during combine. */
968 align_rtx = virtual_preferred_stack_boundary_rtx;
969 alignm1_rtx = force_operand (plus_constant (align_rtx, -1), NULL_RTX);
972 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
973 but we know it can't. So add ourselves and then do
974 TRUNC_DIV_EXPR. */
975 size = expand_binop (Pmode, add_optab, size, alignm1_rtx,
976 NULL_RTX, 1, OPTAB_LIB_WIDEN);
977 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, align_rtx,
978 NULL_RTX, 1);
979 size = expand_mult (Pmode, size, align_rtx, NULL_RTX, 1);
981 return size;
984 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
985 to a previously-created save area. If no save area has been allocated,
986 this function will allocate one. If a save area is specified, it
987 must be of the proper mode. */
989 void
990 emit_stack_save (enum save_level save_level, rtx *psave)
992 rtx sa = *psave;
993 /* The default is that we use a move insn and save in a Pmode object. */
994 rtx (*fcn) (rtx, rtx) = gen_move_insn;
995 enum machine_mode mode = STACK_SAVEAREA_MODE (save_level);
997 /* See if this machine has anything special to do for this kind of save. */
998 switch (save_level)
1000 #ifdef HAVE_save_stack_block
1001 case SAVE_BLOCK:
1002 if (HAVE_save_stack_block)
1003 fcn = gen_save_stack_block;
1004 break;
1005 #endif
1006 #ifdef HAVE_save_stack_function
1007 case SAVE_FUNCTION:
1008 if (HAVE_save_stack_function)
1009 fcn = gen_save_stack_function;
1010 break;
1011 #endif
1012 #ifdef HAVE_save_stack_nonlocal
1013 case SAVE_NONLOCAL:
1014 if (HAVE_save_stack_nonlocal)
1015 fcn = gen_save_stack_nonlocal;
1016 break;
1017 #endif
1018 default:
1019 break;
1022 /* If there is no save area and we have to allocate one, do so. Otherwise
1023 verify the save area is the proper mode. */
1025 if (sa == 0)
1027 if (mode != VOIDmode)
1029 if (save_level == SAVE_NONLOCAL)
1030 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
1031 else
1032 *psave = sa = gen_reg_rtx (mode);
1036 do_pending_stack_adjust ();
1037 if (sa != 0)
1038 sa = validize_mem (sa);
1039 emit_insn (fcn (sa, stack_pointer_rtx));
1042 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1043 area made by emit_stack_save. If it is zero, we have nothing to do. */
1045 void
1046 emit_stack_restore (enum save_level save_level, rtx sa)
1048 /* The default is that we use a move insn. */
1049 rtx (*fcn) (rtx, rtx) = gen_move_insn;
1051 /* See if this machine has anything special to do for this kind of save. */
1052 switch (save_level)
1054 #ifdef HAVE_restore_stack_block
1055 case SAVE_BLOCK:
1056 if (HAVE_restore_stack_block)
1057 fcn = gen_restore_stack_block;
1058 break;
1059 #endif
1060 #ifdef HAVE_restore_stack_function
1061 case SAVE_FUNCTION:
1062 if (HAVE_restore_stack_function)
1063 fcn = gen_restore_stack_function;
1064 break;
1065 #endif
1066 #ifdef HAVE_restore_stack_nonlocal
1067 case SAVE_NONLOCAL:
1068 if (HAVE_restore_stack_nonlocal)
1069 fcn = gen_restore_stack_nonlocal;
1070 break;
1071 #endif
1072 default:
1073 break;
1076 if (sa != 0)
1078 sa = validize_mem (sa);
1079 /* These clobbers prevent the scheduler from moving
1080 references to variable arrays below the code
1081 that deletes (pops) the arrays. */
1082 emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)));
1083 emit_clobber (gen_rtx_MEM (BLKmode, stack_pointer_rtx));
1086 discard_pending_stack_adjust ();
1088 emit_insn (fcn (stack_pointer_rtx, sa));
1091 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1092 function. This function should be called whenever we allocate or
1093 deallocate dynamic stack space. */
1095 void
1096 update_nonlocal_goto_save_area (void)
1098 tree t_save;
1099 rtx r_save;
1101 /* The nonlocal_goto_save_area object is an array of N pointers. The
1102 first one is used for the frame pointer save; the rest are sized by
1103 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first
1104 of the stack save area slots. */
1105 t_save = build4 (ARRAY_REF, ptr_type_node, cfun->nonlocal_goto_save_area,
1106 integer_one_node, NULL_TREE, NULL_TREE);
1107 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
1109 emit_stack_save (SAVE_NONLOCAL, &r_save);
1112 /* Return an rtx representing the address of an area of memory dynamically
1113 pushed on the stack.
