1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2017, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Atree
; use Atree
;
27 with Checks
; use Checks
;
28 with Debug
; use Debug
;
29 with Debug_A
; use Debug_A
;
30 with Einfo
; use Einfo
;
31 with Errout
; use Errout
;
32 with Expander
; use Expander
;
33 with Exp_Disp
; use Exp_Disp
;
34 with Exp_Ch6
; use Exp_Ch6
;
35 with Exp_Ch7
; use Exp_Ch7
;
36 with Exp_Tss
; use Exp_Tss
;
37 with Exp_Util
; use Exp_Util
;
38 with Freeze
; use Freeze
;
39 with Ghost
; use Ghost
;
40 with Inline
; use Inline
;
41 with Itypes
; use Itypes
;
43 with Lib
.Xref
; use Lib
.Xref
;
44 with Namet
; use Namet
;
45 with Nmake
; use Nmake
;
46 with Nlists
; use Nlists
;
48 with Output
; use Output
;
49 with Par_SCO
; use Par_SCO
;
50 with Restrict
; use Restrict
;
51 with Rident
; use Rident
;
52 with Rtsfind
; use Rtsfind
;
54 with Sem_Aux
; use Sem_Aux
;
55 with Sem_Aggr
; use Sem_Aggr
;
56 with Sem_Attr
; use Sem_Attr
;
57 with Sem_Cat
; use Sem_Cat
;
58 with Sem_Ch4
; use Sem_Ch4
;
59 with Sem_Ch3
; use Sem_Ch3
;
60 with Sem_Ch6
; use Sem_Ch6
;
61 with Sem_Ch8
; use Sem_Ch8
;
62 with Sem_Ch13
; use Sem_Ch13
;
63 with Sem_Dim
; use Sem_Dim
;
64 with Sem_Disp
; use Sem_Disp
;
65 with Sem_Dist
; use Sem_Dist
;
66 with Sem_Elim
; use Sem_Elim
;
67 with Sem_Elab
; use Sem_Elab
;
68 with Sem_Eval
; use Sem_Eval
;
69 with Sem_Intr
; use Sem_Intr
;
70 with Sem_Util
; use Sem_Util
;
71 with Targparm
; use Targparm
;
72 with Sem_Type
; use Sem_Type
;
73 with Sem_Warn
; use Sem_Warn
;
74 with Sinfo
; use Sinfo
;
75 with Sinfo
.CN
; use Sinfo
.CN
;
76 with Snames
; use Snames
;
77 with Stand
; use Stand
;
78 with Stringt
; use Stringt
;
79 with Style
; use Style
;
80 with Tbuild
; use Tbuild
;
81 with Uintp
; use Uintp
;
82 with Urealp
; use Urealp
;
84 package body Sem_Res
is
86 -----------------------
87 -- Local Subprograms --
88 -----------------------
90 -- Second pass (top-down) type checking and overload resolution procedures
91 -- Typ is the type required by context. These procedures propagate the
92 -- type information recursively to the descendants of N. If the node is not
93 -- overloaded, its Etype is established in the first pass. If overloaded,
94 -- the Resolve routines set the correct type. For arithmetic operators, the
95 -- Etype is the base type of the context.
97 -- Note that Resolve_Attribute is separated off in Sem_Attr
99 procedure Check_Discriminant_Use
(N
: Node_Id
);
100 -- Enforce the restrictions on the use of discriminants when constraining
101 -- a component of a discriminated type (record or concurrent type).
103 procedure Check_For_Visible_Operator
(N
: Node_Id
; T
: Entity_Id
);
104 -- Given a node for an operator associated with type T, check that the
105 -- operator is visible. Operators all of whose operands are universal must
106 -- be checked for visibility during resolution because their type is not
107 -- determinable based on their operands.
109 procedure Check_Fully_Declared_Prefix
112 -- Check that the type of the prefix of a dereference is not incomplete
114 function Check_Infinite_Recursion
(N
: Node_Id
) return Boolean;
115 -- Given a call node, N, which is known to occur immediately within the
116 -- subprogram being called, determines whether it is a detectable case of
117 -- an infinite recursion, and if so, outputs appropriate messages. Returns
118 -- True if an infinite recursion is detected, and False otherwise.
120 procedure Check_Initialization_Call
(N
: Entity_Id
; Nam
: Entity_Id
);
121 -- If the type of the object being initialized uses the secondary stack
122 -- directly or indirectly, create a transient scope for the call to the
123 -- init proc. This is because we do not create transient scopes for the
124 -- initialization of individual components within the init proc itself.
125 -- Could be optimized away perhaps?
127 procedure Check_No_Direct_Boolean_Operators
(N
: Node_Id
);
128 -- N is the node for a logical operator. If the operator is predefined, and
129 -- the root type of the operands is Standard.Boolean, then a check is made
130 -- for restriction No_Direct_Boolean_Operators. This procedure also handles
131 -- the style check for Style_Check_Boolean_And_Or.
133 function Is_Atomic_Ref_With_Address
(N
: Node_Id
) return Boolean;
134 -- N is either an indexed component or a selected component. This function
135 -- returns true if the prefix refers to an object that has an address
136 -- clause (the case in which we may want to issue a warning).
138 function Is_Definite_Access_Type
(E
: Entity_Id
) return Boolean;
139 -- Determine whether E is an access type declared by an access declaration,
140 -- and not an (anonymous) allocator type.
142 function Is_Predefined_Op
(Nam
: Entity_Id
) return Boolean;
143 -- Utility to check whether the entity for an operator is a predefined
144 -- operator, in which case the expression is left as an operator in the
145 -- tree (else it is rewritten into a call). An instance of an intrinsic
146 -- conversion operation may be given an operator name, but is not treated
147 -- like an operator. Note that an operator that is an imported back-end
148 -- builtin has convention Intrinsic, but is expected to be rewritten into
149 -- a call, so such an operator is not treated as predefined by this
152 procedure Replace_Actual_Discriminants
(N
: Node_Id
; Default
: Node_Id
);
153 -- If a default expression in entry call N depends on the discriminants
154 -- of the task, it must be replaced with a reference to the discriminant
155 -- of the task being called.
157 procedure Resolve_Op_Concat_Arg
162 -- Internal procedure for Resolve_Op_Concat to resolve one operand of
163 -- concatenation operator. The operand is either of the array type or of
164 -- the component type. If the operand is an aggregate, and the component
165 -- type is composite, this is ambiguous if component type has aggregates.
167 procedure Resolve_Op_Concat_First
(N
: Node_Id
; Typ
: Entity_Id
);
168 -- Does the first part of the work of Resolve_Op_Concat
170 procedure Resolve_Op_Concat_Rest
(N
: Node_Id
; Typ
: Entity_Id
);
171 -- Does the "rest" of the work of Resolve_Op_Concat, after the left operand
172 -- has been resolved. See Resolve_Op_Concat for details.
174 procedure Resolve_Allocator
(N
: Node_Id
; Typ
: Entity_Id
);
175 procedure Resolve_Arithmetic_Op
(N
: Node_Id
; Typ
: Entity_Id
);
176 procedure Resolve_Call
(N
: Node_Id
; Typ
: Entity_Id
);
177 procedure Resolve_Case_Expression
(N
: Node_Id
; Typ
: Entity_Id
);
178 procedure Resolve_Character_Literal
(N
: Node_Id
; Typ
: Entity_Id
);
179 procedure Resolve_Comparison_Op
(N
: Node_Id
; Typ
: Entity_Id
);
180 procedure Resolve_Entity_Name
(N
: Node_Id
; Typ
: Entity_Id
);
181 procedure Resolve_Equality_Op
(N
: Node_Id
; Typ
: Entity_Id
);
182 procedure Resolve_Explicit_Dereference
(N
: Node_Id
; Typ
: Entity_Id
);
183 procedure Resolve_Expression_With_Actions
(N
: Node_Id
; Typ
: Entity_Id
);
184 procedure Resolve_If_Expression
(N
: Node_Id
; Typ
: Entity_Id
);
185 procedure Resolve_Generalized_Indexing
(N
: Node_Id
; Typ
: Entity_Id
);
186 procedure Resolve_Indexed_Component
(N
: Node_Id
; Typ
: Entity_Id
);
187 procedure Resolve_Integer_Literal
(N
: Node_Id
; Typ
: Entity_Id
);
188 procedure Resolve_Logical_Op
(N
: Node_Id
; Typ
: Entity_Id
);
189 procedure Resolve_Membership_Op
(N
: Node_Id
; Typ
: Entity_Id
);
190 procedure Resolve_Null
(N
: Node_Id
; Typ
: Entity_Id
);
191 procedure Resolve_Operator_Symbol
(N
: Node_Id
; Typ
: Entity_Id
);
192 procedure Resolve_Op_Concat
(N
: Node_Id
; Typ
: Entity_Id
);
193 procedure Resolve_Op_Expon
(N
: Node_Id
; Typ
: Entity_Id
);
194 procedure Resolve_Op_Not
(N
: Node_Id
; Typ
: Entity_Id
);
195 procedure Resolve_Qualified_Expression
(N
: Node_Id
; Typ
: Entity_Id
);
196 procedure Resolve_Raise_Expression
(N
: Node_Id
; Typ
: Entity_Id
);
197 procedure Resolve_Range
(N
: Node_Id
; Typ
: Entity_Id
);
198 procedure Resolve_Real_Literal
(N
: Node_Id
; Typ
: Entity_Id
);
199 procedure Resolve_Reference
(N
: Node_Id
; Typ
: Entity_Id
);
200 procedure Resolve_Selected_Component
(N
: Node_Id
; Typ
: Entity_Id
);
201 procedure Resolve_Shift
(N
: Node_Id
; Typ
: Entity_Id
);
202 procedure Resolve_Short_Circuit
(N
: Node_Id
; Typ
: Entity_Id
);
203 procedure Resolve_Slice
(N
: Node_Id
; Typ
: Entity_Id
);
204 procedure Resolve_String_Literal
(N
: Node_Id
; Typ
: Entity_Id
);
205 procedure Resolve_Target_Name
(N
: Node_Id
; Typ
: Entity_Id
);
206 procedure Resolve_Type_Conversion
(N
: Node_Id
; Typ
: Entity_Id
);
207 procedure Resolve_Unary_Op
(N
: Node_Id
; Typ
: Entity_Id
);
208 procedure Resolve_Unchecked_Expression
(N
: Node_Id
; Typ
: Entity_Id
);
209 procedure Resolve_Unchecked_Type_Conversion
(N
: Node_Id
; Typ
: Entity_Id
);
211 function Operator_Kind
213 Is_Binary
: Boolean) return Node_Kind
;
214 -- Utility to map the name of an operator into the corresponding Node. Used
215 -- by other node rewriting procedures.
217 procedure Resolve_Actuals
(N
: Node_Id
; Nam
: Entity_Id
);
218 -- Resolve actuals of call, and add default expressions for missing ones.
219 -- N is the Node_Id for the subprogram call, and Nam is the entity of the
220 -- called subprogram.
222 procedure Resolve_Entry_Call
(N
: Node_Id
; Typ
: Entity_Id
);
223 -- Called from Resolve_Call, when the prefix denotes an entry or element
224 -- of entry family. Actuals are resolved as for subprograms, and the node
225 -- is rebuilt as an entry call. Also called for protected operations. Typ
226 -- is the context type, which is used when the operation is a protected
227 -- function with no arguments, and the return value is indexed.
229 procedure Resolve_Intrinsic_Operator
(N
: Node_Id
; Typ
: Entity_Id
);
230 -- A call to a user-defined intrinsic operator is rewritten as a call to
231 -- the corresponding predefined operator, with suitable conversions. Note
232 -- that this applies only for intrinsic operators that denote predefined
233 -- operators, not ones that are intrinsic imports of back-end builtins.
235 procedure Resolve_Intrinsic_Unary_Operator
(N
: Node_Id
; Typ
: Entity_Id
);
236 -- Ditto, for arithmetic unary operators
238 procedure Rewrite_Operator_As_Call
(N
: Node_Id
; Nam
: Entity_Id
);
239 -- If an operator node resolves to a call to a user-defined operator,
240 -- rewrite the node as a function call.
242 procedure Make_Call_Into_Operator
246 -- Inverse transformation: if an operator is given in functional notation,
247 -- then after resolving the node, transform into an operator node, so that
248 -- operands are resolved properly. Recall that predefined operators do not
249 -- have a full signature and special resolution rules apply.
251 procedure Rewrite_Renamed_Operator
255 -- An operator can rename another, e.g. in an instantiation. In that
256 -- case, the proper operator node must be constructed and resolved.
258 procedure Set_String_Literal_Subtype
(N
: Node_Id
; Typ
: Entity_Id
);
259 -- The String_Literal_Subtype is built for all strings that are not
260 -- operands of a static concatenation operation. If the argument is not
261 -- a N_String_Literal node, then the call has no effect.
263 procedure Set_Slice_Subtype
(N
: Node_Id
);
264 -- Build subtype of array type, with the range specified by the slice
266 procedure Simplify_Type_Conversion
(N
: Node_Id
);
267 -- Called after N has been resolved and evaluated, but before range checks
268 -- have been applied. Currently simplifies a combination of floating-point
269 -- to integer conversion and Rounding or Truncation attribute.
271 function Unique_Fixed_Point_Type
(N
: Node_Id
) return Entity_Id
;
272 -- A universal_fixed expression in an universal context is unambiguous if
273 -- there is only one applicable fixed point type. Determining whether there
274 -- is only one requires a search over all visible entities, and happens
275 -- only in very pathological cases (see 6115-006).
277 -------------------------
278 -- Ambiguous_Character --
279 -------------------------
281 procedure Ambiguous_Character
(C
: Node_Id
) is
285 if Nkind
(C
) = N_Character_Literal
then
286 Error_Msg_N
("ambiguous character literal", C
);
288 -- First the ones in Standard
290 Error_Msg_N
("\\possible interpretation: Character!", C
);
291 Error_Msg_N
("\\possible interpretation: Wide_Character!", C
);
293 -- Include Wide_Wide_Character in Ada 2005 mode
295 if Ada_Version
>= Ada_2005
then
296 Error_Msg_N
("\\possible interpretation: Wide_Wide_Character!", C
);
299 -- Now any other types that match
301 E
:= Current_Entity
(C
);
302 while Present
(E
) loop
303 Error_Msg_NE
("\\possible interpretation:}!", C
, Etype
(E
));
307 end Ambiguous_Character
;
309 -------------------------
310 -- Analyze_And_Resolve --
311 -------------------------
313 procedure Analyze_And_Resolve
(N
: Node_Id
) is
317 end Analyze_And_Resolve
;
319 procedure Analyze_And_Resolve
(N
: Node_Id
; Typ
: Entity_Id
) is
323 end Analyze_And_Resolve
;
325 -- Versions with check(s) suppressed
327 procedure Analyze_And_Resolve
332 Scop
: constant Entity_Id
:= Current_Scope
;
335 if Suppress
= All_Checks
then
337 Sva
: constant Suppress_Array
:= Scope_Suppress
.Suppress
;
339 Scope_Suppress
.Suppress
:= (others => True);
340 Analyze_And_Resolve
(N
, Typ
);
341 Scope_Suppress
.Suppress
:= Sva
;
346 Svg
: constant Boolean := Scope_Suppress
.Suppress
(Suppress
);
348 Scope_Suppress
.Suppress
(Suppress
) := True;
349 Analyze_And_Resolve
(N
, Typ
);
350 Scope_Suppress
.Suppress
(Suppress
) := Svg
;
354 if Current_Scope
/= Scop
355 and then Scope_Is_Transient
357 -- This can only happen if a transient scope was created for an inner
358 -- expression, which will be removed upon completion of the analysis
359 -- of an enclosing construct. The transient scope must have the
360 -- suppress status of the enclosing environment, not of this Analyze
363 Scope_Stack
.Table
(Scope_Stack
.Last
).Save_Scope_Suppress
:=
366 end Analyze_And_Resolve
;
368 procedure Analyze_And_Resolve
372 Scop
: constant Entity_Id
:= Current_Scope
;
375 if Suppress
= All_Checks
then
377 Sva
: constant Suppress_Array
:= Scope_Suppress
.Suppress
;
379 Scope_Suppress
.Suppress
:= (others => True);
380 Analyze_And_Resolve
(N
);
381 Scope_Suppress
.Suppress
:= Sva
;
386 Svg
: constant Boolean := Scope_Suppress
.Suppress
(Suppress
);
388 Scope_Suppress
.Suppress
(Suppress
) := True;
389 Analyze_And_Resolve
(N
);
390 Scope_Suppress
.Suppress
(Suppress
) := Svg
;
394 if Current_Scope
/= Scop
and then Scope_Is_Transient
then
395 Scope_Stack
.Table
(Scope_Stack
.Last
).Save_Scope_Suppress
:=
398 end Analyze_And_Resolve
;
400 ----------------------------
401 -- Check_Discriminant_Use --
402 ----------------------------
404 procedure Check_Discriminant_Use
(N
: Node_Id
) is
405 PN
: constant Node_Id
:= Parent
(N
);
406 Disc
: constant Entity_Id
:= Entity
(N
);
411 -- Any use in a spec-expression is legal
413 if In_Spec_Expression
then
416 elsif Nkind
(PN
) = N_Range
then
418 -- Discriminant cannot be used to constrain a scalar type
422 if Nkind
(P
) = N_Range_Constraint
423 and then Nkind
(Parent
(P
)) = N_Subtype_Indication
424 and then Nkind
(Parent
(Parent
(P
))) = N_Component_Definition
426 Error_Msg_N
("discriminant cannot constrain scalar type", N
);
428 elsif Nkind
(P
) = N_Index_Or_Discriminant_Constraint
then
430 -- The following check catches the unusual case where a
431 -- discriminant appears within an index constraint that is part
432 -- of a larger expression within a constraint on a component,
433 -- e.g. "C : Int range 1 .. F (new A(1 .. D))". For now we only
434 -- check case of record components, and note that a similar check
435 -- should also apply in the case of discriminant constraints
438 -- Note that the check for N_Subtype_Declaration below is to
439 -- detect the valid use of discriminants in the constraints of a
440 -- subtype declaration when this subtype declaration appears
441 -- inside the scope of a record type (which is syntactically
442 -- illegal, but which may be created as part of derived type
443 -- processing for records). See Sem_Ch3.Build_Derived_Record_Type
446 if Ekind
(Current_Scope
) = E_Record_Type
447 and then Scope
(Disc
) = Current_Scope
449 (Nkind
(Parent
(P
)) = N_Subtype_Indication
451 Nkind_In
(Parent
(Parent
(P
)), N_Component_Definition
,
452 N_Subtype_Declaration
)
453 and then Paren_Count
(N
) = 0)
456 ("discriminant must appear alone in component constraint", N
);
460 -- Detect a common error:
462 -- type R (D : Positive := 100) is record
463 -- Name : String (1 .. D);
466 -- The default value causes an object of type R to be allocated
467 -- with room for Positive'Last characters. The RM does not mandate
468 -- the allocation of the maximum size, but that is what GNAT does
469 -- so we should warn the programmer that there is a problem.
471 Check_Large
: declare
477 function Large_Storage_Type
(T
: Entity_Id
) return Boolean;
478 -- Return True if type T has a large enough range that any
479 -- array whose index type covered the whole range of the type
480 -- would likely raise Storage_Error.
482 ------------------------
483 -- Large_Storage_Type --
484 ------------------------
486 function Large_Storage_Type
(T
: Entity_Id
) return Boolean is
488 -- The type is considered large if its bounds are known at
489 -- compile time and if it requires at least as many bits as
490 -- a Positive to store the possible values.
492 return Compile_Time_Known_Value
(Type_Low_Bound
(T
))
493 and then Compile_Time_Known_Value
(Type_High_Bound
(T
))
495 Minimum_Size
(T
, Biased
=> True) >=
496 RM_Size
(Standard_Positive
);
497 end Large_Storage_Type
;
499 -- Start of processing for Check_Large
502 -- Check that the Disc has a large range
504 if not Large_Storage_Type
(Etype
(Disc
)) then
508 -- If the enclosing type is limited, we allocate only the
509 -- default value, not the maximum, and there is no need for
512 if Is_Limited_Type
(Scope
(Disc
)) then
516 -- Check that it is the high bound
518 if N
/= High_Bound
(PN
)
519 or else No
(Discriminant_Default_Value
(Disc
))
524 -- Check the array allows a large range at this bound. First
529 if Nkind
(SI
) /= N_Subtype_Indication
then
533 T
:= Entity
(Subtype_Mark
(SI
));
535 if not Is_Array_Type
(T
) then
539 -- Next, find the dimension
541 TB
:= First_Index
(T
);
542 CB
:= First
(Constraints
(P
));
544 and then Present
(TB
)
545 and then Present
(CB
)
556 -- Now, check the dimension has a large range
558 if not Large_Storage_Type
(Etype
(TB
)) then
562 -- Warn about the danger
565 ("??creation of & object may raise Storage_Error!",
574 -- Legal case is in index or discriminant constraint
576 elsif Nkind_In
(PN
, N_Index_Or_Discriminant_Constraint
,
577 N_Discriminant_Association
)
579 if Paren_Count
(N
) > 0 then
581 ("discriminant in constraint must appear alone", N
);
583 elsif Nkind
(N
) = N_Expanded_Name
584 and then Comes_From_Source
(N
)
587 ("discriminant must appear alone as a direct name", N
);
592 -- Otherwise, context is an expression. It should not be within (i.e. a
593 -- subexpression of) a constraint for a component.
598 while not Nkind_In
(P
, N_Component_Declaration
,
599 N_Subtype_Indication
,
607 -- If the discriminant is used in an expression that is a bound of a
608 -- scalar type, an Itype is created and the bounds are attached to
609 -- its range, not to the original subtype indication. Such use is of
610 -- course a double fault.
612 if (Nkind
(P
) = N_Subtype_Indication
613 and then Nkind_In
(Parent
(P
), N_Component_Definition
,
614 N_Derived_Type_Definition
)
615 and then D
= Constraint
(P
))
617 -- The constraint itself may be given by a subtype indication,
618 -- rather than by a more common discrete range.
620 or else (Nkind
(P
) = N_Subtype_Indication
622 Nkind
(Parent
(P
)) = N_Index_Or_Discriminant_Constraint
)
623 or else Nkind
(P
) = N_Entry_Declaration
624 or else Nkind
(D
) = N_Defining_Identifier
627 ("discriminant in constraint must appear alone", N
);
630 end Check_Discriminant_Use
;
632 --------------------------------
633 -- Check_For_Visible_Operator --
634 --------------------------------
636 procedure Check_For_Visible_Operator
(N
: Node_Id
; T
: Entity_Id
) is
638 if Is_Invisible_Operator
(N
, T
) then
639 Error_Msg_NE
-- CODEFIX
640 ("operator for} is not directly visible!", N
, First_Subtype
(T
));
641 Error_Msg_N
-- CODEFIX
642 ("use clause would make operation legal!", N
);
644 end Check_For_Visible_Operator
;
646 ----------------------------------
647 -- Check_Fully_Declared_Prefix --
648 ----------------------------------
650 procedure Check_Fully_Declared_Prefix
655 -- Check that the designated type of the prefix of a dereference is
656 -- not an incomplete type. This cannot be done unconditionally, because
657 -- dereferences of private types are legal in default expressions. This
658 -- case is taken care of in Check_Fully_Declared, called below. There
659 -- are also 2005 cases where it is legal for the prefix to be unfrozen.
661 -- This consideration also applies to similar checks for allocators,
662 -- qualified expressions, and type conversions.
664 -- An additional exception concerns other per-object expressions that
665 -- are not directly related to component declarations, in particular
666 -- representation pragmas for tasks. These will be per-object
667 -- expressions if they depend on discriminants or some global entity.
668 -- If the task has access discriminants, the designated type may be
669 -- incomplete at the point the expression is resolved. This resolution
670 -- takes place within the body of the initialization procedure, where
671 -- the discriminant is replaced by its discriminal.
673 if Is_Entity_Name
(Pref
)
674 and then Ekind
(Entity
(Pref
)) = E_In_Parameter
678 -- Ada 2005 (AI-326): Tagged incomplete types allowed. The wrong usages
679 -- are handled by Analyze_Access_Attribute, Analyze_Assignment,
680 -- Analyze_Object_Renaming, and Freeze_Entity.
682 elsif Ada_Version
>= Ada_2005
683 and then Is_Entity_Name
(Pref
)
684 and then Is_Access_Type
(Etype
(Pref
))
685 and then Ekind
(Directly_Designated_Type
(Etype
(Pref
))) =
687 and then Is_Tagged_Type
(Directly_Designated_Type
(Etype
(Pref
)))
691 Check_Fully_Declared
(Typ
, Parent
(Pref
));
693 end Check_Fully_Declared_Prefix
;
695 ------------------------------
696 -- Check_Infinite_Recursion --
697 ------------------------------
699 function Check_Infinite_Recursion
(N
: Node_Id
) return Boolean is
703 function Same_Argument_List
return Boolean;
704 -- Check whether list of actuals is identical to list of formals of
705 -- called function (which is also the enclosing scope).
707 ------------------------
708 -- Same_Argument_List --
709 ------------------------
711 function Same_Argument_List
return Boolean is
717 if not Is_Entity_Name
(Name
(N
)) then
720 Subp
:= Entity
(Name
(N
));
723 F
:= First_Formal
(Subp
);
724 A
:= First_Actual
(N
);
725 while Present
(F
) and then Present
(A
) loop
726 if not Is_Entity_Name
(A
) or else Entity
(A
) /= F
then
735 end Same_Argument_List
;
737 -- Start of processing for Check_Infinite_Recursion
740 -- Special case, if this is a procedure call and is a call to the
741 -- current procedure with the same argument list, then this is for
742 -- sure an infinite recursion and we insert a call to raise SE.
744 if Is_List_Member
(N
)
745 and then List_Length
(List_Containing
(N
)) = 1
746 and then Same_Argument_List
749 P
: constant Node_Id
:= Parent
(N
);
751 if Nkind
(P
) = N_Handled_Sequence_Of_Statements
752 and then Nkind
(Parent
(P
)) = N_Subprogram_Body
753 and then Is_Empty_List
(Declarations
(Parent
(P
)))
755 Error_Msg_Warn
:= SPARK_Mode
/= On
;
756 Error_Msg_N
("!infinite recursion<<", N
);
757 Error_Msg_N
("\!Storage_Error [<<", N
);
759 Make_Raise_Storage_Error
(Sloc
(N
),
760 Reason
=> SE_Infinite_Recursion
));
766 -- If not that special case, search up tree, quitting if we reach a
767 -- construct (e.g. a conditional) that tells us that this is not a
768 -- case for an infinite recursion warning.
774 -- If no parent, then we were not inside a subprogram, this can for
775 -- example happen when processing certain pragmas in a spec. Just
776 -- return False in this case.
782 -- Done if we get to subprogram body, this is definitely an infinite
783 -- recursion case if we did not find anything to stop us.
785 exit when Nkind
(P
) = N_Subprogram_Body
;
787 -- If appearing in conditional, result is false
789 if Nkind_In
(P
, N_Or_Else
,
798 elsif Nkind
(P
) = N_Handled_Sequence_Of_Statements
799 and then C
/= First
(Statements
(P
))
801 -- If the call is the expression of a return statement and the
802 -- actuals are identical to the formals, it's worth a warning.
803 -- However, we skip this if there is an immediately preceding
804 -- raise statement, since the call is never executed.
806 -- Furthermore, this corresponds to a common idiom:
808 -- function F (L : Thing) return Boolean is
810 -- raise Program_Error;
814 -- for generating a stub function
816 if Nkind
(Parent
(N
)) = N_Simple_Return_Statement
817 and then Same_Argument_List
819 exit when not Is_List_Member
(Parent
(N
));
821 -- OK, return statement is in a statement list, look for raise
827 -- Skip past N_Freeze_Entity nodes generated by expansion
829 Nod
:= Prev
(Parent
(N
));
831 and then Nkind
(Nod
) = N_Freeze_Entity
836 -- If no raise statement, give warning. We look at the
837 -- original node, because in the case of "raise ... with
838 -- ...", the node has been transformed into a call.
840 exit when Nkind
(Original_Node
(Nod
)) /= N_Raise_Statement
842 (Nkind
(Nod
) not in N_Raise_xxx_Error
843 or else Present
(Condition
(Nod
)));
854 Error_Msg_Warn
:= SPARK_Mode
/= On
;
855 Error_Msg_N
("!possible infinite recursion<<", N
);
856 Error_Msg_N
("\!??Storage_Error ]<<", N
);
859 end Check_Infinite_Recursion
;
861 -------------------------------
862 -- Check_Initialization_Call --
863 -------------------------------
865 procedure Check_Initialization_Call
(N
: Entity_Id
; Nam
: Entity_Id
) is
866 Typ
: constant Entity_Id
:= Etype
(First_Formal
(Nam
));
868 function Uses_SS
(T
: Entity_Id
) return Boolean;
869 -- Check whether the creation of an object of the type will involve
870 -- use of the secondary stack. If T is a record type, this is true
871 -- if the expression for some component uses the secondary stack, e.g.
872 -- through a call to a function that returns an unconstrained value.
873 -- False if T is controlled, because cleanups occur elsewhere.
879 function Uses_SS
(T
: Entity_Id
) return Boolean is
882 Full_Type
: Entity_Id
:= Underlying_Type
(T
);
885 -- Normally we want to use the underlying type, but if it's not set
886 -- then continue with T.
888 if not Present
(Full_Type
) then
892 if Is_Controlled
(Full_Type
) then
895 elsif Is_Array_Type
(Full_Type
) then
896 return Uses_SS
(Component_Type
(Full_Type
));
898 elsif Is_Record_Type
(Full_Type
) then
899 Comp
:= First_Component
(Full_Type
);
900 while Present
(Comp
) loop
901 if Ekind
(Comp
) = E_Component
902 and then Nkind
(Parent
(Comp
)) = N_Component_Declaration
904 -- The expression for a dynamic component may be rewritten
905 -- as a dereference, so retrieve original node.
907 Expr
:= Original_Node
(Expression
(Parent
(Comp
)));
909 -- Return True if the expression is a call to a function
910 -- (including an attribute function such as Image, or a
911 -- user-defined operator) with a result that requires a
914 if (Nkind
(Expr
) = N_Function_Call
915 or else Nkind
(Expr
) in N_Op
916 or else (Nkind
(Expr
) = N_Attribute_Reference
917 and then Present
(Expressions
(Expr
))))
918 and then Requires_Transient_Scope
(Etype
(Expr
))
922 elsif Uses_SS
(Etype
(Comp
)) then
927 Next_Component
(Comp
);
937 -- Start of processing for Check_Initialization_Call
940 -- Establish a transient scope if the type needs it
942 if Uses_SS
(Typ
) then
943 Establish_Transient_Scope
(First_Actual
(N
), Sec_Stack
=> True);
945 end Check_Initialization_Call
;
947 ---------------------------------------
948 -- Check_No_Direct_Boolean_Operators --
949 ---------------------------------------
951 procedure Check_No_Direct_Boolean_Operators
(N
: Node_Id
) is
953 if Scope
(Entity
(N
)) = Standard_Standard
954 and then Root_Type
(Etype
(Left_Opnd
(N
))) = Standard_Boolean
956 -- Restriction only applies to original source code
958 if Comes_From_Source
(N
) then
959 Check_Restriction
(No_Direct_Boolean_Operators
, N
);
963 -- Do style check (but skip if in instance, error is on template)
966 if not In_Instance
then
967 Check_Boolean_Operator
(N
);
970 end Check_No_Direct_Boolean_Operators
;
972 ------------------------------
973 -- Check_Parameterless_Call --
974 ------------------------------
976 procedure Check_Parameterless_Call
(N
: Node_Id
) is
979 function Prefix_Is_Access_Subp
return Boolean;
980 -- If the prefix is of an access_to_subprogram type, the node must be
981 -- rewritten as a call. Ditto if the prefix is overloaded and all its
982 -- interpretations are access to subprograms.
984 ---------------------------
985 -- Prefix_Is_Access_Subp --
986 ---------------------------
988 function Prefix_Is_Access_Subp
return Boolean is
993 -- If the context is an attribute reference that can apply to
994 -- functions, this is never a parameterless call (RM 4.1.4(6)).
996 if Nkind
(Parent
(N
)) = N_Attribute_Reference
997 and then Nam_In
(Attribute_Name
(Parent
(N
)), Name_Address
,
1004 if not Is_Overloaded
(N
) then
1006 Ekind
(Etype
(N
)) = E_Subprogram_Type
1007 and then Base_Type
(Etype
(Etype
(N
))) /= Standard_Void_Type
;
1009 Get_First_Interp
(N
, I
, It
);
1010 while Present
(It
.Typ
) loop
1011 if Ekind
(It
.Typ
) /= E_Subprogram_Type
1012 or else Base_Type
(Etype
(It
.Typ
)) = Standard_Void_Type
1017 Get_Next_Interp
(I
, It
);
1022 end Prefix_Is_Access_Subp
;
1024 -- Start of processing for Check_Parameterless_Call
1027 -- Defend against junk stuff if errors already detected
1029 if Total_Errors_Detected
/= 0 then
1030 if Nkind
(N
) in N_Has_Etype
and then Etype
(N
) = Any_Type
then
1032 elsif Nkind
(N
) in N_Has_Chars
1033 and then Chars
(N
) in Error_Name_Or_No_Name
1041 -- If the context expects a value, and the name is a procedure, this is
1042 -- most likely a missing 'Access. Don't try to resolve the parameterless
1043 -- call, error will be caught when the outer call is analyzed.
1045 if Is_Entity_Name
(N
)
1046 and then Ekind
(Entity
(N
)) = E_Procedure
1047 and then not Is_Overloaded
(N
)
1049 Nkind_In
(Parent
(N
), N_Parameter_Association
,
1051 N_Procedure_Call_Statement
)
1056 -- Rewrite as call if overloadable entity that is (or could be, in the
1057 -- overloaded case) a function call. If we know for sure that the entity
1058 -- is an enumeration literal, we do not rewrite it.
1060 -- If the entity is the name of an operator, it cannot be a call because
1061 -- operators cannot have default parameters. In this case, this must be
1062 -- a string whose contents coincide with an operator name. Set the kind
1063 -- of the node appropriately.
1065 if (Is_Entity_Name
(N
)
1066 and then Nkind
(N
) /= N_Operator_Symbol
1067 and then Is_Overloadable
(Entity
(N
))
1068 and then (Ekind
(Entity
(N
)) /= E_Enumeration_Literal
1069 or else Is_Overloaded
(N
)))
1071 -- Rewrite as call if it is an explicit dereference of an expression of
1072 -- a subprogram access type, and the subprogram type is not that of a
1073 -- procedure or entry.
1076 (Nkind
(N
) = N_Explicit_Dereference
and then Prefix_Is_Access_Subp
)
1078 -- Rewrite as call if it is a selected component which is a function,
1079 -- this is the case of a call to a protected function (which may be
1080 -- overloaded with other protected operations).
1083 (Nkind
(N
) = N_Selected_Component
1084 and then (Ekind
(Entity
(Selector_Name
(N
))) = E_Function
1086 (Ekind_In
(Entity
(Selector_Name
(N
)), E_Entry
,
1088 and then Is_Overloaded
(Selector_Name
(N
)))))
1090 -- If one of the above three conditions is met, rewrite as call. Apply
1091 -- the rewriting only once.
1094 if Nkind
(Parent
(N
)) /= N_Function_Call
1095 or else N
/= Name
(Parent
(N
))
1098 -- This may be a prefixed call that was not fully analyzed, e.g.
1099 -- an actual in an instance.
1101 if Ada_Version
>= Ada_2005
1102 and then Nkind
(N
) = N_Selected_Component
1103 and then Is_Dispatching_Operation
(Entity
(Selector_Name
(N
)))
1105 Analyze_Selected_Component
(N
);
1107 if Nkind
(N
) /= N_Selected_Component
then
1112 -- The node is the name of the parameterless call. Preserve its
1113 -- descendants, which may be complex expressions.
1115 Nam
:= Relocate_Node
(N
);
1117 -- If overloaded, overload set belongs to new copy
1119 Save_Interps
(N
, Nam
);
1121 -- Change node to parameterless function call (note that the
1122 -- Parameter_Associations associations field is left set to Empty,
1123 -- its normal default value since there are no parameters)
1125 Change_Node
(N
, N_Function_Call
);
1127 Set_Sloc
(N
, Sloc
(Nam
));
1131 elsif Nkind
(N
) = N_Parameter_Association
then
1132 Check_Parameterless_Call
(Explicit_Actual_Parameter
(N
));
1134 elsif Nkind
(N
) = N_Operator_Symbol
then
1135 Change_Operator_Symbol_To_String_Literal
(N
);
1136 Set_Is_Overloaded
(N
, False);
1137 Set_Etype
(N
, Any_String
);
1139 end Check_Parameterless_Call
;
1141 --------------------------------
1142 -- Is_Atomic_Ref_With_Address --
1143 --------------------------------
1145 function Is_Atomic_Ref_With_Address
(N
: Node_Id
) return Boolean is
1146 Pref
: constant Node_Id
:= Prefix
(N
);
1149 if not Is_Entity_Name
(Pref
) then
1154 Pent
: constant Entity_Id
:= Entity
(Pref
);
1155 Ptyp
: constant Entity_Id
:= Etype
(Pent
);
1157 return not Is_Access_Type
(Ptyp
)
1158 and then (Is_Atomic
(Ptyp
) or else Is_Atomic
(Pent
))
1159 and then Present
(Address_Clause
(Pent
));
1162 end Is_Atomic_Ref_With_Address
;
1164 -----------------------------
1165 -- Is_Definite_Access_Type --
1166 -----------------------------
1168 function Is_Definite_Access_Type
(E
: Entity_Id
) return Boolean is
1169 Btyp
: constant Entity_Id
:= Base_Type
(E
);
1171 return Ekind
(Btyp
) = E_Access_Type
1172 or else (Ekind
(Btyp
) = E_Access_Subprogram_Type
1173 and then Comes_From_Source
(Btyp
));
1174 end Is_Definite_Access_Type
;
1176 ----------------------
1177 -- Is_Predefined_Op --
1178 ----------------------
1180 function Is_Predefined_Op
(Nam
: Entity_Id
) return Boolean is
1182 -- Predefined operators are intrinsic subprograms
1184 if not Is_Intrinsic_Subprogram
(Nam
) then
1188 -- A call to a back-end builtin is never a predefined operator
1190 if Is_Imported
(Nam
) and then Present
(Interface_Name
(Nam
)) then
1194 return not Is_Generic_Instance
(Nam
)
1195 and then Chars
(Nam
) in Any_Operator_Name
1196 and then (No
(Alias
(Nam
)) or else Is_Predefined_Op
(Alias
(Nam
)));
1197 end Is_Predefined_Op
;
1199 -----------------------------
1200 -- Make_Call_Into_Operator --
1201 -----------------------------
1203 procedure Make_Call_Into_Operator
1208 Op_Name
: constant Name_Id
:= Chars
(Op_Id
);
1209 Act1
: Node_Id
:= First_Actual
(N
);
1210 Act2
: Node_Id
:= Next_Actual
(Act1
);
1211 Error
: Boolean := False;
1212 Func
: constant Entity_Id
:= Entity
(Name
(N
));
1213 Is_Binary
: constant Boolean := Present
(Act2
);
1215 Opnd_Type
: Entity_Id
;
1216 Orig_Type
: Entity_Id
:= Empty
;
1219 type Kind_Test
is access function (E
: Entity_Id
) return Boolean;
1221 function Operand_Type_In_Scope
(S
: Entity_Id
) return Boolean;
1222 -- If the operand is not universal, and the operator is given by an
1223 -- expanded name, verify that the operand has an interpretation with a
1224 -- type defined in the given scope of the operator.
1226 function Type_In_P
(Test
: Kind_Test
) return Entity_Id
;
1227 -- Find a type of the given class in package Pack that contains the
1230 ---------------------------
1231 -- Operand_Type_In_Scope --
1232 ---------------------------
1234 function Operand_Type_In_Scope
(S
: Entity_Id
) return Boolean is
1235 Nod
: constant Node_Id
:= Right_Opnd
(Op_Node
);
1240 if not Is_Overloaded
(Nod
) then
1241 return Scope
(Base_Type
(Etype
(Nod
))) = S
;
1244 Get_First_Interp
(Nod
, I
, It
);
1245 while Present
(It
.Typ
) loop
1246 if Scope
(Base_Type
(It
.Typ
)) = S
then
1250 Get_Next_Interp
(I
, It
);
1255 end Operand_Type_In_Scope
;
1261 function Type_In_P
(Test
: Kind_Test
) return Entity_Id
is
1264 function In_Decl
return Boolean;
1265 -- Verify that node is not part of the type declaration for the
1266 -- candidate type, which would otherwise be invisible.
1272 function In_Decl
return Boolean is
1273 Decl_Node
: constant Node_Id
:= Parent
(E
);
1279 if Etype
(E
) = Any_Type
then
1282 elsif No
(Decl_Node
) then
1287 and then Nkind
(N2
) /= N_Compilation_Unit
1289 if N2
= Decl_Node
then
1300 -- Start of processing for Type_In_P
1303 -- If the context type is declared in the prefix package, this is the
1304 -- desired base type.
1306 if Scope
(Base_Type
(Typ
)) = Pack
and then Test
(Typ
) then
1307 return Base_Type
(Typ
);
1310 E
:= First_Entity
(Pack
);
1311 while Present
(E
) loop
1312 if Test
(E
) and then not In_Decl
then
1323 -- Start of processing for Make_Call_Into_Operator
1326 Op_Node
:= New_Node
(Operator_Kind
(Op_Name
, Is_Binary
), Sloc
(N
));
1331 Set_Left_Opnd
(Op_Node
, Relocate_Node
(Act1
));
1332 Set_Right_Opnd
(Op_Node
, Relocate_Node
(Act2
));
1333 Save_Interps
(Act1
, Left_Opnd
(Op_Node
));
1334 Save_Interps
(Act2
, Right_Opnd
(Op_Node
));
1335 Act1
:= Left_Opnd
(Op_Node
);
1336 Act2
:= Right_Opnd
(Op_Node
);
1341 Set_Right_Opnd
(Op_Node
, Relocate_Node
(Act1
));
1342 Save_Interps
(Act1
, Right_Opnd
(Op_Node
));
1343 Act1
:= Right_Opnd
(Op_Node
);
1346 -- If the operator is denoted by an expanded name, and the prefix is
1347 -- not Standard, but the operator is a predefined one whose scope is
1348 -- Standard, then this is an implicit_operator, inserted as an
1349 -- interpretation by the procedure of the same name. This procedure
1350 -- overestimates the presence of implicit operators, because it does
1351 -- not examine the type of the operands. Verify now that the operand
1352 -- type appears in the given scope. If right operand is universal,
1353 -- check the other operand. In the case of concatenation, either
1354 -- argument can be the component type, so check the type of the result.
1355 -- If both arguments are literals, look for a type of the right kind
1356 -- defined in the given scope. This elaborate nonsense is brought to
1357 -- you courtesy of b33302a. The type itself must be frozen, so we must
1358 -- find the type of the proper class in the given scope.
1360 -- A final wrinkle is the multiplication operator for fixed point types,
1361 -- which is defined in Standard only, and not in the scope of the
1362 -- fixed point type itself.
1364 if Nkind
(Name
(N
)) = N_Expanded_Name
then
1365 Pack
:= Entity
(Prefix
(Name
(N
)));
1367 -- If this is a package renaming, get renamed entity, which will be
1368 -- the scope of the operands if operaton is type-correct.
1370 if Present
(Renamed_Entity
(Pack
)) then
1371 Pack
:= Renamed_Entity
(Pack
);
1374 -- If the entity being called is defined in the given package, it is
1375 -- a renaming of a predefined operator, and known to be legal.
1377 if Scope
(Entity
(Name
(N
))) = Pack
1378 and then Pack
/= Standard_Standard
1382 -- Visibility does not need to be checked in an instance: if the
1383 -- operator was not visible in the generic it has been diagnosed
1384 -- already, else there is an implicit copy of it in the instance.
1386 elsif In_Instance
then
1389 elsif Nam_In
(Op_Name
, Name_Op_Multiply
, Name_Op_Divide
)
1390 and then Is_Fixed_Point_Type
(Etype
(Left_Opnd
(Op_Node
)))
1391 and then Is_Fixed_Point_Type
(Etype
(Right_Opnd
(Op_Node
)))
1393 if Pack
/= Standard_Standard
then
1397 -- Ada 2005 AI-420: Predefined equality on Universal_Access is
1400 elsif Ada_Version
>= Ada_2005
1401 and then Nam_In
(Op_Name
, Name_Op_Eq
, Name_Op_Ne
)
1402 and then Ekind
(Etype
(Act1
)) = E_Anonymous_Access_Type
1407 Opnd_Type
:= Base_Type
(Etype
(Right_Opnd
(Op_Node
)));
1409 if Op_Name
= Name_Op_Concat
then
1410 Opnd_Type
:= Base_Type
(Typ
);
1412 elsif (Scope
(Opnd_Type
) = Standard_Standard
1414 or else (Nkind
(Right_Opnd
(Op_Node
)) = N_Attribute_Reference
1416 and then not Comes_From_Source
(Opnd_Type
))
1418 Opnd_Type
:= Base_Type
(Etype
(Left_Opnd
(Op_Node
)));
1421 if Scope
(Opnd_Type
) = Standard_Standard
then
1423 -- Verify that the scope contains a type that corresponds to
1424 -- the given literal. Optimize the case where Pack is Standard.
1426 if Pack
/= Standard_Standard
then
1427 if Opnd_Type
= Universal_Integer
then
1428 Orig_Type
:= Type_In_P
(Is_Integer_Type
'Access);
1430 elsif Opnd_Type
= Universal_Real
then
1431 Orig_Type
:= Type_In_P
(Is_Real_Type
'Access);
1433 elsif Opnd_Type
= Any_String
then
1434 Orig_Type
:= Type_In_P
(Is_String_Type
'Access);
1436 elsif Opnd_Type
= Any_Access
then
1437 Orig_Type
:= Type_In_P
(Is_Definite_Access_Type
'Access);
1439 elsif Opnd_Type
= Any_Composite
then
1440 Orig_Type
:= Type_In_P
(Is_Composite_Type
'Access);
1442 if Present
(Orig_Type
) then
1443 if Has_Private_Component
(Orig_Type
) then
1446 Set_Etype
(Act1
, Orig_Type
);
1449 Set_Etype
(Act2
, Orig_Type
);
1458 Error
:= No
(Orig_Type
);
1461 elsif Ekind
(Opnd_Type
) = E_Allocator_Type
1462 and then No
(Type_In_P
(Is_Definite_Access_Type
'Access))
1466 -- If the type is defined elsewhere, and the operator is not
1467 -- defined in the given scope (by a renaming declaration, e.g.)
1468 -- then this is an error as well. If an extension of System is
1469 -- present, and the type may be defined there, Pack must be
1472 elsif Scope
(Opnd_Type
) /= Pack
1473 and then Scope
(Op_Id
) /= Pack
1474 and then (No
(System_Aux_Id
)
1475 or else Scope
(Opnd_Type
) /= System_Aux_Id
1476 or else Pack
/= Scope
(System_Aux_Id
))
1478 if not Is_Overloaded
(Right_Opnd
(Op_Node
)) then
1481 Error
:= not Operand_Type_In_Scope
(Pack
);
1484 elsif Pack
= Standard_Standard
1485 and then not Operand_Type_In_Scope
(Standard_Standard
)
1492 Error_Msg_Node_2
:= Pack
;
1494 ("& not declared in&", N
, Selector_Name
(Name
(N
)));
1495 Set_Etype
(N
, Any_Type
);
1498 -- Detect a mismatch between the context type and the result type
1499 -- in the named package, which is otherwise not detected if the
1500 -- operands are universal. Check is only needed if source entity is
1501 -- an operator, not a function that renames an operator.
1503 elsif Nkind
(Parent
(N
)) /= N_Type_Conversion
1504 and then Ekind
(Entity
(Name
(N
))) = E_Operator
1505 and then Is_Numeric_Type
(Typ
)
1506 and then not Is_Universal_Numeric_Type
(Typ
)
1507 and then Scope
(Base_Type
(Typ
)) /= Pack
1508 and then not In_Instance
1510 if Is_Fixed_Point_Type
(Typ
)
1511 and then Nam_In
(Op_Name
, Name_Op_Multiply
, Name_Op_Divide
)
1513 -- Already checked above
1517 -- Operator may be defined in an extension of System
1519 elsif Present
(System_Aux_Id
)
1520 and then Scope
(Opnd_Type
) = System_Aux_Id
1525 -- Could we use Wrong_Type here??? (this would require setting
1526 -- Etype (N) to the actual type found where Typ was expected).
1528 Error_Msg_NE
("expect }", N
, Typ
);
1533 Set_Chars
(Op_Node
, Op_Name
);
1535 if not Is_Private_Type
(Etype
(N
)) then
1536 Set_Etype
(Op_Node
, Base_Type
(Etype
(N
)));
1538 Set_Etype
(Op_Node
, Etype
(N
));
1541 -- If this is a call to a function that renames a predefined equality,
1542 -- the renaming declaration provides a type that must be used to
1543 -- resolve the operands. This must be done now because resolution of
1544 -- the equality node will not resolve any remaining ambiguity, and it
1545 -- assumes that the first operand is not overloaded.
1547 if Nam_In
(Op_Name
, Name_Op_Eq
, Name_Op_Ne
)
1548 and then Ekind
(Func
) = E_Function
1549 and then Is_Overloaded
(Act1
)
1551 Resolve
(Act1
, Base_Type
(Etype
(First_Formal
(Func
))));
1552 Resolve
(Act2
, Base_Type
(Etype
(First_Formal
(Func
))));
1555 Set_Entity
(Op_Node
, Op_Id
);
1556 Generate_Reference
(Op_Id
, N
, ' ');
1558 -- Do rewrite setting Comes_From_Source on the result if the original
1559 -- call came from source. Although it is not strictly the case that the
1560 -- operator as such comes from the source, logically it corresponds
1561 -- exactly to the function call in the source, so it should be marked
1562 -- this way (e.g. to make sure that validity checks work fine).
1565 CS
: constant Boolean := Comes_From_Source
(N
);
1567 Rewrite
(N
, Op_Node
);
1568 Set_Comes_From_Source
(N
, CS
);
1571 -- If this is an arithmetic operator and the result type is private,
1572 -- the operands and the result must be wrapped in conversion to
1573 -- expose the underlying numeric type and expand the proper checks,
1574 -- e.g. on division.
1576 if Is_Private_Type
(Typ
) then
1586 Resolve_Intrinsic_Operator
(N
, Typ
);
1592 Resolve_Intrinsic_Unary_Operator
(N
, Typ
);
1601 -- If in ASIS_Mode, propagate operand types to original actuals of
1602 -- function call, which would otherwise not be fully resolved. If
1603 -- the call has already been constant-folded, nothing to do. We
1604 -- relocate the operand nodes rather than copy them, to preserve
1605 -- original_node pointers, given that the operands themselves may
1606 -- have been rewritten. If the call was itself a rewriting of an
1607 -- operator node, nothing to do.
1610 and then Nkind
(N
) in N_Op
1611 and then Nkind
(Original_Node
(N
)) = N_Function_Call
1615 R
: constant Node_Id
:= Right_Opnd
(N
);
1617 Old_First
: constant Node_Id
:=
1618 First
(Parameter_Associations
(Original_Node
(N
)));
1624 Old_Sec
:= Next
(Old_First
);
1626 -- If the original call has named associations, replace the
1627 -- explicit actual parameter in the association with the proper
1628 -- resolved operand.
