1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
32 #include "insn-config.h"
34 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
36 #include "addresses.h"
39 /* Forward declarations */
40 static void set_of_1 (rtx
, const_rtx
, void *);
41 static bool covers_regno_p (const_rtx
, unsigned int);
42 static bool covers_regno_no_parallel_p (const_rtx
, unsigned int);
43 static int computed_jump_p_1 (const_rtx
);
44 static void parms_set (rtx
, const_rtx
, void *);
46 static unsigned HOST_WIDE_INT
cached_nonzero_bits (const_rtx
, scalar_int_mode
,
47 const_rtx
, machine_mode
,
48 unsigned HOST_WIDE_INT
);
49 static unsigned HOST_WIDE_INT
nonzero_bits1 (const_rtx
, scalar_int_mode
,
50 const_rtx
, machine_mode
,
51 unsigned HOST_WIDE_INT
);
52 static unsigned int cached_num_sign_bit_copies (const_rtx
, scalar_int_mode
,
53 const_rtx
, machine_mode
,
55 static unsigned int num_sign_bit_copies1 (const_rtx
, scalar_int_mode
,
56 const_rtx
, machine_mode
,
59 rtx_subrtx_bound_info rtx_all_subrtx_bounds
[NUM_RTX_CODE
];
60 rtx_subrtx_bound_info rtx_nonconst_subrtx_bounds
[NUM_RTX_CODE
];
62 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
63 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
64 SIGN_EXTEND then while narrowing we also have to enforce the
65 representation and sign-extend the value to mode DESTINATION_REP.
67 If the value is already sign-extended to DESTINATION_REP mode we
68 can just switch to DESTINATION mode on it. For each pair of
69 integral modes SOURCE and DESTINATION, when truncating from SOURCE
70 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
71 contains the number of high-order bits in SOURCE that have to be
72 copies of the sign-bit so that we can do this mode-switch to
76 num_sign_bit_copies_in_rep
[MAX_MODE_INT
+ 1][MAX_MODE_INT
+ 1];
78 /* Store X into index I of ARRAY. ARRAY is known to have at least I
79 elements. Return the new base of ARRAY. */
82 typename
T::value_type
*
83 generic_subrtx_iterator
<T
>::add_single_to_queue (array_type
&array
,
85 size_t i
, value_type x
)
87 if (base
== array
.stack
)
94 gcc_checking_assert (i
== LOCAL_ELEMS
);
95 /* A previous iteration might also have moved from the stack to the
96 heap, in which case the heap array will already be big enough. */
97 if (vec_safe_length (array
.heap
) <= i
)
98 vec_safe_grow (array
.heap
, i
+ 1);
99 base
= array
.heap
->address ();
100 memcpy (base
, array
.stack
, sizeof (array
.stack
));
101 base
[LOCAL_ELEMS
] = x
;
104 unsigned int length
= array
.heap
->length ();
107 gcc_checking_assert (base
== array
.heap
->address ());
113 gcc_checking_assert (i
== length
);
114 vec_safe_push (array
.heap
, x
);
115 return array
.heap
->address ();
119 /* Add the subrtxes of X to worklist ARRAY, starting at END. Return the
120 number of elements added to the worklist. */
122 template <typename T
>
124 generic_subrtx_iterator
<T
>::add_subrtxes_to_queue (array_type
&array
,
126 size_t end
, rtx_type x
)
128 enum rtx_code code
= GET_CODE (x
);
129 const char *format
= GET_RTX_FORMAT (code
);
130 size_t orig_end
= end
;
131 if (__builtin_expect (INSN_P (x
), false))
133 /* Put the pattern at the top of the queue, since that's what
134 we're likely to want most. It also allows for the SEQUENCE
136 for (int i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0; --i
)
137 if (format
[i
] == 'e')
139 value_type subx
= T::get_value (x
->u
.fld
[i
].rt_rtx
);
140 if (__builtin_expect (end
< LOCAL_ELEMS
, true))
143 base
= add_single_to_queue (array
, base
, end
++, subx
);
147 for (int i
= 0; format
[i
]; ++i
)
148 if (format
[i
] == 'e')
150 value_type subx
= T::get_value (x
->u
.fld
[i
].rt_rtx
);
151 if (__builtin_expect (end
< LOCAL_ELEMS
, true))
154 base
= add_single_to_queue (array
, base
, end
++, subx
);
156 else if (format
[i
] == 'E')
158 unsigned int length
= GET_NUM_ELEM (x
->u
.fld
[i
].rt_rtvec
);
159 rtx
*vec
= x
->u
.fld
[i
].rt_rtvec
->elem
;
160 if (__builtin_expect (end
+ length
<= LOCAL_ELEMS
, true))
161 for (unsigned int j
= 0; j
< length
; j
++)
162 base
[end
++] = T::get_value (vec
[j
]);
164 for (unsigned int j
= 0; j
< length
; j
++)
165 base
= add_single_to_queue (array
, base
, end
++,
166 T::get_value (vec
[j
]));
167 if (code
== SEQUENCE
&& end
== length
)
168 /* If the subrtxes of the sequence fill the entire array then
169 we know that no other parts of a containing insn are queued.
170 The caller is therefore iterating over the sequence as a
171 PATTERN (...), so we also want the patterns of the
173 for (unsigned int j
= 0; j
< length
; j
++)
175 typename
T::rtx_type x
= T::get_rtx (base
[j
]);
177 base
[j
] = T::get_value (PATTERN (x
));
180 return end
- orig_end
;
183 template <typename T
>
185 generic_subrtx_iterator
<T
>::free_array (array_type
&array
)
187 vec_free (array
.heap
);
190 template <typename T
>
191 const size_t generic_subrtx_iterator
<T
>::LOCAL_ELEMS
;
193 template class generic_subrtx_iterator
<const_rtx_accessor
>;
194 template class generic_subrtx_iterator
<rtx_var_accessor
>;
195 template class generic_subrtx_iterator
<rtx_ptr_accessor
>;
197 /* Return 1 if the value of X is unstable
198 (would be different at a different point in the program).
199 The frame pointer, arg pointer, etc. are considered stable
200 (within one function) and so is anything marked `unchanging'. */
203 rtx_unstable_p (const_rtx x
)
205 const RTX_CODE code
= GET_CODE (x
);
212 return !MEM_READONLY_P (x
) || rtx_unstable_p (XEXP (x
, 0));
221 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
222 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
223 /* The arg pointer varies if it is not a fixed register. */
224 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]))
226 /* ??? When call-clobbered, the value is stable modulo the restore
227 that must happen after a call. This currently screws up local-alloc
228 into believing that the restore is not needed. */
229 if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
&& x
== pic_offset_table_rtx
)
234 if (MEM_VOLATILE_P (x
))
243 fmt
= GET_RTX_FORMAT (code
);
244 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
247 if (rtx_unstable_p (XEXP (x
, i
)))
250 else if (fmt
[i
] == 'E')
253 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
254 if (rtx_unstable_p (XVECEXP (x
, i
, j
)))
261 /* Return 1 if X has a value that can vary even between two
262 executions of the program. 0 means X can be compared reliably
263 against certain constants or near-constants.
264 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
265 zero, we are slightly more conservative.
266 The frame pointer and the arg pointer are considered constant. */
269 rtx_varies_p (const_rtx x
, bool for_alias
)
282 return !MEM_READONLY_P (x
) || rtx_varies_p (XEXP (x
, 0), for_alias
);
291 /* Note that we have to test for the actual rtx used for the frame
292 and arg pointers and not just the register number in case we have
293 eliminated the frame and/or arg pointer and are using it
295 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
296 /* The arg pointer varies if it is not a fixed register. */
297 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]))
299 if (x
== pic_offset_table_rtx
300 /* ??? When call-clobbered, the value is stable modulo the restore
301 that must happen after a call. This currently screws up
302 local-alloc into believing that the restore is not needed, so we
303 must return 0 only if we are called from alias analysis. */
304 && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
|| for_alias
))
309 /* The operand 0 of a LO_SUM is considered constant
310 (in fact it is related specifically to operand 1)
311 during alias analysis. */
312 return (! for_alias
&& rtx_varies_p (XEXP (x
, 0), for_alias
))
313 || rtx_varies_p (XEXP (x
, 1), for_alias
);
316 if (MEM_VOLATILE_P (x
))
325 fmt
= GET_RTX_FORMAT (code
);
326 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
329 if (rtx_varies_p (XEXP (x
, i
), for_alias
))
332 else if (fmt
[i
] == 'E')
335 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
336 if (rtx_varies_p (XVECEXP (x
, i
, j
), for_alias
))
343 /* Compute an approximation for the offset between the register
344 FROM and TO for the current function, as it was at the start
348 get_initial_register_offset (int from
, int to
)
350 static const struct elim_table_t
354 } table
[] = ELIMINABLE_REGS
;
355 HOST_WIDE_INT offset1
, offset2
;
361 /* It is not safe to call INITIAL_ELIMINATION_OFFSET
362 before the reload pass. We need to give at least
363 an estimation for the resulting frame size. */
364 if (! reload_completed
)
366 offset1
= crtl
->outgoing_args_size
+ get_frame_size ();
367 #if !STACK_GROWS_DOWNWARD
370 if (to
== STACK_POINTER_REGNUM
)
372 else if (from
== STACK_POINTER_REGNUM
)
378 for (i
= 0; i
< ARRAY_SIZE (table
); i
++)
379 if (table
[i
].from
== from
)
381 if (table
[i
].to
== to
)
383 INITIAL_ELIMINATION_OFFSET (table
[i
].from
, table
[i
].to
,
387 for (j
= 0; j
< ARRAY_SIZE (table
); j
++)
389 if (table
[j
].to
== to
390 && table
[j
].from
== table
[i
].to
)
392 INITIAL_ELIMINATION_OFFSET (table
[i
].from
, table
[i
].to
,
394 INITIAL_ELIMINATION_OFFSET (table
[j
].from
, table
[j
].to
,
396 return offset1
+ offset2
;
398 if (table
[j
].from
== to
399 && table
[j
].to
== table
[i
].to
)
401 INITIAL_ELIMINATION_OFFSET (table
[i
].from
, table
[i
].to
,
403 INITIAL_ELIMINATION_OFFSET (table
[j
].from
, table
[j
].to
,
405 return offset1
- offset2
;
409 else if (table
[i
].to
== from
)
411 if (table
[i
].from
== to
)
413 INITIAL_ELIMINATION_OFFSET (table
[i
].from
, table
[i
].to
,
417 for (j
= 0; j
< ARRAY_SIZE (table
); j
++)
419 if (table
[j
].to
== to
420 && table
[j
].from
== table
[i
].from
)
422 INITIAL_ELIMINATION_OFFSET (table
[i
].from
, table
[i
].to
,
424 INITIAL_ELIMINATION_OFFSET (table
[j
].from
, table
[j
].to
,
426 return - offset1
+ offset2
;
428 if (table
[j
].from
== to
429 && table
[j
].to
== table
[i
].from
)
431 INITIAL_ELIMINATION_OFFSET (table
[i
].from
, table
[i
].to
,
433 INITIAL_ELIMINATION_OFFSET (table
[j
].from
, table
[j
].to
,
435 return - offset1
- offset2
;
440 /* If the requested register combination was not found,
441 try a different more simple combination. */
442 if (from
== ARG_POINTER_REGNUM
)
443 return get_initial_register_offset (HARD_FRAME_POINTER_REGNUM
, to
);
444 else if (to
== ARG_POINTER_REGNUM
)
445 return get_initial_register_offset (from
, HARD_FRAME_POINTER_REGNUM
);
446 else if (from
== HARD_FRAME_POINTER_REGNUM
)
447 return get_initial_register_offset (FRAME_POINTER_REGNUM
, to
);
448 else if (to
== HARD_FRAME_POINTER_REGNUM
)
449 return get_initial_register_offset (from
, FRAME_POINTER_REGNUM
);
454 /* Return nonzero if the use of X+OFFSET as an address in a MEM with SIZE
455 bytes can cause a trap. MODE is the mode of the MEM (not that of X) and
456 UNALIGNED_MEMS controls whether nonzero is returned for unaligned memory
457 references on strict alignment machines. */
460 rtx_addr_can_trap_p_1 (const_rtx x
, HOST_WIDE_INT offset
, HOST_WIDE_INT size
,
461 machine_mode mode
, bool unaligned_mems
)
463 enum rtx_code code
= GET_CODE (x
);
465 /* The offset must be a multiple of the mode size if we are considering
466 unaligned memory references on strict alignment machines. */
467 if (STRICT_ALIGNMENT
&& unaligned_mems
&& GET_MODE_SIZE (mode
) != 0)
469 HOST_WIDE_INT actual_offset
= offset
;
471 #ifdef SPARC_STACK_BOUNDARY_HACK
472 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
473 the real alignment of %sp. However, when it does this, the
474 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
475 if (SPARC_STACK_BOUNDARY_HACK
476 && (x
== stack_pointer_rtx
|| x
== hard_frame_pointer_rtx
))
477 actual_offset
-= STACK_POINTER_OFFSET
;
480 if (actual_offset
% GET_MODE_SIZE (mode
) != 0)
487 if (SYMBOL_REF_WEAK (x
))
489 if (!CONSTANT_POOL_ADDRESS_P (x
) && !SYMBOL_REF_FUNCTION_P (x
))
492 HOST_WIDE_INT decl_size
;
497 size
= GET_MODE_SIZE (mode
);
501 /* If the size of the access or of the symbol is unknown,
503 decl
= SYMBOL_REF_DECL (x
);
505 /* Else check that the access is in bounds. TODO: restructure
506 expr_size/tree_expr_size/int_expr_size and just use the latter. */
509 else if (DECL_P (decl
) && DECL_SIZE_UNIT (decl
))
510 decl_size
= (tree_fits_shwi_p (DECL_SIZE_UNIT (decl
))
511 ? tree_to_shwi (DECL_SIZE_UNIT (decl
))
513 else if (TREE_CODE (decl
) == STRING_CST
)
514 decl_size
= TREE_STRING_LENGTH (decl
);
515 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl
)))
516 decl_size
= int_size_in_bytes (TREE_TYPE (decl
));
520 return (decl_size
<= 0 ? offset
!= 0 : offset
+ size
> decl_size
);
529 /* Stack references are assumed not to trap, but we need to deal with
530 nonsensical offsets. */
531 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
532 || x
== stack_pointer_rtx
533 /* The arg pointer varies if it is not a fixed register. */
534 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]))
537 HOST_WIDE_INT red_zone_size
= RED_ZONE_SIZE
;
539 HOST_WIDE_INT red_zone_size
= 0;
541 HOST_WIDE_INT stack_boundary
= PREFERRED_STACK_BOUNDARY
543 HOST_WIDE_INT low_bound
, high_bound
;
546 size
= GET_MODE_SIZE (mode
);
550 if (x
== frame_pointer_rtx
)
552 if (FRAME_GROWS_DOWNWARD
)
554 high_bound
= STARTING_FRAME_OFFSET
;
555 low_bound
= high_bound
- get_frame_size ();
559 low_bound
= STARTING_FRAME_OFFSET
;
560 high_bound
= low_bound
+ get_frame_size ();
563 else if (x
== hard_frame_pointer_rtx
)
565 HOST_WIDE_INT sp_offset
566 = get_initial_register_offset (STACK_POINTER_REGNUM
,
567 HARD_FRAME_POINTER_REGNUM
);
568 HOST_WIDE_INT ap_offset
569 = get_initial_register_offset (ARG_POINTER_REGNUM
,
570 HARD_FRAME_POINTER_REGNUM
);
572 #if STACK_GROWS_DOWNWARD
573 low_bound
= sp_offset
- red_zone_size
- stack_boundary
;
574 high_bound
= ap_offset
575 + FIRST_PARM_OFFSET (current_function_decl
)
576 #if !ARGS_GROW_DOWNWARD
581 high_bound
= sp_offset
+ red_zone_size
+ stack_boundary
;
582 low_bound
= ap_offset
583 + FIRST_PARM_OFFSET (current_function_decl
)
584 #if ARGS_GROW_DOWNWARD
590 else if (x
== stack_pointer_rtx
)
592 HOST_WIDE_INT ap_offset
593 = get_initial_register_offset (ARG_POINTER_REGNUM
,
594 STACK_POINTER_REGNUM
);
596 #if STACK_GROWS_DOWNWARD
597 low_bound
= - red_zone_size
- stack_boundary
;
598 high_bound
= ap_offset
599 + FIRST_PARM_OFFSET (current_function_decl
)
600 #if !ARGS_GROW_DOWNWARD
605 high_bound
= red_zone_size
+ stack_boundary
;
606 low_bound
= ap_offset
607 + FIRST_PARM_OFFSET (current_function_decl
)
608 #if ARGS_GROW_DOWNWARD
616 /* We assume that accesses are safe to at least the
618 Examples are varargs and __builtin_return_address. */
619 #if ARGS_GROW_DOWNWARD
620 high_bound
= FIRST_PARM_OFFSET (current_function_decl
)
622 low_bound
= FIRST_PARM_OFFSET (current_function_decl
)
623 - crtl
->args
.size
- stack_boundary
;
625 low_bound
= FIRST_PARM_OFFSET (current_function_decl
)
627 high_bound
= FIRST_PARM_OFFSET (current_function_decl
)
628 + crtl
->args
.size
+ stack_boundary
;
632 if (offset
>= low_bound
&& offset
<= high_bound
- size
)
636 /* All of the virtual frame registers are stack references. */
637 if (REGNO (x
) >= FIRST_VIRTUAL_REGISTER
638 && REGNO (x
) <= LAST_VIRTUAL_REGISTER
)
643 return rtx_addr_can_trap_p_1 (XEXP (x
, 0), offset
, size
,
644 mode
, unaligned_mems
);
647 /* An address is assumed not to trap if:
648 - it is the pic register plus a const unspec without offset. */
649 if (XEXP (x
, 0) == pic_offset_table_rtx
650 && GET_CODE (XEXP (x
, 1)) == CONST
651 && GET_CODE (XEXP (XEXP (x
, 1), 0)) == UNSPEC
655 /* - or it is an address that can't trap plus a constant integer. */
656 if (CONST_INT_P (XEXP (x
, 1))
657 && !rtx_addr_can_trap_p_1 (XEXP (x
, 0), offset
+ INTVAL (XEXP (x
, 1)),
658 size
, mode
, unaligned_mems
))
665 return rtx_addr_can_trap_p_1 (XEXP (x
, 1), offset
, size
,
666 mode
, unaligned_mems
);
673 return rtx_addr_can_trap_p_1 (XEXP (x
, 0), offset
, size
,
674 mode
, unaligned_mems
);
680 /* If it isn't one of the case above, it can cause a trap. */
684 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
687 rtx_addr_can_trap_p (const_rtx x
)
689 return rtx_addr_can_trap_p_1 (x
, 0, 0, VOIDmode
, false);
692 /* Return true if X contains a MEM subrtx. */
695 contains_mem_rtx_p (rtx x
)
697 subrtx_iterator::array_type array
;
698 FOR_EACH_SUBRTX (iter
, array
, x
, ALL
)
705 /* Return true if X is an address that is known to not be zero. */
708 nonzero_address_p (const_rtx x
)
710 const enum rtx_code code
= GET_CODE (x
);
715 return flag_delete_null_pointer_checks
&& !SYMBOL_REF_WEAK (x
);
721 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
722 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
723 || x
== stack_pointer_rtx
724 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]))
726 /* All of the virtual frame registers are stack references. */
727 if (REGNO (x
) >= FIRST_VIRTUAL_REGISTER
728 && REGNO (x
) <= LAST_VIRTUAL_REGISTER
)
733 return nonzero_address_p (XEXP (x
, 0));
736 /* Handle PIC references. */
737 if (XEXP (x
, 0) == pic_offset_table_rtx
738 && CONSTANT_P (XEXP (x
, 1)))
743 /* Similar to the above; allow positive offsets. Further, since
744 auto-inc is only allowed in memories, the register must be a
746 if (CONST_INT_P (XEXP (x
, 1))
747 && INTVAL (XEXP (x
, 1)) > 0)
749 return nonzero_address_p (XEXP (x
, 0));
752 /* Similarly. Further, the offset is always positive. */
759 return nonzero_address_p (XEXP (x
, 0));
762 return nonzero_address_p (XEXP (x
, 1));
768 /* If it isn't one of the case above, might be zero. */
772 /* Return 1 if X refers to a memory location whose address
773 cannot be compared reliably with constant addresses,
774 or if X refers to a BLKmode memory object.
