[gcc/testsuite]
[official-gcc.git] / gcc / ada / sem_res.adb
blobaf1a4e7b32e0f1469086eace199009180b772614
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ R E S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2017, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Debug_A; use Debug_A;
30 with Einfo; use Einfo;
31 with Errout; use Errout;
32 with Expander; use Expander;
33 with Exp_Disp; use Exp_Disp;
34 with Exp_Ch6; use Exp_Ch6;
35 with Exp_Ch7; use Exp_Ch7;
36 with Exp_Tss; use Exp_Tss;
37 with Exp_Util; use Exp_Util;
38 with Freeze; use Freeze;
39 with Ghost; use Ghost;
40 with Inline; use Inline;
41 with Itypes; use Itypes;
42 with Lib; use Lib;
43 with Lib.Xref; use Lib.Xref;
44 with Namet; use Namet;
45 with Nmake; use Nmake;
46 with Nlists; use Nlists;
47 with Opt; use Opt;
48 with Output; use Output;
49 with Par_SCO; use Par_SCO;
50 with Restrict; use Restrict;
51 with Rident; use Rident;
52 with Rtsfind; use Rtsfind;
53 with Sem; use Sem;
54 with Sem_Aux; use Sem_Aux;
55 with Sem_Aggr; use Sem_Aggr;
56 with Sem_Attr; use Sem_Attr;
57 with Sem_Cat; use Sem_Cat;
58 with Sem_Ch4; use Sem_Ch4;
59 with Sem_Ch3; use Sem_Ch3;
60 with Sem_Ch6; use Sem_Ch6;
61 with Sem_Ch8; use Sem_Ch8;
62 with Sem_Ch13; use Sem_Ch13;
63 with Sem_Dim; use Sem_Dim;
64 with Sem_Disp; use Sem_Disp;
65 with Sem_Dist; use Sem_Dist;
66 with Sem_Elim; use Sem_Elim;
67 with Sem_Elab; use Sem_Elab;
68 with Sem_Eval; use Sem_Eval;
69 with Sem_Intr; use Sem_Intr;
70 with Sem_Util; use Sem_Util;
71 with Targparm; use Targparm;
72 with Sem_Type; use Sem_Type;
73 with Sem_Warn; use Sem_Warn;
74 with Sinfo; use Sinfo;
75 with Sinfo.CN; use Sinfo.CN;
76 with Snames; use Snames;
77 with Stand; use Stand;
78 with Stringt; use Stringt;
79 with Style; use Style;
80 with Tbuild; use Tbuild;
81 with Uintp; use Uintp;
82 with Urealp; use Urealp;
84 package body Sem_Res is
86 -----------------------
87 -- Local Subprograms --
88 -----------------------
90 -- Second pass (top-down) type checking and overload resolution procedures
91 -- Typ is the type required by context. These procedures propagate the
92 -- type information recursively to the descendants of N. If the node is not
93 -- overloaded, its Etype is established in the first pass. If overloaded,
94 -- the Resolve routines set the correct type. For arithmetic operators, the
95 -- Etype is the base type of the context.
97 -- Note that Resolve_Attribute is separated off in Sem_Attr
99 procedure Check_Discriminant_Use (N : Node_Id);
100 -- Enforce the restrictions on the use of discriminants when constraining
101 -- a component of a discriminated type (record or concurrent type).
103 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id);
104 -- Given a node for an operator associated with type T, check that the
105 -- operator is visible. Operators all of whose operands are universal must
106 -- be checked for visibility during resolution because their type is not
107 -- determinable based on their operands.
109 procedure Check_Fully_Declared_Prefix
110 (Typ : Entity_Id;
111 Pref : Node_Id);
112 -- Check that the type of the prefix of a dereference is not incomplete
114 function Check_Infinite_Recursion (N : Node_Id) return Boolean;
115 -- Given a call node, N, which is known to occur immediately within the
116 -- subprogram being called, determines whether it is a detectable case of
117 -- an infinite recursion, and if so, outputs appropriate messages. Returns
118 -- True if an infinite recursion is detected, and False otherwise.
120 procedure Check_Initialization_Call (N : Entity_Id; Nam : Entity_Id);
121 -- If the type of the object being initialized uses the secondary stack
122 -- directly or indirectly, create a transient scope for the call to the
123 -- init proc. This is because we do not create transient scopes for the
124 -- initialization of individual components within the init proc itself.
125 -- Could be optimized away perhaps?
127 procedure Check_No_Direct_Boolean_Operators (N : Node_Id);
128 -- N is the node for a logical operator. If the operator is predefined, and
129 -- the root type of the operands is Standard.Boolean, then a check is made
130 -- for restriction No_Direct_Boolean_Operators. This procedure also handles
131 -- the style check for Style_Check_Boolean_And_Or.
133 function Is_Atomic_Ref_With_Address (N : Node_Id) return Boolean;
134 -- N is either an indexed component or a selected component. This function
135 -- returns true if the prefix refers to an object that has an address
136 -- clause (the case in which we may want to issue a warning).
138 function Is_Definite_Access_Type (E : Entity_Id) return Boolean;
139 -- Determine whether E is an access type declared by an access declaration,
140 -- and not an (anonymous) allocator type.
142 function Is_Predefined_Op (Nam : Entity_Id) return Boolean;
143 -- Utility to check whether the entity for an operator is a predefined
144 -- operator, in which case the expression is left as an operator in the
145 -- tree (else it is rewritten into a call). An instance of an intrinsic
146 -- conversion operation may be given an operator name, but is not treated
147 -- like an operator. Note that an operator that is an imported back-end
148 -- builtin has convention Intrinsic, but is expected to be rewritten into
149 -- a call, so such an operator is not treated as predefined by this
150 -- predicate.
152 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id);
153 -- If a default expression in entry call N depends on the discriminants
154 -- of the task, it must be replaced with a reference to the discriminant
155 -- of the task being called.
157 procedure Resolve_Op_Concat_Arg
158 (N : Node_Id;
159 Arg : Node_Id;
160 Typ : Entity_Id;
161 Is_Comp : Boolean);
162 -- Internal procedure for Resolve_Op_Concat to resolve one operand of
163 -- concatenation operator. The operand is either of the array type or of
164 -- the component type. If the operand is an aggregate, and the component
165 -- type is composite, this is ambiguous if component type has aggregates.
167 procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id);
168 -- Does the first part of the work of Resolve_Op_Concat
170 procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id);
171 -- Does the "rest" of the work of Resolve_Op_Concat, after the left operand
172 -- has been resolved. See Resolve_Op_Concat for details.
174 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id);
175 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id);
176 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id);
177 procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id);
178 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id);
179 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id);
180 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id);
181 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id);
182 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id);
183 procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id);
184 procedure Resolve_If_Expression (N : Node_Id; Typ : Entity_Id);
185 procedure Resolve_Generalized_Indexing (N : Node_Id; Typ : Entity_Id);
186 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id);
187 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id);
188 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id);
189 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id);
190 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id);
191 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id);
192 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id);
193 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id);
194 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id);
195 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id);
196 procedure Resolve_Raise_Expression (N : Node_Id; Typ : Entity_Id);
197 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id);
198 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id);
199 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id);
200 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id);
201 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id);
202 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id);
203 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id);
204 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id);
205 procedure Resolve_Target_Name (N : Node_Id; Typ : Entity_Id);
206 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id);
207 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id);
208 procedure Resolve_Unchecked_Expression (N : Node_Id; Typ : Entity_Id);
209 procedure Resolve_Unchecked_Type_Conversion (N : Node_Id; Typ : Entity_Id);
211 function Operator_Kind
212 (Op_Name : Name_Id;
213 Is_Binary : Boolean) return Node_Kind;
214 -- Utility to map the name of an operator into the corresponding Node. Used
215 -- by other node rewriting procedures.
217 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id);
218 -- Resolve actuals of call, and add default expressions for missing ones.
219 -- N is the Node_Id for the subprogram call, and Nam is the entity of the
220 -- called subprogram.
222 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id);
223 -- Called from Resolve_Call, when the prefix denotes an entry or element
224 -- of entry family. Actuals are resolved as for subprograms, and the node
225 -- is rebuilt as an entry call. Also called for protected operations. Typ
226 -- is the context type, which is used when the operation is a protected
227 -- function with no arguments, and the return value is indexed.
229 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id);
230 -- A call to a user-defined intrinsic operator is rewritten as a call to
231 -- the corresponding predefined operator, with suitable conversions. Note
232 -- that this applies only for intrinsic operators that denote predefined
233 -- operators, not ones that are intrinsic imports of back-end builtins.
235 procedure Resolve_Intrinsic_Unary_Operator (N : Node_Id; Typ : Entity_Id);
236 -- Ditto, for arithmetic unary operators
238 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id);
239 -- If an operator node resolves to a call to a user-defined operator,
240 -- rewrite the node as a function call.
242 procedure Make_Call_Into_Operator
243 (N : Node_Id;
244 Typ : Entity_Id;
245 Op_Id : Entity_Id);
246 -- Inverse transformation: if an operator is given in functional notation,
247 -- then after resolving the node, transform into an operator node, so that
248 -- operands are resolved properly. Recall that predefined operators do not
249 -- have a full signature and special resolution rules apply.
251 procedure Rewrite_Renamed_Operator
252 (N : Node_Id;
253 Op : Entity_Id;
254 Typ : Entity_Id);
255 -- An operator can rename another, e.g. in an instantiation. In that
256 -- case, the proper operator node must be constructed and resolved.
258 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id);
259 -- The String_Literal_Subtype is built for all strings that are not
260 -- operands of a static concatenation operation. If the argument is not
261 -- a N_String_Literal node, then the call has no effect.
263 procedure Set_Slice_Subtype (N : Node_Id);
264 -- Build subtype of array type, with the range specified by the slice
266 procedure Simplify_Type_Conversion (N : Node_Id);
267 -- Called after N has been resolved and evaluated, but before range checks
268 -- have been applied. Currently simplifies a combination of floating-point
269 -- to integer conversion and Rounding or Truncation attribute.
271 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id;
272 -- A universal_fixed expression in an universal context is unambiguous if
273 -- there is only one applicable fixed point type. Determining whether there
274 -- is only one requires a search over all visible entities, and happens
275 -- only in very pathological cases (see 6115-006).
277 -------------------------
278 -- Ambiguous_Character --
279 -------------------------
281 procedure Ambiguous_Character (C : Node_Id) is
282 E : Entity_Id;
284 begin
285 if Nkind (C) = N_Character_Literal then
286 Error_Msg_N ("ambiguous character literal", C);
288 -- First the ones in Standard
290 Error_Msg_N ("\\possible interpretation: Character!", C);
291 Error_Msg_N ("\\possible interpretation: Wide_Character!", C);
293 -- Include Wide_Wide_Character in Ada 2005 mode
295 if Ada_Version >= Ada_2005 then
296 Error_Msg_N ("\\possible interpretation: Wide_Wide_Character!", C);
297 end if;
299 -- Now any other types that match
301 E := Current_Entity (C);
302 while Present (E) loop
303 Error_Msg_NE ("\\possible interpretation:}!", C, Etype (E));
304 E := Homonym (E);
305 end loop;
306 end if;
307 end Ambiguous_Character;
309 -------------------------
310 -- Analyze_And_Resolve --
311 -------------------------
313 procedure Analyze_And_Resolve (N : Node_Id) is
314 begin
315 Analyze (N);
316 Resolve (N);
317 end Analyze_And_Resolve;
319 procedure Analyze_And_Resolve (N : Node_Id; Typ : Entity_Id) is
320 begin
321 Analyze (N);
322 Resolve (N, Typ);
323 end Analyze_And_Resolve;
325 -- Versions with check(s) suppressed
327 procedure Analyze_And_Resolve
328 (N : Node_Id;
329 Typ : Entity_Id;
330 Suppress : Check_Id)
332 Scop : constant Entity_Id := Current_Scope;
334 begin
335 if Suppress = All_Checks then
336 declare
337 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
338 begin
339 Scope_Suppress.Suppress := (others => True);
340 Analyze_And_Resolve (N, Typ);
341 Scope_Suppress.Suppress := Sva;
342 end;
344 else
345 declare
346 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
347 begin
348 Scope_Suppress.Suppress (Suppress) := True;
349 Analyze_And_Resolve (N, Typ);
350 Scope_Suppress.Suppress (Suppress) := Svg;
351 end;
352 end if;
354 if Current_Scope /= Scop
355 and then Scope_Is_Transient
356 then
357 -- This can only happen if a transient scope was created for an inner
358 -- expression, which will be removed upon completion of the analysis
359 -- of an enclosing construct. The transient scope must have the
360 -- suppress status of the enclosing environment, not of this Analyze
361 -- call.