1630 if Nkind
(Old_First
) = N_Parameter_Association
then
1631 if Chars
(Selector_Name
(Old_First
)) =
1632 Chars
(First_Entity
(Op_Id
))
1634 Rewrite
(Explicit_Actual_Parameter
(Old_First
),
1637 Rewrite
(Explicit_Actual_Parameter
(Old_First
),
1642 Rewrite
(Old_First
, Relocate_Node
(L
));
1645 if Nkind
(Old_Sec
) = N_Parameter_Association
then
1646 if Chars
(Selector_Name
(Old_Sec
)) =
1647 Chars
(First_Entity
(Op_Id
))
1649 Rewrite
(Explicit_Actual_Parameter
(Old_Sec
),
1652 Rewrite
(Explicit_Actual_Parameter
(Old_Sec
),
1657 Rewrite
(Old_Sec
, Relocate_Node
(R
));
1661 if Nkind
(Old_First
) = N_Parameter_Association
then
1662 Rewrite
(Explicit_Actual_Parameter
(Old_First
),
1665 Rewrite
(Old_First
, Relocate_Node
(R
));
1670 Set_Parent
(Original_Node
(N
), Parent
(N
));
1672 end Make_Call_Into_Operator
;
1678 function Operator_Kind
1680 Is_Binary
: Boolean) return Node_Kind
1685 -- Use CASE statement or array???
1688 if Op_Name
= Name_Op_And
then
1690 elsif Op_Name
= Name_Op_Or
then
1692 elsif Op_Name
= Name_Op_Xor
then
1694 elsif Op_Name
= Name_Op_Eq
then
1696 elsif Op_Name
= Name_Op_Ne
then
1698 elsif Op_Name
= Name_Op_Lt
then
1700 elsif Op_Name
= Name_Op_Le
then
1702 elsif Op_Name
= Name_Op_Gt
then
1704 elsif Op_Name
= Name_Op_Ge
then
1706 elsif Op_Name
= Name_Op_Add
then
1708 elsif Op_Name
= Name_Op_Subtract
then
1709 Kind
:= N_Op_Subtract
;
1710 elsif Op_Name
= Name_Op_Concat
then
1711 Kind
:= N_Op_Concat
;
1712 elsif Op_Name
= Name_Op_Multiply
then
1713 Kind
:= N_Op_Multiply
;
1714 elsif Op_Name
= Name_Op_Divide
then
1715 Kind
:= N_Op_Divide
;
1716 elsif Op_Name
= Name_Op_Mod
then
1718 elsif Op_Name
= Name_Op_Rem
then
1720 elsif Op_Name
= Name_Op_Expon
then
1723 raise Program_Error
;
1729 if Op_Name
= Name_Op_Add
then
1731 elsif Op_Name
= Name_Op_Subtract
then
1733 elsif Op_Name
= Name_Op_Abs
then
1735 elsif Op_Name
= Name_Op_Not
then
1738 raise Program_Error
;
1745 ----------------------------
1746 -- Preanalyze_And_Resolve --
1747 ----------------------------
1749 procedure Preanalyze_And_Resolve
(N
: Node_Id
; T
: Entity_Id
) is
1750 Save_Full_Analysis
: constant Boolean := Full_Analysis
;
1753 Full_Analysis
:= False;
1754 Expander_Mode_Save_And_Set
(False);
1756 -- Normally, we suppress all checks for this preanalysis. There is no
1757 -- point in processing them now, since they will be applied properly
1758 -- and in the proper location when the default expressions reanalyzed
1759 -- and reexpanded later on. We will also have more information at that
1760 -- point for possible suppression of individual checks.
1762 -- However, in SPARK mode, most expansion is suppressed, and this
1763 -- later reanalysis and reexpansion may not occur. SPARK mode does
1764 -- require the setting of checking flags for proof purposes, so we
1765 -- do the SPARK preanalysis without suppressing checks.
1767 -- This special handling for SPARK mode is required for example in the
1768 -- case of Ada 2012 constructs such as quantified expressions, which are
1769 -- expanded in two separate steps.
1771 if GNATprove_Mode
then
1772 Analyze_And_Resolve
(N
, T
);
1774 Analyze_And_Resolve
(N
, T
, Suppress
=> All_Checks
);
1777 Expander_Mode_Restore
;
1778 Full_Analysis
:= Save_Full_Analysis
;
1779 end Preanalyze_And_Resolve
;
1781 -- Version without context type
1783 procedure Preanalyze_And_Resolve
(N
: Node_Id
) is
1784 Save_Full_Analysis
: constant Boolean := Full_Analysis
;
1787 Full_Analysis
:= False;
1788 Expander_Mode_Save_And_Set
(False);
1791 Resolve
(N
, Etype
(N
), Suppress
=> All_Checks
);
1793 Expander_Mode_Restore
;
1794 Full_Analysis
:= Save_Full_Analysis
;
1795 end Preanalyze_And_Resolve
;
1797 ----------------------------------
1798 -- Replace_Actual_Discriminants --
1799 ----------------------------------
1801 procedure Replace_Actual_Discriminants
(N
: Node_Id
; Default
: Node_Id
) is
1802 Loc
: constant Source_Ptr
:= Sloc
(N
);
1803 Tsk
: Node_Id
:= Empty
;
1805 function Process_Discr
(Nod
: Node_Id
) return Traverse_Result
;
1806 -- Comment needed???
1812 function Process_Discr
(Nod
: Node_Id
) return Traverse_Result
is
1816 if Nkind
(Nod
) = N_Identifier
then
1817 Ent
:= Entity
(Nod
);
1820 and then Ekind
(Ent
) = E_Discriminant
1823 Make_Selected_Component
(Loc
,
1824 Prefix
=> New_Copy_Tree
(Tsk
, New_Sloc
=> Loc
),
1825 Selector_Name
=> Make_Identifier
(Loc
, Chars
(Ent
))));
1827 Set_Etype
(Nod
, Etype
(Ent
));
1835 procedure Replace_Discrs
is new Traverse_Proc
(Process_Discr
);
1837 -- Start of processing for Replace_Actual_Discriminants
1840 if not Expander_Active
then
1844 if Nkind
(Name
(N
)) = N_Selected_Component
then
1845 Tsk
:= Prefix
(Name
(N
));
1847 elsif Nkind
(Name
(N
)) = N_Indexed_Component
then
1848 Tsk
:= Prefix
(Prefix
(Name
(N
)));
1854 Replace_Discrs
(Default
);
1856 end Replace_Actual_Discriminants
;
1862 procedure Resolve
(N
: Node_Id
; Typ
: Entity_Id
) is
1863 Ambiguous
: Boolean := False;
1864 Ctx_Type
: Entity_Id
:= Typ
;
1865 Expr_Type
: Entity_Id
:= Empty
; -- prevent junk warning
1866 Err_Type
: Entity_Id
:= Empty
;
1867 Found
: Boolean := False;
1870 I1
: Interp_Index
:= 0; -- prevent junk warning
1873 Seen
: Entity_Id
:= Empty
; -- prevent junk warning
1875 function Comes_From_Predefined_Lib_Unit
(Nod
: Node_Id
) return Boolean;
1876 -- Determine whether a node comes from a predefined library unit or
1879 procedure Patch_Up_Value
(N
: Node_Id
; Typ
: Entity_Id
);
1880 -- Try and fix up a literal so that it matches its expected type. New
1881 -- literals are manufactured if necessary to avoid cascaded errors.
1883 procedure Report_Ambiguous_Argument
;
1884 -- Additional diagnostics when an ambiguous call has an ambiguous
1885 -- argument (typically a controlling actual).
1887 procedure Resolution_Failed
;
1888 -- Called when attempt at resolving current expression fails
1890 ------------------------------------
1891 -- Comes_From_Predefined_Lib_Unit --
1892 -------------------------------------
1894 function Comes_From_Predefined_Lib_Unit
(Nod
: Node_Id
) return Boolean is
1897 Sloc
(Nod
) = Standard_Location
or else In_Predefined_Unit
(Nod
);
1898 end Comes_From_Predefined_Lib_Unit
;
1900 --------------------
1901 -- Patch_Up_Value --
1902 --------------------
1904 procedure Patch_Up_Value
(N
: Node_Id
; Typ
: Entity_Id
) is
1906 if Nkind
(N
) = N_Integer_Literal
and then Is_Real_Type
(Typ
) then
1908 Make_Real_Literal
(Sloc
(N
),
1909 Realval
=> UR_From_Uint
(Intval
(N
))));
1910 Set_Etype
(N
, Universal_Real
);
1911 Set_Is_Static_Expression
(N
);
1913 elsif Nkind
(N
) = N_Real_Literal
and then Is_Integer_Type
(Typ
) then
1915 Make_Integer_Literal
(Sloc
(N
),
1916 Intval
=> UR_To_Uint
(Realval
(N
))));
1917 Set_Etype
(N
, Universal_Integer
);
1918 Set_Is_Static_Expression
(N
);
1920 elsif Nkind
(N
) = N_String_Literal
1921 and then Is_Character_Type
(Typ
)
1923 Set_Character_Literal_Name
(Char_Code
(Character'Pos ('A')));
1925 Make_Character_Literal
(Sloc
(N
),
1927 Char_Literal_Value
=>
1928 UI_From_Int
(Character'Pos ('A'))));
1929 Set_Etype
(N
, Any_Character
);
1930 Set_Is_Static_Expression
(N
);
1932 elsif Nkind
(N
) /= N_String_Literal
and then Is_String_Type
(Typ
) then
1934 Make_String_Literal
(Sloc
(N
),
1935 Strval
=> End_String
));
1937 elsif Nkind
(N
) = N_Range
then
1938 Patch_Up_Value
(Low_Bound
(N
), Typ
);
1939 Patch_Up_Value
(High_Bound
(N
), Typ
);
1943 -------------------------------
1944 -- Report_Ambiguous_Argument --
1945 -------------------------------
1947 procedure Report_Ambiguous_Argument
is
1948 Arg
: constant Node_Id
:= First
(Parameter_Associations
(N
));
1953 if Nkind
(Arg
) = N_Function_Call
1954 and then Is_Entity_Name
(Name
(Arg
))
1955 and then Is_Overloaded
(Name
(Arg
))
1957 Error_Msg_NE
("ambiguous call to&", Arg
, Name
(Arg
));
1959 -- Could use comments on what is going on here???
1961 Get_First_Interp
(Name
(Arg
), I
, It
);
1962 while Present
(It
.Nam
) loop
1963 Error_Msg_Sloc
:= Sloc
(It
.Nam
);
1965 if Nkind
(Parent
(It
.Nam
)) = N_Full_Type_Declaration
then
1966 Error_Msg_N
("interpretation (inherited) #!", Arg
);
1968 Error_Msg_N
("interpretation #!", Arg
);
1971 Get_Next_Interp
(I
, It
);
1974 end Report_Ambiguous_Argument
;
1976 -----------------------
1977 -- Resolution_Failed --
1978 -----------------------
1980 procedure Resolution_Failed
is
1982 Patch_Up_Value
(N
, Typ
);
1984 -- Set the type to the desired one to minimize cascaded errors. Note
1985 -- that this is an approximation and does not work in all cases.
1989 Debug_A_Exit
("resolving ", N
, " (done, resolution failed)");
1990 Set_Is_Overloaded
(N
, False);
1992 -- The caller will return without calling the expander, so we need
1993 -- to set the analyzed flag. Note that it is fine to set Analyzed
1994 -- to True even if we are in the middle of a shallow analysis,
1995 -- (see the spec of sem for more details) since this is an error
1996 -- situation anyway, and there is no point in repeating the
1997 -- analysis later (indeed it won't work to repeat it later, since
1998 -- we haven't got a clear resolution of which entity is being
2001 Set_Analyzed
(N
, True);
2003 end Resolution_Failed
;
2005 -- Start of processing for Resolve
2012 -- Access attribute on remote subprogram cannot be used for a non-remote
2013 -- access-to-subprogram type.
2015 if Nkind
(N
) = N_Attribute_Reference
2016 and then Nam_In
(Attribute_Name
(N
), Name_Access
,
2017 Name_Unrestricted_Access
,
2018 Name_Unchecked_Access
)
2019 and then Comes_From_Source
(N
)
2020 and then Is_Entity_Name
(Prefix
(N
))
2021 and then Is_Subprogram
(Entity
(Prefix
(N
)))
2022 and then Is_Remote_Call_Interface
(Entity
(Prefix
(N
)))
2023 and then not Is_Remote_Access_To_Subprogram_Type
(Typ
)
2026 ("prefix must statically denote a non-remote subprogram", N
);
2029 From_Lib
:= Comes_From_Predefined_Lib_Unit
(N
);
2031 -- If the context is a Remote_Access_To_Subprogram, access attributes
2032 -- must be resolved with the corresponding fat pointer. There is no need
2033 -- to check for the attribute name since the return type of an
2034 -- attribute is never a remote type.
2036 if Nkind
(N
) = N_Attribute_Reference
2037 and then Comes_From_Source
(N
)
2038 and then (Is_Remote_Call_Interface
(Typ
) or else Is_Remote_Types
(Typ
))
2041 Attr
: constant Attribute_Id
:=
2042 Get_Attribute_Id
(Attribute_Name
(N
));
2043 Pref
: constant Node_Id
:= Prefix
(N
);
2046 Is_Remote
: Boolean := True;
2049 -- Check that Typ is a remote access-to-subprogram type
2051 if Is_Remote_Access_To_Subprogram_Type
(Typ
) then
2053 -- Prefix (N) must statically denote a remote subprogram
2054 -- declared in a package specification.
2056 if Attr
= Attribute_Access
or else
2057 Attr
= Attribute_Unchecked_Access
or else
2058 Attr
= Attribute_Unrestricted_Access
2060 Decl
:= Unit_Declaration_Node
(Entity
(Pref
));
2062 if Nkind
(Decl
) = N_Subprogram_Body
then
2063 Spec
:= Corresponding_Spec
(Decl
);
2065 if Present
(Spec
) then
2066 Decl
:= Unit_Declaration_Node
(Spec
);
2070 Spec
:= Parent
(Decl
);
2072 if not Is_Entity_Name
(Prefix
(N
))
2073 or else Nkind
(Spec
) /= N_Package_Specification
2075 not Is_Remote_Call_Interface
(Defining_Entity
(Spec
))
2079 ("prefix must statically denote a remote subprogram ",
2083 -- If we are generating code in distributed mode, perform
2084 -- semantic checks against corresponding remote entities.
2087 and then Get_PCS_Name
/= Name_No_DSA
2089 Check_Subtype_Conformant
2090 (New_Id
=> Entity
(Prefix
(N
)),
2091 Old_Id
=> Designated_Type
2092 (Corresponding_Remote_Type
(Typ
)),
2096 Process_Remote_AST_Attribute
(N
, Typ
);
2104 Debug_A_Entry
("resolving ", N
);
2106 if Debug_Flag_V
then
2107 Write_Overloads
(N
);
2110 if Comes_From_Source
(N
) then
2111 if Is_Fixed_Point_Type
(Typ
) then
2112 Check_Restriction
(No_Fixed_Point
, N
);
2114 elsif Is_Floating_Point_Type
(Typ
)
2115 and then Typ
/= Universal_Real
2116 and then Typ
/= Any_Real
2118 Check_Restriction
(No_Floating_Point
, N
);
2122 -- Return if already analyzed
2124 if Analyzed
(N
) then
2125 Debug_A_Exit
("resolving ", N
, " (done, already analyzed)");
2126 Analyze_Dimension
(N
);
2129 -- Any case of Any_Type as the Etype value means that we had a
2132 elsif Etype
(N
) = Any_Type
then
2133 Debug_A_Exit
("resolving ", N
, " (done, Etype = Any_Type)");
2137 Check_Parameterless_Call
(N
);
2139 -- The resolution of an Expression_With_Actions is determined by
2142 if Nkind
(N
) = N_Expression_With_Actions
then
2143 Resolve
(Expression
(N
), Typ
);
2146 Expr_Type
:= Etype
(Expression
(N
));
2148 -- If not overloaded, then we know the type, and all that needs doing
2149 -- is to check that this type is compatible with the context.
2151 elsif not Is_Overloaded
(N
) then
2152 Found
:= Covers
(Typ
, Etype
(N
));
2153 Expr_Type
:= Etype
(N
);
2155 -- In the overloaded case, we must select the interpretation that
2156 -- is compatible with the context (i.e. the type passed to Resolve)
2159 -- Loop through possible interpretations
2161 Get_First_Interp
(N
, I
, It
);
2162 Interp_Loop
: while Present
(It
.Typ
) loop
2163 if Debug_Flag_V
then
2164 Write_Str
("Interp: ");
2168 -- We are only interested in interpretations that are compatible
2169 -- with the expected type, any other interpretations are ignored.
2171 if not Covers
(Typ
, It
.Typ
) then
2172 if Debug_Flag_V
then
2173 Write_Str
(" interpretation incompatible with context");
2178 -- Skip the current interpretation if it is disabled by an
2179 -- abstract operator. This action is performed only when the
2180 -- type against which we are resolving is the same as the
2181 -- type of the interpretation.
2183 if Ada_Version
>= Ada_2005
2184 and then It
.Typ
= Typ
2185 and then Typ
/= Universal_Integer
2186 and then Typ
/= Universal_Real
2187 and then Present
(It
.Abstract_Op
)
2189 if Debug_Flag_V
then
2190 Write_Line
("Skip.");
2196 -- First matching interpretation
2202 Expr_Type
:= It
.Typ
;
2204 -- Matching interpretation that is not the first, maybe an
2205 -- error, but there are some cases where preference rules are
2206 -- used to choose between the two possibilities. These and
2207 -- some more obscure cases are handled in Disambiguate.
2210 -- If the current statement is part of a predefined library
2211 -- unit, then all interpretations which come from user level
2212 -- packages should not be considered. Check previous and
2216 if not Comes_From_Predefined_Lib_Unit
(It
.Nam
) then
2219 elsif not Comes_From_Predefined_Lib_Unit
(Seen
) then
2221 -- Previous interpretation must be discarded
2225 Expr_Type
:= It
.Typ
;
2226 Set_Entity
(N
, Seen
);
2231 -- Otherwise apply further disambiguation steps
2233 Error_Msg_Sloc
:= Sloc
(Seen
);
2234 It1
:= Disambiguate
(N
, I1
, I
, Typ
);
2236 -- Disambiguation has succeeded. Skip the remaining
2239 if It1
/= No_Interp
then
2241 Expr_Type
:= It1
.Typ
;
2243 while Present
(It
.Typ
) loop
2244 Get_Next_Interp
(I
, It
);
2248 -- Before we issue an ambiguity complaint, check for the
2249 -- case of a subprogram call where at least one of the
2250 -- arguments is Any_Type, and if so suppress the message,
2251 -- since it is a cascaded error. This can also happen for
2252 -- a generalized indexing operation.
2254 if Nkind
(N
) in N_Subprogram_Call
2255 or else (Nkind
(N
) = N_Indexed_Component
2256 and then Present
(Generalized_Indexing
(N
)))
2263 if Nkind
(N
) = N_Indexed_Component
then
2264 Rewrite
(N
, Generalized_Indexing
(N
));
2267 A
:= First_Actual
(N
);
2268 while Present
(A
) loop
2271 if Nkind
(E
) = N_Parameter_Association
then
2272 E
:= Explicit_Actual_Parameter
(E
);
2275 if Etype
(E
) = Any_Type
then
2276 if Debug_Flag_V
then
2277 Write_Str
("Any_Type in call");
2288 elsif Nkind
(N
) in N_Binary_Op
2289 and then (Etype
(Left_Opnd
(N
)) = Any_Type
2290 or else Etype
(Right_Opnd
(N
)) = Any_Type
)
2294 elsif Nkind
(N
) in N_Unary_Op
2295 and then Etype
(Right_Opnd
(N
)) = Any_Type
2300 -- Not that special case, so issue message using the flag
2301 -- Ambiguous to control printing of the header message
2302 -- only at the start of an ambiguous set.
2304 if not Ambiguous
then
2305 if Nkind
(N
) = N_Function_Call
2306 and then Nkind
(Name
(N
)) = N_Explicit_Dereference
2309 ("ambiguous expression (cannot resolve indirect "
2312 Error_Msg_NE
-- CODEFIX
2313 ("ambiguous expression (cannot resolve&)!",
2319 if Nkind
(Parent
(Seen
)) = N_Full_Type_Declaration
then
2321 ("\\possible interpretation (inherited)#!", N
);
2323 Error_Msg_N
-- CODEFIX
2324 ("\\possible interpretation#!", N
);
2327 if Nkind
(N
) in N_Subprogram_Call
2328 and then Present
(Parameter_Associations
(N
))
2330 Report_Ambiguous_Argument
;
2334 Error_Msg_Sloc
:= Sloc
(It
.Nam
);
2336 -- By default, the error message refers to the candidate
2337 -- interpretation. But if it is a predefined operator, it
2338 -- is implicitly declared at the declaration of the type
2339 -- of the operand. Recover the sloc of that declaration
2340 -- for the error message.
2342 if Nkind
(N
) in N_Op
2343 and then Scope
(It
.Nam
) = Standard_Standard
2344 and then not Is_Overloaded
(Right_Opnd
(N
))
2345 and then Scope
(Base_Type
(Etype
(Right_Opnd
(N
)))) /=
2348 Err_Type
:= First_Subtype
(Etype
(Right_Opnd
(N
)));
2350 if Comes_From_Source
(Err_Type
)
2351 and then Present
(Parent
(Err_Type
))
2353 Error_Msg_Sloc
:= Sloc
(Parent
(Err_Type
));
2356 elsif Nkind
(N
) in N_Binary_Op
2357 and then Scope
(It
.Nam
) = Standard_Standard
2358 and then not Is_Overloaded
(Left_Opnd
(N
))
2359 and then Scope
(Base_Type
(Etype
(Left_Opnd
(N
)))) /=
2362 Err_Type
:= First_Subtype
(Etype
(Left_Opnd
(N
)));
2364 if Comes_From_Source
(Err_Type
)
2365 and then Present
(Parent
(Err_Type
))
2367 Error_Msg_Sloc
:= Sloc
(Parent
(Err_Type
));
2370 -- If this is an indirect call, use the subprogram_type
2371 -- in the message, to have a meaningful location. Also
2372 -- indicate if this is an inherited operation, created
2373 -- by a type declaration.
2375 elsif Nkind
(N
) = N_Function_Call
2376 and then Nkind
(Name
(N
)) = N_Explicit_Dereference
2377 and then Is_Type
(It
.Nam
)
2381 Sloc
(Associated_Node_For_Itype
(Err_Type
));
2386 if Nkind
(N
) in N_Op
2387 and then Scope
(It
.Nam
) = Standard_Standard
2388 and then Present
(Err_Type
)
2390 -- Special-case the message for universal_fixed
2391 -- operators, which are not declared with the type
2392 -- of the operand, but appear forever in Standard.
2394 if It
.Typ
= Universal_Fixed
2395 and then Scope
(It
.Nam
) = Standard_Standard
2398 ("\\possible interpretation as universal_fixed "
2399 & "operation (RM 4.5.5 (19))", N
);
2402 ("\\possible interpretation (predefined)#!", N
);
2406 Nkind
(Parent
(It
.Nam
)) = N_Full_Type_Declaration
2409 ("\\possible interpretation (inherited)#!", N
);
2411 Error_Msg_N
-- CODEFIX
2412 ("\\possible interpretation#!", N
);
2418 -- We have a matching interpretation, Expr_Type is the type
2419 -- from this interpretation, and Seen is the entity.
2421 -- For an operator, just set the entity name. The type will be
2422 -- set by the specific operator resolution routine.
2424 if Nkind
(N
) in N_Op
then
2425 Set_Entity
(N
, Seen
);
2426 Generate_Reference
(Seen
, N
);
2428 elsif Nkind
(N
) = N_Case_Expression
then
2429 Set_Etype
(N
, Expr_Type
);
2431 elsif Nkind
(N
) = N_Character_Literal
then
2432 Set_Etype
(N
, Expr_Type
);
2434 elsif Nkind
(N
) = N_If_Expression
then
2435 Set_Etype
(N
, Expr_Type
);
2437 -- AI05-0139-2: Expression is overloaded because type has
2438 -- implicit dereference. If type matches context, no implicit
2439 -- dereference is involved.
2441 elsif Has_Implicit_Dereference
(Expr_Type
) then
2442 Set_Etype
(N
, Expr_Type
);
2443 Set_Is_Overloaded
(N
, False);
2446 elsif Is_Overloaded
(N
)
2447 and then Present
(It
.Nam
)
2448 and then Ekind
(It
.Nam
) = E_Discriminant
2449 and then Has_Implicit_Dereference
(It
.Nam
)
2451 -- If the node is a general indexing, the dereference is
2452 -- is inserted when resolving the rewritten form, else
2455 if Nkind
(N
) /= N_Indexed_Component
2456 or else No
(Generalized_Indexing
(N
))
2458 Build_Explicit_Dereference
(N
, It
.Nam
);
2461 -- For an explicit dereference, attribute reference, range,
2462 -- short-circuit form (which is not an operator node), or call
2463 -- with a name that is an explicit dereference, there is
2464 -- nothing to be done at this point.
2466 elsif Nkind_In
(N
, N_Attribute_Reference
,
2468 N_Explicit_Dereference
,
2470 N_Indexed_Component
,
2473 N_Selected_Component
,
2475 or else Nkind
(Name
(N
)) = N_Explicit_Dereference
2479 -- For procedure or function calls, set the type of the name,
2480 -- and also the entity pointer for the prefix.
2482 elsif Nkind
(N
) in N_Subprogram_Call
2483 and then Is_Entity_Name
(Name
(N
))
2485 Set_Etype
(Name
(N
), Expr_Type
);
2486 Set_Entity
(Name
(N
), Seen
);
2487 Generate_Reference
(Seen
, Name
(N
));
2489 elsif Nkind
(N
) = N_Function_Call
2490 and then Nkind
(Name
(N
)) = N_Selected_Component
2492 Set_Etype
(Name
(N
), Expr_Type
);
2493 Set_Entity
(Selector_Name
(Name
(N
)), Seen
);
2494 Generate_Reference
(Seen
, Selector_Name
(Name
(N
)));
2496 -- For all other cases, just set the type of the Name
2499 Set_Etype
(Name
(N
), Expr_Type
);
2506 -- Move to next interpretation
2508 exit Interp_Loop
when No
(It
.Typ
);
2510 Get_Next_Interp
(I
, It
);
2511 end loop Interp_Loop
;
2514 -- At this stage Found indicates whether or not an acceptable
2515 -- interpretation exists. If not, then we have an error, except that if
2516 -- the context is Any_Type as a result of some other error, then we
2517 -- suppress the error report.
2520 if Typ
/= Any_Type
then
2522 -- If type we are looking for is Void, then this is the procedure
2523 -- call case, and the error is simply that what we gave is not a
2524 -- procedure name (we think of procedure calls as expressions with
2525 -- types internally, but the user doesn't think of them this way).
2527 if Typ
= Standard_Void_Type
then
2529 -- Special case message if function used as a procedure
2531 if Nkind
(N
) = N_Procedure_Call_Statement
2532 and then Is_Entity_Name
(Name
(N
))
2533 and then Ekind
(Entity
(Name
(N
))) = E_Function
2536 ("cannot use call to function & as a statement",
2537 Name
(N
), Entity
(Name
(N
)));
2539 ("\return value of a function call cannot be ignored",
2542 -- Otherwise give general message (not clear what cases this
2543 -- covers, but no harm in providing for them).
2546 Error_Msg_N
("expect procedure name in procedure call", N
);
2551 -- Otherwise we do have a subexpression with the wrong type
2553 -- Check for the case of an allocator which uses an access type
2554 -- instead of the designated type. This is a common error and we
2555 -- specialize the message, posting an error on the operand of the
2556 -- allocator, complaining that we expected the designated type of
2559 elsif Nkind
(N
) = N_Allocator
2560 and then Is_Access_Type
(Typ
)
2561 and then Is_Access_Type
(Etype
(N
))
2562 and then Designated_Type
(Etype
(N
)) = Typ
2564 Wrong_Type
(Expression
(N
), Designated_Type
(Typ
));
2567 -- Check for view mismatch on Null in instances, for which the
2568 -- view-swapping mechanism has no identifier.
2570 elsif (In_Instance
or else In_Inlined_Body
)
2571 and then (Nkind
(N
) = N_Null
)
2572 and then Is_Private_Type
(Typ
)
2573 and then Is_Access_Type
(Full_View
(Typ
))
2575 Resolve
(N
, Full_View
(Typ
));
2579 -- Check for an aggregate. Sometimes we can get bogus aggregates
2580 -- from misuse of parentheses, and we are about to complain about
2581 -- the aggregate without even looking inside it.
2583 -- Instead, if we have an aggregate of type Any_Composite, then
2584 -- analyze and resolve the component fields, and then only issue
2585 -- another message if we get no errors doing this (otherwise
2586 -- assume that the errors in the aggregate caused the problem).
2588 elsif Nkind
(N
) = N_Aggregate
2589 and then Etype
(N
) = Any_Composite
2591 -- Disable expansion in any case. If there is a type mismatch
2592 -- it may be fatal to try to expand the aggregate. The flag
2593 -- would otherwise be set to false when the error is posted.
2595 Expander_Active
:= False;
2598 procedure Check_Aggr
(Aggr
: Node_Id
);
2599 -- Check one aggregate, and set Found to True if we have a
2600 -- definite error in any of its elements
2602 procedure Check_Elmt
(Aelmt
: Node_Id
);
2603 -- Check one element of aggregate and set Found to True if
2604 -- we definitely have an error in the element.
2610 procedure Check_Aggr
(Aggr
: Node_Id
) is
2614 if Present
(Expressions
(Aggr
)) then
2615 Elmt
:= First
(Expressions
(Aggr
));
2616 while Present
(Elmt
) loop
2622 if Present
(Component_Associations
(Aggr
)) then
2623 Elmt
:= First
(Component_Associations
(Aggr
));
2624 while Present
(Elmt
) loop
2626 -- If this is a default-initialized component, then
2627 -- there is nothing to check. The box will be
2628 -- replaced by the appropriate call during late
2631 if Nkind
(Elmt
) /= N_Iterated_Component_Association
2632 and then not Box_Present
(Elmt
)
2634 Check_Elmt
(Expression
(Elmt
));
2646 procedure Check_Elmt
(Aelmt
: Node_Id
) is
2648 -- If we have a nested aggregate, go inside it (to
2649 -- attempt a naked analyze-resolve of the aggregate can
2650 -- cause undesirable cascaded errors). Do not resolve
2651 -- expression if it needs a type from context, as for
2652 -- integer * fixed expression.
2654 if Nkind
(Aelmt
) = N_Aggregate
then
2660 if not Is_Overloaded
(Aelmt
)
2661 and then Etype
(Aelmt
) /= Any_Fixed
2666 if Etype
(Aelmt
) = Any_Type
then
2677 -- Looks like we have a type error, but check for special case
2678 -- of Address wanted, integer found, with the configuration pragma
2679 -- Allow_Integer_Address active. If we have this case, introduce
2680 -- an unchecked conversion to allow the integer expression to be
2681 -- treated as an Address. The reverse case of integer wanted,
2682 -- Address found, is treated in an analogous manner.
2684 if Address_Integer_Convert_OK
(Typ
, Etype
(N
)) then
2685 Rewrite
(N
, Unchecked_Convert_To
(Typ
, Relocate_Node
(N
)));
2686 Analyze_And_Resolve
(N
, Typ
);
2689 -- Under relaxed RM semantics silently replace occurrences of null
2690 -- by System.Address_Null.
2692 elsif Null_To_Null_Address_Convert_OK
(N
, Typ
) then
2693 Replace_Null_By_Null_Address
(N
);
2694 Analyze_And_Resolve
(N
, Typ
);
2698 -- That special Allow_Integer_Address check did not apply, so we
2699 -- have a real type error. If an error message was issued already,
2700 -- Found got reset to True, so if it's still False, issue standard
2701 -- Wrong_Type message.
2704 if Is_Overloaded
(N
) and then Nkind
(N
) = N_Function_Call
then
2706 Subp_Name
: Node_Id
;
2709 if Is_Entity_Name
(Name
(N
)) then
2710 Subp_Name
:= Name
(N
);
2712 elsif Nkind
(Name
(N
)) = N_Selected_Component
then
2714 -- Protected operation: retrieve operation name
2716 Subp_Name
:= Selector_Name
(Name
(N
));
2719 raise Program_Error
;
2722 Error_Msg_Node_2
:= Typ
;
2724 ("no visible interpretation of& matches expected type&",
2728 if All_Errors_Mode
then
2730 Index
: Interp_Index
;
2734 Error_Msg_N
("\\possible interpretations:", N
);
2736 Get_First_Interp
(Name
(N
), Index
, It
);
2737 while Present
(It
.Nam
) loop
2738 Error_Msg_Sloc
:= Sloc
(It
.Nam
);
2739 Error_Msg_Node_2
:= It
.Nam
;
2741 ("\\ type& for & declared#", N
, It
.Typ
);
2742 Get_Next_Interp
(Index
, It
);
2747 Error_Msg_N
("\use -gnatf for details", N
);
2751 Wrong_Type
(N
, Typ
);
2759 -- Test if we have more than one interpretation for the context
2761 elsif Ambiguous
then
2765 -- Only one intepretation
2768 -- In Ada 2005, if we have something like "X : T := 2 + 2;", where
2769 -- the "+" on T is abstract, and the operands are of universal type,
2770 -- the above code will have (incorrectly) resolved the "+" to the
2771 -- universal one in Standard. Therefore check for this case and give
2772 -- an error. We can't do this earlier, because it would cause legal
2773 -- cases to get errors (when some other type has an abstract "+").
2775 if Ada_Version
>= Ada_2005
2776 and then Nkind
(N
) in N_Op
2777 and then Is_Overloaded
(N
)
2778 and then Is_Universal_Numeric_Type
(Etype
(Entity
(N
)))
2780 Get_First_Interp
(N
, I
, It
);
2781 while Present
(It
.Typ
) loop
2782 if Present
(It
.Abstract_Op
) and then
2783 Etype
(It
.Abstract_Op
) = Typ
2786 ("cannot call abstract subprogram &!", N
, It
.Abstract_Op
);
2790 Get_Next_Interp
(I
, It
);
2794 -- Here we have an acceptable interpretation for the context
2796 -- Propagate type information and normalize tree for various
2797 -- predefined operations. If the context only imposes a class of
2798 -- types, rather than a specific type, propagate the actual type
2801 if Typ
= Any_Integer
or else
2802 Typ
= Any_Boolean
or else
2803 Typ
= Any_Modular
or else
2804 Typ
= Any_Real
or else
2807 Ctx_Type
:= Expr_Type
;
2809 -- Any_Fixed is legal in a real context only if a specific fixed-
2810 -- point type is imposed. If Norman Cohen can be confused by this,
2811 -- it deserves a separate message.
2814 and then Expr_Type
= Any_Fixed
2816 Error_Msg_N
("illegal context for mixed mode operation", N
);
2817 Set_Etype
(N
, Universal_Real
);
2818 Ctx_Type
:= Universal_Real
;
2822 -- A user-defined operator is transformed into a function call at
2823 -- this point, so that further processing knows that operators are
2824 -- really operators (i.e. are predefined operators). User-defined
2825 -- operators that are intrinsic are just renamings of the predefined
2826 -- ones, and need not be turned into calls either, but if they rename
2827 -- a different operator, we must transform the node accordingly.
2828 -- Instantiations of Unchecked_Conversion are intrinsic but are
2829 -- treated as functions, even if given an operator designator.
2831 if Nkind
(N
) in N_Op
2832 and then Present
(Entity
(N
))
2833 and then Ekind
(Entity
(N
)) /= E_Operator
2835 if not Is_Predefined_Op
(Entity
(N
)) then
2836 Rewrite_Operator_As_Call
(N
, Entity
(N
));
2838 elsif Present
(Alias
(Entity
(N
)))
2840 Nkind
(Parent
(Parent
(Entity
(N
)))) =
2841 N_Subprogram_Renaming_Declaration
2843 Rewrite_Renamed_Operator
(N
, Alias
(Entity
(N
)), Typ
);
2845 -- If the node is rewritten, it will be fully resolved in
2846 -- Rewrite_Renamed_Operator.
2848 if Analyzed
(N
) then
2854 case N_Subexpr
'(Nkind (N)) is
2856 Resolve_Aggregate (N, Ctx_Type);
2859 Resolve_Allocator (N, Ctx_Type);
2861 when N_Short_Circuit =>
2862 Resolve_Short_Circuit (N, Ctx_Type);
2864 when N_Attribute_Reference =>
2865 Resolve_Attribute (N, Ctx_Type);
2867 when N_Case_Expression =>
2868 Resolve_Case_Expression (N, Ctx_Type);
2870 when N_Character_Literal =>
2871 Resolve_Character_Literal (N, Ctx_Type);
2873 when N_Delta_Aggregate =>
2874 Resolve_Delta_Aggregate (N, Ctx_Type);
2876 when N_Expanded_Name =>
2877 Resolve_Entity_Name (N, Ctx_Type);
2879 when N_Explicit_Dereference =>
2880 Resolve_Explicit_Dereference (N, Ctx_Type);
2882 when N_Expression_With_Actions =>
2883 Resolve_Expression_With_Actions (N, Ctx_Type);
2885 when N_Extension_Aggregate =>
2886 Resolve_Extension_Aggregate (N, Ctx_Type);
2888 when N_Function_Call =>
2889 Resolve_Call (N, Ctx_Type);
2891 when N_Identifier =>
2892 Resolve_Entity_Name (N, Ctx_Type);
2894 when N_If_Expression =>
2895 Resolve_If_Expression (N, Ctx_Type);
2897 when N_Indexed_Component =>
2898 Resolve_Indexed_Component (N, Ctx_Type);
2900 when N_Integer_Literal =>
2901 Resolve_Integer_Literal (N, Ctx_Type);
2903 when N_Membership_Test =>
2904 Resolve_Membership_Op (N, Ctx_Type);
2907 Resolve_Null (N, Ctx_Type);
2913 Resolve_Logical_Op (N, Ctx_Type);
2918 Resolve_Equality_Op (N, Ctx_Type);
2925 Resolve_Comparison_Op (N, Ctx_Type);
2928 Resolve_Op_Not (N, Ctx_Type);
2937 Resolve_Arithmetic_Op (N, Ctx_Type);
2940 Resolve_Op_Concat (N, Ctx_Type);
2943 Resolve_Op_Expon (N, Ctx_Type);
2949 Resolve_Unary_Op (N, Ctx_Type);
2952 Resolve_Shift (N, Ctx_Type);
2954 when N_Procedure_Call_Statement =>
2955 Resolve_Call (N, Ctx_Type);
2957 when N_Operator_Symbol =>
2958 Resolve_Operator_Symbol (N, Ctx_Type);
2960 when N_Qualified_Expression =>
2961 Resolve_Qualified_Expression (N, Ctx_Type);
2963 -- Why is the following null, needs a comment ???
2965 when N_Quantified_Expression =>
2968 when N_Raise_Expression =>
2969 Resolve_Raise_Expression (N, Ctx_Type);
2971 when N_Raise_xxx_Error =>
2972 Set_Etype (N, Ctx_Type);
2975 Resolve_Range (N, Ctx_Type);
2977 when N_Real_Literal =>
2978 Resolve_Real_Literal (N, Ctx_Type);
2981 Resolve_Reference (N, Ctx_Type);
2983 when N_Selected_Component =>
2984 Resolve_Selected_Component (N, Ctx_Type);
2987 Resolve_Slice (N, Ctx_Type);
2989 when N_String_Literal =>
2990 Resolve_String_Literal (N, Ctx_Type);
2992 when N_Target_Name =>
2993 Resolve_Target_Name (N, Ctx_Type);
2995 when N_Type_Conversion =>
2996 Resolve_Type_Conversion (N, Ctx_Type);
2998 when N_Unchecked_Expression =>
2999 Resolve_Unchecked_Expression (N, Ctx_Type);
3001 when N_Unchecked_Type_Conversion =>
3002 Resolve_Unchecked_Type_Conversion (N, Ctx_Type);
3005 -- Ada 2012 (AI05-0149): Apply an (implicit) conversion to an
3006 -- expression of an anonymous access type that occurs in the context
3007 -- of a named general access type, except when the expression is that
3008 -- of a membership test. This ensures proper legality checking in
3009 -- terms of allowed conversions (expressions that would be illegal to
3010 -- convert implicitly are allowed in membership tests).
3012 if Ada_Version >= Ada_2012
3013 and then Ekind (Ctx_Type) = E_General_Access_Type
3014 and then Ekind (Etype (N)) = E_Anonymous_Access_Type
3015 and then Nkind (Parent (N)) not in N_Membership_Test
3017 Rewrite (N, Convert_To (Ctx_Type, Relocate_Node (N)));
3018 Analyze_And_Resolve (N, Ctx_Type);
3021 -- If the subexpression was replaced by a non-subexpression, then
3022 -- all we do is to expand it. The only legitimate case we know of
3023 -- is converting procedure call statement to entry call statements,
3024 -- but there may be others, so we are making this test general.
3026 if Nkind (N) not in N_Subexpr then
3027 Debug_A_Exit ("resolving ", N, " (done)");
3032 -- The expression is definitely NOT overloaded at this point, so
3033 -- we reset the Is_Overloaded flag to avoid any confusion when
3034 -- reanalyzing the node.
3036 Set_Is_Overloaded (N, False);
3038 -- Freeze expression type, entity if it is a name, and designated
3039 -- type if it is an allocator (RM 13.14(10,11,13)).
3041 -- Now that the resolution of the type of the node is complete, and
3042 -- we did not detect an error, we can expand this node. We skip the
3043 -- expand call if we are in a default expression, see section
3044 -- "Handling of Default Expressions" in Sem spec.
3046 Debug_A_Exit ("resolving ", N, " (done)");
3048 -- We unconditionally freeze the expression, even if we are in
3049 -- default expression mode (the Freeze_Expression routine tests this
3050 -- flag and only freezes static types if it is set).
3052 -- Ada 2012 (AI05-177): The declaration of an expression function
3053 -- does not cause freezing, but we never reach here in that case.
3054 -- Here we are resolving the corresponding expanded body, so we do
3055 -- need to perform normal freezing.
3057 Freeze_Expression (N);
3059 -- Now we can do the expansion
3069 -- Version with check(s) suppressed
3071 procedure Resolve (N : Node_Id; Typ : Entity_Id; Suppress : Check_Id) is
3073 if Suppress = All_Checks then
3075 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
3077 Scope_Suppress.Suppress := (others => True);
3079 Scope_Suppress.Suppress := Sva;
3084 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
3086 Scope_Suppress.Suppress (Suppress) := True;
3088 Scope_Suppress.Suppress (Suppress) := Svg;
3097 -- Version with implicit type
3099 procedure Resolve (N : Node_Id) is
3101 Resolve (N, Etype (N));
3104 ---------------------
3105 -- Resolve_Actuals --
3106 ---------------------
3108 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id) is
3109 Loc : constant Source_Ptr := Sloc (N);
3115 Prev : Node_Id := Empty;
3119 Real_Subp : Entity_Id;
3120 -- If the subprogram being called is an inherited operation for
3121 -- a formal derived type in an instance, Real_Subp is the subprogram
3122 -- that will be called. It may have different formal names than the
3123 -- operation of the formal in the generic, so after actual is resolved
3124 -- the name of the actual in a named association must carry the name
3125 -- of the actual of the subprogram being called.
3127 procedure Check_Aliased_Parameter;
3128 -- Check rules on aliased parameters and related accessibility rules
3129 -- in (RM 3.10.2 (10.2-10.4)).
3131 procedure Check_Argument_Order;
3132 -- Performs a check for the case where the actuals are all simple
3133 -- identifiers that correspond to the formal names, but in the wrong
3134 -- order, which is considered suspicious and cause for a warning.
3136 procedure Check_Prefixed_Call;
3137 -- If the original node is an overloaded call in prefix notation,
3138 -- insert an 'Access or a dereference as needed over the first actual
.
3139 -- Try_Object_Operation has already verified that there is a valid
3140 -- interpretation, but the form of the actual can only be determined
3141 -- once the primitive operation is identified.
3143 procedure Flag_Effectively_Volatile_Objects
(Expr
: Node_Id
);
3144 -- Emit an error concerning the illegal usage of an effectively volatile
3145 -- object in interfering context (SPARK RM 7.13(12)).
3147 procedure Insert_Default
;
3148 -- If the actual is missing in a call, insert in the actuals list
3149 -- an instance of the default expression. The insertion is always
3150 -- a named association.
3152 procedure Property_Error
3155 Prop_Nam
: Name_Id
);
3156 -- Emit an error concerning variable Var with entity Var_Id that has
3157 -- enabled property Prop_Nam when it acts as an actual parameter in a
3158 -- call and the corresponding formal parameter is of mode IN.
3160 function Same_Ancestor
(T1
, T2
: Entity_Id
) return Boolean;
3161 -- Check whether T1 and T2, or their full views, are derived from a
3162 -- common type. Used to enforce the restrictions on array conversions
3165 function Static_Concatenation
(N
: Node_Id
) return Boolean;
3166 -- Predicate to determine whether an actual that is a concatenation
3167 -- will be evaluated statically and does not need a transient scope.
3168 -- This must be determined before the actual is resolved and expanded
3169 -- because if needed the transient scope must be introduced earlier.
3171 -----------------------------
3172 -- Check_Aliased_Parameter --
3173 -----------------------------
3175 procedure Check_Aliased_Parameter
is
3176 Nominal_Subt
: Entity_Id
;
3179 if Is_Aliased
(F
) then
3180 if Is_Tagged_Type
(A_Typ
) then
3183 elsif Is_Aliased_View
(A
) then
3184 if Is_Constr_Subt_For_U_Nominal
(A_Typ
) then
3185 Nominal_Subt
:= Base_Type
(A_Typ
);
3187 Nominal_Subt
:= A_Typ
;
3190 if Subtypes_Statically_Match
(F_Typ
, Nominal_Subt
) then
3193 -- In a generic body assume the worst for generic formals:
3194 -- they can have a constrained partial view (AI05-041).
3196 elsif Has_Discriminants
(F_Typ
)
3197 and then not Is_Constrained
(F_Typ
)
3198 and then not Has_Constrained_Partial_View
(F_Typ
)
3199 and then not Is_Generic_Type
(F_Typ
)
3204 Error_Msg_NE
("untagged actual does not match "
3205 & "aliased formal&", A
, F
);
3209 Error_Msg_NE
("actual for aliased formal& must be "
3210 & "aliased object", A
, F
);
3213 if Ekind
(Nam
) = E_Procedure
then
3216 elsif Ekind
(Etype
(Nam
)) = E_Anonymous_Access_Type
then
3217 if Nkind
(Parent
(N
)) = N_Type_Conversion
3218 and then Type_Access_Level
(Etype
(Parent
(N
))) <
3219 Object_Access_Level
(A
)
3221 Error_Msg_N
("aliased actual has wrong accessibility", A
);
3224 elsif Nkind
(Parent
(N
)) = N_Qualified_Expression
3225 and then Nkind
(Parent
(Parent
(N
))) = N_Allocator
3226 and then Type_Access_Level
(Etype
(Parent
(Parent
(N
)))) <
3227 Object_Access_Level
(A
)
3230 ("aliased actual in allocator has wrong accessibility", A
);
3233 end Check_Aliased_Parameter
;
3235 --------------------------
3236 -- Check_Argument_Order --
3237 --------------------------
3239 procedure Check_Argument_Order
is
3241 -- Nothing to do if no parameters, or original node is neither a
3242 -- function call nor a procedure call statement (happens in the
3243 -- operator-transformed-to-function call case), or the call does
3244 -- not come from source, or this warning is off.
3246 if not Warn_On_Parameter_Order
3247 or else No
(Parameter_Associations
(N
))
3248 or else Nkind
(Original_Node
(N
)) not in N_Subprogram_Call
3249 or else not Comes_From_Source
(N
)
3255 Nargs
: constant Nat
:= List_Length
(Parameter_Associations
(N
));
3258 -- Nothing to do if only one parameter
3264 -- Here if at least two arguments
3267 Actuals
: array (1 .. Nargs
) of Node_Id
;
3271 Wrong_Order
: Boolean := False;
3272 -- Set True if an out of order case is found
3275 -- Collect identifier names of actuals, fail if any actual is
3276 -- not a simple identifier, and record max length of name.
3278 Actual
:= First
(Parameter_Associations
(N
));
3279 for J
in Actuals
'Range loop
3280 if Nkind
(Actual
) /= N_Identifier
then
3283 Actuals
(J
) := Actual
;
3288 -- If we got this far, all actuals are identifiers and the list
3289 -- of their names is stored in the Actuals array.
3291 Formal
:= First_Formal
(Nam
);
3292 for J
in Actuals
'Range loop
3294 -- If we ran out of formals, that's odd, probably an error
3295 -- which will be detected elsewhere, but abandon the search.
3301 -- If name matches and is in order OK
3303 if Chars
(Formal
) = Chars
(Actuals
(J
)) then
3307 -- If no match, see if it is elsewhere in list and if so
3308 -- flag potential wrong order if type is compatible.
3310 for K
in Actuals
'Range loop
3311 if Chars
(Formal
) = Chars
(Actuals
(K
))
3313 Has_Compatible_Type
(Actuals
(K
), Etype
(Formal
))
3315 Wrong_Order
:= True;
3325 <<Continue
>> Next_Formal
(Formal
);
3328 -- If Formals left over, also probably an error, skip warning
3330 if Present
(Formal
) then
3334 -- Here we give the warning if something was out of order
3338 ("?P?actuals for this call may be in wrong order", N
);
3342 end Check_Argument_Order
;
3344 -------------------------
3345 -- Check_Prefixed_Call --
3346 -------------------------
3348 procedure Check_Prefixed_Call
is
3349 Act
: constant Node_Id
:= First_Actual
(N
);
3350 A_Type
: constant Entity_Id
:= Etype
(Act
);
3351 F_Type
: constant Entity_Id
:= Etype
(First_Formal
(Nam
));
3352 Orig
: constant Node_Id
:= Original_Node
(N
);
3356 -- Check whether the call is a prefixed call, with or without
3357 -- additional actuals.
3359 if Nkind
(Orig
) = N_Selected_Component
3361 (Nkind
(Orig
) = N_Indexed_Component
3362 and then Nkind
(Prefix
(Orig
)) = N_Selected_Component
3363 and then Is_Entity_Name
(Prefix
(Prefix
(Orig
)))
3364 and then Is_Entity_Name
(Act
)
3365 and then Chars
(Act
) = Chars
(Prefix
(Prefix
(Orig
))))
3367 if Is_Access_Type
(A_Type
)
3368 and then not Is_Access_Type
(F_Type
)
3370 -- Introduce dereference on object in prefix
3373 Make_Explicit_Dereference
(Sloc
(Act
),
3374 Prefix
=> Relocate_Node
(Act
));
3375 Rewrite
(Act
, New_A
);
3378 elsif Is_Access_Type
(F_Type
)
3379 and then not Is_Access_Type
(A_Type
)
3381 -- Introduce an implicit 'Access in prefix
3383 if not Is_Aliased_View
(Act
) then
3385 ("object in prefixed call to& must be aliased "
3386 & "(RM 4.1.3 (13 1/2))",
3391 Make_Attribute_Reference
(Loc
,
3392 Attribute_Name
=> Name_Access
,
3393 Prefix
=> Relocate_Node
(Act
)));
3398 end Check_Prefixed_Call
;
3400 ---------------------------------------
3401 -- Flag_Effectively_Volatile_Objects --
3402 ---------------------------------------
3404 procedure Flag_Effectively_Volatile_Objects
(Expr
: Node_Id
) is
3405 function Flag_Object
(N
: Node_Id
) return Traverse_Result
;
3406 -- Determine whether arbitrary node N denotes an effectively volatile
3407 -- object and if it does, emit an error.