775 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
776 zero, we are slightly more conservative. */
779 rtx_addr_varies_p (const_rtx x
, bool for_alias
)
790 return GET_MODE (x
) == BLKmode
|| rtx_varies_p (XEXP (x
, 0), for_alias
);
792 fmt
= GET_RTX_FORMAT (code
);
793 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
796 if (rtx_addr_varies_p (XEXP (x
, i
), for_alias
))
799 else if (fmt
[i
] == 'E')
802 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
803 if (rtx_addr_varies_p (XVECEXP (x
, i
, j
), for_alias
))
809 /* Return the CALL in X if there is one. */
812 get_call_rtx_from (rtx x
)
816 if (GET_CODE (x
) == PARALLEL
)
817 x
= XVECEXP (x
, 0, 0);
818 if (GET_CODE (x
) == SET
)
820 if (GET_CODE (x
) == CALL
&& MEM_P (XEXP (x
, 0)))
825 /* Return the value of the integer term in X, if one is apparent;
827 Only obvious integer terms are detected.
828 This is used in cse.c with the `related_value' field. */
831 get_integer_term (const_rtx x
)
833 if (GET_CODE (x
) == CONST
)
836 if (GET_CODE (x
) == MINUS
837 && CONST_INT_P (XEXP (x
, 1)))
838 return - INTVAL (XEXP (x
, 1));
839 if (GET_CODE (x
) == PLUS
840 && CONST_INT_P (XEXP (x
, 1)))
841 return INTVAL (XEXP (x
, 1));
845 /* If X is a constant, return the value sans apparent integer term;
847 Only obvious integer terms are detected. */
850 get_related_value (const_rtx x
)
852 if (GET_CODE (x
) != CONST
)
855 if (GET_CODE (x
) == PLUS
856 && CONST_INT_P (XEXP (x
, 1)))
858 else if (GET_CODE (x
) == MINUS
859 && CONST_INT_P (XEXP (x
, 1)))
864 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
865 to somewhere in the same object or object_block as SYMBOL. */
868 offset_within_block_p (const_rtx symbol
, HOST_WIDE_INT offset
)
872 if (GET_CODE (symbol
) != SYMBOL_REF
)
880 if (CONSTANT_POOL_ADDRESS_P (symbol
)
881 && offset
< (int) GET_MODE_SIZE (get_pool_mode (symbol
)))
884 decl
= SYMBOL_REF_DECL (symbol
);
885 if (decl
&& offset
< int_size_in_bytes (TREE_TYPE (decl
)))
889 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol
)
890 && SYMBOL_REF_BLOCK (symbol
)
891 && SYMBOL_REF_BLOCK_OFFSET (symbol
) >= 0
892 && ((unsigned HOST_WIDE_INT
) offset
+ SYMBOL_REF_BLOCK_OFFSET (symbol
)
893 < (unsigned HOST_WIDE_INT
) SYMBOL_REF_BLOCK (symbol
)->size
))
899 /* Split X into a base and a constant offset, storing them in *BASE_OUT
900 and *OFFSET_OUT respectively. */
903 split_const (rtx x
, rtx
*base_out
, rtx
*offset_out
)
905 if (GET_CODE (x
) == CONST
)
908 if (GET_CODE (x
) == PLUS
&& CONST_INT_P (XEXP (x
, 1)))
910 *base_out
= XEXP (x
, 0);
911 *offset_out
= XEXP (x
, 1);
916 *offset_out
= const0_rtx
;
919 /* Return the number of places FIND appears within X. If COUNT_DEST is
920 zero, we do not count occurrences inside the destination of a SET. */
923 count_occurrences (const_rtx x
, const_rtx find
, int count_dest
)
927 const char *format_ptr
;
946 count
= count_occurrences (XEXP (x
, 0), find
, count_dest
);
948 count
+= count_occurrences (XEXP (x
, 1), find
, count_dest
);
952 if (MEM_P (find
) && rtx_equal_p (x
, find
))
957 if (SET_DEST (x
) == find
&& ! count_dest
)
958 return count_occurrences (SET_SRC (x
), find
, count_dest
);
965 format_ptr
= GET_RTX_FORMAT (code
);
968 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
970 switch (*format_ptr
++)
973 count
+= count_occurrences (XEXP (x
, i
), find
, count_dest
);
977 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
978 count
+= count_occurrences (XVECEXP (x
, i
, j
), find
, count_dest
);
986 /* Return TRUE if OP is a register or subreg of a register that
987 holds an unsigned quantity. Otherwise, return FALSE. */
990 unsigned_reg_p (rtx op
)
994 && TYPE_UNSIGNED (TREE_TYPE (REG_EXPR (op
))))
997 if (GET_CODE (op
) == SUBREG
998 && SUBREG_PROMOTED_SIGN (op
))
1005 /* Nonzero if register REG appears somewhere within IN.
1006 Also works if REG is not a register; in this case it checks
1007 for a subexpression of IN that is Lisp "equal" to REG. */
1010 reg_mentioned_p (const_rtx reg
, const_rtx in
)
1022 if (GET_CODE (in
) == LABEL_REF
)
1023 return reg
== label_ref_label (in
);
1025 code
= GET_CODE (in
);
1029 /* Compare registers by number. */
1031 return REG_P (reg
) && REGNO (in
) == REGNO (reg
);
1033 /* These codes have no constituent expressions
1041 /* These are kept unique for a given value. */
1048 if (GET_CODE (reg
) == code
&& rtx_equal_p (reg
, in
))
1051 fmt
= GET_RTX_FORMAT (code
);
1053 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1058 for (j
= XVECLEN (in
, i
) - 1; j
>= 0; j
--)
1059 if (reg_mentioned_p (reg
, XVECEXP (in
, i
, j
)))
1062 else if (fmt
[i
] == 'e'
1063 && reg_mentioned_p (reg
, XEXP (in
, i
)))
1069 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
1070 no CODE_LABEL insn. */
1073 no_labels_between_p (const rtx_insn
*beg
, const rtx_insn
*end
)
1078 for (p
= NEXT_INSN (beg
); p
!= end
; p
= NEXT_INSN (p
))
1084 /* Nonzero if register REG is used in an insn between
1085 FROM_INSN and TO_INSN (exclusive of those two). */
1088 reg_used_between_p (const_rtx reg
, const rtx_insn
*from_insn
,
1089 const rtx_insn
*to_insn
)
1093 if (from_insn
== to_insn
)
1096 for (insn
= NEXT_INSN (from_insn
); insn
!= to_insn
; insn
= NEXT_INSN (insn
))
1097 if (NONDEBUG_INSN_P (insn
)
1098 && (reg_overlap_mentioned_p (reg
, PATTERN (insn
))
1099 || (CALL_P (insn
) && find_reg_fusage (insn
, USE
, reg
))))
1104 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
1105 is entirely replaced by a new value and the only use is as a SET_DEST,
1106 we do not consider it a reference. */
1109 reg_referenced_p (const_rtx x
, const_rtx body
)
1113 switch (GET_CODE (body
))
1116 if (reg_overlap_mentioned_p (x
, SET_SRC (body
)))
1119 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
1120 of a REG that occupies all of the REG, the insn references X if
1121 it is mentioned in the destination. */
1122 if (GET_CODE (SET_DEST (body
)) != CC0
1123 && GET_CODE (SET_DEST (body
)) != PC
1124 && !REG_P (SET_DEST (body
))
1125 && ! (GET_CODE (SET_DEST (body
)) == SUBREG
1126 && REG_P (SUBREG_REG (SET_DEST (body
)))
1127 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body
))))
1128 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)
1129 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body
)))
1130 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)))
1131 && reg_overlap_mentioned_p (x
, SET_DEST (body
)))
1136 for (i
= ASM_OPERANDS_INPUT_LENGTH (body
) - 1; i
>= 0; i
--)
1137 if (reg_overlap_mentioned_p (x
, ASM_OPERANDS_INPUT (body
, i
)))
1144 return reg_overlap_mentioned_p (x
, body
);
1147 return reg_overlap_mentioned_p (x
, TRAP_CONDITION (body
));
1150 return reg_overlap_mentioned_p (x
, XEXP (body
, 0));
1153 case UNSPEC_VOLATILE
:
1154 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
1155 if (reg_overlap_mentioned_p (x
, XVECEXP (body
, 0, i
)))
1160 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
1161 if (reg_referenced_p (x
, XVECEXP (body
, 0, i
)))
1166 if (MEM_P (XEXP (body
, 0)))
1167 if (reg_overlap_mentioned_p (x
, XEXP (XEXP (body
, 0), 0)))
1172 if (reg_overlap_mentioned_p (x
, COND_EXEC_TEST (body
)))
1174 return reg_referenced_p (x
, COND_EXEC_CODE (body
));
1181 /* Nonzero if register REG is set or clobbered in an insn between
1182 FROM_INSN and TO_INSN (exclusive of those two). */
1185 reg_set_between_p (const_rtx reg
, const rtx_insn
*from_insn
,
1186 const rtx_insn
*to_insn
)
1188 const rtx_insn
*insn
;
1190 if (from_insn
== to_insn
)
1193 for (insn
= NEXT_INSN (from_insn
); insn
!= to_insn
; insn
= NEXT_INSN (insn
))
1194 if (INSN_P (insn
) && reg_set_p (reg
, insn
))
1199 /* Return true if REG is set or clobbered inside INSN. */
1202 reg_set_p (const_rtx reg
, const_rtx insn
)
1204 /* After delay slot handling, call and branch insns might be in a
1205 sequence. Check all the elements there. */
1206 if (INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1208 for (int i
= 0; i
< XVECLEN (PATTERN (insn
), 0); ++i
)
1209 if (reg_set_p (reg
, XVECEXP (PATTERN (insn
), 0, i
)))
1215 /* We can be passed an insn or part of one. If we are passed an insn,
1216 check if a side-effect of the insn clobbers REG. */
1218 && (FIND_REG_INC_NOTE (insn
, reg
)
1221 && REGNO (reg
) < FIRST_PSEUDO_REGISTER
1222 && overlaps_hard_reg_set_p (regs_invalidated_by_call
,
1223 GET_MODE (reg
), REGNO (reg
)))
1225 || find_reg_fusage (insn
, CLOBBER
, reg
)))))
1228 /* There are no REG_INC notes for SP autoinc. */
1229 if (reg
== stack_pointer_rtx
&& INSN_P (insn
))
1231 subrtx_var_iterator::array_type array
;
1232 FOR_EACH_SUBRTX_VAR (iter
, array
, PATTERN (insn
), NONCONST
)
1237 && GET_RTX_CLASS (GET_CODE (XEXP (mem
, 0))) == RTX_AUTOINC
)
1239 if (XEXP (XEXP (mem
, 0), 0) == stack_pointer_rtx
)
1241 iter
.skip_subrtxes ();
1246 return set_of (reg
, insn
) != NULL_RTX
;
1249 /* Similar to reg_set_between_p, but check all registers in X. Return 0
1250 only if none of them are modified between START and END. Return 1 if
1251 X contains a MEM; this routine does use memory aliasing. */
1254 modified_between_p (const_rtx x
, const rtx_insn
*start
, const rtx_insn
*end
)
1256 const enum rtx_code code
= GET_CODE (x
);
1277 if (modified_between_p (XEXP (x
, 0), start
, end
))
1279 if (MEM_READONLY_P (x
))
1281 for (insn
= NEXT_INSN (start
); insn
!= end
; insn
= NEXT_INSN (insn
))
1282 if (memory_modified_in_insn_p (x
, insn
))
1287 return reg_set_between_p (x
, start
, end
);
1293 fmt
= GET_RTX_FORMAT (code
);
1294 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1296 if (fmt
[i
] == 'e' && modified_between_p (XEXP (x
, i
), start
, end
))
1299 else if (fmt
[i
] == 'E')
1300 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1301 if (modified_between_p (XVECEXP (x
, i
, j
), start
, end
))
1308 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
1309 of them are modified in INSN. Return 1 if X contains a MEM; this routine
1310 does use memory aliasing. */
1313 modified_in_p (const_rtx x
, const_rtx insn
)
1315 const enum rtx_code code
= GET_CODE (x
);
1332 if (modified_in_p (XEXP (x
, 0), insn
))
1334 if (MEM_READONLY_P (x
))
1336 if (memory_modified_in_insn_p (x
, insn
))
1341 return reg_set_p (x
, insn
);
1347 fmt
= GET_RTX_FORMAT (code
);
1348 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1350 if (fmt
[i
] == 'e' && modified_in_p (XEXP (x
, i
), insn
))
1353 else if (fmt
[i
] == 'E')
1354 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1355 if (modified_in_p (XVECEXP (x
, i
, j
), insn
))
1362 /* Return true if X is a SUBREG and if storing a value to X would
1363 preserve some of its SUBREG_REG. For example, on a normal 32-bit
1364 target, using a SUBREG to store to one half of a DImode REG would
1365 preserve the other half. */
1368 read_modify_subreg_p (const_rtx x
)
1370 unsigned int isize
, osize
;
1371 if (GET_CODE (x
) != SUBREG
)
1373 isize
= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
)));
1374 osize
= GET_MODE_SIZE (GET_MODE (x
));
1375 return isize
> osize
1376 && isize
> REGMODE_NATURAL_SIZE (GET_MODE (SUBREG_REG (x
)));
1379 /* Helper function for set_of. */
1387 set_of_1 (rtx x
, const_rtx pat
, void *data1
)
1389 struct set_of_data
*const data
= (struct set_of_data
*) (data1
);
1390 if (rtx_equal_p (x
, data
->pat
)
1391 || (!MEM_P (x
) && reg_overlap_mentioned_p (data
->pat
, x
)))
1395 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1396 (either directly or via STRICT_LOW_PART and similar modifiers). */
1398 set_of (const_rtx pat
, const_rtx insn
)
1400 struct set_of_data data
;
1401 data
.found
= NULL_RTX
;
1403 note_stores (INSN_P (insn
) ? PATTERN (insn
) : insn
, set_of_1
, &data
);
1407 /* Add all hard register in X to *PSET. */
1409 find_all_hard_regs (const_rtx x
, HARD_REG_SET
*pset
)
1411 subrtx_iterator::array_type array
;
1412 FOR_EACH_SUBRTX (iter
, array
, x
, NONCONST
)
1414 const_rtx x
= *iter
;
1415 if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
1416 add_to_hard_reg_set (pset
, GET_MODE (x
), REGNO (x
));
1420 /* This function, called through note_stores, collects sets and
1421 clobbers of hard registers in a HARD_REG_SET, which is pointed to
1424 record_hard_reg_sets (rtx x
, const_rtx pat ATTRIBUTE_UNUSED
, void *data
)
1426 HARD_REG_SET
*pset
= (HARD_REG_SET
*)data
;
1427 if (REG_P (x
) && HARD_REGISTER_P (x
))
1428 add_to_hard_reg_set (pset
, GET_MODE (x
), REGNO (x
));
1431 /* Examine INSN, and compute the set of hard registers written by it.
1432 Store it in *PSET. Should only be called after reload. */
1434 find_all_hard_reg_sets (const rtx_insn
*insn
, HARD_REG_SET
*pset
, bool implicit
)
1438 CLEAR_HARD_REG_SET (*pset
);
1439 note_stores (PATTERN (insn
), record_hard_reg_sets
, pset
);
1443 IOR_HARD_REG_SET (*pset
, call_used_reg_set
);
1445 for (link
= CALL_INSN_FUNCTION_USAGE (insn
); link
; link
= XEXP (link
, 1))
1446 record_hard_reg_sets (XEXP (link
, 0), NULL
, pset
);
1448 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1449 if (REG_NOTE_KIND (link
) == REG_INC
)
1450 record_hard_reg_sets (XEXP (link
, 0), NULL
, pset
);
1453 /* Like record_hard_reg_sets, but called through note_uses. */
1455 record_hard_reg_uses (rtx
*px
, void *data
)
1457 find_all_hard_regs (*px
, (HARD_REG_SET
*) data
);
1460 /* Given an INSN, return a SET expression if this insn has only a single SET.
1461 It may also have CLOBBERs, USEs, or SET whose output
1462 will not be used, which we ignore. */
1465 single_set_2 (const rtx_insn
*insn
, const_rtx pat
)
1468 int set_verified
= 1;
1471 if (GET_CODE (pat
) == PARALLEL
)
1473 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
1475 rtx sub
= XVECEXP (pat
, 0, i
);
1476 switch (GET_CODE (sub
))
1483 /* We can consider insns having multiple sets, where all
1484 but one are dead as single set insns. In common case
1485 only single set is present in the pattern so we want
1486 to avoid checking for REG_UNUSED notes unless necessary.
1488 When we reach set first time, we just expect this is
1489 the single set we are looking for and only when more
1490 sets are found in the insn, we check them. */
1493 if (find_reg_note (insn
, REG_UNUSED
, SET_DEST (set
))
1494 && !side_effects_p (set
))
1500 set
= sub
, set_verified
= 0;
1501 else if (!find_reg_note (insn
, REG_UNUSED
, SET_DEST (sub
))
1502 || side_effects_p (sub
))
1514 /* Given an INSN, return nonzero if it has more than one SET, else return
1518 multiple_sets (const_rtx insn
)
1523 /* INSN must be an insn. */
1524 if (! INSN_P (insn
))
1527 /* Only a PARALLEL can have multiple SETs. */
1528 if (GET_CODE (PATTERN (insn
)) == PARALLEL
)
1530 for (i
= 0, found
= 0; i
< XVECLEN (PATTERN (insn
), 0); i
++)
1531 if (GET_CODE (XVECEXP (PATTERN (insn
), 0, i
)) == SET
)
1533 /* If we have already found a SET, then return now. */
1541 /* Either zero or one SET. */
1545 /* Return nonzero if the destination of SET equals the source
1546 and there are no side effects. */
1549 set_noop_p (const_rtx set
)
1551 rtx src
= SET_SRC (set
);
1552 rtx dst
= SET_DEST (set
);
1554 if (dst
== pc_rtx
&& src
== pc_rtx
)
1557 if (MEM_P (dst
) && MEM_P (src
))
1558 return rtx_equal_p (dst
, src
) && !side_effects_p (dst
);
1560 if (GET_CODE (dst
) == ZERO_EXTRACT
)
1561 return rtx_equal_p (XEXP (dst
, 0), src
)
1562 && !BITS_BIG_ENDIAN
&& XEXP (dst
, 2) == const0_rtx
1563 && !side_effects_p (src
);
1565 if (GET_CODE (dst
) == STRICT_LOW_PART
)
1566 dst
= XEXP (dst
, 0);
1568 if (GET_CODE (src
) == SUBREG
&& GET_CODE (dst
) == SUBREG
)
1570 if (SUBREG_BYTE (src
) != SUBREG_BYTE (dst
))
1572 src
= SUBREG_REG (src
);
1573 dst
= SUBREG_REG (dst
);
1576 /* It is a NOOP if destination overlaps with selected src vector
1578 if (GET_CODE (src
) == VEC_SELECT
1579 && REG_P (XEXP (src
, 0)) && REG_P (dst
)
1580 && HARD_REGISTER_P (XEXP (src
, 0))
1581 && HARD_REGISTER_P (dst
))
1584 rtx par
= XEXP (src
, 1);
1585 rtx src0
= XEXP (src
, 0);
1586 int c0
= INTVAL (XVECEXP (par
, 0, 0));
1587 HOST_WIDE_INT offset
= GET_MODE_UNIT_SIZE (GET_MODE (src0
)) * c0
;
1589 for (i
= 1; i
< XVECLEN (par
, 0); i
++)
1590 if (INTVAL (XVECEXP (par
, 0, i
)) != c0
+ i
)
1593 simplify_subreg_regno (REGNO (src0
), GET_MODE (src0
),
1594 offset
, GET_MODE (dst
)) == (int) REGNO (dst
);
1597 return (REG_P (src
) && REG_P (dst
)
1598 && REGNO (src
) == REGNO (dst
));
1601 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1605 noop_move_p (const rtx_insn
*insn
)
1607 rtx pat
= PATTERN (insn
);
1609 if (INSN_CODE (insn
) == NOOP_MOVE_INSN_CODE
)
1612 /* Insns carrying these notes are useful later on. */
1613 if (find_reg_note (insn
, REG_EQUAL
, NULL_RTX
))
1616 /* Check the code to be executed for COND_EXEC. */
1617 if (GET_CODE (pat
) == COND_EXEC
)
1618 pat
= COND_EXEC_CODE (pat
);
1620 if (GET_CODE (pat
) == SET
&& set_noop_p (pat
))
1623 if (GET_CODE (pat
) == PARALLEL
)
1626 /* If nothing but SETs of registers to themselves,
1627 this insn can also be deleted. */
1628 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
1630 rtx tem
= XVECEXP (pat
, 0, i
);
1632 if (GET_CODE (tem
) == USE
1633 || GET_CODE (tem
) == CLOBBER
)
1636 if (GET_CODE (tem
) != SET
|| ! set_noop_p (tem
))
1646 /* Return nonzero if register in range [REGNO, ENDREGNO)
1647 appears either explicitly or implicitly in X
1648 other than being stored into.
1650 References contained within the substructure at LOC do not count.
1651 LOC may be zero, meaning don't ignore anything. */
1654 refers_to_regno_p (unsigned int regno
, unsigned int endregno
, const_rtx x
,
1658 unsigned int x_regno
;
1663 /* The contents of a REG_NONNEG note is always zero, so we must come here
1664 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1668 code
= GET_CODE (x
);
1673 x_regno
= REGNO (x
);
1675 /* If we modifying the stack, frame, or argument pointer, it will
1676 clobber a virtual register. In fact, we could be more precise,
1677 but it isn't worth it. */
1678 if ((x_regno
== STACK_POINTER_REGNUM
1679 || (FRAME_POINTER_REGNUM
!= ARG_POINTER_REGNUM
1680 && x_regno
== ARG_POINTER_REGNUM
)
1681 || x_regno
== FRAME_POINTER_REGNUM
)
1682 && regno
>= FIRST_VIRTUAL_REGISTER
&& regno
<= LAST_VIRTUAL_REGISTER
)
1685 return endregno
> x_regno
&& regno
< END_REGNO (x
);
1688 /* If this is a SUBREG of a hard reg, we can see exactly which
1689 registers are being modified. Otherwise, handle normally. */
1690 if (REG_P (SUBREG_REG (x
))
1691 && REGNO (SUBREG_REG (x
)) < FIRST_PSEUDO_REGISTER
)
1693 unsigned int inner_regno
= subreg_regno (x
);
1694 unsigned int inner_endregno
1695 = inner_regno
+ (inner_regno
< FIRST_PSEUDO_REGISTER
1696 ? subreg_nregs (x
) : 1);
1698 return endregno
> inner_regno
&& regno
< inner_endregno
;
1704 if (&SET_DEST (x
) != loc
1705 /* Note setting a SUBREG counts as referring to the REG it is in for
1706 a pseudo but not for hard registers since we can
1707 treat each word individually. */
1708 && ((GET_CODE (SET_DEST (x
)) == SUBREG
1709 && loc
!= &SUBREG_REG (SET_DEST (x
))
1710 && REG_P (SUBREG_REG (SET_DEST (x
)))
1711 && REGNO (SUBREG_REG (SET_DEST (x
))) >= FIRST_PSEUDO_REGISTER
1712 && refers_to_regno_p (regno
, endregno
,
1713 SUBREG_REG (SET_DEST (x
)), loc
))
1714 || (!REG_P (SET_DEST (x
))
1715 && refers_to_regno_p (regno
, endregno
, SET_DEST (x
), loc
))))
1718 if (code
== CLOBBER
|| loc
== &SET_SRC (x
))
1727 /* X does not match, so try its subexpressions. */
1729 fmt
= GET_RTX_FORMAT (code
);
1730 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1732 if (fmt
[i
] == 'e' && loc
!= &XEXP (x
, i
))
1740 if (refers_to_regno_p (regno
, endregno
, XEXP (x
, i
), loc
))
1743 else if (fmt
[i
] == 'E')
1746 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1747 if (loc
!= &XVECEXP (x
, i
, j
)
1748 && refers_to_regno_p (regno
, endregno
, XVECEXP (x
, i
, j
), loc
))
1755 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1756 we check if any register number in X conflicts with the relevant register
1757 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1758 contains a MEM (we don't bother checking for memory addresses that can't
1759 conflict because we expect this to be a rare case. */
1762 reg_overlap_mentioned_p (const_rtx x
, const_rtx in
)
1764 unsigned int regno
, endregno
;
1766 /* If either argument is a constant, then modifying X can not
1767 affect IN. Here we look at IN, we can profitably combine
1768 CONSTANT_P (x) with the switch statement below. */
1769 if (CONSTANT_P (in
))
1773 switch (GET_CODE (x
))
1775 case STRICT_LOW_PART
:
1778 /* Overly conservative. */
1783 regno
= REGNO (SUBREG_REG (x
));
1784 if (regno
< FIRST_PSEUDO_REGISTER
)
1785 regno
= subreg_regno (x
);
1786 endregno
= regno
+ (regno
< FIRST_PSEUDO_REGISTER
1787 ? subreg_nregs (x
) : 1);
1792 endregno
= END_REGNO (x
);
1794 return refers_to_regno_p (regno
, endregno
, in
, (rtx
*) 0);
1804 fmt
= GET_RTX_FORMAT (GET_CODE (in
));
1805 for (i
= GET_RTX_LENGTH (GET_CODE (in
)) - 1; i
>= 0; i
--)
1808 if (reg_overlap_mentioned_p (x
, XEXP (in
, i
)))
1811 else if (fmt
[i
] == 'E')
1814 for (j
= XVECLEN (in
, i
) - 1; j
>= 0; --j
)
1815 if (reg_overlap_mentioned_p (x
, XVECEXP (in
, i
, j
)))
1825 return reg_mentioned_p (x
, in
);
1831 /* If any register in here refers to it we return true. */
1832 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
1833 if (XEXP (XVECEXP (x
, 0, i
), 0) != 0
1834 && reg_overlap_mentioned_p (XEXP (XVECEXP (x
, 0, i
), 0), in
))
1840 gcc_assert (CONSTANT_P (x
));
1845 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1846 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1847 ignored by note_stores, but passed to FUN.