363 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
364 Scope_Suppress;
365 end if;
366 end Analyze_And_Resolve;
368 procedure Analyze_And_Resolve
369 (N : Node_Id;
370 Suppress : Check_Id)
372 Scop : constant Entity_Id := Current_Scope;
374 begin
375 if Suppress = All_Checks then
376 declare
377 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
378 begin
379 Scope_Suppress.Suppress := (others => True);
380 Analyze_And_Resolve (N);
381 Scope_Suppress.Suppress := Sva;
382 end;
384 else
385 declare
386 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
387 begin
388 Scope_Suppress.Suppress (Suppress) := True;
389 Analyze_And_Resolve (N);
390 Scope_Suppress.Suppress (Suppress) := Svg;
391 end;
392 end if;
394 if Current_Scope /= Scop and then Scope_Is_Transient then
395 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
396 Scope_Suppress;
397 end if;
398 end Analyze_And_Resolve;
400 ----------------------------
401 -- Check_Discriminant_Use --
402 ----------------------------
404 procedure Check_Discriminant_Use (N : Node_Id) is
405 PN : constant Node_Id := Parent (N);
406 Disc : constant Entity_Id := Entity (N);
407 P : Node_Id;
408 D : Node_Id;
410 begin
411 -- Any use in a spec-expression is legal
413 if In_Spec_Expression then
414 null;
416 elsif Nkind (PN) = N_Range then
418 -- Discriminant cannot be used to constrain a scalar type
420 P := Parent (PN);
422 if Nkind (P) = N_Range_Constraint
423 and then Nkind (Parent (P)) = N_Subtype_Indication
424 and then Nkind (Parent (Parent (P))) = N_Component_Definition
425 then
426 Error_Msg_N ("discriminant cannot constrain scalar type", N);
428 elsif Nkind (P) = N_Index_Or_Discriminant_Constraint then
430 -- The following check catches the unusual case where a
431 -- discriminant appears within an index constraint that is part
432 -- of a larger expression within a constraint on a component,
433 -- e.g. "C : Int range 1 .. F (new A(1 .. D))". For now we only
434 -- check case of record components, and note that a similar check
435 -- should also apply in the case of discriminant constraints
436 -- below. ???
438 -- Note that the check for N_Subtype_Declaration below is to
439 -- detect the valid use of discriminants in the constraints of a
440 -- subtype declaration when this subtype declaration appears
441 -- inside the scope of a record type (which is syntactically
442 -- illegal, but which may be created as part of derived type
443 -- processing for records). See Sem_Ch3.Build_Derived_Record_Type
444 -- for more info.
446 if Ekind (Current_Scope) = E_Record_Type
447 and then Scope (Disc) = Current_Scope
448 and then not
449 (Nkind (Parent (P)) = N_Subtype_Indication
450 and then
451 Nkind_In (Parent (Parent (P)), N_Component_Definition,
452 N_Subtype_Declaration)
453 and then Paren_Count (N) = 0)
454 then
455 Error_Msg_N
456 ("discriminant must appear alone in component constraint", N);
457 return;
458 end if;
460 -- Detect a common error:
462 -- type R (D : Positive := 100) is record
463 -- Name : String (1 .. D);
464 -- end record;
466 -- The default value causes an object of type R to be allocated
467 -- with room for Positive'Last characters. The RM does not mandate
468 -- the allocation of the maximum size, but that is what GNAT does
469 -- so we should warn the programmer that there is a problem.
471 Check_Large : declare
472 SI : Node_Id;
473 T : Entity_Id;
474 TB : Node_Id;
475 CB : Entity_Id;
477 function Large_Storage_Type (T : Entity_Id) return Boolean;
478 -- Return True if type T has a large enough range that any
479 -- array whose index type covered the whole range of the type
480 -- would likely raise Storage_Error.
482 ------------------------
483 -- Large_Storage_Type --
484 ------------------------
486 function Large_Storage_Type (T : Entity_Id) return Boolean is
487 begin
488 -- The type is considered large if its bounds are known at
489 -- compile time and if it requires at least as many bits as
490 -- a Positive to store the possible values.
492 return Compile_Time_Known_Value (Type_Low_Bound (T))
493 and then Compile_Time_Known_Value (Type_High_Bound (T))
494 and then
495 Minimum_Size (T, Biased => True) >=
496 RM_Size (Standard_Positive);
497 end Large_Storage_Type;
499 -- Start of processing for Check_Large
501 begin
502 -- Check that the Disc has a large range
504 if not Large_Storage_Type (Etype (Disc)) then
505 goto No_Danger;
506 end if;
508 -- If the enclosing type is limited, we allocate only the
509 -- default value, not the maximum, and there is no need for
510 -- a warning.
512 if Is_Limited_Type (Scope (Disc)) then
513 goto No_Danger;
514 end if;
516 -- Check that it is the high bound
518 if N /= High_Bound (PN)
519 or else No (Discriminant_Default_Value (Disc))
520 then
521 goto No_Danger;
522 end if;
524 -- Check the array allows a large range at this bound. First
525 -- find the array
527 SI := Parent (P);
529 if Nkind (SI) /= N_Subtype_Indication then
530 goto No_Danger;
531 end if;
533 T := Entity (Subtype_Mark (SI));
535 if not Is_Array_Type (T) then
536 goto No_Danger;
537 end if;
539 -- Next, find the dimension
541 TB := First_Index (T);
542 CB := First (Constraints (P));
543 while True
544 and then Present (TB)
545 and then Present (CB)
546 and then CB /= PN
547 loop
548 Next_Index (TB);
549 Next (CB);
550 end loop;
552 if CB /= PN then
553 goto No_Danger;
554 end if;
556 -- Now, check the dimension has a large range
558 if not Large_Storage_Type (Etype (TB)) then
559 goto No_Danger;
560 end if;
562 -- Warn about the danger
564 Error_Msg_N
565 ("??creation of & object may raise Storage_Error!",
566 Scope (Disc));
568 <<No_Danger>>
569 null;
571 end Check_Large;
572 end if;
574 -- Legal case is in index or discriminant constraint
576 elsif Nkind_In (PN, N_Index_Or_Discriminant_Constraint,
577 N_Discriminant_Association)
578 then
579 if Paren_Count (N) > 0 then
580 Error_Msg_N
581 ("discriminant in constraint must appear alone", N);
583 elsif Nkind (N) = N_Expanded_Name
584 and then Comes_From_Source (N)
585 then
586 Error_Msg_N
587 ("discriminant must appear alone as a direct name", N);
588 end if;
590 return;
592 -- Otherwise, context is an expression. It should not be within (i.e. a
593 -- subexpression of) a constraint for a component.
595 else
596 D := PN;
597 P := Parent (PN);
598 while not Nkind_In (P, N_Component_Declaration,
599 N_Subtype_Indication,
600 N_Entry_Declaration)
601 loop
602 D := P;
603 P := Parent (P);
604 exit when No (P);
605 end loop;
607 -- If the discriminant is used in an expression that is a bound of a
608 -- scalar type, an Itype is created and the bounds are attached to
609 -- its range, not to the original subtype indication. Such use is of
610 -- course a double fault.
612 if (Nkind (P) = N_Subtype_Indication
613 and then Nkind_In (Parent (P), N_Component_Definition,
614 N_Derived_Type_Definition)
615 and then D = Constraint (P))
617 -- The constraint itself may be given by a subtype indication,
618 -- rather than by a more common discrete range.
620 or else (Nkind (P) = N_Subtype_Indication
621 and then
622 Nkind (Parent (P)) = N_Index_Or_Discriminant_Constraint)
623 or else Nkind (P) = N_Entry_Declaration
624 or else Nkind (D) = N_Defining_Identifier
625 then
626 Error_Msg_N
627 ("discriminant in constraint must appear alone", N);
628 end if;
629 end if;
630 end Check_Discriminant_Use;
632 --------------------------------
633 -- Check_For_Visible_Operator --
634 --------------------------------
636 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id) is
637 begin
638 if Is_Invisible_Operator (N, T) then
639 Error_Msg_NE -- CODEFIX
640 ("operator for} is not directly visible!", N, First_Subtype (T));
641 Error_Msg_N -- CODEFIX
642 ("use clause would make operation legal!", N);
643 end if;
644 end Check_For_Visible_Operator;
646 ----------------------------------
647 -- Check_Fully_Declared_Prefix --
648 ----------------------------------
650 procedure Check_Fully_Declared_Prefix
651 (Typ : Entity_Id;
652 Pref : Node_Id)
654 begin
655 -- Check that the designated type of the prefix of a dereference is
656 -- not an incomplete type. This cannot be done unconditionally, because
657 -- dereferences of private types are legal in default expressions. This
658 -- case is taken care of in Check_Fully_Declared, called below. There
659 -- are also 2005 cases where it is legal for the prefix to be unfrozen.
661 -- This consideration also applies to similar checks for allocators,
662 -- qualified expressions, and type conversions.
664 -- An additional exception concerns other per-object expressions that
665 -- are not directly related to component declarations, in particular
666 -- representation pragmas for tasks. These will be per-object
667 -- expressions if they depend on discriminants or some global entity.
668 -- If the task has access discriminants, the designated type may be
669 -- incomplete at the point the expression is resolved. This resolution
670 -- takes place within the body of the initialization procedure, where
671 -- the discriminant is replaced by its discriminal.
673 if Is_Entity_Name (Pref)
674 and then Ekind (Entity (Pref)) = E_In_Parameter
675 then
676 null;
678 -- Ada 2005 (AI-326): Tagged incomplete types allowed. The wrong usages
679 -- are handled by Analyze_Access_Attribute, Analyze_Assignment,
680 -- Analyze_Object_Renaming, and Freeze_Entity.
682 elsif Ada_Version >= Ada_2005
683 and then Is_Entity_Name (Pref)
684 and then Is_Access_Type (Etype (Pref))
685 and then Ekind (Directly_Designated_Type (Etype (Pref))) =
686 E_Incomplete_Type
687 and then Is_Tagged_Type (Directly_Designated_Type (Etype (Pref)))
688 then
689 null;
690 else
691 Check_Fully_Declared (Typ, Parent (Pref));
692 end if;
693 end Check_Fully_Declared_Prefix;
695 ------------------------------
696 -- Check_Infinite_Recursion --
697 ------------------------------
699 function Check_Infinite_Recursion (N : Node_Id) return Boolean is
700 P : Node_Id;
701 C : Node_Id;
703 function Same_Argument_List return Boolean;
704 -- Check whether list of actuals is identical to list of formals of
705 -- called function (which is also the enclosing scope).
707 ------------------------
708 -- Same_Argument_List --
709 ------------------------
711 function Same_Argument_List return Boolean is
712 A : Node_Id;
713 F : Entity_Id;
714 Subp : Entity_Id;
716 begin
717 if not Is_Entity_Name (Name (N)) then
718 return False;
719 else
720 Subp := Entity (Name (N));
721 end if;
723 F := First_Formal (Subp);
724 A := First_Actual (N);
725 while Present (F) and then Present (A) loop
726 if not Is_Entity_Name (A) or else Entity (A) /= F then
727 return False;
728 end if;
730 Next_Actual (A);
731 Next_Formal (F);
732 end loop;
734 return True;
735 end Same_Argument_List;
737 -- Start of processing for Check_Infinite_Recursion
739 begin
740 -- Special case, if this is a procedure call and is a call to the
741 -- current procedure with the same argument list, then this is for
742 -- sure an infinite recursion and we insert a call to raise SE.
744 if Is_List_Member (N)
745 and then List_Length (List_Containing (N)) = 1
746 and then Same_Argument_List
747 then
748 declare
749 P : constant Node_Id := Parent (N);
750 begin
751 if Nkind (P) = N_Handled_Sequence_Of_Statements
752 and then Nkind (Parent (P)) = N_Subprogram_Body
753 and then Is_Empty_List (Declarations (Parent (P)))
754 then
755 Error_Msg_Warn := SPARK_Mode /= On;
756 Error_Msg_N ("!infinite recursion<<", N);
757 Error_Msg_N ("\!Storage_Error [<<", N);
758 Insert_Action (N,
759 Make_Raise_Storage_Error (Sloc (N),
760 Reason => SE_Infinite_Recursion));
761 return True;
762 end if;
763 end;
764 end if;
766 -- If not that special case, search up tree, quitting if we reach a
767 -- construct (e.g. a conditional) that tells us that this is not a
768 -- case for an infinite recursion warning.
770 C := N;
771 loop
772 P := Parent (C);
774 -- If no parent, then we were not inside a subprogram, this can for
775 -- example happen when processing certain pragmas in a spec. Just
776 -- return False in this case.
778 if No (P) then
779 return False;
780 end if;
782 -- Done if we get to subprogram body, this is definitely an infinite
783 -- recursion case if we did not find anything to stop us.
785 exit when Nkind (P) = N_Subprogram_Body;
787 -- If appearing in conditional, result is false
789 if Nkind_In (P, N_Or_Else,
790 N_And_Then,
791 N_Case_Expression,
792 N_Case_Statement,
793 N_If_Expression,
794 N_If_Statement)
795 then
796 return False;
798 elsif Nkind (P) = N_Handled_Sequence_Of_Statements
799 and then C /= First (Statements (P))
800 then
801 -- If the call is the expression of a return statement and the
802 -- actuals are identical to the formals, it's worth a warning.
803 -- However, we skip this if there is an immediately preceding
804 -- raise statement, since the call is never executed.