3413 function Flag_Object
(N
: Node_Id
) return Traverse_Result
is
3417 -- Do not consider nested function calls because they have already
3418 -- been processed during their own resolution.
3420 if Nkind
(N
) = N_Function_Call
then
3423 elsif Is_Entity_Name
(N
) and then Present
(Entity
(N
)) then
3427 and then Is_Effectively_Volatile
(Id
)
3428 and then (Async_Writers_Enabled
(Id
)
3429 or else Effective_Reads_Enabled
(Id
))
3432 ("volatile object cannot appear in this context (SPARK "
3433 & "RM 7.1.3(11))", N
);
3441 procedure Flag_Objects
is new Traverse_Proc
(Flag_Object
);
3443 -- Start of processing for Flag_Effectively_Volatile_Objects
3446 Flag_Objects
(Expr
);
3447 end Flag_Effectively_Volatile_Objects
;
3449 --------------------
3450 -- Insert_Default --
3451 --------------------
3453 procedure Insert_Default
is
3458 -- Missing argument in call, nothing to insert
3460 if No
(Default_Value
(F
)) then
3464 -- Note that we do a full New_Copy_Tree, so that any associated
3465 -- Itypes are properly copied. This may not be needed any more,
3466 -- but it does no harm as a safety measure. Defaults of a generic
3467 -- formal may be out of bounds of the corresponding actual (see
3468 -- cc1311b) and an additional check may be required.
3473 New_Scope
=> Current_Scope
,
3476 -- Propagate dimension information, if any.
3478 Copy_Dimensions
(Default_Value
(F
), Actval
);
3480 if Is_Concurrent_Type
(Scope
(Nam
))
3481 and then Has_Discriminants
(Scope
(Nam
))
3483 Replace_Actual_Discriminants
(N
, Actval
);
3486 if Is_Overloadable
(Nam
)
3487 and then Present
(Alias
(Nam
))
3489 if Base_Type
(Etype
(F
)) /= Base_Type
(Etype
(Actval
))
3490 and then not Is_Tagged_Type
(Etype
(F
))
3492 -- If default is a real literal, do not introduce a
3493 -- conversion whose effect may depend on the run-time
3494 -- size of universal real.
3496 if Nkind
(Actval
) = N_Real_Literal
then
3497 Set_Etype
(Actval
, Base_Type
(Etype
(F
)));
3499 Actval
:= Unchecked_Convert_To
(Etype
(F
), Actval
);
3503 if Is_Scalar_Type
(Etype
(F
)) then
3504 Enable_Range_Check
(Actval
);
3507 Set_Parent
(Actval
, N
);
3509 -- Resolve aggregates with their base type, to avoid scope
3510 -- anomalies: the subtype was first built in the subprogram
3511 -- declaration, and the current call may be nested.
3513 if Nkind
(Actval
) = N_Aggregate
then
3514 Analyze_And_Resolve
(Actval
, Etype
(F
));
3516 Analyze_And_Resolve
(Actval
, Etype
(Actval
));
3520 Set_Parent
(Actval
, N
);
3522 -- See note above concerning aggregates
3524 if Nkind
(Actval
) = N_Aggregate
3525 and then Has_Discriminants
(Etype
(Actval
))
3527 Analyze_And_Resolve
(Actval
, Base_Type
(Etype
(Actval
)));
3529 -- Resolve entities with their own type, which may differ from
3530 -- the type of a reference in a generic context (the view
3531 -- swapping mechanism did not anticipate the re-analysis of
3532 -- default values in calls).
3534 elsif Is_Entity_Name
(Actval
) then
3535 Analyze_And_Resolve
(Actval
, Etype
(Entity
(Actval
)));
3538 Analyze_And_Resolve
(Actval
, Etype
(Actval
));
3542 -- If default is a tag indeterminate function call, propagate tag
3543 -- to obtain proper dispatching.
3545 if Is_Controlling_Formal
(F
)
3546 and then Nkind
(Default_Value
(F
)) = N_Function_Call
3548 Set_Is_Controlling_Actual
(Actval
);
3552 -- If the default expression raises constraint error, then just
3553 -- silently replace it with an N_Raise_Constraint_Error node, since
3554 -- we already gave the warning on the subprogram spec. If node is
3555 -- already a Raise_Constraint_Error leave as is, to prevent loops in
3556 -- the warnings removal machinery.
3558 if Raises_Constraint_Error
(Actval
)
3559 and then Nkind
(Actval
) /= N_Raise_Constraint_Error
3562 Make_Raise_Constraint_Error
(Loc
,
3563 Reason
=> CE_Range_Check_Failed
));
3564 Set_Raises_Constraint_Error
(Actval
);
3565 Set_Etype
(Actval
, Etype
(F
));
3569 Make_Parameter_Association
(Loc
,
3570 Explicit_Actual_Parameter
=> Actval
,
3571 Selector_Name
=> Make_Identifier
(Loc
, Chars
(F
)));
3573 -- Case of insertion is first named actual
3575 if No
(Prev
) or else
3576 Nkind
(Parent
(Prev
)) /= N_Parameter_Association
3578 Set_Next_Named_Actual
(Assoc
, First_Named_Actual
(N
));
3579 Set_First_Named_Actual
(N
, Actval
);
3582 if No
(Parameter_Associations
(N
)) then
3583 Set_Parameter_Associations
(N
, New_List
(Assoc
));
3585 Append
(Assoc
, Parameter_Associations
(N
));
3589 Insert_After
(Prev
, Assoc
);
3592 -- Case of insertion is not first named actual
3595 Set_Next_Named_Actual
3596 (Assoc
, Next_Named_Actual
(Parent
(Prev
)));
3597 Set_Next_Named_Actual
(Parent
(Prev
), Actval
);
3598 Append
(Assoc
, Parameter_Associations
(N
));
3601 Mark_Rewrite_Insertion
(Assoc
);
3602 Mark_Rewrite_Insertion
(Actval
);
3607 --------------------
3608 -- Property_Error --
3609 --------------------
3611 procedure Property_Error
3617 Error_Msg_Name_1
:= Prop_Nam
;
3619 ("external variable & with enabled property % cannot appear as "
3620 & "actual in procedure call (SPARK RM 7.1.3(10))", Var
, Var_Id
);
3621 Error_Msg_N
("\\corresponding formal parameter has mode In", Var
);
3628 function Same_Ancestor
(T1
, T2
: Entity_Id
) return Boolean is
3629 FT1
: Entity_Id
:= T1
;
3630 FT2
: Entity_Id
:= T2
;
3633 if Is_Private_Type
(T1
)
3634 and then Present
(Full_View
(T1
))
3636 FT1
:= Full_View
(T1
);
3639 if Is_Private_Type
(T2
)
3640 and then Present
(Full_View
(T2
))
3642 FT2
:= Full_View
(T2
);
3645 return Root_Type
(Base_Type
(FT1
)) = Root_Type
(Base_Type
(FT2
));
3648 --------------------------
3649 -- Static_Concatenation --
3650 --------------------------
3652 function Static_Concatenation
(N
: Node_Id
) return Boolean is
3655 when N_String_Literal
=>
3660 -- Concatenation is static when both operands are static and
3661 -- the concatenation operator is a predefined one.
3663 return Scope
(Entity
(N
)) = Standard_Standard
3665 Static_Concatenation
(Left_Opnd
(N
))
3667 Static_Concatenation
(Right_Opnd
(N
));
3670 if Is_Entity_Name
(N
) then
3672 Ent
: constant Entity_Id
:= Entity
(N
);
3674 return Ekind
(Ent
) = E_Constant
3675 and then Present
(Constant_Value
(Ent
))
3677 Is_OK_Static_Expression
(Constant_Value
(Ent
));
3684 end Static_Concatenation
;
3686 -- Start of processing for Resolve_Actuals
3689 Check_Argument_Order
;
3691 if Is_Overloadable
(Nam
)
3692 and then Is_Inherited_Operation
(Nam
)
3693 and then In_Instance
3694 and then Present
(Alias
(Nam
))
3695 and then Present
(Overridden_Operation
(Alias
(Nam
)))
3697 Real_Subp
:= Alias
(Nam
);
3702 if Present
(First_Actual
(N
)) then
3703 Check_Prefixed_Call
;
3706 A
:= First_Actual
(N
);
3707 F
:= First_Formal
(Nam
);
3709 if Present
(Real_Subp
) then
3710 Real_F
:= First_Formal
(Real_Subp
);
3713 while Present
(F
) loop
3714 if No
(A
) and then Needs_No_Actuals
(Nam
) then
3717 -- If we have an error in any actual or formal, indicated by a type
3718 -- of Any_Type, then abandon resolution attempt, and set result type
3719 -- to Any_Type. Skip this if the actual is a Raise_Expression, whose
3720 -- type is imposed from context.
3722 elsif (Present
(A
) and then Etype
(A
) = Any_Type
)
3723 or else Etype
(F
) = Any_Type
3725 if Nkind
(A
) /= N_Raise_Expression
then
3726 Set_Etype
(N
, Any_Type
);
3731 -- Case where actual is present
3733 -- If the actual is an entity, generate a reference to it now. We
3734 -- do this before the actual is resolved, because a formal of some
3735 -- protected subprogram, or a task discriminant, will be rewritten
3736 -- during expansion, and the source entity reference may be lost.
3739 and then Is_Entity_Name
(A
)
3740 and then Comes_From_Source
(A
)
3742 Orig_A
:= Entity
(A
);
3744 if Present
(Orig_A
) then
3745 if Is_Formal
(Orig_A
)
3746 and then Ekind
(F
) /= E_In_Parameter
3748 Generate_Reference
(Orig_A
, A
, 'm');
3750 elsif not Is_Overloaded
(A
) then
3751 if Ekind
(F
) /= E_Out_Parameter
then
3752 Generate_Reference
(Orig_A
, A
);
3754 -- RM 6.4.1(12): For an out parameter that is passed by
3755 -- copy, the formal parameter object is created, and:
3757 -- * For an access type, the formal parameter is initialized
3758 -- from the value of the actual, without checking that the
3759 -- value satisfies any constraint, any predicate, or any
3760 -- exclusion of the null value.
3762 -- * For a scalar type that has the Default_Value aspect
3763 -- specified, the formal parameter is initialized from the
3764 -- value of the actual, without checking that the value
3765 -- satisfies any constraint or any predicate.
3766 -- I do not understand why this case is included??? this is
3767 -- not a case where an OUT parameter is treated as IN OUT.
3769 -- * For a composite type with discriminants or that has
3770 -- implicit initial values for any subcomponents, the
3771 -- behavior is as for an in out parameter passed by copy.
3773 -- Hence for these cases we generate the read reference now
3774 -- (the write reference will be generated later by
3775 -- Note_Possible_Modification).
3777 elsif Is_By_Copy_Type
(Etype
(F
))
3779 (Is_Access_Type
(Etype
(F
))
3781 (Is_Scalar_Type
(Etype
(F
))
3783 Present
(Default_Aspect_Value
(Etype
(F
))))
3785 (Is_Composite_Type
(Etype
(F
))
3786 and then (Has_Discriminants
(Etype
(F
))
3787 or else Is_Partially_Initialized_Type
3790 Generate_Reference
(Orig_A
, A
);
3797 and then (Nkind
(Parent
(A
)) /= N_Parameter_Association
3798 or else Chars
(Selector_Name
(Parent
(A
))) = Chars
(F
))
3800 -- If style checking mode on, check match of formal name
3803 if Nkind
(Parent
(A
)) = N_Parameter_Association
then
3804 Check_Identifier
(Selector_Name
(Parent
(A
)), F
);
3808 -- If the formal is Out or In_Out, do not resolve and expand the
3809 -- conversion, because it is subsequently expanded into explicit
3810 -- temporaries and assignments. However, the object of the
3811 -- conversion can be resolved. An exception is the case of tagged
3812 -- type conversion with a class-wide actual. In that case we want
3813 -- the tag check to occur and no temporary will be needed (no
3814 -- representation change can occur) and the parameter is passed by
3815 -- reference, so we go ahead and resolve the type conversion.
3816 -- Another exception is the case of reference to component or
3817 -- subcomponent of a bit-packed array, in which case we want to
3818 -- defer expansion to the point the in and out assignments are
3821 if Ekind
(F
) /= E_In_Parameter
3822 and then Nkind
(A
) = N_Type_Conversion
3823 and then not Is_Class_Wide_Type
(Etype
(Expression
(A
)))
3825 if Ekind
(F
) = E_In_Out_Parameter
3826 and then Is_Array_Type
(Etype
(F
))
3828 -- In a view conversion, the conversion must be legal in
3829 -- both directions, and thus both component types must be
3830 -- aliased, or neither (4.6 (8)).
3832 -- The extra rule in 4.6 (24.9.2) seems unduly restrictive:
3833 -- the privacy requirement should not apply to generic
3834 -- types, and should be checked in an instance. ARG query
3837 if Has_Aliased_Components
(Etype
(Expression
(A
))) /=
3838 Has_Aliased_Components
(Etype
(F
))
3841 ("both component types in a view conversion must be"
3842 & " aliased, or neither", A
);
3844 -- Comment here??? what set of cases???
3847 not Same_Ancestor
(Etype
(F
), Etype
(Expression
(A
)))
3849 -- Check view conv between unrelated by ref array types
3851 if Is_By_Reference_Type
(Etype
(F
))
3852 or else Is_By_Reference_Type
(Etype
(Expression
(A
)))
3855 ("view conversion between unrelated by reference "
3856 & "array types not allowed (\'A'I-00246)", A
);
3858 -- In Ada 2005 mode, check view conversion component
3859 -- type cannot be private, tagged, or volatile. Note
3860 -- that we only apply this to source conversions. The
3861 -- generated code can contain conversions which are
3862 -- not subject to this test, and we cannot extract the
3863 -- component type in such cases since it is not present.
3865 elsif Comes_From_Source
(A
)
3866 and then Ada_Version
>= Ada_2005
3869 Comp_Type
: constant Entity_Id
:=
3871 (Etype
(Expression
(A
)));
3873 if (Is_Private_Type
(Comp_Type
)
3874 and then not Is_Generic_Type
(Comp_Type
))
3875 or else Is_Tagged_Type
(Comp_Type
)
3876 or else Is_Volatile
(Comp_Type
)
3879 ("component type of a view conversion cannot"
3880 & " be private, tagged, or volatile"
3889 -- Resolve expression if conversion is all OK
3891 if (Conversion_OK
(A
)
3892 or else Valid_Conversion
(A
, Etype
(A
), Expression
(A
)))
3893 and then not Is_Ref_To_Bit_Packed_Array
(Expression
(A
))
3895 Resolve
(Expression
(A
));
3898 -- If the actual is a function call that returns a limited
3899 -- unconstrained object that needs finalization, create a
3900 -- transient scope for it, so that it can receive the proper
3901 -- finalization list.
3903 elsif Nkind
(A
) = N_Function_Call
3904 and then Is_Limited_Record
(Etype
(F
))
3905 and then not Is_Constrained
(Etype
(F
))
3906 and then Expander_Active
3907 and then (Is_Controlled
(Etype
(F
)) or else Has_Task
(Etype
(F
)))
3909 Establish_Transient_Scope
(A
, Sec_Stack
=> False);
3910 Resolve
(A
, Etype
(F
));
3912 -- A small optimization: if one of the actuals is a concatenation
3913 -- create a block around a procedure call to recover stack space.
3914 -- This alleviates stack usage when several procedure calls in
3915 -- the same statement list use concatenation. We do not perform
3916 -- this wrapping for code statements, where the argument is a
3917 -- static string, and we want to preserve warnings involving
3918 -- sequences of such statements.
3920 elsif Nkind
(A
) = N_Op_Concat
3921 and then Nkind
(N
) = N_Procedure_Call_Statement
3922 and then Expander_Active
3924 not (Is_Intrinsic_Subprogram
(Nam
)
3925 and then Chars
(Nam
) = Name_Asm
)
3926 and then not Static_Concatenation
(A
)
3928 Establish_Transient_Scope
(A
, Sec_Stack
=> False);
3929 Resolve
(A
, Etype
(F
));
3932 if Nkind
(A
) = N_Type_Conversion
3933 and then Is_Array_Type
(Etype
(F
))
3934 and then not Same_Ancestor
(Etype
(F
), Etype
(Expression
(A
)))
3936 (Is_Limited_Type
(Etype
(F
))
3937 or else Is_Limited_Type
(Etype
(Expression
(A
))))
3940 ("conversion between unrelated limited array types "
3941 & "not allowed ('A'I-00246)", A
);
3943 if Is_Limited_Type
(Etype
(F
)) then
3944 Explain_Limited_Type
(Etype
(F
), A
);
3947 if Is_Limited_Type
(Etype
(Expression
(A
))) then
3948 Explain_Limited_Type
(Etype
(Expression
(A
)), A
);
3952 -- (Ada 2005: AI-251): If the actual is an allocator whose
3953 -- directly designated type is a class-wide interface, we build
3954 -- an anonymous access type to use it as the type of the
3955 -- allocator. Later, when the subprogram call is expanded, if
3956 -- the interface has a secondary dispatch table the expander
3957 -- will add a type conversion to force the correct displacement
3960 if Nkind
(A
) = N_Allocator
then
3962 DDT
: constant Entity_Id
:=
3963 Directly_Designated_Type
(Base_Type
(Etype
(F
)));
3965 New_Itype
: Entity_Id
;
3968 if Is_Class_Wide_Type
(DDT
)
3969 and then Is_Interface
(DDT
)
3971 New_Itype
:= Create_Itype
(E_Anonymous_Access_Type
, A
);
3972 Set_Etype
(New_Itype
, Etype
(A
));
3973 Set_Directly_Designated_Type
3974 (New_Itype
, Directly_Designated_Type
(Etype
(A
)));
3975 Set_Etype
(A
, New_Itype
);
3978 -- Ada 2005, AI-162:If the actual is an allocator, the
3979 -- innermost enclosing statement is the master of the
3980 -- created object. This needs to be done with expansion
3981 -- enabled only, otherwise the transient scope will not
3982 -- be removed in the expansion of the wrapped construct.
3984 if (Is_Controlled
(DDT
) or else Has_Task
(DDT
))
3985 and then Expander_Active
3987 Establish_Transient_Scope
(A
, Sec_Stack
=> False);
3991 if Ekind
(Etype
(F
)) = E_Anonymous_Access_Type
then
3992 Check_Restriction
(No_Access_Parameter_Allocators
, A
);
3996 -- (Ada 2005): The call may be to a primitive operation of a
3997 -- tagged synchronized type, declared outside of the type. In
3998 -- this case the controlling actual must be converted to its
3999 -- corresponding record type, which is the formal type. The
4000 -- actual may be a subtype, either because of a constraint or
4001 -- because it is a generic actual, so use base type to locate
4004 F_Typ
:= Base_Type
(Etype
(F
));
4006 if Is_Tagged_Type
(F_Typ
)
4007 and then (Is_Concurrent_Type
(F_Typ
)
4008 or else Is_Concurrent_Record_Type
(F_Typ
))
4010 -- If the actual is overloaded, look for an interpretation
4011 -- that has a synchronized type.
4013 if not Is_Overloaded
(A
) then
4014 A_Typ
:= Base_Type
(Etype
(A
));
4018 Index
: Interp_Index
;
4022 Get_First_Interp
(A
, Index
, It
);
4023 while Present
(It
.Typ
) loop
4024 if Is_Concurrent_Type
(It
.Typ
)
4025 or else Is_Concurrent_Record_Type
(It
.Typ
)
4027 A_Typ
:= Base_Type
(It
.Typ
);
4031 Get_Next_Interp
(Index
, It
);
4037 Full_A_Typ
: Entity_Id
;
4040 if Present
(Full_View
(A_Typ
)) then
4041 Full_A_Typ
:= Base_Type
(Full_View
(A_Typ
));
4043 Full_A_Typ
:= A_Typ
;
4046 -- Tagged synchronized type (case 1): the actual is a
4049 if Is_Concurrent_Type
(A_Typ
)
4050 and then Corresponding_Record_Type
(A_Typ
) = F_Typ
4053 Unchecked_Convert_To
4054 (Corresponding_Record_Type
(A_Typ
), A
));
4055 Resolve
(A
, Etype
(F
));
4057 -- Tagged synchronized type (case 2): the formal is a
4060 elsif Ekind
(Full_A_Typ
) = E_Record_Type
4062 (Corresponding_Concurrent_Type
(Full_A_Typ
))
4063 and then Is_Concurrent_Type
(F_Typ
)
4064 and then Present
(Corresponding_Record_Type
(F_Typ
))
4065 and then Full_A_Typ
= Corresponding_Record_Type
(F_Typ
)
4067 Resolve
(A
, Corresponding_Record_Type
(F_Typ
));
4072 Resolve
(A
, Etype
(F
));
4076 -- Not a synchronized operation
4079 Resolve
(A
, Etype
(F
));
4086 -- An actual cannot be an untagged formal incomplete type
4088 if Ekind
(A_Typ
) = E_Incomplete_Type
4089 and then not Is_Tagged_Type
(A_Typ
)
4090 and then Is_Generic_Type
(A_Typ
)
4093 ("invalid use of untagged formal incomplete type", A
);
4096 if Comes_From_Source
(Original_Node
(N
))
4097 and then Nkind_In
(Original_Node
(N
), N_Function_Call
,
4098 N_Procedure_Call_Statement
)
4100 -- In formal mode, check that actual parameters matching
4101 -- formals of tagged types are objects (or ancestor type
4102 -- conversions of objects), not general expressions.
4104 if Is_Actual_Tagged_Parameter
(A
) then
4105 if Is_SPARK_05_Object_Reference
(A
) then
4108 elsif Nkind
(A
) = N_Type_Conversion
then
4110 Operand
: constant Node_Id
:= Expression
(A
);
4111 Operand_Typ
: constant Entity_Id
:= Etype
(Operand
);
4112 Target_Typ
: constant Entity_Id
:= A_Typ
;
4115 if not Is_SPARK_05_Object_Reference
(Operand
) then
4116 Check_SPARK_05_Restriction
4117 ("object required", Operand
);
4119 -- In formal mode, the only view conversions are those
4120 -- involving ancestor conversion of an extended type.
4123 (Is_Tagged_Type
(Target_Typ
)
4124 and then not Is_Class_Wide_Type
(Target_Typ
)
4125 and then Is_Tagged_Type
(Operand_Typ
)
4126 and then not Is_Class_Wide_Type
(Operand_Typ
)
4127 and then Is_Ancestor
(Target_Typ
, Operand_Typ
))
4130 (F
, E_Out_Parameter
, E_In_Out_Parameter
)
4132 Check_SPARK_05_Restriction
4133 ("ancestor conversion is the only permitted "
4134 & "view conversion", A
);
4136 Check_SPARK_05_Restriction
4137 ("ancestor conversion required", A
);
4146 Check_SPARK_05_Restriction
("object required", A
);
4149 -- In formal mode, the only view conversions are those
4150 -- involving ancestor conversion of an extended type.
4152 elsif Nkind
(A
) = N_Type_Conversion
4153 and then Ekind_In
(F
, E_Out_Parameter
, E_In_Out_Parameter
)
4155 Check_SPARK_05_Restriction
4156 ("ancestor conversion is the only permitted view "
4161 -- has warnings suppressed, then we reset Never_Set_In_Source for
4162 -- the calling entity. The reason for this is to catch cases like
4163 -- GNAT.Spitbol.Patterns.Vstring_Var where the called subprogram
4164 -- uses trickery to modify an IN parameter.
4166 if Ekind
(F
) = E_In_Parameter
4167 and then Is_Entity_Name
(A
)
4168 and then Present
(Entity
(A
))
4169 and then Ekind
(Entity
(A
)) = E_Variable
4170 and then Has_Warnings_Off
(F_Typ
)
4172 Set_Never_Set_In_Source
(Entity
(A
), False);
4175 -- Perform error checks for IN and IN OUT parameters
4177 if Ekind
(F
) /= E_Out_Parameter
then
4179 -- Check unset reference. For scalar parameters, it is clearly
4180 -- wrong to pass an uninitialized value as either an IN or
4181 -- IN-OUT parameter. For composites, it is also clearly an
4182 -- error to pass a completely uninitialized value as an IN
4183 -- parameter, but the case of IN OUT is trickier. We prefer
4184 -- not to give a warning here. For example, suppose there is
4185 -- a routine that sets some component of a record to False.
4186 -- It is perfectly reasonable to make this IN-OUT and allow
4187 -- either initialized or uninitialized records to be passed
4190 -- For partially initialized composite values, we also avoid
4191 -- warnings, since it is quite likely that we are passing a
4192 -- partially initialized value and only the initialized fields
4193 -- will in fact be read in the subprogram.
4195 if Is_Scalar_Type
(A_Typ
)
4196 or else (Ekind
(F
) = E_In_Parameter
4197 and then not Is_Partially_Initialized_Type
(A_Typ
))
4199 Check_Unset_Reference
(A
);
4202 -- In Ada 83 we cannot pass an OUT parameter as an IN or IN OUT
4203 -- actual to a nested call, since this constitutes a reading of
4204 -- the parameter, which is not allowed.
4206 if Ada_Version
= Ada_83
4207 and then Is_Entity_Name
(A
)
4208 and then Ekind
(Entity
(A
)) = E_Out_Parameter
4210 Error_Msg_N
("(Ada 83) illegal reading of out parameter", A
);
4214 -- In -gnatd.q mode, forget that a given array is constant when
4215 -- it is passed as an IN parameter to a foreign-convention
4216 -- subprogram. This is in case the subprogram evilly modifies the
4217 -- object. Of course, correct code would use IN OUT.
4220 and then Ekind
(F
) = E_In_Parameter
4221 and then Has_Foreign_Convention
(Nam
)
4222 and then Is_Array_Type
(F_Typ
)
4223 and then Nkind
(A
) in N_Has_Entity
4224 and then Present
(Entity
(A
))
4226 Set_Is_True_Constant
(Entity
(A
), False);
4229 -- Case of OUT or IN OUT parameter
4231 if Ekind
(F
) /= E_In_Parameter
then
4233 -- For an Out parameter, check for useless assignment. Note
4234 -- that we can't set Last_Assignment this early, because we may
4235 -- kill current values in Resolve_Call, and that call would
4236 -- clobber the Last_Assignment field.
4238 -- Note: call Warn_On_Useless_Assignment before doing the check
4239 -- below for Is_OK_Variable_For_Out_Formal so that the setting
4240 -- of Referenced_As_LHS/Referenced_As_Out_Formal properly
4241 -- reflects the last assignment, not this one.
4243 if Ekind
(F
) = E_Out_Parameter
then
4244 if Warn_On_Modified_As_Out_Parameter
(F
)
4245 and then Is_Entity_Name
(A
)
4246 and then Present
(Entity
(A
))
4247 and then Comes_From_Source
(N
)
4249 Warn_On_Useless_Assignment
(Entity
(A
), A
);
4253 -- Validate the form of the actual. Note that the call to
4254 -- Is_OK_Variable_For_Out_Formal generates the required
4255 -- reference in this case.
4257 -- A call to an initialization procedure for an aggregate
4258 -- component may initialize a nested component of a constant
4259 -- designated object. In this context the object is variable.
4261 if not Is_OK_Variable_For_Out_Formal
(A
)
4262 and then not Is_Init_Proc
(Nam
)
4264 Error_Msg_NE
("actual for& must be a variable", A
, F
);
4266 if Is_Subprogram
(Current_Scope
) then
4267 if Is_Invariant_Procedure
(Current_Scope
)
4268 or else Is_Partial_Invariant_Procedure
(Current_Scope
)
4271 ("function used in invariant cannot modify its "
4274 elsif Is_Predicate_Function
(Current_Scope
) then
4276 ("function used in predicate cannot modify its "
4282 -- What's the following about???
4284 if Is_Entity_Name
(A
) then
4285 Kill_Checks
(Entity
(A
));
4291 if Etype
(A
) = Any_Type
then
4292 Set_Etype
(N
, Any_Type
);
4296 -- Apply appropriate constraint/predicate checks for IN [OUT] case
4298 if Ekind_In
(F
, E_In_Parameter
, E_In_Out_Parameter
) then
4300 -- Apply predicate tests except in certain special cases. Note
4301 -- that it might be more consistent to apply these only when
4302 -- expansion is active (in Exp_Ch6.Expand_Actuals), as we do
4303 -- for the outbound predicate tests ??? In any case indicate
4304 -- the function being called, for better warnings if the call
4305 -- leads to an infinite recursion.
4307 if Predicate_Tests_On_Arguments
(Nam
) then
4308 Apply_Predicate_Check
(A
, F_Typ
, Nam
);
4311 -- Apply required constraint checks
4313 -- Gigi looks at the check flag and uses the appropriate types.
4314 -- For now since one flag is used there is an optimization
4315 -- which might not be done in the IN OUT case since Gigi does
4316 -- not do any analysis. More thought required about this ???
4318 -- In fact is this comment obsolete??? doesn't the expander now
4319 -- generate all these tests anyway???
4321 if Is_Scalar_Type
(Etype
(A
)) then
4322 Apply_Scalar_Range_Check
(A
, F_Typ
);
4324 elsif Is_Array_Type
(Etype
(A
)) then
4325 Apply_Length_Check
(A
, F_Typ
);
4327 elsif Is_Record_Type
(F_Typ
)
4328 and then Has_Discriminants
(F_Typ
)
4329 and then Is_Constrained
(F_Typ
)
4330 and then (not Is_Derived_Type
(F_Typ
)
4331 or else Comes_From_Source
(Nam
))
4333 Apply_Discriminant_Check
(A
, F_Typ
);
4335 -- For view conversions of a discriminated object, apply
4336 -- check to object itself, the conversion alreay has the
4339 if Nkind
(A
) = N_Type_Conversion
4340 and then Is_Constrained
(Etype
(Expression
(A
)))
4342 Apply_Discriminant_Check
(Expression
(A
), F_Typ
);
4345 elsif Is_Access_Type
(F_Typ
)
4346 and then Is_Array_Type
(Designated_Type
(F_Typ
))
4347 and then Is_Constrained
(Designated_Type
(F_Typ
))
4349 Apply_Length_Check
(A
, F_Typ
);
4351 elsif Is_Access_Type
(F_Typ
)
4352 and then Has_Discriminants
(Designated_Type
(F_Typ
))
4353 and then Is_Constrained
(Designated_Type
(F_Typ
))
4355 Apply_Discriminant_Check
(A
, F_Typ
);
4358 Apply_Range_Check
(A
, F_Typ
);
4361 -- Ada 2005 (AI-231): Note that the controlling parameter case
4362 -- already existed in Ada 95, which is partially checked
4363 -- elsewhere (see Checks), and we don't want the warning
4364 -- message to differ.
4366 if Is_Access_Type
(F_Typ
)
4367 and then Can_Never_Be_Null
(F_Typ
)
4368 and then Known_Null
(A
)
4370 if Is_Controlling_Formal
(F
) then
4371 Apply_Compile_Time_Constraint_Error
4373 Msg
=> "null value not allowed here??",
4374 Reason
=> CE_Access_Check_Failed
);
4376 elsif Ada_Version
>= Ada_2005
then
4377 Apply_Compile_Time_Constraint_Error
4379 Msg
=> "(Ada 2005) null not allowed in "
4380 & "null-excluding formal??",
4381 Reason
=> CE_Null_Not_Allowed
);
4386 -- Checks for OUT parameters and IN OUT parameters
4388 if Ekind_In
(F
, E_Out_Parameter
, E_In_Out_Parameter
) then
4390 -- If there is a type conversion, make sure the return value
4391 -- meets the constraints of the variable before the conversion.
4393 if Nkind
(A
) = N_Type_Conversion
then
4394 if Is_Scalar_Type
(A_Typ
) then
4395 Apply_Scalar_Range_Check
4396 (Expression
(A
), Etype
(Expression
(A
)), A_Typ
);
4398 -- In addition, the returned value of the parameter must
4399 -- satisfy the bounds of the object type (see comment
4402 Apply_Scalar_Range_Check
(A
, A_Typ
, F_Typ
);
4406 (Expression
(A
), Etype
(Expression
(A
)), A_Typ
);
4409 -- If no conversion, apply scalar range checks and length check
4410 -- based on the subtype of the actual (NOT that of the formal).
4411 -- This indicates that the check takes place on return from the
4412 -- call. During expansion the required constraint checks are
4413 -- inserted. In GNATprove mode, in the absence of expansion,
4414 -- the flag indicates that the returned value is valid.
4417 if Is_Scalar_Type
(F_Typ
) then
4418 Apply_Scalar_Range_Check
(A
, A_Typ
, F_Typ
);
4420 elsif Is_Array_Type
(F_Typ
)
4421 and then Ekind
(F
) = E_Out_Parameter
4423 Apply_Length_Check
(A
, F_Typ
);
4425 Apply_Range_Check
(A
, A_Typ
, F_Typ
);
4429 -- Note: we do not apply the predicate checks for the case of
4430 -- OUT and IN OUT parameters. They are instead applied in the
4431 -- Expand_Actuals routine in Exp_Ch6.
4434 -- An actual associated with an access parameter is implicitly
4435 -- converted to the anonymous access type of the formal and must
4436 -- satisfy the legality checks for access conversions.
4438 if Ekind
(F_Typ
) = E_Anonymous_Access_Type
then
4439 if not Valid_Conversion
(A
, F_Typ
, A
) then
4441 ("invalid implicit conversion for access parameter", A
);
4444 -- If the actual is an access selected component of a variable,
4445 -- the call may modify its designated object. It is reasonable
4446 -- to treat this as a potential modification of the enclosing
4447 -- record, to prevent spurious warnings that it should be
4448 -- declared as a constant, because intuitively programmers
4449 -- regard the designated subcomponent as part of the record.
4451 if Nkind
(A
) = N_Selected_Component
4452 and then Is_Entity_Name
(Prefix
(A
))
4453 and then not Is_Constant_Object
(Entity
(Prefix
(A
)))
4455 Note_Possible_Modification
(A
, Sure
=> False);
4459 -- Check bad case of atomic/volatile argument (RM C.6(12))
4461 if Is_By_Reference_Type
(Etype
(F
))
4462 and then Comes_From_Source
(N
)
4464 if Is_Atomic_Object
(A
)
4465 and then not Is_Atomic
(Etype
(F
))
4468 ("cannot pass atomic argument to non-atomic formal&",
4471 elsif Is_Volatile_Object
(A
)
4472 and then not Is_Volatile
(Etype
(F
))
4475 ("cannot pass volatile argument to non-volatile formal&",
4480 -- Check that subprograms don't have improper controlling
4481 -- arguments (RM 3.9.2 (9)).
4483 -- A primitive operation may have an access parameter of an
4484 -- incomplete tagged type, but a dispatching call is illegal
4485 -- if the type is still incomplete.
4487 if Is_Controlling_Formal
(F
) then
4488 Set_Is_Controlling_Actual
(A
);
4490 if Ekind
(Etype
(F
)) = E_Anonymous_Access_Type
then
4492 Desig
: constant Entity_Id
:= Designated_Type
(Etype
(F
));
4494 if Ekind
(Desig
) = E_Incomplete_Type
4495 and then No
(Full_View
(Desig
))
4496 and then No
(Non_Limited_View
(Desig
))
4499 ("premature use of incomplete type& "
4500 & "in dispatching call", A
, Desig
);
4505 elsif Nkind
(A
) = N_Explicit_Dereference
then
4506 Validate_Remote_Access_To_Class_Wide_Type
(A
);
4509 -- Apply legality rule 3.9.2 (9/1)
4511 if (Is_Class_Wide_Type
(A_Typ
) or else Is_Dynamically_Tagged
(A
))
4512 and then not Is_Class_Wide_Type
(F_Typ
)
4513 and then not Is_Controlling_Formal
(F
)
4514 and then not In_Instance
4516 Error_Msg_N
("class-wide argument not allowed here!", A
);
4518 if Is_Subprogram
(Nam
) and then Comes_From_Source
(Nam
) then
4519 Error_Msg_Node_2
:= F_Typ
;
4521 ("& is not a dispatching operation of &!", A
, Nam
);
4524 -- Apply the checks described in 3.10.2(27): if the context is a
4525 -- specific access-to-object, the actual cannot be class-wide.
4526 -- Use base type to exclude access_to_subprogram cases.
4528 elsif Is_Access_Type
(A_Typ
)
4529 and then Is_Access_Type
(F_Typ
)
4530 and then not Is_Access_Subprogram_Type
(Base_Type
(F_Typ
))
4531 and then (Is_Class_Wide_Type
(Designated_Type
(A_Typ
))
4532 or else (Nkind
(A
) = N_Attribute_Reference
4534 Is_Class_Wide_Type
(Etype
(Prefix
(A
)))))
4535 and then not Is_Class_Wide_Type
(Designated_Type
(F_Typ
))
4536 and then not Is_Controlling_Formal
(F
)
4538 -- Disable these checks for call to imported C++ subprograms
4541 (Is_Entity_Name
(Name
(N
))
4542 and then Is_Imported
(Entity
(Name
(N
)))
4543 and then Convention
(Entity
(Name
(N
))) = Convention_CPP
)
4546 ("access to class-wide argument not allowed here!", A
);
4548 if Is_Subprogram
(Nam
) and then Comes_From_Source
(Nam
) then
4549 Error_Msg_Node_2
:= Designated_Type
(F_Typ
);
4551 ("& is not a dispatching operation of &!", A
, Nam
);
4555 Check_Aliased_Parameter
;
4559 -- If it is a named association, treat the selector_name as a
4560 -- proper identifier, and mark the corresponding entity.
4562 if Nkind
(Parent
(A
)) = N_Parameter_Association
4564 -- Ignore reference in SPARK mode, as it refers to an entity not
4565 -- in scope at the point of reference, so the reference should
4566 -- be ignored for computing effects of subprograms.
4568 and then not GNATprove_Mode
4570 -- If subprogram is overridden, use name of formal that
4573 if Present
(Real_Subp
) then
4574 Set_Entity
(Selector_Name
(Parent
(A
)), Real_F
);
4575 Set_Etype
(Selector_Name
(Parent
(A
)), Etype
(Real_F
));
4578 Set_Entity
(Selector_Name
(Parent
(A
)), F
);
4579 Generate_Reference
(F
, Selector_Name
(Parent
(A
)));
4580 Set_Etype
(Selector_Name
(Parent
(A
)), F_Typ
);
4581 Generate_Reference
(F_Typ
, N
, ' ');
4587 if Ekind
(F
) /= E_Out_Parameter
then
4588 Check_Unset_Reference
(A
);
4591 -- The following checks are only relevant when SPARK_Mode is on as
4592 -- they are not standard Ada legality rule. Internally generated
4593 -- temporaries are ignored.
4595 if SPARK_Mode
= On
and then Comes_From_Source
(A
) then
4597 -- An effectively volatile object may act as an actual when the
4598 -- corresponding formal is of a non-scalar effectively volatile
4599 -- type (SPARK RM 7.1.3(11)).
4601 if not Is_Scalar_Type
(Etype
(F
))
4602 and then Is_Effectively_Volatile
(Etype
(F
))
4606 -- An effectively volatile object may act as an actual in a
4607 -- call to an instance of Unchecked_Conversion.
4608 -- (SPARK RM 7.1.3(11)).
4610 elsif Is_Unchecked_Conversion_Instance
(Nam
) then
4613 -- The actual denotes an object
4615 elsif Is_Effectively_Volatile_Object
(A
) then
4617 ("volatile object cannot act as actual in a call (SPARK "
4618 & "RM 7.1.3(11))", A
);
4620 -- Otherwise the actual denotes an expression. Inspect the
4621 -- expression and flag each effectively volatile object with
4622 -- enabled property Async_Writers or Effective_Reads as illegal
4623 -- because it apprears within an interfering context. Note that
4624 -- this is usually done in Resolve_Entity_Name, but when the
4625 -- effectively volatile object appears as an actual in a call,
4626 -- the call must be resolved first.
4629 Flag_Effectively_Volatile_Objects
(A
);
4632 -- Detect an external variable with an enabled property that
4633 -- does not match the mode of the corresponding formal in a
4634 -- procedure call. Functions are not considered because they
4635 -- cannot have effectively volatile formal parameters in the
4638 if Ekind
(Nam
) = E_Procedure
4639 and then Ekind
(F
) = E_In_Parameter
4640 and then Is_Entity_Name
(A
)
4641 and then Present
(Entity
(A
))
4642 and then Ekind
(Entity
(A
)) = E_Variable
4646 if Async_Readers_Enabled
(A_Id
) then
4647 Property_Error
(A
, A_Id
, Name_Async_Readers
);
4648 elsif Effective_Reads_Enabled
(A_Id
) then
4649 Property_Error
(A
, A_Id
, Name_Effective_Reads
);
4650 elsif Effective_Writes_Enabled
(A_Id
) then
4651 Property_Error
(A
, A_Id
, Name_Effective_Writes
);
4656 -- A formal parameter of a specific tagged type whose related
4657 -- subprogram is subject to pragma Extensions_Visible with value
4658 -- "False" cannot act as an actual in a subprogram with value
4659 -- "True" (SPARK RM 6.1.7(3)).
4661 if Is_EVF_Expression
(A
)
4662 and then Extensions_Visible_Status
(Nam
) =
4663 Extensions_Visible_True
4666 ("formal parameter cannot act as actual parameter when "
4667 & "Extensions_Visible is False", A
);
4669 ("\subprogram & has Extensions_Visible True", A
, Nam
);
4672 -- The actual parameter of a Ghost subprogram whose formal is of
4673 -- mode IN OUT or OUT must be a Ghost variable (SPARK RM 6.9(12)).
4675 if Comes_From_Source
(Nam
)
4676 and then Is_Ghost_Entity
(Nam
)
4677 and then Ekind_In
(F
, E_In_Out_Parameter
, E_Out_Parameter
)
4678 and then Is_Entity_Name
(A
)
4679 and then Present
(Entity
(A
))
4680 and then not Is_Ghost_Entity
(Entity
(A
))
4683 ("non-ghost variable & cannot appear as actual in call to "
4684 & "ghost procedure", A
, Entity
(A
));
4686 if Ekind
(F
) = E_In_Out_Parameter
then
4687 Error_Msg_N
("\corresponding formal has mode `IN OUT`", A
);
4689 Error_Msg_N
("\corresponding formal has mode OUT", A
);
4695 -- Case where actual is not present
4703 if Present
(Real_Subp
) then
4704 Next_Formal
(Real_F
);
4707 end Resolve_Actuals
;
4709 -----------------------
4710 -- Resolve_Allocator --
4711 -----------------------
4713 procedure Resolve_Allocator
(N
: Node_Id
; Typ
: Entity_Id
) is
4714 Desig_T
: constant Entity_Id
:= Designated_Type
(Typ
);
4715 E
: constant Node_Id
:= Expression
(N
);
4717 Discrim
: Entity_Id
;
4720 Assoc
: Node_Id
:= Empty
;
4723 procedure Check_Allocator_Discrim_Accessibility
4724 (Disc_Exp
: Node_Id
;
4725 Alloc_Typ
: Entity_Id
);
4726 -- Check that accessibility level associated with an access discriminant
4727 -- initialized in an allocator by the expression Disc_Exp is not deeper
4728 -- than the level of the allocator type Alloc_Typ. An error message is
4729 -- issued if this condition is violated. Specialized checks are done for
4730 -- the cases of a constraint expression which is an access attribute or
4731 -- an access discriminant.
4733 function In_Dispatching_Context
return Boolean;
4734 -- If the allocator is an actual in a call, it is allowed to be class-
4735 -- wide when the context is not because it is a controlling actual.
4737 -------------------------------------------
4738 -- Check_Allocator_Discrim_Accessibility --
4739 -------------------------------------------
4741 procedure Check_Allocator_Discrim_Accessibility
4742 (Disc_Exp
: Node_Id
;
4743 Alloc_Typ
: Entity_Id
)
4746 if Type_Access_Level
(Etype
(Disc_Exp
)) >
4747 Deepest_Type_Access_Level
(Alloc_Typ
)
4750 ("operand type has deeper level than allocator type", Disc_Exp
);
4752 -- When the expression is an Access attribute the level of the prefix
4753 -- object must not be deeper than that of the allocator's type.
4755 elsif Nkind
(Disc_Exp
) = N_Attribute_Reference
4756 and then Get_Attribute_Id
(Attribute_Name
(Disc_Exp
)) =
4758 and then Object_Access_Level
(Prefix
(Disc_Exp
)) >
4759 Deepest_Type_Access_Level
(Alloc_Typ
)
4762 ("prefix of attribute has deeper level than allocator type",
4765 -- When the expression is an access discriminant the check is against
4766 -- the level of the prefix object.
4768 elsif Ekind
(Etype
(Disc_Exp
)) = E_Anonymous_Access_Type
4769 and then Nkind
(Disc_Exp
) = N_Selected_Component
4770 and then Object_Access_Level
(Prefix
(Disc_Exp
)) >
4771 Deepest_Type_Access_Level
(Alloc_Typ
)
4774 ("access discriminant has deeper level than allocator type",
4777 -- All other cases are legal
4782 end Check_Allocator_Discrim_Accessibility
;
4784 ----------------------------
4785 -- In_Dispatching_Context --
4786 ----------------------------
4788 function In_Dispatching_Context
return Boolean is
4789 Par
: constant Node_Id
:= Parent
(N
);
4792 return Nkind
(Par
) in N_Subprogram_Call
4793 and then Is_Entity_Name
(Name
(Par
))
4794 and then Is_Dispatching_Operation
(Entity
(Name
(Par
)));
4795 end In_Dispatching_Context
;
4797 -- Start of processing for Resolve_Allocator
4800 -- Replace general access with specific type
4802 if Ekind
(Etype
(N
)) = E_Allocator_Type
then
4803 Set_Etype
(N
, Base_Type
(Typ
));
4806 if Is_Abstract_Type
(Typ
) then
4807 Error_Msg_N
("type of allocator cannot be abstract", N
);
4810 -- For qualified expression, resolve the expression using the given
4811 -- subtype (nothing to do for type mark, subtype indication)
4813 if Nkind
(E
) = N_Qualified_Expression
then
4814 if Is_Class_Wide_Type
(Etype
(E
))
4815 and then not Is_Class_Wide_Type
(Desig_T
)
4816 and then not In_Dispatching_Context
4819 ("class-wide allocator not allowed for this access type", N
);
4822 Resolve
(Expression
(E
), Etype
(E
));
4823 Check_Non_Static_Context
(Expression
(E
));
4824 Check_Unset_Reference
(Expression
(E
));
4826 -- Allocators generated by the build-in-place expansion mechanism
4827 -- are explicitly marked as coming from source but do not need to be
4828 -- checked for limited initialization. To exclude this case, ensure
4829 -- that the parent of the allocator is a source node.
4831 if Is_Limited_Type
(Etype
(E
))
4832 and then Comes_From_Source
(N
)
4833 and then Comes_From_Source
(Parent
(N
))
4834 and then not In_Instance_Body
4836 if not OK_For_Limited_Init
(Etype
(E
), Expression
(E
)) then
4837 if Nkind
(Parent
(N
)) = N_Assignment_Statement
then
4839 ("illegal expression for initialized allocator of a "
4840 & "limited type (RM 7.5 (2.7/2))", N
);
4843 ("initialization not allowed for limited types", N
);
4846 Explain_Limited_Type
(Etype
(E
), N
);
4850 -- A qualified expression requires an exact match of the type. Class-
4851 -- wide matching is not allowed.
4853 if (Is_Class_Wide_Type
(Etype
(Expression
(E
)))
4854 or else Is_Class_Wide_Type
(Etype
(E
)))
4855 and then Base_Type
(Etype
(Expression
(E
))) /= Base_Type
(Etype
(E
))
4857 Wrong_Type
(Expression
(E
), Etype
(E
));
4860 -- Calls to build-in-place functions are not currently supported in
4861 -- allocators for access types associated with a simple storage pool.
4862 -- Supporting such allocators may require passing additional implicit
4863 -- parameters to build-in-place functions (or a significant revision
4864 -- of the current b-i-p implementation to unify the handling for
4865 -- multiple kinds of storage pools). ???
4867 if Is_Limited_View
(Desig_T
)
4868 and then Nkind
(Expression
(E
)) = N_Function_Call
4871 Pool
: constant Entity_Id
:=
4872 Associated_Storage_Pool
(Root_Type
(Typ
));
4876 Present
(Get_Rep_Pragma
4877 (Etype
(Pool
), Name_Simple_Storage_Pool_Type
))
4880 ("limited function calls not yet supported in simple "
4881 & "storage pool allocators", Expression
(E
));
4886 -- A special accessibility check is needed for allocators that
4887 -- constrain access discriminants. The level of the type of the
4888 -- expression used to constrain an access discriminant cannot be
4889 -- deeper than the type of the allocator (in contrast to access
4890 -- parameters, where the level of the actual can be arbitrary).
4892 -- We can't use Valid_Conversion to perform this check because in
4893 -- general the type of the allocator is unrelated to the type of
4894 -- the access discriminant.
4896 if Ekind
(Typ
) /= E_Anonymous_Access_Type
4897 or else Is_Local_Anonymous_Access
(Typ
)
4899 Subtyp
:= Entity
(Subtype_Mark
(E
));
4901 Aggr
:= Original_Node
(Expression
(E
));
4903 if Has_Discriminants
(Subtyp
)
4904 and then Nkind_In
(Aggr
, N_Aggregate
, N_Extension_Aggregate
)
4906 Discrim
:= First_Discriminant
(Base_Type
(Subtyp
));
4908 -- Get the first component expression of the aggregate
4910 if Present
(Expressions
(Aggr
)) then
4911 Disc_Exp
:= First
(Expressions
(Aggr
));
4913 elsif Present
(Component_Associations
(Aggr
)) then
4914 Assoc
:= First
(Component_Associations
(Aggr
));
4916 if Present
(Assoc
) then
4917 Disc_Exp
:= Expression
(Assoc
);
4926 while Present
(Discrim
) and then Present
(Disc_Exp
) loop
4927 if Ekind
(Etype
(Discrim
)) = E_Anonymous_Access_Type
then
4928 Check_Allocator_Discrim_Accessibility
(Disc_Exp
, Typ
);
4931 Next_Discriminant
(Discrim
);
4933 if Present
(Discrim
) then
4934 if Present
(Assoc
) then
4936 Disc_Exp
:= Expression
(Assoc
);
4938 elsif Present
(Next
(Disc_Exp
)) then
4942 Assoc
:= First
(Component_Associations
(Aggr
));
4944 if Present
(Assoc
) then
4945 Disc_Exp
:= Expression
(Assoc
);
4955 -- For a subtype mark or subtype indication, freeze the subtype
4958 Freeze_Expression
(E
);
4960 if Is_Access_Constant
(Typ
) and then not No_Initialization
(N
) then
4962 ("initialization required for access-to-constant allocator", N
);
4965 -- A special accessibility check is needed for allocators that
4966 -- constrain access discriminants. The level of the type of the
4967 -- expression used to constrain an access discriminant cannot be
4968 -- deeper than the type of the allocator (in contrast to access
4969 -- parameters, where the level of the actual can be arbitrary).