1849 FUN receives three arguments:
1850 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1851 2. the SET or CLOBBER rtx that does the store,
1852 3. the pointer DATA provided to note_stores.
1854 If the item being stored in or clobbered is a SUBREG of a hard register,
1855 the SUBREG will be passed. */
1858 note_stores (const_rtx x
, void (*fun
) (rtx
, const_rtx
, void *), void *data
)
1862 if (GET_CODE (x
) == COND_EXEC
)
1863 x
= COND_EXEC_CODE (x
);
1865 if (GET_CODE (x
) == SET
|| GET_CODE (x
) == CLOBBER
)
1867 rtx dest
= SET_DEST (x
);
1869 while ((GET_CODE (dest
) == SUBREG
1870 && (!REG_P (SUBREG_REG (dest
))
1871 || REGNO (SUBREG_REG (dest
)) >= FIRST_PSEUDO_REGISTER
))
1872 || GET_CODE (dest
) == ZERO_EXTRACT
1873 || GET_CODE (dest
) == STRICT_LOW_PART
)
1874 dest
= XEXP (dest
, 0);
1876 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1877 each of whose first operand is a register. */
1878 if (GET_CODE (dest
) == PARALLEL
)
1880 for (i
= XVECLEN (dest
, 0) - 1; i
>= 0; i
--)
1881 if (XEXP (XVECEXP (dest
, 0, i
), 0) != 0)
1882 (*fun
) (XEXP (XVECEXP (dest
, 0, i
), 0), x
, data
);
1885 (*fun
) (dest
, x
, data
);
1888 else if (GET_CODE (x
) == PARALLEL
)
1889 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
1890 note_stores (XVECEXP (x
, 0, i
), fun
, data
);
1893 /* Like notes_stores, but call FUN for each expression that is being
1894 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1895 FUN for each expression, not any interior subexpressions. FUN receives a
1896 pointer to the expression and the DATA passed to this function.
1898 Note that this is not quite the same test as that done in reg_referenced_p
1899 since that considers something as being referenced if it is being
1900 partially set, while we do not. */
1903 note_uses (rtx
*pbody
, void (*fun
) (rtx
*, void *), void *data
)
1908 switch (GET_CODE (body
))
1911 (*fun
) (&COND_EXEC_TEST (body
), data
);
1912 note_uses (&COND_EXEC_CODE (body
), fun
, data
);
1916 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
1917 note_uses (&XVECEXP (body
, 0, i
), fun
, data
);
1921 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
1922 note_uses (&PATTERN (XVECEXP (body
, 0, i
)), fun
, data
);
1926 (*fun
) (&XEXP (body
, 0), data
);
1930 for (i
= ASM_OPERANDS_INPUT_LENGTH (body
) - 1; i
>= 0; i
--)
1931 (*fun
) (&ASM_OPERANDS_INPUT (body
, i
), data
);
1935 (*fun
) (&TRAP_CONDITION (body
), data
);
1939 (*fun
) (&XEXP (body
, 0), data
);
1943 case UNSPEC_VOLATILE
:
1944 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
1945 (*fun
) (&XVECEXP (body
, 0, i
), data
);
1949 if (MEM_P (XEXP (body
, 0)))
1950 (*fun
) (&XEXP (XEXP (body
, 0), 0), data
);
1955 rtx dest
= SET_DEST (body
);
1957 /* For sets we replace everything in source plus registers in memory
1958 expression in store and operands of a ZERO_EXTRACT. */
1959 (*fun
) (&SET_SRC (body
), data
);
1961 if (GET_CODE (dest
) == ZERO_EXTRACT
)
1963 (*fun
) (&XEXP (dest
, 1), data
);
1964 (*fun
) (&XEXP (dest
, 2), data
);
1967 while (GET_CODE (dest
) == SUBREG
|| GET_CODE (dest
) == STRICT_LOW_PART
)
1968 dest
= XEXP (dest
, 0);
1971 (*fun
) (&XEXP (dest
, 0), data
);
1976 /* All the other possibilities never store. */
1977 (*fun
) (pbody
, data
);
1982 /* Return nonzero if X's old contents don't survive after INSN.
1983 This will be true if X is (cc0) or if X is a register and
1984 X dies in INSN or because INSN entirely sets X.
1986 "Entirely set" means set directly and not through a SUBREG, or
1987 ZERO_EXTRACT, so no trace of the old contents remains.
1988 Likewise, REG_INC does not count.
1990 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1991 but for this use that makes no difference, since regs don't overlap
1992 during their lifetimes. Therefore, this function may be used
1993 at any time after deaths have been computed.
1995 If REG is a hard reg that occupies multiple machine registers, this
1996 function will only return 1 if each of those registers will be replaced
2000 dead_or_set_p (const rtx_insn
*insn
, const_rtx x
)
2002 unsigned int regno
, end_regno
;
2005 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
2006 if (GET_CODE (x
) == CC0
)
2009 gcc_assert (REG_P (x
));
2012 end_regno
= END_REGNO (x
);
2013 for (i
= regno
; i
< end_regno
; i
++)
2014 if (! dead_or_set_regno_p (insn
, i
))
2020 /* Return TRUE iff DEST is a register or subreg of a register and
2021 doesn't change the number of words of the inner register, and any
2022 part of the register is TEST_REGNO. */
2025 covers_regno_no_parallel_p (const_rtx dest
, unsigned int test_regno
)
2027 unsigned int regno
, endregno
;
2029 if (GET_CODE (dest
) == SUBREG
2030 && (((GET_MODE_SIZE (GET_MODE (dest
))
2031 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
)
2032 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest
)))
2033 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
)))
2034 dest
= SUBREG_REG (dest
);
2039 regno
= REGNO (dest
);
2040 endregno
= END_REGNO (dest
);
2041 return (test_regno
>= regno
&& test_regno
< endregno
);
2044 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
2045 any member matches the covers_regno_no_parallel_p criteria. */
2048 covers_regno_p (const_rtx dest
, unsigned int test_regno
)
2050 if (GET_CODE (dest
) == PARALLEL
)
2052 /* Some targets place small structures in registers for return
2053 values of functions, and those registers are wrapped in
2054 PARALLELs that we may see as the destination of a SET. */
2057 for (i
= XVECLEN (dest
, 0) - 1; i
>= 0; i
--)
2059 rtx inner
= XEXP (XVECEXP (dest
, 0, i
), 0);
2060 if (inner
!= NULL_RTX
2061 && covers_regno_no_parallel_p (inner
, test_regno
))
2068 return covers_regno_no_parallel_p (dest
, test_regno
);
2071 /* Utility function for dead_or_set_p to check an individual register. */
2074 dead_or_set_regno_p (const rtx_insn
*insn
, unsigned int test_regno
)
2078 /* See if there is a death note for something that includes TEST_REGNO. */
2079 if (find_regno_note (insn
, REG_DEAD
, test_regno
))
2083 && find_regno_fusage (insn
, CLOBBER
, test_regno
))
2086 pattern
= PATTERN (insn
);
2088 /* If a COND_EXEC is not executed, the value survives. */
2089 if (GET_CODE (pattern
) == COND_EXEC
)
2092 if (GET_CODE (pattern
) == SET
)
2093 return covers_regno_p (SET_DEST (pattern
), test_regno
);
2094 else if (GET_CODE (pattern
) == PARALLEL
)
2098 for (i
= XVECLEN (pattern
, 0) - 1; i
>= 0; i
--)
2100 rtx body
= XVECEXP (pattern
, 0, i
);
2102 if (GET_CODE (body
) == COND_EXEC
)
2103 body
= COND_EXEC_CODE (body
);
2105 if ((GET_CODE (body
) == SET
|| GET_CODE (body
) == CLOBBER
)
2106 && covers_regno_p (SET_DEST (body
), test_regno
))
2114 /* Return the reg-note of kind KIND in insn INSN, if there is one.
2115 If DATUM is nonzero, look for one whose datum is DATUM. */
2118 find_reg_note (const_rtx insn
, enum reg_note kind
, const_rtx datum
)
2122 gcc_checking_assert (insn
);
2124 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2125 if (! INSN_P (insn
))
2129 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
2130 if (REG_NOTE_KIND (link
) == kind
)
2135 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
2136 if (REG_NOTE_KIND (link
) == kind
&& datum
== XEXP (link
, 0))
2141 /* Return the reg-note of kind KIND in insn INSN which applies to register
2142 number REGNO, if any. Return 0 if there is no such reg-note. Note that
2143 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
2144 it might be the case that the note overlaps REGNO. */
2147 find_regno_note (const_rtx insn
, enum reg_note kind
, unsigned int regno
)
2151 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2152 if (! INSN_P (insn
))
2155 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
2156 if (REG_NOTE_KIND (link
) == kind
2157 /* Verify that it is a register, so that scratch and MEM won't cause a
2159 && REG_P (XEXP (link
, 0))
2160 && REGNO (XEXP (link
, 0)) <= regno
2161 && END_REGNO (XEXP (link
, 0)) > regno
)
2166 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
2170 find_reg_equal_equiv_note (const_rtx insn
)
2177 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
2178 if (REG_NOTE_KIND (link
) == REG_EQUAL
2179 || REG_NOTE_KIND (link
) == REG_EQUIV
)
2181 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
2182 insns that have multiple sets. Checking single_set to
2183 make sure of this is not the proper check, as explained
2184 in the comment in set_unique_reg_note.
2186 This should be changed into an assert. */
2187 if (GET_CODE (PATTERN (insn
)) == PARALLEL
&& multiple_sets (insn
))
2194 /* Check whether INSN is a single_set whose source is known to be
2195 equivalent to a constant. Return that constant if so, otherwise
2199 find_constant_src (const rtx_insn
*insn
)
2203 set
= single_set (insn
);
2206 x
= avoid_constant_pool_reference (SET_SRC (set
));
2211 note
= find_reg_equal_equiv_note (insn
);
2212 if (note
&& CONSTANT_P (XEXP (note
, 0)))
2213 return XEXP (note
, 0);
2218 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
2219 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2222 find_reg_fusage (const_rtx insn
, enum rtx_code code
, const_rtx datum
)
2224 /* If it's not a CALL_INSN, it can't possibly have a
2225 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
2235 for (link
= CALL_INSN_FUNCTION_USAGE (insn
);
2237 link
= XEXP (link
, 1))
2238 if (GET_CODE (XEXP (link
, 0)) == code
2239 && rtx_equal_p (datum
, XEXP (XEXP (link
, 0), 0)))
2244 unsigned int regno
= REGNO (datum
);
2246 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2247 to pseudo registers, so don't bother checking. */
2249 if (regno
< FIRST_PSEUDO_REGISTER
)
2251 unsigned int end_regno
= END_REGNO (datum
);
2254 for (i
= regno
; i
< end_regno
; i
++)
2255 if (find_regno_fusage (insn
, code
, i
))
2263 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
2264 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2267 find_regno_fusage (const_rtx insn
, enum rtx_code code
, unsigned int regno
)
2271 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2272 to pseudo registers, so don't bother checking. */
2274 if (regno
>= FIRST_PSEUDO_REGISTER
2278 for (link
= CALL_INSN_FUNCTION_USAGE (insn
); link
; link
= XEXP (link
, 1))
2282 if (GET_CODE (op
= XEXP (link
, 0)) == code
2283 && REG_P (reg
= XEXP (op
, 0))
2284 && REGNO (reg
) <= regno
2285 && END_REGNO (reg
) > regno
)
2293 /* Return true if KIND is an integer REG_NOTE. */
2296 int_reg_note_p (enum reg_note kind
)
2298 return kind
== REG_BR_PROB
;
2301 /* Allocate a register note with kind KIND and datum DATUM. LIST is
2302 stored as the pointer to the next register note. */
2305 alloc_reg_note (enum reg_note kind
, rtx datum
, rtx list
)
2309 gcc_checking_assert (!int_reg_note_p (kind
));
2314 case REG_LABEL_TARGET
:
2315 case REG_LABEL_OPERAND
:
2317 /* These types of register notes use an INSN_LIST rather than an
2318 EXPR_LIST, so that copying is done right and dumps look
2320 note
= alloc_INSN_LIST (datum
, list
);
2321 PUT_REG_NOTE_KIND (note
, kind
);
2325 note
= alloc_EXPR_LIST (kind
, datum
, list
);
2332 /* Add register note with kind KIND and datum DATUM to INSN. */
2335 add_reg_note (rtx insn
, enum reg_note kind
, rtx datum
)
2337 REG_NOTES (insn
) = alloc_reg_note (kind
, datum
, REG_NOTES (insn
));
2340 /* Add an integer register note with kind KIND and datum DATUM to INSN. */
2343 add_int_reg_note (rtx_insn
*insn
, enum reg_note kind
, int datum
)
2345 gcc_checking_assert (int_reg_note_p (kind
));
2346 REG_NOTES (insn
) = gen_rtx_INT_LIST ((machine_mode
) kind
,
2347 datum
, REG_NOTES (insn
));
2350 /* Add a register note like NOTE to INSN. */
2353 add_shallow_copy_of_reg_note (rtx_insn
*insn
, rtx note
)
2355 if (GET_CODE (note
) == INT_LIST
)
2356 add_int_reg_note (insn
, REG_NOTE_KIND (note
), XINT (note
, 0));
2358 add_reg_note (insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
2361 /* Duplicate NOTE and return the copy. */
2363 duplicate_reg_note (rtx note
)
2365 reg_note kind
= REG_NOTE_KIND (note
);
2367 if (GET_CODE (note
) == INT_LIST
)
2368 return gen_rtx_INT_LIST ((machine_mode
) kind
, XINT (note
, 0), NULL_RTX
);
2369 else if (GET_CODE (note
) == EXPR_LIST
)
2370 return alloc_reg_note (kind
, copy_insn_1 (XEXP (note
, 0)), NULL_RTX
);
2372 return alloc_reg_note (kind
, XEXP (note
, 0), NULL_RTX
);
2375 /* Remove register note NOTE from the REG_NOTES of INSN. */
2378 remove_note (rtx_insn
*insn
, const_rtx note
)
2382 if (note
== NULL_RTX
)
2385 if (REG_NOTES (insn
) == note
)
2386 REG_NOTES (insn
) = XEXP (note
, 1);
2388 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
2389 if (XEXP (link
, 1) == note
)
2391 XEXP (link
, 1) = XEXP (note
, 1);
2395 switch (REG_NOTE_KIND (note
))
2399 df_notes_rescan (insn
);
2406 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes.
2407 Return true if any note has been removed. */
2410 remove_reg_equal_equiv_notes (rtx_insn
*insn
)
2415 loc
= ®_NOTES (insn
);
2418 enum reg_note kind
= REG_NOTE_KIND (*loc
);
2419 if (kind
== REG_EQUAL
|| kind
== REG_EQUIV
)
2421 *loc
= XEXP (*loc
, 1);
2425 loc
= &XEXP (*loc
, 1);
2430 /* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */
2433 remove_reg_equal_equiv_notes_for_regno (unsigned int regno
)
2440 /* This loop is a little tricky. We cannot just go down the chain because
2441 it is being modified by some actions in the loop. So we just iterate
2442 over the head. We plan to drain the list anyway. */
2443 while ((eq_use
= DF_REG_EQ_USE_CHAIN (regno
)) != NULL
)
2445 rtx_insn
*insn
= DF_REF_INSN (eq_use
);
2446 rtx note
= find_reg_equal_equiv_note (insn
);
2448 /* This assert is generally triggered when someone deletes a REG_EQUAL
2449 or REG_EQUIV note by hacking the list manually rather than calling
2453 remove_note (insn
, note
);
2457 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2458 return 1 if it is found. A simple equality test is used to determine if
2462 in_insn_list_p (const rtx_insn_list
*listp
, const rtx_insn
*node
)
2466 for (x
= listp
; x
; x
= XEXP (x
, 1))
2467 if (node
== XEXP (x
, 0))
2473 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2474 remove that entry from the list if it is found.
2476 A simple equality test is used to determine if NODE matches. */
2479 remove_node_from_expr_list (const_rtx node
, rtx_expr_list
**listp
)
2481 rtx_expr_list
*temp
= *listp
;
2482 rtx_expr_list
*prev
= NULL
;
2486 if (node
== temp
->element ())
2488 /* Splice the node out of the list. */
2490 XEXP (prev
, 1) = temp
->next ();
2492 *listp
= temp
->next ();
2498 temp
= temp
->next ();
2502 /* Search LISTP (an INSN_LIST) for an entry whose first operand is NODE and
2503 remove that entry from the list if it is found.
2505 A simple equality test is used to determine if NODE matches. */
2508 remove_node_from_insn_list (const rtx_insn
*node
, rtx_insn_list
**listp
)
2510 rtx_insn_list
*temp
= *listp
;
2511 rtx_insn_list
*prev
= NULL
;
2515 if (node
== temp
->insn ())
2517 /* Splice the node out of the list. */
2519 XEXP (prev
, 1) = temp
->next ();
2521 *listp
= temp
->next ();
2527 temp
= temp
->next ();
2531 /* Nonzero if X contains any volatile instructions. These are instructions
2532 which may cause unpredictable machine state instructions, and thus no
2533 instructions or register uses should be moved or combined across them.
2534 This includes only volatile asms and UNSPEC_VOLATILE instructions. */
2537 volatile_insn_p (const_rtx x
)
2539 const RTX_CODE code
= GET_CODE (x
);
2557 case UNSPEC_VOLATILE
:
2562 if (MEM_VOLATILE_P (x
))
2569 /* Recursively scan the operands of this expression. */
2572 const char *const fmt
= GET_RTX_FORMAT (code
);
2575 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2579 if (volatile_insn_p (XEXP (x
, i
)))
2582 else if (fmt
[i
] == 'E')
2585 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2586 if (volatile_insn_p (XVECEXP (x
, i
, j
)))
2594 /* Nonzero if X contains any volatile memory references
2595 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2598 volatile_refs_p (const_rtx x
)
2600 const RTX_CODE code
= GET_CODE (x
);
2616 case UNSPEC_VOLATILE
:
2622 if (MEM_VOLATILE_P (x
))
2629 /* Recursively scan the operands of this expression. */
2632 const char *const fmt
= GET_RTX_FORMAT (code
);
2635 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2639 if (volatile_refs_p (XEXP (x
, i
)))
2642 else if (fmt
[i
] == 'E')
2645 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2646 if (volatile_refs_p (XVECEXP (x
, i
, j
)))
2654 /* Similar to above, except that it also rejects register pre- and post-
2658 side_effects_p (const_rtx x
)
2660 const RTX_CODE code
= GET_CODE (x
);
2677 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2678 when some combination can't be done. If we see one, don't think
2679 that we can simplify the expression. */
2680 return (GET_MODE (x
) != VOIDmode
);
2689 case UNSPEC_VOLATILE
:
2695 if (MEM_VOLATILE_P (x
))
2702 /* Recursively scan the operands of this expression. */
2705 const char *fmt
= GET_RTX_FORMAT (code
);
2708 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2712 if (side_effects_p (XEXP (x
, i
)))
2715 else if (fmt
[i
] == 'E')
2718 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2719 if (side_effects_p (XVECEXP (x
, i
, j
)))
2727 /* Return nonzero if evaluating rtx X might cause a trap.
2728 FLAGS controls how to consider MEMs. A nonzero means the context
2729 of the access may have changed from the original, such that the
2730 address may have become invalid. */
2733 may_trap_p_1 (const_rtx x
, unsigned flags
)
2739 /* We make no distinction currently, but this function is part of
2740 the internal target-hooks ABI so we keep the parameter as
2741 "unsigned flags". */
2742 bool code_changed
= flags
!= 0;
2746 code
= GET_CODE (x
);
2749 /* Handle these cases quickly. */
2761 return targetm
.unspec_may_trap_p (x
, flags
);
2763 case UNSPEC_VOLATILE
:
2769 return MEM_VOLATILE_P (x
);
2771 /* Memory ref can trap unless it's a static var or a stack slot. */
2773 /* Recognize specific pattern of stack checking probes. */
2774 if (flag_stack_check
2775 && MEM_VOLATILE_P (x
)
2776 && XEXP (x
, 0) == stack_pointer_rtx
)
2778 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2779 reference; moving it out of context such as when moving code
2780 when optimizing, might cause its address to become invalid. */
2782 || !MEM_NOTRAP_P (x
))
2784 HOST_WIDE_INT size
= MEM_SIZE_KNOWN_P (x
) ? MEM_SIZE (x
) : 0;
2785 return rtx_addr_can_trap_p_1 (XEXP (x
, 0), 0, size
,
2786 GET_MODE (x
), code_changed
);
2791 /* Division by a non-constant might trap. */
2796 if (HONOR_SNANS (x
))
2798 if (SCALAR_FLOAT_MODE_P (GET_MODE (x
)))
2799 return flag_trapping_math
;
2800 if (!CONSTANT_P (XEXP (x
, 1)) || (XEXP (x
, 1) == const0_rtx
))
2805 /* An EXPR_LIST is used to represent a function call. This
2806 certainly may trap. */
2815 /* Some floating point comparisons may trap. */
2816 if (!flag_trapping_math
)
2818 /* ??? There is no machine independent way to check for tests that trap
2819 when COMPARE is used, though many targets do make this distinction.