806 -- Furthermore, this corresponds to a common idiom:
808 -- function F (L : Thing) return Boolean is
809 -- begin
810 -- raise Program_Error;
811 -- return F (L);
812 -- end F;
814 -- for generating a stub function
816 if Nkind (Parent (N)) = N_Simple_Return_Statement
817 and then Same_Argument_List
818 then
819 exit when not Is_List_Member (Parent (N));
821 -- OK, return statement is in a statement list, look for raise
823 declare
824 Nod : Node_Id;
826 begin
827 -- Skip past N_Freeze_Entity nodes generated by expansion
829 Nod := Prev (Parent (N));
830 while Present (Nod)
831 and then Nkind (Nod) = N_Freeze_Entity
832 loop
833 Prev (Nod);
834 end loop;
836 -- If no raise statement, give warning. We look at the
837 -- original node, because in the case of "raise ... with
838 -- ...", the node has been transformed into a call.
840 exit when Nkind (Original_Node (Nod)) /= N_Raise_Statement
841 and then
842 (Nkind (Nod) not in N_Raise_xxx_Error
843 or else Present (Condition (Nod)));
844 end;
845 end if;
847 return False;
849 else
850 C := P;
851 end if;
852 end loop;
854 Error_Msg_Warn := SPARK_Mode /= On;
855 Error_Msg_N ("!possible infinite recursion<<", N);
856 Error_Msg_N ("\!??Storage_Error ]<<", N);
858 return True;
859 end Check_Infinite_Recursion;
861 -------------------------------
862 -- Check_Initialization_Call --
863 -------------------------------
865 procedure Check_Initialization_Call (N : Entity_Id; Nam : Entity_Id) is
866 Typ : constant Entity_Id := Etype (First_Formal (Nam));
868 function Uses_SS (T : Entity_Id) return Boolean;
869 -- Check whether the creation of an object of the type will involve
870 -- use of the secondary stack. If T is a record type, this is true
871 -- if the expression for some component uses the secondary stack, e.g.
872 -- through a call to a function that returns an unconstrained value.
873 -- False if T is controlled, because cleanups occur elsewhere.
875 -------------
876 -- Uses_SS --
877 -------------
879 function Uses_SS (T : Entity_Id) return Boolean is
880 Comp : Entity_Id;
881 Expr : Node_Id;
882 Full_Type : Entity_Id := Underlying_Type (T);
884 begin
885 -- Normally we want to use the underlying type, but if it's not set
886 -- then continue with T.
888 if not Present (Full_Type) then
889 Full_Type := T;
890 end if;
892 if Is_Controlled (Full_Type) then
893 return False;
895 elsif Is_Array_Type (Full_Type) then
896 return Uses_SS (Component_Type (Full_Type));
898 elsif Is_Record_Type (Full_Type) then
899 Comp := First_Component (Full_Type);
900 while Present (Comp) loop
901 if Ekind (Comp) = E_Component
902 and then Nkind (Parent (Comp)) = N_Component_Declaration
903 then
904 -- The expression for a dynamic component may be rewritten
905 -- as a dereference, so retrieve original node.
907 Expr := Original_Node (Expression (Parent (Comp)));
909 -- Return True if the expression is a call to a function
910 -- (including an attribute function such as Image, or a
911 -- user-defined operator) with a result that requires a
912 -- transient scope.
914 if (Nkind (Expr) = N_Function_Call
915 or else Nkind (Expr) in N_Op
916 or else (Nkind (Expr) = N_Attribute_Reference
917 and then Present (Expressions (Expr))))
918 and then Requires_Transient_Scope (Etype (Expr))
919 then
920 return True;
922 elsif Uses_SS (Etype (Comp)) then
923 return True;
924 end if;
925 end if;
927 Next_Component (Comp);
928 end loop;
930 return False;
932 else
933 return False;
934 end if;
935 end Uses_SS;
937 -- Start of processing for Check_Initialization_Call
939 begin
940 -- Establish a transient scope if the type needs it
942 if Uses_SS (Typ) then
943 Establish_Transient_Scope (First_Actual (N), Sec_Stack => True);
944 end if;
945 end Check_Initialization_Call;
947 ---------------------------------------
948 -- Check_No_Direct_Boolean_Operators --
949 ---------------------------------------
951 procedure Check_No_Direct_Boolean_Operators (N : Node_Id) is
952 begin
953 if Scope (Entity (N)) = Standard_Standard
954 and then Root_Type (Etype (Left_Opnd (N))) = Standard_Boolean
955 then
956 -- Restriction only applies to original source code
958 if Comes_From_Source (N) then
959 Check_Restriction (No_Direct_Boolean_Operators, N);
960 end if;
961 end if;
963 -- Do style check (but skip if in instance, error is on template)
965 if Style_Check then
966 if not In_Instance then
967 Check_Boolean_Operator (N);
968 end if;
969 end if;
970 end Check_No_Direct_Boolean_Operators;
972 ------------------------------
973 -- Check_Parameterless_Call --
974 ------------------------------
976 procedure Check_Parameterless_Call (N : Node_Id) is
977 Nam : Node_Id;
979 function Prefix_Is_Access_Subp return Boolean;
980 -- If the prefix is of an access_to_subprogram type, the node must be
981 -- rewritten as a call. Ditto if the prefix is overloaded and all its
982 -- interpretations are access to subprograms.
984 ---------------------------
985 -- Prefix_Is_Access_Subp --
986 ---------------------------
988 function Prefix_Is_Access_Subp return Boolean is
989 I : Interp_Index;
990 It : Interp;
992 begin
993 -- If the context is an attribute reference that can apply to
994 -- functions, this is never a parameterless call (RM 4.1.4(6)).
996 if Nkind (Parent (N)) = N_Attribute_Reference
997 and then Nam_In (Attribute_Name (Parent (N)), Name_Address,
998 Name_Code_Address,
999 Name_Access)
1000 then
1001 return False;
1002 end if;
1004 if not Is_Overloaded (N) then
1005 return
1006 Ekind (Etype (N)) = E_Subprogram_Type
1007 and then Base_Type (Etype (Etype (N))) /= Standard_Void_Type;
1008 else
1009 Get_First_Interp (N, I, It);
1010 while Present (It.Typ) loop
1011 if Ekind (It.Typ) /= E_Subprogram_Type
1012 or else Base_Type (Etype (It.Typ)) = Standard_Void_Type
1013 then
1014 return False;
1015 end if;
1017 Get_Next_Interp (I, It);
1018 end loop;
1020 return True;
1021 end if;
1022 end Prefix_Is_Access_Subp;
1024 -- Start of processing for Check_Parameterless_Call
1026 begin
1027 -- Defend against junk stuff if errors already detected
1029 if Total_Errors_Detected /= 0 then
1030 if Nkind (N) in N_Has_Etype and then Etype (N) = Any_Type then
1031 return;
1032 elsif Nkind (N) in N_Has_Chars
1033 and then Chars (N) in Error_Name_Or_No_Name
1034 then
1035 return;
1036 end if;
1038 Require_Entity (N);
1039 end if;
1041 -- If the context expects a value, and the name is a procedure, this is
1042 -- most likely a missing 'Access. Don't try to resolve the parameterless
1043 -- call, error will be caught when the outer call is analyzed.
1045 if Is_Entity_Name (N)
1046 and then Ekind (Entity (N)) = E_Procedure
1047 and then not Is_Overloaded (N)
1048 and then
1049 Nkind_In (Parent (N), N_Parameter_Association,
1050 N_Function_Call,
1051 N_Procedure_Call_Statement)
1052 then
1053 return;
1054 end if;
1056 -- Rewrite as call if overloadable entity that is (or could be, in the
1057 -- overloaded case) a function call. If we know for sure that the entity
1058 -- is an enumeration literal, we do not rewrite it.
1060 -- If the entity is the name of an operator, it cannot be a call because
1061 -- operators cannot have default parameters. In this case, this must be
1062 -- a string whose contents coincide with an operator name. Set the kind
1063 -- of the node appropriately.
1065 if (Is_Entity_Name (N)
1066 and then Nkind (N) /= N_Operator_Symbol
1067 and then Is_Overloadable (Entity (N))
1068 and then (Ekind (Entity (N)) /= E_Enumeration_Literal
1069 or else Is_Overloaded (N)))
1071 -- Rewrite as call if it is an explicit dereference of an expression of
1072 -- a subprogram access type, and the subprogram type is not that of a
1073 -- procedure or entry.
1075 or else
1076 (Nkind (N) = N_Explicit_Dereference and then Prefix_Is_Access_Subp)
1078 -- Rewrite as call if it is a selected component which is a function,
1079 -- this is the case of a call to a protected function (which may be
1080 -- overloaded with other protected operations).
1082 or else
1083 (Nkind (N) = N_Selected_Component
1084 and then (Ekind (Entity (Selector_Name (N))) = E_Function
1085 or else
1086 (Ekind_In (Entity (Selector_Name (N)), E_Entry,
1087 E_Procedure)
1088 and then Is_Overloaded (Selector_Name (N)))))
1090 -- If one of the above three conditions is met, rewrite as call. Apply
1091 -- the rewriting only once.
1093 then
1094 if Nkind (Parent (N)) /= N_Function_Call
1095 or else N /= Name (Parent (N))
1096 then
1098 -- This may be a prefixed call that was not fully analyzed, e.g.
1099 -- an actual in an instance.
1101 if Ada_Version >= Ada_2005
1102 and then Nkind (N) = N_Selected_Component
1103 and then Is_Dispatching_Operation (Entity (Selector_Name (N)))
1104 then
1105 Analyze_Selected_Component (N);
1107 if Nkind (N) /= N_Selected_Component then
1108 return;
1109 end if;
1110 end if;
1112 -- The node is the name of the parameterless call. Preserve its
1113 -- descendants, which may be complex expressions.
1115 Nam := Relocate_Node (N);
1117 -- If overloaded, overload set belongs to new copy
1119 Save_Interps (N, Nam);
1121 -- Change node to parameterless function call (note that the
1122 -- Parameter_Associations associations field is left set to Empty,
1123 -- its normal default value since there are no parameters)
1125 Change_Node (N, N_Function_Call);
1126 Set_Name (N, Nam);
1127 Set_Sloc (N, Sloc (Nam));
1128 Analyze_Call (N);
1129 end if;
1131 elsif Nkind (N) = N_Parameter_Association then
1132 Check_Parameterless_Call (Explicit_Actual_Parameter (N));
1134 elsif Nkind (N) = N_Operator_Symbol then
1135 Change_Operator_Symbol_To_String_Literal (N);
1136 Set_Is_Overloaded (N, False);
1137 Set_Etype (N, Any_String);
1138 end if;
1139 end Check_Parameterless_Call;
1141 --------------------------------
1142 -- Is_Atomic_Ref_With_Address --
1143 --------------------------------
1145 function Is_Atomic_Ref_With_Address (N : Node_Id) return Boolean is
1146 Pref : constant Node_Id := Prefix (N);
1148 begin
1149 if not Is_Entity_Name (Pref) then
1150 return False;
1152 else
1153 declare
1154 Pent : constant Entity_Id := Entity (Pref);
1155 Ptyp : constant Entity_Id := Etype (Pent);
1156 begin
1157 return not Is_Access_Type (Ptyp)
1158 and then (Is_Atomic (Ptyp) or else Is_Atomic (Pent))
1159 and then Present (Address_Clause (Pent));
1160 end;
1161 end if;
1162 end Is_Atomic_Ref_With_Address;
1164 -----------------------------
1165 -- Is_Definite_Access_Type --
1166 -----------------------------
1168 function Is_Definite_Access_Type (E : Entity_Id) return Boolean is
1169 Btyp : constant Entity_Id := Base_Type (E);
1170 begin
1171 return Ekind (Btyp) = E_Access_Type
1172 or else (Ekind (Btyp) = E_Access_Subprogram_Type
1173 and then Comes_From_Source (Btyp));
1174 end Is_Definite_Access_Type;
1176 ----------------------
1177 -- Is_Predefined_Op --
1178 ----------------------
1180 function Is_Predefined_Op (Nam : Entity_Id) return Boolean is
1181 begin
1182 -- Predefined operators are intrinsic subprograms
1184 if not Is_Intrinsic_Subprogram (Nam) then
1185 return False;
1186 end if;
1188 -- A call to a back-end builtin is never a predefined operator
1190 if Is_Imported (Nam) and then Present (Interface_Name (Nam)) then
1191 return False;
1192 end if;
1194 return not Is_Generic_Instance (Nam)
1195 and then Chars (Nam) in Any_Operator_Name
1196 and then (No (Alias (Nam)) or else Is_Predefined_Op (Alias (Nam)));
1197 end Is_Predefined_Op;
1199 -----------------------------
1200 -- Make_Call_Into_Operator --
1201 -----------------------------
1203 procedure Make_Call_Into_Operator
1204 (N : Node_Id;
1205 Typ : Entity_Id;
1206 Op_Id : Entity_Id)
1208 Op_Name : constant Name_Id := Chars (Op_Id);
1209 Act1 : Node_Id := First_Actual (N);
1210 Act2 : Node_Id := Next_Actual (Act1);
1211 Error : Boolean := False;
1212 Func : constant Entity_Id := Entity (Name (N));
1213 Is_Binary : constant Boolean := Present (Act2);
1214 Op_Node : Node_Id;
1215 Opnd_Type : Entity_Id;
1216 Orig_Type : Entity_Id := Empty;
1217 Pack : Entity_Id;
1219 type Kind_Test is access function (E : Entity_Id) return Boolean;
1221 function Operand_Type_In_Scope (S : Entity_Id) return Boolean;
1222 -- If the operand is not universal, and the operator is given by an
1223 -- expanded name, verify that the operand has an interpretation with a
1224 -- type defined in the given scope of the operator.