4970 -- We can't use Valid_Conversion to perform this check because
4971 -- in general the type of the allocator is unrelated to the type
4972 -- of the access discriminant.
4974 if Nkind
(Original_Node
(E
)) = N_Subtype_Indication
4975 and then (Ekind
(Typ
) /= E_Anonymous_Access_Type
4976 or else Is_Local_Anonymous_Access
(Typ
))
4978 Subtyp
:= Entity
(Subtype_Mark
(Original_Node
(E
)));
4980 if Has_Discriminants
(Subtyp
) then
4981 Discrim
:= First_Discriminant
(Base_Type
(Subtyp
));
4982 Constr
:= First
(Constraints
(Constraint
(Original_Node
(E
))));
4983 while Present
(Discrim
) and then Present
(Constr
) loop
4984 if Ekind
(Etype
(Discrim
)) = E_Anonymous_Access_Type
then
4985 if Nkind
(Constr
) = N_Discriminant_Association
then
4986 Disc_Exp
:= Original_Node
(Expression
(Constr
));
4988 Disc_Exp
:= Original_Node
(Constr
);
4991 Check_Allocator_Discrim_Accessibility
(Disc_Exp
, Typ
);
4994 Next_Discriminant
(Discrim
);
5001 -- Ada 2005 (AI-344): A class-wide allocator requires an accessibility
5002 -- check that the level of the type of the created object is not deeper
5003 -- than the level of the allocator's access type, since extensions can
5004 -- now occur at deeper levels than their ancestor types. This is a
5005 -- static accessibility level check; a run-time check is also needed in
5006 -- the case of an initialized allocator with a class-wide argument (see
5007 -- Expand_Allocator_Expression).
5009 if Ada_Version
>= Ada_2005
5010 and then Is_Class_Wide_Type
(Desig_T
)
5013 Exp_Typ
: Entity_Id
;
5016 if Nkind
(E
) = N_Qualified_Expression
then
5017 Exp_Typ
:= Etype
(E
);
5018 elsif Nkind
(E
) = N_Subtype_Indication
then
5019 Exp_Typ
:= Entity
(Subtype_Mark
(Original_Node
(E
)));
5021 Exp_Typ
:= Entity
(E
);
5024 if Type_Access_Level
(Exp_Typ
) >
5025 Deepest_Type_Access_Level
(Typ
)
5027 if In_Instance_Body
then
5028 Error_Msg_Warn
:= SPARK_Mode
/= On
;
5030 ("type in allocator has deeper level than "
5031 & "designated class-wide type<<", E
);
5032 Error_Msg_N
("\Program_Error [<<", E
);
5034 Make_Raise_Program_Error
(Sloc
(N
),
5035 Reason
=> PE_Accessibility_Check_Failed
));
5038 -- Do not apply Ada 2005 accessibility checks on a class-wide
5039 -- allocator if the type given in the allocator is a formal
5040 -- type. A run-time check will be performed in the instance.
5042 elsif not Is_Generic_Type
(Exp_Typ
) then
5043 Error_Msg_N
("type in allocator has deeper level than "
5044 & "designated class-wide type", E
);
5050 -- Check for allocation from an empty storage pool
5052 if No_Pool_Assigned
(Typ
) then
5053 Error_Msg_N
("allocation from empty storage pool!", N
);
5055 -- If the context is an unchecked conversion, as may happen within an
5056 -- inlined subprogram, the allocator is being resolved with its own
5057 -- anonymous type. In that case, if the target type has a specific
5058 -- storage pool, it must be inherited explicitly by the allocator type.
5060 elsif Nkind
(Parent
(N
)) = N_Unchecked_Type_Conversion
5061 and then No
(Associated_Storage_Pool
(Typ
))
5063 Set_Associated_Storage_Pool
5064 (Typ
, Associated_Storage_Pool
(Etype
(Parent
(N
))));
5067 if Ekind
(Etype
(N
)) = E_Anonymous_Access_Type
then
5068 Check_Restriction
(No_Anonymous_Allocators
, N
);
5071 -- Check that an allocator with task parts isn't for a nested access
5072 -- type when restriction No_Task_Hierarchy applies.
5074 if not Is_Library_Level_Entity
(Base_Type
(Typ
))
5075 and then Has_Task
(Base_Type
(Desig_T
))
5077 Check_Restriction
(No_Task_Hierarchy
, N
);
5080 -- An illegal allocator may be rewritten as a raise Program_Error
5083 if Nkind
(N
) = N_Allocator
then
5085 -- An anonymous access discriminant is the definition of a
5088 if Ekind
(Typ
) = E_Anonymous_Access_Type
5089 and then Nkind
(Associated_Node_For_Itype
(Typ
)) =
5090 N_Discriminant_Specification
5093 Discr
: constant Entity_Id
:=
5094 Defining_Identifier
(Associated_Node_For_Itype
(Typ
));
5097 Check_Restriction
(No_Coextensions
, N
);
5099 -- Ada 2012 AI05-0052: If the designated type of the allocator
5100 -- is limited, then the allocator shall not be used to define
5101 -- the value of an access discriminant unless the discriminated
5102 -- type is immutably limited.
5104 if Ada_Version
>= Ada_2012
5105 and then Is_Limited_Type
(Desig_T
)
5106 and then not Is_Limited_View
(Scope
(Discr
))
5109 ("only immutably limited types can have anonymous "
5110 & "access discriminants designating a limited type", N
);
5114 -- Avoid marking an allocator as a dynamic coextension if it is
5115 -- within a static construct.
5117 if not Is_Static_Coextension
(N
) then
5118 Set_Is_Dynamic_Coextension
(N
);
5121 -- Cleanup for potential static coextensions
5124 Set_Is_Dynamic_Coextension
(N
, False);
5125 Set_Is_Static_Coextension
(N
, False);
5129 -- Report a simple error: if the designated object is a local task,
5130 -- its body has not been seen yet, and its activation will fail an
5131 -- elaboration check.
5133 if Is_Task_Type
(Desig_T
)
5134 and then Scope
(Base_Type
(Desig_T
)) = Current_Scope
5135 and then Is_Compilation_Unit
(Current_Scope
)
5136 and then Ekind
(Current_Scope
) = E_Package
5137 and then not In_Package_Body
(Current_Scope
)
5139 Error_Msg_Warn
:= SPARK_Mode
/= On
;
5140 Error_Msg_N
("cannot activate task before body seen<<", N
);
5141 Error_Msg_N
("\Program_Error [<<", N
);
5144 -- Ada 2012 (AI05-0111-3): Detect an attempt to allocate a task or a
5145 -- type with a task component on a subpool. This action must raise
5146 -- Program_Error at runtime.
5148 if Ada_Version
>= Ada_2012
5149 and then Nkind
(N
) = N_Allocator
5150 and then Present
(Subpool_Handle_Name
(N
))
5151 and then Has_Task
(Desig_T
)
5153 Error_Msg_Warn
:= SPARK_Mode
/= On
;
5154 Error_Msg_N
("cannot allocate task on subpool<<", N
);
5155 Error_Msg_N
("\Program_Error [<<", N
);
5158 Make_Raise_Program_Error
(Sloc
(N
),
5159 Reason
=> PE_Explicit_Raise
));
5162 end Resolve_Allocator
;
5164 ---------------------------
5165 -- Resolve_Arithmetic_Op --
5166 ---------------------------
5168 -- Used for resolving all arithmetic operators except exponentiation
5170 procedure Resolve_Arithmetic_Op
(N
: Node_Id
; Typ
: Entity_Id
) is
5171 L
: constant Node_Id
:= Left_Opnd
(N
);
5172 R
: constant Node_Id
:= Right_Opnd
(N
);
5173 TL
: constant Entity_Id
:= Base_Type
(Etype
(L
));
5174 TR
: constant Entity_Id
:= Base_Type
(Etype
(R
));
5178 B_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
5179 -- We do the resolution using the base type, because intermediate values
5180 -- in expressions always are of the base type, not a subtype of it.
5182 function Expected_Type_Is_Any_Real
(N
: Node_Id
) return Boolean;
5183 -- Returns True if N is in a context that expects "any real type"
5185 function Is_Integer_Or_Universal
(N
: Node_Id
) return Boolean;
5186 -- Return True iff given type is Integer or universal real/integer
5188 procedure Set_Mixed_Mode_Operand
(N
: Node_Id
; T
: Entity_Id
);
5189 -- Choose type of integer literal in fixed-point operation to conform
5190 -- to available fixed-point type. T is the type of the other operand,
5191 -- which is needed to determine the expected type of N.
5193 procedure Set_Operand_Type
(N
: Node_Id
);
5194 -- Set operand type to T if universal
5196 -------------------------------
5197 -- Expected_Type_Is_Any_Real --
5198 -------------------------------
5200 function Expected_Type_Is_Any_Real
(N
: Node_Id
) return Boolean is
5202 -- N is the expression after "delta" in a fixed_point_definition;
5205 return Nkind_In
(Parent
(N
), N_Ordinary_Fixed_Point_Definition
,
5206 N_Decimal_Fixed_Point_Definition
,
5208 -- N is one of the bounds in a real_range_specification;
5211 N_Real_Range_Specification
,
5213 -- N is the expression of a delta_constraint;
5216 N_Delta_Constraint
);
5217 end Expected_Type_Is_Any_Real
;
5219 -----------------------------
5220 -- Is_Integer_Or_Universal --
5221 -----------------------------
5223 function Is_Integer_Or_Universal
(N
: Node_Id
) return Boolean is
5225 Index
: Interp_Index
;
5229 if not Is_Overloaded
(N
) then
5231 return Base_Type
(T
) = Base_Type
(Standard_Integer
)
5232 or else T
= Universal_Integer
5233 or else T
= Universal_Real
;
5235 Get_First_Interp
(N
, Index
, It
);
5236 while Present
(It
.Typ
) loop
5237 if Base_Type
(It
.Typ
) = Base_Type
(Standard_Integer
)
5238 or else It
.Typ
= Universal_Integer
5239 or else It
.Typ
= Universal_Real
5244 Get_Next_Interp
(Index
, It
);
5249 end Is_Integer_Or_Universal
;
5251 ----------------------------
5252 -- Set_Mixed_Mode_Operand --
5253 ----------------------------
5255 procedure Set_Mixed_Mode_Operand
(N
: Node_Id
; T
: Entity_Id
) is
5256 Index
: Interp_Index
;
5260 if Universal_Interpretation
(N
) = Universal_Integer
then
5262 -- A universal integer literal is resolved as standard integer
5263 -- except in the case of a fixed-point result, where we leave it
5264 -- as universal (to be handled by Exp_Fixd later on)
5266 if Is_Fixed_Point_Type
(T
) then
5267 Resolve
(N
, Universal_Integer
);
5269 Resolve
(N
, Standard_Integer
);
5272 elsif Universal_Interpretation
(N
) = Universal_Real
5273 and then (T
= Base_Type
(Standard_Integer
)
5274 or else T
= Universal_Integer
5275 or else T
= Universal_Real
)
5277 -- A universal real can appear in a fixed-type context. We resolve
5278 -- the literal with that context, even though this might raise an
5279 -- exception prematurely (the other operand may be zero).
5283 elsif Etype
(N
) = Base_Type
(Standard_Integer
)
5284 and then T
= Universal_Real
5285 and then Is_Overloaded
(N
)
5287 -- Integer arg in mixed-mode operation. Resolve with universal
5288 -- type, in case preference rule must be applied.
5290 Resolve
(N
, Universal_Integer
);
5293 and then B_Typ
/= Universal_Fixed
5295 -- Not a mixed-mode operation, resolve with context
5299 elsif Etype
(N
) = Any_Fixed
then
5301 -- N may itself be a mixed-mode operation, so use context type
5305 elsif Is_Fixed_Point_Type
(T
)
5306 and then B_Typ
= Universal_Fixed
5307 and then Is_Overloaded
(N
)
5309 -- Must be (fixed * fixed) operation, operand must have one
5310 -- compatible interpretation.
5312 Resolve
(N
, Any_Fixed
);
5314 elsif Is_Fixed_Point_Type
(B_Typ
)
5315 and then (T
= Universal_Real
or else Is_Fixed_Point_Type
(T
))
5316 and then Is_Overloaded
(N
)
5318 -- C * F(X) in a fixed context, where C is a real literal or a
5319 -- fixed-point expression. F must have either a fixed type
5320 -- interpretation or an integer interpretation, but not both.
5322 Get_First_Interp
(N
, Index
, It
);
5323 while Present
(It
.Typ
) loop
5324 if Base_Type
(It
.Typ
) = Base_Type
(Standard_Integer
) then
5325 if Analyzed
(N
) then
5326 Error_Msg_N
("ambiguous operand in fixed operation", N
);
5328 Resolve
(N
, Standard_Integer
);
5331 elsif Is_Fixed_Point_Type
(It
.Typ
) then
5332 if Analyzed
(N
) then
5333 Error_Msg_N
("ambiguous operand in fixed operation", N
);
5335 Resolve
(N
, It
.Typ
);
5339 Get_Next_Interp
(Index
, It
);
5342 -- Reanalyze the literal with the fixed type of the context. If
5343 -- context is Universal_Fixed, we are within a conversion, leave
5344 -- the literal as a universal real because there is no usable
5345 -- fixed type, and the target of the conversion plays no role in
5359 if B_Typ
= Universal_Fixed
5360 and then Nkind
(Op2
) = N_Real_Literal
5362 T2
:= Universal_Real
;
5367 Set_Analyzed
(Op2
, False);
5371 -- A universal real conditional expression can appear in a fixed-type
5372 -- context and must be resolved with that context to facilitate the
5373 -- code generation to the backend.
5375 elsif Nkind_In
(N
, N_Case_Expression
, N_If_Expression
)
5376 and then Etype
(N
) = Universal_Real
5377 and then Is_Fixed_Point_Type
(B_Typ
)
5384 end Set_Mixed_Mode_Operand
;
5386 ----------------------
5387 -- Set_Operand_Type --
5388 ----------------------
5390 procedure Set_Operand_Type
(N
: Node_Id
) is
5392 if Etype
(N
) = Universal_Integer
5393 or else Etype
(N
) = Universal_Real
5397 end Set_Operand_Type
;
5399 -- Start of processing for Resolve_Arithmetic_Op
5402 if Comes_From_Source
(N
)
5403 and then Ekind
(Entity
(N
)) = E_Function
5404 and then Is_Imported
(Entity
(N
))
5405 and then Is_Intrinsic_Subprogram
(Entity
(N
))
5407 Resolve_Intrinsic_Operator
(N
, Typ
);
5410 -- Special-case for mixed-mode universal expressions or fixed point type
5411 -- operation: each argument is resolved separately. The same treatment
5412 -- is required if one of the operands of a fixed point operation is
5413 -- universal real, since in this case we don't do a conversion to a
5414 -- specific fixed-point type (instead the expander handles the case).
5416 -- Set the type of the node to its universal interpretation because
5417 -- legality checks on an exponentiation operand need the context.
5419 elsif (B_Typ
= Universal_Integer
or else B_Typ
= Universal_Real
)
5420 and then Present
(Universal_Interpretation
(L
))
5421 and then Present
(Universal_Interpretation
(R
))
5423 Set_Etype
(N
, B_Typ
);
5424 Resolve
(L
, Universal_Interpretation
(L
));
5425 Resolve
(R
, Universal_Interpretation
(R
));
5427 elsif (B_Typ
= Universal_Real
5428 or else Etype
(N
) = Universal_Fixed
5429 or else (Etype
(N
) = Any_Fixed
5430 and then Is_Fixed_Point_Type
(B_Typ
))
5431 or else (Is_Fixed_Point_Type
(B_Typ
)
5432 and then (Is_Integer_Or_Universal
(L
)
5434 Is_Integer_Or_Universal
(R
))))
5435 and then Nkind_In
(N
, N_Op_Multiply
, N_Op_Divide
)
5437 if TL
= Universal_Integer
or else TR
= Universal_Integer
then
5438 Check_For_Visible_Operator
(N
, B_Typ
);
5441 -- If context is a fixed type and one operand is integer, the other
5442 -- is resolved with the type of the context.
5444 if Is_Fixed_Point_Type
(B_Typ
)
5445 and then (Base_Type
(TL
) = Base_Type
(Standard_Integer
)
5446 or else TL
= Universal_Integer
)
5451 elsif Is_Fixed_Point_Type
(B_Typ
)
5452 and then (Base_Type
(TR
) = Base_Type
(Standard_Integer
)
5453 or else TR
= Universal_Integer
)
5458 -- If both operands are universal and the context is a floating
5459 -- point type, the operands are resolved to the type of the context.
5461 elsif Is_Floating_Point_Type
(B_Typ
) then
5466 Set_Mixed_Mode_Operand
(L
, TR
);
5467 Set_Mixed_Mode_Operand
(R
, TL
);
5470 -- Check the rule in RM05-4.5.5(19.1/2) disallowing universal_fixed
5471 -- multiplying operators from being used when the expected type is
5472 -- also universal_fixed. Note that B_Typ will be Universal_Fixed in
5473 -- some cases where the expected type is actually Any_Real;
5474 -- Expected_Type_Is_Any_Real takes care of that case.
5476 if Etype
(N
) = Universal_Fixed
5477 or else Etype
(N
) = Any_Fixed
5479 if B_Typ
= Universal_Fixed
5480 and then not Expected_Type_Is_Any_Real
(N
)
5481 and then not Nkind_In
(Parent
(N
), N_Type_Conversion
,
5482 N_Unchecked_Type_Conversion
)
5484 Error_Msg_N
("type cannot be determined from context!", N
);
5485 Error_Msg_N
("\explicit conversion to result type required", N
);
5487 Set_Etype
(L
, Any_Type
);
5488 Set_Etype
(R
, Any_Type
);
5491 if Ada_Version
= Ada_83
5492 and then Etype
(N
) = Universal_Fixed
5494 Nkind_In
(Parent
(N
), N_Type_Conversion
,
5495 N_Unchecked_Type_Conversion
)
5498 ("(Ada 83) fixed-point operation needs explicit "
5502 -- The expected type is "any real type" in contexts like
5504 -- type T is delta <universal_fixed-expression> ...
5506 -- in which case we need to set the type to Universal_Real
5507 -- so that static expression evaluation will work properly.
5509 if Expected_Type_Is_Any_Real
(N
) then
5510 Set_Etype
(N
, Universal_Real
);
5512 Set_Etype
(N
, B_Typ
);
5516 elsif Is_Fixed_Point_Type
(B_Typ
)
5517 and then (Is_Integer_Or_Universal
(L
)
5518 or else Nkind
(L
) = N_Real_Literal
5519 or else Nkind
(R
) = N_Real_Literal
5520 or else Is_Integer_Or_Universal
(R
))
5522 Set_Etype
(N
, B_Typ
);
5524 elsif Etype
(N
) = Any_Fixed
then
5526 -- If no previous errors, this is only possible if one operand is
5527 -- overloaded and the context is universal. Resolve as such.
5529 Set_Etype
(N
, B_Typ
);
5533 if (TL
= Universal_Integer
or else TL
= Universal_Real
)
5535 (TR
= Universal_Integer
or else TR
= Universal_Real
)
5537 Check_For_Visible_Operator
(N
, B_Typ
);
5540 -- If the context is Universal_Fixed and the operands are also
5541 -- universal fixed, this is an error, unless there is only one
5542 -- applicable fixed_point type (usually Duration).
5544 if B_Typ
= Universal_Fixed
and then Etype
(L
) = Universal_Fixed
then
5545 T
:= Unique_Fixed_Point_Type
(N
);
5547 if T
= Any_Type
then
5560 -- If one of the arguments was resolved to a non-universal type.
5561 -- label the result of the operation itself with the same type.
5562 -- Do the same for the universal argument, if any.
5564 T
:= Intersect_Types
(L
, R
);
5565 Set_Etype
(N
, Base_Type
(T
));
5566 Set_Operand_Type
(L
);
5567 Set_Operand_Type
(R
);
5570 Generate_Operator_Reference
(N
, Typ
);
5571 Analyze_Dimension
(N
);
5572 Eval_Arithmetic_Op
(N
);
5574 -- In SPARK, a multiplication or division with operands of fixed point
5575 -- types must be qualified or explicitly converted to identify the
5578 if (Is_Fixed_Point_Type
(Etype
(L
))
5579 or else Is_Fixed_Point_Type
(Etype
(R
)))
5580 and then Nkind_In
(N
, N_Op_Multiply
, N_Op_Divide
)
5582 not Nkind_In
(Parent
(N
), N_Qualified_Expression
, N_Type_Conversion
)
5584 Check_SPARK_05_Restriction
5585 ("operation should be qualified or explicitly converted", N
);
5588 -- Set overflow and division checking bit
5590 if Nkind
(N
) in N_Op
then
5591 if not Overflow_Checks_Suppressed
(Etype
(N
)) then
5592 Enable_Overflow_Check
(N
);
5595 -- Give warning if explicit division by zero
5597 if Nkind_In
(N
, N_Op_Divide
, N_Op_Rem
, N_Op_Mod
)
5598 and then not Division_Checks_Suppressed
(Etype
(N
))
5600 Rop
:= Right_Opnd
(N
);
5602 if Compile_Time_Known_Value
(Rop
)
5603 and then ((Is_Integer_Type
(Etype
(Rop
))
5604 and then Expr_Value
(Rop
) = Uint_0
)
5606 (Is_Real_Type
(Etype
(Rop
))
5607 and then Expr_Value_R
(Rop
) = Ureal_0
))
5609 -- Specialize the warning message according to the operation.
5610 -- When SPARK_Mode is On, force a warning instead of an error
5611 -- in that case, as this likely corresponds to deactivated
5612 -- code. The following warnings are for the case
5617 -- For division, we have two cases, for float division
5618 -- of an unconstrained float type, on a machine where
5619 -- Machine_Overflows is false, we don't get an exception
5620 -- at run-time, but rather an infinity or Nan. The Nan
5621 -- case is pretty obscure, so just warn about infinities.
5623 if Is_Floating_Point_Type
(Typ
)
5624 and then not Is_Constrained
(Typ
)
5625 and then not Machine_Overflows_On_Target
5628 ("float division by zero, may generate "
5629 & "'+'/'- infinity??", Right_Opnd
(N
));
5631 -- For all other cases, we get a Constraint_Error
5634 Apply_Compile_Time_Constraint_Error
5635 (N
, "division by zero??", CE_Divide_By_Zero
,
5636 Loc
=> Sloc
(Right_Opnd
(N
)),
5637 Warn
=> SPARK_Mode
= On
);
5641 Apply_Compile_Time_Constraint_Error
5642 (N
, "rem with zero divisor??", CE_Divide_By_Zero
,
5643 Loc
=> Sloc
(Right_Opnd
(N
)),
5644 Warn
=> SPARK_Mode
= On
);
5647 Apply_Compile_Time_Constraint_Error
5648 (N
, "mod with zero divisor??", CE_Divide_By_Zero
,
5649 Loc
=> Sloc
(Right_Opnd
(N
)),
5650 Warn
=> SPARK_Mode
= On
);
5652 -- Division by zero can only happen with division, rem,
5653 -- and mod operations.
5656 raise Program_Error
;
5659 -- In GNATprove mode, we enable the division check so that
5660 -- GNATprove will issue a message if it cannot be proved.
5662 if GNATprove_Mode
then
5663 Activate_Division_Check
(N
);
5666 -- Otherwise just set the flag to check at run time
5669 Activate_Division_Check
(N
);
5673 -- If Restriction No_Implicit_Conditionals is active, then it is
5674 -- violated if either operand can be negative for mod, or for rem
5675 -- if both operands can be negative.
5677 if Restriction_Check_Required
(No_Implicit_Conditionals
)
5678 and then Nkind_In
(N
, N_Op_Rem
, N_Op_Mod
)
5687 -- Set if corresponding operand might be negative
5691 (Left_Opnd
(N
), OK
, Lo
, Hi
, Assume_Valid
=> True);
5692 LNeg
:= (not OK
) or else Lo
< 0;
5695 (Right_Opnd
(N
), OK
, Lo
, Hi
, Assume_Valid
=> True);
5696 RNeg
:= (not OK
) or else Lo
< 0;
5698 -- Check if we will be generating conditionals. There are two
5699 -- cases where that can happen, first for REM, the only case
5700 -- is largest negative integer mod -1, where the division can
5701 -- overflow, but we still have to give the right result. The
5702 -- front end generates a test for this annoying case. Here we
5703 -- just test if both operands can be negative (that's what the
5704 -- expander does, so we match its logic here).
5706 -- The second case is mod where either operand can be negative.
5707 -- In this case, the back end has to generate additional tests.
5709 if (Nkind
(N
) = N_Op_Rem
and then (LNeg
and RNeg
))
5711 (Nkind
(N
) = N_Op_Mod
and then (LNeg
or RNeg
))
5713 Check_Restriction
(No_Implicit_Conditionals
, N
);
5719 Check_Unset_Reference
(L
);
5720 Check_Unset_Reference
(R
);
5721 end Resolve_Arithmetic_Op
;
5727 procedure Resolve_Call
(N
: Node_Id
; Typ
: Entity_Id
) is
5728 function Same_Or_Aliased_Subprograms
5730 E
: Entity_Id
) return Boolean;
5731 -- Returns True if the subprogram entity S is the same as E or else
5732 -- S is an alias of E.
5734 ---------------------------------
5735 -- Same_Or_Aliased_Subprograms --
5736 ---------------------------------
5738 function Same_Or_Aliased_Subprograms
5740 E
: Entity_Id
) return Boolean
5742 Subp_Alias
: constant Entity_Id
:= Alias
(S
);
5744 return S
= E
or else (Present
(Subp_Alias
) and then Subp_Alias
= E
);
5745 end Same_Or_Aliased_Subprograms
;
5749 Loc
: constant Source_Ptr
:= Sloc
(N
);
5750 Subp
: constant Node_Id
:= Name
(N
);
5751 Body_Id
: Entity_Id
;
5761 -- Start of processing for Resolve_Call
5764 -- The context imposes a unique interpretation with type Typ on a
5765 -- procedure or function call. Find the entity of the subprogram that
5766 -- yields the expected type, and propagate the corresponding formal
5767 -- constraints on the actuals. The caller has established that an
5768 -- interpretation exists, and emitted an error if not unique.
5770 -- First deal with the case of a call to an access-to-subprogram,
5771 -- dereference made explicit in Analyze_Call.
5773 if Ekind
(Etype
(Subp
)) = E_Subprogram_Type
then
5774 if not Is_Overloaded
(Subp
) then
5775 Nam
:= Etype
(Subp
);
5778 -- Find the interpretation whose type (a subprogram type) has a
5779 -- return type that is compatible with the context. Analysis of
5780 -- the node has established that one exists.
5784 Get_First_Interp
(Subp
, I
, It
);
5785 while Present
(It
.Typ
) loop
5786 if Covers
(Typ
, Etype
(It
.Typ
)) then
5791 Get_Next_Interp
(I
, It
);
5795 raise Program_Error
;
5799 -- If the prefix is not an entity, then resolve it
5801 if not Is_Entity_Name
(Subp
) then
5802 Resolve
(Subp
, Nam
);
5805 -- For an indirect call, we always invalidate checks, since we do not
5806 -- know whether the subprogram is local or global. Yes we could do
5807 -- better here, e.g. by knowing that there are no local subprograms,
5808 -- but it does not seem worth the effort. Similarly, we kill all
5809 -- knowledge of current constant values.
5811 Kill_Current_Values
;
5813 -- If this is a procedure call which is really an entry call, do
5814 -- the conversion of the procedure call to an entry call. Protected
5815 -- operations use the same circuitry because the name in the call
5816 -- can be an arbitrary expression with special resolution rules.
5818 elsif Nkind_In
(Subp
, N_Selected_Component
, N_Indexed_Component
)
5819 or else (Is_Entity_Name
(Subp
)
5820 and then Ekind
(Entity
(Subp
)) = E_Entry
)
5822 Resolve_Entry_Call
(N
, Typ
);
5823 Check_Elab_Call
(N
);
5825 -- Kill checks and constant values, as above for indirect case
5826 -- Who knows what happens when another task is activated?
5828 Kill_Current_Values
;
5831 -- Normal subprogram call with name established in Resolve
5833 elsif not (Is_Type
(Entity
(Subp
))) then
5834 Nam
:= Entity
(Subp
);
5835 Set_Entity_With_Checks
(Subp
, Nam
);
5837 -- Otherwise we must have the case of an overloaded call
5840 pragma Assert
(Is_Overloaded
(Subp
));
5842 -- Initialize Nam to prevent warning (we know it will be assigned
5843 -- in the loop below, but the compiler does not know that).
5847 Get_First_Interp
(Subp
, I
, It
);
5848 while Present
(It
.Typ
) loop
5849 if Covers
(Typ
, It
.Typ
) then
5851 Set_Entity_With_Checks
(Subp
, Nam
);
5855 Get_Next_Interp
(I
, It
);
5859 if Is_Access_Subprogram_Type
(Base_Type
(Etype
(Nam
)))
5860 and then not Is_Access_Subprogram_Type
(Base_Type
(Typ
))
5861 and then Nkind
(Subp
) /= N_Explicit_Dereference
5862 and then Present
(Parameter_Associations
(N
))
5864 -- The prefix is a parameterless function call that returns an access
5865 -- to subprogram. If parameters are present in the current call, add
5866 -- add an explicit dereference. We use the base type here because
5867 -- within an instance these may be subtypes.
5869 -- The dereference is added either in Analyze_Call or here. Should
5870 -- be consolidated ???
5872 Set_Is_Overloaded
(Subp
, False);
5873 Set_Etype
(Subp
, Etype
(Nam
));
5874 Insert_Explicit_Dereference
(Subp
);
5875 Nam
:= Designated_Type
(Etype
(Nam
));
5876 Resolve
(Subp
, Nam
);
5879 -- Check that a call to Current_Task does not occur in an entry body
5881 if Is_RTE
(Nam
, RE_Current_Task
) then
5890 -- Exclude calls that occur within the default of a formal
5891 -- parameter of the entry, since those are evaluated outside
5894 exit when No
(P
) or else Nkind
(P
) = N_Parameter_Specification
;
5896 if Nkind
(P
) = N_Entry_Body
5897 or else (Nkind
(P
) = N_Subprogram_Body
5898 and then Is_Entry_Barrier_Function
(P
))
5901 Error_Msg_Warn
:= SPARK_Mode
/= On
;
5903 ("& should not be used in entry body (RM C.7(17))<<",
5905 Error_Msg_NE
("\Program_Error [<<", N
, Nam
);
5907 Make_Raise_Program_Error
(Loc
,
5908 Reason
=> PE_Current_Task_In_Entry_Body
));
5909 Set_Etype
(N
, Rtype
);
5916 -- Check that a procedure call does not occur in the context of the
5917 -- entry call statement of a conditional or timed entry call. Note that
5918 -- the case of a call to a subprogram renaming of an entry will also be
5919 -- rejected. The test for N not being an N_Entry_Call_Statement is
5920 -- defensive, covering the possibility that the processing of entry
5921 -- calls might reach this point due to later modifications of the code
5924 if Nkind
(Parent
(N
)) = N_Entry_Call_Alternative
5925 and then Nkind
(N
) /= N_Entry_Call_Statement
5926 and then Entry_Call_Statement
(Parent
(N
)) = N
5928 if Ada_Version
< Ada_2005
then
5929 Error_Msg_N
("entry call required in select statement", N
);
5931 -- Ada 2005 (AI-345): If a procedure_call_statement is used
5932 -- for a procedure_or_entry_call, the procedure_name or
5933 -- procedure_prefix of the procedure_call_statement shall denote
5934 -- an entry renamed by a procedure, or (a view of) a primitive
5935 -- subprogram of a limited interface whose first parameter is
5936 -- a controlling parameter.
5938 elsif Nkind
(N
) = N_Procedure_Call_Statement
5939 and then not Is_Renamed_Entry
(Nam
)
5940 and then not Is_Controlling_Limited_Procedure
(Nam
)
5943 ("entry call or dispatching primitive of interface required", N
);
5947 -- If the SPARK_05 restriction is active, we are not allowed
5948 -- to have a call to a subprogram before we see its completion.
5950 if not Has_Completion
(Nam
)
5951 and then Restriction_Check_Required
(SPARK_05
)
5953 -- Don't flag strange internal calls
5955 and then Comes_From_Source
(N
)
5956 and then Comes_From_Source
(Nam
)
5958 -- Only flag calls in extended main source
5960 and then In_Extended_Main_Source_Unit
(Nam
)
5961 and then In_Extended_Main_Source_Unit
(N
)
5963 -- Exclude enumeration literals from this processing
5965 and then Ekind
(Nam
) /= E_Enumeration_Literal
5967 Check_SPARK_05_Restriction
5968 ("call to subprogram cannot appear before its body", N
);
5971 -- Check that this is not a call to a protected procedure or entry from
5972 -- within a protected function.
5974 Check_Internal_Protected_Use
(N
, Nam
);
5976 -- Freeze the subprogram name if not in a spec-expression. Note that
5977 -- we freeze procedure calls as well as function calls. Procedure calls
5978 -- are not frozen according to the rules (RM 13.14(14)) because it is
5979 -- impossible to have a procedure call to a non-frozen procedure in
5980 -- pure Ada, but in the code that we generate in the expander, this
5981 -- rule needs extending because we can generate procedure calls that
5984 -- In Ada 2012, expression functions may be called within pre/post
5985 -- conditions of subsequent functions or expression functions. Such
5986 -- calls do not freeze when they appear within generated bodies,
5987 -- (including the body of another expression function) which would
5988 -- place the freeze node in the wrong scope. An expression function
5989 -- is frozen in the usual fashion, by the appearance of a real body,
5990 -- or at the end of a declarative part.
5992 if Is_Entity_Name
(Subp
)
5993 and then not In_Spec_Expression
5994 and then not Is_Expression_Function_Or_Completion
(Current_Scope
)
5996 (not Is_Expression_Function_Or_Completion
(Entity
(Subp
))
5997 or else Scope
(Entity
(Subp
)) = Current_Scope
)
5999 Freeze_Expression
(Subp
);
6002 -- For a predefined operator, the type of the result is the type imposed
6003 -- by context, except for a predefined operation on universal fixed.
6004 -- Otherwise The type of the call is the type returned by the subprogram
6007 if Is_Predefined_Op
(Nam
) then
6008 if Etype
(N
) /= Universal_Fixed
then
6012 -- If the subprogram returns an array type, and the context requires the
6013 -- component type of that array type, the node is really an indexing of
6014 -- the parameterless call. Resolve as such. A pathological case occurs
6015 -- when the type of the component is an access to the array type. In
6016 -- this case the call is truly ambiguous. If the call is to an intrinsic
6017 -- subprogram, it can't be an indexed component. This check is necessary
6018 -- because if it's Unchecked_Conversion, and we have "type T_Ptr is
6019 -- access T;" and "type T is array (...) of T_Ptr;" (i.e. an array of
6020 -- pointers to the same array), the compiler gets confused and does an
6021 -- infinite recursion.
6023 elsif (Needs_No_Actuals
(Nam
) or else Needs_One_Actual
(Nam
))
6025 ((Is_Array_Type
(Etype
(Nam
))
6026 and then Covers
(Typ
, Component_Type
(Etype
(Nam
))))
6028 (Is_Access_Type
(Etype
(Nam
))
6029 and then Is_Array_Type
(Designated_Type
(Etype
(Nam
)))
6031 Covers
(Typ
, Component_Type
(Designated_Type
(Etype
(Nam
))))
6032 and then not Is_Intrinsic_Subprogram
(Entity
(Subp
))))
6035 Index_Node
: Node_Id
;
6037 Ret_Type
: constant Entity_Id
:= Etype
(Nam
);
6040 if Is_Access_Type
(Ret_Type
)
6041 and then Ret_Type
= Component_Type
(Designated_Type
(Ret_Type
))
6044 ("cannot disambiguate function call and indexing", N
);
6046 New_Subp
:= Relocate_Node
(Subp
);
6048 -- The called entity may be an explicit dereference, in which
6049 -- case there is no entity to set.
6051 if Nkind
(New_Subp
) /= N_Explicit_Dereference
then
6052 Set_Entity
(Subp
, Nam
);
6055 if (Is_Array_Type
(Ret_Type
)
6056 and then Component_Type
(Ret_Type
) /= Any_Type
)
6058 (Is_Access_Type
(Ret_Type
)
6060 Component_Type
(Designated_Type
(Ret_Type
)) /= Any_Type
)
6062 if Needs_No_Actuals
(Nam
) then
6064 -- Indexed call to a parameterless function
6067 Make_Indexed_Component
(Loc
,
6069 Make_Function_Call
(Loc
, Name
=> New_Subp
),
6070 Expressions
=> Parameter_Associations
(N
));
6072 -- An Ada 2005 prefixed call to a primitive operation
6073 -- whose first parameter is the prefix. This prefix was
6074 -- prepended to the parameter list, which is actually a
6075 -- list of indexes. Remove the prefix in order to build
6076 -- the proper indexed component.
6079 Make_Indexed_Component
(Loc
,
6081 Make_Function_Call
(Loc
,
6083 Parameter_Associations
=>
6085 (Remove_Head
(Parameter_Associations
(N
)))),
6086 Expressions
=> Parameter_Associations
(N
));
6089 -- Preserve the parenthesis count of the node
6091 Set_Paren_Count
(Index_Node
, Paren_Count
(N
));
6093 -- Since we are correcting a node classification error made
6094 -- by the parser, we call Replace rather than Rewrite.
6096 Replace
(N
, Index_Node
);
6098 Set_Etype
(Prefix
(N
), Ret_Type
);
6100 Resolve_Indexed_Component
(N
, Typ
);
6101 Check_Elab_Call
(Prefix
(N
));
6109 -- If the called function is not declared in the main unit and it
6110 -- returns the limited view of type then use the available view (as
6111 -- is done in Try_Object_Operation) to prevent back-end confusion;
6112 -- for the function entity itself. The call must appear in a context
6113 -- where the nonlimited view is available. If the function entity is
6114 -- in the extended main unit then no action is needed, because the
6115 -- back end handles this case. In either case the type of the call
6116 -- is the nonlimited view.
6118 if From_Limited_With
(Etype
(Nam
))
6119 and then Present
(Available_View
(Etype
(Nam
)))
6121 Set_Etype
(N
, Available_View
(Etype
(Nam
)));
6123 if not In_Extended_Main_Code_Unit
(Nam
) then
6124 Set_Etype
(Nam
, Available_View
(Etype
(Nam
)));
6128 Set_Etype
(N
, Etype
(Nam
));
6132 -- In the case where the call is to an overloaded subprogram, Analyze
6133 -- calls Normalize_Actuals once per overloaded subprogram. Therefore in
6134 -- such a case Normalize_Actuals needs to be called once more to order
6135 -- the actuals correctly. Otherwise the call will have the ordering
6136 -- given by the last overloaded subprogram whether this is the correct
6137 -- one being called or not.
6139 if Is_Overloaded
(Subp
) then
6140 Normalize_Actuals
(N
, Nam
, False, Norm_OK
);
6141 pragma Assert
(Norm_OK
);
6144 -- In any case, call is fully resolved now. Reset Overload flag, to
6145 -- prevent subsequent overload resolution if node is analyzed again
6147 Set_Is_Overloaded
(Subp
, False);
6148 Set_Is_Overloaded
(N
, False);
6150 -- A Ghost entity must appear in a specific context
6152 if Is_Ghost_Entity
(Nam
) and then Comes_From_Source
(N
) then
6153 Check_Ghost_Context
(Nam
, N
);
6156 -- If we are calling the current subprogram from immediately within its
6157 -- body, then that is the case where we can sometimes detect cases of
6158 -- infinite recursion statically. Do not try this in case restriction
6159 -- No_Recursion is in effect anyway, and do it only for source calls.
6161 if Comes_From_Source
(N
) then
6162 Scop
:= Current_Scope
;
6164 -- Check violation of SPARK_05 restriction which does not permit
6165 -- a subprogram body to contain a call to the subprogram directly.
6167 if Restriction_Check_Required
(SPARK_05
)
6168 and then Same_Or_Aliased_Subprograms
(Nam
, Scop
)
6170 Check_SPARK_05_Restriction
6171 ("subprogram may not contain direct call to itself", N
);
6174 -- Issue warning for possible infinite recursion in the absence
6175 -- of the No_Recursion restriction.
6177 if Same_Or_Aliased_Subprograms
(Nam
, Scop
)
6178 and then not Restriction_Active
(No_Recursion
)
6179 and then Check_Infinite_Recursion
(N
)
6181 -- Here we detected and flagged an infinite recursion, so we do
6182 -- not need to test the case below for further warnings. Also we
6183 -- are all done if we now have a raise SE node.
6185 if Nkind
(N
) = N_Raise_Storage_Error
then
6189 -- If call is to immediately containing subprogram, then check for
6190 -- the case of a possible run-time detectable infinite recursion.
6193 Scope_Loop
: while Scop
/= Standard_Standard
loop
6194 if Same_Or_Aliased_Subprograms
(Nam
, Scop
) then
6196 -- Although in general case, recursion is not statically
6197 -- checkable, the case of calling an immediately containing
6198 -- subprogram is easy to catch.
6200 Check_Restriction
(No_Recursion
, N
);
6202 -- If the recursive call is to a parameterless subprogram,
6203 -- then even if we can't statically detect infinite
6204 -- recursion, this is pretty suspicious, and we output a
6205 -- warning. Furthermore, we will try later to detect some
6206 -- cases here at run time by expanding checking code (see
6207 -- Detect_Infinite_Recursion in package Exp_Ch6).
6209 -- If the recursive call is within a handler, do not emit a
6210 -- warning, because this is a common idiom: loop until input
6211 -- is correct, catch illegal input in handler and restart.
6213 if No
(First_Formal
(Nam
))
6214 and then Etype
(Nam
) = Standard_Void_Type
6215 and then not Error_Posted
(N
)
6216 and then Nkind
(Parent
(N
)) /= N_Exception_Handler
6218 -- For the case of a procedure call. We give the message
6219 -- only if the call is the first statement in a sequence
6220 -- of statements, or if all previous statements are
6221 -- simple assignments. This is simply a heuristic to
6222 -- decrease false positives, without losing too many good
6223 -- warnings. The idea is that these previous statements
6224 -- may affect global variables the procedure depends on.
6225 -- We also exclude raise statements, that may arise from
6226 -- constraint checks and are probably unrelated to the
6227 -- intended control flow.
6229 if Nkind
(N
) = N_Procedure_Call_Statement
6230 and then Is_List_Member
(N
)
6236 while Present
(P
) loop
6237 if not Nkind_In
(P
, N_Assignment_Statement
,
6238 N_Raise_Constraint_Error
)
6248 -- Do not give warning if we are in a conditional context
6251 K
: constant Node_Kind
:= Nkind
(Parent
(N
));
6253 if (K
= N_Loop_Statement
6254 and then Present
(Iteration_Scheme
(Parent
(N
))))
6255 or else K
= N_If_Statement
6256 or else K
= N_Elsif_Part
6257 or else K
= N_Case_Statement_Alternative
6263 -- Here warning is to be issued
6265 Set_Has_Recursive_Call
(Nam
);
6266 Error_Msg_Warn
:= SPARK_Mode
/= On
;
6267 Error_Msg_N
("possible infinite recursion<<!", N
);
6268 Error_Msg_N
("\Storage_Error ]<<!", N
);
6274 Scop
:= Scope
(Scop
);
6275 end loop Scope_Loop
;
6279 -- Check obsolescent reference to Ada.Characters.Handling subprogram
6281 Check_Obsolescent_2005_Entity
(Nam
, Subp
);
6283 -- If subprogram name is a predefined operator, it was given in
6284 -- functional notation. Replace call node with operator node, so
6285 -- that actuals can be resolved appropriately.
6287 if Is_Predefined_Op
(Nam
) or else Ekind
(Nam
) = E_Operator
then
6288 Make_Call_Into_Operator
(N
, Typ
, Entity
(Name
(N
)));
6291 elsif Present
(Alias
(Nam
))
6292 and then Is_Predefined_Op
(Alias
(Nam
))
6294 Resolve_Actuals
(N
, Nam
);
6295 Make_Call_Into_Operator
(N
, Typ
, Alias
(Nam
));
6299 -- Create a transient scope if the resulting type requires it
6301 -- There are several notable exceptions:
6303 -- a) In init procs, the transient scope overhead is not needed, and is
6304 -- even incorrect when the call is a nested initialization call for a
6305 -- component whose expansion may generate adjust calls. However, if the
6306 -- call is some other procedure call within an initialization procedure
6307 -- (for example a call to Create_Task in the init_proc of the task
6308 -- run-time record) a transient scope must be created around this call.
6310 -- b) Enumeration literal pseudo-calls need no transient scope
6312 -- c) Intrinsic subprograms (Unchecked_Conversion and source info
6313 -- functions) do not use the secondary stack even though the return
6314 -- type may be unconstrained.
6316 -- d) Calls to a build-in-place function, since such functions may
6317 -- allocate their result directly in a target object, and cases where
6318 -- the result does get allocated in the secondary stack are checked for
6319 -- within the specialized Exp_Ch6 procedures for expanding those
6320 -- build-in-place calls.
6322 -- e) Calls to inlinable expression functions do not use the secondary
6323 -- stack (since the call will be replaced by its returned object).
6325 -- f) If the subprogram is marked Inline_Always, then even if it returns
6326 -- an unconstrained type the call does not require use of the secondary
6327 -- stack. However, inlining will only take place if the body to inline
6328 -- is already present. It may not be available if e.g. the subprogram is
6329 -- declared in a child instance.
6331 -- If this is an initialization call for a type whose construction
6332 -- uses the secondary stack, and it is not a nested call to initialize
6333 -- a component, we do need to create a transient scope for it. We
6334 -- check for this by traversing the type in Check_Initialization_Call.
6337 and then Has_Pragma_Inline
(Nam
)
6338 and then Nkind
(Unit_Declaration_Node
(Nam
)) = N_Subprogram_Declaration
6339 and then Present
(Body_To_Inline
(Unit_Declaration_Node
(Nam
)))
6343 elsif Ekind
(Nam
) = E_Enumeration_Literal
6344 or else Is_Build_In_Place_Function
(Nam
)
6345 or else Is_Intrinsic_Subprogram
(Nam
)
6346 or else Is_Inlinable_Expression_Function
(Nam
)
6350 elsif Expander_Active
6351 and then Is_Type
(Etype
(Nam
))
6352 and then Requires_Transient_Scope
(Etype
(Nam
))
6354 (not Within_Init_Proc
6356 (not Is_Init_Proc
(Nam
) and then Ekind
(Nam
) /= E_Function
))
6358 Establish_Transient_Scope
(N
, Sec_Stack
=> True);
6360 -- If the call appears within the bounds of a loop, it will
6361 -- be rewritten and reanalyzed, nothing left to do here.
6363 if Nkind
(N
) /= N_Function_Call
then
6367 elsif Is_Init_Proc
(Nam
)
6368 and then not Within_Init_Proc
6370 Check_Initialization_Call
(N
, Nam
);
6373 -- A protected function cannot be called within the definition of the
6374 -- enclosing protected type, unless it is part of a pre/postcondition
6375 -- on another protected operation. This may appear in the entry wrapper
6376 -- created for an entry with preconditions.
6378 if Is_Protected_Type
(Scope
(Nam
))
6379 and then In_Open_Scopes
(Scope
(Nam
))
6380 and then not Has_Completion
(Scope
(Nam
))
6381 and then not In_Spec_Expression
6382 and then not Is_Entry_Wrapper
(Current_Scope
)
6385 ("& cannot be called before end of protected definition", N
, Nam
);
6388 -- Propagate interpretation to actuals, and add default expressions
6391 if Present
(First_Formal
(Nam
)) then
6392 Resolve_Actuals
(N
, Nam
);
6394 -- Overloaded literals are rewritten as function calls, for purpose of
6395 -- resolution. After resolution, we can replace the call with the
6398 elsif Ekind
(Nam
) = E_Enumeration_Literal
then
6399 Copy_Node
(Subp
, N
);
6400 Resolve_Entity_Name
(N
, Typ
);
6402 -- Avoid validation, since it is a static function call
6404 Generate_Reference
(Nam
, Subp
);
6408 -- If the subprogram is not global, then kill all saved values and
6409 -- checks. This is a bit conservative, since in many cases we could do
6410 -- better, but it is not worth the effort. Similarly, we kill constant
6411 -- values. However we do not need to do this for internal entities
6412 -- (unless they are inherited user-defined subprograms), since they
6413 -- are not in the business of molesting local values.
6415 -- If the flag Suppress_Value_Tracking_On_Calls is set, then we also
6416 -- kill all checks and values for calls to global subprograms. This
6417 -- takes care of the case where an access to a local subprogram is
6418 -- taken, and could be passed directly or indirectly and then called
6419 -- from almost any context.
6421 -- Note: we do not do this step till after resolving the actuals. That
6422 -- way we still take advantage of the current value information while
6423 -- scanning the actuals.
6425 -- We suppress killing values if we are processing the nodes associated
6426 -- with N_Freeze_Entity nodes. Otherwise the declaration of a tagged
6427 -- type kills all the values as part of analyzing the code that
6428 -- initializes the dispatch tables.
6430 if Inside_Freezing_Actions
= 0
6431 and then (not Is_Library_Level_Entity
(Nam
)
6432 or else Suppress_Value_Tracking_On_Call
6433 (Nearest_Dynamic_Scope
(Current_Scope
)))
6434 and then (Comes_From_Source
(Nam
)
6435 or else (Present
(Alias
(Nam
))
6436 and then Comes_From_Source
(Alias
(Nam
))))
6438 Kill_Current_Values
;
6441 -- If we are warning about unread OUT parameters, this is the place to
6442 -- set Last_Assignment for OUT and IN OUT parameters. We have to do this
6443 -- after the above call to Kill_Current_Values (since that call clears
6444 -- the Last_Assignment field of all local variables).
6446 if (Warn_On_Modified_Unread
or Warn_On_All_Unread_Out_Parameters
)
6447 and then Comes_From_Source
(N
)
6448 and then In_Extended_Main_Source_Unit
(N
)
6455 F
:= First_Formal
(Nam
);
6456 A
:= First_Actual
(N
);
6457 while Present
(F
) and then Present
(A
) loop
6458 if Ekind_In
(F
, E_Out_Parameter
, E_In_Out_Parameter
)
6459 and then Warn_On_Modified_As_Out_Parameter
(F
)
6460 and then Is_Entity_Name
(A
)
6461 and then Present
(Entity
(A
))
6462 and then Comes_From_Source
(N
)
6463 and then Safe_To_Capture_Value
(N
, Entity
(A
))
6465 Set_Last_Assignment
(Entity
(A
), A
);
6474 -- If the subprogram is a primitive operation, check whether or not
6475 -- it is a correct dispatching call.
6477 if Is_Overloadable
(Nam
)
6478 and then Is_Dispatching_Operation
(Nam
)
6480 Check_Dispatching_Call
(N
);
6482 elsif Ekind
(Nam
) /= E_Subprogram_Type
6483 and then Is_Abstract_Subprogram
(Nam
)
6484 and then not In_Instance
6486 Error_Msg_NE
("cannot call abstract subprogram &!", N
, Nam
);
6489 -- If this is a dispatching call, generate the appropriate reference,
6490 -- for better source navigation in GPS.