1115 Any required stack pointer alignment is preserved.
1117 SIZE is an rtx representing the size of the area.
1119 SIZE_ALIGN is the alignment (in bits) that we know SIZE has. This
1120 parameter may be zero. If so, a proper value will be extracted
1121 from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.
1123 REQUIRED_ALIGN is the alignment (in bits) required for the region
1124 of memory.
1126 If CANNOT_ACCUMULATE is set to TRUE, the caller guarantees that the
1127 stack space allocated by the generated code cannot be added with itself
1128 in the course of the execution of the function. It is always safe to
1129 pass FALSE here and the following criterion is sufficient in order to
1130 pass TRUE: every path in the CFG that starts at the allocation point and
1131 loops to it executes the associated deallocation code. */
1134 allocate_dynamic_stack_space (rtx size, unsigned size_align,
1135 unsigned required_align, bool cannot_accumulate)
1137 HOST_WIDE_INT stack_usage_size = -1;
1138 rtx final_label, final_target, target;
1139 unsigned extra_align = 0;
1140 bool must_align;
1142 /* If we're asking for zero bytes, it doesn't matter what we point
1143 to since we can't dereference it. But return a reasonable
1144 address anyway. */
1145 if (size == const0_rtx)
1146 return virtual_stack_dynamic_rtx;
1148 /* Otherwise, show we're calling alloca or equivalent. */
1149 cfun->calls_alloca = 1;
1151 /* If stack usage info is requested, look into the size we are passed.
1152 We need to do so this early to avoid the obfuscation that may be
1153 introduced later by the various alignment operations. */
1154 if (flag_stack_usage_info)
1156 if (CONST_INT_P (size))
1157 stack_usage_size = INTVAL (size);
1158 else if (REG_P (size))
1160 /* Look into the last emitted insn and see if we can deduce
1161 something for the register. */
1162 rtx insn, set, note;
1163 insn = get_last_insn ();
1164 if ((set = single_set (insn)) && rtx_equal_p (SET_DEST (set), size))
1166 if (CONST_INT_P (SET_SRC (set)))
1167 stack_usage_size = INTVAL (SET_SRC (set));
1168 else if ((note = find_reg_equal_equiv_note (insn))
1169 && CONST_INT_P (XEXP (note, 0)))
1170 stack_usage_size = INTVAL (XEXP (note, 0));
1174 /* If the size is not constant, we can't say anything. */
1175 if (stack_usage_size == -1)
1177 current_function_has_unbounded_dynamic_stack_size = 1;
1178 stack_usage_size = 0;
1182 /* Ensure the size is in the proper mode. */
1183 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1184 size = convert_to_mode (Pmode, size, 1);
1186 /* Adjust SIZE_ALIGN, if needed. */
1187 if (CONST_INT_P (size))
1189 unsigned HOST_WIDE_INT lsb;
1191 lsb = INTVAL (size);
1192 lsb &= -lsb;
1194 /* Watch out for overflow truncating to "unsigned". */
1195 if (lsb > UINT_MAX / BITS_PER_UNIT)
1196 size_align = 1u << (HOST_BITS_PER_INT - 1);
1197 else
1198 size_align = (unsigned)lsb * BITS_PER_UNIT;
1200 else if (size_align < BITS_PER_UNIT)
1201 size_align = BITS_PER_UNIT;
1203 /* We can't attempt to minimize alignment necessary, because we don't
1204 know the final value of preferred_stack_boundary yet while executing
1205 this code. */
1206 if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
1207 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1209 /* We will need to ensure that the address we return is aligned to
1210 REQUIRED_ALIGN. If STACK_DYNAMIC_OFFSET is defined, we don't
1211 always know its final value at this point in the compilation (it
1212 might depend on the size of the outgoing parameter lists, for
1213 example), so we must align the value to be returned in that case.
1214 (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1215 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1216 We must also do an alignment operation on the returned value if
1217 the stack pointer alignment is less strict than REQUIRED_ALIGN.