1226 function Type_In_P (Test : Kind_Test) return Entity_Id;
1227 -- Find a type of the given class in package Pack that contains the
1228 -- operator.
1230 ---------------------------
1231 -- Operand_Type_In_Scope --
1232 ---------------------------
1234 function Operand_Type_In_Scope (S : Entity_Id) return Boolean is
1235 Nod : constant Node_Id := Right_Opnd (Op_Node);
1236 I : Interp_Index;
1237 It : Interp;
1239 begin
1240 if not Is_Overloaded (Nod) then
1241 return Scope (Base_Type (Etype (Nod))) = S;
1243 else
1244 Get_First_Interp (Nod, I, It);
1245 while Present (It.Typ) loop
1246 if Scope (Base_Type (It.Typ)) = S then
1247 return True;
1248 end if;
1250 Get_Next_Interp (I, It);
1251 end loop;
1253 return False;
1254 end if;
1255 end Operand_Type_In_Scope;
1257 ---------------
1258 -- Type_In_P --
1259 ---------------
1261 function Type_In_P (Test : Kind_Test) return Entity_Id is
1262 E : Entity_Id;
1264 function In_Decl return Boolean;
1265 -- Verify that node is not part of the type declaration for the
1266 -- candidate type, which would otherwise be invisible.
1268 -------------
1269 -- In_Decl --
1270 -------------
1272 function In_Decl return Boolean is
1273 Decl_Node : constant Node_Id := Parent (E);
1274 N2 : Node_Id;
1276 begin
1277 N2 := N;
1279 if Etype (E) = Any_Type then
1280 return True;
1282 elsif No (Decl_Node) then
1283 return False;
1285 else
1286 while Present (N2)
1287 and then Nkind (N2) /= N_Compilation_Unit
1288 loop
1289 if N2 = Decl_Node then
1290 return True;
1291 else
1292 N2 := Parent (N2);
1293 end if;
1294 end loop;
1296 return False;
1297 end if;
1298 end In_Decl;
1300 -- Start of processing for Type_In_P
1302 begin
1303 -- If the context type is declared in the prefix package, this is the
1304 -- desired base type.
1306 if Scope (Base_Type (Typ)) = Pack and then Test (Typ) then
1307 return Base_Type (Typ);
1309 else
1310 E := First_Entity (Pack);
1311 while Present (E) loop
1312 if Test (E) and then not In_Decl then
1313 return E;
1314 end if;
1316 Next_Entity (E);
1317 end loop;
1319 return Empty;
1320 end if;
1321 end Type_In_P;
1323 -- Start of processing for Make_Call_Into_Operator
1325 begin
1326 Op_Node := New_Node (Operator_Kind (Op_Name, Is_Binary), Sloc (N));
1328 -- Binary operator
1330 if Is_Binary then
1331 Set_Left_Opnd (Op_Node, Relocate_Node (Act1));
1332 Set_Right_Opnd (Op_Node, Relocate_Node (Act2));
1333 Save_Interps (Act1, Left_Opnd (Op_Node));
1334 Save_Interps (Act2, Right_Opnd (Op_Node));
1335 Act1 := Left_Opnd (Op_Node);
1336 Act2 := Right_Opnd (Op_Node);
1338 -- Unary operator
1340 else
1341 Set_Right_Opnd (Op_Node, Relocate_Node (Act1));
1342 Save_Interps (Act1, Right_Opnd (Op_Node));
1343 Act1 := Right_Opnd (Op_Node);
1344 end if;
1346 -- If the operator is denoted by an expanded name, and the prefix is
1347 -- not Standard, but the operator is a predefined one whose scope is
1348 -- Standard, then this is an implicit_operator, inserted as an
1349 -- interpretation by the procedure of the same name. This procedure
1350 -- overestimates the presence of implicit operators, because it does
1351 -- not examine the type of the operands. Verify now that the operand
1352 -- type appears in the given scope. If right operand is universal,
1353 -- check the other operand. In the case of concatenation, either
1354 -- argument can be the component type, so check the type of the result.
1355 -- If both arguments are literals, look for a type of the right kind
1356 -- defined in the given scope. This elaborate nonsense is brought to
1357 -- you courtesy of b33302a. The type itself must be frozen, so we must
1358 -- find the type of the proper class in the given scope.
1360 -- A final wrinkle is the multiplication operator for fixed point types,
1361 -- which is defined in Standard only, and not in the scope of the
1362 -- fixed point type itself.
1364 if Nkind (Name (N)) = N_Expanded_Name then
1365 Pack := Entity (Prefix (Name (N)));
1367 -- If this is a package renaming, get renamed entity, which will be
1368 -- the scope of the operands if operaton is type-correct.
1370 if Present (Renamed_Entity (Pack)) then
1371 Pack := Renamed_Entity (Pack);
1372 end if;
1374 -- If the entity being called is defined in the given package, it is
1375 -- a renaming of a predefined operator, and known to be legal.
1377 if Scope (Entity (Name (N))) = Pack
1378 and then Pack /= Standard_Standard
1379 then
1380 null;
1382 -- Visibility does not need to be checked in an instance: if the
1383 -- operator was not visible in the generic it has been diagnosed
1384 -- already, else there is an implicit copy of it in the instance.
1386 elsif In_Instance then
1387 null;
1389 elsif Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide)
1390 and then Is_Fixed_Point_Type (Etype (Left_Opnd (Op_Node)))
1391 and then Is_Fixed_Point_Type (Etype (Right_Opnd (Op_Node)))
1392 then
1393 if Pack /= Standard_Standard then
1394 Error := True;
1395 end if;
1397 -- Ada 2005 AI-420: Predefined equality on Universal_Access is
1398 -- available.
1400 elsif Ada_Version >= Ada_2005
1401 and then Nam_In (Op_Name, Name_Op_Eq, Name_Op_Ne)
1402 and then Ekind (Etype (Act1)) = E_Anonymous_Access_Type
1403 then
1404 null;
1406 else
1407 Opnd_Type := Base_Type (Etype (Right_Opnd (Op_Node)));
1409 if Op_Name = Name_Op_Concat then
1410 Opnd_Type := Base_Type (Typ);
1412 elsif (Scope (Opnd_Type) = Standard_Standard
1413 and then Is_Binary)
1414 or else (Nkind (Right_Opnd (Op_Node)) = N_Attribute_Reference
1415 and then Is_Binary
1416 and then not Comes_From_Source (Opnd_Type))
1417 then
1418 Opnd_Type := Base_Type (Etype (Left_Opnd (Op_Node)));
1419 end if;
1421 if Scope (Opnd_Type) = Standard_Standard then
1423 -- Verify that the scope contains a type that corresponds to
1424 -- the given literal. Optimize the case where Pack is Standard.
1426 if Pack /= Standard_Standard then
1427 if Opnd_Type = Universal_Integer then
1428 Orig_Type := Type_In_P (Is_Integer_Type'Access);
1430 elsif Opnd_Type = Universal_Real then
1431 Orig_Type := Type_In_P (Is_Real_Type'Access);
1433 elsif Opnd_Type = Any_String then
1434 Orig_Type := Type_In_P (Is_String_Type'Access);
1436 elsif Opnd_Type = Any_Access then
1437 Orig_Type := Type_In_P (Is_Definite_Access_Type'Access);
1439 elsif Opnd_Type = Any_Composite then
1440 Orig_Type := Type_In_P (Is_Composite_Type'Access);
1442 if Present (Orig_Type) then
1443 if Has_Private_Component (Orig_Type) then
1444 Orig_Type := Empty;
1445 else
1446 Set_Etype (Act1, Orig_Type);
1448 if Is_Binary then
1449 Set_Etype (Act2, Orig_Type);
1450 end if;
1451 end if;
1452 end if;
1454 else
1455 Orig_Type := Empty;
1456 end if;
1458 Error := No (Orig_Type);
1459 end if;
1461 elsif Ekind (Opnd_Type) = E_Allocator_Type
1462 and then No (Type_In_P (Is_Definite_Access_Type'Access))
1463 then
1464 Error := True;
1466 -- If the type is defined elsewhere, and the operator is not
1467 -- defined in the given scope (by a renaming declaration, e.g.)
1468 -- then this is an error as well. If an extension of System is
1469 -- present, and the type may be defined there, Pack must be
1470 -- System itself.
1472 elsif Scope (Opnd_Type) /= Pack
1473 and then Scope (Op_Id) /= Pack
1474 and then (No (System_Aux_Id)
1475 or else Scope (Opnd_Type) /= System_Aux_Id
1476 or else Pack /= Scope (System_Aux_Id))
1477 then
1478 if not Is_Overloaded (Right_Opnd (Op_Node)) then
1479 Error := True;
1480 else
1481 Error := not Operand_Type_In_Scope (Pack);
1482 end if;
1484 elsif Pack = Standard_Standard
1485 and then not Operand_Type_In_Scope (Standard_Standard)
1486 then
1487 Error := True;
1488 end if;
1489 end if;
1491 if Error then
1492 Error_Msg_Node_2 := Pack;
1493 Error_Msg_NE
1494 ("& not declared in&", N, Selector_Name (Name (N)));
1495 Set_Etype (N, Any_Type);
1496 return;
1498 -- Detect a mismatch between the context type and the result type
1499 -- in the named package, which is otherwise not detected if the
1500 -- operands are universal. Check is only needed if source entity is
1501 -- an operator, not a function that renames an operator.
1503 elsif Nkind (Parent (N)) /= N_Type_Conversion
1504 and then Ekind (Entity (Name (N))) = E_Operator
1505 and then Is_Numeric_Type (Typ)
1506 and then not Is_Universal_Numeric_Type (Typ)
1507 and then Scope (Base_Type (Typ)) /= Pack
1508 and then not In_Instance
1509 then
1510 if Is_Fixed_Point_Type (Typ)
1511 and then Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide)
1512 then
1513 -- Already checked above
1515 null;
1517 -- Operator may be defined in an extension of System
1519 elsif Present (System_Aux_Id)
1520 and then Scope (Opnd_Type) = System_Aux_Id
1521 then
1522 null;
1524 else
1525 -- Could we use Wrong_Type here??? (this would require setting
1526 -- Etype (N) to the actual type found where Typ was expected).
1528 Error_Msg_NE ("expect }", N, Typ);
1529 end if;
1530 end if;
1531 end if;
1533 Set_Chars (Op_Node, Op_Name);
1535 if not Is_Private_Type (Etype (N)) then
1536 Set_Etype (Op_Node, Base_Type (Etype (N)));
1537 else
1538 Set_Etype (Op_Node, Etype (N));
1539 end if;
1541 -- If this is a call to a function that renames a predefined equality,
1542 -- the renaming declaration provides a type that must be used to
1543 -- resolve the operands. This must be done now because resolution of
1544 -- the equality node will not resolve any remaining ambiguity, and it
1545 -- assumes that the first operand is not overloaded.
1547 if Nam_In (Op_Name, Name_Op_Eq, Name_Op_Ne)
1548 and then Ekind (Func) = E_Function
1549 and then Is_Overloaded (Act1)
1550 then
1551 Resolve (Act1, Base_Type (Etype (First_Formal (Func))));
1552 Resolve (Act2, Base_Type (Etype (First_Formal (Func))));
1553 end if;
1555 Set_Entity (Op_Node, Op_Id);
1556 Generate_Reference (Op_Id, N, ' ');
1558 -- Do rewrite setting Comes_From_Source on the result if the original
1559 -- call came from source. Although it is not strictly the case that the
1560 -- operator as such comes from the source, logically it corresponds
1561 -- exactly to the function call in the source, so it should be marked
1562 -- this way (e.g. to make sure that validity checks work fine).
1564 declare
1565 CS : constant Boolean := Comes_From_Source (N);
1566 begin
1567 Rewrite (N, Op_Node);
1568 Set_Comes_From_Source (N, CS);
1569 end;
1571 -- If this is an arithmetic operator and the result type is private,
1572 -- the operands and the result must be wrapped in conversion to
1573 -- expose the underlying numeric type and expand the proper checks,
1574 -- e.g. on division.