6492 if Is_Overloadable
(Nam
)
6493 and then Present
(Controlling_Argument
(N
))
6495 Generate_Reference
(Nam
, Subp
, 'R');
6497 -- Normal case, not a dispatching call: generate a call reference
6500 Generate_Reference
(Nam
, Subp
, 's');
6503 if Is_Intrinsic_Subprogram
(Nam
) then
6504 Check_Intrinsic_Call
(N
);
6507 -- Check for violation of restriction No_Specific_Termination_Handlers
6508 -- and warn on a potentially blocking call to Abort_Task.
6510 if Restriction_Check_Required
(No_Specific_Termination_Handlers
)
6511 and then (Is_RTE
(Nam
, RE_Set_Specific_Handler
)
6513 Is_RTE
(Nam
, RE_Specific_Handler
))
6515 Check_Restriction
(No_Specific_Termination_Handlers
, N
);
6517 elsif Is_RTE
(Nam
, RE_Abort_Task
) then
6518 Check_Potentially_Blocking_Operation
(N
);
6521 -- A call to Ada.Real_Time.Timing_Events.Set_Handler to set a relative
6522 -- timing event violates restriction No_Relative_Delay (AI-0211). We
6523 -- need to check the second argument to determine whether it is an
6524 -- absolute or relative timing event.
6526 if Restriction_Check_Required
(No_Relative_Delay
)
6527 and then Is_RTE
(Nam
, RE_Set_Handler
)
6528 and then Is_RTE
(Etype
(Next_Actual
(First_Actual
(N
))), RE_Time_Span
)
6530 Check_Restriction
(No_Relative_Delay
, N
);
6533 -- Issue an error for a call to an eliminated subprogram. This routine
6534 -- will not perform the check if the call appears within a default
6537 Check_For_Eliminated_Subprogram
(Subp
, Nam
);
6539 -- In formal mode, the primitive operations of a tagged type or type
6540 -- extension do not include functions that return the tagged type.
6542 if Nkind
(N
) = N_Function_Call
6543 and then Is_Tagged_Type
(Etype
(N
))
6544 and then Is_Entity_Name
(Name
(N
))
6545 and then Is_Inherited_Operation_For_Type
(Entity
(Name
(N
)), Etype
(N
))
6547 Check_SPARK_05_Restriction
("function not inherited", N
);
6550 -- Implement rule in 12.5.1 (23.3/2): In an instance, if the actual is
6551 -- class-wide and the call dispatches on result in a context that does
6552 -- not provide a tag, the call raises Program_Error.
6554 if Nkind
(N
) = N_Function_Call
6555 and then In_Instance
6556 and then Is_Generic_Actual_Type
(Typ
)
6557 and then Is_Class_Wide_Type
(Typ
)
6558 and then Has_Controlling_Result
(Nam
)
6559 and then Nkind
(Parent
(N
)) = N_Object_Declaration
6561 -- Verify that none of the formals are controlling
6564 Call_OK
: Boolean := False;
6568 F
:= First_Formal
(Nam
);
6569 while Present
(F
) loop
6570 if Is_Controlling_Formal
(F
) then
6579 Error_Msg_Warn
:= SPARK_Mode
/= On
;
6580 Error_Msg_N
("!cannot determine tag of result<<", N
);
6581 Error_Msg_N
("\Program_Error [<<!", N
);
6583 Make_Raise_Program_Error
(Sloc
(N
),
6584 Reason
=> PE_Explicit_Raise
));
6589 -- Check for calling a function with OUT or IN OUT parameter when the
6590 -- calling context (us right now) is not Ada 2012, so does not allow
6591 -- OUT or IN OUT parameters in function calls. Functions declared in
6592 -- a predefined unit are OK, as they may be called indirectly from a
6593 -- user-declared instantiation.
6595 if Ada_Version
< Ada_2012
6596 and then Ekind
(Nam
) = E_Function
6597 and then Has_Out_Or_In_Out_Parameter
(Nam
)
6598 and then not In_Predefined_Unit
(Nam
)
6600 Error_Msg_NE
("& has at least one OUT or `IN OUT` parameter", N
, Nam
);
6601 Error_Msg_N
("\call to this function only allowed in Ada 2012", N
);
6604 -- Check the dimensions of the actuals in the call. For function calls,
6605 -- propagate the dimensions from the returned type to N.
6607 Analyze_Dimension_Call
(N
, Nam
);
6609 -- All done, evaluate call and deal with elaboration issues
6612 Check_Elab_Call
(N
);
6614 -- In GNATprove mode, expansion is disabled, but we want to inline some
6615 -- subprograms to facilitate formal verification. Indirect calls through
6616 -- a subprogram type or within a generic cannot be inlined. Inlining is
6617 -- performed only for calls subject to SPARK_Mode on.
6620 and then SPARK_Mode
= On
6621 and then Is_Overloadable
(Nam
)
6622 and then not Inside_A_Generic
6624 Nam_UA
:= Ultimate_Alias
(Nam
);
6625 Nam_Decl
:= Unit_Declaration_Node
(Nam_UA
);
6627 if Nkind
(Nam_Decl
) = N_Subprogram_Declaration
then
6628 Body_Id
:= Corresponding_Body
(Nam_Decl
);
6630 -- Nothing to do if the subprogram is not eligible for inlining in
6631 -- GNATprove mode, or inlining is disabled with switch -gnatdm
6633 if not Is_Inlined_Always
(Nam_UA
)
6634 or else not Can_Be_Inlined_In_GNATprove_Mode
(Nam_UA
, Body_Id
)
6635 or else Debug_Flag_M
6639 -- Calls cannot be inlined inside assertions, as GNATprove treats
6640 -- assertions as logic expressions. Only issue a message when the
6641 -- body has been seen, otherwise this leads to spurious messages
6642 -- on expression functions.
6644 elsif In_Assertion_Expr
/= 0 then
6645 if Present
(Body_Id
) then
6647 ("cannot inline & (in assertion expression)?", N
, Nam_UA
);
6650 -- Calls cannot be inlined inside default expressions
6652 elsif In_Default_Expr
then
6654 ("cannot inline & (in default expression)?", N
, Nam_UA
);
6656 -- Inlining should not be performed during pre-analysis
6658 elsif Full_Analysis
then
6660 -- Do not inline calls inside expression functions, as this
6661 -- would prevent interpreting them as logical formulas in
6662 -- GNATprove. Only issue a message when the body has been seen,
6663 -- otherwise this leads to spurious messages on callees that
6664 -- are themselves expression functions.
6666 if Present
(Current_Subprogram
)
6667 and then Is_Expression_Function_Or_Completion
6668 (Current_Subprogram
)
6670 if Present
(Body_Id
)
6671 and then Present
(Body_To_Inline
(Nam_Decl
))
6674 ("cannot inline & (inside expression function)?",
6678 -- With the one-pass inlining technique, a call cannot be
6679 -- inlined if the corresponding body has not been seen yet.
6681 elsif No
(Body_Id
) then
6683 ("cannot inline & (body not seen yet)?", N
, Nam_UA
);
6685 -- Nothing to do if there is no body to inline, indicating that
6686 -- the subprogram is not suitable for inlining in GNATprove
6689 elsif No
(Body_To_Inline
(Nam_Decl
)) then
6692 -- Calls cannot be inlined inside potentially unevaluated
6693 -- expressions, as this would create complex actions inside
6694 -- expressions, that are not handled by GNATprove.
6696 elsif Is_Potentially_Unevaluated
(N
) then
6698 ("cannot inline & (in potentially unevaluated context)?",
6701 -- Do not inline calls which would possibly lead to missing a
6702 -- type conversion check on an input parameter.
6704 elsif not Call_Can_Be_Inlined_In_GNATprove_Mode
(N
, Nam
) then
6706 ("cannot inline & (possible check on input parameters)?",
6709 -- Otherwise, inline the call
6712 Expand_Inlined_Call
(N
, Nam_UA
, Nam
);
6718 Warn_On_Overlapping_Actuals
(Nam
, N
);
6721 -----------------------------
6722 -- Resolve_Case_Expression --
6723 -----------------------------
6725 procedure Resolve_Case_Expression
(N
: Node_Id
; Typ
: Entity_Id
) is
6728 Alt_Typ
: Entity_Id
;
6732 Alt
:= First
(Alternatives
(N
));
6733 while Present
(Alt
) loop
6734 Alt_Expr
:= Expression
(Alt
);
6736 if Error_Posted
(Alt_Expr
) then
6740 Resolve
(Alt_Expr
, Typ
);
6741 Alt_Typ
:= Etype
(Alt_Expr
);
6743 -- When the expression is of a scalar subtype different from the
6744 -- result subtype, then insert a conversion to ensure the generation
6745 -- of a constraint check.
6747 if Is_Scalar_Type
(Alt_Typ
) and then Alt_Typ
/= Typ
then
6748 Rewrite
(Alt_Expr
, Convert_To
(Typ
, Alt_Expr
));
6749 Analyze_And_Resolve
(Alt_Expr
, Typ
);
6755 -- Apply RM 4.5.7 (17/3): whether the expression is statically or
6756 -- dynamically tagged must be known statically.
6758 if Is_Tagged_Type
(Typ
) and then not Is_Class_Wide_Type
(Typ
) then
6759 Alt
:= First
(Alternatives
(N
));
6760 Is_Dyn
:= Is_Dynamically_Tagged
(Expression
(Alt
));
6762 while Present
(Alt
) loop
6763 if Is_Dynamically_Tagged
(Expression
(Alt
)) /= Is_Dyn
then
6765 ("all or none of the dependent expressions can be "
6766 & "dynamically tagged", N
);
6774 Eval_Case_Expression
(N
);
6775 Analyze_Dimension
(N
);
6776 end Resolve_Case_Expression
;
6778 -------------------------------
6779 -- Resolve_Character_Literal --
6780 -------------------------------
6782 procedure Resolve_Character_Literal
(N
: Node_Id
; Typ
: Entity_Id
) is
6783 B_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
6787 -- Verify that the character does belong to the type of the context
6789 Set_Etype
(N
, B_Typ
);
6790 Eval_Character_Literal
(N
);
6792 -- Wide_Wide_Character literals must always be defined, since the set
6793 -- of wide wide character literals is complete, i.e. if a character
6794 -- literal is accepted by the parser, then it is OK for wide wide
6795 -- character (out of range character literals are rejected).
6797 if Root_Type
(B_Typ
) = Standard_Wide_Wide_Character
then
6800 -- Always accept character literal for type Any_Character, which
6801 -- occurs in error situations and in comparisons of literals, both
6802 -- of which should accept all literals.
6804 elsif B_Typ
= Any_Character
then
6807 -- For Standard.Character or a type derived from it, check that the
6808 -- literal is in range.
6810 elsif Root_Type
(B_Typ
) = Standard_Character
then
6811 if In_Character_Range
(UI_To_CC
(Char_Literal_Value
(N
))) then
6815 -- For Standard.Wide_Character or a type derived from it, check that the
6816 -- literal is in range.
6818 elsif Root_Type
(B_Typ
) = Standard_Wide_Character
then
6819 if In_Wide_Character_Range
(UI_To_CC
(Char_Literal_Value
(N
))) then
6823 -- If the entity is already set, this has already been resolved in a
6824 -- generic context, or comes from expansion. Nothing else to do.
6826 elsif Present
(Entity
(N
)) then
6829 -- Otherwise we have a user defined character type, and we can use the
6830 -- standard visibility mechanisms to locate the referenced entity.
6833 C
:= Current_Entity
(N
);
6834 while Present
(C
) loop
6835 if Etype
(C
) = B_Typ
then
6836 Set_Entity_With_Checks
(N
, C
);
6837 Generate_Reference
(C
, N
);
6845 -- If we fall through, then the literal does not match any of the
6846 -- entries of the enumeration type. This isn't just a constraint error
6847 -- situation, it is an illegality (see RM 4.2).
6850 ("character not defined for }", N
, First_Subtype
(B_Typ
));
6851 end Resolve_Character_Literal
;
6853 ---------------------------
6854 -- Resolve_Comparison_Op --
6855 ---------------------------
6857 -- Context requires a boolean type, and plays no role in resolution.
6858 -- Processing identical to that for equality operators. The result type is
6859 -- the base type, which matters when pathological subtypes of booleans with
6860 -- limited ranges are used.
6862 procedure Resolve_Comparison_Op
(N
: Node_Id
; Typ
: Entity_Id
) is
6863 L
: constant Node_Id
:= Left_Opnd
(N
);
6864 R
: constant Node_Id
:= Right_Opnd
(N
);
6868 -- If this is an intrinsic operation which is not predefined, use the
6869 -- types of its declared arguments to resolve the possibly overloaded
6870 -- operands. Otherwise the operands are unambiguous and specify the
6873 if Scope
(Entity
(N
)) /= Standard_Standard
then
6874 T
:= Etype
(First_Entity
(Entity
(N
)));
6877 T
:= Find_Unique_Type
(L
, R
);
6879 if T
= Any_Fixed
then
6880 T
:= Unique_Fixed_Point_Type
(L
);
6884 Set_Etype
(N
, Base_Type
(Typ
));
6885 Generate_Reference
(T
, N
, ' ');
6887 -- Skip remaining processing if already set to Any_Type
6889 if T
= Any_Type
then
6893 -- Deal with other error cases
6895 if T
= Any_String
or else
6896 T
= Any_Composite
or else
6899 if T
= Any_Character
then
6900 Ambiguous_Character
(L
);
6902 Error_Msg_N
("ambiguous operands for comparison", N
);
6905 Set_Etype
(N
, Any_Type
);
6909 -- Resolve the operands if types OK
6913 Check_Unset_Reference
(L
);
6914 Check_Unset_Reference
(R
);
6915 Generate_Operator_Reference
(N
, T
);
6916 Check_Low_Bound_Tested
(N
);
6918 -- In SPARK, ordering operators <, <=, >, >= are not defined for Boolean
6919 -- types or array types except String.
6921 if Is_Boolean_Type
(T
) then
6922 Check_SPARK_05_Restriction
6923 ("comparison is not defined on Boolean type", N
);
6925 elsif Is_Array_Type
(T
)
6926 and then Base_Type
(T
) /= Standard_String
6928 Check_SPARK_05_Restriction
6929 ("comparison is not defined on array types other than String", N
);
6932 -- Check comparison on unordered enumeration
6934 if Bad_Unordered_Enumeration_Reference
(N
, Etype
(L
)) then
6935 Error_Msg_Sloc
:= Sloc
(Etype
(L
));
6937 ("comparison on unordered enumeration type& declared#?U?",
6941 Analyze_Dimension
(N
);
6943 -- Evaluate the relation (note we do this after the above check since
6944 -- this Eval call may change N to True/False. Skip this evaluation
6945 -- inside assertions, in order to keep assertions as written by users
6946 -- for tools that rely on these, e.g. GNATprove for loop invariants.
6947 -- Except evaluation is still performed even inside assertions for
6948 -- comparisons between values of universal type, which are useless
6949 -- for static analysis tools, and not supported even by GNATprove.
6951 if In_Assertion_Expr
= 0
6952 or else (Is_Universal_Numeric_Type
(Etype
(L
))
6954 Is_Universal_Numeric_Type
(Etype
(R
)))
6956 Eval_Relational_Op
(N
);
6958 end Resolve_Comparison_Op
;
6960 -----------------------------------------
6961 -- Resolve_Discrete_Subtype_Indication --
6962 -----------------------------------------
6964 procedure Resolve_Discrete_Subtype_Indication
6972 Analyze
(Subtype_Mark
(N
));
6973 S
:= Entity
(Subtype_Mark
(N
));
6975 if Nkind
(Constraint
(N
)) /= N_Range_Constraint
then
6976 Error_Msg_N
("expect range constraint for discrete type", N
);
6977 Set_Etype
(N
, Any_Type
);
6980 R
:= Range_Expression
(Constraint
(N
));
6988 if Base_Type
(S
) /= Base_Type
(Typ
) then
6990 ("expect subtype of }", N
, First_Subtype
(Typ
));
6992 -- Rewrite the constraint as a range of Typ
6993 -- to allow compilation to proceed further.
6996 Rewrite
(Low_Bound
(R
),
6997 Make_Attribute_Reference
(Sloc
(Low_Bound
(R
)),
6998 Prefix
=> New_Occurrence_Of
(Typ
, Sloc
(R
)),
6999 Attribute_Name
=> Name_First
));
7000 Rewrite
(High_Bound
(R
),
7001 Make_Attribute_Reference
(Sloc
(High_Bound
(R
)),
7002 Prefix
=> New_Occurrence_Of
(Typ
, Sloc
(R
)),
7003 Attribute_Name
=> Name_First
));
7007 Set_Etype
(N
, Etype
(R
));
7009 -- Additionally, we must check that the bounds are compatible
7010 -- with the given subtype, which might be different from the
7011 -- type of the context.
7013 Apply_Range_Check
(R
, S
);
7015 -- ??? If the above check statically detects a Constraint_Error
7016 -- it replaces the offending bound(s) of the range R with a
7017 -- Constraint_Error node. When the itype which uses these bounds
7018 -- is frozen the resulting call to Duplicate_Subexpr generates
7019 -- a new temporary for the bounds.
7021 -- Unfortunately there are other itypes that are also made depend
7022 -- on these bounds, so when Duplicate_Subexpr is called they get
7023 -- a forward reference to the newly created temporaries and Gigi
7024 -- aborts on such forward references. This is probably sign of a
7025 -- more fundamental problem somewhere else in either the order of
7026 -- itype freezing or the way certain itypes are constructed.
7028 -- To get around this problem we call Remove_Side_Effects right
7029 -- away if either bounds of R are a Constraint_Error.
7032 L
: constant Node_Id
:= Low_Bound
(R
);
7033 H
: constant Node_Id
:= High_Bound
(R
);
7036 if Nkind
(L
) = N_Raise_Constraint_Error
then
7037 Remove_Side_Effects
(L
);
7040 if Nkind
(H
) = N_Raise_Constraint_Error
then
7041 Remove_Side_Effects
(H
);
7045 Check_Unset_Reference
(Low_Bound
(R
));
7046 Check_Unset_Reference
(High_Bound
(R
));
7049 end Resolve_Discrete_Subtype_Indication
;
7051 -------------------------
7052 -- Resolve_Entity_Name --
7053 -------------------------
7055 -- Used to resolve identifiers and expanded names
7057 procedure Resolve_Entity_Name
(N
: Node_Id
; Typ
: Entity_Id
) is
7058 function Is_Assignment_Or_Object_Expression
7060 Expr
: Node_Id
) return Boolean;
7061 -- Determine whether node Context denotes an assignment statement or an
7062 -- object declaration whose expression is node Expr.
7064 ----------------------------------------
7065 -- Is_Assignment_Or_Object_Expression --
7066 ----------------------------------------
7068 function Is_Assignment_Or_Object_Expression
7070 Expr
: Node_Id
) return Boolean
7073 if Nkind_In
(Context
, N_Assignment_Statement
,
7074 N_Object_Declaration
)
7075 and then Expression
(Context
) = Expr
7079 -- Check whether a construct that yields a name is the expression of
7080 -- an assignment statement or an object declaration.
7082 elsif (Nkind_In
(Context
, N_Attribute_Reference
,
7083 N_Explicit_Dereference
,
7084 N_Indexed_Component
,
7085 N_Selected_Component
,
7087 and then Prefix
(Context
) = Expr
)
7089 (Nkind_In
(Context
, N_Type_Conversion
,
7090 N_Unchecked_Type_Conversion
)
7091 and then Expression
(Context
) = Expr
)
7094 Is_Assignment_Or_Object_Expression
7095 (Context
=> Parent
(Context
),
7098 -- Otherwise the context is not an assignment statement or an object
7104 end Is_Assignment_Or_Object_Expression
;
7108 E
: constant Entity_Id
:= Entity
(N
);
7111 -- Start of processing for Resolve_Entity_Name
7114 -- If garbage from errors, set to Any_Type and return
7116 if No
(E
) and then Total_Errors_Detected
/= 0 then
7117 Set_Etype
(N
, Any_Type
);
7121 -- Replace named numbers by corresponding literals. Note that this is
7122 -- the one case where Resolve_Entity_Name must reset the Etype, since
7123 -- it is currently marked as universal.
7125 if Ekind
(E
) = E_Named_Integer
then
7127 Eval_Named_Integer
(N
);
7129 elsif Ekind
(E
) = E_Named_Real
then
7131 Eval_Named_Real
(N
);
7133 -- For enumeration literals, we need to make sure that a proper style
7134 -- check is done, since such literals are overloaded, and thus we did
7135 -- not do a style check during the first phase of analysis.
7137 elsif Ekind
(E
) = E_Enumeration_Literal
then
7138 Set_Entity_With_Checks
(N
, E
);
7139 Eval_Entity_Name
(N
);
7141 -- Case of (sub)type name appearing in a context where an expression
7142 -- is expected. This is legal if occurrence is a current instance.
7143 -- See RM 8.6 (17/3).
7145 elsif Is_Type
(E
) then
7146 if Is_Current_Instance
(N
) then
7149 -- Any other use is an error
7153 ("invalid use of subtype mark in expression or call", N
);
7156 -- Check discriminant use if entity is discriminant in current scope,
7157 -- i.e. discriminant of record or concurrent type currently being
7158 -- analyzed. Uses in corresponding body are unrestricted.
7160 elsif Ekind
(E
) = E_Discriminant
7161 and then Scope
(E
) = Current_Scope
7162 and then not Has_Completion
(Current_Scope
)
7164 Check_Discriminant_Use
(N
);
7166 -- A parameterless generic function cannot appear in a context that
7167 -- requires resolution.
7169 elsif Ekind
(E
) = E_Generic_Function
then
7170 Error_Msg_N
("illegal use of generic function", N
);
7172 -- In Ada 83 an OUT parameter cannot be read
7174 elsif Ekind
(E
) = E_Out_Parameter
7175 and then (Nkind
(Parent
(N
)) in N_Op
7176 or else Nkind
(Parent
(N
)) = N_Explicit_Dereference
7177 or else Is_Assignment_Or_Object_Expression
7178 (Context
=> Parent
(N
),
7181 if Ada_Version
= Ada_83
then
7182 Error_Msg_N
("(Ada 83) illegal reading of out parameter", N
);
7185 -- In all other cases, just do the possible static evaluation
7188 -- A deferred constant that appears in an expression must have a
7189 -- completion, unless it has been removed by in-place expansion of
7190 -- an aggregate. A constant that is a renaming does not need
7193 if Ekind
(E
) = E_Constant
7194 and then Comes_From_Source
(E
)
7195 and then No
(Constant_Value
(E
))
7196 and then Is_Frozen
(Etype
(E
))
7197 and then not In_Spec_Expression
7198 and then not Is_Imported
(E
)
7199 and then Nkind
(Parent
(E
)) /= N_Object_Renaming_Declaration
7201 if No_Initialization
(Parent
(E
))
7202 or else (Present
(Full_View
(E
))
7203 and then No_Initialization
(Parent
(Full_View
(E
))))
7208 ("deferred constant is frozen before completion", N
);
7212 Eval_Entity_Name
(N
);
7217 -- When the entity appears in a parameter association, retrieve the
7218 -- related subprogram call.
7220 if Nkind
(Par
) = N_Parameter_Association
then
7221 Par
:= Parent
(Par
);
7224 if Comes_From_Source
(N
) then
7226 -- The following checks are only relevant when SPARK_Mode is on as
7227 -- they are not standard Ada legality rules.
7229 if SPARK_Mode
= On
then
7231 -- An effectively volatile object subject to enabled properties
7232 -- Async_Writers or Effective_Reads must appear in non-interfering
7233 -- context (SPARK RM 7.1.3(12)).
7236 and then Is_Effectively_Volatile
(E
)
7237 and then (Async_Writers_Enabled
(E
)
7238 or else Effective_Reads_Enabled
(E
))
7239 and then not Is_OK_Volatile_Context
(Par
, N
)
7242 ("volatile object cannot appear in this context "
7243 & "(SPARK RM 7.1.3(12))", N
);
7246 -- Check for possible elaboration issues with respect to reads of
7247 -- variables. The act of renaming the variable is not considered a
7248 -- read as it simply establishes an alias.
7250 if Ekind
(E
) = E_Variable
7251 and then Dynamic_Elaboration_Checks
7252 and then Nkind
(Par
) /= N_Object_Renaming_Declaration
7254 Check_Elab_Call
(N
);
7257 -- The variable may eventually become a constituent of a single
7258 -- protected/task type. Record the reference now and verify its
7259 -- legality when analyzing the contract of the variable
7262 if Ekind
(E
) = E_Variable
then
7263 Record_Possible_Part_Of_Reference
(E
, N
);
7267 -- A Ghost entity must appear in a specific context
7269 if Is_Ghost_Entity
(E
) then
7270 Check_Ghost_Context
(E
, N
);
7273 end Resolve_Entity_Name
;
7279 procedure Resolve_Entry
(Entry_Name
: Node_Id
) is
7280 Loc
: constant Source_Ptr
:= Sloc
(Entry_Name
);
7288 function Actual_Index_Type
(E
: Entity_Id
) return Entity_Id
;
7289 -- If the bounds of the entry family being called depend on task
7290 -- discriminants, build a new index subtype where a discriminant is
7291 -- replaced with the value of the discriminant of the target task.
7292 -- The target task is the prefix of the entry name in the call.
7294 -----------------------
7295 -- Actual_Index_Type --
7296 -----------------------
7298 function Actual_Index_Type
(E
: Entity_Id
) return Entity_Id
is
7299 Typ
: constant Entity_Id
:= Entry_Index_Type
(E
);
7300 Tsk
: constant Entity_Id
:= Scope
(E
);
7301 Lo
: constant Node_Id
:= Type_Low_Bound
(Typ
);
7302 Hi
: constant Node_Id
:= Type_High_Bound
(Typ
);
7305 function Actual_Discriminant_Ref
(Bound
: Node_Id
) return Node_Id
;
7306 -- If the bound is given by a discriminant, replace with a reference
7307 -- to the discriminant of the same name in the target task. If the
7308 -- entry name is the target of a requeue statement and the entry is
7309 -- in the current protected object, the bound to be used is the
7310 -- discriminal of the object (see Apply_Range_Checks for details of
7311 -- the transformation).
7313 -----------------------------
7314 -- Actual_Discriminant_Ref --
7315 -----------------------------
7317 function Actual_Discriminant_Ref
(Bound
: Node_Id
) return Node_Id
is
7318 Typ
: constant Entity_Id
:= Etype
(Bound
);
7322 Remove_Side_Effects
(Bound
);
7324 if not Is_Entity_Name
(Bound
)
7325 or else Ekind
(Entity
(Bound
)) /= E_Discriminant
7329 elsif Is_Protected_Type
(Tsk
)
7330 and then In_Open_Scopes
(Tsk
)
7331 and then Nkind
(Parent
(Entry_Name
)) = N_Requeue_Statement
7333 -- Note: here Bound denotes a discriminant of the corresponding
7334 -- record type tskV, whose discriminal is a formal of the
7335 -- init-proc tskVIP. What we want is the body discriminal,
7336 -- which is associated to the discriminant of the original
7337 -- concurrent type tsk.
7339 return New_Occurrence_Of
7340 (Find_Body_Discriminal
(Entity
(Bound
)), Loc
);
7344 Make_Selected_Component
(Loc
,
7345 Prefix
=> New_Copy_Tree
(Prefix
(Prefix
(Entry_Name
))),
7346 Selector_Name
=> New_Occurrence_Of
(Entity
(Bound
), Loc
));
7351 end Actual_Discriminant_Ref
;
7353 -- Start of processing for Actual_Index_Type
7356 if not Has_Discriminants
(Tsk
)
7357 or else (not Is_Entity_Name
(Lo
) and then not Is_Entity_Name
(Hi
))
7359 return Entry_Index_Type
(E
);
7362 New_T
:= Create_Itype
(Ekind
(Typ
), Parent
(Entry_Name
));
7363 Set_Etype
(New_T
, Base_Type
(Typ
));
7364 Set_Size_Info
(New_T
, Typ
);
7365 Set_RM_Size
(New_T
, RM_Size
(Typ
));
7366 Set_Scalar_Range
(New_T
,
7367 Make_Range
(Sloc
(Entry_Name
),
7368 Low_Bound
=> Actual_Discriminant_Ref
(Lo
),
7369 High_Bound
=> Actual_Discriminant_Ref
(Hi
)));
7373 end Actual_Index_Type
;
7375 -- Start of processing for Resolve_Entry
7378 -- Find name of entry being called, and resolve prefix of name with its
7379 -- own type. The prefix can be overloaded, and the name and signature of
7380 -- the entry must be taken into account.
7382 if Nkind
(Entry_Name
) = N_Indexed_Component
then
7384 -- Case of dealing with entry family within the current tasks
7386 E_Name
:= Prefix
(Entry_Name
);
7389 E_Name
:= Entry_Name
;
7392 if Is_Entity_Name
(E_Name
) then
7394 -- Entry call to an entry (or entry family) in the current task. This
7395 -- is legal even though the task will deadlock. Rewrite as call to
7398 -- This can also be a call to an entry in an enclosing task. If this
7399 -- is a single task, we have to retrieve its name, because the scope
7400 -- of the entry is the task type, not the object. If the enclosing
7401 -- task is a task type, the identity of the task is given by its own
7404 -- Finally this can be a requeue on an entry of the same task or
7405 -- protected object.
7407 S
:= Scope
(Entity
(E_Name
));
7409 for J
in reverse 0 .. Scope_Stack
.Last
loop
7410 if Is_Task_Type
(Scope_Stack
.Table
(J
).Entity
)
7411 and then not Comes_From_Source
(S
)
7413 -- S is an enclosing task or protected object. The concurrent
7414 -- declaration has been converted into a type declaration, and
7415 -- the object itself has an object declaration that follows
7416 -- the type in the same declarative part.
7418 Tsk
:= Next_Entity
(S
);
7419 while Etype
(Tsk
) /= S
loop
7426 elsif S
= Scope_Stack
.Table
(J
).Entity
then
7428 -- Call to current task. Will be transformed into call to Self
7436 Make_Selected_Component
(Loc
,
7437 Prefix
=> New_Occurrence_Of
(S
, Loc
),
7439 New_Occurrence_Of
(Entity
(E_Name
), Loc
));
7440 Rewrite
(E_Name
, New_N
);
7443 elsif Nkind
(Entry_Name
) = N_Selected_Component
7444 and then Is_Overloaded
(Prefix
(Entry_Name
))
7446 -- Use the entry name (which must be unique at this point) to find
7447 -- the prefix that returns the corresponding task/protected type.
7450 Pref
: constant Node_Id
:= Prefix
(Entry_Name
);
7451 Ent
: constant Entity_Id
:= Entity
(Selector_Name
(Entry_Name
));
7456 Get_First_Interp
(Pref
, I
, It
);
7457 while Present
(It
.Typ
) loop
7458 if Scope
(Ent
) = It
.Typ
then
7459 Set_Etype
(Pref
, It
.Typ
);
7463 Get_Next_Interp
(I
, It
);
7468 if Nkind
(Entry_Name
) = N_Selected_Component
then
7469 Resolve
(Prefix
(Entry_Name
));
7471 else pragma Assert
(Nkind
(Entry_Name
) = N_Indexed_Component
);
7472 Nam
:= Entity
(Selector_Name
(Prefix
(Entry_Name
)));
7473 Resolve
(Prefix
(Prefix
(Entry_Name
)));
7474 Index
:= First
(Expressions
(Entry_Name
));
7475 Resolve
(Index
, Entry_Index_Type
(Nam
));
7477 -- Up to this point the expression could have been the actual in a
7478 -- simple entry call, and be given by a named association.
7480 if Nkind
(Index
) = N_Parameter_Association
then
7481 Error_Msg_N
("expect expression for entry index", Index
);
7483 Apply_Range_Check
(Index
, Actual_Index_Type
(Nam
));
7488 ------------------------
7489 -- Resolve_Entry_Call --
7490 ------------------------
7492 procedure Resolve_Entry_Call
(N
: Node_Id
; Typ
: Entity_Id
) is
7493 Entry_Name
: constant Node_Id
:= Name
(N
);
7494 Loc
: constant Source_Ptr
:= Sloc
(Entry_Name
);
7496 First_Named
: Node_Id
;
7503 -- We kill all checks here, because it does not seem worth the effort to
7504 -- do anything better, an entry call is a big operation.
7508 -- Processing of the name is similar for entry calls and protected
7509 -- operation calls. Once the entity is determined, we can complete
7510 -- the resolution of the actuals.
7512 -- The selector may be overloaded, in the case of a protected object
7513 -- with overloaded functions. The type of the context is used for
7516 if Nkind
(Entry_Name
) = N_Selected_Component
7517 and then Is_Overloaded
(Selector_Name
(Entry_Name
))
7518 and then Typ
/= Standard_Void_Type
7525 Get_First_Interp
(Selector_Name
(Entry_Name
), I
, It
);
7526 while Present
(It
.Typ
) loop
7527 if Covers
(Typ
, It
.Typ
) then
7528 Set_Entity
(Selector_Name
(Entry_Name
), It
.Nam
);
7529 Set_Etype
(Entry_Name
, It
.Typ
);
7531 Generate_Reference
(It
.Typ
, N
, ' ');
7534 Get_Next_Interp
(I
, It
);
7539 Resolve_Entry
(Entry_Name
);
7541 if Nkind
(Entry_Name
) = N_Selected_Component
then
7543 -- Simple entry or protected operation call
7545 Nam
:= Entity
(Selector_Name
(Entry_Name
));
7546 Obj
:= Prefix
(Entry_Name
);
7548 if Is_Subprogram
(Nam
) then
7549 Check_For_Eliminated_Subprogram
(Entry_Name
, Nam
);
7552 Was_Over
:= Is_Overloaded
(Selector_Name
(Entry_Name
));
7554 else pragma Assert
(Nkind
(Entry_Name
) = N_Indexed_Component
);
7556 -- Call to member of entry family
7558 Nam
:= Entity
(Selector_Name
(Prefix
(Entry_Name
)));
7559 Obj
:= Prefix
(Prefix
(Entry_Name
));
7560 Was_Over
:= Is_Overloaded
(Selector_Name
(Prefix
(Entry_Name
)));
7563 -- We cannot in general check the maximum depth of protected entry calls
7564 -- at compile time. But we can tell that any protected entry call at all
7565 -- violates a specified nesting depth of zero.
7567 if Is_Protected_Type
(Scope
(Nam
)) then
7568 Check_Restriction
(Max_Entry_Queue_Length
, N
);
7571 -- Use context type to disambiguate a protected function that can be
7572 -- called without actuals and that returns an array type, and where the
7573 -- argument list may be an indexing of the returned value.
7575 if Ekind
(Nam
) = E_Function
7576 and then Needs_No_Actuals
(Nam
)
7577 and then Present
(Parameter_Associations
(N
))
7579 ((Is_Array_Type
(Etype
(Nam
))
7580 and then Covers
(Typ
, Component_Type
(Etype
(Nam
))))
7582 or else (Is_Access_Type
(Etype
(Nam
))
7583 and then Is_Array_Type
(Designated_Type
(Etype
(Nam
)))
7587 Component_Type
(Designated_Type
(Etype
(Nam
))))))
7590 Index_Node
: Node_Id
;
7594 Make_Indexed_Component
(Loc
,
7596 Make_Function_Call
(Loc
, Name
=> Relocate_Node
(Entry_Name
)),
7597 Expressions
=> Parameter_Associations
(N
));
7599 -- Since we are correcting a node classification error made by the
7600 -- parser, we call Replace rather than Rewrite.
7602 Replace
(N
, Index_Node
);
7603 Set_Etype
(Prefix
(N
), Etype
(Nam
));
7605 Resolve_Indexed_Component
(N
, Typ
);
7610 if Ekind_In
(Nam
, E_Entry
, E_Entry_Family
)
7611 and then Present
(Contract_Wrapper
(Nam
))
7612 and then Current_Scope
/= Contract_Wrapper
(Nam
)
7615 -- Note the entity being called before rewriting the call, so that
7616 -- it appears used at this point.
7618 Generate_Reference
(Nam
, Entry_Name
, 'r');
7620 -- Rewrite as call to the precondition wrapper, adding the task
7621 -- object to the list of actuals. If the call is to a member of an
7622 -- entry family, include the index as well.
7626 New_Actuals
: List_Id
;
7629 New_Actuals
:= New_List
(Obj
);
7631 if Nkind
(Entry_Name
) = N_Indexed_Component
then
7632 Append_To
(New_Actuals
,
7633 New_Copy_Tree
(First
(Expressions
(Entry_Name
))));
7636 Append_List
(Parameter_Associations
(N
), New_Actuals
);
7638 Make_Procedure_Call_Statement
(Loc
,
7640 New_Occurrence_Of
(Contract_Wrapper
(Nam
), Loc
),
7641 Parameter_Associations
=> New_Actuals
);
7642 Rewrite
(N
, New_Call
);
7644 -- Preanalyze and resolve new call. Current procedure is called
7645 -- from Resolve_Call, after which expansion will take place.
7647 Preanalyze_And_Resolve
(N
);
7652 -- The operation name may have been overloaded. Order the actuals
7653 -- according to the formals of the resolved entity, and set the return
7654 -- type to that of the operation.
7657 Normalize_Actuals
(N
, Nam
, False, Norm_OK
);
7658 pragma Assert
(Norm_OK
);
7659 Set_Etype
(N
, Etype
(Nam
));
7661 -- Reset the Is_Overloaded flag, since resolution is now completed
7663 -- Simple entry call
7665 if Nkind
(Entry_Name
) = N_Selected_Component
then
7666 Set_Is_Overloaded
(Selector_Name
(Entry_Name
), False);
7668 -- Call to a member of an entry family
7670 else pragma Assert
(Nkind
(Entry_Name
) = N_Indexed_Component
);
7671 Set_Is_Overloaded
(Selector_Name
(Prefix
(Entry_Name
)), False);
7675 Resolve_Actuals
(N
, Nam
);
7676 Check_Internal_Protected_Use
(N
, Nam
);
7678 -- Create a call reference to the entry
7680 Generate_Reference
(Nam
, Entry_Name
, 's');
7682 if Ekind_In
(Nam
, E_Entry
, E_Entry_Family
) then
7683 Check_Potentially_Blocking_Operation
(N
);
7686 -- Verify that a procedure call cannot masquerade as an entry
7687 -- call where an entry call is expected.
7689 if Ekind
(Nam
) = E_Procedure
then
7690 if Nkind
(Parent
(N
)) = N_Entry_Call_Alternative
7691 and then N
= Entry_Call_Statement
(Parent
(N
))
7693 Error_Msg_N
("entry call required in select statement", N
);
7695 elsif Nkind
(Parent
(N
)) = N_Triggering_Alternative
7696 and then N
= Triggering_Statement
(Parent
(N
))
7698 Error_Msg_N
("triggering statement cannot be procedure call", N
);
7700 elsif Ekind
(Scope
(Nam
)) = E_Task_Type
7701 and then not In_Open_Scopes
(Scope
(Nam
))
7703 Error_Msg_N
("task has no entry with this name", Entry_Name
);
7707 -- After resolution, entry calls and protected procedure calls are
7708 -- changed into entry calls, for expansion. The structure of the node
7709 -- does not change, so it can safely be done in place. Protected
7710 -- function calls must keep their structure because they are
7713 if Ekind
(Nam
) /= E_Function
then
7715 -- A protected operation that is not a function may modify the
7716 -- corresponding object, and cannot apply to a constant. If this
7717 -- is an internal call, the prefix is the type itself.
7719 if Is_Protected_Type
(Scope
(Nam
))
7720 and then not Is_Variable
(Obj
)
7721 and then (not Is_Entity_Name
(Obj
)
7722 or else not Is_Type
(Entity
(Obj
)))
7725 ("prefix of protected procedure or entry call must be variable",
7729 Actuals
:= Parameter_Associations
(N
);
7730 First_Named
:= First_Named_Actual
(N
);
7733 Make_Entry_Call_Statement
(Loc
,
7735 Parameter_Associations
=> Actuals
));
7737 Set_First_Named_Actual
(N
, First_Named
);
7738 Set_Analyzed
(N
, True);
7740 -- Protected functions can return on the secondary stack, in which
7741 -- case we must trigger the transient scope mechanism.
7743 elsif Expander_Active
7744 and then Requires_Transient_Scope
(Etype
(Nam
))
7746 Establish_Transient_Scope
(N
, Sec_Stack
=> True);
7748 end Resolve_Entry_Call
;
7750 -------------------------
7751 -- Resolve_Equality_Op --
7752 -------------------------
7754 -- Both arguments must have the same type, and the boolean context does
7755 -- not participate in the resolution. The first pass verifies that the
7756 -- interpretation is not ambiguous, and the type of the left argument is
7757 -- correctly set, or is Any_Type in case of ambiguity. If both arguments
7758 -- are strings or aggregates, allocators, or Null, they are ambiguous even
7759 -- though they carry a single (universal) type. Diagnose this case here.
7761 procedure Resolve_Equality_Op
(N
: Node_Id
; Typ
: Entity_Id
) is
7762 L
: constant Node_Id
:= Left_Opnd
(N
);
7763 R
: constant Node_Id
:= Right_Opnd
(N
);
7764 T
: Entity_Id
:= Find_Unique_Type
(L
, R
);
7766 procedure Check_If_Expression
(Cond
: Node_Id
);
7767 -- The resolution rule for if expressions requires that each such must
7768 -- have a unique type. This means that if several dependent expressions
7769 -- are of a non-null anonymous access type, and the context does not
7770 -- impose an expected type (as can be the case in an equality operation)
7771 -- the expression must be rejected.
7773 procedure Explain_Redundancy
(N
: Node_Id
);
7774 -- Attempt to explain the nature of a redundant comparison with True. If
7775 -- the expression N is too complex, this routine issues a general error
7778 function Find_Unique_Access_Type
return Entity_Id
;
7779 -- In the case of allocators and access attributes, the context must
7780 -- provide an indication of the specific access type to be used. If
7781 -- one operand is of such a "generic" access type, check whether there
7782 -- is a specific visible access type that has the same designated type.
7783 -- This is semantically dubious, and of no interest to any real code,
7784 -- but c48008a makes it all worthwhile.
7786 -------------------------
7787 -- Check_If_Expression --
7788 -------------------------
7790 procedure Check_If_Expression
(Cond
: Node_Id
) is
7791 Then_Expr
: Node_Id
;
7792 Else_Expr
: Node_Id
;
7795 if Nkind
(Cond
) = N_If_Expression
then
7796 Then_Expr
:= Next
(First
(Expressions
(Cond
)));
7797 Else_Expr
:= Next
(Then_Expr
);
7799 if Nkind
(Then_Expr
) /= N_Null
7800 and then Nkind
(Else_Expr
) /= N_Null
7802 Error_Msg_N
("cannot determine type of if expression", Cond
);
7805 end Check_If_Expression
;
7807 ------------------------
7808 -- Explain_Redundancy --
7809 ------------------------
7811 procedure Explain_Redundancy
(N
: Node_Id
) is
7819 -- Strip the operand down to an entity
7822 if Nkind
(Val
) = N_Selected_Component
then
7823 Val
:= Selector_Name
(Val
);
7829 -- The construct denotes an entity
7831 if Is_Entity_Name
(Val
) and then Present
(Entity
(Val
)) then
7832 Val_Id
:= Entity
(Val
);
7834 -- Do not generate an error message when the comparison is done
7835 -- against the enumeration literal Standard.True.
7837 if Ekind
(Val_Id
) /= E_Enumeration_Literal
then
7839 -- Build a customized error message
7842 Add_Str_To_Name_Buffer
("?r?");
7844 if Ekind
(Val_Id
) = E_Component
then
7845 Add_Str_To_Name_Buffer
("component ");
7847 elsif Ekind
(Val_Id
) = E_Constant
then
7848 Add_Str_To_Name_Buffer
("constant ");
7850 elsif Ekind
(Val_Id
) = E_Discriminant
then
7851 Add_Str_To_Name_Buffer
("discriminant ");
7853 elsif Is_Formal
(Val_Id
) then
7854 Add_Str_To_Name_Buffer
("parameter ");
7856 elsif Ekind
(Val_Id
) = E_Variable
then
7857 Add_Str_To_Name_Buffer
("variable ");
7860 Add_Str_To_Name_Buffer
("& is always True!");
7863 Error_Msg_NE
(Get_Name_String
(Error
), Val
, Val_Id
);
7866 -- The construct is too complex to disect, issue a general message
7869 Error_Msg_N
("?r?expression is always True!", Val
);
7871 end Explain_Redundancy
;
7873 -----------------------------
7874 -- Find_Unique_Access_Type --
7875 -----------------------------
7877 function Find_Unique_Access_Type
return Entity_Id
is
7883 if Ekind_In
(Etype
(R
), E_Allocator_Type
,
7884 E_Access_Attribute_Type
)
7886 Acc
:= Designated_Type
(Etype
(R
));
7888 elsif Ekind_In
(Etype
(L
), E_Allocator_Type
,
7889 E_Access_Attribute_Type
)
7891 Acc
:= Designated_Type
(Etype
(L
));
7897 while S
/= Standard_Standard
loop
7898 E
:= First_Entity
(S
);
7899 while Present
(E
) loop
7901 and then Is_Access_Type
(E
)
7902 and then Ekind
(E
) /= E_Allocator_Type
7903 and then Designated_Type
(E
) = Base_Type
(Acc
)
7915 end Find_Unique_Access_Type
;
7917 -- Start of processing for Resolve_Equality_Op
7920 Set_Etype
(N
, Base_Type
(Typ
));
7921 Generate_Reference
(T
, N
, ' ');
7923 if T
= Any_Fixed
then
7924 T
:= Unique_Fixed_Point_Type
(L
);
7927 if T
/= Any_Type
then
7928 if T
= Any_String
or else
7929 T
= Any_Composite
or else
7932 if T
= Any_Character
then
7933 Ambiguous_Character
(L
);
7935 Error_Msg_N
("ambiguous operands for equality", N
);
7938 Set_Etype
(N
, Any_Type
);
7941 elsif T
= Any_Access
7942 or else Ekind_In
(T
, E_Allocator_Type
, E_Access_Attribute_Type
)
7944 T
:= Find_Unique_Access_Type
;
7947 Error_Msg_N
("ambiguous operands for equality", N
);
7948 Set_Etype
(N
, Any_Type
);
7952 -- If expressions must have a single type, and if the context does
7953 -- not impose one the dependent expressions cannot be anonymous
7956 -- Why no similar processing for case expressions???
7958 elsif Ada_Version
>= Ada_2012
7959 and then Ekind_In
(Etype
(L
), E_Anonymous_Access_Type
,
7960 E_Anonymous_Access_Subprogram_Type
)
7961 and then Ekind_In
(Etype
(R
), E_Anonymous_Access_Type
,
7962 E_Anonymous_Access_Subprogram_Type
)
7964 Check_If_Expression
(L
);
7965 Check_If_Expression
(R
);
7971 -- In SPARK, equality operators = and /= for array types other than
7972 -- String are only defined when, for each index position, the
7973 -- operands have equal static bounds.
7975 if Is_Array_Type
(T
) then
7977 -- Protect call to Matching_Static_Array_Bounds to avoid costly
7978 -- operation if not needed.
7980 if Restriction_Check_Required
(SPARK_05
)
7981 and then Base_Type
(T
) /= Standard_String
7982 and then Base_Type
(Etype
(L
)) = Base_Type
(Etype
(R
))
7983 and then Etype
(L
) /= Any_Composite
-- or else L in error
7984 and then Etype
(R
) /= Any_Composite
-- or else R in error
7985 and then not Matching_Static_Array_Bounds
(Etype
(L
), Etype
(R
))
7987 Check_SPARK_05_Restriction
7988 ("array types should have matching static bounds", N
);
7992 -- If the unique type is a class-wide type then it will be expanded
7993 -- into a dispatching call to the predefined primitive. Therefore we
7994 -- check here for potential violation of such restriction.
7996 if Is_Class_Wide_Type
(T
) then
7997 Check_Restriction
(No_Dispatching_Calls
, N
);
8000 -- Only warn for redundant equality comparison to True for objects
8001 -- (e.g. "X = True") and operations (e.g. "(X < Y) = True"). For
8002 -- other expressions, it may be a matter of preference to write
8003 -- "Expr = True" or "Expr".
8005 if Warn_On_Redundant_Constructs
8006 and then Comes_From_Source
(N
)
8007 and then Comes_From_Source
(R
)
8008 and then Is_Entity_Name
(R
)
8009 and then Entity
(R
) = Standard_True
8011 ((Is_Entity_Name
(L
) and then Is_Object
(Entity
(L
)))
8015 Error_Msg_N
-- CODEFIX
8016 ("?r?comparison with True is redundant!", N
);
8017 Explain_Redundancy
(Original_Node
(R
));
8020 Check_Unset_Reference
(L
);
8021 Check_Unset_Reference
(R
);
8022 Generate_Operator_Reference
(N
, T
);
8023 Check_Low_Bound_Tested
(N
);
8025 -- If this is an inequality, it may be the implicit inequality
8026 -- created for a user-defined operation, in which case the corres-
8027 -- ponding equality operation is not intrinsic, and the operation
8028 -- cannot be constant-folded. Else fold.
8030 if Nkind
(N
) = N_Op_Eq
8031 or else Comes_From_Source
(Entity
(N
))
8032 or else Ekind
(Entity
(N
)) = E_Operator
8033 or else Is_Intrinsic_Subprogram
8034 (Corresponding_Equality
(Entity
(N
)))
8036 Analyze_Dimension
(N
);
8037 Eval_Relational_Op
(N
);
8039 elsif Nkind
(N
) = N_Op_Ne
8040 and then Is_Abstract_Subprogram
(Entity
(N
))
8042 Error_Msg_NE
("cannot call abstract subprogram &!", N
, Entity
(N
));
8045 -- Ada 2005: If one operand is an anonymous access type, convert the
8046 -- other operand to it, to ensure that the underlying types match in
8047 -- the back-end. Same for access_to_subprogram, and the conversion
8048 -- verifies that the types are subtype conformant.
8050 -- We apply the same conversion in the case one of the operands is a
8051 -- private subtype of the type of the other.
8053 -- Why the Expander_Active test here ???
8057 (Ekind_In
(T
, E_Anonymous_Access_Type
,
8058 E_Anonymous_Access_Subprogram_Type
)
8059 or else Is_Private_Type
(T
))
8061 if Etype
(L
) /= T
then
8063 Make_Unchecked_Type_Conversion
(Sloc
(L
),
8064 Subtype_Mark
=> New_Occurrence_Of
(T
, Sloc
(L
)),
8065 Expression
=> Relocate_Node
(L
)));
8066 Analyze_And_Resolve
(L
, T
);
8069 if (Etype
(R
)) /= T
then
8071 Make_Unchecked_Type_Conversion
(Sloc
(R
),
8072 Subtype_Mark
=> New_Occurrence_Of
(Etype
(L
), Sloc
(R
)),
8073 Expression
=> Relocate_Node
(R
)));
8074 Analyze_And_Resolve
(R
, T
);
8078 end Resolve_Equality_Op
;
8080 ----------------------------------
8081 -- Resolve_Explicit_Dereference --
8082 ----------------------------------
8084 procedure Resolve_Explicit_Dereference
(N
: Node_Id
; Typ
: Entity_Id
) is
8085 Loc
: constant Source_Ptr
:= Sloc
(N
);
8087 P
: constant Node_Id
:= Prefix
(N
);
8090 -- The candidate prefix type, if overloaded
8096 Check_Fully_Declared_Prefix
(Typ
, P
);
8099 -- A useful optimization: check whether the dereference denotes an
8100 -- element of a container, and if so rewrite it as a call to the
8101 -- corresponding Element function.