2820 For instance, sparc uses CCFPE for compares which generate exceptions
2821 and CCFP for compares which do not generate exceptions. */
2824 /* But often the compare has some CC mode, so check operand
2826 if (HONOR_NANS (XEXP (x
, 0))
2827 || HONOR_NANS (XEXP (x
, 1)))
2833 if (HONOR_SNANS (x
))
2835 /* Often comparison is CC mode, so check operand modes. */
2836 if (HONOR_SNANS (XEXP (x
, 0))
2837 || HONOR_SNANS (XEXP (x
, 1)))
2842 /* Conversion of floating point might trap. */
2843 if (flag_trapping_math
&& HONOR_NANS (XEXP (x
, 0)))
2850 /* These operations don't trap even with floating point. */
2854 /* Any floating arithmetic may trap. */
2855 if (SCALAR_FLOAT_MODE_P (GET_MODE (x
)) && flag_trapping_math
)
2859 fmt
= GET_RTX_FORMAT (code
);
2860 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2864 if (may_trap_p_1 (XEXP (x
, i
), flags
))
2867 else if (fmt
[i
] == 'E')
2870 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2871 if (may_trap_p_1 (XVECEXP (x
, i
, j
), flags
))
2878 /* Return nonzero if evaluating rtx X might cause a trap. */
2881 may_trap_p (const_rtx x
)
2883 return may_trap_p_1 (x
, 0);
2886 /* Same as above, but additionally return nonzero if evaluating rtx X might
2887 cause a fault. We define a fault for the purpose of this function as a
2888 erroneous execution condition that cannot be encountered during the normal
2889 execution of a valid program; the typical example is an unaligned memory
2890 access on a strict alignment machine. The compiler guarantees that it
2891 doesn't generate code that will fault from a valid program, but this
2892 guarantee doesn't mean anything for individual instructions. Consider
2893 the following example:
2895 struct S { int d; union { char *cp; int *ip; }; };
2897 int foo(struct S *s)
2905 on a strict alignment machine. In a valid program, foo will never be
2906 invoked on a structure for which d is equal to 1 and the underlying
2907 unique field of the union not aligned on a 4-byte boundary, but the
2908 expression *s->ip might cause a fault if considered individually.
2910 At the RTL level, potentially problematic expressions will almost always
2911 verify may_trap_p; for example, the above dereference can be emitted as
2912 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2913 However, suppose that foo is inlined in a caller that causes s->cp to
2914 point to a local character variable and guarantees that s->d is not set
2915 to 1; foo may have been effectively translated into pseudo-RTL as:
2918 (set (reg:SI) (mem:SI (%fp - 7)))
2920 (set (reg:QI) (mem:QI (%fp - 7)))
2922 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2923 memory reference to a stack slot, but it will certainly cause a fault
2924 on a strict alignment machine. */
2927 may_trap_or_fault_p (const_rtx x
)
2929 return may_trap_p_1 (x
, 1);
2932 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2933 i.e., an inequality. */
2936 inequality_comparisons_p (const_rtx x
)
2940 const enum rtx_code code
= GET_CODE (x
);
2968 len
= GET_RTX_LENGTH (code
);
2969 fmt
= GET_RTX_FORMAT (code
);
2971 for (i
= 0; i
< len
; i
++)
2975 if (inequality_comparisons_p (XEXP (x
, i
)))
2978 else if (fmt
[i
] == 'E')
2981 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
2982 if (inequality_comparisons_p (XVECEXP (x
, i
, j
)))
2990 /* Replace any occurrence of FROM in X with TO. The function does
2991 not enter into CONST_DOUBLE for the replace.
2993 Note that copying is not done so X must not be shared unless all copies
2996 ALL_REGS is true if we want to replace all REGs equal to FROM, not just
2997 those pointer-equal ones. */
3000 replace_rtx (rtx x
, rtx from
, rtx to
, bool all_regs
)
3008 /* Allow this function to make replacements in EXPR_LISTs. */
3015 && REGNO (x
) == REGNO (from
))
3017 gcc_assert (GET_MODE (x
) == GET_MODE (from
));
3020 else if (GET_CODE (x
) == SUBREG
)
3022 rtx new_rtx
= replace_rtx (SUBREG_REG (x
), from
, to
, all_regs
);
3024 if (CONST_INT_P (new_rtx
))
3026 x
= simplify_subreg (GET_MODE (x
), new_rtx
,
3027 GET_MODE (SUBREG_REG (x
)),
3032 SUBREG_REG (x
) = new_rtx
;
3036 else if (GET_CODE (x
) == ZERO_EXTEND
)
3038 rtx new_rtx
= replace_rtx (XEXP (x
, 0), from
, to
, all_regs
);
3040 if (CONST_INT_P (new_rtx
))
3042 x
= simplify_unary_operation (ZERO_EXTEND
, GET_MODE (x
),
3043 new_rtx
, GET_MODE (XEXP (x
, 0)));
3047 XEXP (x
, 0) = new_rtx
;
3052 fmt
= GET_RTX_FORMAT (GET_CODE (x
));
3053 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0; i
--)
3056 XEXP (x
, i
) = replace_rtx (XEXP (x
, i
), from
, to
, all_regs
);
3057 else if (fmt
[i
] == 'E')
3058 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3059 XVECEXP (x
, i
, j
) = replace_rtx (XVECEXP (x
, i
, j
),
3060 from
, to
, all_regs
);
3066 /* Replace occurrences of the OLD_LABEL in *LOC with NEW_LABEL. Also track
3067 the change in LABEL_NUSES if UPDATE_LABEL_NUSES. */
3070 replace_label (rtx
*loc
, rtx old_label
, rtx new_label
, bool update_label_nuses
)
3072 /* Handle jump tables specially, since ADDR_{DIFF_,}VECs can be long. */
3074 if (JUMP_TABLE_DATA_P (x
))
3077 rtvec vec
= XVEC (x
, GET_CODE (x
) == ADDR_DIFF_VEC
);
3078 int len
= GET_NUM_ELEM (vec
);
3079 for (int i
= 0; i
< len
; ++i
)
3081 rtx ref
= RTVEC_ELT (vec
, i
);
3082 if (XEXP (ref
, 0) == old_label
)
3084 XEXP (ref
, 0) = new_label
;
3085 if (update_label_nuses
)
3087 ++LABEL_NUSES (new_label
);
3088 --LABEL_NUSES (old_label
);
3095 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
3096 field. This is not handled by the iterator because it doesn't
3097 handle unprinted ('0') fields. */
3098 if (JUMP_P (x
) && JUMP_LABEL (x
) == old_label
)
3099 JUMP_LABEL (x
) = new_label
;
3101 subrtx_ptr_iterator::array_type array
;
3102 FOR_EACH_SUBRTX_PTR (iter
, array
, loc
, ALL
)
3107 if (GET_CODE (x
) == SYMBOL_REF
3108 && CONSTANT_POOL_ADDRESS_P (x
))
3110 rtx c
= get_pool_constant (x
);
3111 if (rtx_referenced_p (old_label
, c
))
3113 /* Create a copy of constant C; replace the label inside
3114 but do not update LABEL_NUSES because uses in constant pool
3116 rtx new_c
= copy_rtx (c
);
3117 replace_label (&new_c
, old_label
, new_label
, false);
3119 /* Add the new constant NEW_C to constant pool and replace
3120 the old reference to constant by new reference. */
3121 rtx new_mem
= force_const_mem (get_pool_mode (x
), new_c
);
3122 *loc
= replace_rtx (x
, x
, XEXP (new_mem
, 0));
3126 if ((GET_CODE (x
) == LABEL_REF
3127 || GET_CODE (x
) == INSN_LIST
)
3128 && XEXP (x
, 0) == old_label
)
3130 XEXP (x
, 0) = new_label
;
3131 if (update_label_nuses
)
3133 ++LABEL_NUSES (new_label
);
3134 --LABEL_NUSES (old_label
);
3142 replace_label_in_insn (rtx_insn
*insn
, rtx_insn
*old_label
,
3143 rtx_insn
*new_label
, bool update_label_nuses
)
3145 rtx insn_as_rtx
= insn
;
3146 replace_label (&insn_as_rtx
, old_label
, new_label
, update_label_nuses
);
3147 gcc_checking_assert (insn_as_rtx
== insn
);
3150 /* Return true if X is referenced in BODY. */
3153 rtx_referenced_p (const_rtx x
, const_rtx body
)
3155 subrtx_iterator::array_type array
;
3156 FOR_EACH_SUBRTX (iter
, array
, body
, ALL
)
3157 if (const_rtx y
= *iter
)
3159 /* Check if a label_ref Y refers to label X. */
3160 if (GET_CODE (y
) == LABEL_REF
3162 && label_ref_label (y
) == x
)
3165 if (rtx_equal_p (x
, y
))
3168 /* If Y is a reference to pool constant traverse the constant. */
3169 if (GET_CODE (y
) == SYMBOL_REF
3170 && CONSTANT_POOL_ADDRESS_P (y
))
3171 iter
.substitute (get_pool_constant (y
));
3176 /* If INSN is a tablejump return true and store the label (before jump table) to
3177 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
3180 tablejump_p (const rtx_insn
*insn
, rtx_insn
**labelp
,
3181 rtx_jump_table_data
**tablep
)
3186 rtx target
= JUMP_LABEL (insn
);
3187 if (target
== NULL_RTX
|| ANY_RETURN_P (target
))
3190 rtx_insn
*label
= as_a
<rtx_insn
*> (target
);
3191 rtx_insn
*table
= next_insn (label
);
3192 if (table
== NULL_RTX
|| !JUMP_TABLE_DATA_P (table
))
3198 *tablep
= as_a
<rtx_jump_table_data
*> (table
);
3202 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
3203 constant that is not in the constant pool and not in the condition
3204 of an IF_THEN_ELSE. */
3207 computed_jump_p_1 (const_rtx x
)
3209 const enum rtx_code code
= GET_CODE (x
);
3226 return ! (GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
3227 && CONSTANT_POOL_ADDRESS_P (XEXP (x
, 0)));
3230 return (computed_jump_p_1 (XEXP (x
, 1))
3231 || computed_jump_p_1 (XEXP (x
, 2)));
3237 fmt
= GET_RTX_FORMAT (code
);
3238 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3241 && computed_jump_p_1 (XEXP (x
, i
)))
3244 else if (fmt
[i
] == 'E')
3245 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
3246 if (computed_jump_p_1 (XVECEXP (x
, i
, j
)))
3253 /* Return nonzero if INSN is an indirect jump (aka computed jump).
3255 Tablejumps and casesi insns are not considered indirect jumps;
3256 we can recognize them by a (use (label_ref)). */
3259 computed_jump_p (const rtx_insn
*insn
)
3264 rtx pat
= PATTERN (insn
);
3266 /* If we have a JUMP_LABEL set, we're not a computed jump. */
3267 if (JUMP_LABEL (insn
) != NULL
)
3270 if (GET_CODE (pat
) == PARALLEL
)
3272 int len
= XVECLEN (pat
, 0);
3273 int has_use_labelref
= 0;
3275 for (i
= len
- 1; i
>= 0; i
--)
3276 if (GET_CODE (XVECEXP (pat
, 0, i
)) == USE
3277 && (GET_CODE (XEXP (XVECEXP (pat
, 0, i
), 0))
3280 has_use_labelref
= 1;
3284 if (! has_use_labelref
)
3285 for (i
= len
- 1; i
>= 0; i
--)
3286 if (GET_CODE (XVECEXP (pat
, 0, i
)) == SET
3287 && SET_DEST (XVECEXP (pat
, 0, i
)) == pc_rtx
3288 && computed_jump_p_1 (SET_SRC (XVECEXP (pat
, 0, i
))))
3291 else if (GET_CODE (pat
) == SET
3292 && SET_DEST (pat
) == pc_rtx
3293 && computed_jump_p_1 (SET_SRC (pat
)))
3301 /* MEM has a PRE/POST-INC/DEC/MODIFY address X. Extract the operands of
3302 the equivalent add insn and pass the result to FN, using DATA as the
3306 for_each_inc_dec_find_inc_dec (rtx mem
, for_each_inc_dec_fn fn
, void *data
)
3308 rtx x
= XEXP (mem
, 0);
3309 switch (GET_CODE (x
))
3314 int size
= GET_MODE_SIZE (GET_MODE (mem
));
3315 rtx r1
= XEXP (x
, 0);
3316 rtx c
= gen_int_mode (size
, GET_MODE (r1
));
3317 return fn (mem
, x
, r1
, r1
, c
, data
);
3323 int size
= GET_MODE_SIZE (GET_MODE (mem
));
3324 rtx r1
= XEXP (x
, 0);
3325 rtx c
= gen_int_mode (-size
, GET_MODE (r1
));
3326 return fn (mem
, x
, r1
, r1
, c
, data
);
3332 rtx r1
= XEXP (x
, 0);
3333 rtx add
= XEXP (x
, 1);
3334 return fn (mem
, x
, r1
, add
, NULL
, data
);
3342 /* Traverse *LOC looking for MEMs that have autoinc addresses.
3343 For each such autoinc operation found, call FN, passing it
3344 the innermost enclosing MEM, the operation itself, the RTX modified
3345 by the operation, two RTXs (the second may be NULL) that, once
3346 added, represent the value to be held by the modified RTX
3347 afterwards, and DATA. FN is to return 0 to continue the
3348 traversal or any other value to have it returned to the caller of
3349 for_each_inc_dec. */
3352 for_each_inc_dec (rtx x
,
3353 for_each_inc_dec_fn fn
,
3356 subrtx_var_iterator::array_type array
;
3357 FOR_EACH_SUBRTX_VAR (iter
, array
, x
, NONCONST
)
3362 && GET_RTX_CLASS (GET_CODE (XEXP (mem
, 0))) == RTX_AUTOINC
)
3364 int res
= for_each_inc_dec_find_inc_dec (mem
, fn
, data
);
3367 iter
.skip_subrtxes ();
3374 /* Searches X for any reference to REGNO, returning the rtx of the
3375 reference found if any. Otherwise, returns NULL_RTX. */
3378 regno_use_in (unsigned int regno
, rtx x
)
3384 if (REG_P (x
) && REGNO (x
) == regno
)
3387 fmt
= GET_RTX_FORMAT (GET_CODE (x
));
3388 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0; i
--)
3392 if ((tem
= regno_use_in (regno
, XEXP (x
, i
))))
3395 else if (fmt
[i
] == 'E')
3396 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3397 if ((tem
= regno_use_in (regno
, XVECEXP (x
, i
, j
))))
3404 /* Return a value indicating whether OP, an operand of a commutative
3405 operation, is preferred as the first or second operand. The more
3406 positive the value, the stronger the preference for being the first
3410 commutative_operand_precedence (rtx op
)
3412 enum rtx_code code
= GET_CODE (op
);
3414 /* Constants always become the second operand. Prefer "nice" constants. */
3415 if (code
== CONST_INT
)
3417 if (code
== CONST_WIDE_INT
)
3419 if (code
== CONST_DOUBLE
)
3421 if (code
== CONST_FIXED
)
3423 op
= avoid_constant_pool_reference (op
);
3424 code
= GET_CODE (op
);
3426 switch (GET_RTX_CLASS (code
))
3429 if (code
== CONST_INT
)
3431 if (code
== CONST_WIDE_INT
)
3433 if (code
== CONST_DOUBLE
)
3435 if (code
== CONST_FIXED
)
3440 /* SUBREGs of objects should come second. */
3441 if (code
== SUBREG
&& OBJECT_P (SUBREG_REG (op
)))
3446 /* Complex expressions should be the first, so decrease priority
3447 of objects. Prefer pointer objects over non pointer objects. */
3448 if ((REG_P (op
) && REG_POINTER (op
))
3449 || (MEM_P (op
) && MEM_POINTER (op
)))
3453 case RTX_COMM_ARITH
:
3454 /* Prefer operands that are themselves commutative to be first.
3455 This helps to make things linear. In particular,
3456 (and (and (reg) (reg)) (not (reg))) is canonical. */
3460 /* If only one operand is a binary expression, it will be the first
3461 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3462 is canonical, although it will usually be further simplified. */
3466 /* Then prefer NEG and NOT. */
3467 if (code
== NEG
|| code
== NOT
)
3476 /* Return 1 iff it is necessary to swap operands of commutative operation
3477 in order to canonicalize expression. */
3480 swap_commutative_operands_p (rtx x
, rtx y
)
3482 return (commutative_operand_precedence (x
)
3483 < commutative_operand_precedence (y
));
3486 /* Return 1 if X is an autoincrement side effect and the register is
3487 not the stack pointer. */
3489 auto_inc_p (const_rtx x
)
3491 switch (GET_CODE (x
))
3499 /* There are no REG_INC notes for SP. */
3500 if (XEXP (x
, 0) != stack_pointer_rtx
)
3508 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3510 loc_mentioned_in_p (rtx
*loc
, const_rtx in
)
3519 code
= GET_CODE (in
);
3520 fmt
= GET_RTX_FORMAT (code
);
3521 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3525 if (loc
== &XEXP (in
, i
) || loc_mentioned_in_p (loc
, XEXP (in
, i
)))
3528 else if (fmt
[i
] == 'E')
3529 for (j
= XVECLEN (in
, i
) - 1; j
>= 0; j
--)
3530 if (loc
== &XVECEXP (in
, i
, j
)
3531 || loc_mentioned_in_p (loc
, XVECEXP (in
, i
, j
)))
3537 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3538 and SUBREG_BYTE, return the bit offset where the subreg begins
3539 (counting from the least significant bit of the operand). */
3542 subreg_lsb_1 (machine_mode outer_mode
,
3543 machine_mode inner_mode
,
3544 unsigned int subreg_byte
)
3546 unsigned int bitpos
;
3550 /* A paradoxical subreg begins at bit position 0. */
3551 if (paradoxical_subreg_p (outer_mode
, inner_mode
))
3554 if (WORDS_BIG_ENDIAN
!= BYTES_BIG_ENDIAN
)
3555 /* If the subreg crosses a word boundary ensure that
3556 it also begins and ends on a word boundary. */
3557 gcc_assert (!((subreg_byte
% UNITS_PER_WORD
3558 + GET_MODE_SIZE (outer_mode
)) > UNITS_PER_WORD
3559 && (subreg_byte
% UNITS_PER_WORD
3560 || GET_MODE_SIZE (outer_mode
) % UNITS_PER_WORD
)));
3562 if (WORDS_BIG_ENDIAN
)
3563 word
= (GET_MODE_SIZE (inner_mode
)
3564 - (subreg_byte
+ GET_MODE_SIZE (outer_mode
))) / UNITS_PER_WORD
;
3566 word
= subreg_byte
/ UNITS_PER_WORD
;
3567 bitpos
= word
* BITS_PER_WORD
;
3569 if (BYTES_BIG_ENDIAN
)
3570 byte
= (GET_MODE_SIZE (inner_mode
)
3571 - (subreg_byte
+ GET_MODE_SIZE (outer_mode
))) % UNITS_PER_WORD
;
3573 byte
= subreg_byte
% UNITS_PER_WORD
;
3574 bitpos
+= byte
* BITS_PER_UNIT
;
3579 /* Given a subreg X, return the bit offset where the subreg begins
3580 (counting from the least significant bit of the reg). */
3583 subreg_lsb (const_rtx x
)
3585 return subreg_lsb_1 (GET_MODE (x
), GET_MODE (SUBREG_REG (x
)),
3589 /* Return the subreg byte offset for a subreg whose outer value has
3590 OUTER_BYTES bytes, whose inner value has INNER_BYTES bytes, and where
3591 there are LSB_SHIFT *bits* between the lsb of the outer value and the
3592 lsb of the inner value. This is the inverse of the calculation
3593 performed by subreg_lsb_1 (which converts byte offsets to bit shifts). */
3596 subreg_size_offset_from_lsb (unsigned int outer_bytes
,
3597 unsigned int inner_bytes
,
3598 unsigned int lsb_shift
)
3600 /* A paradoxical subreg begins at bit position 0. */
3601 if (outer_bytes
> inner_bytes
)
3603 gcc_checking_assert (lsb_shift
== 0);
3607 gcc_assert (lsb_shift
% BITS_PER_UNIT
== 0);
3608 unsigned int lower_bytes
= lsb_shift
/ BITS_PER_UNIT
;
3609 unsigned int upper_bytes
= inner_bytes
- (lower_bytes
+ outer_bytes
);
3610 if (WORDS_BIG_ENDIAN
&& BYTES_BIG_ENDIAN
)
3612 else if (!WORDS_BIG_ENDIAN
&& !BYTES_BIG_ENDIAN
)
3616 unsigned int lower_word_part
= lower_bytes
& -UNITS_PER_WORD
;
3617 unsigned int upper_word_part
= upper_bytes
& -UNITS_PER_WORD
;
3618 if (WORDS_BIG_ENDIAN
)
3619 return upper_word_part
+ (lower_bytes
- lower_word_part
);
3621 return lower_word_part
+ (upper_bytes
- upper_word_part
);
3625 /* Fill in information about a subreg of a hard register.
3626 xregno - A regno of an inner hard subreg_reg (or what will become one).
3627 xmode - The mode of xregno.
3628 offset - The byte offset.
3629 ymode - The mode of a top level SUBREG (or what may become one).
3630 info - Pointer to structure to fill in.
3632 Rather than considering one particular inner register (and thus one
3633 particular "outer" register) in isolation, this function really uses
3634 XREGNO as a model for a sequence of isomorphic hard registers. Thus the
3635 function does not check whether adding INFO->offset to XREGNO gives
3636 a valid hard register; even if INFO->offset + XREGNO is out of range,
3637 there might be another register of the same type that is in range.