1576 if Is_Private_Type (Typ) then
1577 case Nkind (N) is
1578 when N_Op_Add
1579 | N_Op_Divide
1580 | N_Op_Expon
1581 | N_Op_Mod
1582 | N_Op_Multiply
1583 | N_Op_Rem
1584 | N_Op_Subtract
1586 Resolve_Intrinsic_Operator (N, Typ);
1588 when N_Op_Abs
1589 | N_Op_Minus
1590 | N_Op_Plus
1592 Resolve_Intrinsic_Unary_Operator (N, Typ);
1594 when others =>
1595 Resolve (N, Typ);
1596 end case;
1597 else
1598 Resolve (N, Typ);
1599 end if;
1601 -- If in ASIS_Mode, propagate operand types to original actuals of
1602 -- function call, which would otherwise not be fully resolved. If
1603 -- the call has already been constant-folded, nothing to do. We
1604 -- relocate the operand nodes rather than copy them, to preserve
1605 -- original_node pointers, given that the operands themselves may
1606 -- have been rewritten. If the call was itself a rewriting of an
1607 -- operator node, nothing to do.
1609 if ASIS_Mode
1610 and then Nkind (N) in N_Op
1611 and then Nkind (Original_Node (N)) = N_Function_Call
1612 then
1613 declare
1614 L : Node_Id;
1615 R : constant Node_Id := Right_Opnd (N);
1617 Old_First : constant Node_Id :=
1618 First (Parameter_Associations (Original_Node (N)));
1619 Old_Sec : Node_Id;
1621 begin
1622 if Is_Binary then
1623 L := Left_Opnd (N);
1624 Old_Sec := Next (Old_First);
1626 -- If the original call has named associations, replace the
1627 -- explicit actual parameter in the association with the proper
1628 -- resolved operand.
1630 if Nkind (Old_First) = N_Parameter_Association then
1631 if Chars (Selector_Name (Old_First)) =
1632 Chars (First_Entity (Op_Id))
1633 then
1634 Rewrite (Explicit_Actual_Parameter (Old_First),
1635 Relocate_Node (L));
1636 else
1637 Rewrite (Explicit_Actual_Parameter (Old_First),
1638 Relocate_Node (R));
1639 end if;
1641 else
1642 Rewrite (Old_First, Relocate_Node (L));
1643 end if;
1645 if Nkind (Old_Sec) = N_Parameter_Association then
1646 if Chars (Selector_Name (Old_Sec)) =
1647 Chars (First_Entity (Op_Id))
1648 then
1649 Rewrite (Explicit_Actual_Parameter (Old_Sec),
1650 Relocate_Node (L));
1651 else
1652 Rewrite (Explicit_Actual_Parameter (Old_Sec),
1653 Relocate_Node (R));
1654 end if;
1656 else
1657 Rewrite (Old_Sec, Relocate_Node (R));
1658 end if;
1660 else
1661 if Nkind (Old_First) = N_Parameter_Association then
1662 Rewrite (Explicit_Actual_Parameter (Old_First),
1663 Relocate_Node (R));
1664 else
1665 Rewrite (Old_First, Relocate_Node (R));
1666 end if;
1667 end if;
1668 end;
1670 Set_Parent (Original_Node (N), Parent (N));
1671 end if;
1672 end Make_Call_Into_Operator;
1674 -------------------
1675 -- Operator_Kind --
1676 -------------------
1678 function Operator_Kind
1679 (Op_Name : Name_Id;
1680 Is_Binary : Boolean) return Node_Kind
1682 Kind : Node_Kind;
1684 begin
1685 -- Use CASE statement or array???
1687 if Is_Binary then
1688 if Op_Name = Name_Op_And then
1689 Kind := N_Op_And;
1690 elsif Op_Name = Name_Op_Or then
1691 Kind := N_Op_Or;
1692 elsif Op_Name = Name_Op_Xor then
1693 Kind := N_Op_Xor;
1694 elsif Op_Name = Name_Op_Eq then
1695 Kind := N_Op_Eq;
1696 elsif Op_Name = Name_Op_Ne then
1697 Kind := N_Op_Ne;
1698 elsif Op_Name = Name_Op_Lt then
1699 Kind := N_Op_Lt;
1700 elsif Op_Name = Name_Op_Le then
1701 Kind := N_Op_Le;
1702 elsif Op_Name = Name_Op_Gt then
1703 Kind := N_Op_Gt;
1704 elsif Op_Name = Name_Op_Ge then
1705 Kind := N_Op_Ge;
1706 elsif Op_Name = Name_Op_Add then
1707 Kind := N_Op_Add;
1708 elsif Op_Name = Name_Op_Subtract then
1709 Kind := N_Op_Subtract;
1710 elsif Op_Name = Name_Op_Concat then
1711 Kind := N_Op_Concat;
1712 elsif Op_Name = Name_Op_Multiply then
1713 Kind := N_Op_Multiply;
1714 elsif Op_Name = Name_Op_Divide then
1715 Kind := N_Op_Divide;
1716 elsif Op_Name = Name_Op_Mod then
1717 Kind := N_Op_Mod;
1718 elsif Op_Name = Name_Op_Rem then
1719 Kind := N_Op_Rem;
1720 elsif Op_Name = Name_Op_Expon then
1721 Kind := N_Op_Expon;
1722 else
1723 raise Program_Error;
1724 end if;
1726 -- Unary operators
1728 else
1729 if Op_Name = Name_Op_Add then
1730 Kind := N_Op_Plus;
1731 elsif Op_Name = Name_Op_Subtract then
1732 Kind := N_Op_Minus;
1733 elsif Op_Name = Name_Op_Abs then
1734 Kind := N_Op_Abs;
1735 elsif Op_Name = Name_Op_Not then
1736 Kind := N_Op_Not;
1737 else
1738 raise Program_Error;
1739 end if;
1740 end if;
1742 return Kind;
1743 end Operator_Kind;
1745 ----------------------------
1746 -- Preanalyze_And_Resolve --
1747 ----------------------------
1749 procedure Preanalyze_And_Resolve (N : Node_Id; T : Entity_Id) is
1750 Save_Full_Analysis : constant Boolean := Full_Analysis;
1752 begin
1753 Full_Analysis := False;
1754 Expander_Mode_Save_And_Set (False);
1756 -- Normally, we suppress all checks for this preanalysis. There is no
1757 -- point in processing them now, since they will be applied properly
1758 -- and in the proper location when the default expressions reanalyzed
1759 -- and reexpanded later on. We will also have more information at that
1760 -- point for possible suppression of individual checks.
1762 -- However, in SPARK mode, most expansion is suppressed, and this
1763 -- later reanalysis and reexpansion may not occur. SPARK mode does
1764 -- require the setting of checking flags for proof purposes, so we
1765 -- do the SPARK preanalysis without suppressing checks.
1767 -- This special handling for SPARK mode is required for example in the
1768 -- case of Ada 2012 constructs such as quantified expressions, which are
1769 -- expanded in two separate steps.
1771 if GNATprove_Mode then
1772 Analyze_And_Resolve (N, T);
1773 else
1774 Analyze_And_Resolve (N, T, Suppress => All_Checks);
1775 end if;
1777 Expander_Mode_Restore;
1778 Full_Analysis := Save_Full_Analysis;
1779 end Preanalyze_And_Resolve;
1781 -- Version without context type
1783 procedure Preanalyze_And_Resolve (N : Node_Id) is
1784 Save_Full_Analysis : constant Boolean := Full_Analysis;
1786 begin
1787 Full_Analysis := False;
1788 Expander_Mode_Save_And_Set (False);
1790 Analyze (N);
1791 Resolve (N, Etype (N), Suppress => All_Checks);
1793 Expander_Mode_Restore;
1794 Full_Analysis := Save_Full_Analysis;
1795 end Preanalyze_And_Resolve;
1797 ----------------------------------
1798 -- Replace_Actual_Discriminants --
1799 ----------------------------------
1801 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id) is
1802 Loc : constant Source_Ptr := Sloc (N);
1803 Tsk : Node_Id := Empty;
1805 function Process_Discr (Nod : Node_Id) return Traverse_Result;
1806 -- Comment needed???
1808 -------------------
1809 -- Process_Discr --
1810 -------------------
1812 function Process_Discr (Nod : Node_Id) return Traverse_Result is
1813 Ent : Entity_Id;
1815 begin
1816 if Nkind (Nod) = N_Identifier then
1817 Ent := Entity (Nod);
1819 if Present (Ent)
1820 and then Ekind (Ent) = E_Discriminant
1821 then
1822 Rewrite (Nod,
1823 Make_Selected_Component (Loc,
1824 Prefix => New_Copy_Tree (Tsk, New_Sloc => Loc),
1825 Selector_Name => Make_Identifier (Loc, Chars (Ent))));
1827 Set_Etype (Nod, Etype (Ent));
1828 end if;
1830 end if;
1832 return OK;
1833 end Process_Discr;
1835 procedure Replace_Discrs is new Traverse_Proc (Process_Discr);
1837 -- Start of processing for Replace_Actual_Discriminants
1839 begin
1840 if not Expander_Active then
1841 return;
1842 end if;
1844 if Nkind (Name (N)) = N_Selected_Component then
1845 Tsk := Prefix (Name (N));
1847 elsif Nkind (Name (N)) = N_Indexed_Component then
1848 Tsk := Prefix (Prefix (Name (N)));
1849 end if;
1851 if No (Tsk) then
1852 return;
1853 else
1854 Replace_Discrs (Default);
1855 end if;
1856 end Replace_Actual_Discriminants;
1858 -------------
1859 -- Resolve --
1860 -------------
1862 procedure Resolve (N : Node_Id; Typ : Entity_Id) is
1863 Ambiguous : Boolean := False;
1864 Ctx_Type : Entity_Id := Typ;
1865 Expr_Type : Entity_Id := Empty; -- prevent junk warning
1866 Err_Type : Entity_Id := Empty;
1867 Found : Boolean := False;
1868 From_Lib : Boolean;
1869 I : Interp_Index;
1870 I1 : Interp_Index := 0; -- prevent junk warning
1871 It : Interp;
1872 It1 : Interp;
1873 Seen : Entity_Id := Empty; -- prevent junk warning
1875 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean;
1876 -- Determine whether a node comes from a predefined library unit or
1877 -- Standard.
1879 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id);
1880 -- Try and fix up a literal so that it matches its expected type. New
1881 -- literals are manufactured if necessary to avoid cascaded errors.
1883 procedure Report_Ambiguous_Argument;
1884 -- Additional diagnostics when an ambiguous call has an ambiguous
1885 -- argument (typically a controlling actual).
1887 procedure Resolution_Failed;
1888 -- Called when attempt at resolving current expression fails
1890 ------------------------------------
1891 -- Comes_From_Predefined_Lib_Unit --
1892 -------------------------------------
1894 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean is
1895 begin
1896 return
1897 Sloc (Nod) = Standard_Location or else In_Predefined_Unit (Nod);
1898 end Comes_From_Predefined_Lib_Unit;
1900 --------------------
1901 -- Patch_Up_Value --
1902 --------------------
1904 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id) is
1905 begin
1906 if Nkind (N) = N_Integer_Literal and then Is_Real_Type (Typ) then
1907 Rewrite (N,
1908 Make_Real_Literal (Sloc (N),
1909 Realval => UR_From_Uint (Intval (N))));
1910 Set_Etype (N, Universal_Real);
1911 Set_Is_Static_Expression (N);
1913 elsif Nkind (N) = N_Real_Literal and then Is_Integer_Type (Typ) then
1914 Rewrite (N,
1915 Make_Integer_Literal (Sloc (N),
1916 Intval => UR_To_Uint (Realval (N))));
1917 Set_Etype (N, Universal_Integer);
1918 Set_Is_Static_Expression (N);
1920 elsif Nkind (N) = N_String_Literal
1921 and then Is_Character_Type (Typ)
1922 then
1923 Set_Character_Literal_Name (Char_Code (Character'Pos ('A')));
1924 Rewrite (N,
1925 Make_Character_Literal (Sloc (N),
1926 Chars => Name_Find,
1927 Char_Literal_Value =>
1928 UI_From_Int (Character'Pos ('A'))));
1929 Set_Etype (N, Any_Character);
1930 Set_Is_Static_Expression (N);
1932 elsif Nkind (N) /= N_String_Literal and then Is_String_Type (Typ) then
1933 Rewrite (N,
1934 Make_String_Literal (Sloc (N),
1935 Strval => End_String));
1937 elsif Nkind (N) = N_Range then
1938 Patch_Up_Value (Low_Bound (N), Typ);
1939 Patch_Up_Value (High_Bound (N), Typ);
1940 end if;
1941 end Patch_Up_Value;
1943 -------------------------------
1944 -- Report_Ambiguous_Argument --
1945 -------------------------------
1947 procedure Report_Ambiguous_Argument is
1948 Arg : constant Node_Id := First (Parameter_Associations (N));
1949 I : Interp_Index;
1950 It : Interp;
1952 begin
1953 if Nkind (Arg) = N_Function_Call
1954 and then Is_Entity_Name (Name (Arg))
1955 and then Is_Overloaded (Name (Arg))
1956 then
1957 Error_Msg_NE ("ambiguous call to&", Arg, Name (Arg));
1959 -- Could use comments on what is going on here???