8103 -- Disabled for now, on advice of ARG. A more restricted form of the
8104 -- predicate might be acceptable ???
8106 -- if Is_Container_Element (N) then
8110 if Is_Overloaded
(P
) then
8112 -- Use the context type to select the prefix that has the correct
8113 -- designated type. Keep the first match, which will be the inner-
8116 Get_First_Interp
(P
, I
, It
);
8118 while Present
(It
.Typ
) loop
8119 if Is_Access_Type
(It
.Typ
)
8120 and then Covers
(Typ
, Designated_Type
(It
.Typ
))
8126 -- Remove access types that do not match, but preserve access
8127 -- to subprogram interpretations, in case a further dereference
8128 -- is needed (see below).
8130 elsif Ekind
(It
.Typ
) /= E_Access_Subprogram_Type
then
8134 Get_Next_Interp
(I
, It
);
8137 if Present
(P_Typ
) then
8139 Set_Etype
(N
, Designated_Type
(P_Typ
));
8142 -- If no interpretation covers the designated type of the prefix,
8143 -- this is the pathological case where not all implementations of
8144 -- the prefix allow the interpretation of the node as a call. Now
8145 -- that the expected type is known, Remove other interpretations
8146 -- from prefix, rewrite it as a call, and resolve again, so that
8147 -- the proper call node is generated.
8149 Get_First_Interp
(P
, I
, It
);
8150 while Present
(It
.Typ
) loop
8151 if Ekind
(It
.Typ
) /= E_Access_Subprogram_Type
then
8155 Get_Next_Interp
(I
, It
);
8159 Make_Function_Call
(Loc
,
8161 Make_Explicit_Dereference
(Loc
,
8163 Parameter_Associations
=> New_List
);
8165 Save_Interps
(N
, New_N
);
8167 Analyze_And_Resolve
(N
, Typ
);
8171 -- If not overloaded, resolve P with its own type
8177 -- If the prefix might be null, add an access check
8179 if Is_Access_Type
(Etype
(P
))
8180 and then not Can_Never_Be_Null
(Etype
(P
))
8182 Apply_Access_Check
(N
);
8185 -- If the designated type is a packed unconstrained array type, and the
8186 -- explicit dereference is not in the context of an attribute reference,
8187 -- then we must compute and set the actual subtype, since it is needed
8188 -- by Gigi. The reason we exclude the attribute case is that this is
8189 -- handled fine by Gigi, and in fact we use such attributes to build the
8190 -- actual subtype. We also exclude generated code (which builds actual
8191 -- subtypes directly if they are needed).
8193 if Is_Array_Type
(Etype
(N
))
8194 and then Is_Packed
(Etype
(N
))
8195 and then not Is_Constrained
(Etype
(N
))
8196 and then Nkind
(Parent
(N
)) /= N_Attribute_Reference
8197 and then Comes_From_Source
(N
)
8199 Set_Etype
(N
, Get_Actual_Subtype
(N
));
8202 Analyze_Dimension
(N
);
8204 -- Note: No Eval processing is required for an explicit dereference,
8205 -- because such a name can never be static.
8207 end Resolve_Explicit_Dereference
;
8209 -------------------------------------
8210 -- Resolve_Expression_With_Actions --
8211 -------------------------------------
8213 procedure Resolve_Expression_With_Actions
(N
: Node_Id
; Typ
: Entity_Id
) is
8217 -- If N has no actions, and its expression has been constant folded,
8218 -- then rewrite N as just its expression. Note, we can't do this in
8219 -- the general case of Is_Empty_List (Actions (N)) as this would cause
8220 -- Expression (N) to be expanded again.
8222 if Is_Empty_List
(Actions
(N
))
8223 and then Compile_Time_Known_Value
(Expression
(N
))
8225 Rewrite
(N
, Expression
(N
));
8227 end Resolve_Expression_With_Actions
;
8229 ----------------------------------
8230 -- Resolve_Generalized_Indexing --
8231 ----------------------------------
8233 procedure Resolve_Generalized_Indexing
(N
: Node_Id
; Typ
: Entity_Id
) is
8234 Indexing
: constant Node_Id
:= Generalized_Indexing
(N
);
8240 -- In ASIS mode, propagate the information about the indexes back to
8241 -- to the original indexing node. The generalized indexing is either
8242 -- a function call, or a dereference of one. The actuals include the
8243 -- prefix of the original node, which is the container expression.
8246 Resolve
(Indexing
, Typ
);
8247 Set_Etype
(N
, Etype
(Indexing
));
8248 Set_Is_Overloaded
(N
, False);
8251 while Nkind_In
(Call
, N_Explicit_Dereference
, N_Selected_Component
)
8253 Call
:= Prefix
(Call
);
8256 if Nkind
(Call
) = N_Function_Call
then
8257 Indexes
:= New_Copy_List
(Parameter_Associations
(Call
));
8258 Pref
:= Remove_Head
(Indexes
);
8259 Set_Expressions
(N
, Indexes
);
8261 -- If expression is to be reanalyzed, reset Generalized_Indexing
8262 -- to recreate call node, as is the case when the expression is
8263 -- part of an expression function.
8265 if In_Spec_Expression
then
8266 Set_Generalized_Indexing
(N
, Empty
);
8269 Set_Prefix
(N
, Pref
);
8273 Rewrite
(N
, Indexing
);
8276 end Resolve_Generalized_Indexing
;
8278 ---------------------------
8279 -- Resolve_If_Expression --
8280 ---------------------------
8282 procedure Resolve_If_Expression
(N
: Node_Id
; Typ
: Entity_Id
) is
8283 Condition
: constant Node_Id
:= First
(Expressions
(N
));
8284 Then_Expr
: Node_Id
;
8285 Else_Expr
: Node_Id
;
8286 Else_Typ
: Entity_Id
;
8287 Then_Typ
: Entity_Id
;
8290 -- Defend against malformed expressions
8292 if No
(Condition
) then
8296 Then_Expr
:= Next
(Condition
);
8298 if No
(Then_Expr
) then
8302 Else_Expr
:= Next
(Then_Expr
);
8304 Resolve
(Condition
, Any_Boolean
);
8305 Resolve
(Then_Expr
, Typ
);
8306 Then_Typ
:= Etype
(Then_Expr
);
8308 -- When the "then" expression is of a scalar subtype different from the
8309 -- result subtype, then insert a conversion to ensure the generation of
8310 -- a constraint check. The same is done for the else part below, again
8311 -- comparing subtypes rather than base types.
8313 if Is_Scalar_Type
(Then_Typ
) and then Then_Typ
/= Typ
then
8314 Rewrite
(Then_Expr
, Convert_To
(Typ
, Then_Expr
));
8315 Analyze_And_Resolve
(Then_Expr
, Typ
);
8318 -- If ELSE expression present, just resolve using the determined type
8319 -- If type is universal, resolve to any member of the class.
8321 if Present
(Else_Expr
) then
8322 if Typ
= Universal_Integer
then
8323 Resolve
(Else_Expr
, Any_Integer
);
8325 elsif Typ
= Universal_Real
then
8326 Resolve
(Else_Expr
, Any_Real
);
8329 Resolve
(Else_Expr
, Typ
);
8332 Else_Typ
:= Etype
(Else_Expr
);
8334 if Is_Scalar_Type
(Else_Typ
) and then Else_Typ
/= Typ
then
8335 Rewrite
(Else_Expr
, Convert_To
(Typ
, Else_Expr
));
8336 Analyze_And_Resolve
(Else_Expr
, Typ
);
8338 -- Apply RM 4.5.7 (17/3): whether the expression is statically or
8339 -- dynamically tagged must be known statically.
8341 elsif Is_Tagged_Type
(Typ
) and then not Is_Class_Wide_Type
(Typ
) then
8342 if Is_Dynamically_Tagged
(Then_Expr
) /=
8343 Is_Dynamically_Tagged
(Else_Expr
)
8345 Error_Msg_N
("all or none of the dependent expressions "
8346 & "can be dynamically tagged", N
);
8350 -- If no ELSE expression is present, root type must be Standard.Boolean
8351 -- and we provide a Standard.True result converted to the appropriate
8352 -- Boolean type (in case it is a derived boolean type).
8354 elsif Root_Type
(Typ
) = Standard_Boolean
then
8356 Convert_To
(Typ
, New_Occurrence_Of
(Standard_True
, Sloc
(N
)));
8357 Analyze_And_Resolve
(Else_Expr
, Typ
);
8358 Append_To
(Expressions
(N
), Else_Expr
);
8361 Error_Msg_N
("can only omit ELSE expression in Boolean case", N
);
8362 Append_To
(Expressions
(N
), Error
);
8367 if not Error_Posted
(N
) then
8368 Eval_If_Expression
(N
);
8371 Analyze_Dimension
(N
);
8372 end Resolve_If_Expression
;
8374 -------------------------------
8375 -- Resolve_Indexed_Component --
8376 -------------------------------
8378 procedure Resolve_Indexed_Component
(N
: Node_Id
; Typ
: Entity_Id
) is
8379 Name
: constant Node_Id
:= Prefix
(N
);
8381 Array_Type
: Entity_Id
:= Empty
; -- to prevent junk warning
8385 if Present
(Generalized_Indexing
(N
)) then
8386 Resolve_Generalized_Indexing
(N
, Typ
);
8390 if Is_Overloaded
(Name
) then
8392 -- Use the context type to select the prefix that yields the correct
8398 I1
: Interp_Index
:= 0;
8399 P
: constant Node_Id
:= Prefix
(N
);
8400 Found
: Boolean := False;
8403 Get_First_Interp
(P
, I
, It
);
8404 while Present
(It
.Typ
) loop
8405 if (Is_Array_Type
(It
.Typ
)
8406 and then Covers
(Typ
, Component_Type
(It
.Typ
)))
8407 or else (Is_Access_Type
(It
.Typ
)
8408 and then Is_Array_Type
(Designated_Type
(It
.Typ
))
8412 Component_Type
(Designated_Type
(It
.Typ
))))
8415 It
:= Disambiguate
(P
, I1
, I
, Any_Type
);
8417 if It
= No_Interp
then
8418 Error_Msg_N
("ambiguous prefix for indexing", N
);
8424 Array_Type
:= It
.Typ
;
8430 Array_Type
:= It
.Typ
;
8435 Get_Next_Interp
(I
, It
);
8440 Array_Type
:= Etype
(Name
);
8443 Resolve
(Name
, Array_Type
);
8444 Array_Type
:= Get_Actual_Subtype_If_Available
(Name
);
8446 -- If prefix is access type, dereference to get real array type.
8447 -- Note: we do not apply an access check because the expander always
8448 -- introduces an explicit dereference, and the check will happen there.
8450 if Is_Access_Type
(Array_Type
) then
8451 Array_Type
:= Designated_Type
(Array_Type
);
8454 -- If name was overloaded, set component type correctly now
8455 -- If a misplaced call to an entry family (which has no index types)
8456 -- return. Error will be diagnosed from calling context.
8458 if Is_Array_Type
(Array_Type
) then
8459 Set_Etype
(N
, Component_Type
(Array_Type
));
8464 Index
:= First_Index
(Array_Type
);
8465 Expr
:= First
(Expressions
(N
));
8467 -- The prefix may have resolved to a string literal, in which case its
8468 -- etype has a special representation. This is only possible currently
8469 -- if the prefix is a static concatenation, written in functional
8472 if Ekind
(Array_Type
) = E_String_Literal_Subtype
then
8473 Resolve
(Expr
, Standard_Positive
);
8476 while Present
(Index
) and Present
(Expr
) loop
8477 Resolve
(Expr
, Etype
(Index
));
8478 Check_Unset_Reference
(Expr
);
8480 if Is_Scalar_Type
(Etype
(Expr
)) then
8481 Apply_Scalar_Range_Check
(Expr
, Etype
(Index
));
8483 Apply_Range_Check
(Expr
, Get_Actual_Subtype
(Index
));
8491 Analyze_Dimension
(N
);
8493 -- Do not generate the warning on suspicious index if we are analyzing
8494 -- package Ada.Tags; otherwise we will report the warning with the
8495 -- Prims_Ptr field of the dispatch table.
8497 if Scope
(Etype
(Prefix
(N
))) = Standard_Standard
8499 Is_RTU
(Cunit_Entity
(Get_Source_Unit
(Etype
(Prefix
(N
)))),
8502 Warn_On_Suspicious_Index
(Name
, First
(Expressions
(N
)));
8503 Eval_Indexed_Component
(N
);
8506 -- If the array type is atomic, and the component is not atomic, then
8507 -- this is worth a warning, since we have a situation where the access
8508 -- to the component may cause extra read/writes of the atomic array
8509 -- object, or partial word accesses, which could be unexpected.
8511 if Nkind
(N
) = N_Indexed_Component
8512 and then Is_Atomic_Ref_With_Address
(N
)
8513 and then not (Has_Atomic_Components
(Array_Type
)
8514 or else (Is_Entity_Name
(Prefix
(N
))
8515 and then Has_Atomic_Components
8516 (Entity
(Prefix
(N
)))))
8517 and then not Is_Atomic
(Component_Type
(Array_Type
))
8520 ("??access to non-atomic component of atomic array", Prefix
(N
));
8522 ("??\may cause unexpected accesses to atomic object", Prefix
(N
));
8524 end Resolve_Indexed_Component
;
8526 -----------------------------
8527 -- Resolve_Integer_Literal --
8528 -----------------------------
8530 procedure Resolve_Integer_Literal
(N
: Node_Id
; Typ
: Entity_Id
) is
8533 Eval_Integer_Literal
(N
);
8534 end Resolve_Integer_Literal
;
8536 --------------------------------
8537 -- Resolve_Intrinsic_Operator --
8538 --------------------------------
8540 procedure Resolve_Intrinsic_Operator
(N
: Node_Id
; Typ
: Entity_Id
) is
8541 Btyp
: constant Entity_Id
:= Base_Type
(Underlying_Type
(Typ
));
8546 function Convert_Operand
(Opnd
: Node_Id
) return Node_Id
;
8547 -- If the operand is a literal, it cannot be the expression in a
8548 -- conversion. Use a qualified expression instead.
8550 ---------------------
8551 -- Convert_Operand --
8552 ---------------------
8554 function Convert_Operand
(Opnd
: Node_Id
) return Node_Id
is
8555 Loc
: constant Source_Ptr
:= Sloc
(Opnd
);
8559 if Nkind_In
(Opnd
, N_Integer_Literal
, N_Real_Literal
) then
8561 Make_Qualified_Expression
(Loc
,
8562 Subtype_Mark
=> New_Occurrence_Of
(Btyp
, Loc
),
8563 Expression
=> Relocate_Node
(Opnd
));
8567 Res
:= Unchecked_Convert_To
(Btyp
, Opnd
);
8571 end Convert_Operand
;
8573 -- Start of processing for Resolve_Intrinsic_Operator
8576 -- We must preserve the original entity in a generic setting, so that
8577 -- the legality of the operation can be verified in an instance.
8579 if not Expander_Active
then
8584 while Scope
(Op
) /= Standard_Standard
loop
8586 pragma Assert
(Present
(Op
));
8590 Set_Is_Overloaded
(N
, False);
8592 -- If the result or operand types are private, rewrite with unchecked
8593 -- conversions on the operands and the result, to expose the proper
8594 -- underlying numeric type.
8596 if Is_Private_Type
(Typ
)
8597 or else Is_Private_Type
(Etype
(Left_Opnd
(N
)))
8598 or else Is_Private_Type
(Etype
(Right_Opnd
(N
)))
8600 Arg1
:= Convert_Operand
(Left_Opnd
(N
));
8602 if Nkind
(N
) = N_Op_Expon
then
8603 Arg2
:= Unchecked_Convert_To
(Standard_Integer
, Right_Opnd
(N
));
8605 Arg2
:= Convert_Operand
(Right_Opnd
(N
));
8608 if Nkind
(Arg1
) = N_Type_Conversion
then
8609 Save_Interps
(Left_Opnd
(N
), Expression
(Arg1
));
8612 if Nkind
(Arg2
) = N_Type_Conversion
then
8613 Save_Interps
(Right_Opnd
(N
), Expression
(Arg2
));
8616 Set_Left_Opnd
(N
, Arg1
);
8617 Set_Right_Opnd
(N
, Arg2
);
8619 Set_Etype
(N
, Btyp
);
8620 Rewrite
(N
, Unchecked_Convert_To
(Typ
, N
));
8623 elsif Typ
/= Etype
(Left_Opnd
(N
))
8624 or else Typ
/= Etype
(Right_Opnd
(N
))
8626 -- Add explicit conversion where needed, and save interpretations in
8627 -- case operands are overloaded.
8629 Arg1
:= Convert_To
(Typ
, Left_Opnd
(N
));
8630 Arg2
:= Convert_To
(Typ
, Right_Opnd
(N
));
8632 if Nkind
(Arg1
) = N_Type_Conversion
then
8633 Save_Interps
(Left_Opnd
(N
), Expression
(Arg1
));
8635 Save_Interps
(Left_Opnd
(N
), Arg1
);
8638 if Nkind
(Arg2
) = N_Type_Conversion
then
8639 Save_Interps
(Right_Opnd
(N
), Expression
(Arg2
));
8641 Save_Interps
(Right_Opnd
(N
), Arg2
);
8644 Rewrite
(Left_Opnd
(N
), Arg1
);
8645 Rewrite
(Right_Opnd
(N
), Arg2
);
8648 Resolve_Arithmetic_Op
(N
, Typ
);
8651 Resolve_Arithmetic_Op
(N
, Typ
);
8653 end Resolve_Intrinsic_Operator
;
8655 --------------------------------------
8656 -- Resolve_Intrinsic_Unary_Operator --
8657 --------------------------------------
8659 procedure Resolve_Intrinsic_Unary_Operator
8663 Btyp
: constant Entity_Id
:= Base_Type
(Underlying_Type
(Typ
));
8669 while Scope
(Op
) /= Standard_Standard
loop
8671 pragma Assert
(Present
(Op
));
8676 if Is_Private_Type
(Typ
) then
8677 Arg2
:= Unchecked_Convert_To
(Btyp
, Right_Opnd
(N
));
8678 Save_Interps
(Right_Opnd
(N
), Expression
(Arg2
));
8680 Set_Right_Opnd
(N
, Arg2
);
8682 Set_Etype
(N
, Btyp
);
8683 Rewrite
(N
, Unchecked_Convert_To
(Typ
, N
));
8687 Resolve_Unary_Op
(N
, Typ
);
8689 end Resolve_Intrinsic_Unary_Operator
;
8691 ------------------------
8692 -- Resolve_Logical_Op --
8693 ------------------------
8695 procedure Resolve_Logical_Op
(N
: Node_Id
; Typ
: Entity_Id
) is
8699 Check_No_Direct_Boolean_Operators
(N
);
8701 -- Predefined operations on scalar types yield the base type. On the
8702 -- other hand, logical operations on arrays yield the type of the
8703 -- arguments (and the context).
8705 if Is_Array_Type
(Typ
) then
8708 B_Typ
:= Base_Type
(Typ
);
8711 -- The following test is required because the operands of the operation
8712 -- may be literals, in which case the resulting type appears to be
8713 -- compatible with a signed integer type, when in fact it is compatible
8714 -- only with modular types. If the context itself is universal, the
8715 -- operation is illegal.
8717 if not Valid_Boolean_Arg
(Typ
) then
8718 Error_Msg_N
("invalid context for logical operation", N
);
8719 Set_Etype
(N
, Any_Type
);
8722 elsif Typ
= Any_Modular
then
8724 ("no modular type available in this context", N
);
8725 Set_Etype
(N
, Any_Type
);
8728 elsif Is_Modular_Integer_Type
(Typ
)
8729 and then Etype
(Left_Opnd
(N
)) = Universal_Integer
8730 and then Etype
(Right_Opnd
(N
)) = Universal_Integer
8732 Check_For_Visible_Operator
(N
, B_Typ
);
8735 -- Replace AND by AND THEN, or OR by OR ELSE, if Short_Circuit_And_Or
8736 -- is active and the result type is standard Boolean (do not mess with
8737 -- ops that return a nonstandard Boolean type, because something strange
8740 -- Note: you might expect this replacement to be done during expansion,
8741 -- but that doesn't work, because when the pragma Short_Circuit_And_Or
8742 -- is used, no part of the right operand of an "and" or "or" operator
8743 -- should be executed if the left operand would short-circuit the
8744 -- evaluation of the corresponding "and then" or "or else". If we left
8745 -- the replacement to expansion time, then run-time checks associated
8746 -- with such operands would be evaluated unconditionally, due to being
8747 -- before the condition prior to the rewriting as short-circuit forms
8748 -- during expansion.
8750 if Short_Circuit_And_Or
8751 and then B_Typ
= Standard_Boolean
8752 and then Nkind_In
(N
, N_Op_And
, N_Op_Or
)
8754 -- Mark the corresponding putative SCO operator as truly a logical
8755 -- (and short-circuit) operator.
8757 if Generate_SCO
and then Comes_From_Source
(N
) then
8758 Set_SCO_Logical_Operator
(N
);
8761 if Nkind
(N
) = N_Op_And
then
8763 Make_And_Then
(Sloc
(N
),
8764 Left_Opnd
=> Relocate_Node
(Left_Opnd
(N
)),
8765 Right_Opnd
=> Relocate_Node
(Right_Opnd
(N
))));
8766 Analyze_And_Resolve
(N
, B_Typ
);
8768 -- Case of OR changed to OR ELSE
8772 Make_Or_Else
(Sloc
(N
),
8773 Left_Opnd
=> Relocate_Node
(Left_Opnd
(N
)),
8774 Right_Opnd
=> Relocate_Node
(Right_Opnd
(N
))));
8775 Analyze_And_Resolve
(N
, B_Typ
);
8778 -- Return now, since analysis of the rewritten ops will take care of
8779 -- other reference bookkeeping and expression folding.
8784 Resolve
(Left_Opnd
(N
), B_Typ
);
8785 Resolve
(Right_Opnd
(N
), B_Typ
);
8787 Check_Unset_Reference
(Left_Opnd
(N
));
8788 Check_Unset_Reference
(Right_Opnd
(N
));
8790 Set_Etype
(N
, B_Typ
);
8791 Generate_Operator_Reference
(N
, B_Typ
);
8792 Eval_Logical_Op
(N
);
8794 -- In SPARK, logical operations AND, OR and XOR for arrays are defined
8795 -- only when both operands have same static lower and higher bounds. Of
8796 -- course the types have to match, so only check if operands are
8797 -- compatible and the node itself has no errors.
8799 if Is_Array_Type
(B_Typ
)
8800 and then Nkind
(N
) in N_Binary_Op
8803 Left_Typ
: constant Node_Id
:= Etype
(Left_Opnd
(N
));
8804 Right_Typ
: constant Node_Id
:= Etype
(Right_Opnd
(N
));
8807 -- Protect call to Matching_Static_Array_Bounds to avoid costly
8808 -- operation if not needed.
8810 if Restriction_Check_Required
(SPARK_05
)
8811 and then Base_Type
(Left_Typ
) = Base_Type
(Right_Typ
)
8812 and then Left_Typ
/= Any_Composite
-- or Left_Opnd in error
8813 and then Right_Typ
/= Any_Composite
-- or Right_Opnd in error
8814 and then not Matching_Static_Array_Bounds
(Left_Typ
, Right_Typ
)
8816 Check_SPARK_05_Restriction
8817 ("array types should have matching static bounds", N
);
8821 end Resolve_Logical_Op
;
8823 ---------------------------
8824 -- Resolve_Membership_Op --
8825 ---------------------------
8827 -- The context can only be a boolean type, and does not determine the
8828 -- arguments. Arguments should be unambiguous, but the preference rule for
8829 -- universal types applies.
8831 procedure Resolve_Membership_Op
(N
: Node_Id
; Typ
: Entity_Id
) is
8832 pragma Warnings
(Off
, Typ
);
8834 L
: constant Node_Id
:= Left_Opnd
(N
);
8835 R
: constant Node_Id
:= Right_Opnd
(N
);
8838 procedure Resolve_Set_Membership
;
8839 -- Analysis has determined a unique type for the left operand. Use it to
8840 -- resolve the disjuncts.
8842 ----------------------------
8843 -- Resolve_Set_Membership --
8844 ----------------------------
8846 procedure Resolve_Set_Membership
is
8851 -- If the left operand is overloaded, find type compatible with not
8852 -- overloaded alternative of the right operand.
8854 if Is_Overloaded
(L
) then
8856 Alt
:= First
(Alternatives
(N
));
8857 while Present
(Alt
) loop
8858 if not Is_Overloaded
(Alt
) then
8859 Ltyp
:= Intersect_Types
(L
, Alt
);
8866 -- Unclear how to resolve expression if all alternatives are also
8870 Error_Msg_N
("ambiguous expression", N
);
8879 Alt
:= First
(Alternatives
(N
));
8880 while Present
(Alt
) loop
8882 -- Alternative is an expression, a range
8883 -- or a subtype mark.
8885 if not Is_Entity_Name
(Alt
)
8886 or else not Is_Type
(Entity
(Alt
))
8888 Resolve
(Alt
, Ltyp
);
8894 -- Check for duplicates for discrete case
8896 if Is_Discrete_Type
(Ltyp
) then
8903 Alts
: array (0 .. List_Length
(Alternatives
(N
))) of Ent
;
8907 -- Loop checking duplicates. This is quadratic, but giant sets
8908 -- are unlikely in this context so it's a reasonable choice.
8911 Alt
:= First
(Alternatives
(N
));
8912 while Present
(Alt
) loop
8913 if Is_OK_Static_Expression
(Alt
)
8914 and then (Nkind_In
(Alt
, N_Integer_Literal
,
8915 N_Character_Literal
)
8916 or else Nkind
(Alt
) in N_Has_Entity
)
8919 Alts
(Nalts
) := (Alt
, Expr_Value
(Alt
));
8921 for J
in 1 .. Nalts
- 1 loop
8922 if Alts
(J
).Val
= Alts
(Nalts
).Val
then
8923 Error_Msg_Sloc
:= Sloc
(Alts
(J
).Alt
);
8924 Error_Msg_N
("duplicate of value given#??", Alt
);
8933 end Resolve_Set_Membership
;
8935 -- Start of processing for Resolve_Membership_Op
8938 if L
= Error
or else R
= Error
then
8942 if Present
(Alternatives
(N
)) then
8943 Resolve_Set_Membership
;
8946 elsif not Is_Overloaded
(R
)
8948 (Etype
(R
) = Universal_Integer
8950 Etype
(R
) = Universal_Real
)
8951 and then Is_Overloaded
(L
)
8955 -- Ada 2005 (AI-251): Support the following case:
8957 -- type I is interface;
8958 -- type T is tagged ...
8960 -- function Test (O : I'Class) is
8962 -- return O in T'Class.
8965 -- In this case we have nothing else to do. The membership test will be
8966 -- done at run time.
8968 elsif Ada_Version
>= Ada_2005
8969 and then Is_Class_Wide_Type
(Etype
(L
))
8970 and then Is_Interface
(Etype
(L
))
8971 and then Is_Class_Wide_Type
(Etype
(R
))
8972 and then not Is_Interface
(Etype
(R
))
8976 T
:= Intersect_Types
(L
, R
);
8979 -- If mixed-mode operations are present and operands are all literal,
8980 -- the only interpretation involves Duration, which is probably not
8981 -- the intention of the programmer.
8983 if T
= Any_Fixed
then
8984 T
:= Unique_Fixed_Point_Type
(N
);
8986 if T
= Any_Type
then
8992 Check_Unset_Reference
(L
);
8994 if Nkind
(R
) = N_Range
8995 and then not Is_Scalar_Type
(T
)
8997 Error_Msg_N
("scalar type required for range", R
);
9000 if Is_Entity_Name
(R
) then
9001 Freeze_Expression
(R
);
9004 Check_Unset_Reference
(R
);
9007 -- Here after resolving membership operation
9011 Eval_Membership_Op
(N
);
9012 end Resolve_Membership_Op
;
9018 procedure Resolve_Null
(N
: Node_Id
; Typ
: Entity_Id
) is
9019 Loc
: constant Source_Ptr
:= Sloc
(N
);
9022 -- Handle restriction against anonymous null access values This
9023 -- restriction can be turned off using -gnatdj.
9025 -- Ada 2005 (AI-231): Remove restriction
9027 if Ada_Version
< Ada_2005
9028 and then not Debug_Flag_J
9029 and then Ekind
(Typ
) = E_Anonymous_Access_Type
9030 and then Comes_From_Source
(N
)
9032 -- In the common case of a call which uses an explicitly null value
9033 -- for an access parameter, give specialized error message.
9035 if Nkind
(Parent
(N
)) in N_Subprogram_Call
then
9037 ("null is not allowed as argument for an access parameter", N
);
9039 -- Standard message for all other cases (are there any?)
9043 ("null cannot be of an anonymous access type", N
);
9047 -- Ada 2005 (AI-231): Generate the null-excluding check in case of
9048 -- assignment to a null-excluding object
9050 if Ada_Version
>= Ada_2005
9051 and then Can_Never_Be_Null
(Typ
)
9052 and then Nkind
(Parent
(N
)) = N_Assignment_Statement
9054 if not Inside_Init_Proc
then
9056 (Compile_Time_Constraint_Error
(N
,
9057 "(Ada 2005) null not allowed in null-excluding objects??"),
9058 Make_Raise_Constraint_Error
(Loc
,
9059 Reason
=> CE_Access_Check_Failed
));
9062 Make_Raise_Constraint_Error
(Loc
,
9063 Reason
=> CE_Access_Check_Failed
));
9067 -- In a distributed context, null for a remote access to subprogram may
9068 -- need to be replaced with a special record aggregate. In this case,
9069 -- return after having done the transformation.
9071 if (Ekind
(Typ
) = E_Record_Type
9072 or else Is_Remote_Access_To_Subprogram_Type
(Typ
))
9073 and then Remote_AST_Null_Value
(N
, Typ
)
9078 -- The null literal takes its type from the context
9083 -----------------------
9084 -- Resolve_Op_Concat --
9085 -----------------------
9087 procedure Resolve_Op_Concat
(N
: Node_Id
; Typ
: Entity_Id
) is
9089 -- We wish to avoid deep recursion, because concatenations are often
9090 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
9091 -- operands nonrecursively until we find something that is not a simple
9092 -- concatenation (A in this case). We resolve that, and then walk back
9093 -- up the tree following Parent pointers, calling Resolve_Op_Concat_Rest
9094 -- to do the rest of the work at each level. The Parent pointers allow
9095 -- us to avoid recursion, and thus avoid running out of memory. See also
9096 -- Sem_Ch4.Analyze_Concatenation, where a similar approach is used.
9102 -- The following code is equivalent to:
9104 -- Resolve_Op_Concat_First (NN, Typ);
9105 -- Resolve_Op_Concat_Arg (N, ...);
9106 -- Resolve_Op_Concat_Rest (N, Typ);
9108 -- where the Resolve_Op_Concat_Arg call recurses back here if the left
9109 -- operand is a concatenation.
9111 -- Walk down left operands
9114 Resolve_Op_Concat_First
(NN
, Typ
);
9115 Op1
:= Left_Opnd
(NN
);
9116 exit when not (Nkind
(Op1
) = N_Op_Concat
9117 and then not Is_Array_Type
(Component_Type
(Typ
))
9118 and then Entity
(Op1
) = Entity
(NN
));
9122 -- Now (given the above example) NN is A&B and Op1 is A
9124 -- First resolve Op1 ...
9126 Resolve_Op_Concat_Arg
(NN
, Op1
, Typ
, Is_Component_Left_Opnd
(NN
));
9128 -- ... then walk NN back up until we reach N (where we started), calling
9129 -- Resolve_Op_Concat_Rest along the way.
9132 Resolve_Op_Concat_Rest
(NN
, Typ
);
9137 if Base_Type
(Etype
(N
)) /= Standard_String
then
9138 Check_SPARK_05_Restriction
9139 ("result of concatenation should have type String", N
);
9141 end Resolve_Op_Concat
;
9143 ---------------------------
9144 -- Resolve_Op_Concat_Arg --
9145 ---------------------------
9147 procedure Resolve_Op_Concat_Arg
9153 Btyp
: constant Entity_Id
:= Base_Type
(Typ
);
9154 Ctyp
: constant Entity_Id
:= Component_Type
(Typ
);
9159 or else (not Is_Overloaded
(Arg
)
9160 and then Etype
(Arg
) /= Any_Composite
9161 and then Covers
(Ctyp
, Etype
(Arg
)))
9163 Resolve
(Arg
, Ctyp
);
9165 Resolve
(Arg
, Btyp
);
9168 -- If both Array & Array and Array & Component are visible, there is a
9169 -- potential ambiguity that must be reported.
9171 elsif Has_Compatible_Type
(Arg
, Ctyp
) then
9172 if Nkind
(Arg
) = N_Aggregate
9173 and then Is_Composite_Type
(Ctyp
)
9175 if Is_Private_Type
(Ctyp
) then
9176 Resolve
(Arg
, Btyp
);
9178 -- If the operation is user-defined and not overloaded use its
9179 -- profile. The operation may be a renaming, in which case it has
9180 -- been rewritten, and we want the original profile.
9182 elsif not Is_Overloaded
(N
)
9183 and then Comes_From_Source
(Entity
(Original_Node
(N
)))
9184 and then Ekind
(Entity
(Original_Node
(N
))) = E_Function
9188 (Next_Formal
(First_Formal
(Entity
(Original_Node
(N
))))));
9191 -- Otherwise an aggregate may match both the array type and the
9195 Error_Msg_N
("ambiguous aggregate must be qualified", Arg
);
9196 Set_Etype
(Arg
, Any_Type
);
9200 if Is_Overloaded
(Arg
)
9201 and then Has_Compatible_Type
(Arg
, Typ
)
9202 and then Etype
(Arg
) /= Any_Type
9210 Get_First_Interp
(Arg
, I
, It
);
9212 Get_Next_Interp
(I
, It
);
9214 -- Special-case the error message when the overloading is
9215 -- caused by a function that yields an array and can be
9216 -- called without parameters.
9218 if It
.Nam
= Func
then
9219 Error_Msg_Sloc
:= Sloc
(Func
);
9220 Error_Msg_N
("ambiguous call to function#", Arg
);
9222 ("\\interpretation as call yields&", Arg
, Typ
);
9224 ("\\interpretation as indexing of call yields&",
9225 Arg
, Component_Type
(Typ
));
9228 Error_Msg_N
("ambiguous operand for concatenation!", Arg
);
9230 Get_First_Interp
(Arg
, I
, It
);
9231 while Present
(It
.Nam
) loop
9232 Error_Msg_Sloc
:= Sloc
(It
.Nam
);
9234 if Base_Type
(It
.Typ
) = Btyp
9236 Base_Type
(It
.Typ
) = Base_Type
(Ctyp
)
9238 Error_Msg_N
-- CODEFIX
9239 ("\\possible interpretation#", Arg
);
9242 Get_Next_Interp
(I
, It
);
9248 Resolve
(Arg
, Component_Type
(Typ
));
9250 if Nkind
(Arg
) = N_String_Literal
then
9251 Set_Etype
(Arg
, Component_Type
(Typ
));
9254 if Arg
= Left_Opnd
(N
) then
9255 Set_Is_Component_Left_Opnd
(N
);
9257 Set_Is_Component_Right_Opnd
(N
);
9262 Resolve
(Arg
, Btyp
);
9265 -- Concatenation is restricted in SPARK: each operand must be either a
9266 -- string literal, the name of a string constant, a static character or
9267 -- string expression, or another concatenation. Arg cannot be a
9268 -- concatenation here as callers of Resolve_Op_Concat_Arg call it
9269 -- separately on each final operand, past concatenation operations.
9271 if Is_Character_Type
(Etype
(Arg
)) then
9272 if not Is_OK_Static_Expression
(Arg
) then
9273 Check_SPARK_05_Restriction
9274 ("character operand for concatenation should be static", Arg
);
9277 elsif Is_String_Type
(Etype
(Arg
)) then
9278 if not (Nkind_In
(Arg
, N_Identifier
, N_Expanded_Name
)
9279 and then Is_Constant_Object
(Entity
(Arg
)))
9280 and then not Is_OK_Static_Expression
(Arg
)
9282 Check_SPARK_05_Restriction
9283 ("string operand for concatenation should be static", Arg
);
9286 -- Do not issue error on an operand that is neither a character nor a
9287 -- string, as the error is issued in Resolve_Op_Concat.
9293 Check_Unset_Reference
(Arg
);
9294 end Resolve_Op_Concat_Arg
;
9296 -----------------------------
9297 -- Resolve_Op_Concat_First --
9298 -----------------------------
9300 procedure Resolve_Op_Concat_First
(N
: Node_Id
; Typ
: Entity_Id
) is
9301 Btyp
: constant Entity_Id
:= Base_Type
(Typ
);
9302 Op1
: constant Node_Id
:= Left_Opnd
(N
);
9303 Op2
: constant Node_Id
:= Right_Opnd
(N
);
9306 -- The parser folds an enormous sequence of concatenations of string
9307 -- literals into "" & "...", where the Is_Folded_In_Parser flag is set
9308 -- in the right operand. If the expression resolves to a predefined "&"
9309 -- operator, all is well. Otherwise, the parser's folding is wrong, so
9310 -- we give an error. See P_Simple_Expression in Par.Ch4.
9312 if Nkind
(Op2
) = N_String_Literal
9313 and then Is_Folded_In_Parser
(Op2
)
9314 and then Ekind
(Entity
(N
)) = E_Function
9316 pragma Assert
(Nkind
(Op1
) = N_String_Literal
-- should be ""
9317 and then String_Length
(Strval
(Op1
)) = 0);
9318 Error_Msg_N
("too many user-defined concatenations", N
);
9322 Set_Etype
(N
, Btyp
);
9324 if Is_Limited_Composite
(Btyp
) then
9325 Error_Msg_N
("concatenation not available for limited array", N
);
9326 Explain_Limited_Type
(Btyp
, N
);
9328 end Resolve_Op_Concat_First
;
9330 ----------------------------
9331 -- Resolve_Op_Concat_Rest --
9332 ----------------------------
9334 procedure Resolve_Op_Concat_Rest
(N
: Node_Id
; Typ
: Entity_Id
) is
9335 Op1
: constant Node_Id
:= Left_Opnd
(N
);
9336 Op2
: constant Node_Id
:= Right_Opnd
(N
);
9339 Resolve_Op_Concat_Arg
(N
, Op2
, Typ
, Is_Component_Right_Opnd
(N
));
9341 Generate_Operator_Reference
(N
, Typ
);
9343 if Is_String_Type
(Typ
) then
9344 Eval_Concatenation
(N
);
9347 -- If this is not a static concatenation, but the result is a string
9348 -- type (and not an array of strings) ensure that static string operands
9349 -- have their subtypes properly constructed.
9351 if Nkind
(N
) /= N_String_Literal
9352 and then Is_Character_Type
(Component_Type
(Typ
))
9354 Set_String_Literal_Subtype
(Op1
, Typ
);
9355 Set_String_Literal_Subtype
(Op2
, Typ
);
9357 end Resolve_Op_Concat_Rest
;
9359 ----------------------
9360 -- Resolve_Op_Expon --
9361 ----------------------
9363 procedure Resolve_Op_Expon
(N
: Node_Id
; Typ
: Entity_Id
) is
9364 B_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
9367 -- Catch attempts to do fixed-point exponentiation with universal
9368 -- operands, which is a case where the illegality is not caught during
9369 -- normal operator analysis. This is not done in preanalysis mode
9370 -- since the tree is not fully decorated during preanalysis.
9372 if Full_Analysis
then
9373 if Is_Fixed_Point_Type
(Typ
) and then Comes_From_Source
(N
) then
9374 Error_Msg_N
("exponentiation not available for fixed point", N
);
9377 elsif Nkind
(Parent
(N
)) in N_Op
9378 and then Present
(Etype
(Parent
(N
)))
9379 and then Is_Fixed_Point_Type
(Etype
(Parent
(N
)))
9380 and then Etype
(N
) = Universal_Real
9381 and then Comes_From_Source
(N
)
9383 Error_Msg_N
("exponentiation not available for fixed point", N
);
9388 if Comes_From_Source
(N
)
9389 and then Ekind
(Entity
(N
)) = E_Function
9390 and then Is_Imported
(Entity
(N
))
9391 and then Is_Intrinsic_Subprogram
(Entity
(N
))
9393 Resolve_Intrinsic_Operator
(N
, Typ
);
9397 if Etype
(Left_Opnd
(N
)) = Universal_Integer
9398 or else Etype
(Left_Opnd
(N
)) = Universal_Real
9400 Check_For_Visible_Operator
(N
, B_Typ
);
9403 -- We do the resolution using the base type, because intermediate values
9404 -- in expressions are always of the base type, not a subtype of it.
9406 Resolve
(Left_Opnd
(N
), B_Typ
);
9407 Resolve
(Right_Opnd
(N
), Standard_Integer
);
9409 -- For integer types, right argument must be in Natural range
9411 if Is_Integer_Type
(Typ
) then
9412 Apply_Scalar_Range_Check
(Right_Opnd
(N
), Standard_Natural
);
9415 Check_Unset_Reference
(Left_Opnd
(N
));
9416 Check_Unset_Reference
(Right_Opnd
(N
));
9418 Set_Etype
(N
, B_Typ
);
9419 Generate_Operator_Reference
(N
, B_Typ
);
9421 Analyze_Dimension
(N
);
9423 if Ada_Version
>= Ada_2012
and then Has_Dimension_System
(B_Typ
) then
9424 -- Evaluate the exponentiation operator for dimensioned type
9426 Eval_Op_Expon_For_Dimensioned_Type
(N
, B_Typ
);
9431 -- Set overflow checking bit. Much cleverer code needed here eventually
9432 -- and perhaps the Resolve routines should be separated for the various
9433 -- arithmetic operations, since they will need different processing. ???
9435 if Nkind
(N
) in N_Op
then
9436 if not Overflow_Checks_Suppressed
(Etype
(N
)) then
9437 Enable_Overflow_Check
(N
);
9440 end Resolve_Op_Expon
;
9442 --------------------
9443 -- Resolve_Op_Not --
9444 --------------------
9446 procedure Resolve_Op_Not
(N
: Node_Id
; Typ
: Entity_Id
) is
9449 function Parent_Is_Boolean
return Boolean;
9450 -- This function determines if the parent node is a boolean operator or
9451 -- operation (comparison op, membership test, or short circuit form) and
9452 -- the not in question is the left operand of this operation. Note that
9453 -- if the not is in parens, then false is returned.
9455 -----------------------
9456 -- Parent_Is_Boolean --
9457 -----------------------
9459 function Parent_Is_Boolean
return Boolean is
9461 if Paren_Count
(N
) /= 0 then
9465 case Nkind
(Parent
(N
)) is
9480 return Left_Opnd
(Parent
(N
)) = N
;
9486 end Parent_Is_Boolean
;
9488 -- Start of processing for Resolve_Op_Not
9491 -- Predefined operations on scalar types yield the base type. On the
9492 -- other hand, logical operations on arrays yield the type of the
9493 -- arguments (and the context).
9495 if Is_Array_Type
(Typ
) then
9498 B_Typ
:= Base_Type
(Typ
);
9501 -- Straightforward case of incorrect arguments
9503 if not Valid_Boolean_Arg
(Typ
) then
9504 Error_Msg_N
("invalid operand type for operator&", N
);
9505 Set_Etype
(N
, Any_Type
);
9508 -- Special case of probable missing parens
9510 elsif Typ
= Universal_Integer
or else Typ
= Any_Modular
then
9511 if Parent_Is_Boolean
then
9513 ("operand of not must be enclosed in parentheses",
9517 ("no modular type available in this context", N
);
9520 Set_Etype
(N
, Any_Type
);
9523 -- OK resolution of NOT
9526 -- Warn if non-boolean types involved. This is a case like not a < b
9527 -- where a and b are modular, where we will get (not a) < b and most
9528 -- likely not (a < b) was intended.
9530 if Warn_On_Questionable_Missing_Parens
9531 and then not Is_Boolean_Type
(Typ
)
9532 and then Parent_Is_Boolean
9534 Error_Msg_N
("?q?not expression should be parenthesized here!", N
);
9537 -- Warn on double negation if checking redundant constructs
9539 if Warn_On_Redundant_Constructs
9540 and then Comes_From_Source
(N
)
9541 and then Comes_From_Source
(Right_Opnd
(N
))
9542 and then Root_Type
(Typ
) = Standard_Boolean
9543 and then Nkind
(Right_Opnd
(N
)) = N_Op_Not
9545 Error_Msg_N
("redundant double negation?r?", N
);
9548 -- Complete resolution and evaluation of NOT
9550 Resolve
(Right_Opnd
(N
), B_Typ
);
9551 Check_Unset_Reference
(Right_Opnd
(N
));
9552 Set_Etype
(N
, B_Typ
);
9553 Generate_Operator_Reference
(N
, B_Typ
);
9558 -----------------------------
9559 -- Resolve_Operator_Symbol --
9560 -----------------------------
9562 -- Nothing to be done, all resolved already
9564 procedure Resolve_Operator_Symbol
(N
: Node_Id
; Typ
: Entity_Id
) is
9565 pragma Warnings
(Off
, N
);
9566 pragma Warnings
(Off
, Typ
);
9570 end Resolve_Operator_Symbol
;
9572 ----------------------------------
9573 -- Resolve_Qualified_Expression --
9574 ----------------------------------
9576 procedure Resolve_Qualified_Expression
(N
: Node_Id
; Typ
: Entity_Id
) is
9577 pragma Warnings
(Off
, Typ
);
9579 Target_Typ
: constant Entity_Id
:= Entity
(Subtype_Mark
(N
));
9580 Expr
: constant Node_Id
:= Expression
(N
);
9583 Resolve
(Expr
, Target_Typ
);
9585 -- Protect call to Matching_Static_Array_Bounds to avoid costly
9586 -- operation if not needed.
9588 if Restriction_Check_Required
(SPARK_05
)
9589 and then Is_Array_Type
(Target_Typ
)
9590 and then Is_Array_Type
(Etype
(Expr
))
9591 and then Etype
(Expr
) /= Any_Composite
-- or else Expr in error
9592 and then not Matching_Static_Array_Bounds
(Target_Typ
, Etype
(Expr
))
9594 Check_SPARK_05_Restriction
9595 ("array types should have matching static bounds", N
);
9598 -- A qualified expression requires an exact match of the type, class-
9599 -- wide matching is not allowed. However, if the qualifying type is
9600 -- specific and the expression has a class-wide type, it may still be
9601 -- okay, since it can be the result of the expansion of a call to a
9602 -- dispatching function, so we also have to check class-wideness of the
9603 -- type of the expression's original node.
9605 if (Is_Class_Wide_Type
(Target_Typ
)
9607 (Is_Class_Wide_Type
(Etype
(Expr
))
9608 and then Is_Class_Wide_Type
(Etype
(Original_Node
(Expr
)))))
9609 and then Base_Type
(Etype
(Expr
)) /= Base_Type
(Target_Typ
)
9611 Wrong_Type
(Expr
, Target_Typ
);
9614 -- If the target type is unconstrained, then we reset the type of the
9615 -- result from the type of the expression. For other cases, the actual
9616 -- subtype of the expression is the target type.
9618 if Is_Composite_Type
(Target_Typ
)
9619 and then not Is_Constrained
(Target_Typ
)
9621 Set_Etype
(N
, Etype
(Expr
));
9624 Analyze_Dimension
(N
);
9625 Eval_Qualified_Expression
(N
);
9627 -- If we still have a qualified expression after the static evaluation,
9628 -- then apply a scalar range check if needed. The reason that we do this
9629 -- after the Eval call is that otherwise, the application of the range
9630 -- check may convert an illegal static expression and result in warning
9631 -- rather than giving an error (e.g Integer'(Integer'Last + 1)).
9633 if Nkind
(N
) = N_Qualified_Expression
and then Is_Scalar_Type
(Typ
) then
9634 Apply_Scalar_Range_Check
(Expr
, Typ
);
9637 -- Finally, check whether a predicate applies to the target type. This
9638 -- comes from AI12-0100. As for type conversions, check the enclosing
9639 -- context to prevent an infinite expansion.
9641 if Has_Predicates
(Target_Typ
) then
9642 if Nkind
(Parent
(N
)) = N_Function_Call
9643 and then Present
(Name
(Parent
(N
)))
9644 and then (Is_Predicate_Function
(Entity
(Name
(Parent
(N
))))
9646 Is_Predicate_Function_M
(Entity
(Name
(Parent
(N
)))))
9650 -- In the case of a qualified expression in an allocator, the check
9651 -- is applied when expanding the allocator, so avoid redundant check.
9653 elsif Nkind
(N
) = N_Qualified_Expression
9654 and then Nkind
(Parent
(N
)) /= N_Allocator
9656 Apply_Predicate_Check
(N
, Target_Typ
);
9659 end Resolve_Qualified_Expression
;
9661 ------------------------------
9662 -- Resolve_Raise_Expression --
9663 ------------------------------
9665 procedure Resolve_Raise_Expression
(N
: Node_Id
; Typ
: Entity_Id
) is
9667 if Typ
= Raise_Type
then
9668 Error_Msg_N
("cannot find unique type for raise expression", N
);
9669 Set_Etype
(N
, Any_Type
);
9673 end Resolve_Raise_Expression
;
9679 procedure Resolve_Range
(N
: Node_Id
; Typ
: Entity_Id
) is
9680 L
: constant Node_Id
:= Low_Bound
(N
);
9681 H
: constant Node_Id
:= High_Bound
(N
);
9683 function First_Last_Ref
return Boolean;
9684 -- Returns True if N is of the form X'First .. X'Last where X is the
9685 -- same entity for both attributes.
9687 --------------------
9688 -- First_Last_Ref --
9689 --------------------
9691 function First_Last_Ref
return Boolean is
9692 Lorig
: constant Node_Id
:= Original_Node
(L
);
9693 Horig
: constant Node_Id
:= Original_Node
(H
);
9696 if Nkind
(Lorig
) = N_Attribute_Reference
9697 and then Nkind
(Horig
) = N_Attribute_Reference
9698 and then Attribute_Name
(Lorig
) = Name_First
9699 and then Attribute_Name
(Horig
) = Name_Last
9702 PL
: constant Node_Id
:= Prefix
(Lorig
);
9703 PH
: constant Node_Id
:= Prefix
(Horig
);
9705 if Is_Entity_Name
(PL
)
9706 and then Is_Entity_Name
(PH
)
9707 and then Entity
(PL
) = Entity
(PH
)
9717 -- Start of processing for Resolve_Range
9722 -- The lower bound should be in Typ. The higher bound can be in Typ's
9723 -- base type if the range is null. It may still be invalid if it is
9724 -- higher than the lower bound. This is checked later in the context in
9725 -- which the range appears.