3638 Likewise it doesn't check whether targetm.hard_regno_mode_ok accepts
3639 the new register, since that can depend on things like whether the final
3640 register number is even or odd. Callers that want to check whether
3641 this particular subreg can be replaced by a simple (reg ...) should
3642 use simplify_subreg_regno. */
3645 subreg_get_info (unsigned int xregno
, machine_mode xmode
,
3646 unsigned int offset
, machine_mode ymode
,
3647 struct subreg_info
*info
)
3649 unsigned int nregs_xmode
, nregs_ymode
;
3651 gcc_assert (xregno
< FIRST_PSEUDO_REGISTER
);
3653 unsigned int xsize
= GET_MODE_SIZE (xmode
);
3654 unsigned int ysize
= GET_MODE_SIZE (ymode
);
3655 bool rknown
= false;
3657 /* If the register representation of a non-scalar mode has holes in it,
3658 we expect the scalar units to be concatenated together, with the holes
3659 distributed evenly among the scalar units. Each scalar unit must occupy
3660 at least one register. */
3661 if (HARD_REGNO_NREGS_HAS_PADDING (xregno
, xmode
))
3663 nregs_xmode
= HARD_REGNO_NREGS_WITH_PADDING (xregno
, xmode
);
3664 unsigned int nunits
= GET_MODE_NUNITS (xmode
);
3665 scalar_mode xmode_unit
= GET_MODE_INNER (xmode
);
3666 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno
, xmode_unit
));
3667 gcc_assert (nregs_xmode
3669 * HARD_REGNO_NREGS_WITH_PADDING (xregno
, xmode_unit
)));
3670 gcc_assert (hard_regno_nregs (xregno
, xmode
)
3671 == hard_regno_nregs (xregno
, xmode_unit
) * nunits
);
3673 /* You can only ask for a SUBREG of a value with holes in the middle
3674 if you don't cross the holes. (Such a SUBREG should be done by
3675 picking a different register class, or doing it in memory if
3676 necessary.) An example of a value with holes is XCmode on 32-bit
3677 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3678 3 for each part, but in memory it's two 128-bit parts.
3679 Padding is assumed to be at the end (not necessarily the 'high part')
3681 if ((offset
/ GET_MODE_SIZE (xmode_unit
) + 1 < nunits
)
3682 && (offset
/ GET_MODE_SIZE (xmode_unit
)
3683 != ((offset
+ ysize
- 1) / GET_MODE_SIZE (xmode_unit
))))
3685 info
->representable_p
= false;
3690 nregs_xmode
= hard_regno_nregs (xregno
, xmode
);
3692 nregs_ymode
= hard_regno_nregs (xregno
, ymode
);
3694 /* Paradoxical subregs are otherwise valid. */
3695 if (!rknown
&& offset
== 0 && ysize
> xsize
)
3697 info
->representable_p
= true;
3698 /* If this is a big endian paradoxical subreg, which uses more
3699 actual hard registers than the original register, we must
3700 return a negative offset so that we find the proper highpart
3703 We assume that the ordering of registers within a multi-register
3704 value has a consistent endianness: if bytes and register words
3705 have different endianness, the hard registers that make up a
3706 multi-register value must be at least word-sized. */
3707 if (REG_WORDS_BIG_ENDIAN
)
3708 info
->offset
= (int) nregs_xmode
- (int) nregs_ymode
;
3711 info
->nregs
= nregs_ymode
;
3715 /* If registers store different numbers of bits in the different
3716 modes, we cannot generally form this subreg. */
3717 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno
, xmode
)
3718 && !HARD_REGNO_NREGS_HAS_PADDING (xregno
, ymode
)
3719 && (xsize
% nregs_xmode
) == 0
3720 && (ysize
% nregs_ymode
) == 0)
3722 int regsize_xmode
= xsize
/ nregs_xmode
;
3723 int regsize_ymode
= ysize
/ nregs_ymode
;
3725 && ((nregs_ymode
> 1 && regsize_xmode
> regsize_ymode
)
3726 || (nregs_xmode
> 1 && regsize_ymode
> regsize_xmode
)))
3728 info
->representable_p
= false;
3729 info
->nregs
= CEIL (ysize
, regsize_xmode
);
3730 info
->offset
= offset
/ regsize_xmode
;
3733 /* It's not valid to extract a subreg of mode YMODE at OFFSET that
3734 would go outside of XMODE. */
3735 if (!rknown
&& ysize
+ offset
> xsize
)
3737 info
->representable_p
= false;
3738 info
->nregs
= nregs_ymode
;
3739 info
->offset
= offset
/ regsize_xmode
;
3742 /* Quick exit for the simple and common case of extracting whole
3743 subregisters from a multiregister value. */
3744 /* ??? It would be better to integrate this into the code below,
3745 if we can generalize the concept enough and figure out how
3746 odd-sized modes can coexist with the other weird cases we support. */
3748 && WORDS_BIG_ENDIAN
== REG_WORDS_BIG_ENDIAN
3749 && regsize_xmode
== regsize_ymode
3750 && (offset
% regsize_ymode
) == 0)
3752 info
->representable_p
= true;
3753 info
->nregs
= nregs_ymode
;
3754 info
->offset
= offset
/ regsize_ymode
;
3755 gcc_assert (info
->offset
+ info
->nregs
<= (int) nregs_xmode
);
3760 /* Lowpart subregs are otherwise valid. */
3761 if (!rknown
&& offset
== subreg_lowpart_offset (ymode
, xmode
))
3763 info
->representable_p
= true;
3766 if (offset
== 0 || nregs_xmode
== nregs_ymode
)
3769 info
->nregs
= nregs_ymode
;
3774 /* Set NUM_BLOCKS to the number of independently-representable YMODE
3775 values there are in (reg:XMODE XREGNO). We can view the register
3776 as consisting of this number of independent "blocks", where each
3777 block occupies NREGS_YMODE registers and contains exactly one
3778 representable YMODE value. */
3779 gcc_assert ((nregs_xmode
% nregs_ymode
) == 0);
3780 unsigned int num_blocks
= nregs_xmode
/ nregs_ymode
;
3782 /* Calculate the number of bytes in each block. This must always
3783 be exact, otherwise we don't know how to verify the constraint.
3784 These conditions may be relaxed but subreg_regno_offset would
3785 need to be redesigned. */
3786 gcc_assert ((xsize
% num_blocks
) == 0);
3787 unsigned int bytes_per_block
= xsize
/ num_blocks
;
3789 /* Get the number of the first block that contains the subreg and the byte
3790 offset of the subreg from the start of that block. */
3791 unsigned int block_number
= offset
/ bytes_per_block
;
3792 unsigned int subblock_offset
= offset
% bytes_per_block
;
3796 /* Only the lowpart of each block is representable. */
3797 info
->representable_p
3799 == subreg_size_lowpart_offset (ysize
, bytes_per_block
));
3803 /* We assume that the ordering of registers within a multi-register
3804 value has a consistent endianness: if bytes and register words
3805 have different endianness, the hard registers that make up a
3806 multi-register value must be at least word-sized. */
3807 if (WORDS_BIG_ENDIAN
!= REG_WORDS_BIG_ENDIAN
)
3808 /* The block number we calculated above followed memory endianness.
3809 Convert it to register endianness by counting back from the end.
3810 (Note that, because of the assumption above, each block must be
3811 at least word-sized.) */
3812 info
->offset
= (num_blocks
- block_number
- 1) * nregs_ymode
;
3814 info
->offset
= block_number
* nregs_ymode
;
3815 info
->nregs
= nregs_ymode
;
3818 /* This function returns the regno offset of a subreg expression.
3819 xregno - A regno of an inner hard subreg_reg (or what will become one).
3820 xmode - The mode of xregno.
3821 offset - The byte offset.
3822 ymode - The mode of a top level SUBREG (or what may become one).
3823 RETURN - The regno offset which would be used. */
3825 subreg_regno_offset (unsigned int xregno
, machine_mode xmode
,
3826 unsigned int offset
, machine_mode ymode
)
3828 struct subreg_info info
;
3829 subreg_get_info (xregno
, xmode
, offset
, ymode
, &info
);
3833 /* This function returns true when the offset is representable via
3834 subreg_offset in the given regno.
3835 xregno - A regno of an inner hard subreg_reg (or what will become one).
3836 xmode - The mode of xregno.
3837 offset - The byte offset.
3838 ymode - The mode of a top level SUBREG (or what may become one).
3839 RETURN - Whether the offset is representable. */
3841 subreg_offset_representable_p (unsigned int xregno
, machine_mode xmode
,
3842 unsigned int offset
, machine_mode ymode
)
3844 struct subreg_info info
;
3845 subreg_get_info (xregno
, xmode
, offset
, ymode
, &info
);
3846 return info
.representable_p
;
3849 /* Return the number of a YMODE register to which
3851 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3853 can be simplified. Return -1 if the subreg can't be simplified.
3855 XREGNO is a hard register number. */
3858 simplify_subreg_regno (unsigned int xregno
, machine_mode xmode
,
3859 unsigned int offset
, machine_mode ymode
)
3861 struct subreg_info info
;
3862 unsigned int yregno
;
3864 #ifdef CANNOT_CHANGE_MODE_CLASS
3865 /* Give the backend a chance to disallow the mode change. */
3866 if (GET_MODE_CLASS (xmode
) != MODE_COMPLEX_INT
3867 && GET_MODE_CLASS (xmode
) != MODE_COMPLEX_FLOAT
3868 && REG_CANNOT_CHANGE_MODE_P (xregno
, xmode
, ymode
)
3869 /* We can use mode change in LRA for some transformations. */
3870 && ! lra_in_progress
)
3874 /* We shouldn't simplify stack-related registers. */
3875 if ((!reload_completed
|| frame_pointer_needed
)
3876 && xregno
== FRAME_POINTER_REGNUM
)
3879 if (FRAME_POINTER_REGNUM
!= ARG_POINTER_REGNUM
3880 && xregno
== ARG_POINTER_REGNUM
)
3883 if (xregno
== STACK_POINTER_REGNUM
3884 /* We should convert hard stack register in LRA if it is
3886 && ! lra_in_progress
)
3889 /* Try to get the register offset. */
3890 subreg_get_info (xregno
, xmode
, offset
, ymode
, &info
);
3891 if (!info
.representable_p
)
3894 /* Make sure that the offsetted register value is in range. */
3895 yregno
= xregno
+ info
.offset
;
3896 if (!HARD_REGISTER_NUM_P (yregno
))
3899 /* See whether (reg:YMODE YREGNO) is valid.
3901 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3902 This is a kludge to work around how complex FP arguments are passed
3903 on IA-64 and should be fixed. See PR target/49226. */
3904 if (!targetm
.hard_regno_mode_ok (yregno
, ymode
)
3905 && targetm
.hard_regno_mode_ok (xregno
, xmode
))
3908 return (int) yregno
;
3911 /* Return the final regno that a subreg expression refers to. */
3913 subreg_regno (const_rtx x
)
3916 rtx subreg
= SUBREG_REG (x
);
3917 int regno
= REGNO (subreg
);
3919 ret
= regno
+ subreg_regno_offset (regno
,
3927 /* Return the number of registers that a subreg expression refers
3930 subreg_nregs (const_rtx x
)
3932 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x
)), x
);
3935 /* Return the number of registers that a subreg REG with REGNO
3936 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3937 changed so that the regno can be passed in. */
3940 subreg_nregs_with_regno (unsigned int regno
, const_rtx x
)
3942 struct subreg_info info
;
3943 rtx subreg
= SUBREG_REG (x
);
3945 subreg_get_info (regno
, GET_MODE (subreg
), SUBREG_BYTE (x
), GET_MODE (x
),
3950 struct parms_set_data
3956 /* Helper function for noticing stores to parameter registers. */
3958 parms_set (rtx x
, const_rtx pat ATTRIBUTE_UNUSED
, void *data
)
3960 struct parms_set_data
*const d
= (struct parms_set_data
*) data
;
3961 if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
3962 && TEST_HARD_REG_BIT (d
->regs
, REGNO (x
)))
3964 CLEAR_HARD_REG_BIT (d
->regs
, REGNO (x
));
3969 /* Look backward for first parameter to be loaded.
3970 Note that loads of all parameters will not necessarily be
3971 found if CSE has eliminated some of them (e.g., an argument
3972 to the outer function is passed down as a parameter).
3973 Do not skip BOUNDARY. */
3975 find_first_parameter_load (rtx_insn
*call_insn
, rtx_insn
*boundary
)
3977 struct parms_set_data parm
;
3979 rtx_insn
*before
, *first_set
;
3981 /* Since different machines initialize their parameter registers
3982 in different orders, assume nothing. Collect the set of all
3983 parameter registers. */
3984 CLEAR_HARD_REG_SET (parm
.regs
);
3986 for (p
= CALL_INSN_FUNCTION_USAGE (call_insn
); p
; p
= XEXP (p
, 1))
3987 if (GET_CODE (XEXP (p
, 0)) == USE
3988 && REG_P (XEXP (XEXP (p
, 0), 0))
3989 && !STATIC_CHAIN_REG_P (XEXP (XEXP (p
, 0), 0)))
3991 gcc_assert (REGNO (XEXP (XEXP (p
, 0), 0)) < FIRST_PSEUDO_REGISTER
);
3993 /* We only care about registers which can hold function
3995 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p
, 0), 0))))
3998 SET_HARD_REG_BIT (parm
.regs
, REGNO (XEXP (XEXP (p
, 0), 0)));
4002 first_set
= call_insn
;
4004 /* Search backward for the first set of a register in this set. */
4005 while (parm
.nregs
&& before
!= boundary
)
4007 before
= PREV_INSN (before
);
4009 /* It is possible that some loads got CSEed from one call to
4010 another. Stop in that case. */
4011 if (CALL_P (before
))
4014 /* Our caller needs either ensure that we will find all sets
4015 (in case code has not been optimized yet), or take care
4016 for possible labels in a way by setting boundary to preceding
4018 if (LABEL_P (before
))
4020 gcc_assert (before
== boundary
);
4024 if (INSN_P (before
))
4026 int nregs_old
= parm
.nregs
;
4027 note_stores (PATTERN (before
), parms_set
, &parm
);
4028 /* If we found something that did not set a parameter reg,
4029 we're done. Do not keep going, as that might result
4030 in hoisting an insn before the setting of a pseudo
4031 that is used by the hoisted insn. */
4032 if (nregs_old
!= parm
.nregs
)
4041 /* Return true if we should avoid inserting code between INSN and preceding
4042 call instruction. */
4045 keep_with_call_p (const rtx_insn
*insn
)
4049 if (INSN_P (insn
) && (set
= single_set (insn
)) != NULL
)
4051 if (REG_P (SET_DEST (set
))
4052 && REGNO (SET_DEST (set
)) < FIRST_PSEUDO_REGISTER
4053 && fixed_regs
[REGNO (SET_DEST (set
))]
4054 && general_operand (SET_SRC (set
), VOIDmode
))
4056 if (REG_P (SET_SRC (set
))
4057 && targetm
.calls
.function_value_regno_p (REGNO (SET_SRC (set
)))
4058 && REG_P (SET_DEST (set
))
4059 && REGNO (SET_DEST (set
)) >= FIRST_PSEUDO_REGISTER
)
4061 /* There may be a stack pop just after the call and before the store
4062 of the return register. Search for the actual store when deciding
4063 if we can break or not. */
4064 if (SET_DEST (set
) == stack_pointer_rtx
)
4066 /* This CONST_CAST is okay because next_nonnote_insn just
4067 returns its argument and we assign it to a const_rtx
4070 = next_nonnote_insn (const_cast<rtx_insn
*> (insn
));
4071 if (i2
&& keep_with_call_p (i2
))
4078 /* Return true if LABEL is a target of JUMP_INSN. This applies only
4079 to non-complex jumps. That is, direct unconditional, conditional,
4080 and tablejumps, but not computed jumps or returns. It also does
4081 not apply to the fallthru case of a conditional jump. */
4084 label_is_jump_target_p (const_rtx label
, const rtx_insn
*jump_insn
)
4086 rtx tmp
= JUMP_LABEL (jump_insn
);
4087 rtx_jump_table_data
*table
;
4092 if (tablejump_p (jump_insn
, NULL
, &table
))
4094 rtvec vec
= table
->get_labels ();
4095 int i
, veclen
= GET_NUM_ELEM (vec
);
4097 for (i
= 0; i
< veclen
; ++i
)
4098 if (XEXP (RTVEC_ELT (vec
, i
), 0) == label
)
4102 if (find_reg_note (jump_insn
, REG_LABEL_TARGET
, label
))
4109 /* Return an estimate of the cost of computing rtx X.
4110 One use is in cse, to decide which expression to keep in the hash table.
4111 Another is in rtl generation, to pick the cheapest way to multiply.
4112 Other uses like the latter are expected in the future.
4114 X appears as operand OPNO in an expression with code OUTER_CODE.
4115 SPEED specifies whether costs optimized for speed or size should
4119 rtx_cost (rtx x
, machine_mode mode
, enum rtx_code outer_code
,
4120 int opno
, bool speed
)
4131 if (GET_MODE (x
) != VOIDmode
)
4132 mode
= GET_MODE (x
);
4134 /* A size N times larger than UNITS_PER_WORD likely needs N times as
4135 many insns, taking N times as long. */
4136 factor
= GET_MODE_SIZE (mode
) / UNITS_PER_WORD
;
4140 /* Compute the default costs of certain things.
4141 Note that targetm.rtx_costs can override the defaults. */
4143 code
= GET_CODE (x
);
4147 /* Multiplication has time-complexity O(N*N), where N is the
4148 number of units (translated from digits) when using
4149 schoolbook long multiplication. */
4150 total
= factor
* factor
* COSTS_N_INSNS (5);
4156 /* Similarly, complexity for schoolbook long division. */
4157 total
= factor
* factor
* COSTS_N_INSNS (7);
4160 /* Used in combine.c as a marker. */
4164 /* A SET doesn't have a mode, so let's look at the SET_DEST to get
4165 the mode for the factor. */
4166 mode
= GET_MODE (SET_DEST (x
));
4167 factor
= GET_MODE_SIZE (mode
) / UNITS_PER_WORD
;
4172 total
= factor
* COSTS_N_INSNS (1);
4182 /* If we can't tie these modes, make this expensive. The larger
4183 the mode, the more expensive it is. */
4184 if (!targetm
.modes_tieable_p (mode
, GET_MODE (SUBREG_REG (x
))))
4185 return COSTS_N_INSNS (2 + factor
);
4189 if (targetm
.modes_tieable_p (mode
, GET_MODE (XEXP (x
, 0))))
4196 if (targetm
.rtx_costs (x
, mode
, outer_code
, opno
, &total
, speed
))
4201 /* Sum the costs of the sub-rtx's, plus cost of this operation,
4202 which is already in total. */
4204 fmt
= GET_RTX_FORMAT (code
);
4205 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
4207 total
+= rtx_cost (XEXP (x
, i
), mode
, code
, i
, speed
);
4208 else if (fmt
[i
] == 'E')
4209 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
4210 total
+= rtx_cost (XVECEXP (x
, i
, j
), mode
, code
, i
, speed
);
4215 /* Fill in the structure C with information about both speed and size rtx
4216 costs for X, which is operand OPNO in an expression with code OUTER. */
4219 get_full_rtx_cost (rtx x
, machine_mode mode
, enum rtx_code outer
, int opno
,
4220 struct full_rtx_costs
*c
)
4222 c
->speed
= rtx_cost (x
, mode
, outer
, opno
, true);
4223 c
->size
= rtx_cost (x
, mode
, outer
, opno
, false);
4227 /* Return cost of address expression X.
4228 Expect that X is properly formed address reference.
4230 SPEED parameter specify whether costs optimized for speed or size should
4234 address_cost (rtx x
, machine_mode mode
, addr_space_t as
, bool speed
)
4236 /* We may be asked for cost of various unusual addresses, such as operands
4237 of push instruction. It is not worthwhile to complicate writing
4238 of the target hook by such cases. */
4240 if (!memory_address_addr_space_p (mode
, x
, as
))
4243 return targetm
.address_cost (x
, mode
, as
, speed
);
4246 /* If the target doesn't override, compute the cost as with arithmetic. */
4249 default_address_cost (rtx x
, machine_mode
, addr_space_t
, bool speed
)
4251 return rtx_cost (x
, Pmode
, MEM
, 0, speed
);
4255 unsigned HOST_WIDE_INT
4256 nonzero_bits (const_rtx x
, machine_mode mode
)
4258 if (mode
== VOIDmode
)
4259 mode
= GET_MODE (x
);
4260 scalar_int_mode int_mode
;
4261 if (!is_a
<scalar_int_mode
> (mode
, &int_mode
))
4262 return GET_MODE_MASK (mode
);
4263 return cached_nonzero_bits (x
, int_mode
, NULL_RTX
, VOIDmode
, 0);
4267 num_sign_bit_copies (const_rtx x
, machine_mode mode
)
4269 if (mode
== VOIDmode
)
4270 mode
= GET_MODE (x
);
4271 scalar_int_mode int_mode
;
4272 if (!is_a
<scalar_int_mode
> (mode
, &int_mode
))
4274 return cached_num_sign_bit_copies (x
, int_mode
, NULL_RTX
, VOIDmode
, 0);
4277 /* Return true if nonzero_bits1 might recurse into both operands
4281 nonzero_bits_binary_arith_p (const_rtx x
)
4283 if (!ARITHMETIC_P (x
))
4285 switch (GET_CODE (x
))
4307 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
4308 It avoids exponential behavior in nonzero_bits1 when X has
4309 identical subexpressions on the first or the second level. */
4311 static unsigned HOST_WIDE_INT
4312 cached_nonzero_bits (const_rtx x
, scalar_int_mode mode
, const_rtx known_x
,
4313 machine_mode known_mode
,
4314 unsigned HOST_WIDE_INT known_ret
)
4316 if (x
== known_x
&& mode
== known_mode
)
4319 /* Try to find identical subexpressions. If found call
4320 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
4321 precomputed value for the subexpression as KNOWN_RET. */
4323 if (nonzero_bits_binary_arith_p (x
))
4325 rtx x0
= XEXP (x
, 0);
4326 rtx x1
= XEXP (x
, 1);
4328 /* Check the first level. */
4330 return nonzero_bits1 (x
, mode
, x0
, mode
,
4331 cached_nonzero_bits (x0
, mode
, known_x
,
4332 known_mode
, known_ret
));
4334 /* Check the second level. */
4335 if (nonzero_bits_binary_arith_p (x0
)
4336 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
4337 return nonzero_bits1 (x
, mode
, x1
, mode
,
4338 cached_nonzero_bits (x1
, mode
, known_x
,
4339 known_mode
, known_ret
));
4341 if (nonzero_bits_binary_arith_p (x1
)
4342 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
4343 return nonzero_bits1 (x
, mode
, x0
, mode
,
4344 cached_nonzero_bits (x0
, mode
, known_x
,
4345 known_mode
, known_ret
));
4348 return nonzero_bits1 (x
, mode
, known_x
, known_mode
, known_ret
);
4351 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
4352 We don't let nonzero_bits recur into num_sign_bit_copies, because that
4353 is less useful. We can't allow both, because that results in exponential
4354 run time recursion. There is a nullstone testcase that triggered
4355 this. This macro avoids accidental uses of num_sign_bit_copies. */
4356 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
4358 /* Given an expression, X, compute which bits in X can be nonzero.