1219 If we have to align, we must leave space in SIZE for the hole
1220 that might result from the alignment operation. */
1222 must_align = (crtl->preferred_stack_boundary < required_align);
1223 if (must_align)
1225 if (required_align > PREFERRED_STACK_BOUNDARY)
1226 extra_align = PREFERRED_STACK_BOUNDARY;
1227 else if (required_align > STACK_BOUNDARY)
1228 extra_align = STACK_BOUNDARY;
1229 else
1230 extra_align = BITS_PER_UNIT;
1233 /* ??? STACK_POINTER_OFFSET is always defined now. */
1234 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1235 must_align = true;
1236 extra_align = BITS_PER_UNIT;
1237 #endif
1239 if (must_align)
1241 unsigned extra = (required_align - extra_align) / BITS_PER_UNIT;
1243 size = plus_constant (size, extra);
1244 size = force_operand (size, NULL_RTX);
1246 if (flag_stack_usage_info)
1247 stack_usage_size += extra;
1249 if (extra && size_align > extra_align)
1250 size_align = extra_align;
1253 /* Round the size to a multiple of the required stack alignment.
1254 Since the stack if presumed to be rounded before this allocation,
1255 this will maintain the required alignment.
1257 If the stack grows downward, we could save an insn by subtracting
1258 SIZE from the stack pointer and then aligning the stack pointer.
1259 The problem with this is that the stack pointer may be unaligned
1260 between the execution of the subtraction and alignment insns and
1261 some machines do not allow this. Even on those that do, some
1262 signal handlers malfunction if a signal should occur between those
1263 insns. Since this is an extremely rare event, we have no reliable
1264 way of knowing which systems have this problem. So we avoid even
1265 momentarily mis-aligning the stack. */
1266 if (size_align % MAX_SUPPORTED_STACK_ALIGNMENT != 0)
1268 size = round_push (size);
1270 if (flag_stack_usage_info)
1272 int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
1273 stack_usage_size = (stack_usage_size + align - 1) / align * align;
1277 target = gen_reg_rtx (Pmode);
1279 /* The size is supposed to be fully adjusted at this point so record it
1280 if stack usage info is requested. */
1281 if (flag_stack_usage_info)
1283 current_function_dynamic_stack_size += stack_usage_size;
1285 /* ??? This is gross but the only safe stance in the absence
1286 of stack usage oriented flow analysis. */
1287 if (!cannot_accumulate)
1288 current_function_has_unbounded_dynamic_stack_size = 1;
1291 final_label = NULL_RTX;
1292 final_target = NULL_RTX;
1294 /* If we are splitting the stack, we need to ask the backend whether
1295 there is enough room on the current stack. If there isn't, or if
1296 the backend doesn't know how to tell is, then we need to call a
1297 function to allocate memory in some other way. This memory will
1298 be released when we release the current stack segment. The
1299 effect is that stack allocation becomes less efficient, but at
1300 least it doesn't cause a stack overflow. */
1301 if (flag_split_stack)
1303 rtx available_label, ask, space, func;
1305 available_label = NULL_RTX;
1307 #ifdef HAVE_split_stack_space_check
1308 if (HAVE_split_stack_space_check)
1310 available_label = gen_label_rtx ();
1312 /* This instruction will branch to AVAILABLE_LABEL if there
1313 are SIZE bytes available on the stack. */
1314 emit_insn (gen_split_stack_space_check (size, available_label));
1316 #endif
1318 /* The __morestack_allocate_stack_space function will allocate
1319 memory using malloc. If the alignment of the memory returned
1320 by malloc does not meet REQUIRED_ALIGN, we increase SIZE to
1321 make sure we allocate enough space. */
1322 if (MALLOC_ABI_ALIGNMENT >= required_align)
1323 ask = size;
1324 else
1326 ask = expand_binop (Pmode, add_optab, size,
1327 GEN_INT (required_align / BITS_PER_UNIT - 1),
1328 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1329 must_align = true;
1332 func = init_one_libfunc ("__morestack_allocate_stack_space");
1334 space = emit_library_call_value (func, target, LCT_NORMAL, Pmode,
1335 1, ask, Pmode);
1337 if (available_label == NULL_RTX)
1338 return space;