9728 Resolve
(H
, Base_Type
(Typ
));
9730 -- Check for inappropriate range on unordered enumeration type
9732 if Bad_Unordered_Enumeration_Reference
(N
, Typ
)
9734 -- Exclude X'First .. X'Last if X is the same entity for both
9736 and then not First_Last_Ref
9738 Error_Msg_Sloc
:= Sloc
(Typ
);
9740 ("subrange of unordered enumeration type& declared#?U?", N
, Typ
);
9743 Check_Unset_Reference
(L
);
9744 Check_Unset_Reference
(H
);
9746 -- We have to check the bounds for being within the base range as
9747 -- required for a non-static context. Normally this is automatic and
9748 -- done as part of evaluating expressions, but the N_Range node is an
9749 -- exception, since in GNAT we consider this node to be a subexpression,
9750 -- even though in Ada it is not. The circuit in Sem_Eval could check for
9751 -- this, but that would put the test on the main evaluation path for
9754 Check_Non_Static_Context
(L
);
9755 Check_Non_Static_Context
(H
);
9757 -- Check for an ambiguous range over character literals. This will
9758 -- happen with a membership test involving only literals.
9760 if Typ
= Any_Character
then
9761 Ambiguous_Character
(L
);
9762 Set_Etype
(N
, Any_Type
);
9766 -- If bounds are static, constant-fold them, so size computations are
9767 -- identical between front-end and back-end. Do not perform this
9768 -- transformation while analyzing generic units, as type information
9769 -- would be lost when reanalyzing the constant node in the instance.
9771 if Is_Discrete_Type
(Typ
) and then Expander_Active
then
9772 if Is_OK_Static_Expression
(L
) then
9773 Fold_Uint
(L
, Expr_Value
(L
), Is_OK_Static_Expression
(L
));
9776 if Is_OK_Static_Expression
(H
) then
9777 Fold_Uint
(H
, Expr_Value
(H
), Is_OK_Static_Expression
(H
));
9782 --------------------------
9783 -- Resolve_Real_Literal --
9784 --------------------------
9786 procedure Resolve_Real_Literal
(N
: Node_Id
; Typ
: Entity_Id
) is
9787 Actual_Typ
: constant Entity_Id
:= Etype
(N
);
9790 -- Special processing for fixed-point literals to make sure that the
9791 -- value is an exact multiple of small where this is required. We skip
9792 -- this for the universal real case, and also for generic types.
9794 if Is_Fixed_Point_Type
(Typ
)
9795 and then Typ
/= Universal_Fixed
9796 and then Typ
/= Any_Fixed
9797 and then not Is_Generic_Type
(Typ
)
9800 Val
: constant Ureal
:= Realval
(N
);
9801 Cintr
: constant Ureal
:= Val
/ Small_Value
(Typ
);
9802 Cint
: constant Uint
:= UR_Trunc
(Cintr
);
9803 Den
: constant Uint
:= Norm_Den
(Cintr
);
9807 -- Case of literal is not an exact multiple of the Small
9811 -- For a source program literal for a decimal fixed-point type,
9812 -- this is statically illegal (RM 4.9(36)).
9814 if Is_Decimal_Fixed_Point_Type
(Typ
)
9815 and then Actual_Typ
= Universal_Real
9816 and then Comes_From_Source
(N
)
9818 Error_Msg_N
("value has extraneous low order digits", N
);
9821 -- Generate a warning if literal from source
9823 if Is_OK_Static_Expression
(N
)
9824 and then Warn_On_Bad_Fixed_Value
9827 ("?b?static fixed-point value is not a multiple of Small!",
9831 -- Replace literal by a value that is the exact representation
9832 -- of a value of the type, i.e. a multiple of the small value,
9833 -- by truncation, since Machine_Rounds is false for all GNAT
9834 -- fixed-point types (RM 4.9(38)).
9836 Stat
:= Is_OK_Static_Expression
(N
);
9838 Make_Real_Literal
(Sloc
(N
),
9839 Realval
=> Small_Value
(Typ
) * Cint
));
9841 Set_Is_Static_Expression
(N
, Stat
);
9844 -- In all cases, set the corresponding integer field
9846 Set_Corresponding_Integer_Value
(N
, Cint
);
9850 -- Now replace the actual type by the expected type as usual
9853 Eval_Real_Literal
(N
);
9854 end Resolve_Real_Literal
;
9856 -----------------------
9857 -- Resolve_Reference --
9858 -----------------------
9860 procedure Resolve_Reference
(N
: Node_Id
; Typ
: Entity_Id
) is
9861 P
: constant Node_Id
:= Prefix
(N
);
9864 -- Replace general access with specific type
9866 if Ekind
(Etype
(N
)) = E_Allocator_Type
then
9867 Set_Etype
(N
, Base_Type
(Typ
));
9870 Resolve
(P
, Designated_Type
(Etype
(N
)));
9872 -- If we are taking the reference of a volatile entity, then treat it as
9873 -- a potential modification of this entity. This is too conservative,
9874 -- but necessary because remove side effects can cause transformations
9875 -- of normal assignments into reference sequences that otherwise fail to
9876 -- notice the modification.
9878 if Is_Entity_Name
(P
) and then Treat_As_Volatile
(Entity
(P
)) then
9879 Note_Possible_Modification
(P
, Sure
=> False);
9881 end Resolve_Reference
;
9883 --------------------------------
9884 -- Resolve_Selected_Component --
9885 --------------------------------
9887 procedure Resolve_Selected_Component
(N
: Node_Id
; Typ
: Entity_Id
) is
9889 Comp1
: Entity_Id
:= Empty
; -- prevent junk warning
9890 P
: constant Node_Id
:= Prefix
(N
);
9891 S
: constant Node_Id
:= Selector_Name
(N
);
9892 T
: Entity_Id
:= Etype
(P
);
9894 I1
: Interp_Index
:= 0; -- prevent junk warning
9899 function Init_Component
return Boolean;
9900 -- Check whether this is the initialization of a component within an
9901 -- init proc (by assignment or call to another init proc). If true,
9902 -- there is no need for a discriminant check.
9904 --------------------
9905 -- Init_Component --
9906 --------------------
9908 function Init_Component
return Boolean is
9910 return Inside_Init_Proc
9911 and then Nkind
(Prefix
(N
)) = N_Identifier
9912 and then Chars
(Prefix
(N
)) = Name_uInit
9913 and then Nkind
(Parent
(Parent
(N
))) = N_Case_Statement_Alternative
;
9916 -- Start of processing for Resolve_Selected_Component
9919 if Is_Overloaded
(P
) then
9921 -- Use the context type to select the prefix that has a selector
9922 -- of the correct name and type.
9925 Get_First_Interp
(P
, I
, It
);
9927 Search
: while Present
(It
.Typ
) loop
9928 if Is_Access_Type
(It
.Typ
) then
9929 T
:= Designated_Type
(It
.Typ
);
9934 -- Locate selected component. For a private prefix the selector
9935 -- can denote a discriminant.
9937 if Is_Record_Type
(T
) or else Is_Private_Type
(T
) then
9939 -- The visible components of a class-wide type are those of
9942 if Is_Class_Wide_Type
(T
) then
9946 Comp
:= First_Entity
(T
);
9947 while Present
(Comp
) loop
9948 if Chars
(Comp
) = Chars
(S
)
9949 and then Covers
(Typ
, Etype
(Comp
))
9958 It
:= Disambiguate
(P
, I1
, I
, Any_Type
);
9960 if It
= No_Interp
then
9962 ("ambiguous prefix for selected component", N
);
9969 -- There may be an implicit dereference. Retrieve
9970 -- designated record type.
9972 if Is_Access_Type
(It1
.Typ
) then
9973 T
:= Designated_Type
(It1
.Typ
);
9978 if Scope
(Comp1
) /= T
then
9980 -- Resolution chooses the new interpretation.
9981 -- Find the component with the right name.
9983 Comp1
:= First_Entity
(T
);
9984 while Present
(Comp1
)
9985 and then Chars
(Comp1
) /= Chars
(S
)
9987 Comp1
:= Next_Entity
(Comp1
);
9996 Comp
:= Next_Entity
(Comp
);
10000 Get_Next_Interp
(I
, It
);
10003 -- There must be a legal interpretation at this point
10005 pragma Assert
(Found
);
10006 Resolve
(P
, It1
.Typ
);
10007 Set_Etype
(N
, Typ
);
10008 Set_Entity_With_Checks
(S
, Comp1
);
10011 -- Resolve prefix with its type
10016 -- Generate cross-reference. We needed to wait until full overloading
10017 -- resolution was complete to do this, since otherwise we can't tell if
10018 -- we are an lvalue or not.
10020 if May_Be_Lvalue
(N
) then
10021 Generate_Reference
(Entity
(S
), S
, 'm');
10023 Generate_Reference
(Entity
(S
), S
, 'r');
10026 -- If prefix is an access type, the node will be transformed into an
10027 -- explicit dereference during expansion. The type of the node is the
10028 -- designated type of that of the prefix.
10030 if Is_Access_Type
(Etype
(P
)) then
10031 T
:= Designated_Type
(Etype
(P
));
10032 Check_Fully_Declared_Prefix
(T
, P
);
10037 -- Set flag for expander if discriminant check required on a component
10038 -- appearing within a variant.
10040 if Has_Discriminants
(T
)
10041 and then Ekind
(Entity
(S
)) = E_Component
10042 and then Present
(Original_Record_Component
(Entity
(S
)))
10043 and then Ekind
(Original_Record_Component
(Entity
(S
))) = E_Component
10045 Is_Declared_Within_Variant
(Original_Record_Component
(Entity
(S
)))
10046 and then not Discriminant_Checks_Suppressed
(T
)
10047 and then not Init_Component
10049 Set_Do_Discriminant_Check
(N
);
10052 if Ekind
(Entity
(S
)) = E_Void
then
10053 Error_Msg_N
("premature use of component", S
);
10056 -- If the prefix is a record conversion, this may be a renamed
10057 -- discriminant whose bounds differ from those of the original
10058 -- one, so we must ensure that a range check is performed.
10060 if Nkind
(P
) = N_Type_Conversion
10061 and then Ekind
(Entity
(S
)) = E_Discriminant
10062 and then Is_Discrete_Type
(Typ
)
10064 Set_Etype
(N
, Base_Type
(Typ
));
10067 -- Note: No Eval processing is required, because the prefix is of a
10068 -- record type, or protected type, and neither can possibly be static.
10070 -- If the record type is atomic, and the component is non-atomic, then
10071 -- this is worth a warning, since we have a situation where the access
10072 -- to the component may cause extra read/writes of the atomic array
10073 -- object, or partial word accesses, both of which may be unexpected.
10075 if Nkind
(N
) = N_Selected_Component
10076 and then Is_Atomic_Ref_With_Address
(N
)
10077 and then not Is_Atomic
(Entity
(S
))
10078 and then not Is_Atomic
(Etype
(Entity
(S
)))
10081 ("??access to non-atomic component of atomic record",
10084 ("\??may cause unexpected accesses to atomic object",
10088 Analyze_Dimension
(N
);
10089 end Resolve_Selected_Component
;
10091 -------------------
10092 -- Resolve_Shift --
10093 -------------------
10095 procedure Resolve_Shift
(N
: Node_Id
; Typ
: Entity_Id
) is
10096 B_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
10097 L
: constant Node_Id
:= Left_Opnd
(N
);
10098 R
: constant Node_Id
:= Right_Opnd
(N
);
10101 -- We do the resolution using the base type, because intermediate values
10102 -- in expressions always are of the base type, not a subtype of it.
10104 Resolve
(L
, B_Typ
);
10105 Resolve
(R
, Standard_Natural
);
10107 Check_Unset_Reference
(L
);
10108 Check_Unset_Reference
(R
);
10110 Set_Etype
(N
, B_Typ
);
10111 Generate_Operator_Reference
(N
, B_Typ
);
10115 ---------------------------
10116 -- Resolve_Short_Circuit --
10117 ---------------------------
10119 procedure Resolve_Short_Circuit
(N
: Node_Id
; Typ
: Entity_Id
) is
10120 B_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
10121 L
: constant Node_Id
:= Left_Opnd
(N
);
10122 R
: constant Node_Id
:= Right_Opnd
(N
);
10125 -- Ensure all actions associated with the left operand (e.g.
10126 -- finalization of transient objects) are fully evaluated locally within
10127 -- an expression with actions. This is particularly helpful for coverage
10128 -- analysis. However this should not happen in generics or if option
10129 -- Minimize_Expression_With_Actions is set.
10131 if Expander_Active
and not Minimize_Expression_With_Actions
then
10133 Reloc_L
: constant Node_Id
:= Relocate_Node
(L
);
10135 Save_Interps
(Old_N
=> L
, New_N
=> Reloc_L
);
10138 Make_Expression_With_Actions
(Sloc
(L
),
10139 Actions
=> New_List
,
10140 Expression
=> Reloc_L
));
10142 -- Set Comes_From_Source on L to preserve warnings for unset
10145 Set_Comes_From_Source
(L
, Comes_From_Source
(Reloc_L
));
10149 Resolve
(L
, B_Typ
);
10150 Resolve
(R
, B_Typ
);
10152 -- Check for issuing warning for always False assert/check, this happens
10153 -- when assertions are turned off, in which case the pragma Assert/Check
10154 -- was transformed into:
10156 -- if False and then <condition> then ...
10158 -- and we detect this pattern
10160 if Warn_On_Assertion_Failure
10161 and then Is_Entity_Name
(R
)
10162 and then Entity
(R
) = Standard_False
10163 and then Nkind
(Parent
(N
)) = N_If_Statement
10164 and then Nkind
(N
) = N_And_Then
10165 and then Is_Entity_Name
(L
)
10166 and then Entity
(L
) = Standard_False
10169 Orig
: constant Node_Id
:= Original_Node
(Parent
(N
));
10172 -- Special handling of Asssert pragma
10174 if Nkind
(Orig
) = N_Pragma
10175 and then Pragma_Name
(Orig
) = Name_Assert
10178 Expr
: constant Node_Id
:=
10181 (First
(Pragma_Argument_Associations
(Orig
))));
10184 -- Don't warn if original condition is explicit False,
10185 -- since obviously the failure is expected in this case.
10187 if Is_Entity_Name
(Expr
)
10188 and then Entity
(Expr
) = Standard_False
10192 -- Issue warning. We do not want the deletion of the
10193 -- IF/AND-THEN to take this message with it. We achieve this
10194 -- by making sure that the expanded code points to the Sloc
10195 -- of the expression, not the original pragma.
10198 -- Note: Use Error_Msg_F here rather than Error_Msg_N.
10199 -- The source location of the expression is not usually
10200 -- the best choice here. For example, it gets located on
10201 -- the last AND keyword in a chain of boolean expressiond
10202 -- AND'ed together. It is best to put the message on the
10203 -- first character of the assertion, which is the effect
10204 -- of the First_Node call here.
10207 ("?A?assertion would fail at run time!",
10209 (First
(Pragma_Argument_Associations
(Orig
))));
10213 -- Similar processing for Check pragma
10215 elsif Nkind
(Orig
) = N_Pragma
10216 and then Pragma_Name
(Orig
) = Name_Check
10218 -- Don't want to warn if original condition is explicit False
10221 Expr
: constant Node_Id
:=
10224 (Next
(First
(Pragma_Argument_Associations
(Orig
)))));
10226 if Is_Entity_Name
(Expr
)
10227 and then Entity
(Expr
) = Standard_False
10234 -- Again use Error_Msg_F rather than Error_Msg_N, see
10235 -- comment above for an explanation of why we do this.
10238 ("?A?check would fail at run time!",
10240 (Last
(Pragma_Argument_Associations
(Orig
))));
10247 -- Continue with processing of short circuit
10249 Check_Unset_Reference
(L
);
10250 Check_Unset_Reference
(R
);
10252 Set_Etype
(N
, B_Typ
);
10253 Eval_Short_Circuit
(N
);
10254 end Resolve_Short_Circuit
;
10256 -------------------
10257 -- Resolve_Slice --
10258 -------------------
10260 procedure Resolve_Slice
(N
: Node_Id
; Typ
: Entity_Id
) is
10261 Drange
: constant Node_Id
:= Discrete_Range
(N
);
10262 Name
: constant Node_Id
:= Prefix
(N
);
10263 Array_Type
: Entity_Id
:= Empty
;
10264 Dexpr
: Node_Id
:= Empty
;
10265 Index_Type
: Entity_Id
;
10268 if Is_Overloaded
(Name
) then
10270 -- Use the context type to select the prefix that yields the correct
10275 I1
: Interp_Index
:= 0;
10277 P
: constant Node_Id
:= Prefix
(N
);
10278 Found
: Boolean := False;
10281 Get_First_Interp
(P
, I
, It
);
10282 while Present
(It
.Typ
) loop
10283 if (Is_Array_Type
(It
.Typ
)
10284 and then Covers
(Typ
, It
.Typ
))
10285 or else (Is_Access_Type
(It
.Typ
)
10286 and then Is_Array_Type
(Designated_Type
(It
.Typ
))
10287 and then Covers
(Typ
, Designated_Type
(It
.Typ
)))
10290 It
:= Disambiguate
(P
, I1
, I
, Any_Type
);
10292 if It
= No_Interp
then
10293 Error_Msg_N
("ambiguous prefix for slicing", N
);
10294 Set_Etype
(N
, Typ
);
10298 Array_Type
:= It
.Typ
;
10303 Array_Type
:= It
.Typ
;
10308 Get_Next_Interp
(I
, It
);
10313 Array_Type
:= Etype
(Name
);
10316 Resolve
(Name
, Array_Type
);
10318 if Is_Access_Type
(Array_Type
) then
10319 Apply_Access_Check
(N
);
10320 Array_Type
:= Designated_Type
(Array_Type
);
10322 -- If the prefix is an access to an unconstrained array, we must use
10323 -- the actual subtype of the object to perform the index checks. The
10324 -- object denoted by the prefix is implicit in the node, so we build
10325 -- an explicit representation for it in order to compute the actual
10328 if not Is_Constrained
(Array_Type
) then
10329 Remove_Side_Effects
(Prefix
(N
));
10332 Obj
: constant Node_Id
:=
10333 Make_Explicit_Dereference
(Sloc
(N
),
10334 Prefix
=> New_Copy_Tree
(Prefix
(N
)));
10336 Set_Etype
(Obj
, Array_Type
);
10337 Set_Parent
(Obj
, Parent
(N
));
10338 Array_Type
:= Get_Actual_Subtype
(Obj
);
10342 elsif Is_Entity_Name
(Name
)
10343 or else Nkind
(Name
) = N_Explicit_Dereference
10344 or else (Nkind
(Name
) = N_Function_Call
10345 and then not Is_Constrained
(Etype
(Name
)))
10347 Array_Type
:= Get_Actual_Subtype
(Name
);
10349 -- If the name is a selected component that depends on discriminants,
10350 -- build an actual subtype for it. This can happen only when the name
10351 -- itself is overloaded; otherwise the actual subtype is created when
10352 -- the selected component is analyzed.
10354 elsif Nkind
(Name
) = N_Selected_Component
10355 and then Full_Analysis
10356 and then Depends_On_Discriminant
(First_Index
(Array_Type
))
10359 Act_Decl
: constant Node_Id
:=
10360 Build_Actual_Subtype_Of_Component
(Array_Type
, Name
);
10362 Insert_Action
(N
, Act_Decl
);
10363 Array_Type
:= Defining_Identifier
(Act_Decl
);
10366 -- Maybe this should just be "else", instead of checking for the
10367 -- specific case of slice??? This is needed for the case where the
10368 -- prefix is an Image attribute, which gets expanded to a slice, and so
10369 -- has a constrained subtype which we want to use for the slice range
10370 -- check applied below (the range check won't get done if the
10371 -- unconstrained subtype of the 'Image is used).
10373 elsif Nkind
(Name
) = N_Slice
then
10374 Array_Type
:= Etype
(Name
);
10377 -- Obtain the type of the array index
10379 if Ekind
(Array_Type
) = E_String_Literal_Subtype
then
10380 Index_Type
:= Etype
(String_Literal_Low_Bound
(Array_Type
));
10382 Index_Type
:= Etype
(First_Index
(Array_Type
));
10385 -- If name was overloaded, set slice type correctly now
10387 Set_Etype
(N
, Array_Type
);
10389 -- Handle the generation of a range check that compares the array index
10390 -- against the discrete_range. The check is not applied to internally
10391 -- built nodes associated with the expansion of dispatch tables. Check
10392 -- that Ada.Tags has already been loaded to avoid extra dependencies on
10395 if Tagged_Type_Expansion
10396 and then RTU_Loaded
(Ada_Tags
)
10397 and then Nkind
(Prefix
(N
)) = N_Selected_Component
10398 and then Present
(Entity
(Selector_Name
(Prefix
(N
))))
10399 and then Entity
(Selector_Name
(Prefix
(N
))) =
10400 RTE_Record_Component
(RE_Prims_Ptr
)
10404 -- The discrete_range is specified by a subtype indication. Create a
10405 -- shallow copy and inherit the type, parent and source location from
10406 -- the discrete_range. This ensures that the range check is inserted
10407 -- relative to the slice and that the runtime exception points to the
10408 -- proper construct.
10410 elsif Is_Entity_Name
(Drange
) then
10411 Dexpr
:= New_Copy
(Scalar_Range
(Entity
(Drange
)));
10413 Set_Etype
(Dexpr
, Etype
(Drange
));
10414 Set_Parent
(Dexpr
, Parent
(Drange
));
10415 Set_Sloc
(Dexpr
, Sloc
(Drange
));
10417 -- The discrete_range is a regular range. Resolve the bounds and remove
10418 -- their side effects.
10421 Resolve
(Drange
, Base_Type
(Index_Type
));
10423 if Nkind
(Drange
) = N_Range
then
10424 Force_Evaluation
(Low_Bound
(Drange
));
10425 Force_Evaluation
(High_Bound
(Drange
));
10431 if Present
(Dexpr
) then
10432 Apply_Range_Check
(Dexpr
, Index_Type
);
10435 Set_Slice_Subtype
(N
);
10437 -- Check bad use of type with predicates
10443 if Nkind
(Drange
) = N_Subtype_Indication
10444 and then Has_Predicates
(Entity
(Subtype_Mark
(Drange
)))
10446 Subt
:= Entity
(Subtype_Mark
(Drange
));
10448 Subt
:= Etype
(Drange
);
10451 if Has_Predicates
(Subt
) then
10452 Bad_Predicated_Subtype_Use
10453 ("subtype& has predicate, not allowed in slice", Drange
, Subt
);
10457 -- Otherwise here is where we check suspicious indexes
10459 if Nkind
(Drange
) = N_Range
then
10460 Warn_On_Suspicious_Index
(Name
, Low_Bound
(Drange
));
10461 Warn_On_Suspicious_Index
(Name
, High_Bound
(Drange
));
10464 Analyze_Dimension
(N
);
10468 ----------------------------
10469 -- Resolve_String_Literal --
10470 ----------------------------
10472 procedure Resolve_String_Literal
(N
: Node_Id
; Typ
: Entity_Id
) is
10473 C_Typ
: constant Entity_Id
:= Component_Type
(Typ
);
10474 R_Typ
: constant Entity_Id
:= Root_Type
(C_Typ
);
10475 Loc
: constant Source_Ptr
:= Sloc
(N
);
10476 Str
: constant String_Id
:= Strval
(N
);
10477 Strlen
: constant Nat
:= String_Length
(Str
);
10478 Subtype_Id
: Entity_Id
;
10479 Need_Check
: Boolean;
10482 -- For a string appearing in a concatenation, defer creation of the
10483 -- string_literal_subtype until the end of the resolution of the
10484 -- concatenation, because the literal may be constant-folded away. This
10485 -- is a useful optimization for long concatenation expressions.
10487 -- If the string is an aggregate built for a single character (which
10488 -- happens in a non-static context) or a is null string to which special
10489 -- checks may apply, we build the subtype. Wide strings must also get a
10490 -- string subtype if they come from a one character aggregate. Strings
10491 -- generated by attributes might be static, but it is often hard to
10492 -- determine whether the enclosing context is static, so we generate
10493 -- subtypes for them as well, thus losing some rarer optimizations ???
10494 -- Same for strings that come from a static conversion.
10497 (Strlen
= 0 and then Typ
/= Standard_String
)
10498 or else Nkind
(Parent
(N
)) /= N_Op_Concat
10499 or else (N
/= Left_Opnd
(Parent
(N
))
10500 and then N
/= Right_Opnd
(Parent
(N
)))
10501 or else ((Typ
= Standard_Wide_String
10502 or else Typ
= Standard_Wide_Wide_String
)
10503 and then Nkind
(Original_Node
(N
)) /= N_String_Literal
);
10505 -- If the resolving type is itself a string literal subtype, we can just
10506 -- reuse it, since there is no point in creating another.
10508 if Ekind
(Typ
) = E_String_Literal_Subtype
then
10511 elsif Nkind
(Parent
(N
)) = N_Op_Concat
10512 and then not Need_Check
10513 and then not Nkind_In
(Original_Node
(N
), N_Character_Literal
,
10514 N_Attribute_Reference
,
10515 N_Qualified_Expression
,
10520 -- Do not generate a string literal subtype for the default expression
10521 -- of a formal parameter in GNATprove mode. This is because the string
10522 -- subtype is associated with the freezing actions of the subprogram,
10523 -- however freezing is disabled in GNATprove mode and as a result the
10524 -- subtype is unavailable.
10526 elsif GNATprove_Mode
10527 and then Nkind
(Parent
(N
)) = N_Parameter_Specification
10531 -- Otherwise we must create a string literal subtype. Note that the
10532 -- whole idea of string literal subtypes is simply to avoid the need
10533 -- for building a full fledged array subtype for each literal.
10536 Set_String_Literal_Subtype
(N
, Typ
);
10537 Subtype_Id
:= Etype
(N
);
10540 if Nkind
(Parent
(N
)) /= N_Op_Concat
10543 Set_Etype
(N
, Subtype_Id
);
10544 Eval_String_Literal
(N
);
10547 if Is_Limited_Composite
(Typ
)
10548 or else Is_Private_Composite
(Typ
)
10550 Error_Msg_N
("string literal not available for private array", N
);
10551 Set_Etype
(N
, Any_Type
);
10555 -- The validity of a null string has been checked in the call to
10556 -- Eval_String_Literal.
10561 -- Always accept string literal with component type Any_Character, which
10562 -- occurs in error situations and in comparisons of literals, both of
10563 -- which should accept all literals.
10565 elsif R_Typ
= Any_Character
then
10568 -- If the type is bit-packed, then we always transform the string
10569 -- literal into a full fledged aggregate.
10571 elsif Is_Bit_Packed_Array
(Typ
) then
10574 -- Deal with cases of Wide_Wide_String, Wide_String, and String
10577 -- For Standard.Wide_Wide_String, or any other type whose component
10578 -- type is Standard.Wide_Wide_Character, we know that all the
10579 -- characters in the string must be acceptable, since the parser
10580 -- accepted the characters as valid character literals.
10582 if R_Typ
= Standard_Wide_Wide_Character
then
10585 -- For the case of Standard.String, or any other type whose component
10586 -- type is Standard.Character, we must make sure that there are no
10587 -- wide characters in the string, i.e. that it is entirely composed
10588 -- of characters in range of type Character.
10590 -- If the string literal is the result of a static concatenation, the
10591 -- test has already been performed on the components, and need not be
10594 elsif R_Typ
= Standard_Character
10595 and then Nkind
(Original_Node
(N
)) /= N_Op_Concat
10597 for J
in 1 .. Strlen
loop
10598 if not In_Character_Range
(Get_String_Char
(Str
, J
)) then
10600 -- If we are out of range, post error. This is one of the
10601 -- very few places that we place the flag in the middle of
10602 -- a token, right under the offending wide character. Not
10603 -- quite clear if this is right wrt wide character encoding
10604 -- sequences, but it's only an error message.
10607 ("literal out of range of type Standard.Character",
10608 Source_Ptr
(Int
(Loc
) + J
));
10613 -- For the case of Standard.Wide_String, or any other type whose
10614 -- component type is Standard.Wide_Character, we must make sure that
10615 -- there are no wide characters in the string, i.e. that it is
10616 -- entirely composed of characters in range of type Wide_Character.
10618 -- If the string literal is the result of a static concatenation,
10619 -- the test has already been performed on the components, and need
10620 -- not be repeated.
10622 elsif R_Typ
= Standard_Wide_Character
10623 and then Nkind
(Original_Node
(N
)) /= N_Op_Concat
10625 for J
in 1 .. Strlen
loop
10626 if not In_Wide_Character_Range
(Get_String_Char
(Str
, J
)) then
10628 -- If we are out of range, post error. This is one of the
10629 -- very few places that we place the flag in the middle of
10630 -- a token, right under the offending wide character.
10632 -- This is not quite right, because characters in general
10633 -- will take more than one character position ???
10636 ("literal out of range of type Standard.Wide_Character",
10637 Source_Ptr
(Int
(Loc
) + J
));
10642 -- If the root type is not a standard character, then we will convert
10643 -- the string into an aggregate and will let the aggregate code do
10644 -- the checking. Standard Wide_Wide_Character is also OK here.
10650 -- See if the component type of the array corresponding to the string
10651 -- has compile time known bounds. If yes we can directly check
10652 -- whether the evaluation of the string will raise constraint error.
10653 -- Otherwise we need to transform the string literal into the
10654 -- corresponding character aggregate and let the aggregate code do
10657 if Is_Standard_Character_Type
(R_Typ
) then
10659 -- Check for the case of full range, where we are definitely OK
10661 if Component_Type
(Typ
) = Base_Type
(Component_Type
(Typ
)) then
10665 -- Here the range is not the complete base type range, so check
10668 Comp_Typ_Lo
: constant Node_Id
:=
10669 Type_Low_Bound
(Component_Type
(Typ
));
10670 Comp_Typ_Hi
: constant Node_Id
:=
10671 Type_High_Bound
(Component_Type
(Typ
));
10676 if Compile_Time_Known_Value
(Comp_Typ_Lo
)
10677 and then Compile_Time_Known_Value
(Comp_Typ_Hi
)
10679 for J
in 1 .. Strlen
loop
10680 Char_Val
:= UI_From_Int
(Int
(Get_String_Char
(Str
, J
)));
10682 if Char_Val
< Expr_Value
(Comp_Typ_Lo
)
10683 or else Char_Val
> Expr_Value
(Comp_Typ_Hi
)
10685 Apply_Compile_Time_Constraint_Error
10686 (N
, "character out of range??",
10687 CE_Range_Check_Failed
,
10688 Loc
=> Source_Ptr
(Int
(Loc
) + J
));
10698 -- If we got here we meed to transform the string literal into the
10699 -- equivalent qualified positional array aggregate. This is rather
10700 -- heavy artillery for this situation, but it is hard work to avoid.
10703 Lits
: constant List_Id
:= New_List
;
10704 P
: Source_Ptr
:= Loc
+ 1;
10708 -- Build the character literals, we give them source locations that
10709 -- correspond to the string positions, which is a bit tricky given
10710 -- the possible presence of wide character escape sequences.
10712 for J
in 1 .. Strlen
loop
10713 C
:= Get_String_Char
(Str
, J
);
10714 Set_Character_Literal_Name
(C
);
10717 Make_Character_Literal
(P
,
10718 Chars
=> Name_Find
,
10719 Char_Literal_Value
=> UI_From_CC
(C
)));
10721 if In_Character_Range
(C
) then
10724 -- Should we have a call to Skip_Wide here ???
10733 Make_Qualified_Expression
(Loc
,
10734 Subtype_Mark
=> New_Occurrence_Of
(Typ
, Loc
),
10736 Make_Aggregate
(Loc
, Expressions
=> Lits
)));
10738 Analyze_And_Resolve
(N
, Typ
);
10740 end Resolve_String_Literal
;
10742 -------------------------
10743 -- Resolve_Target_Name --
10744 -------------------------
10746 procedure Resolve_Target_Name
(N
: Node_Id
; Typ
: Entity_Id
) is
10748 Set_Etype
(N
, Typ
);
10749 end Resolve_Target_Name
;
10751 -----------------------------
10752 -- Resolve_Type_Conversion --
10753 -----------------------------
10755 procedure Resolve_Type_Conversion
(N
: Node_Id
; Typ
: Entity_Id
) is
10756 Conv_OK
: constant Boolean := Conversion_OK
(N
);
10757 Operand
: constant Node_Id
:= Expression
(N
);
10758 Operand_Typ
: constant Entity_Id
:= Etype
(Operand
);
10759 Target_Typ
: constant Entity_Id
:= Etype
(N
);
10764 Test_Redundant
: Boolean := Warn_On_Redundant_Constructs
;
10765 -- Set to False to suppress cases where we want to suppress the test
10766 -- for redundancy to avoid possible false positives on this warning.
10770 and then not Valid_Conversion
(N
, Target_Typ
, Operand
)
10775 -- If the Operand Etype is Universal_Fixed, then the conversion is
10776 -- never redundant. We need this check because by the time we have
10777 -- finished the rather complex transformation, the conversion looks
10778 -- redundant when it is not.
10780 if Operand_Typ
= Universal_Fixed
then
10781 Test_Redundant
:= False;
10783 -- If the operand is marked as Any_Fixed, then special processing is
10784 -- required. This is also a case where we suppress the test for a
10785 -- redundant conversion, since most certainly it is not redundant.
10787 elsif Operand_Typ
= Any_Fixed
then
10788 Test_Redundant
:= False;
10790 -- Mixed-mode operation involving a literal. Context must be a fixed
10791 -- type which is applied to the literal subsequently.
10793 -- Multiplication and division involving two fixed type operands must
10794 -- yield a universal real because the result is computed in arbitrary
10797 if Is_Fixed_Point_Type
(Typ
)
10798 and then Nkind_In
(Operand
, N_Op_Divide
, N_Op_Multiply
)
10799 and then Etype
(Left_Opnd
(Operand
)) = Any_Fixed
10800 and then Etype
(Right_Opnd
(Operand
)) = Any_Fixed
10802 Set_Etype
(Operand
, Universal_Real
);
10804 elsif Is_Numeric_Type
(Typ
)
10805 and then Nkind_In
(Operand
, N_Op_Multiply
, N_Op_Divide
)
10806 and then (Etype
(Right_Opnd
(Operand
)) = Universal_Real
10808 Etype
(Left_Opnd
(Operand
)) = Universal_Real
)
10810 -- Return if expression is ambiguous
10812 if Unique_Fixed_Point_Type
(N
) = Any_Type
then
10815 -- If nothing else, the available fixed type is Duration
10818 Set_Etype
(Operand
, Standard_Duration
);
10821 -- Resolve the real operand with largest available precision
10823 if Etype
(Right_Opnd
(Operand
)) = Universal_Real
then
10824 Rop
:= New_Copy_Tree
(Right_Opnd
(Operand
));
10826 Rop
:= New_Copy_Tree
(Left_Opnd
(Operand
));
10829 Resolve
(Rop
, Universal_Real
);
10831 -- If the operand is a literal (it could be a non-static and
10832 -- illegal exponentiation) check whether the use of Duration
10833 -- is potentially inaccurate.
10835 if Nkind
(Rop
) = N_Real_Literal
10836 and then Realval
(Rop
) /= Ureal_0
10837 and then abs (Realval
(Rop
)) < Delta_Value
(Standard_Duration
)
10840 ("??universal real operand can only "
10841 & "be interpreted as Duration!", Rop
);
10843 ("\??precision will be lost in the conversion!", Rop
);
10846 elsif Is_Numeric_Type
(Typ
)
10847 and then Nkind
(Operand
) in N_Op
10848 and then Unique_Fixed_Point_Type
(N
) /= Any_Type
10850 Set_Etype
(Operand
, Standard_Duration
);
10853 Error_Msg_N
("invalid context for mixed mode operation", N
);
10854 Set_Etype
(Operand
, Any_Type
);
10861 -- In SPARK, a type conversion between array types should be restricted
10862 -- to types which have matching static bounds.
10864 -- Protect call to Matching_Static_Array_Bounds to avoid costly
10865 -- operation if not needed.
10867 if Restriction_Check_Required
(SPARK_05
)
10868 and then Is_Array_Type
(Target_Typ
)
10869 and then Is_Array_Type
(Operand_Typ
)
10870 and then Operand_Typ
/= Any_Composite
-- or else Operand in error
10871 and then not Matching_Static_Array_Bounds
(Target_Typ
, Operand_Typ
)
10873 Check_SPARK_05_Restriction
10874 ("array types should have matching static bounds", N
);
10877 -- In formal mode, the operand of an ancestor type conversion must be an
10878 -- object (not an expression).
10880 if Is_Tagged_Type
(Target_Typ
)
10881 and then not Is_Class_Wide_Type
(Target_Typ
)
10882 and then Is_Tagged_Type
(Operand_Typ
)
10883 and then not Is_Class_Wide_Type
(Operand_Typ
)
10884 and then Is_Ancestor
(Target_Typ
, Operand_Typ
)
10885 and then not Is_SPARK_05_Object_Reference
(Operand
)
10887 Check_SPARK_05_Restriction
("object required", Operand
);
10890 Analyze_Dimension
(N
);
10892 -- Note: we do the Eval_Type_Conversion call before applying the
10893 -- required checks for a subtype conversion. This is important, since
10894 -- both are prepared under certain circumstances to change the type
10895 -- conversion to a constraint error node, but in the case of
10896 -- Eval_Type_Conversion this may reflect an illegality in the static
10897 -- case, and we would miss the illegality (getting only a warning
10898 -- message), if we applied the type conversion checks first.
10900 Eval_Type_Conversion
(N
);
10902 -- Even when evaluation is not possible, we may be able to simplify the
10903 -- conversion or its expression. This needs to be done before applying
10904 -- checks, since otherwise the checks may use the original expression
10905 -- and defeat the simplifications. This is specifically the case for
10906 -- elimination of the floating-point Truncation attribute in
10907 -- float-to-int conversions.
10909 Simplify_Type_Conversion
(N
);
10911 -- If after evaluation we still have a type conversion, then we may need
10912 -- to apply checks required for a subtype conversion.
10914 -- Skip these type conversion checks if universal fixed operands
10915 -- operands involved, since range checks are handled separately for
10916 -- these cases (in the appropriate Expand routines in unit Exp_Fixd).
10918 if Nkind
(N
) = N_Type_Conversion
10919 and then not Is_Generic_Type
(Root_Type
(Target_Typ
))
10920 and then Target_Typ
/= Universal_Fixed
10921 and then Operand_Typ
/= Universal_Fixed
10923 Apply_Type_Conversion_Checks
(N
);
10926 -- Issue warning for conversion of simple object to its own type. We
10927 -- have to test the original nodes, since they may have been rewritten
10928 -- by various optimizations.
10930 Orig_N
:= Original_Node
(N
);
10932 -- Here we test for a redundant conversion if the warning mode is
10933 -- active (and was not locally reset), and we have a type conversion
10934 -- from source not appearing in a generic instance.
10937 and then Nkind
(Orig_N
) = N_Type_Conversion
10938 and then Comes_From_Source
(Orig_N
)
10939 and then not In_Instance
10941 Orig_N
:= Original_Node
(Expression
(Orig_N
));
10942 Orig_T
:= Target_Typ
;
10944 -- If the node is part of a larger expression, the Target_Type
10945 -- may not be the original type of the node if the context is a
10946 -- condition. Recover original type to see if conversion is needed.
10948 if Is_Boolean_Type
(Orig_T
)
10949 and then Nkind
(Parent
(N
)) in N_Op
10951 Orig_T
:= Etype
(Parent
(N
));
10954 -- If we have an entity name, then give the warning if the entity
10955 -- is the right type, or if it is a loop parameter covered by the
10956 -- original type (that's needed because loop parameters have an
10957 -- odd subtype coming from the bounds).
10959 if (Is_Entity_Name
(Orig_N
)
10961 (Etype
(Entity
(Orig_N
)) = Orig_T
10963 (Ekind
(Entity
(Orig_N
)) = E_Loop_Parameter
10964 and then Covers
(Orig_T
, Etype
(Entity
(Orig_N
))))))
10966 -- If not an entity, then type of expression must match
10968 or else Etype
(Orig_N
) = Orig_T
10970 -- One more check, do not give warning if the analyzed conversion
10971 -- has an expression with non-static bounds, and the bounds of the
10972 -- target are static. This avoids junk warnings in cases where the
10973 -- conversion is necessary to establish staticness, for example in
10974 -- a case statement.
10976 if not Is_OK_Static_Subtype
(Operand_Typ
)
10977 and then Is_OK_Static_Subtype
(Target_Typ
)
10981 -- Finally, if this type conversion occurs in a context requiring
10982 -- a prefix, and the expression is a qualified expression then the
10983 -- type conversion is not redundant, since a qualified expression
10984 -- is not a prefix, whereas a type conversion is. For example, "X
10985 -- := T'(Funx(...)).Y;" is illegal because a selected component
10986 -- requires a prefix, but a type conversion makes it legal: "X :=
10987 -- T(T'(Funx(...))).Y;"
10989 -- In Ada 2012, a qualified expression is a name, so this idiom is
10990 -- no longer needed, but we still suppress the warning because it
10991 -- seems unfriendly for warnings to pop up when you switch to the
10992 -- newer language version.
10994 elsif Nkind
(Orig_N
) = N_Qualified_Expression
10995 and then Nkind_In
(Parent
(N
), N_Attribute_Reference
,
10996 N_Indexed_Component
,
10997 N_Selected_Component
,
10999 N_Explicit_Dereference
)
11003 -- Never warn on conversion to Long_Long_Integer'Base since
11004 -- that is most likely an artifact of the extended overflow
11005 -- checking and comes from complex expanded code.
11007 elsif Orig_T
= Base_Type
(Standard_Long_Long_Integer
) then
11010 -- Here we give the redundant conversion warning. If it is an
11011 -- entity, give the name of the entity in the message. If not,
11012 -- just mention the expression.
11014 -- Shoudn't we test Warn_On_Redundant_Constructs here ???
11017 if Is_Entity_Name
(Orig_N
) then
11018 Error_Msg_Node_2
:= Orig_T
;
11019 Error_Msg_NE
-- CODEFIX
11020 ("??redundant conversion, & is of type &!",
11021 N
, Entity
(Orig_N
));
11024 ("??redundant conversion, expression is of type&!",
11031 -- Ada 2005 (AI-251): Handle class-wide interface type conversions.
11032 -- No need to perform any interface conversion if the type of the
11033 -- expression coincides with the target type.
11035 if Ada_Version
>= Ada_2005
11036 and then Expander_Active
11037 and then Operand_Typ
/= Target_Typ
11040 Opnd
: Entity_Id
:= Operand_Typ
;
11041 Target
: Entity_Id
:= Target_Typ
;
11044 -- If the type of the operand is a limited view, use nonlimited
11045 -- view when available. If it is a class-wide type, recover the
11046 -- class-wide type of the nonlimited view.
11048 if From_Limited_With
(Opnd
)
11049 and then Has_Non_Limited_View
(Opnd
)
11051 Opnd
:= Non_Limited_View
(Opnd
);
11052 Set_Etype
(Expression
(N
), Opnd
);
11055 if Is_Access_Type
(Opnd
) then
11056 Opnd
:= Designated_Type
(Opnd
);
11059 if Is_Access_Type
(Target_Typ
) then
11060 Target
:= Designated_Type
(Target
);
11063 if Opnd
= Target
then
11066 -- Conversion from interface type
11068 elsif Is_Interface
(Opnd
) then
11070 -- Ada 2005 (AI-217): Handle entities from limited views
11072 if From_Limited_With
(Opnd
) then
11073 Error_Msg_Qual_Level
:= 99;
11074 Error_Msg_NE
-- CODEFIX
11075 ("missing WITH clause on package &", N
,
11076 Cunit_Entity
(Get_Source_Unit
(Base_Type
(Opnd
))));
11078 ("type conversions require visibility of the full view",
11081 elsif From_Limited_With
(Target
)
11083 (Is_Access_Type
(Target_Typ
)
11084 and then Present
(Non_Limited_View
(Etype
(Target
))))
11086 Error_Msg_Qual_Level
:= 99;
11087 Error_Msg_NE
-- CODEFIX
11088 ("missing WITH clause on package &", N
,
11089 Cunit_Entity
(Get_Source_Unit
(Base_Type
(Target
))));
11091 ("type conversions require visibility of the full view",
11095 Expand_Interface_Conversion
(N
);
11098 -- Conversion to interface type
11100 elsif Is_Interface
(Target
) then
11104 if Ekind_In
(Opnd
, E_Protected_Subtype
, E_Task_Subtype
) then
11105 Opnd
:= Etype
(Opnd
);
11108 if Is_Class_Wide_Type
(Opnd
)
11109 or else Interface_Present_In_Ancestor
11113 Expand_Interface_Conversion
(N
);
11115 Error_Msg_Name_1
:= Chars
(Etype
(Target
));
11116 Error_Msg_Name_2
:= Chars
(Opnd
);
11118 ("wrong interface conversion (% is not a progenitor "
11125 -- Ada 2012: once the type conversion is resolved, check whether the
11126 -- operand statisfies the static predicate of the target type.
11128 if Has_Predicates
(Target_Typ
) then
11129 Check_Expression_Against_Static_Predicate
(N
, Target_Typ
);
11132 -- If at this stage we have a real to integer conversion, make sure that
11133 -- the Do_Range_Check flag is set, because such conversions in general
11134 -- need a range check. We only need this if expansion is off.
11135 -- In GNATprove mode, we only do that when converting from fixed-point
11136 -- (as floating-point to integer conversions are now handled in
11137 -- GNATprove mode).
11139 if Nkind
(N
) = N_Type_Conversion
11140 and then not Expander_Active
11141 and then Is_Integer_Type
(Target_Typ
)
11142 and then (Is_Fixed_Point_Type
(Operand_Typ
)
11143 or else (not GNATprove_Mode
11144 and then Is_Floating_Point_Type
(Operand_Typ
)))
11146 Set_Do_Range_Check
(Operand
);
11149 -- Generating C code a type conversion of an access to constrained
11150 -- array type to access to unconstrained array type involves building
11151 -- a fat pointer which in general cannot be generated on the fly. We
11152 -- remove side effects in order to store the result of the conversion
11153 -- into a temporary.
11155 if Modify_Tree_For_C
11156 and then Nkind
(N
) = N_Type_Conversion
11157 and then Nkind
(Parent
(N
)) /= N_Object_Declaration
11158 and then Is_Access_Type
(Etype
(N
))
11159 and then Is_Array_Type
(Designated_Type
(Etype
(N
)))
11160 and then not Is_Constrained
(Designated_Type
(Etype
(N
)))
11161 and then Is_Constrained
(Designated_Type
(Etype
(Expression
(N
))))
11163 Remove_Side_Effects
(N
);
11165 end Resolve_Type_Conversion
;
11167 ----------------------
11168 -- Resolve_Unary_Op --
11169 ----------------------
11171 procedure Resolve_Unary_Op
(N
: Node_Id
; Typ
: Entity_Id
) is
11172 B_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
11173 R
: constant Node_Id
:= Right_Opnd
(N
);
11179 if Is_Modular_Integer_Type
(Typ
) and then Nkind
(N
) /= N_Op_Not
then
11180 Error_Msg_Name_1
:= Chars
(Typ
);
11181 Check_SPARK_05_Restriction
11182 ("unary operator not defined for modular type%", N
);
11185 -- Deal with intrinsic unary operators
11187 if Comes_From_Source
(N
)
11188 and then Ekind
(Entity
(N
)) = E_Function
11189 and then Is_Imported
(Entity
(N
))
11190 and then Is_Intrinsic_Subprogram
(Entity
(N
))
11192 Resolve_Intrinsic_Unary_Operator
(N
, Typ
);
11196 -- Deal with universal cases
11198 if Etype
(R
) = Universal_Integer
11200 Etype
(R
) = Universal_Real
11202 Check_For_Visible_Operator
(N
, B_Typ
);
11205 Set_Etype
(N
, B_Typ
);
11206 Resolve
(R
, B_Typ
);
11208 -- Generate warning for expressions like abs (x mod 2)
11210 if Warn_On_Redundant_Constructs
11211 and then Nkind
(N
) = N_Op_Abs
11213 Determine_Range
(Right_Opnd
(N
), OK
, Lo
, Hi
);
11215 if OK
and then Hi
>= Lo
and then Lo
>= 0 then
11216 Error_Msg_N
-- CODEFIX
11217 ("?r?abs applied to known non-negative value has no effect", N
);
11221 -- Deal with reference generation
11223 Check_Unset_Reference
(R
);
11224 Generate_Operator_Reference
(N
, B_Typ
);
11225 Analyze_Dimension
(N
);
11228 -- Set overflow checking bit. Much cleverer code needed here eventually
11229 -- and perhaps the Resolve routines should be separated for the various
11230 -- arithmetic operations, since they will need different processing ???
11232 if Nkind
(N
) in N_Op
then
11233 if not Overflow_Checks_Suppressed
(Etype
(N
)) then
11234 Enable_Overflow_Check
(N
);
11238 -- Generate warning for expressions like -5 mod 3 for integers. No need
11239 -- to worry in the floating-point case, since parens do not affect the
11240 -- result so there is no point in giving in a warning.
11243 Norig
: constant Node_Id
:= Original_Node
(N
);
11252 if Warn_On_Questionable_Missing_Parens
11253 and then Comes_From_Source
(Norig
)
11254 and then Is_Integer_Type
(Typ
)
11255 and then Nkind
(Norig
) = N_Op_Minus
11257 Rorig
:= Original_Node
(Right_Opnd
(Norig
));
11259 -- We are looking for cases where the right operand is not
11260 -- parenthesized, and is a binary operator, multiply, divide, or
11261 -- mod. These are the cases where the grouping can affect results.
11263 if Paren_Count
(Rorig
) = 0
11264 and then Nkind_In
(Rorig
, N_Op_Mod
, N_Op_Multiply
, N_Op_Divide
)
11266 -- For mod, we always give the warning, since the value is
11267 -- affected by the parenthesization (e.g. (-5) mod 315 /=
11268 -- -(5 mod 315)). But for the other cases, the only concern is
11269 -- overflow, e.g. for the case of 8 big signed (-(2 * 64)
11270 -- overflows, but (-2) * 64 does not). So we try to give the
11271 -- message only when overflow is possible.
11273 if Nkind
(Rorig
) /= N_Op_Mod
11274 and then Compile_Time_Known_Value
(R
)
11276 Val
:= Expr_Value
(R
);
11278 if Compile_Time_Known_Value
(Type_High_Bound
(Typ
)) then
11279 HB
:= Expr_Value
(Type_High_Bound
(Typ
));
11281 HB
:= Expr_Value
(Type_High_Bound
(Base_Type
(Typ
)));
11284 if Compile_Time_Known_Value
(Type_Low_Bound
(Typ
)) then
11285 LB
:= Expr_Value
(Type_Low_Bound
(Typ
));
11287 LB
:= Expr_Value
(Type_Low_Bound
(Base_Type
(Typ
)));
11290 -- Note that the test below is deliberately excluding the
11291 -- largest negative number, since that is a potentially
11292 -- troublesome case (e.g. -2 * x, where the result is the
11293 -- largest negative integer has an overflow with 2 * x).
11295 if Val
> LB
and then Val
<= HB
then
11300 -- For the multiplication case, the only case we have to worry
11301 -- about is when (-a)*b is exactly the largest negative number
11302 -- so that -(a*b) can cause overflow. This can only happen if
11303 -- a is a power of 2, and more generally if any operand is a
11304 -- constant that is not a power of 2, then the parentheses
11305 -- cannot affect whether overflow occurs. We only bother to
11306 -- test the left most operand
11308 -- Loop looking at left operands for one that has known value
11311 Opnd_Loop
: while Nkind
(Opnd
) = N_Op_Multiply
loop
11312 if Compile_Time_Known_Value
(Left_Opnd
(Opnd
)) then
11313 Lval
:= UI_Abs
(Expr_Value
(Left_Opnd
(Opnd
)));
11315 -- Operand value of 0 or 1 skips warning
11320 -- Otherwise check power of 2, if power of 2, warn, if
11321 -- anything else, skip warning.