1961 Get_First_Interp (Name (Arg), I, It);
1962 while Present (It.Nam) loop
1963 Error_Msg_Sloc := Sloc (It.Nam);
1965 if Nkind (Parent (It.Nam)) = N_Full_Type_Declaration then
1966 Error_Msg_N ("interpretation (inherited) #!", Arg);
1967 else
1968 Error_Msg_N ("interpretation #!", Arg);
1969 end if;
1971 Get_Next_Interp (I, It);
1972 end loop;
1973 end if;
1974 end Report_Ambiguous_Argument;
1976 -----------------------
1977 -- Resolution_Failed --
1978 -----------------------
1980 procedure Resolution_Failed is
1981 begin
1982 Patch_Up_Value (N, Typ);
1984 -- Set the type to the desired one to minimize cascaded errors. Note
1985 -- that this is an approximation and does not work in all cases.
1987 Set_Etype (N, Typ);
1989 Debug_A_Exit ("resolving ", N, " (done, resolution failed)");
1990 Set_Is_Overloaded (N, False);
1992 -- The caller will return without calling the expander, so we need
1993 -- to set the analyzed flag. Note that it is fine to set Analyzed
1994 -- to True even if we are in the middle of a shallow analysis,
1995 -- (see the spec of sem for more details) since this is an error
1996 -- situation anyway, and there is no point in repeating the
1997 -- analysis later (indeed it won't work to repeat it later, since
1998 -- we haven't got a clear resolution of which entity is being
1999 -- referenced.)
2001 Set_Analyzed (N, True);
2002 return;
2003 end Resolution_Failed;
2005 -- Start of processing for Resolve
2007 begin
2008 if N = Error then
2009 return;
2010 end if;
2012 -- Access attribute on remote subprogram cannot be used for a non-remote
2013 -- access-to-subprogram type.
2015 if Nkind (N) = N_Attribute_Reference
2016 and then Nam_In (Attribute_Name (N), Name_Access,
2017 Name_Unrestricted_Access,
2018 Name_Unchecked_Access)
2019 and then Comes_From_Source (N)
2020 and then Is_Entity_Name (Prefix (N))
2021 and then Is_Subprogram (Entity (Prefix (N)))
2022 and then Is_Remote_Call_Interface (Entity (Prefix (N)))
2023 and then not Is_Remote_Access_To_Subprogram_Type (Typ)
2024 then
2025 Error_Msg_N
2026 ("prefix must statically denote a non-remote subprogram", N);
2027 end if;
2029 From_Lib := Comes_From_Predefined_Lib_Unit (N);
2031 -- If the context is a Remote_Access_To_Subprogram, access attributes
2032 -- must be resolved with the corresponding fat pointer. There is no need
2033 -- to check for the attribute name since the return type of an
2034 -- attribute is never a remote type.
2036 if Nkind (N) = N_Attribute_Reference
2037 and then Comes_From_Source (N)
2038 and then (Is_Remote_Call_Interface (Typ) or else Is_Remote_Types (Typ))
2039 then
2040 declare
2041 Attr : constant Attribute_Id :=
2042 Get_Attribute_Id (Attribute_Name (N));
2043 Pref : constant Node_Id := Prefix (N);
2044 Decl : Node_Id;
2045 Spec : Node_Id;
2046 Is_Remote : Boolean := True;
2048 begin
2049 -- Check that Typ is a remote access-to-subprogram type
2051 if Is_Remote_Access_To_Subprogram_Type (Typ) then
2053 -- Prefix (N) must statically denote a remote subprogram
2054 -- declared in a package specification.
2056 if Attr = Attribute_Access or else
2057 Attr = Attribute_Unchecked_Access or else
2058 Attr = Attribute_Unrestricted_Access
2059 then
2060 Decl := Unit_Declaration_Node (Entity (Pref));
2062 if Nkind (Decl) = N_Subprogram_Body then
2063 Spec := Corresponding_Spec (Decl);
2065 if Present (Spec) then
2066 Decl := Unit_Declaration_Node (Spec);
2067 end if;
2068 end if;
2070 Spec := Parent (Decl);
2072 if not Is_Entity_Name (Prefix (N))
2073 or else Nkind (Spec) /= N_Package_Specification
2074 or else
2075 not Is_Remote_Call_Interface (Defining_Entity (Spec))
2076 then
2077 Is_Remote := False;
2078 Error_Msg_N
2079 ("prefix must statically denote a remote subprogram ",
2081 end if;
2083 -- If we are generating code in distributed mode, perform
2084 -- semantic checks against corresponding remote entities.
2086 if Expander_Active
2087 and then Get_PCS_Name /= Name_No_DSA
2088 then
2089 Check_Subtype_Conformant
2090 (New_Id => Entity (Prefix (N)),
2091 Old_Id => Designated_Type
2092 (Corresponding_Remote_Type (Typ)),
2093 Err_Loc => N);
2095 if Is_Remote then
2096 Process_Remote_AST_Attribute (N, Typ);
2097 end if;
2098 end if;
2099 end if;
2100 end if;
2101 end;
2102 end if;
2104 Debug_A_Entry ("resolving ", N);
2106 if Debug_Flag_V then
2107 Write_Overloads (N);
2108 end if;
2110 if Comes_From_Source (N) then
2111 if Is_Fixed_Point_Type (Typ) then
2112 Check_Restriction (No_Fixed_Point, N);
2114 elsif Is_Floating_Point_Type (Typ)
2115 and then Typ /= Universal_Real
2116 and then Typ /= Any_Real
2117 then
2118 Check_Restriction (No_Floating_Point, N);
2119 end if;
2120 end if;
2122 -- Return if already analyzed
2124 if Analyzed (N) then
2125 Debug_A_Exit ("resolving ", N, " (done, already analyzed)");
2126 Analyze_Dimension (N);
2127 return;
2129 -- Any case of Any_Type as the Etype value means that we had a
2130 -- previous error.
2132 elsif Etype (N) = Any_Type then
2133 Debug_A_Exit ("resolving ", N, " (done, Etype = Any_Type)");
2134 return;
2135 end if;
2137 Check_Parameterless_Call (N);
2139 -- The resolution of an Expression_With_Actions is determined by
2140 -- its Expression.
2142 if Nkind (N) = N_Expression_With_Actions then
2143 Resolve (Expression (N), Typ);
2145 Found := True;
2146 Expr_Type := Etype (Expression (N));
2148 -- If not overloaded, then we know the type, and all that needs doing
2149 -- is to check that this type is compatible with the context.
2151 elsif not Is_Overloaded (N) then
2152 Found := Covers (Typ, Etype (N));
2153 Expr_Type := Etype (N);
2155 -- In the overloaded case, we must select the interpretation that
2156 -- is compatible with the context (i.e. the type passed to Resolve)
2158 else
2159 -- Loop through possible interpretations
2161 Get_First_Interp (N, I, It);
2162 Interp_Loop : while Present (It.Typ) loop
2163 if Debug_Flag_V then
2164 Write_Str ("Interp: ");
2165 Write_Interp (It);
2166 end if;
2168 -- We are only interested in interpretations that are compatible
2169 -- with the expected type, any other interpretations are ignored.
2171 if not Covers (Typ, It.Typ) then
2172 if Debug_Flag_V then
2173 Write_Str (" interpretation incompatible with context");
2174 Write_Eol;
2175 end if;
2177 else
2178 -- Skip the current interpretation if it is disabled by an
2179 -- abstract operator. This action is performed only when the
2180 -- type against which we are resolving is the same as the
2181 -- type of the interpretation.
2183 if Ada_Version >= Ada_2005
2184 and then It.Typ = Typ
2185 and then Typ /= Universal_Integer
2186 and then Typ /= Universal_Real
2187 and then Present (It.Abstract_Op)
2188 then
2189 if Debug_Flag_V then
2190 Write_Line ("Skip.");
2191 end if;
2193 goto Continue;
2194 end if;
2196 -- First matching interpretation
2198 if not Found then
2199 Found := True;
2200 I1 := I;
2201 Seen := It.Nam;
2202 Expr_Type := It.Typ;
2204 -- Matching interpretation that is not the first, maybe an
2205 -- error, but there are some cases where preference rules are
2206 -- used to choose between the two possibilities. These and
2207 -- some more obscure cases are handled in Disambiguate.
2209 else
2210 -- If the current statement is part of a predefined library
2211 -- unit, then all interpretations which come from user level
2212 -- packages should not be considered. Check previous and
2213 -- current one.
2215 if From_Lib then
2216 if not Comes_From_Predefined_Lib_Unit (It.Nam) then
2217 goto Continue;
2219 elsif not Comes_From_Predefined_Lib_Unit (Seen) then
2221 -- Previous interpretation must be discarded
2223 I1 := I;
2224 Seen := It.Nam;
2225 Expr_Type := It.Typ;
2226 Set_Entity (N, Seen);
2227 goto Continue;
2228 end if;
2229 end if;
2231 -- Otherwise apply further disambiguation steps
2233 Error_Msg_Sloc := Sloc (Seen);
2234 It1 := Disambiguate (N, I1, I, Typ);
2236 -- Disambiguation has succeeded. Skip the remaining
2237 -- interpretations.
2239 if It1 /= No_Interp then
2240 Seen := It1.Nam;
2241 Expr_Type := It1.Typ;
2243 while Present (It.Typ) loop
2244 Get_Next_Interp (I, It);
2245 end loop;
2247 else
2248 -- Before we issue an ambiguity complaint, check for the
2249 -- case of a subprogram call where at least one of the
2250 -- arguments is Any_Type, and if so suppress the message,
2251 -- since it is a cascaded error. This can also happen for
2252 -- a generalized indexing operation.
2254 if Nkind (N) in N_Subprogram_Call
2255 or else (Nkind (N) = N_Indexed_Component
2256 and then Present (Generalized_Indexing (N)))
2257 then
2258 declare
2259 A : Node_Id;
2260 E : Node_Id;
2262 begin
2263 if Nkind (N) = N_Indexed_Component then
2264 Rewrite (N, Generalized_Indexing (N));
2265 end if;
2267 A := First_Actual (N);
2268 while Present (A) loop
2269 E := A;
2271 if Nkind (E) = N_Parameter_Association then
2272 E := Explicit_Actual_Parameter (E);
2273 end if;
2275 if Etype (E) = Any_Type then
2276 if Debug_Flag_V then
2277 Write_Str ("Any_Type in call");
2278 Write_Eol;
2279 end if;
2281 exit Interp_Loop;
2282 end if;
2284 Next_Actual (A);
2285 end loop;
2286 end;
2288 elsif Nkind (N) in N_Binary_Op
2289 and then (Etype (Left_Opnd (N)) = Any_Type
2290 or else Etype (Right_Opnd (N)) = Any_Type)
2291 then
2292 exit Interp_Loop;
2294 elsif Nkind (N) in N_Unary_Op
2295 and then Etype (Right_Opnd (N)) = Any_Type
2296 then
2297 exit Interp_Loop;
2298 end if;
2300 -- Not that special case, so issue message using the flag
2301 -- Ambiguous to control printing of the header message
2302 -- only at the start of an ambiguous set.
2304 if not Ambiguous then
2305 if Nkind (N) = N_Function_Call
2306 and then Nkind (Name (N)) = N_Explicit_Dereference
2307 then
2308 Error_Msg_N
2309 ("ambiguous expression (cannot resolve indirect "
2310 & "call)!", N);
2311 else
2312 Error_Msg_NE -- CODEFIX
2313 ("ambiguous expression (cannot resolve&)!",
2314 N, It.Nam);
2315 end if;
2317 Ambiguous := True;
2319 if Nkind (Parent (Seen)) = N_Full_Type_Declaration then
2320 Error_Msg_N
2321 ("\\possible interpretation (inherited)#!", N);
2322 else
2323 Error_Msg_N -- CODEFIX
2324 ("\\possible interpretation#!", N);
2325 end if;
2327 if Nkind (N) in N_Subprogram_Call
2328 and then Present (Parameter_Associations (N))
2329 then
2330 Report_Ambiguous_Argument;
2331 end if;
2332 end if;
2334 Error_Msg_Sloc := Sloc (It.Nam);
2336 -- By default, the error message refers to the candidate
2337 -- interpretation. But if it is a predefined operator, it
2338 -- is implicitly declared at the declaration of the type
2339 -- of the operand. Recover the sloc of that declaration
2340 -- for the error message.
2342 if Nkind (N) in N_Op
2343 and then Scope (It.Nam) = Standard_Standard
2344 and then not Is_Overloaded (Right_Opnd (N))
2345 and then Scope (Base_Type (Etype (Right_Opnd (N)))) /=
2346 Standard_Standard
2347 then
2348 Err_Type := First_Subtype (Etype (Right_Opnd (N)));
2350 if Comes_From_Source (Err_Type)
2351 and then Present (Parent (Err_Type))
2352 then
2353 Error_Msg_Sloc := Sloc (Parent (Err_Type));
2354 end if;
2356 elsif Nkind (N) in N_Binary_Op
2357 and then Scope (It.Nam) = Standard_Standard
2358 and then not Is_Overloaded (Left_Opnd (N))
2359 and then Scope (Base_Type (Etype (Left_Opnd (N)))) /=
2360 Standard_Standard
2361 then
2362 Err_Type := First_Subtype (Etype (Left_Opnd (N)));
2364 if Comes_From_Source (Err_Type)
2365 and then Present (Parent (Err_Type))
2366 then
2367 Error_Msg_Sloc := Sloc (Parent (Err_Type));
2368 end if;
2370 -- If this is an indirect call, use the subprogram_type
2371 -- in the message, to have a meaningful location. Also
2372 -- indicate if this is an inherited operation, created
2373 -- by a type declaration.