1340 final_target = gen_reg_rtx (Pmode);
1342 emit_move_insn (final_target, space);
1344 final_label = gen_label_rtx ();
1345 emit_jump (final_label);
1347 emit_label (available_label);
1350 do_pending_stack_adjust ();
1352 /* We ought to be called always on the toplevel and stack ought to be aligned
1353 properly. */
1354 gcc_assert (!(stack_pointer_delta
1355 % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)));
1357 /* If needed, check that we have the required amount of stack. Take into
1358 account what has already been checked. */
1359 if (STACK_CHECK_MOVING_SP)
1361 else if (flag_stack_check == GENERIC_STACK_CHECK)
1362 probe_stack_range (STACK_OLD_CHECK_PROTECT + STACK_CHECK_MAX_FRAME_SIZE,
1363 size);
1364 else if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK)
1365 probe_stack_range (STACK_CHECK_PROTECT, size);
1367 /* Perform the required allocation from the stack. Some systems do
1368 this differently than simply incrementing/decrementing from the
1369 stack pointer, such as acquiring the space by calling malloc(). */
1370 #ifdef HAVE_allocate_stack
1371 if (HAVE_allocate_stack)
1373 struct expand_operand ops[2];
1374 /* We don't have to check against the predicate for operand 0 since
1375 TARGET is known to be a pseudo of the proper mode, which must
1376 be valid for the operand. */
1377 create_fixed_operand (&ops[0], target);
1378 create_convert_operand_to (&ops[1], size, STACK_SIZE_MODE, true);
1379 expand_insn (CODE_FOR_allocate_stack, 2, ops);
1381 else
1382 #endif
1384 int saved_stack_pointer_delta;
1386 #ifndef STACK_GROWS_DOWNWARD
1387 emit_move_insn (target, virtual_stack_dynamic_rtx);
1388 #endif
1390 /* Check stack bounds if necessary. */
1391 if (crtl->limit_stack)
1393 rtx available;
1394 rtx space_available = gen_label_rtx ();
1395 #ifdef STACK_GROWS_DOWNWARD
1396 available = expand_binop (Pmode, sub_optab,
1397 stack_pointer_rtx, stack_limit_rtx,
1398 NULL_RTX, 1, OPTAB_WIDEN);
1399 #else
1400 available = expand_binop (Pmode, sub_optab,
1401 stack_limit_rtx, stack_pointer_rtx,
1402 NULL_RTX, 1, OPTAB_WIDEN);
1403 #endif
1404 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1405 space_available);
1406 #ifdef HAVE_trap
1407 if (HAVE_trap)
1408 emit_insn (gen_trap ());
1409 else
1410 #endif
1411 error ("stack limits not supported on this target");
1412 emit_barrier ();
1413 emit_label (space_available);
1416 saved_stack_pointer_delta = stack_pointer_delta;
1417 if (flag_stack_check && STACK_CHECK_MOVING_SP)
1418 anti_adjust_stack_and_probe (size, false);
1419 else
1420 anti_adjust_stack (size);
1421 /* Even if size is constant, don't modify stack_pointer_delta.
1422 The constant size alloca should preserve
1423 crtl->preferred_stack_boundary alignment. */
1424 stack_pointer_delta = saved_stack_pointer_delta;
1426 #ifdef STACK_GROWS_DOWNWARD
1427 emit_move_insn (target, virtual_stack_dynamic_rtx);
1428 #endif
1431 /* Finish up the split stack handling. */
1432 if (final_label != NULL_RTX)
1434 gcc_assert (flag_split_stack);
1435 emit_move_insn (final_target, target);
1436 emit_label (final_label);
1437 target = final_target;
1440 if (must_align)
1442 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1443 but we know it can't. So add ourselves and then do
1444 TRUNC_DIV_EXPR. */
1445 target = expand_binop (Pmode, add_optab, target,
1446 GEN_INT (required_align / BITS_PER_UNIT - 1),
1447 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1448 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1449 GEN_INT (required_align / BITS_PER_UNIT),
1450 NULL_RTX, 1);
1451 target = expand_mult (Pmode, target,
1452 GEN_INT (required_align / BITS_PER_UNIT),
1453 NULL_RTX, 1);
1456 /* Now that we've committed to a return value, mark its alignment. */
1457 mark_reg_pointer (target, required_align);
1459 /* Record the new stack level for nonlocal gotos. */
1460 if (cfun->nonlocal_goto_save_area != 0)
1461 update_nonlocal_goto_save_area ();
1463 return target;
1466 /* A front end may want to override GCC's stack checking by providing a
1467 run-time routine to call to check the stack, so provide a mechanism for