11324 while Lval
/= 2 loop
11325 if Lval
mod 2 = 1 then
11336 -- Keep looking at left operands
11338 Opnd
:= Left_Opnd
(Opnd
);
11339 end loop Opnd_Loop
;
11341 -- For rem or "/" we can only have a problematic situation
11342 -- if the divisor has a value of minus one or one. Otherwise
11343 -- overflow is impossible (divisor > 1) or we have a case of
11344 -- division by zero in any case.
11346 if Nkind_In
(Rorig
, N_Op_Divide
, N_Op_Rem
)
11347 and then Compile_Time_Known_Value
(Right_Opnd
(Rorig
))
11348 and then UI_Abs
(Expr_Value
(Right_Opnd
(Rorig
))) /= 1
11353 -- If we fall through warning should be issued
11355 -- Shouldn't we test Warn_On_Questionable_Missing_Parens ???
11358 ("??unary minus expression should be parenthesized here!", N
);
11362 end Resolve_Unary_Op
;
11364 ----------------------------------
11365 -- Resolve_Unchecked_Expression --
11366 ----------------------------------
11368 procedure Resolve_Unchecked_Expression
11373 Resolve
(Expression
(N
), Typ
, Suppress
=> All_Checks
);
11374 Set_Etype
(N
, Typ
);
11375 end Resolve_Unchecked_Expression
;
11377 ---------------------------------------
11378 -- Resolve_Unchecked_Type_Conversion --
11379 ---------------------------------------
11381 procedure Resolve_Unchecked_Type_Conversion
11385 pragma Warnings
(Off
, Typ
);
11387 Operand
: constant Node_Id
:= Expression
(N
);
11388 Opnd_Type
: constant Entity_Id
:= Etype
(Operand
);
11391 -- Resolve operand using its own type
11393 Resolve
(Operand
, Opnd_Type
);
11395 -- In an inlined context, the unchecked conversion may be applied
11396 -- to a literal, in which case its type is the type of the context.
11397 -- (In other contexts conversions cannot apply to literals).
11400 and then (Opnd_Type
= Any_Character
or else
11401 Opnd_Type
= Any_Integer
or else
11402 Opnd_Type
= Any_Real
)
11404 Set_Etype
(Operand
, Typ
);
11407 Analyze_Dimension
(N
);
11408 Eval_Unchecked_Conversion
(N
);
11409 end Resolve_Unchecked_Type_Conversion
;
11411 ------------------------------
11412 -- Rewrite_Operator_As_Call --
11413 ------------------------------
11415 procedure Rewrite_Operator_As_Call
(N
: Node_Id
; Nam
: Entity_Id
) is
11416 Loc
: constant Source_Ptr
:= Sloc
(N
);
11417 Actuals
: constant List_Id
:= New_List
;
11421 if Nkind
(N
) in N_Binary_Op
then
11422 Append
(Left_Opnd
(N
), Actuals
);
11425 Append
(Right_Opnd
(N
), Actuals
);
11428 Make_Function_Call
(Sloc
=> Loc
,
11429 Name
=> New_Occurrence_Of
(Nam
, Loc
),
11430 Parameter_Associations
=> Actuals
);
11432 Preserve_Comes_From_Source
(New_N
, N
);
11433 Preserve_Comes_From_Source
(Name
(New_N
), N
);
11434 Rewrite
(N
, New_N
);
11435 Set_Etype
(N
, Etype
(Nam
));
11436 end Rewrite_Operator_As_Call
;
11438 ------------------------------
11439 -- Rewrite_Renamed_Operator --
11440 ------------------------------
11442 procedure Rewrite_Renamed_Operator
11447 Nam
: constant Name_Id
:= Chars
(Op
);
11448 Is_Binary
: constant Boolean := Nkind
(N
) in N_Binary_Op
;
11452 -- Do not perform this transformation within a pre/postcondition,
11453 -- because the expression will be reanalyzed, and the transformation
11454 -- might affect the visibility of the operator, e.g. in an instance.
11455 -- Note that fully analyzed and expanded pre/postconditions appear as
11456 -- pragma Check equivalents.
11458 if In_Pre_Post_Condition
(N
) then
11462 -- Likewise when an expression function is being preanalyzed, since the
11463 -- expression will be reanalyzed as part of the generated body.
11465 if In_Spec_Expression
then
11467 S
: constant Entity_Id
:= Current_Scope_No_Loops
;
11469 if Ekind
(S
) = E_Function
11470 and then Nkind
(Original_Node
(Unit_Declaration_Node
(S
)))
11471 = N_Expression_Function
11478 -- Rewrite the operator node using the real operator, not its renaming.
11479 -- Exclude user-defined intrinsic operations of the same name, which are
11480 -- treated separately and rewritten as calls.
11482 if Ekind
(Op
) /= E_Function
or else Chars
(N
) /= Nam
then
11483 Op_Node
:= New_Node
(Operator_Kind
(Nam
, Is_Binary
), Sloc
(N
));
11484 Set_Chars
(Op_Node
, Nam
);
11485 Set_Etype
(Op_Node
, Etype
(N
));
11486 Set_Entity
(Op_Node
, Op
);
11487 Set_Right_Opnd
(Op_Node
, Right_Opnd
(N
));
11489 -- Indicate that both the original entity and its renaming are
11490 -- referenced at this point.
11492 Generate_Reference
(Entity
(N
), N
);
11493 Generate_Reference
(Op
, N
);
11496 Set_Left_Opnd
(Op_Node
, Left_Opnd
(N
));
11499 Rewrite
(N
, Op_Node
);
11501 -- If the context type is private, add the appropriate conversions so
11502 -- that the operator is applied to the full view. This is done in the
11503 -- routines that resolve intrinsic operators.
11505 if Is_Intrinsic_Subprogram
(Op
) and then Is_Private_Type
(Typ
) then
11515 Resolve_Intrinsic_Operator
(N
, Typ
);
11521 Resolve_Intrinsic_Unary_Operator
(N
, Typ
);
11528 elsif Ekind
(Op
) = E_Function
and then Is_Intrinsic_Subprogram
(Op
) then
11530 -- Operator renames a user-defined operator of the same name. Use the
11531 -- original operator in the node, which is the one Gigi knows about.
11533 Set_Entity
(N
, Op
);
11534 Set_Is_Overloaded
(N
, False);
11536 end Rewrite_Renamed_Operator
;
11538 -----------------------
11539 -- Set_Slice_Subtype --
11540 -----------------------
11542 -- Build an implicit subtype declaration to represent the type delivered by
11543 -- the slice. This is an abbreviated version of an array subtype. We define
11544 -- an index subtype for the slice, using either the subtype name or the
11545 -- discrete range of the slice. To be consistent with index usage elsewhere
11546 -- we create a list header to hold the single index. This list is not
11547 -- otherwise attached to the syntax tree.
11549 procedure Set_Slice_Subtype
(N
: Node_Id
) is
11550 Loc
: constant Source_Ptr
:= Sloc
(N
);
11551 Index_List
: constant List_Id
:= New_List
;
11553 Index_Subtype
: Entity_Id
;
11554 Index_Type
: Entity_Id
;
11555 Slice_Subtype
: Entity_Id
;
11556 Drange
: constant Node_Id
:= Discrete_Range
(N
);
11559 Index_Type
:= Base_Type
(Etype
(Drange
));
11561 if Is_Entity_Name
(Drange
) then
11562 Index_Subtype
:= Entity
(Drange
);
11565 -- We force the evaluation of a range. This is definitely needed in
11566 -- the renamed case, and seems safer to do unconditionally. Note in
11567 -- any case that since we will create and insert an Itype referring
11568 -- to this range, we must make sure any side effect removal actions
11569 -- are inserted before the Itype definition.
11571 if Nkind
(Drange
) = N_Range
then
11572 Force_Evaluation
(Low_Bound
(Drange
));
11573 Force_Evaluation
(High_Bound
(Drange
));
11575 -- If the discrete range is given by a subtype indication, the
11576 -- type of the slice is the base of the subtype mark.
11578 elsif Nkind
(Drange
) = N_Subtype_Indication
then
11580 R
: constant Node_Id
:= Range_Expression
(Constraint
(Drange
));
11582 Index_Type
:= Base_Type
(Entity
(Subtype_Mark
(Drange
)));
11583 Force_Evaluation
(Low_Bound
(R
));
11584 Force_Evaluation
(High_Bound
(R
));
11588 Index_Subtype
:= Create_Itype
(Subtype_Kind
(Ekind
(Index_Type
)), N
);
11590 -- Take a new copy of Drange (where bounds have been rewritten to
11591 -- reference side-effect-free names). Using a separate tree ensures
11592 -- that further expansion (e.g. while rewriting a slice assignment
11593 -- into a FOR loop) does not attempt to remove side effects on the
11594 -- bounds again (which would cause the bounds in the index subtype
11595 -- definition to refer to temporaries before they are defined) (the
11596 -- reason is that some names are considered side effect free here
11597 -- for the subtype, but not in the context of a loop iteration
11600 Set_Scalar_Range
(Index_Subtype
, New_Copy_Tree
(Drange
));
11601 Set_Parent
(Scalar_Range
(Index_Subtype
), Index_Subtype
);
11602 Set_Etype
(Index_Subtype
, Index_Type
);
11603 Set_Size_Info
(Index_Subtype
, Index_Type
);
11604 Set_RM_Size
(Index_Subtype
, RM_Size
(Index_Type
));
11607 Slice_Subtype
:= Create_Itype
(E_Array_Subtype
, N
);
11609 Index
:= New_Occurrence_Of
(Index_Subtype
, Loc
);
11610 Set_Etype
(Index
, Index_Subtype
);
11611 Append
(Index
, Index_List
);
11613 Set_First_Index
(Slice_Subtype
, Index
);
11614 Set_Etype
(Slice_Subtype
, Base_Type
(Etype
(N
)));
11615 Set_Is_Constrained
(Slice_Subtype
, True);
11617 Check_Compile_Time_Size
(Slice_Subtype
);
11619 -- The Etype of the existing Slice node is reset to this slice subtype.
11620 -- Its bounds are obtained from its first index.
11622 Set_Etype
(N
, Slice_Subtype
);
11624 -- For bit-packed slice subtypes, freeze immediately (except in the case
11625 -- of being in a "spec expression" where we never freeze when we first
11626 -- see the expression).
11628 if Is_Bit_Packed_Array
(Slice_Subtype
) and not In_Spec_Expression
then
11629 Freeze_Itype
(Slice_Subtype
, N
);
11631 -- For all other cases insert an itype reference in the slice's actions
11632 -- so that the itype is frozen at the proper place in the tree (i.e. at
11633 -- the point where actions for the slice are analyzed). Note that this
11634 -- is different from freezing the itype immediately, which might be
11635 -- premature (e.g. if the slice is within a transient scope). This needs
11636 -- to be done only if expansion is enabled.
11638 elsif Expander_Active
then
11639 Ensure_Defined
(Typ
=> Slice_Subtype
, N
=> N
);
11641 end Set_Slice_Subtype
;
11643 --------------------------------
11644 -- Set_String_Literal_Subtype --
11645 --------------------------------
11647 procedure Set_String_Literal_Subtype
(N
: Node_Id
; Typ
: Entity_Id
) is
11648 Loc
: constant Source_Ptr
:= Sloc
(N
);
11649 Low_Bound
: constant Node_Id
:=
11650 Type_Low_Bound
(Etype
(First_Index
(Typ
)));
11651 Subtype_Id
: Entity_Id
;
11654 if Nkind
(N
) /= N_String_Literal
then
11658 Subtype_Id
:= Create_Itype
(E_String_Literal_Subtype
, N
);
11659 Set_String_Literal_Length
(Subtype_Id
, UI_From_Int
11660 (String_Length
(Strval
(N
))));
11661 Set_Etype
(Subtype_Id
, Base_Type
(Typ
));
11662 Set_Is_Constrained
(Subtype_Id
);
11663 Set_Etype
(N
, Subtype_Id
);
11665 -- The low bound is set from the low bound of the corresponding index
11666 -- type. Note that we do not store the high bound in the string literal
11667 -- subtype, but it can be deduced if necessary from the length and the
11670 if Is_OK_Static_Expression
(Low_Bound
) then
11671 Set_String_Literal_Low_Bound
(Subtype_Id
, Low_Bound
);
11673 -- If the lower bound is not static we create a range for the string
11674 -- literal, using the index type and the known length of the literal.
11675 -- The index type is not necessarily Positive, so the upper bound is
11676 -- computed as T'Val (T'Pos (Low_Bound) + L - 1).
11680 Index_List
: constant List_Id
:= New_List
;
11681 Index_Type
: constant Entity_Id
:= Etype
(First_Index
(Typ
));
11682 High_Bound
: constant Node_Id
:=
11683 Make_Attribute_Reference
(Loc
,
11684 Attribute_Name
=> Name_Val
,
11686 New_Occurrence_Of
(Index_Type
, Loc
),
11687 Expressions
=> New_List
(
11690 Make_Attribute_Reference
(Loc
,
11691 Attribute_Name
=> Name_Pos
,
11693 New_Occurrence_Of
(Index_Type
, Loc
),
11695 New_List
(New_Copy_Tree
(Low_Bound
))),
11697 Make_Integer_Literal
(Loc
,
11698 String_Length
(Strval
(N
)) - 1))));
11700 Array_Subtype
: Entity_Id
;
11703 Index_Subtype
: Entity_Id
;
11706 if Is_Integer_Type
(Index_Type
) then
11707 Set_String_Literal_Low_Bound
11708 (Subtype_Id
, Make_Integer_Literal
(Loc
, 1));
11711 -- If the index type is an enumeration type, build bounds
11712 -- expression with attributes.
11714 Set_String_Literal_Low_Bound
11716 Make_Attribute_Reference
(Loc
,
11717 Attribute_Name
=> Name_First
,
11719 New_Occurrence_Of
(Base_Type
(Index_Type
), Loc
)));
11720 Set_Etype
(String_Literal_Low_Bound
(Subtype_Id
), Index_Type
);
11723 Analyze_And_Resolve
(String_Literal_Low_Bound
(Subtype_Id
));
11725 -- Build bona fide subtype for the string, and wrap it in an
11726 -- unchecked conversion, because the backend expects the
11727 -- String_Literal_Subtype to have a static lower bound.
11730 Create_Itype
(Subtype_Kind
(Ekind
(Index_Type
)), N
);
11731 Drange
:= Make_Range
(Loc
, New_Copy_Tree
(Low_Bound
), High_Bound
);
11732 Set_Scalar_Range
(Index_Subtype
, Drange
);
11733 Set_Parent
(Drange
, N
);
11734 Analyze_And_Resolve
(Drange
, Index_Type
);
11736 -- In the context, the Index_Type may already have a constraint,
11737 -- so use common base type on string subtype. The base type may
11738 -- be used when generating attributes of the string, for example
11739 -- in the context of a slice assignment.
11741 Set_Etype
(Index_Subtype
, Base_Type
(Index_Type
));
11742 Set_Size_Info
(Index_Subtype
, Index_Type
);
11743 Set_RM_Size
(Index_Subtype
, RM_Size
(Index_Type
));
11745 Array_Subtype
:= Create_Itype
(E_Array_Subtype
, N
);
11747 Index
:= New_Occurrence_Of
(Index_Subtype
, Loc
);
11748 Set_Etype
(Index
, Index_Subtype
);
11749 Append
(Index
, Index_List
);
11751 Set_First_Index
(Array_Subtype
, Index
);
11752 Set_Etype
(Array_Subtype
, Base_Type
(Typ
));
11753 Set_Is_Constrained
(Array_Subtype
, True);
11756 Make_Unchecked_Type_Conversion
(Loc
,
11757 Subtype_Mark
=> New_Occurrence_Of
(Array_Subtype
, Loc
),
11758 Expression
=> Relocate_Node
(N
)));
11759 Set_Etype
(N
, Array_Subtype
);
11762 end Set_String_Literal_Subtype
;
11764 ------------------------------
11765 -- Simplify_Type_Conversion --
11766 ------------------------------
11768 procedure Simplify_Type_Conversion
(N
: Node_Id
) is
11770 if Nkind
(N
) = N_Type_Conversion
then
11772 Operand
: constant Node_Id
:= Expression
(N
);
11773 Target_Typ
: constant Entity_Id
:= Etype
(N
);
11774 Opnd_Typ
: constant Entity_Id
:= Etype
(Operand
);
11777 -- Special processing if the conversion is the expression of a
11778 -- Rounding or Truncation attribute reference. In this case we
11781 -- ityp (ftyp'Rounding (x)) or ityp (ftyp'Truncation (x))
11787 -- with the Float_Truncate flag set to False or True respectively,
11788 -- which is more efficient.
11790 if Is_Floating_Point_Type
(Opnd_Typ
)
11792 (Is_Integer_Type
(Target_Typ
)
11793 or else (Is_Fixed_Point_Type
(Target_Typ
)
11794 and then Conversion_OK
(N
)))
11795 and then Nkind
(Operand
) = N_Attribute_Reference
11796 and then Nam_In
(Attribute_Name
(Operand
), Name_Rounding
,
11800 Truncate
: constant Boolean :=
11801 Attribute_Name
(Operand
) = Name_Truncation
;
11804 Relocate_Node
(First
(Expressions
(Operand
))));
11805 Set_Float_Truncate
(N
, Truncate
);
11810 end Simplify_Type_Conversion
;
11812 -----------------------------
11813 -- Unique_Fixed_Point_Type --
11814 -----------------------------
11816 function Unique_Fixed_Point_Type
(N
: Node_Id
) return Entity_Id
is
11817 procedure Fixed_Point_Error
(T1
: Entity_Id
; T2
: Entity_Id
);
11818 -- Give error messages for true ambiguity. Messages are posted on node
11819 -- N, and entities T1, T2 are the possible interpretations.
11821 -----------------------
11822 -- Fixed_Point_Error --
11823 -----------------------
11825 procedure Fixed_Point_Error
(T1
: Entity_Id
; T2
: Entity_Id
) is
11827 Error_Msg_N
("ambiguous universal_fixed_expression", N
);
11828 Error_Msg_NE
("\\possible interpretation as}", N
, T1
);
11829 Error_Msg_NE
("\\possible interpretation as}", N
, T2
);
11830 end Fixed_Point_Error
;
11840 -- Start of processing for Unique_Fixed_Point_Type
11843 -- The operations on Duration are visible, so Duration is always a
11844 -- possible interpretation.
11846 T1
:= Standard_Duration
;
11848 -- Look for fixed-point types in enclosing scopes
11850 Scop
:= Current_Scope
;
11851 while Scop
/= Standard_Standard
loop
11852 T2
:= First_Entity
(Scop
);
11853 while Present
(T2
) loop
11854 if Is_Fixed_Point_Type
(T2
)
11855 and then Current_Entity
(T2
) = T2
11856 and then Scope
(Base_Type
(T2
)) = Scop
11858 if Present
(T1
) then
11859 Fixed_Point_Error
(T1
, T2
);
11869 Scop
:= Scope
(Scop
);
11872 -- Look for visible fixed type declarations in the context
11874 Item
:= First
(Context_Items
(Cunit
(Current_Sem_Unit
)));
11875 while Present
(Item
) loop
11876 if Nkind
(Item
) = N_With_Clause
then
11877 Scop
:= Entity
(Name
(Item
));
11878 T2
:= First_Entity
(Scop
);
11879 while Present
(T2
) loop
11880 if Is_Fixed_Point_Type
(T2
)
11881 and then Scope
(Base_Type
(T2
)) = Scop
11882 and then (Is_Potentially_Use_Visible
(T2
) or else In_Use
(T2
))
11884 if Present
(T1
) then
11885 Fixed_Point_Error
(T1
, T2
);
11899 if Nkind
(N
) = N_Real_Literal
then
11900 Error_Msg_NE
("??real literal interpreted as }!", N
, T1
);
11903 -- When the context is a type conversion, issue the warning on the
11904 -- expression of the conversion because it is the actual operation.
11906 if Nkind_In
(N
, N_Type_Conversion
, N_Unchecked_Type_Conversion
) then
11907 ErrN
:= Expression
(N
);
11913 ("??universal_fixed expression interpreted as }!", ErrN
, T1
);
11917 end Unique_Fixed_Point_Type
;
11919 ----------------------
11920 -- Valid_Conversion --
11921 ----------------------
11923 function Valid_Conversion
11925 Target
: Entity_Id
;
11927 Report_Errs
: Boolean := True) return Boolean
11929 Target_Type
: constant Entity_Id
:= Base_Type
(Target
);
11930 Opnd_Type
: Entity_Id
:= Etype
(Operand
);
11931 Inc_Ancestor
: Entity_Id
;
11933 function Conversion_Check
11935 Msg
: String) return Boolean;
11936 -- Little routine to post Msg if Valid is False, returns Valid value
11938 procedure Conversion_Error_N
(Msg
: String; N
: Node_Or_Entity_Id
);
11939 -- If Report_Errs, then calls Errout.Error_Msg_N with its arguments
11941 procedure Conversion_Error_NE
11943 N
: Node_Or_Entity_Id
;
11944 E
: Node_Or_Entity_Id
);
11945 -- If Report_Errs, then calls Errout.Error_Msg_NE with its arguments
11947 function In_Instance_Code
return Boolean;
11948 -- Return True if expression is within an instance but is not in one of
11949 -- the actuals of the instantiation. Type conversions within an instance
11950 -- are not rechecked because type visbility may lead to spurious errors,
11951 -- but conversions in an actual for a formal object must be checked.
11953 function Valid_Tagged_Conversion
11954 (Target_Type
: Entity_Id
;
11955 Opnd_Type
: Entity_Id
) return Boolean;
11956 -- Specifically test for validity of tagged conversions
11958 function Valid_Array_Conversion
return Boolean;
11959 -- Check index and component conformance, and accessibility levels if
11960 -- the component types are anonymous access types (Ada 2005).
11962 ----------------------
11963 -- Conversion_Check --
11964 ----------------------
11966 function Conversion_Check
11968 Msg
: String) return Boolean
11973 -- A generic unit has already been analyzed and we have verified
11974 -- that a particular conversion is OK in that context. Since the
11975 -- instance is reanalyzed without relying on the relationships
11976 -- established during the analysis of the generic, it is possible
11977 -- to end up with inconsistent views of private types. Do not emit
11978 -- the error message in such cases. The rest of the machinery in
11979 -- Valid_Conversion still ensures the proper compatibility of
11980 -- target and operand types.
11982 and then not In_Instance_Code
11984 Conversion_Error_N
(Msg
, Operand
);
11988 end Conversion_Check
;
11990 ------------------------
11991 -- Conversion_Error_N --
11992 ------------------------
11994 procedure Conversion_Error_N
(Msg
: String; N
: Node_Or_Entity_Id
) is
11996 if Report_Errs
then
11997 Error_Msg_N
(Msg
, N
);
11999 end Conversion_Error_N
;
12001 -------------------------
12002 -- Conversion_Error_NE --
12003 -------------------------
12005 procedure Conversion_Error_NE
12007 N
: Node_Or_Entity_Id
;
12008 E
: Node_Or_Entity_Id
)
12011 if Report_Errs
then
12012 Error_Msg_NE
(Msg
, N
, E
);
12014 end Conversion_Error_NE
;
12016 ----------------------
12017 -- In_Instance_Code --
12018 ----------------------
12020 function In_Instance_Code
return Boolean is
12024 if not In_Instance
then
12029 while Present
(Par
) loop
12031 -- The expression is part of an actual object if it appears in
12032 -- the generated object declaration in the instance.
12034 if Nkind
(Par
) = N_Object_Declaration
12035 and then Present
(Corresponding_Generic_Association
(Par
))
12041 Nkind
(Par
) in N_Statement_Other_Than_Procedure_Call
12042 or else Nkind
(Par
) in N_Subprogram_Call
12043 or else Nkind
(Par
) in N_Declaration
;
12046 Par
:= Parent
(Par
);
12049 -- Otherwise the expression appears within the instantiated unit
12053 end In_Instance_Code
;
12055 ----------------------------
12056 -- Valid_Array_Conversion --
12057 ----------------------------
12059 function Valid_Array_Conversion
return Boolean is
12060 Opnd_Comp_Type
: constant Entity_Id
:= Component_Type
(Opnd_Type
);
12061 Opnd_Comp_Base
: constant Entity_Id
:= Base_Type
(Opnd_Comp_Type
);
12063 Opnd_Index
: Node_Id
;
12064 Opnd_Index_Type
: Entity_Id
;
12066 Target_Comp_Type
: constant Entity_Id
:=
12067 Component_Type
(Target_Type
);
12068 Target_Comp_Base
: constant Entity_Id
:=
12069 Base_Type
(Target_Comp_Type
);
12071 Target_Index
: Node_Id
;
12072 Target_Index_Type
: Entity_Id
;
12075 -- Error if wrong number of dimensions
12078 Number_Dimensions
(Target_Type
) /= Number_Dimensions
(Opnd_Type
)
12081 ("incompatible number of dimensions for conversion", Operand
);
12084 -- Number of dimensions matches
12087 -- Loop through indexes of the two arrays
12089 Target_Index
:= First_Index
(Target_Type
);
12090 Opnd_Index
:= First_Index
(Opnd_Type
);
12091 while Present
(Target_Index
) and then Present
(Opnd_Index
) loop
12092 Target_Index_Type
:= Etype
(Target_Index
);
12093 Opnd_Index_Type
:= Etype
(Opnd_Index
);
12095 -- Error if index types are incompatible
12097 if not (Is_Integer_Type
(Target_Index_Type
)
12098 and then Is_Integer_Type
(Opnd_Index_Type
))
12099 and then (Root_Type
(Target_Index_Type
)
12100 /= Root_Type
(Opnd_Index_Type
))
12103 ("incompatible index types for array conversion",
12108 Next_Index
(Target_Index
);
12109 Next_Index
(Opnd_Index
);
12112 -- If component types have same base type, all set
12114 if Target_Comp_Base
= Opnd_Comp_Base
then
12117 -- Here if base types of components are not the same. The only
12118 -- time this is allowed is if we have anonymous access types.
12120 -- The conversion of arrays of anonymous access types can lead
12121 -- to dangling pointers. AI-392 formalizes the accessibility
12122 -- checks that must be applied to such conversions to prevent
12123 -- out-of-scope references.
12126 (Target_Comp_Base
, E_Anonymous_Access_Type
,
12127 E_Anonymous_Access_Subprogram_Type
)
12128 and then Ekind
(Opnd_Comp_Base
) = Ekind
(Target_Comp_Base
)
12130 Subtypes_Statically_Match
(Target_Comp_Type
, Opnd_Comp_Type
)
12132 if Type_Access_Level
(Target_Type
) <
12133 Deepest_Type_Access_Level
(Opnd_Type
)
12135 if In_Instance_Body
then
12136 Error_Msg_Warn
:= SPARK_Mode
/= On
;
12138 ("source array type has deeper accessibility "
12139 & "level than target<<", Operand
);
12140 Conversion_Error_N
("\Program_Error [<<", Operand
);
12142 Make_Raise_Program_Error
(Sloc
(N
),
12143 Reason
=> PE_Accessibility_Check_Failed
));
12144 Set_Etype
(N
, Target_Type
);
12147 -- Conversion not allowed because of accessibility levels
12151 ("source array type has deeper accessibility "
12152 & "level than target", Operand
);
12160 -- All other cases where component base types do not match
12164 ("incompatible component types for array conversion",
12169 -- Check that component subtypes statically match. For numeric
12170 -- types this means that both must be either constrained or
12171 -- unconstrained. For enumeration types the bounds must match.
12172 -- All of this is checked in Subtypes_Statically_Match.
12174 if not Subtypes_Statically_Match
12175 (Target_Comp_Type
, Opnd_Comp_Type
)
12178 ("component subtypes must statically match", Operand
);
12184 end Valid_Array_Conversion
;
12186 -----------------------------
12187 -- Valid_Tagged_Conversion --
12188 -----------------------------
12190 function Valid_Tagged_Conversion
12191 (Target_Type
: Entity_Id
;
12192 Opnd_Type
: Entity_Id
) return Boolean
12195 -- Upward conversions are allowed (RM 4.6(22))
12197 if Covers
(Target_Type
, Opnd_Type
)
12198 or else Is_Ancestor
(Target_Type
, Opnd_Type
)
12202 -- Downward conversion are allowed if the operand is class-wide
12205 elsif Is_Class_Wide_Type
(Opnd_Type
)
12206 and then Covers
(Opnd_Type
, Target_Type
)
12210 elsif Covers
(Opnd_Type
, Target_Type
)
12211 or else Is_Ancestor
(Opnd_Type
, Target_Type
)
12214 Conversion_Check
(False,
12215 "downward conversion of tagged objects not allowed");
12217 -- Ada 2005 (AI-251): The conversion to/from interface types is
12218 -- always valid. The types involved may be class-wide (sub)types.
12220 elsif Is_Interface
(Etype
(Base_Type
(Target_Type
)))
12221 or else Is_Interface
(Etype
(Base_Type
(Opnd_Type
)))
12225 -- If the operand is a class-wide type obtained through a limited_
12226 -- with clause, and the context includes the nonlimited view, use
12227 -- it to determine whether the conversion is legal.
12229 elsif Is_Class_Wide_Type
(Opnd_Type
)
12230 and then From_Limited_With
(Opnd_Type
)
12231 and then Present
(Non_Limited_View
(Etype
(Opnd_Type
)))
12232 and then Is_Interface
(Non_Limited_View
(Etype
(Opnd_Type
)))
12236 elsif Is_Access_Type
(Opnd_Type
)
12237 and then Is_Interface
(Directly_Designated_Type
(Opnd_Type
))
12242 Conversion_Error_NE
12243 ("invalid tagged conversion, not compatible with}",
12244 N
, First_Subtype
(Opnd_Type
));
12247 end Valid_Tagged_Conversion
;
12249 -- Start of processing for Valid_Conversion
12252 Check_Parameterless_Call
(Operand
);
12254 if Is_Overloaded
(Operand
) then
12264 -- Remove procedure calls, which syntactically cannot appear in
12265 -- this context, but which cannot be removed by type checking,
12266 -- because the context does not impose a type.
12268 -- The node may be labelled overloaded, but still contain only one
12269 -- interpretation because others were discarded earlier. If this
12270 -- is the case, retain the single interpretation if legal.
12272 Get_First_Interp
(Operand
, I
, It
);
12273 Opnd_Type
:= It
.Typ
;
12274 Get_Next_Interp
(I
, It
);
12276 if Present
(It
.Typ
)
12277 and then Opnd_Type
/= Standard_Void_Type
12279 -- More than one candidate interpretation is available
12281 Get_First_Interp
(Operand
, I
, It
);
12282 while Present
(It
.Typ
) loop
12283 if It
.Typ
= Standard_Void_Type
then
12287 -- When compiling for a system where Address is of a visible
12288 -- integer type, spurious ambiguities can be produced when
12289 -- arithmetic operations have a literal operand and return
12290 -- System.Address or a descendant of it. These ambiguities
12291 -- are usually resolved by the context, but for conversions
12292 -- there is no context type and the removal of the spurious
12293 -- operations must be done explicitly here.
12295 if not Address_Is_Private
12296 and then Is_Descendant_Of_Address
(It
.Typ
)
12301 Get_Next_Interp
(I
, It
);
12305 Get_First_Interp
(Operand
, I
, It
);
12309 if No
(It
.Typ
) then
12310 Conversion_Error_N
("illegal operand in conversion", Operand
);
12314 Get_Next_Interp
(I
, It
);
12316 if Present
(It
.Typ
) then
12319 It1
:= Disambiguate
(Operand
, I1
, I
, Any_Type
);
12321 if It1
= No_Interp
then
12323 ("ambiguous operand in conversion", Operand
);
12325 -- If the interpretation involves a standard operator, use
12326 -- the location of the type, which may be user-defined.
12328 if Sloc
(It
.Nam
) = Standard_Location
then
12329 Error_Msg_Sloc
:= Sloc
(It
.Typ
);
12331 Error_Msg_Sloc
:= Sloc
(It
.Nam
);
12334 Conversion_Error_N
-- CODEFIX
12335 ("\\possible interpretation#!", Operand
);
12337 if Sloc
(N1
) = Standard_Location
then
12338 Error_Msg_Sloc
:= Sloc
(T1
);
12340 Error_Msg_Sloc
:= Sloc
(N1
);
12343 Conversion_Error_N
-- CODEFIX
12344 ("\\possible interpretation#!", Operand
);
12350 Set_Etype
(Operand
, It1
.Typ
);
12351 Opnd_Type
:= It1
.Typ
;
12355 -- Deal with conversion of integer type to address if the pragma
12356 -- Allow_Integer_Address is in effect. We convert the conversion to
12357 -- an unchecked conversion in this case and we are all done.
12359 if Address_Integer_Convert_OK
(Opnd_Type
, Target_Type
) then
12360 Rewrite
(N
, Unchecked_Convert_To
(Target_Type
, Expression
(N
)));
12361 Analyze_And_Resolve
(N
, Target_Type
);
12365 -- If we are within a child unit, check whether the type of the
12366 -- expression has an ancestor in a parent unit, in which case it
12367 -- belongs to its derivation class even if the ancestor is private.
12368 -- See RM 7.3.1 (5.2/3).
12370 Inc_Ancestor
:= Get_Incomplete_View_Of_Ancestor
(Opnd_Type
);
12374 if Is_Numeric_Type
(Target_Type
) then
12376 -- A universal fixed expression can be converted to any numeric type
12378 if Opnd_Type
= Universal_Fixed
then
12381 -- Also no need to check when in an instance or inlined body, because
12382 -- the legality has been established when the template was analyzed.
12383 -- Furthermore, numeric conversions may occur where only a private
12384 -- view of the operand type is visible at the instantiation point.
12385 -- This results in a spurious error if we check that the operand type
12386 -- is a numeric type.
12388 -- Note: in a previous version of this unit, the following tests were
12389 -- applied only for generated code (Comes_From_Source set to False),
12390 -- but in fact the test is required for source code as well, since
12391 -- this situation can arise in source code.
12393 elsif In_Instance_Code
or else In_Inlined_Body
then
12396 -- Otherwise we need the conversion check
12399 return Conversion_Check
12400 (Is_Numeric_Type
(Opnd_Type
)
12402 (Present
(Inc_Ancestor
)
12403 and then Is_Numeric_Type
(Inc_Ancestor
)),
12404 "illegal operand for numeric conversion");
12409 elsif Is_Array_Type
(Target_Type
) then
12410 if not Is_Array_Type
(Opnd_Type
)
12411 or else Opnd_Type
= Any_Composite
12412 or else Opnd_Type
= Any_String
12415 ("illegal operand for array conversion", Operand
);
12419 return Valid_Array_Conversion
;
12422 -- Ada 2005 (AI-251): Internally generated conversions of access to
12423 -- interface types added to force the displacement of the pointer to
12424 -- reference the corresponding dispatch table.
12426 elsif not Comes_From_Source
(N
)
12427 and then Is_Access_Type
(Target_Type
)
12428 and then Is_Interface
(Designated_Type
(Target_Type
))
12432 -- Ada 2005 (AI-251): Anonymous access types where target references an
12435 elsif Is_Access_Type
(Opnd_Type
)
12436 and then Ekind_In
(Target_Type
, E_General_Access_Type
,
12437 E_Anonymous_Access_Type
)
12438 and then Is_Interface
(Directly_Designated_Type
(Target_Type
))
12440 -- Check the static accessibility rule of 4.6(17). Note that the
12441 -- check is not enforced when within an instance body, since the
12442 -- RM requires such cases to be caught at run time.
12444 -- If the operand is a rewriting of an allocator no check is needed
12445 -- because there are no accessibility issues.
12447 if Nkind
(Original_Node
(N
)) = N_Allocator
then
12450 elsif Ekind
(Target_Type
) /= E_Anonymous_Access_Type
then
12451 if Type_Access_Level
(Opnd_Type
) >
12452 Deepest_Type_Access_Level
(Target_Type
)
12454 -- In an instance, this is a run-time check, but one we know
12455 -- will fail, so generate an appropriate warning. The raise
12456 -- will be generated by Expand_N_Type_Conversion.
12458 if In_Instance_Body
then
12459 Error_Msg_Warn
:= SPARK_Mode
/= On
;
12461 ("cannot convert local pointer to non-local access type<<",
12463 Conversion_Error_N
("\Program_Error [<<", Operand
);
12467 ("cannot convert local pointer to non-local access type",
12472 -- Special accessibility checks are needed in the case of access
12473 -- discriminants declared for a limited type.
12475 elsif Ekind
(Opnd_Type
) = E_Anonymous_Access_Type
12476 and then not Is_Local_Anonymous_Access
(Opnd_Type
)
12478 -- When the operand is a selected access discriminant the check
12479 -- needs to be made against the level of the object denoted by
12480 -- the prefix of the selected name (Object_Access_Level handles
12481 -- checking the prefix of the operand for this case).
12483 if Nkind
(Operand
) = N_Selected_Component
12484 and then Object_Access_Level
(Operand
) >
12485 Deepest_Type_Access_Level
(Target_Type
)
12487 -- In an instance, this is a run-time check, but one we know
12488 -- will fail, so generate an appropriate warning. The raise
12489 -- will be generated by Expand_N_Type_Conversion.
12491 if In_Instance_Body
then
12492 Error_Msg_Warn
:= SPARK_Mode
/= On
;
12494 ("cannot convert access discriminant to non-local "
12495 & "access type<<", Operand
);
12496 Conversion_Error_N
("\Program_Error [<<", Operand
);
12498 -- Real error if not in instance body
12502 ("cannot convert access discriminant to non-local "
12503 & "access type", Operand
);
12508 -- The case of a reference to an access discriminant from
12509 -- within a limited type declaration (which will appear as
12510 -- a discriminal) is always illegal because the level of the
12511 -- discriminant is considered to be deeper than any (nameable)
12514 if Is_Entity_Name
(Operand
)
12515 and then not Is_Local_Anonymous_Access
(Opnd_Type
)
12517 Ekind_In
(Entity
(Operand
), E_In_Parameter
, E_Constant
)
12518 and then Present
(Discriminal_Link
(Entity
(Operand
)))
12521 ("discriminant has deeper accessibility level than target",
12530 -- General and anonymous access types
12532 elsif Ekind_In
(Target_Type
, E_General_Access_Type
,
12533 E_Anonymous_Access_Type
)
12536 (Is_Access_Type
(Opnd_Type
)
12538 Ekind_In
(Opnd_Type
, E_Access_Subprogram_Type
,
12539 E_Access_Protected_Subprogram_Type
),
12540 "must be an access-to-object type")
12542 if Is_Access_Constant
(Opnd_Type
)
12543 and then not Is_Access_Constant
(Target_Type
)
12546 ("access-to-constant operand type not allowed", Operand
);
12550 -- Check the static accessibility rule of 4.6(17). Note that the
12551 -- check is not enforced when within an instance body, since the RM
12552 -- requires such cases to be caught at run time.
12554 if Ekind
(Target_Type
) /= E_Anonymous_Access_Type
12555 or else Is_Local_Anonymous_Access
(Target_Type
)
12556 or else Nkind
(Associated_Node_For_Itype
(Target_Type
)) =
12557 N_Object_Declaration
12559 -- Ada 2012 (AI05-0149): Perform legality checking on implicit
12560 -- conversions from an anonymous access type to a named general
12561 -- access type. Such conversions are not allowed in the case of
12562 -- access parameters and stand-alone objects of an anonymous
12563 -- access type. The implicit conversion case is recognized by
12564 -- testing that Comes_From_Source is False and that it's been
12565 -- rewritten. The Comes_From_Source test isn't sufficient because
12566 -- nodes in inlined calls to predefined library routines can have
12567 -- Comes_From_Source set to False. (Is there a better way to test
12568 -- for implicit conversions???)
12570 if Ada_Version
>= Ada_2012
12571 and then not Comes_From_Source
(N
)
12572 and then N
/= Original_Node
(N
)
12573 and then Ekind
(Target_Type
) = E_General_Access_Type
12574 and then Ekind
(Opnd_Type
) = E_Anonymous_Access_Type
12576 if Is_Itype
(Opnd_Type
) then
12578 -- Implicit conversions aren't allowed for objects of an
12579 -- anonymous access type, since such objects have nonstatic
12580 -- levels in Ada 2012.
12582 if Nkind
(Associated_Node_For_Itype
(Opnd_Type
)) =
12583 N_Object_Declaration
12586 ("implicit conversion of stand-alone anonymous "
12587 & "access object not allowed", Operand
);
12590 -- Implicit conversions aren't allowed for anonymous access
12591 -- parameters. The "not Is_Local_Anonymous_Access_Type" test
12592 -- is done to exclude anonymous access results.
12594 elsif not Is_Local_Anonymous_Access
(Opnd_Type
)
12595 and then Nkind_In
(Associated_Node_For_Itype
(Opnd_Type
),
12596 N_Function_Specification
,
12597 N_Procedure_Specification
)
12600 ("implicit conversion of anonymous access formal "
12601 & "not allowed", Operand
);
12604 -- This is a case where there's an enclosing object whose
12605 -- to which the "statically deeper than" relationship does
12606 -- not apply (such as an access discriminant selected from
12607 -- a dereference of an access parameter).
12609 elsif Object_Access_Level
(Operand
)
12610 = Scope_Depth
(Standard_Standard
)
12613 ("implicit conversion of anonymous access value "
12614 & "not allowed", Operand
);
12617 -- In other cases, the level of the operand's type must be
12618 -- statically less deep than that of the target type, else
12619 -- implicit conversion is disallowed (by RM12-8.6(27.1/3)).
12621 elsif Type_Access_Level
(Opnd_Type
) >
12622 Deepest_Type_Access_Level
(Target_Type
)
12625 ("implicit conversion of anonymous access value "
12626 & "violates accessibility", Operand
);
12631 elsif Type_Access_Level
(Opnd_Type
) >
12632 Deepest_Type_Access_Level
(Target_Type
)
12634 -- In an instance, this is a run-time check, but one we know
12635 -- will fail, so generate an appropriate warning. The raise
12636 -- will be generated by Expand_N_Type_Conversion.
12638 if In_Instance_Body
then
12639 Error_Msg_Warn
:= SPARK_Mode
/= On
;
12641 ("cannot convert local pointer to non-local access type<<",
12643 Conversion_Error_N
("\Program_Error [<<", Operand
);
12645 -- If not in an instance body, this is a real error
12648 -- Avoid generation of spurious error message
12650 if not Error_Posted
(N
) then
12652 ("cannot convert local pointer to non-local access type",
12659 -- Special accessibility checks are needed in the case of access
12660 -- discriminants declared for a limited type.
12662 elsif Ekind
(Opnd_Type
) = E_Anonymous_Access_Type
12663 and then not Is_Local_Anonymous_Access
(Opnd_Type
)
12665 -- When the operand is a selected access discriminant the check
12666 -- needs to be made against the level of the object denoted by
12667 -- the prefix of the selected name (Object_Access_Level handles
12668 -- checking the prefix of the operand for this case).
12670 if Nkind
(Operand
) = N_Selected_Component
12671 and then Object_Access_Level
(Operand
) >
12672 Deepest_Type_Access_Level
(Target_Type
)
12674 -- In an instance, this is a run-time check, but one we know
12675 -- will fail, so generate an appropriate warning. The raise
12676 -- will be generated by Expand_N_Type_Conversion.
12678 if In_Instance_Body
then
12679 Error_Msg_Warn
:= SPARK_Mode
/= On
;
12681 ("cannot convert access discriminant to non-local "
12682 & "access type<<", Operand
);
12683 Conversion_Error_N
("\Program_Error [<<", Operand
);
12685 -- If not in an instance body, this is a real error
12689 ("cannot convert access discriminant to non-local "
12690 & "access type", Operand
);
12695 -- The case of a reference to an access discriminant from
12696 -- within a limited type declaration (which will appear as
12697 -- a discriminal) is always illegal because the level of the
12698 -- discriminant is considered to be deeper than any (nameable)
12701 if Is_Entity_Name
(Operand
)
12703 Ekind_In
(Entity
(Operand
), E_In_Parameter
, E_Constant
)
12704 and then Present
(Discriminal_Link
(Entity
(Operand
)))
12707 ("discriminant has deeper accessibility level than target",
12714 -- In the presence of limited_with clauses we have to use nonlimited
12715 -- views, if available.
12717 Check_Limited
: declare
12718 function Full_Designated_Type
(T
: Entity_Id
) return Entity_Id
;
12719 -- Helper function to handle limited views
12721 --------------------------
12722 -- Full_Designated_Type --
12723 --------------------------
12725 function Full_Designated_Type
(T
: Entity_Id
) return Entity_Id
is
12726 Desig
: constant Entity_Id
:= Designated_Type
(T
);
12729 -- Handle the limited view of a type
12731 if From_Limited_With
(Desig
)
12732 and then Has_Non_Limited_View
(Desig
)
12734 return Available_View
(Desig
);
12738 end Full_Designated_Type
;
12740 -- Local Declarations
12742 Target
: constant Entity_Id
:= Full_Designated_Type
(Target_Type
);
12743 Opnd
: constant Entity_Id
:= Full_Designated_Type
(Opnd_Type
);
12745 Same_Base
: constant Boolean :=
12746 Base_Type
(Target
) = Base_Type
(Opnd
);
12748 -- Start of processing for Check_Limited
12751 if Is_Tagged_Type
(Target
) then
12752 return Valid_Tagged_Conversion
(Target
, Opnd
);
12755 if not Same_Base
then
12756 Conversion_Error_NE
12757 ("target designated type not compatible with }",
12758 N
, Base_Type
(Opnd
));
12761 -- Ada 2005 AI-384: legality rule is symmetric in both
12762 -- designated types. The conversion is legal (with possible
12763 -- constraint check) if either designated type is
12766 elsif Subtypes_Statically_Match
(Target
, Opnd
)
12768 (Has_Discriminants
(Target
)
12770 (not Is_Constrained
(Opnd
)
12771 or else not Is_Constrained
(Target
)))
12773 -- Special case, if Value_Size has been used to make the
12774 -- sizes different, the conversion is not allowed even
12775 -- though the subtypes statically match.
12777 if Known_Static_RM_Size
(Target
)
12778 and then Known_Static_RM_Size
(Opnd
)
12779 and then RM_Size
(Target
) /= RM_Size
(Opnd
)
12781 Conversion_Error_NE
12782 ("target designated subtype not compatible with }",
12784 Conversion_Error_NE
12785 ("\because sizes of the two designated subtypes differ",
12789 -- Normal case where conversion is allowed
12797 ("target designated subtype not compatible with }",
12804 -- Access to subprogram types. If the operand is an access parameter,
12805 -- the type has a deeper accessibility that any master, and cannot be
12806 -- assigned. We must make an exception if the conversion is part of an
12807 -- assignment and the target is the return object of an extended return
12808 -- statement, because in that case the accessibility check takes place
12809 -- after the return.
12811 elsif Is_Access_Subprogram_Type
(Target_Type
)
12813 -- Note: this test of Opnd_Type is there to prevent entering this
12814 -- branch in the case of a remote access to subprogram type, which
12815 -- is internally represented as an E_Record_Type.
12817 and then Is_Access_Type
(Opnd_Type
)
12819 if Ekind
(Base_Type
(Opnd_Type
)) = E_Anonymous_Access_Subprogram_Type
12820 and then Is_Entity_Name
(Operand
)
12821 and then Ekind
(Entity
(Operand
)) = E_In_Parameter
12823 (Nkind
(Parent
(N
)) /= N_Assignment_Statement
12824 or else not Is_Entity_Name
(Name
(Parent
(N
)))
12825 or else not Is_Return_Object
(Entity
(Name
(Parent
(N
)))))
12828 ("illegal attempt to store anonymous access to subprogram",
12831 ("\value has deeper accessibility than any master "
12832 & "(RM 3.10.2 (13))",
12836 ("\use named access type for& instead of access parameter",
12837 Operand
, Entity
(Operand
));
12840 -- Check that the designated types are subtype conformant
12842 Check_Subtype_Conformant
(New_Id
=> Designated_Type
(Target_Type
),
12843 Old_Id
=> Designated_Type
(Opnd_Type
),
12846 -- Check the static accessibility rule of 4.6(20)
12848 if Type_Access_Level
(Opnd_Type
) >
12849 Deepest_Type_Access_Level
(Target_Type
)
12852 ("operand type has deeper accessibility level than target",
12855 -- Check that if the operand type is declared in a generic body,
12856 -- then the target type must be declared within that same body
12857 -- (enforces last sentence of 4.6(20)).
12859 elsif Present
(Enclosing_Generic_Body
(Opnd_Type
)) then
12861 O_Gen
: constant Node_Id
:=
12862 Enclosing_Generic_Body
(Opnd_Type
);
12867 T_Gen
:= Enclosing_Generic_Body
(Target_Type
);
12868 while Present
(T_Gen
) and then T_Gen
/= O_Gen
loop
12869 T_Gen
:= Enclosing_Generic_Body
(T_Gen
);
12872 if T_Gen
/= O_Gen
then
12874 ("target type must be declared in same generic body "
12875 & "as operand type", N
);
12882 -- Remote access to subprogram types
12884 elsif Is_Remote_Access_To_Subprogram_Type
(Target_Type
)
12885 and then Is_Remote_Access_To_Subprogram_Type
(Opnd_Type
)
12887 -- It is valid to convert from one RAS type to another provided
12888 -- that their specification statically match.
12890 -- Note: at this point, remote access to subprogram types have been
12891 -- expanded to their E_Record_Type representation, and we need to
12892 -- go back to the original access type definition using the
12893 -- Corresponding_Remote_Type attribute in order to check that the
12894 -- designated profiles match.
12896 pragma Assert
(Ekind
(Target_Type
) = E_Record_Type
);
12897 pragma Assert
(Ekind
(Opnd_Type
) = E_Record_Type
);
12899 Check_Subtype_Conformant
12901 Designated_Type
(Corresponding_Remote_Type
(Target_Type
)),
12903 Designated_Type
(Corresponding_Remote_Type
(Opnd_Type
)),
12908 -- If it was legal in the generic, it's legal in the instance
12910 elsif In_Instance_Body
then
12913 -- If both are tagged types, check legality of view conversions
12915 elsif Is_Tagged_Type
(Target_Type
)
12917 Is_Tagged_Type
(Opnd_Type
)
12919 return Valid_Tagged_Conversion
(Target_Type
, Opnd_Type
);
12921 -- Types derived from the same root type are convertible
12923 elsif Root_Type
(Target_Type
) = Root_Type
(Opnd_Type
) then
12926 -- In an instance or an inlined body, there may be inconsistent views of
12927 -- the same type, or of types derived from a common root.
12929 elsif (In_Instance
or In_Inlined_Body
)
12931 Root_Type
(Underlying_Type
(Target_Type
)) =
12932 Root_Type
(Underlying_Type
(Opnd_Type
))
12936 -- Special check for common access type error case
12938 elsif Ekind
(Target_Type
) = E_Access_Type
12939 and then Is_Access_Type
(Opnd_Type
)
12941 Conversion_Error_N
("target type must be general access type!", N
);
12942 Conversion_Error_NE
-- CODEFIX
12943 ("add ALL to }!", N
, Target_Type
);
12946 -- Here we have a real conversion error
12949 Conversion_Error_NE
12950 ("invalid conversion, not compatible with }", N
, Opnd_Type
);
12953 end Valid_Conversion
;