4359 We don't care about bits outside of those defined in MODE.
4361 For most X this is simply GET_MODE_MASK (GET_MODE (X)), but if X is
4362 an arithmetic operation, we can do better. */
4364 static unsigned HOST_WIDE_INT
4365 nonzero_bits1 (const_rtx x
, scalar_int_mode mode
, const_rtx known_x
,
4366 machine_mode known_mode
,
4367 unsigned HOST_WIDE_INT known_ret
)
4369 unsigned HOST_WIDE_INT nonzero
= GET_MODE_MASK (mode
);
4370 unsigned HOST_WIDE_INT inner_nz
;
4372 machine_mode inner_mode
;
4373 scalar_int_mode xmode
;
4375 unsigned int mode_width
= GET_MODE_PRECISION (mode
);
4377 if (CONST_INT_P (x
))
4379 if (SHORT_IMMEDIATES_SIGN_EXTEND
4381 && mode_width
< BITS_PER_WORD
4382 && (UINTVAL (x
) & (HOST_WIDE_INT_1U
<< (mode_width
- 1))) != 0)
4383 return UINTVAL (x
) | (HOST_WIDE_INT_M1U
<< mode_width
);
4388 if (!is_a
<scalar_int_mode
> (GET_MODE (x
), &xmode
))
4390 unsigned int xmode_width
= GET_MODE_PRECISION (xmode
);
4392 /* If X is wider than MODE, use its mode instead. */
4393 if (xmode_width
> mode_width
)
4396 nonzero
= GET_MODE_MASK (mode
);
4397 mode_width
= xmode_width
;
4400 if (mode_width
> HOST_BITS_PER_WIDE_INT
)
4401 /* Our only callers in this case look for single bit values. So
4402 just return the mode mask. Those tests will then be false. */
4405 /* If MODE is wider than X, but both are a single word for both the host
4406 and target machines, we can compute this from which bits of the
4407 object might be nonzero in its own mode, taking into account the fact
4408 that on many CISC machines, accessing an object in a wider mode
4409 causes the high-order bits to become undefined. So they are
4410 not known to be zero. */
4412 if (!WORD_REGISTER_OPERATIONS
4413 && mode_width
> xmode_width
4414 && xmode_width
<= BITS_PER_WORD
4415 && xmode_width
<= HOST_BITS_PER_WIDE_INT
)
4417 nonzero
&= cached_nonzero_bits (x
, xmode
,
4418 known_x
, known_mode
, known_ret
);
4419 nonzero
|= GET_MODE_MASK (mode
) & ~GET_MODE_MASK (xmode
);
4423 /* Please keep nonzero_bits_binary_arith_p above in sync with
4424 the code in the switch below. */
4425 code
= GET_CODE (x
);
4429 #if defined(POINTERS_EXTEND_UNSIGNED)
4430 /* If pointers extend unsigned and this is a pointer in Pmode, say that
4431 all the bits above ptr_mode are known to be zero. */
4432 /* As we do not know which address space the pointer is referring to,
4433 we can do this only if the target does not support different pointer
4434 or address modes depending on the address space. */
4435 if (target_default_pointer_address_modes_p ()
4436 && POINTERS_EXTEND_UNSIGNED
4439 && !targetm
.have_ptr_extend ())
4440 nonzero
&= GET_MODE_MASK (ptr_mode
);
4443 /* Include declared information about alignment of pointers. */
4444 /* ??? We don't properly preserve REG_POINTER changes across
4445 pointer-to-integer casts, so we can't trust it except for
4446 things that we know must be pointers. See execute/960116-1.c. */
4447 if ((x
== stack_pointer_rtx
4448 || x
== frame_pointer_rtx
4449 || x
== arg_pointer_rtx
)
4450 && REGNO_POINTER_ALIGN (REGNO (x
)))
4452 unsigned HOST_WIDE_INT alignment
4453 = REGNO_POINTER_ALIGN (REGNO (x
)) / BITS_PER_UNIT
;
4455 #ifdef PUSH_ROUNDING
4456 /* If PUSH_ROUNDING is defined, it is possible for the
4457 stack to be momentarily aligned only to that amount,
4458 so we pick the least alignment. */
4459 if (x
== stack_pointer_rtx
&& PUSH_ARGS
)
4460 alignment
= MIN ((unsigned HOST_WIDE_INT
) PUSH_ROUNDING (1),
4464 nonzero
&= ~(alignment
- 1);
4468 unsigned HOST_WIDE_INT nonzero_for_hook
= nonzero
;
4469 rtx new_rtx
= rtl_hooks
.reg_nonzero_bits (x
, xmode
, mode
,
4473 nonzero_for_hook
&= cached_nonzero_bits (new_rtx
, mode
, known_x
,
4474 known_mode
, known_ret
);
4476 return nonzero_for_hook
;
4480 /* In many, if not most, RISC machines, reading a byte from memory
4481 zeros the rest of the register. Noticing that fact saves a lot
4482 of extra zero-extends. */
4483 if (load_extend_op (xmode
) == ZERO_EXTEND
)
4484 nonzero
&= GET_MODE_MASK (xmode
);
4488 case UNEQ
: case LTGT
:
4489 case GT
: case GTU
: case UNGT
:
4490 case LT
: case LTU
: case UNLT
:
4491 case GE
: case GEU
: case UNGE
:
4492 case LE
: case LEU
: case UNLE
:
4493 case UNORDERED
: case ORDERED
:
4494 /* If this produces an integer result, we know which bits are set.
4495 Code here used to clear bits outside the mode of X, but that is
4497 /* Mind that MODE is the mode the caller wants to look at this
4498 operation in, and not the actual operation mode. We can wind
4499 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
4500 that describes the results of a vector compare. */
4501 if (GET_MODE_CLASS (xmode
) == MODE_INT
4502 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
4503 nonzero
= STORE_FLAG_VALUE
;
4508 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4509 and num_sign_bit_copies. */
4510 if (num_sign_bit_copies (XEXP (x
, 0), xmode
) == xmode_width
)
4514 if (xmode_width
< mode_width
)
4515 nonzero
|= (GET_MODE_MASK (mode
) & ~GET_MODE_MASK (xmode
));
4520 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4521 and num_sign_bit_copies. */
4522 if (num_sign_bit_copies (XEXP (x
, 0), xmode
) == xmode_width
)
4528 nonzero
&= (cached_nonzero_bits (XEXP (x
, 0), mode
,
4529 known_x
, known_mode
, known_ret
)
4530 & GET_MODE_MASK (mode
));
4534 nonzero
&= cached_nonzero_bits (XEXP (x
, 0), mode
,
4535 known_x
, known_mode
, known_ret
);
4536 if (GET_MODE (XEXP (x
, 0)) != VOIDmode
)
4537 nonzero
&= GET_MODE_MASK (GET_MODE (XEXP (x
, 0)));
4541 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4542 Otherwise, show all the bits in the outer mode but not the inner
4544 inner_nz
= cached_nonzero_bits (XEXP (x
, 0), mode
,
4545 known_x
, known_mode
, known_ret
);
4546 if (GET_MODE (XEXP (x
, 0)) != VOIDmode
)
4548 inner_nz
&= GET_MODE_MASK (GET_MODE (XEXP (x
, 0)));
4549 if (val_signbit_known_set_p (GET_MODE (XEXP (x
, 0)), inner_nz
))
4550 inner_nz
|= (GET_MODE_MASK (mode
)
4551 & ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0))));
4554 nonzero
&= inner_nz
;
4558 nonzero
&= cached_nonzero_bits (XEXP (x
, 0), mode
,
4559 known_x
, known_mode
, known_ret
)
4560 & cached_nonzero_bits (XEXP (x
, 1), mode
,
4561 known_x
, known_mode
, known_ret
);
4565 case UMIN
: case UMAX
: case SMIN
: case SMAX
:
4567 unsigned HOST_WIDE_INT nonzero0
4568 = cached_nonzero_bits (XEXP (x
, 0), mode
,
4569 known_x
, known_mode
, known_ret
);
4571 /* Don't call nonzero_bits for the second time if it cannot change
4573 if ((nonzero
& nonzero0
) != nonzero
)
4575 | cached_nonzero_bits (XEXP (x
, 1), mode
,
4576 known_x
, known_mode
, known_ret
);
4580 case PLUS
: case MINUS
:
4582 case DIV
: case UDIV
:
4583 case MOD
: case UMOD
:
4584 /* We can apply the rules of arithmetic to compute the number of
4585 high- and low-order zero bits of these operations. We start by
4586 computing the width (position of the highest-order nonzero bit)
4587 and the number of low-order zero bits for each value. */
4589 unsigned HOST_WIDE_INT nz0
4590 = cached_nonzero_bits (XEXP (x
, 0), mode
,
4591 known_x
, known_mode
, known_ret
);
4592 unsigned HOST_WIDE_INT nz1
4593 = cached_nonzero_bits (XEXP (x
, 1), mode
,
4594 known_x
, known_mode
, known_ret
);
4595 int sign_index
= xmode_width
- 1;
4596 int width0
= floor_log2 (nz0
) + 1;
4597 int width1
= floor_log2 (nz1
) + 1;
4598 int low0
= ctz_or_zero (nz0
);
4599 int low1
= ctz_or_zero (nz1
);
4600 unsigned HOST_WIDE_INT op0_maybe_minusp
4601 = nz0
& (HOST_WIDE_INT_1U
<< sign_index
);
4602 unsigned HOST_WIDE_INT op1_maybe_minusp
4603 = nz1
& (HOST_WIDE_INT_1U
<< sign_index
);
4604 unsigned int result_width
= mode_width
;
4610 result_width
= MAX (width0
, width1
) + 1;
4611 result_low
= MIN (low0
, low1
);
4614 result_low
= MIN (low0
, low1
);
4617 result_width
= width0
+ width1
;
4618 result_low
= low0
+ low1
;
4623 if (!op0_maybe_minusp
&& !op1_maybe_minusp
)
4624 result_width
= width0
;
4629 result_width
= width0
;
4634 if (!op0_maybe_minusp
&& !op1_maybe_minusp
)
4635 result_width
= MIN (width0
, width1
);
4636 result_low
= MIN (low0
, low1
);
4641 result_width
= MIN (width0
, width1
);
4642 result_low
= MIN (low0
, low1
);
4648 if (result_width
< mode_width
)
4649 nonzero
&= (HOST_WIDE_INT_1U
<< result_width
) - 1;
4652 nonzero
&= ~((HOST_WIDE_INT_1U
<< result_low
) - 1);
4657 if (CONST_INT_P (XEXP (x
, 1))
4658 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
)
4659 nonzero
&= (HOST_WIDE_INT_1U
<< INTVAL (XEXP (x
, 1))) - 1;
4663 /* If this is a SUBREG formed for a promoted variable that has
4664 been zero-extended, we know that at least the high-order bits
4665 are zero, though others might be too. */
4666 if (SUBREG_PROMOTED_VAR_P (x
) && SUBREG_PROMOTED_UNSIGNED_P (x
))
4667 nonzero
= GET_MODE_MASK (xmode
)
4668 & cached_nonzero_bits (SUBREG_REG (x
), xmode
,
4669 known_x
, known_mode
, known_ret
);
4671 /* If the inner mode is a single word for both the host and target
4672 machines, we can compute this from which bits of the inner
4673 object might be nonzero. */
4674 inner_mode
= GET_MODE (SUBREG_REG (x
));
4675 if (GET_MODE_PRECISION (inner_mode
) <= BITS_PER_WORD
4676 && GET_MODE_PRECISION (inner_mode
) <= HOST_BITS_PER_WIDE_INT
)
4678 nonzero
&= cached_nonzero_bits (SUBREG_REG (x
), mode
,
4679 known_x
, known_mode
, known_ret
);
4681 /* On many CISC machines, accessing an object in a wider mode
4682 causes the high-order bits to become undefined. So they are
4683 not known to be zero. */
4685 if ((!WORD_REGISTER_OPERATIONS
4686 /* If this is a typical RISC machine, we only have to worry
4687 about the way loads are extended. */
4688 || ((extend_op
= load_extend_op (inner_mode
)) == SIGN_EXTEND
4689 ? val_signbit_known_set_p (inner_mode
, nonzero
)
4690 : extend_op
!= ZERO_EXTEND
)
4691 || (!MEM_P (SUBREG_REG (x
)) && !REG_P (SUBREG_REG (x
))))
4692 && xmode_width
> GET_MODE_PRECISION (inner_mode
))
4693 nonzero
|= (GET_MODE_MASK (xmode
) & ~GET_MODE_MASK (inner_mode
));
4701 /* The nonzero bits are in two classes: any bits within MODE
4702 that aren't in xmode are always significant. The rest of the
4703 nonzero bits are those that are significant in the operand of
4704 the shift when shifted the appropriate number of bits. This
4705 shows that high-order bits are cleared by the right shift and
4706 low-order bits by left shifts. */
4707 if (CONST_INT_P (XEXP (x
, 1))
4708 && INTVAL (XEXP (x
, 1)) >= 0
4709 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
4710 && INTVAL (XEXP (x
, 1)) < xmode_width
)
4712 int count
= INTVAL (XEXP (x
, 1));
4713 unsigned HOST_WIDE_INT mode_mask
= GET_MODE_MASK (xmode
);
4714 unsigned HOST_WIDE_INT op_nonzero
4715 = cached_nonzero_bits (XEXP (x
, 0), mode
,
4716 known_x
, known_mode
, known_ret
);
4717 unsigned HOST_WIDE_INT inner
= op_nonzero
& mode_mask
;
4718 unsigned HOST_WIDE_INT outer
= 0;
4720 if (mode_width
> xmode_width
)
4721 outer
= (op_nonzero
& nonzero
& ~mode_mask
);
4723 if (code
== LSHIFTRT
)
4725 else if (code
== ASHIFTRT
)
4729 /* If the sign bit may have been nonzero before the shift, we
4730 need to mark all the places it could have been copied to
4731 by the shift as possibly nonzero. */
4732 if (inner
& (HOST_WIDE_INT_1U
<< (xmode_width
- 1 - count
)))
4733 inner
|= (((HOST_WIDE_INT_1U
<< count
) - 1)
4734 << (xmode_width
- count
));
4736 else if (code
== ASHIFT
)
4739 inner
= ((inner
<< (count
% xmode_width
)
4740 | (inner
>> (xmode_width
- (count
% xmode_width
))))
4743 nonzero
&= (outer
| inner
);
4749 /* This is at most the number of bits in the mode. */
4750 nonzero
= ((unsigned HOST_WIDE_INT
) 2 << (floor_log2 (mode_width
))) - 1;
4754 /* If CLZ has a known value at zero, then the nonzero bits are
4755 that value, plus the number of bits in the mode minus one. */
4756 if (CLZ_DEFINED_VALUE_AT_ZERO (mode
, nonzero
))
4758 |= (HOST_WIDE_INT_1U
<< (floor_log2 (mode_width
))) - 1;
4764 /* If CTZ has a known value at zero, then the nonzero bits are
4765 that value, plus the number of bits in the mode minus one. */
4766 if (CTZ_DEFINED_VALUE_AT_ZERO (mode
, nonzero
))
4768 |= (HOST_WIDE_INT_1U
<< (floor_log2 (mode_width
))) - 1;
4774 /* This is at most the number of bits in the mode minus 1. */
4775 nonzero
= (HOST_WIDE_INT_1U
<< (floor_log2 (mode_width
))) - 1;
4784 unsigned HOST_WIDE_INT nonzero_true
4785 = cached_nonzero_bits (XEXP (x
, 1), mode
,
4786 known_x
, known_mode
, known_ret
);
4788 /* Don't call nonzero_bits for the second time if it cannot change
4790 if ((nonzero
& nonzero_true
) != nonzero
)
4791 nonzero
&= nonzero_true
4792 | cached_nonzero_bits (XEXP (x
, 2), mode
,
4793 known_x
, known_mode
, known_ret
);
4804 /* See the macro definition above. */
4805 #undef cached_num_sign_bit_copies
4808 /* Return true if num_sign_bit_copies1 might recurse into both operands
4812 num_sign_bit_copies_binary_arith_p (const_rtx x
)
4814 if (!ARITHMETIC_P (x
))
4816 switch (GET_CODE (x
))
4834 /* The function cached_num_sign_bit_copies is a wrapper around
4835 num_sign_bit_copies1. It avoids exponential behavior in
4836 num_sign_bit_copies1 when X has identical subexpressions on the
4837 first or the second level. */
4840 cached_num_sign_bit_copies (const_rtx x
, scalar_int_mode mode
,
4841 const_rtx known_x
, machine_mode known_mode
,
4842 unsigned int known_ret
)
4844 if (x
== known_x
&& mode
== known_mode
)
4847 /* Try to find identical subexpressions. If found call
4848 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4849 the precomputed value for the subexpression as KNOWN_RET. */
4851 if (num_sign_bit_copies_binary_arith_p (x
))
4853 rtx x0
= XEXP (x
, 0);
4854 rtx x1
= XEXP (x
, 1);
4856 /* Check the first level. */
4859 num_sign_bit_copies1 (x
, mode
, x0
, mode
,
4860 cached_num_sign_bit_copies (x0
, mode
, known_x
,
4864 /* Check the second level. */
4865 if (num_sign_bit_copies_binary_arith_p (x0
)
4866 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
4868 num_sign_bit_copies1 (x
, mode
, x1
, mode
,
4869 cached_num_sign_bit_copies (x1
, mode
, known_x
,
4873 if (num_sign_bit_copies_binary_arith_p (x1
)
4874 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
4876 num_sign_bit_copies1 (x
, mode
, x0
, mode
,
4877 cached_num_sign_bit_copies (x0
, mode
, known_x
,
4882 return num_sign_bit_copies1 (x
, mode
, known_x
, known_mode
, known_ret
);
4885 /* Return the number of bits at the high-order end of X that are known to
4886 be equal to the sign bit. X will be used in mode MODE. The returned
4887 value will always be between 1 and the number of bits in MODE. */
4890 num_sign_bit_copies1 (const_rtx x
, scalar_int_mode mode
, const_rtx known_x
,
4891 machine_mode known_mode
,
4892 unsigned int known_ret
)
4894 enum rtx_code code
= GET_CODE (x
);
4895 unsigned int bitwidth
= GET_MODE_PRECISION (mode
);
4896 int num0
, num1
, result
;
4897 unsigned HOST_WIDE_INT nonzero
;
4899 if (CONST_INT_P (x
))
4901 /* If the constant is negative, take its 1's complement and remask.
4902 Then see how many zero bits we have. */
4903 nonzero
= UINTVAL (x
) & GET_MODE_MASK (mode
);
4904 if (bitwidth
<= HOST_BITS_PER_WIDE_INT
4905 && (nonzero
& (HOST_WIDE_INT_1U
<< (bitwidth
- 1))) != 0)
4906 nonzero
= (~nonzero
) & GET_MODE_MASK (mode
);
4908 return (nonzero
== 0 ? bitwidth
: bitwidth
- floor_log2 (nonzero
) - 1);
4911 scalar_int_mode xmode
, inner_mode
;
4912 if (!is_a
<scalar_int_mode
> (GET_MODE (x
), &xmode
))
4915 unsigned int xmode_width
= GET_MODE_PRECISION (xmode
);
4917 /* For a smaller mode, just ignore the high bits. */
4918 if (bitwidth
< xmode_width
)
4920 num0
= cached_num_sign_bit_copies (x
, xmode
,
4921 known_x
, known_mode
, known_ret
);
4922 return MAX (1, num0
- (int) (xmode_width
- bitwidth
));
4925 if (bitwidth
> xmode_width
)
4927 /* If this machine does not do all register operations on the entire
4928 register and MODE is wider than the mode of X, we can say nothing
4929 at all about the high-order bits. */
4930 if (!WORD_REGISTER_OPERATIONS
)
4933 /* Likewise on machines that do, if the mode of the object is smaller
4934 than a word and loads of that size don't sign extend, we can say
4935 nothing about the high order bits. */
4936 if (xmode_width
< BITS_PER_WORD
4937 && load_extend_op (xmode
) != SIGN_EXTEND
)
4941 /* Please keep num_sign_bit_copies_binary_arith_p above in sync with
4942 the code in the switch below. */
4947 #if defined(POINTERS_EXTEND_UNSIGNED)
4948 /* If pointers extend signed and this is a pointer in Pmode, say that
4949 all the bits above ptr_mode are known to be sign bit copies. */
4950 /* As we do not know which address space the pointer is referring to,
4951 we can do this only if the target does not support different pointer
4952 or address modes depending on the address space. */
4953 if (target_default_pointer_address_modes_p ()
4954 && ! POINTERS_EXTEND_UNSIGNED
&& xmode
== Pmode
4955 && mode
== Pmode
&& REG_POINTER (x
)
4956 && !targetm
.have_ptr_extend ())
4957 return GET_MODE_PRECISION (Pmode
) - GET_MODE_PRECISION (ptr_mode
) + 1;
4961 unsigned int copies_for_hook
= 1, copies
= 1;
4962 rtx new_rtx
= rtl_hooks
.reg_num_sign_bit_copies (x
, xmode
, mode
,
4966 copies
= cached_num_sign_bit_copies (new_rtx
, mode
, known_x
,
4967 known_mode
, known_ret
);
4969 if (copies
> 1 || copies_for_hook
> 1)
4970 return MAX (copies
, copies_for_hook
);
4972 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4977 /* Some RISC machines sign-extend all loads of smaller than a word. */
4978 if (load_extend_op (xmode
) == SIGN_EXTEND
)
4979 return MAX (1, ((int) bitwidth
- (int) xmode_width
+ 1));
4983 /* If this is a SUBREG for a promoted object that is sign-extended
4984 and we are looking at it in a wider mode, we know that at least the
4985 high-order bits are known to be sign bit copies. */
4987 if (SUBREG_PROMOTED_VAR_P (x
) && SUBREG_PROMOTED_SIGNED_P (x
))
4989 num0
= cached_num_sign_bit_copies (SUBREG_REG (x
), mode
,
4990 known_x
, known_mode
, known_ret
);
4991 return MAX ((int) bitwidth
- (int) xmode_width
+ 1, num0
);
4994 if (is_a
<scalar_int_mode
> (GET_MODE (SUBREG_REG (x
)), &inner_mode
))
4996 /* For a smaller object, just ignore the high bits. */
4997 if (bitwidth
<= GET_MODE_PRECISION (inner_mode
))
4999 num0
= cached_num_sign_bit_copies (SUBREG_REG (x
), inner_mode
,
5000 known_x
, known_mode
,
5002 return MAX (1, num0
- (int) (GET_MODE_PRECISION (inner_mode
)
5006 /* For paradoxical SUBREGs on machines where all register operations
5007 affect the entire register, just look inside. Note that we are
5008 passing MODE to the recursive call, so the number of sign bit
5009 copies will remain relative to that mode, not the inner mode. */
5011 /* This works only if loads sign extend. Otherwise, if we get a
5012 reload for the inner part, it may be loaded from the stack, and
5013 then we lose all sign bit copies that existed before the store
5016 if (WORD_REGISTER_OPERATIONS
5017 && load_extend_op (inner_mode
) == SIGN_EXTEND
5018 && paradoxical_subreg_p (x
)
5019 && (MEM_P (SUBREG_REG (x
)) || REG_P (SUBREG_REG (x
))))
5020 return cached_num_sign_bit_copies (SUBREG_REG (x
), mode
,
5021 known_x
, known_mode
, known_ret
);
5026 if (CONST_INT_P (XEXP (x
, 1)))
5027 return MAX (1, (int) bitwidth
- INTVAL (XEXP (x
, 1)));
5031 if (is_a
<scalar_int_mode
> (GET_MODE (XEXP (x
, 0)), &inner_mode
))
5032 return (bitwidth
- GET_MODE_PRECISION (inner_mode
)
5033 + cached_num_sign_bit_copies (XEXP (x
, 0), inner_mode
,
5034 known_x
, known_mode
, known_ret
));
5038 /* For a smaller object, just ignore the high bits. */
5039 inner_mode
= as_a
<scalar_int_mode
> (GET_MODE (XEXP (x
, 0)));
5040 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), inner_mode
,
5041 known_x
, known_mode
, known_ret
);
5042 return MAX (1, (num0
- (int) (GET_MODE_PRECISION (inner_mode
)
5046 return cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
5047 known_x
, known_mode
, known_ret
);
5049 case ROTATE
: case ROTATERT
:
5050 /* If we are rotating left by a number of bits less than the number
5051 of sign bit copies, we can just subtract that amount from the
5053 if (CONST_INT_P (XEXP (x
, 1))
5054 && INTVAL (XEXP (x
, 1)) >= 0
5055 && INTVAL (XEXP (x
, 1)) < (int) bitwidth
)
5057 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
5058 known_x
, known_mode
, known_ret
);
5059 return MAX (1, num0
- (code
== ROTATE
? INTVAL (XEXP (x
, 1))
5060 : (int) bitwidth
- INTVAL (XEXP (x
, 1))));
5065 /* In general, this subtracts one sign bit copy. But if the value
5066 is known to be positive, the number of sign bit copies is the
5067 same as that of the input. Finally, if the input has just one bit
5068 that might be nonzero, all the bits are copies of the sign bit. */
5069 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
5070 known_x
, known_mode
, known_ret
);
5071 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
5072 return num0
> 1 ? num0
- 1 : 1;
5074 nonzero
= nonzero_bits (XEXP (x
, 0), mode
);
5079 && ((HOST_WIDE_INT_1U
<< (bitwidth
- 1)) & nonzero
))
5084 case IOR
: case AND
: case XOR
:
5085 case SMIN
: case SMAX
: case UMIN
: case UMAX
:
5086 /* Logical operations will preserve the number of sign-bit copies.