1468 calling that routine. */
1470 static GTY(()) rtx stack_check_libfunc;
1472 void
1473 set_stack_check_libfunc (const char *libfunc_name)
1475 gcc_assert (stack_check_libfunc == NULL_RTX);
1476 stack_check_libfunc = gen_rtx_SYMBOL_REF (Pmode, libfunc_name);
1479 /* Emit one stack probe at ADDRESS, an address within the stack. */
1481 void
1482 emit_stack_probe (rtx address)
1484 rtx memref = gen_rtx_MEM (word_mode, address);
1486 MEM_VOLATILE_P (memref) = 1;
1488 /* See if we have an insn to probe the stack. */
1489 #ifdef HAVE_probe_stack
1490 if (HAVE_probe_stack)
1491 emit_insn (gen_probe_stack (memref));
1492 else
1493 #endif
1494 emit_move_insn (memref, const0_rtx);
1497 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1498 FIRST is a constant and size is a Pmode RTX. These are offsets from
1499 the current stack pointer. STACK_GROWS_DOWNWARD says whether to add
1500 or subtract them from the stack pointer. */
1502 #define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)
1504 #ifdef STACK_GROWS_DOWNWARD
1505 #define STACK_GROW_OP MINUS
1506 #define STACK_GROW_OPTAB sub_optab
1507 #define STACK_GROW_OFF(off) -(off)
1508 #else
1509 #define STACK_GROW_OP PLUS
1510 #define STACK_GROW_OPTAB add_optab
1511 #define STACK_GROW_OFF(off) (off)
1512 #endif
1514 void
1515 probe_stack_range (HOST_WIDE_INT first, rtx size)
1517 /* First ensure SIZE is Pmode. */
1518 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1519 size = convert_to_mode (Pmode, size, 1);
1521 /* Next see if we have a function to check the stack. */
1522 if (stack_check_libfunc)
1524 rtx addr = memory_address (Pmode,
1525 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1526 stack_pointer_rtx,
1527 plus_constant (size, first)));
1528 emit_library_call (stack_check_libfunc, LCT_NORMAL, VOIDmode, 1, addr,
1529 Pmode);
1530 return;
1533 /* Next see if we have an insn to check the stack. */
1534 #ifdef HAVE_check_stack
1535 if (HAVE_check_stack)
1537 struct expand_operand ops[1];
1538 rtx addr = memory_address (Pmode,
1539 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1540 stack_pointer_rtx,
1541 plus_constant (size, first)));
1543 create_input_operand (&ops[0], addr, Pmode);
1544 if (maybe_expand_insn (CODE_FOR_check_stack, 1, ops))
1545 return;
1547 #endif
1549 /* Otherwise we have to generate explicit probes. If we have a constant
1550 small number of them to generate, that's the easy case. */
1551 else if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1553 HOST_WIDE_INT isize = INTVAL (size), i;
1554 rtx addr;
1556 /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
1557 it exceeds SIZE. If only one probe is needed, this will not
1558 generate any code. Then probe at FIRST + SIZE. */
1559 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1561 addr = memory_address (Pmode,
1562 plus_constant (stack_pointer_rtx,
1563 STACK_GROW_OFF (first + i)));
1564 emit_stack_probe (addr);
1567 addr = memory_address (Pmode,
1568 plus_constant (stack_pointer_rtx,
1569 STACK_GROW_OFF (first + isize)));
1570 emit_stack_probe (addr);
1573 /* In the variable case, do the same as above, but in a loop. Note that we
1574 must be extra careful with variables wrapping around because we might be
1575 at the very top (or the very bottom) of the address space and we have to
1576 be able to handle this case properly; in particular, we use an equality
1577 test for the loop condition. */
1578 else
1580 rtx rounded_size, rounded_size_op, test_addr, last_addr, temp;
1581 rtx loop_lab = gen_label_rtx ();
1582 rtx end_lab = gen_label_rtx ();
1585 /* Step 1: round SIZE to the previous multiple of the interval. */
1587 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1588 rounded_size
1589 = simplify_gen_binary (AND, Pmode, size, GEN_INT (-PROBE_INTERVAL));
1590 rounded_size_op = force_operand (rounded_size, NULL_RTX);
1593 /* Step 2: compute initial and final value of the loop counter. */
1595 /* TEST_ADDR = SP + FIRST. */
1596 test_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1597 stack_pointer_rtx,