2375 elsif Nkind (N) = N_Function_Call
2376 and then Nkind (Name (N)) = N_Explicit_Dereference
2377 and then Is_Type (It.Nam)
2378 then
2379 Err_Type := It.Nam;
2380 Error_Msg_Sloc :=
2381 Sloc (Associated_Node_For_Itype (Err_Type));
2382 else
2383 Err_Type := Empty;
2384 end if;
2386 if Nkind (N) in N_Op
2387 and then Scope (It.Nam) = Standard_Standard
2388 and then Present (Err_Type)
2389 then
2390 -- Special-case the message for universal_fixed
2391 -- operators, which are not declared with the type
2392 -- of the operand, but appear forever in Standard.
2394 if It.Typ = Universal_Fixed
2395 and then Scope (It.Nam) = Standard_Standard
2396 then
2397 Error_Msg_N
2398 ("\\possible interpretation as universal_fixed "
2399 & "operation (RM 4.5.5 (19))", N);
2400 else
2401 Error_Msg_N
2402 ("\\possible interpretation (predefined)#!", N);
2403 end if;
2405 elsif
2406 Nkind (Parent (It.Nam)) = N_Full_Type_Declaration
2407 then
2408 Error_Msg_N
2409 ("\\possible interpretation (inherited)#!", N);
2410 else
2411 Error_Msg_N -- CODEFIX
2412 ("\\possible interpretation#!", N);
2413 end if;
2415 end if;
2416 end if;
2418 -- We have a matching interpretation, Expr_Type is the type
2419 -- from this interpretation, and Seen is the entity.
2421 -- For an operator, just set the entity name. The type will be
2422 -- set by the specific operator resolution routine.
2424 if Nkind (N) in N_Op then
2425 Set_Entity (N, Seen);
2426 Generate_Reference (Seen, N);
2428 elsif Nkind (N) = N_Case_Expression then
2429 Set_Etype (N, Expr_Type);
2431 elsif Nkind (N) = N_Character_Literal then
2432 Set_Etype (N, Expr_Type);
2434 elsif Nkind (N) = N_If_Expression then
2435 Set_Etype (N, Expr_Type);
2437 -- AI05-0139-2: Expression is overloaded because type has
2438 -- implicit dereference. If type matches context, no implicit
2439 -- dereference is involved.
2441 elsif Has_Implicit_Dereference (Expr_Type) then
2442 Set_Etype (N, Expr_Type);
2443 Set_Is_Overloaded (N, False);
2444 exit Interp_Loop;
2446 elsif Is_Overloaded (N)
2447 and then Present (It.Nam)
2448 and then Ekind (It.Nam) = E_Discriminant
2449 and then Has_Implicit_Dereference (It.Nam)
2450 then
2451 -- If the node is a general indexing, the dereference is
2452 -- is inserted when resolving the rewritten form, else
2453 -- insert it now.
2455 if Nkind (N) /= N_Indexed_Component
2456 or else No (Generalized_Indexing (N))
2457 then
2458 Build_Explicit_Dereference (N, It.Nam);
2459 end if;
2461 -- For an explicit dereference, attribute reference, range,
2462 -- short-circuit form (which is not an operator node), or call
2463 -- with a name that is an explicit dereference, there is
2464 -- nothing to be done at this point.
2466 elsif Nkind_In (N, N_Attribute_Reference,
2467 N_And_Then,
2468 N_Explicit_Dereference,
2469 N_Identifier,
2470 N_Indexed_Component,
2471 N_Or_Else,
2472 N_Range,
2473 N_Selected_Component,
2474 N_Slice)
2475 or else Nkind (Name (N)) = N_Explicit_Dereference
2476 then
2477 null;
2479 -- For procedure or function calls, set the type of the name,
2480 -- and also the entity pointer for the prefix.
2482 elsif Nkind (N) in N_Subprogram_Call
2483 and then Is_Entity_Name (Name (N))
2484 then
2485 Set_Etype (Name (N), Expr_Type);
2486 Set_Entity (Name (N), Seen);
2487 Generate_Reference (Seen, Name (N));
2489 elsif Nkind (N) = N_Function_Call
2490 and then Nkind (Name (N)) = N_Selected_Component
2491 then
2492 Set_Etype (Name (N), Expr_Type);
2493 Set_Entity (Selector_Name (Name (N)), Seen);
2494 Generate_Reference (Seen, Selector_Name (Name (N)));
2496 -- For all other cases, just set the type of the Name
2498 else
2499 Set_Etype (Name (N), Expr_Type);
2500 end if;
2502 end if;
2504 <<Continue>>
2506 -- Move to next interpretation
2508 exit Interp_Loop when No (It.Typ);
2510 Get_Next_Interp (I, It);
2511 end loop Interp_Loop;
2512 end if;
2514 -- At this stage Found indicates whether or not an acceptable
2515 -- interpretation exists. If not, then we have an error, except that if
2516 -- the context is Any_Type as a result of some other error, then we
2517 -- suppress the error report.
2519 if not Found then
2520 if Typ /= Any_Type then
2522 -- If type we are looking for is Void, then this is the procedure
2523 -- call case, and the error is simply that what we gave is not a
2524 -- procedure name (we think of procedure calls as expressions with
2525 -- types internally, but the user doesn't think of them this way).
2527 if Typ = Standard_Void_Type then
2529 -- Special case message if function used as a procedure
2531 if Nkind (N) = N_Procedure_Call_Statement
2532 and then Is_Entity_Name (Name (N))
2533 and then Ekind (Entity (Name (N))) = E_Function
2534 then
2535 Error_Msg_NE
2536 ("cannot use call to function & as a statement",
2537 Name (N), Entity (Name (N)));
2538 Error_Msg_N
2539 ("\return value of a function call cannot be ignored",
2540 Name (N));
2542 -- Otherwise give general message (not clear what cases this
2543 -- covers, but no harm in providing for them).
2545 else
2546 Error_Msg_N ("expect procedure name in procedure call", N);
2547 end if;
2549 Found := True;
2551 -- Otherwise we do have a subexpression with the wrong type
2553 -- Check for the case of an allocator which uses an access type
2554 -- instead of the designated type. This is a common error and we
2555 -- specialize the message, posting an error on the operand of the
2556 -- allocator, complaining that we expected the designated type of
2557 -- the allocator.
2559 elsif Nkind (N) = N_Allocator
2560 and then Is_Access_Type (Typ)
2561 and then Is_Access_Type (Etype (N))
2562 and then Designated_Type (Etype (N)) = Typ
2563 then
2564 Wrong_Type (Expression (N), Designated_Type (Typ));
2565 Found := True;
2567 -- Check for view mismatch on Null in instances, for which the
2568 -- view-swapping mechanism has no identifier.
2570 elsif (In_Instance or else In_Inlined_Body)
2571 and then (Nkind (N) = N_Null)
2572 and then Is_Private_Type (Typ)
2573 and then Is_Access_Type (Full_View (Typ))
2574 then
2575 Resolve (N, Full_View (Typ));
2576 Set_Etype (N, Typ);
2577 return;
2579 -- Check for an aggregate. Sometimes we can get bogus aggregates
2580 -- from misuse of parentheses, and we are about to complain about
2581 -- the aggregate without even looking inside it.
2583 -- Instead, if we have an aggregate of type Any_Composite, then
2584 -- analyze and resolve the component fields, and then only issue
2585 -- another message if we get no errors doing this (otherwise
2586 -- assume that the errors in the aggregate caused the problem).
2588 elsif Nkind (N) = N_Aggregate
2589 and then Etype (N) = Any_Composite
2590 then
2591 -- Disable expansion in any case. If there is a type mismatch
2592 -- it may be fatal to try to expand the aggregate. The flag
2593 -- would otherwise be set to false when the error is posted.
2595 Expander_Active := False;
2597 declare
2598 procedure Check_Aggr (Aggr : Node_Id);
2599 -- Check one aggregate, and set Found to True if we have a
2600 -- definite error in any of its elements
2602 procedure Check_Elmt (Aelmt : Node_Id);
2603 -- Check one element of aggregate and set Found to True if
2604 -- we definitely have an error in the element.
2606 ----------------
2607 -- Check_Aggr --
2608 ----------------
2610 procedure Check_Aggr (Aggr : Node_Id) is
2611 Elmt : Node_Id;
2613 begin
2614 if Present (Expressions (Aggr)) then
2615 Elmt := First (Expressions (Aggr));
2616 while Present (Elmt) loop
2617 Check_Elmt (Elmt);
2618 Next (Elmt);
2619 end loop;
2620 end if;
2622 if Present (Component_Associations (Aggr)) then
2623 Elmt := First (Component_Associations (Aggr));
2624 while Present (Elmt) loop
2626 -- If this is a default-initialized component, then
2627 -- there is nothing to check. The box will be
2628 -- replaced by the appropriate call during late
2629 -- expansion.
2631 if Nkind (Elmt) /= N_Iterated_Component_Association
2632 and then not Box_Present (Elmt)
2633 then
2634 Check_Elmt (Expression (Elmt));
2635 end if;
2637 Next (Elmt);
2638 end loop;
2639 end if;
2640 end Check_Aggr;
2642 ----------------
2643 -- Check_Elmt --
2644 ----------------
2646 procedure Check_Elmt (Aelmt : Node_Id) is
2647 begin
2648 -- If we have a nested aggregate, go inside it (to
2649 -- attempt a naked analyze-resolve of the aggregate can
2650 -- cause undesirable cascaded errors). Do not resolve
2651 -- expression if it needs a type from context, as for
2652 -- integer * fixed expression.
2654 if Nkind (Aelmt) = N_Aggregate then
2655 Check_Aggr (Aelmt);
2657 else
2658 Analyze (Aelmt);
2660 if not Is_Overloaded (Aelmt)
2661 and then Etype (Aelmt) /= Any_Fixed
2662 then
2663 Resolve (Aelmt);
2664 end if;
2666 if Etype (Aelmt) = Any_Type then
2667 Found := True;
2668 end if;
2669 end if;
2670 end Check_Elmt;
2672 begin
2673 Check_Aggr (N);
2674 end;
2675 end if;
2677 -- Looks like we have a type error, but check for special case
2678 -- of Address wanted, integer found, with the configuration pragma
2679 -- Allow_Integer_Address active. If we have this case, introduce
2680 -- an unchecked conversion to allow the integer expression to be
2681 -- treated as an Address. The reverse case of integer wanted,
2682 -- Address found, is treated in an analogous manner.
2684 if Address_Integer_Convert_OK (Typ, Etype (N)) then
2685 Rewrite (N, Unchecked_Convert_To (Typ, Relocate_Node (N)));
2686 Analyze_And_Resolve (N, Typ);
2687 return;
2689 -- Under relaxed RM semantics silently replace occurrences of null
2690 -- by System.Address_Null.
2692 elsif Null_To_Null_Address_Convert_OK (N, Typ) then
2693 Replace_Null_By_Null_Address (N);
2694 Analyze_And_Resolve (N, Typ);
2695 return;
2696 end if;
2698 -- That special Allow_Integer_Address check did not apply, so we
2699 -- have a real type error. If an error message was issued already,
2700 -- Found got reset to True, so if it's still False, issue standard
2701 -- Wrong_Type message.
2703 if not Found then
2704 if Is_Overloaded (N) and then Nkind (N) = N_Function_Call then
2705 declare
2706 Subp_Name : Node_Id;
2708 begin
2709 if Is_Entity_Name (Name (N)) then
2710 Subp_Name := Name (N);
2712 elsif Nkind (Name (N)) = N_Selected_Component then
2714 -- Protected operation: retrieve operation name
2716 Subp_Name := Selector_Name (Name (N));
2718 else
2719 raise Program_Error;
2720 end if;
2722 Error_Msg_Node_2 := Typ;
2723 Error_Msg_NE
2724 ("no visible interpretation of& matches expected type&",
2725 N, Subp_Name);
2726 end;
2728 if All_Errors_Mode then
2729 declare
2730 Index : Interp_Index;
2731 It : Interp;
2733 begin
2734 Error_Msg_N ("\\possible interpretations:", N);
2736 Get_First_Interp (Name (N), Index, It);
2737 while Present (It.Nam) loop
2738 Error_Msg_Sloc := Sloc (It.Nam);
2739 Error_Msg_Node_2 := It.Nam;
2740 Error_Msg_NE
2741 ("\\ type& for & declared#", N, It.Typ);
2742 Get_Next_Interp (Index, It);
2743 end loop;
2744 end;
2746 else
2747 Error_Msg_N ("\use -gnatf for details", N);
2748 end if;
2750 else
2751 Wrong_Type (N, Typ);
2752 end if;
2753 end if;
2754 end if;
2756 Resolution_Failed;
2757 return;
2759 -- Test if we have more than one interpretation for the context
2761 elsif Ambiguous then
2762 Resolution_Failed;
2763 return;
2765 -- Only one intepretation
2767 else
2768 -- In Ada 2005, if we have something like "X : T := 2 + 2;", where
2769 -- the "+" on T is abstract, and the operands are of universal type,
2770 -- the above code will have (incorrectly) resolved the "+" to the
2771 -- universal one in Standard. Therefore check for this case and give
2772 -- an error. We can't do this earlier, because it would cause legal
2773 -- cases to get errors (when some other type has an abstract "+").