5087 MIN and MAX operations always return one of the operands. */
5088 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
5089 known_x
, known_mode
, known_ret
);
5090 num1
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
5091 known_x
, known_mode
, known_ret
);
5093 /* If num1 is clearing some of the top bits then regardless of
5094 the other term, we are guaranteed to have at least that many
5095 high-order zero bits. */
5098 && bitwidth
<= HOST_BITS_PER_WIDE_INT
5099 && CONST_INT_P (XEXP (x
, 1))
5100 && (UINTVAL (XEXP (x
, 1))
5101 & (HOST_WIDE_INT_1U
<< (bitwidth
- 1))) == 0)
5104 /* Similarly for IOR when setting high-order bits. */
5107 && bitwidth
<= HOST_BITS_PER_WIDE_INT
5108 && CONST_INT_P (XEXP (x
, 1))
5109 && (UINTVAL (XEXP (x
, 1))
5110 & (HOST_WIDE_INT_1U
<< (bitwidth
- 1))) != 0)
5113 return MIN (num0
, num1
);
5115 case PLUS
: case MINUS
:
5116 /* For addition and subtraction, we can have a 1-bit carry. However,
5117 if we are subtracting 1 from a positive number, there will not
5118 be such a carry. Furthermore, if the positive number is known to
5119 be 0 or 1, we know the result is either -1 or 0. */
5121 if (code
== PLUS
&& XEXP (x
, 1) == constm1_rtx
5122 && bitwidth
<= HOST_BITS_PER_WIDE_INT
)
5124 nonzero
= nonzero_bits (XEXP (x
, 0), mode
);
5125 if (((HOST_WIDE_INT_1U
<< (bitwidth
- 1)) & nonzero
) == 0)
5126 return (nonzero
== 1 || nonzero
== 0 ? bitwidth
5127 : bitwidth
- floor_log2 (nonzero
) - 1);
5130 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
5131 known_x
, known_mode
, known_ret
);
5132 num1
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
5133 known_x
, known_mode
, known_ret
);
5134 result
= MAX (1, MIN (num0
, num1
) - 1);
5139 /* The number of bits of the product is the sum of the number of
5140 bits of both terms. However, unless one of the terms if known
5141 to be positive, we must allow for an additional bit since negating
5142 a negative number can remove one sign bit copy. */
5144 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
5145 known_x
, known_mode
, known_ret
);
5146 num1
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
5147 known_x
, known_mode
, known_ret
);
5149 result
= bitwidth
- (bitwidth
- num0
) - (bitwidth
- num1
);
5151 && (bitwidth
> HOST_BITS_PER_WIDE_INT
5152 || (((nonzero_bits (XEXP (x
, 0), mode
)
5153 & (HOST_WIDE_INT_1U
<< (bitwidth
- 1))) != 0)
5154 && ((nonzero_bits (XEXP (x
, 1), mode
)
5155 & (HOST_WIDE_INT_1U
<< (bitwidth
- 1)))
5159 return MAX (1, result
);
5162 /* The result must be <= the first operand. If the first operand
5163 has the high bit set, we know nothing about the number of sign
5165 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
5167 else if ((nonzero_bits (XEXP (x
, 0), mode
)
5168 & (HOST_WIDE_INT_1U
<< (bitwidth
- 1))) != 0)
5171 return cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
5172 known_x
, known_mode
, known_ret
);
5175 /* The result must be <= the second operand. If the second operand
5176 has (or just might have) the high bit set, we know nothing about
5177 the number of sign bit copies. */
5178 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
5180 else if ((nonzero_bits (XEXP (x
, 1), mode
)
5181 & (HOST_WIDE_INT_1U
<< (bitwidth
- 1))) != 0)
5184 return cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
5185 known_x
, known_mode
, known_ret
);
5188 /* Similar to unsigned division, except that we have to worry about
5189 the case where the divisor is negative, in which case we have
5191 result
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
5192 known_x
, known_mode
, known_ret
);
5194 && (bitwidth
> HOST_BITS_PER_WIDE_INT
5195 || (nonzero_bits (XEXP (x
, 1), mode
)
5196 & (HOST_WIDE_INT_1U
<< (bitwidth
- 1))) != 0))
5202 result
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
5203 known_x
, known_mode
, known_ret
);
5205 && (bitwidth
> HOST_BITS_PER_WIDE_INT
5206 || (nonzero_bits (XEXP (x
, 1), mode
)
5207 & (HOST_WIDE_INT_1U
<< (bitwidth
- 1))) != 0))
5213 /* Shifts by a constant add to the number of bits equal to the
5215 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
5216 known_x
, known_mode
, known_ret
);
5217 if (CONST_INT_P (XEXP (x
, 1))
5218 && INTVAL (XEXP (x
, 1)) > 0
5219 && INTVAL (XEXP (x
, 1)) < xmode_width
)
5220 num0
= MIN ((int) bitwidth
, num0
+ INTVAL (XEXP (x
, 1)));
5225 /* Left shifts destroy copies. */
5226 if (!CONST_INT_P (XEXP (x
, 1))
5227 || INTVAL (XEXP (x
, 1)) < 0
5228 || INTVAL (XEXP (x
, 1)) >= (int) bitwidth
5229 || INTVAL (XEXP (x
, 1)) >= xmode_width
)
5232 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
5233 known_x
, known_mode
, known_ret
);
5234 return MAX (1, num0
- INTVAL (XEXP (x
, 1)));
5237 num0
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
5238 known_x
, known_mode
, known_ret
);
5239 num1
= cached_num_sign_bit_copies (XEXP (x
, 2), mode
,
5240 known_x
, known_mode
, known_ret
);
5241 return MIN (num0
, num1
);
5243 case EQ
: case NE
: case GE
: case GT
: case LE
: case LT
:
5244 case UNEQ
: case LTGT
: case UNGE
: case UNGT
: case UNLE
: case UNLT
:
5245 case GEU
: case GTU
: case LEU
: case LTU
:
5246 case UNORDERED
: case ORDERED
:
5247 /* If the constant is negative, take its 1's complement and remask.
5248 Then see how many zero bits we have. */
5249 nonzero
= STORE_FLAG_VALUE
;
5250 if (bitwidth
<= HOST_BITS_PER_WIDE_INT
5251 && (nonzero
& (HOST_WIDE_INT_1U
<< (bitwidth
- 1))) != 0)
5252 nonzero
= (~nonzero
) & GET_MODE_MASK (mode
);
5254 return (nonzero
== 0 ? bitwidth
: bitwidth
- floor_log2 (nonzero
) - 1);
5260 /* If we haven't been able to figure it out by one of the above rules,
5261 see if some of the high-order bits are known to be zero. If so,
5262 count those bits and return one less than that amount. If we can't
5263 safely compute the mask for this mode, always return BITWIDTH. */
5265 bitwidth
= GET_MODE_PRECISION (mode
);
5266 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
5269 nonzero
= nonzero_bits (x
, mode
);
5270 return nonzero
& (HOST_WIDE_INT_1U
<< (bitwidth
- 1))
5271 ? 1 : bitwidth
- floor_log2 (nonzero
) - 1;
5274 /* Calculate the rtx_cost of a single instruction. A return value of
5275 zero indicates an instruction pattern without a known cost. */
5278 insn_rtx_cost (rtx pat
, bool speed
)
5283 /* Extract the single set rtx from the instruction pattern. We
5284 can't use single_set since we only have the pattern. We also
5285 consider PARALLELs of a normal set and a single comparison. In
5286 that case we use the cost of the non-comparison SET operation,
5287 which is most-likely to be the real cost of this operation. */
5288 if (GET_CODE (pat
) == SET
)
5290 else if (GET_CODE (pat
) == PARALLEL
)
5293 rtx comparison
= NULL_RTX
;
5295 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
5297 rtx x
= XVECEXP (pat
, 0, i
);
5298 if (GET_CODE (x
) == SET
)
5300 if (GET_CODE (SET_SRC (x
)) == COMPARE
)
5315 if (!set
&& comparison
)
5324 cost
= set_src_cost (SET_SRC (set
), GET_MODE (SET_DEST (set
)), speed
);
5325 return cost
> 0 ? cost
: COSTS_N_INSNS (1);
5328 /* Returns estimate on cost of computing SEQ. */
5331 seq_cost (const rtx_insn
*seq
, bool speed
)
5336 for (; seq
; seq
= NEXT_INSN (seq
))
5338 set
= single_set (seq
);
5340 cost
+= set_rtx_cost (set
, speed
);
5348 /* Given an insn INSN and condition COND, return the condition in a
5349 canonical form to simplify testing by callers. Specifically:
5351 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
5352 (2) Both operands will be machine operands; (cc0) will have been replaced.
5353 (3) If an operand is a constant, it will be the second operand.
5354 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
5355 for GE, GEU, and LEU.
5357 If the condition cannot be understood, or is an inequality floating-point
5358 comparison which needs to be reversed, 0 will be returned.
5360 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
5362 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5363 insn used in locating the condition was found. If a replacement test
5364 of the condition is desired, it should be placed in front of that
5365 insn and we will be sure that the inputs are still valid.
5367 If WANT_REG is nonzero, we wish the condition to be relative to that
5368 register, if possible. Therefore, do not canonicalize the condition
5369 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
5370 to be a compare to a CC mode register.
5372 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
5376 canonicalize_condition (rtx_insn
*insn
, rtx cond
, int reverse
,
5377 rtx_insn
**earliest
,
5378 rtx want_reg
, int allow_cc_mode
, int valid_at_insn_p
)
5381 rtx_insn
*prev
= insn
;
5385 int reverse_code
= 0;
5387 basic_block bb
= BLOCK_FOR_INSN (insn
);
5389 code
= GET_CODE (cond
);
5390 mode
= GET_MODE (cond
);
5391 op0
= XEXP (cond
, 0);
5392 op1
= XEXP (cond
, 1);
5395 code
= reversed_comparison_code (cond
, insn
);
5396 if (code
== UNKNOWN
)
5402 /* If we are comparing a register with zero, see if the register is set
5403 in the previous insn to a COMPARE or a comparison operation. Perform
5404 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
5407 while ((GET_RTX_CLASS (code
) == RTX_COMPARE
5408 || GET_RTX_CLASS (code
) == RTX_COMM_COMPARE
)
5409 && op1
== CONST0_RTX (GET_MODE (op0
))
5412 /* Set nonzero when we find something of interest. */
5415 /* If comparison with cc0, import actual comparison from compare
5419 if ((prev
= prev_nonnote_insn (prev
)) == 0
5420 || !NONJUMP_INSN_P (prev
)
5421 || (set
= single_set (prev
)) == 0
5422 || SET_DEST (set
) != cc0_rtx
)
5425 op0
= SET_SRC (set
);
5426 op1
= CONST0_RTX (GET_MODE (op0
));
5431 /* If this is a COMPARE, pick up the two things being compared. */
5432 if (GET_CODE (op0
) == COMPARE
)
5434 op1
= XEXP (op0
, 1);
5435 op0
= XEXP (op0
, 0);
5438 else if (!REG_P (op0
))
5441 /* Go back to the previous insn. Stop if it is not an INSN. We also
5442 stop if it isn't a single set or if it has a REG_INC note because
5443 we don't want to bother dealing with it. */
5445 prev
= prev_nonnote_nondebug_insn (prev
);
5448 || !NONJUMP_INSN_P (prev
)
5449 || FIND_REG_INC_NOTE (prev
, NULL_RTX
)
5450 /* In cfglayout mode, there do not have to be labels at the
5451 beginning of a block, or jumps at the end, so the previous
5452 conditions would not stop us when we reach bb boundary. */
5453 || BLOCK_FOR_INSN (prev
) != bb
)
5456 set
= set_of (op0
, prev
);
5459 && (GET_CODE (set
) != SET
5460 || !rtx_equal_p (SET_DEST (set
), op0
)))
5463 /* If this is setting OP0, get what it sets it to if it looks
5467 machine_mode inner_mode
= GET_MODE (SET_DEST (set
));
5468 #ifdef FLOAT_STORE_FLAG_VALUE
5469 REAL_VALUE_TYPE fsfv
;
5472 /* ??? We may not combine comparisons done in a CCmode with
5473 comparisons not done in a CCmode. This is to aid targets
5474 like Alpha that have an IEEE compliant EQ instruction, and
5475 a non-IEEE compliant BEQ instruction. The use of CCmode is
5476 actually artificial, simply to prevent the combination, but
5477 should not affect other platforms.
5479 However, we must allow VOIDmode comparisons to match either
5480 CCmode or non-CCmode comparison, because some ports have
5481 modeless comparisons inside branch patterns.
5483 ??? This mode check should perhaps look more like the mode check
5484 in simplify_comparison in combine. */
5485 if (((GET_MODE_CLASS (mode
) == MODE_CC
)
5486 != (GET_MODE_CLASS (inner_mode
) == MODE_CC
))
5488 && inner_mode
!= VOIDmode
)
5490 if (GET_CODE (SET_SRC (set
)) == COMPARE
5493 && val_signbit_known_set_p (inner_mode
,
5495 #ifdef FLOAT_STORE_FLAG_VALUE
5497 && SCALAR_FLOAT_MODE_P (inner_mode
)
5498 && (fsfv
= FLOAT_STORE_FLAG_VALUE (inner_mode
),
5499 REAL_VALUE_NEGATIVE (fsfv
)))
5502 && COMPARISON_P (SET_SRC (set
))))
5504 else if (((code
== EQ
5506 && val_signbit_known_set_p (inner_mode
,
5508 #ifdef FLOAT_STORE_FLAG_VALUE
5510 && SCALAR_FLOAT_MODE_P (inner_mode
)
5511 && (fsfv
= FLOAT_STORE_FLAG_VALUE (inner_mode
),
5512 REAL_VALUE_NEGATIVE (fsfv
)))
5515 && COMPARISON_P (SET_SRC (set
)))
5520 else if ((code
== EQ
|| code
== NE
)
5521 && GET_CODE (SET_SRC (set
)) == XOR
)
5522 /* Handle sequences like:
5525 ...(eq|ne op0 (const_int 0))...
5529 (eq op0 (const_int 0)) reduces to (eq X Y)
5530 (ne op0 (const_int 0)) reduces to (ne X Y)
5532 This is the form used by MIPS16, for example. */
5538 else if (reg_set_p (op0
, prev
))
5539 /* If this sets OP0, but not directly, we have to give up. */
5544 /* If the caller is expecting the condition to be valid at INSN,
5545 make sure X doesn't change before INSN. */
5546 if (valid_at_insn_p
)
5547 if (modified_in_p (x
, prev
) || modified_between_p (x
, prev
, insn
))
5549 if (COMPARISON_P (x
))
5550 code
= GET_CODE (x
);
5553 code
= reversed_comparison_code (x
, prev
);
5554 if (code
== UNKNOWN
)
5559 op0
= XEXP (x
, 0), op1
= XEXP (x
, 1);
5565 /* If constant is first, put it last. */
5566 if (CONSTANT_P (op0
))
5567 code
= swap_condition (code
), tem
= op0
, op0
= op1
, op1
= tem
;
5569 /* If OP0 is the result of a comparison, we weren't able to find what
5570 was really being compared, so fail. */
5572 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_CC
)
5575 /* Canonicalize any ordered comparison with integers involving equality
5576 if we can do computations in the relevant mode and we do not
5579 scalar_int_mode op0_mode
;
5580 if (CONST_INT_P (op1
)
5581 && is_a
<scalar_int_mode
> (GET_MODE (op0
), &op0_mode
)
5582 && GET_MODE_PRECISION (op0_mode
) <= HOST_BITS_PER_WIDE_INT
)
5584 HOST_WIDE_INT const_val
= INTVAL (op1
);
5585 unsigned HOST_WIDE_INT uconst_val
= const_val
;
5586 unsigned HOST_WIDE_INT max_val
5587 = (unsigned HOST_WIDE_INT
) GET_MODE_MASK (op0_mode
);
5592 if ((unsigned HOST_WIDE_INT
) const_val
!= max_val
>> 1)
5593 code
= LT
, op1
= gen_int_mode (const_val
+ 1, op0_mode
);
5596 /* When cross-compiling, const_val might be sign-extended from
5597 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
5599 if ((const_val
& max_val
)
5600 != (HOST_WIDE_INT_1U
<< (GET_MODE_PRECISION (op0_mode
) - 1)))
5601 code
= GT
, op1
= gen_int_mode (const_val
- 1, op0_mode
);
5605 if (uconst_val
< max_val
)
5606 code
= LTU
, op1
= gen_int_mode (uconst_val
+ 1, op0_mode
);
5610 if (uconst_val
!= 0)
5611 code
= GTU
, op1
= gen_int_mode (uconst_val
- 1, op0_mode
);
5619 /* Never return CC0; return zero instead. */
5623 return gen_rtx_fmt_ee (code
, VOIDmode
, op0
, op1
);
5626 /* Given a jump insn JUMP, return the condition that will cause it to branch
5627 to its JUMP_LABEL. If the condition cannot be understood, or is an
5628 inequality floating-point comparison which needs to be reversed, 0 will
5631 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5632 insn used in locating the condition was found. If a replacement test
5633 of the condition is desired, it should be placed in front of that
5634 insn and we will be sure that the inputs are still valid. If EARLIEST
5635 is null, the returned condition will be valid at INSN.
5637 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
5638 compare CC mode register.