1598 GEN_INT (first)), NULL_RTX);
1600 /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE. */
1601 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1602 test_addr,
1603 rounded_size_op), NULL_RTX);
1606 /* Step 3: the loop
1608 while (TEST_ADDR != LAST_ADDR)
1610 TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
1611 probe at TEST_ADDR
1614 probes at FIRST + N * PROBE_INTERVAL for values of N from 1
1615 until it is equal to ROUNDED_SIZE. */
1617 emit_label (loop_lab);
1619 /* Jump to END_LAB if TEST_ADDR == LAST_ADDR. */
1620 emit_cmp_and_jump_insns (test_addr, last_addr, EQ, NULL_RTX, Pmode, 1,
1621 end_lab);
1623 /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL. */
1624 temp = expand_binop (Pmode, STACK_GROW_OPTAB, test_addr,
1625 GEN_INT (PROBE_INTERVAL), test_addr,
1626 1, OPTAB_WIDEN);
1628 gcc_assert (temp == test_addr);
1630 /* Probe at TEST_ADDR. */
1631 emit_stack_probe (test_addr);
1633 emit_jump (loop_lab);
1635 emit_label (end_lab);
1638 /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
1639 that SIZE is equal to ROUNDED_SIZE. */
1641 /* TEMP = SIZE - ROUNDED_SIZE. */
1642 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1643 if (temp != const0_rtx)
1645 rtx addr;
1647 if (CONST_INT_P (temp))
1649 /* Use [base + disp} addressing mode if supported. */
1650 HOST_WIDE_INT offset = INTVAL (temp);
1651 addr = memory_address (Pmode,
1652 plus_constant (last_addr,
1653 STACK_GROW_OFF (offset)));
1655 else
1657 /* Manual CSE if the difference is not known at compile-time. */
1658 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1659 addr = memory_address (Pmode,
1660 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1661 last_addr, temp));
1664 emit_stack_probe (addr);
1669 /* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes)
1670 while probing it. This pushes when SIZE is positive. SIZE need not
1671 be constant. If ADJUST_BACK is true, adjust back the stack pointer
1672 by plus SIZE at the end. */
1674 void
1675 anti_adjust_stack_and_probe (rtx size, bool adjust_back)
1677 /* We skip the probe for the first interval + a small dope of 4 words and
1678 probe that many bytes past the specified size to maintain a protection
1679 area at the botton of the stack. */
1680 const int dope = 4 * UNITS_PER_WORD;
1682 /* First ensure SIZE is Pmode. */
1683 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1684 size = convert_to_mode (Pmode, size, 1);
1686 /* If we have a constant small number of probes to generate, that's the
1687 easy case. */
1688 if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1690 HOST_WIDE_INT isize = INTVAL (size), i;
1691 bool first_probe = true;
1693 /* Adjust SP and probe at PROBE_INTERVAL + N * PROBE_INTERVAL for
1694 values of N from 1 until it exceeds SIZE. If only one probe is
1695 needed, this will not generate any code. Then adjust and probe
1696 to PROBE_INTERVAL + SIZE. */
1697 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1699 if (first_probe)
1701 anti_adjust_stack (GEN_INT (2 * PROBE_INTERVAL + dope));
1702 first_probe = false;
1704 else
1705 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1706 emit_stack_probe (stack_pointer_rtx);
1709 if (first_probe)
1710 anti_adjust_stack (plus_constant (size, PROBE_INTERVAL + dope));
1711 else
1712 anti_adjust_stack (plus_constant (size, PROBE_INTERVAL - i));
1713 emit_stack_probe (stack_pointer_rtx);
1716 /* In the variable case, do the same as above, but in a loop. Note that we
1717 must be extra careful with variables wrapping around because we might be
1718 at the very top (or the very bottom) of the address space and we have to
1719 be able to handle this case properly; in particular, we use an equality
1720 test for the loop condition. */
1721 else
1723 rtx rounded_size, rounded_size_op, last_addr, temp;
1724 rtx loop_lab = gen_label_rtx ();
1725 rtx end_lab = gen_label_rtx ();
1728 /* Step 1: round SIZE to the previous multiple of the interval. */
1730 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1731 rounded_size
1732 = simplify_gen_binary (AND, Pmode, size, GEN_INT (-PROBE_INTERVAL));
1733 rounded_size_op = force_operand (rounded_size, NULL_RTX);
1736 /* Step 2: compute initial and final value of the loop counter. */
1738 /* SP = SP_0 + PROBE_INTERVAL. */
1739 anti_adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1741 /* LAST_ADDR = SP_0 + PROBE_INTERVAL + ROUNDED_SIZE. */
1742 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1743 stack_pointer_rtx,
1744 rounded_size_op), NULL_RTX);
1747 /* Step 3: the loop
1749 while (SP != LAST_ADDR)
1751 SP = SP + PROBE_INTERVAL
1752 probe at SP
1755 adjusts SP and probes at PROBE_INTERVAL + N * PROBE_INTERVAL for
1756 values of N from 1 until it is equal to ROUNDED_SIZE. */
1758 emit_label (loop_lab);
1760 /* Jump to END_LAB if SP == LAST_ADDR. */
1761 emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, EQ, NULL_RTX,
1762 Pmode, 1, end_lab);
1764 /* SP = SP + PROBE_INTERVAL and probe at SP. */
1765 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1766 emit_stack_probe (stack_pointer_rtx);
1768 emit_jump (loop_lab);
1770 emit_label (end_lab);
1773 /* Step 4: adjust SP and probe at PROBE_INTERVAL + SIZE if we cannot
1774 assert at compile-time that SIZE is equal to ROUNDED_SIZE. */
1776 /* TEMP = SIZE - ROUNDED_SIZE. */
1777 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1778 if (temp != const0_rtx)
1780 /* Manual CSE if the difference is not known at compile-time. */
1781 if (GET_CODE (temp) != CONST_INT)
1782 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1783 anti_adjust_stack (temp);
1784 emit_stack_probe (stack_pointer_rtx);
1788 /* Adjust back and account for the additional first interval. */
1789 if (adjust_back)
1790 adjust_stack (plus_constant (size, PROBE_INTERVAL + dope));
1791 else
1792 adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1795 /* Return an rtx representing the register or memory location
1796 in which a scalar value of data type VALTYPE
1797 was returned by a function call to function FUNC.
1798 FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
1799 function is known, otherwise 0.
1800 OUTGOING is 1 if on a machine with register windows this function
1801 should return the register in which the function will put its result
1802 and 0 otherwise. */
1805 hard_function_value (const_tree valtype, const_tree func, const_tree fntype,
1806 int outgoing ATTRIBUTE_UNUSED)
1808 rtx val;
1810 val = targetm.calls.function_value (valtype, func ? func : fntype, outgoing);
1812 if (REG_P (val)
1813 && GET_MODE (val) == BLKmode)
1815 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1816 enum machine_mode tmpmode;
1818 /* int_size_in_bytes can return -1. We don't need a check here
1819 since the value of bytes will then be large enough that no
1820 mode will match anyway. */
1822 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1823 tmpmode != VOIDmode;
1824 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1826 /* Have we found a large enough mode? */
1827 if (GET_MODE_SIZE (tmpmode) >= bytes)
1828 break;
1831 /* No suitable mode found. */
1832 gcc_assert (tmpmode != VOIDmode);
1834 PUT_MODE (val, tmpmode);
1836 return val;
1839 /* Return an rtx representing the register or memory location
1840 in which a scalar value of mode MODE was returned by a library call. */
1843 hard_libcall_value (enum machine_mode mode, rtx fun)
1845 return targetm.calls.libcall_value (mode, fun);
1848 /* Look up the tree code for a given rtx code
1849 to provide the arithmetic operation for REAL_ARITHMETIC.
1850 The function returns an int because the caller may not know
1851 what `enum tree_code' means. */
1854 rtx_to_tree_code (enum rtx_code code)
1856 enum tree_code tcode;
1858 switch (code)
1860 case PLUS:
1861 tcode = PLUS_EXPR;
1862 break;
1863 case MINUS:
1864 tcode = MINUS_EXPR;
1865 break;
1866 case MULT:
1867 tcode = MULT_EXPR;
1868 break;
1869 case DIV:
1870 tcode = RDIV_EXPR;
1871 break;
1872 case SMIN:
1873 tcode = MIN_EXPR;
1874 break;
1875 case SMAX:
1876 tcode = MAX_EXPR;
1877 break;
1878 default:
1879 tcode = LAST_AND_UNUSED_TREE_CODE;
1880 break;
1882 return ((int) tcode);
1885 #include "gt-explow.h"