5640 VALID_AT_INSN_P is the same as for canonicalize_condition. */
5643 get_condition (rtx_insn
*jump
, rtx_insn
**earliest
, int allow_cc_mode
,
5644 int valid_at_insn_p
)
5650 /* If this is not a standard conditional jump, we can't parse it. */
5652 || ! any_condjump_p (jump
))
5654 set
= pc_set (jump
);
5656 cond
= XEXP (SET_SRC (set
), 0);
5658 /* If this branches to JUMP_LABEL when the condition is false, reverse
5661 = GET_CODE (XEXP (SET_SRC (set
), 2)) == LABEL_REF
5662 && label_ref_label (XEXP (SET_SRC (set
), 2)) == JUMP_LABEL (jump
);
5664 return canonicalize_condition (jump
, cond
, reverse
, earliest
, NULL_RTX
,
5665 allow_cc_mode
, valid_at_insn_p
);
5668 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
5669 TARGET_MODE_REP_EXTENDED.
5671 Note that we assume that the property of
5672 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
5673 narrower than mode B. I.e., if A is a mode narrower than B then in
5674 order to be able to operate on it in mode B, mode A needs to
5675 satisfy the requirements set by the representation of mode B. */
5678 init_num_sign_bit_copies_in_rep (void)
5680 opt_scalar_int_mode in_mode_iter
;
5681 scalar_int_mode mode
;
5683 FOR_EACH_MODE_IN_CLASS (in_mode_iter
, MODE_INT
)
5684 FOR_EACH_MODE_UNTIL (mode
, in_mode_iter
.require ())
5686 scalar_int_mode in_mode
= in_mode_iter
.require ();
5689 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5690 extends to the next widest mode. */
5691 gcc_assert (targetm
.mode_rep_extended (mode
, in_mode
) == UNKNOWN
5692 || GET_MODE_WIDER_MODE (mode
).require () == in_mode
);
5694 /* We are in in_mode. Count how many bits outside of mode
5695 have to be copies of the sign-bit. */
5696 FOR_EACH_MODE (i
, mode
, in_mode
)
5698 /* This must always exist (for the last iteration it will be
5700 scalar_int_mode wider
= GET_MODE_WIDER_MODE (i
).require ();
5702 if (targetm
.mode_rep_extended (i
, wider
) == SIGN_EXTEND
5703 /* We can only check sign-bit copies starting from the
5704 top-bit. In order to be able to check the bits we
5705 have already seen we pretend that subsequent bits
5706 have to be sign-bit copies too. */
5707 || num_sign_bit_copies_in_rep
[in_mode
][mode
])
5708 num_sign_bit_copies_in_rep
[in_mode
][mode
]
5709 += GET_MODE_PRECISION (wider
) - GET_MODE_PRECISION (i
);
5714 /* Suppose that truncation from the machine mode of X to MODE is not a
5715 no-op. See if there is anything special about X so that we can
5716 assume it already contains a truncated value of MODE. */
5719 truncated_to_mode (machine_mode mode
, const_rtx x
)
5721 /* This register has already been used in MODE without explicit
5723 if (REG_P (x
) && rtl_hooks
.reg_truncated_to_mode (mode
, x
))
5726 /* See if we already satisfy the requirements of MODE. If yes we
5727 can just switch to MODE. */
5728 if (num_sign_bit_copies_in_rep
[GET_MODE (x
)][mode
]
5729 && (num_sign_bit_copies (x
, GET_MODE (x
))
5730 >= num_sign_bit_copies_in_rep
[GET_MODE (x
)][mode
] + 1))
5736 /* Return true if RTX code CODE has a single sequence of zero or more
5737 "e" operands and no rtvec operands. Initialize its rtx_all_subrtx_bounds
5738 entry in that case. */
5741 setup_reg_subrtx_bounds (unsigned int code
)
5743 const char *format
= GET_RTX_FORMAT ((enum rtx_code
) code
);
5745 for (; format
[i
] != 'e'; ++i
)
5748 /* No subrtxes. Leave start and count as 0. */
5750 if (format
[i
] == 'E' || format
[i
] == 'V')
5754 /* Record the sequence of 'e's. */
5755 rtx_all_subrtx_bounds
[code
].start
= i
;
5758 while (format
[i
] == 'e');
5759 rtx_all_subrtx_bounds
[code
].count
= i
- rtx_all_subrtx_bounds
[code
].start
;
5760 /* rtl-iter.h relies on this. */
5761 gcc_checking_assert (rtx_all_subrtx_bounds
[code
].count
<= 3);
5763 for (; format
[i
]; ++i
)
5764 if (format
[i
] == 'E' || format
[i
] == 'V' || format
[i
] == 'e')
5770 /* Initialize rtx_all_subrtx_bounds. */
5775 for (i
= 0; i
< NUM_RTX_CODE
; i
++)
5777 if (!setup_reg_subrtx_bounds (i
))
5778 rtx_all_subrtx_bounds
[i
].count
= UCHAR_MAX
;
5779 if (GET_RTX_CLASS (i
) != RTX_CONST_OBJ
)
5780 rtx_nonconst_subrtx_bounds
[i
] = rtx_all_subrtx_bounds
[i
];
5783 init_num_sign_bit_copies_in_rep ();
5786 /* Check whether this is a constant pool constant. */
5788 constant_pool_constant_p (rtx x
)
5790 x
= avoid_constant_pool_reference (x
);
5791 return CONST_DOUBLE_P (x
);
5794 /* If M is a bitmask that selects a field of low-order bits within an item but
5795 not the entire word, return the length of the field. Return -1 otherwise.
5796 M is used in machine mode MODE. */
5799 low_bitmask_len (machine_mode mode
, unsigned HOST_WIDE_INT m
)
5801 if (mode
!= VOIDmode
)
5803 if (GET_MODE_PRECISION (mode
) > HOST_BITS_PER_WIDE_INT
)
5805 m
&= GET_MODE_MASK (mode
);
5808 return exact_log2 (m
+ 1);
5811 /* Return the mode of MEM's address. */
5814 get_address_mode (rtx mem
)
5818 gcc_assert (MEM_P (mem
));
5819 mode
= GET_MODE (XEXP (mem
, 0));
5820 if (mode
!= VOIDmode
)
5821 return as_a
<scalar_int_mode
> (mode
);
5822 return targetm
.addr_space
.address_mode (MEM_ADDR_SPACE (mem
));
5825 /* Split up a CONST_DOUBLE or integer constant rtx
5826 into two rtx's for single words,
5827 storing in *FIRST the word that comes first in memory in the target
5828 and in *SECOND the other.
5830 TODO: This function needs to be rewritten to work on any size
5834 split_double (rtx value
, rtx
*first
, rtx
*second
)
5836 if (CONST_INT_P (value
))
5838 if (HOST_BITS_PER_WIDE_INT
>= (2 * BITS_PER_WORD
))
5840 /* In this case the CONST_INT holds both target words.
5841 Extract the bits from it into two word-sized pieces.
5842 Sign extend each half to HOST_WIDE_INT. */
5843 unsigned HOST_WIDE_INT low
, high
;
5844 unsigned HOST_WIDE_INT mask
, sign_bit
, sign_extend
;
5845 unsigned bits_per_word
= BITS_PER_WORD
;
5847 /* Set sign_bit to the most significant bit of a word. */
5849 sign_bit
<<= bits_per_word
- 1;
5851 /* Set mask so that all bits of the word are set. We could
5852 have used 1 << BITS_PER_WORD instead of basing the
5853 calculation on sign_bit. However, on machines where
5854 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
5855 compiler warning, even though the code would never be
5857 mask
= sign_bit
<< 1;
5860 /* Set sign_extend as any remaining bits. */
5861 sign_extend
= ~mask
;
5863 /* Pick the lower word and sign-extend it. */
5864 low
= INTVAL (value
);
5869 /* Pick the higher word, shifted to the least significant
5870 bits, and sign-extend it. */
5871 high
= INTVAL (value
);
5872 high
>>= bits_per_word
- 1;
5875 if (high
& sign_bit
)
5876 high
|= sign_extend
;
5878 /* Store the words in the target machine order. */
5879 if (WORDS_BIG_ENDIAN
)
5881 *first
= GEN_INT (high
);
5882 *second
= GEN_INT (low
);
5886 *first
= GEN_INT (low
);
5887 *second
= GEN_INT (high
);
5892 /* The rule for using CONST_INT for a wider mode
5893 is that we regard the value as signed.
5894 So sign-extend it. */
5895 rtx high
= (INTVAL (value
) < 0 ? constm1_rtx
: const0_rtx
);
5896 if (WORDS_BIG_ENDIAN
)
5908 else if (GET_CODE (value
) == CONST_WIDE_INT
)
5910 /* All of this is scary code and needs to be converted to
5911 properly work with any size integer. */
5912 gcc_assert (CONST_WIDE_INT_NUNITS (value
) == 2);
5913 if (WORDS_BIG_ENDIAN
)
5915 *first
= GEN_INT (CONST_WIDE_INT_ELT (value
, 1));
5916 *second
= GEN_INT (CONST_WIDE_INT_ELT (value
, 0));
5920 *first
= GEN_INT (CONST_WIDE_INT_ELT (value
, 0));
5921 *second
= GEN_INT (CONST_WIDE_INT_ELT (value
, 1));
5924 else if (!CONST_DOUBLE_P (value
))
5926 if (WORDS_BIG_ENDIAN
)
5928 *first
= const0_rtx
;
5934 *second
= const0_rtx
;
5937 else if (GET_MODE (value
) == VOIDmode
5938 /* This is the old way we did CONST_DOUBLE integers. */
5939 || GET_MODE_CLASS (GET_MODE (value
)) == MODE_INT
)
5941 /* In an integer, the words are defined as most and least significant.
5942 So order them by the target's convention. */
5943 if (WORDS_BIG_ENDIAN
)
5945 *first
= GEN_INT (CONST_DOUBLE_HIGH (value
));
5946 *second
= GEN_INT (CONST_DOUBLE_LOW (value
));
5950 *first
= GEN_INT (CONST_DOUBLE_LOW (value
));
5951 *second
= GEN_INT (CONST_DOUBLE_HIGH (value
));
5958 /* Note, this converts the REAL_VALUE_TYPE to the target's
5959 format, splits up the floating point double and outputs
5960 exactly 32 bits of it into each of l[0] and l[1] --
5961 not necessarily BITS_PER_WORD bits. */
5962 REAL_VALUE_TO_TARGET_DOUBLE (*CONST_DOUBLE_REAL_VALUE (value
), l
);
5964 /* If 32 bits is an entire word for the target, but not for the host,
5965 then sign-extend on the host so that the number will look the same
5966 way on the host that it would on the target. See for instance
5967 simplify_unary_operation. The #if is needed to avoid compiler
5970 #if HOST_BITS_PER_LONG > 32
5971 if (BITS_PER_WORD
< HOST_BITS_PER_LONG
&& BITS_PER_WORD
== 32)
5973 if (l
[0] & ((long) 1 << 31))
5974 l
[0] |= ((unsigned long) (-1) << 32);
5975 if (l
[1] & ((long) 1 << 31))
5976 l
[1] |= ((unsigned long) (-1) << 32);
5980 *first
= GEN_INT (l
[0]);
5981 *second
= GEN_INT (l
[1]);
5985 /* Return true if X is a sign_extract or zero_extract from the least
5989 lsb_bitfield_op_p (rtx x
)
5991 if (GET_RTX_CLASS (GET_CODE (x
)) == RTX_BITFIELD_OPS
)
5993 machine_mode mode
= GET_MODE (XEXP (x
, 0));
5994 HOST_WIDE_INT len
= INTVAL (XEXP (x
, 1));
5995 HOST_WIDE_INT pos
= INTVAL (XEXP (x
, 2));
5997 return (pos
== (BITS_BIG_ENDIAN
? GET_MODE_PRECISION (mode
) - len
: 0));
6002 /* Strip outer address "mutations" from LOC and return a pointer to the
6003 inner value. If OUTER_CODE is nonnull, store the code of the innermost
6004 stripped expression there.
6006 "Mutations" either convert between modes or apply some kind of
6007 extension, truncation or alignment. */
6010 strip_address_mutations (rtx
*loc
, enum rtx_code
*outer_code
)
6014 enum rtx_code code
= GET_CODE (*loc
);
6015 if (GET_RTX_CLASS (code
) == RTX_UNARY
)
6016 /* Things like SIGN_EXTEND, ZERO_EXTEND and TRUNCATE can be
6017 used to convert between pointer sizes. */
6018 loc
= &XEXP (*loc
, 0);
6019 else if (lsb_bitfield_op_p (*loc
))
6020 /* A [SIGN|ZERO]_EXTRACT from the least significant bit effectively
6021 acts as a combined truncation and extension. */
6022 loc
= &XEXP (*loc
, 0);
6023 else if (code
== AND
&& CONST_INT_P (XEXP (*loc
, 1)))
6024 /* (and ... (const_int -X)) is used to align to X bytes. */
6025 loc
= &XEXP (*loc
, 0);
6026 else if (code
== SUBREG
6027 && !OBJECT_P (SUBREG_REG (*loc
))
6028 && subreg_lowpart_p (*loc
))
6029 /* (subreg (operator ...) ...) inside and is used for mode
6031 loc
= &SUBREG_REG (*loc
);
6039 /* Return true if CODE applies some kind of scale. The scaled value is
6040 is the first operand and the scale is the second. */
6043 binary_scale_code_p (enum rtx_code code
)
6045 return (code
== MULT
6047 /* Needed by ARM targets. */
6051 || code
== ROTATERT
);
6054 /* If *INNER can be interpreted as a base, return a pointer to the inner term
6055 (see address_info). Return null otherwise. */
6058 get_base_term (rtx
*inner
)
6060 if (GET_CODE (*inner
) == LO_SUM
)
6061 inner
= strip_address_mutations (&XEXP (*inner
, 0));
6064 || GET_CODE (*inner
) == SUBREG
6065 || GET_CODE (*inner
) == SCRATCH
)
6070 /* If *INNER can be interpreted as an index, return a pointer to the inner term
6071 (see address_info). Return null otherwise. */
6074 get_index_term (rtx
*inner
)
6076 /* At present, only constant scales are allowed. */
6077 if (binary_scale_code_p (GET_CODE (*inner
)) && CONSTANT_P (XEXP (*inner
, 1)))
6078 inner
= strip_address_mutations (&XEXP (*inner
, 0));
6081 || GET_CODE (*inner
) == SUBREG
6082 || GET_CODE (*inner
) == SCRATCH
)
6087 /* Set the segment part of address INFO to LOC, given that INNER is the
6091 set_address_segment (struct address_info
*info
, rtx
*loc
, rtx
*inner
)
6093 gcc_assert (!info
->segment
);
6094 info
->segment
= loc
;
6095 info
->segment_term
= inner
;
6098 /* Set the base part of address INFO to LOC, given that INNER is the
6102 set_address_base (struct address_info
*info
, rtx
*loc
, rtx
*inner
)
6104 gcc_assert (!info
->base
);
6106 info
->base_term
= inner
;
6109 /* Set the index part of address INFO to LOC, given that INNER is the
6113 set_address_index (struct address_info
*info
, rtx
*loc
, rtx
*inner
)
6115 gcc_assert (!info
->index
);
6117 info
->index_term
= inner
;
6120 /* Set the displacement part of address INFO to LOC, given that INNER
6121 is the constant term. */
6124 set_address_disp (struct address_info
*info
, rtx
*loc
, rtx
*inner
)
6126 gcc_assert (!info
->disp
);
6128 info
->disp_term
= inner
;
6131 /* INFO->INNER describes a {PRE,POST}_{INC,DEC} address. Set up the
6132 rest of INFO accordingly. */
6135 decompose_incdec_address (struct address_info
*info
)
6137 info
->autoinc_p
= true;
6139 rtx
*base
= &XEXP (*info
->inner
, 0);
6140 set_address_base (info
, base
, base
);
6141 gcc_checking_assert (info
->base
== info
->base_term
);
6143 /* These addresses are only valid when the size of the addressed
6145 gcc_checking_assert (info
->mode
!= VOIDmode
);
6148 /* INFO->INNER describes a {PRE,POST}_MODIFY address. Set up the rest
6149 of INFO accordingly. */
6152 decompose_automod_address (struct address_info
*info
)
6154 info
->autoinc_p
= true;
6156 rtx
*base
= &XEXP (*info
->inner
, 0);
6157 set_address_base (info
, base
, base
);
6158 gcc_checking_assert (info
->base
== info
->base_term
);
6160 rtx plus
= XEXP (*info
->inner
, 1);
6161 gcc_assert (GET_CODE (plus
) == PLUS
);
6163 info
->base_term2
= &XEXP (plus
, 0);
6164 gcc_checking_assert (rtx_equal_p (*info
->base_term
, *info
->base_term2
));
6166 rtx
*step
= &XEXP (plus
, 1);
6167 rtx
*inner_step
= strip_address_mutations (step
);
6168 if (CONSTANT_P (*inner_step
))
6169 set_address_disp (info
, step
, inner_step
);
6171 set_address_index (info
, step
, inner_step
);
6174 /* Treat *LOC as a tree of PLUS operands and store pointers to the summed
6175 values in [PTR, END). Return a pointer to the end of the used array. */
6178 extract_plus_operands (rtx
*loc
, rtx
**ptr
, rtx
**end
)
6181 if (GET_CODE (x
) == PLUS
)
6183 ptr
= extract_plus_operands (&XEXP (x
, 0), ptr
, end
);
6184 ptr
= extract_plus_operands (&XEXP (x
, 1), ptr
, end
);
6188 gcc_assert (ptr
!= end
);
6194 /* Evaluate the likelihood of X being a base or index value, returning
6195 positive if it is likely to be a base, negative if it is likely to be
6196 an index, and 0 if we can't tell. Make the magnitude of the return
6197 value reflect the amount of confidence we have in the answer.
6199 MODE, AS, OUTER_CODE and INDEX_CODE are as for ok_for_base_p_1. */
6202 baseness (rtx x
, machine_mode mode
, addr_space_t as
,
6203 enum rtx_code outer_code
, enum rtx_code index_code
)
6205 /* Believe *_POINTER unless the address shape requires otherwise. */
6206 if (REG_P (x
) && REG_POINTER (x
))
6208 if (MEM_P (x
) && MEM_POINTER (x
))
6211 if (REG_P (x
) && HARD_REGISTER_P (x
))
6213 /* X is a hard register. If it only fits one of the base
6214 or index classes, choose that interpretation. */
6215 int regno
= REGNO (x
);
6216 bool base_p
= ok_for_base_p_1 (regno
, mode
, as
, outer_code
, index_code
);
6217 bool index_p
= REGNO_OK_FOR_INDEX_P (regno
);
6218 if (base_p
!= index_p
)
6219 return base_p
? 1 : -1;
6224 /* INFO->INNER describes a normal, non-automodified address.
6225 Fill in the rest of INFO accordingly. */
6228 decompose_normal_address (struct address_info
*info
)
6230 /* Treat the address as the sum of up to four values. */
6232 size_t n_ops
= extract_plus_operands (info
->inner
, ops
,
6233 ops
+ ARRAY_SIZE (ops
)) - ops
;
6235 /* If there is more than one component, any base component is in a PLUS. */
6237 info
->base_outer_code
= PLUS
;
6239 /* Try to classify each sum operand now. Leave those that could be
6240 either a base or an index in OPS. */
6243 for (size_t in
= 0; in
< n_ops
; ++in
)
6246 rtx
*inner
= strip_address_mutations (loc
);
6247 if (CONSTANT_P (*inner
))
6248 set_address_disp (info
, loc
, inner
);
6249 else if (GET_CODE (*inner
) == UNSPEC
)
6250 set_address_segment (info
, loc
, inner
);
6253 /* The only other possibilities are a base or an index. */
6254 rtx
*base_term
= get_base_term (inner
);
6255 rtx
*index_term
= get_index_term (inner
);
6256 gcc_assert (base_term
|| index_term
);
6258 set_address_index (info
, loc
, index_term
);
6259 else if (!index_term
)
6260 set_address_base (info
, loc
, base_term
);
6263 gcc_assert (base_term
== index_term
);
6265 inner_ops
[out
] = base_term
;
6271 /* Classify the remaining OPS members as bases and indexes. */
6274 /* If we haven't seen a base or an index yet, assume that this is
6275 the base. If we were confident that another term was the base
6276 or index, treat the remaining operand as the other kind. */
6278 set_address_base (info
, ops
[0], inner_ops
[0]);
6280 set_address_index (info
, ops
[0], inner_ops
[0]);
6284 /* In the event of a tie, assume the base comes first. */
6285 if (baseness (*inner_ops
[0], info
->mode
, info
->as
, PLUS
,
6287 >= baseness (*inner_ops
[1], info
->mode
, info
->as
, PLUS
,
6288 GET_CODE (*ops
[0])))
6290 set_address_base (info
, ops
[0], inner_ops
[0]);
6291 set_address_index (info
, ops
[1], inner_ops
[1]);
6295 set_address_base (info
, ops
[1], inner_ops
[1]);
6296 set_address_index (info
, ops
[0], inner_ops
[0]);
6300 gcc_assert (out
== 0);
6303 /* Describe address *LOC in *INFO. MODE is the mode of the addressed value,
6304 or VOIDmode if not known. AS is the address space associated with LOC.
6305 OUTER_CODE is MEM if *LOC is a MEM address and ADDRESS otherwise. */
6308 decompose_address (struct address_info
*info
, rtx
*loc
, machine_mode mode
,
6309 addr_space_t as
, enum rtx_code outer_code
)
6311 memset (info
, 0, sizeof (*info
));
6314 info
->addr_outer_code
= outer_code
;
6316 info
->inner
= strip_address_mutations (loc
, &outer_code
);
6317 info
->base_outer_code
= outer_code
;
6318 switch (GET_CODE (*info
->inner
))
6324 decompose_incdec_address (info
);
6329 decompose_automod_address (info
);
6333 decompose_normal_address (info
);
6338 /* Describe address operand LOC in INFO. */
6341 decompose_lea_address (struct address_info
*info
, rtx
*loc
)
6343 decompose_address (info
, loc
, VOIDmode
, ADDR_SPACE_GENERIC
, ADDRESS
);
6346 /* Describe the address of MEM X in INFO. */
6349 decompose_mem_address (struct address_info
*info
, rtx x
)
6351 gcc_assert (MEM_P (x
));
6352 decompose_address (info
, &XEXP (x
, 0), GET_MODE (x
),
6353 MEM_ADDR_SPACE (x
), MEM
);
6356 /* Update INFO after a change to the address it describes. */
6359 update_address (struct address_info
*info
)
6361 decompose_address (info
, info
->outer
, info
->mode
, info
->as
,
6362 info
->addr_outer_code
);
6365 /* Return the scale applied to *INFO->INDEX_TERM, or 0 if the index is
6366 more complicated than that. */
6369 get_index_scale (const struct address_info
*info
)
6371 rtx index
= *info
->index
;
6372 if (GET_CODE (index
) == MULT
6373 && CONST_INT_P (XEXP (index
, 1))
6374 && info
->index_term
== &XEXP (index
, 0))
6375 return INTVAL (XEXP (index
, 1));
6377 if (GET_CODE (index
) == ASHIFT
6378 && CONST_INT_P (XEXP (index
, 1))
6379 && info
->index_term
== &XEXP (index
, 0))
6380 return HOST_WIDE_INT_1
<< INTVAL (XEXP (index
, 1));
6382 if (info
->index
== info
->index_term
)
6388 /* Return the "index code" of INFO, in the form required by
6392 get_index_code (const struct address_info
*info
)
6395 return GET_CODE (*info
->index
);
6398 return GET_CODE (*info
->disp
);
6403 /* Return true if RTL X contains a SYMBOL_REF. */
6406 contains_symbol_ref_p (const_rtx x
)
6408 subrtx_iterator::array_type array
;
6409 FOR_EACH_SUBRTX (iter
, array
, x
, ALL
)
6410 if (SYMBOL_REF_P (*iter
))
6416 /* Return true if RTL X contains a SYMBOL_REF or LABEL_REF. */
6419 contains_symbolic_reference_p (const_rtx x
)
6421 subrtx_iterator::array_type array
;
6422 FOR_EACH_SUBRTX (iter
, array
, x
, ALL
)
6423 if (SYMBOL_REF_P (*iter
) || GET_CODE (*iter
) == LABEL_REF
)
6429 /* Return true if X contains a thread-local symbol. */
6432 tls_referenced_p (const_rtx x
)
6434 if (!targetm
.have_tls
)
6437 subrtx_iterator::array_type array
;
6438 FOR_EACH_SUBRTX (iter
, array
, x
, ALL
)
6439 if (GET_CODE (*iter
) == SYMBOL_REF
&& SYMBOL_REF_TLS_MODEL (*iter
) != 0)