2775 if Ada_Version >= Ada_2005
2776 and then Nkind (N) in N_Op
2777 and then Is_Overloaded (N)
2778 and then Is_Universal_Numeric_Type (Etype (Entity (N)))
2779 then
2780 Get_First_Interp (N, I, It);
2781 while Present (It.Typ) loop
2782 if Present (It.Abstract_Op) and then
2783 Etype (It.Abstract_Op) = Typ
2784 then
2785 Error_Msg_NE
2786 ("cannot call abstract subprogram &!", N, It.Abstract_Op);
2787 return;
2788 end if;
2790 Get_Next_Interp (I, It);
2791 end loop;
2792 end if;
2794 -- Here we have an acceptable interpretation for the context
2796 -- Propagate type information and normalize tree for various
2797 -- predefined operations. If the context only imposes a class of
2798 -- types, rather than a specific type, propagate the actual type
2799 -- downward.
2801 if Typ = Any_Integer or else
2802 Typ = Any_Boolean or else
2803 Typ = Any_Modular or else
2804 Typ = Any_Real or else
2805 Typ = Any_Discrete
2806 then
2807 Ctx_Type := Expr_Type;
2809 -- Any_Fixed is legal in a real context only if a specific fixed-
2810 -- point type is imposed. If Norman Cohen can be confused by this,
2811 -- it deserves a separate message.
2813 if Typ = Any_Real
2814 and then Expr_Type = Any_Fixed
2815 then
2816 Error_Msg_N ("illegal context for mixed mode operation", N);
2817 Set_Etype (N, Universal_Real);
2818 Ctx_Type := Universal_Real;
2819 end if;
2820 end if;
2822 -- A user-defined operator is transformed into a function call at
2823 -- this point, so that further processing knows that operators are
2824 -- really operators (i.e. are predefined operators). User-defined
2825 -- operators that are intrinsic are just renamings of the predefined
2826 -- ones, and need not be turned into calls either, but if they rename
2827 -- a different operator, we must transform the node accordingly.
2828 -- Instantiations of Unchecked_Conversion are intrinsic but are
2829 -- treated as functions, even if given an operator designator.
2831 if Nkind (N) in N_Op
2832 and then Present (Entity (N))
2833 and then Ekind (Entity (N)) /= E_Operator
2834 then
2835 if not Is_Predefined_Op (Entity (N)) then
2836 Rewrite_Operator_As_Call (N, Entity (N));
2838 elsif Present (Alias (Entity (N)))
2839 and then
2840 Nkind (Parent (Parent (Entity (N)))) =
2841 N_Subprogram_Renaming_Declaration
2842 then
2843 Rewrite_Renamed_Operator (N, Alias (Entity (N)), Typ);
2845 -- If the node is rewritten, it will be fully resolved in
2846 -- Rewrite_Renamed_Operator.
2848 if Analyzed (N) then
2849 return;
2850 end if;
2851 end if;
2852 end if;
2854 case N_Subexpr'(Nkind (N)) is
2855 when N_Aggregate =>
2856 Resolve_Aggregate (N, Ctx_Type);
2858 when N_Allocator =>
2859 Resolve_Allocator (N, Ctx_Type);
2861 when N_Short_Circuit =>
2862 Resolve_Short_Circuit (N, Ctx_Type);
2864 when N_Attribute_Reference =>
2865 Resolve_Attribute (N, Ctx_Type);
2867 when N_Case_Expression =>
2868 Resolve_Case_Expression (N, Ctx_Type);
2870 when N_Character_Literal =>
2871 Resolve_Character_Literal (N, Ctx_Type);
2873 when N_Delta_Aggregate =>
2874 Resolve_Delta_Aggregate (N, Ctx_Type);
2876 when N_Expanded_Name =>
2877 Resolve_Entity_Name (N, Ctx_Type);
2879 when N_Explicit_Dereference =>
2880 Resolve_Explicit_Dereference (N, Ctx_Type);
2882 when N_Expression_With_Actions =>
2883 Resolve_Expression_With_Actions (N, Ctx_Type);
2885 when N_Extension_Aggregate =>
2886 Resolve_Extension_Aggregate (N, Ctx_Type);
2888 when N_Function_Call =>
2889 Resolve_Call (N, Ctx_Type);
2891 when N_Identifier =>
2892 Resolve_Entity_Name (N, Ctx_Type);
2894 when N_If_Expression =>
2895 Resolve_If_Expression (N, Ctx_Type);
2897 when N_Indexed_Component =>
2898 Resolve_Indexed_Component (N, Ctx_Type);
2900 when N_Integer_Literal =>
2901 Resolve_Integer_Literal (N, Ctx_Type);
2903 when N_Membership_Test =>
2904 Resolve_Membership_Op (N, Ctx_Type);
2906 when N_Null =>
2907 Resolve_Null (N, Ctx_Type);
2909 when N_Op_And
2910 | N_Op_Or
2911 | N_Op_Xor
2913 Resolve_Logical_Op (N, Ctx_Type);
2915 when N_Op_Eq
2916 | N_Op_Ne
2918 Resolve_Equality_Op (N, Ctx_Type);
2920 when N_Op_Ge
2921 | N_Op_Gt
2922 | N_Op_Le
2923 | N_Op_Lt
2925 Resolve_Comparison_Op (N, Ctx_Type);
2927 when N_Op_Not =>
2928 Resolve_Op_Not (N, Ctx_Type);
2930 when N_Op_Add
2931 | N_Op_Divide
2932 | N_Op_Mod
2933 | N_Op_Multiply
2934 | N_Op_Rem
2935 | N_Op_Subtract
2937 Resolve_Arithmetic_Op (N, Ctx_Type);
2939 when N_Op_Concat =>
2940 Resolve_Op_Concat (N, Ctx_Type);
2942 when N_Op_Expon =>
2943 Resolve_Op_Expon (N, Ctx_Type);
2945 when N_Op_Abs
2946 | N_Op_Minus
2947 | N_Op_Plus
2949 Resolve_Unary_Op (N, Ctx_Type);
2951 when N_Op_Shift =>
2952 Resolve_Shift (N, Ctx_Type);
2954 when N_Procedure_Call_Statement =>
2955 Resolve_Call (N, Ctx_Type);
2957 when N_Operator_Symbol =>
2958 Resolve_Operator_Symbol (N, Ctx_Type);
2960 when N_Qualified_Expression =>
2961 Resolve_Qualified_Expression (N, Ctx_Type);
2963 -- Why is the following null, needs a comment ???
2965 when N_Quantified_Expression =>
2966 null;
2968 when N_Raise_Expression =>
2969 Resolve_Raise_Expression (N, Ctx_Type);
2971 when N_Raise_xxx_Error =>
2972 Set_Etype (N, Ctx_Type);
2974 when N_Range =>
2975 Resolve_Range (N, Ctx_Type);
2977 when N_Real_Literal =>
2978 Resolve_Real_Literal (N, Ctx_Type);
2980 when N_Reference =>
2981 Resolve_Reference (N, Ctx_Type);
2983 when N_Selected_Component =>
2984 Resolve_Selected_Component (N, Ctx_Type);
2986 when N_Slice =>
2987 Resolve_Slice (N, Ctx_Type);
2989 when N_String_Literal =>
2990 Resolve_String_Literal (N, Ctx_Type);
2992 when N_Target_Name =>
2993 Resolve_Target_Name (N, Ctx_Type);
2995 when N_Type_Conversion =>
2996 Resolve_Type_Conversion (N, Ctx_Type);
2998 when N_Unchecked_Expression =>
2999 Resolve_Unchecked_Expression (N, Ctx_Type);
3001 when N_Unchecked_Type_Conversion =>
3002 Resolve_Unchecked_Type_Conversion (N, Ctx_Type);
3003 end case;
3005 -- Ada 2012 (AI05-0149): Apply an (implicit) conversion to an
3006 -- expression of an anonymous access type that occurs in the context
3007 -- of a named general access type, except when the expression is that
3008 -- of a membership test. This ensures proper legality checking in
3009 -- terms of allowed conversions (expressions that would be illegal to
3010 -- convert implicitly are allowed in membership tests).
3012 if Ada_Version >= Ada_2012
3013 and then Ekind (Ctx_Type) = E_General_Access_Type
3014 and then Ekind (Etype (N)) = E_Anonymous_Access_Type
3015 and then Nkind (Parent (N)) not in N_Membership_Test
3016 then
3017 Rewrite (N, Convert_To (Ctx_Type, Relocate_Node (N)));
3018 Analyze_And_Resolve (N, Ctx_Type);
3019 end if;
3021 -- If the subexpression was replaced by a non-subexpression, then
3022 -- all we do is to expand it. The only legitimate case we know of
3023 -- is converting procedure call statement to entry call statements,
3024 -- but there may be others, so we are making this test general.
3026 if Nkind (N) not in N_Subexpr then
3027 Debug_A_Exit ("resolving ", N, " (done)");
3028 Expand (N);
3029 return;
3030 end if;
3032 -- The expression is definitely NOT overloaded at this point, so
3033 -- we reset the Is_Overloaded flag to avoid any confusion when
3034 -- reanalyzing the node.
3036 Set_Is_Overloaded (N, False);
3038 -- Freeze expression type, entity if it is a name, and designated
3039 -- type if it is an allocator (RM 13.14(10,11,13)).
3041 -- Now that the resolution of the type of the node is complete, and
3042 -- we did not detect an error, we can expand this node. We skip the
3043 -- expand call if we are in a default expression, see section
3044 -- "Handling of Default Expressions" in Sem spec.
3046 Debug_A_Exit ("resolving ", N, " (done)");
3048 -- We unconditionally freeze the expression, even if we are in
3049 -- default expression mode (the Freeze_Expression routine tests this
3050 -- flag and only freezes static types if it is set).
3052 -- Ada 2012 (AI05-177): The declaration of an expression function
3053 -- does not cause freezing, but we never reach here in that case.
3054 -- Here we are resolving the corresponding expanded body, so we do
3055 -- need to perform normal freezing.
3057 Freeze_Expression (N);
3059 -- Now we can do the expansion
3061 Expand (N);
3062 end if;
3063 end Resolve;
3065 -------------
3066 -- Resolve --
3067 -------------
3069 -- Version with check(s) suppressed
3071 procedure Resolve (N : Node_Id; Typ : Entity_Id; Suppress : Check_Id) is
3072 begin
3073 if Suppress = All_Checks then
3074 declare
3075 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
3076 begin
3077 Scope_Suppress.Suppress := (others => True);
3078 Resolve (N, Typ);
3079 Scope_Suppress.Suppress := Sva;
3080 end;
3082 else
3083 declare
3084 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
3085 begin
3086 Scope_Suppress.Suppress (Suppress) := True;
3087 Resolve (N, Typ);
3088 Scope_Suppress.Suppress (Suppress) := Svg;
3089 end;
3090 end if;
3091 end Resolve;
3093 -------------
3094 -- Resolve --
3095 -------------
3097 -- Version with implicit type
3099 procedure Resolve (N : Node_Id) is
3100 begin
3101 Resolve (N, Etype (N));
3102 end Resolve;
3104 ---------------------
3105 -- Resolve_Actuals --
3106 ---------------------
3108 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id) is
3109 Loc : constant Source_Ptr := Sloc (N);
3110 A : Node_Id;
3111 A_Id : Entity_Id;
3112 A_Typ : Entity_Id;
3113 F : Entity_Id;
3114 F_Typ : Entity_Id;
3115 Prev : Node_Id := Empty;
3116 Orig_A : Node_Id;
3117 Real_F : Entity_Id;
3119 Real_Subp : Entity_Id;
3120 -- If the subprogram being called is an inherited operation for
3121 -- a formal derived type in an instance, Real_Subp is the subprogram
3122 -- that will be called. It may have different formal names than the
3123 -- operation of the formal in the generic, so after actual is resolved
3124 -- the name of the actual in a named association must carry the name
3125 -- of the actual of the subprogram being called.
3127 procedure Check_Aliased_Parameter;
3128 -- Check rules on aliased parameters and related accessibility rules
3129 -- in (RM 3.10.2 (10.2-10.4)).
3131 procedure Check_Argument_Order;
3132 -- Performs a check for the case where the actuals are all simple
3133 -- identifiers that correspond to the formal names, but in the wrong
3134 -- order, which is considered suspicious and cause for a warning.
3136 procedure Check_Prefixed_Call;
3137 -- If the original node is an overloaded call in prefix notation,
3138 -- insert an 'Access or a dereference as needed over the first actual.
3139 -- Try_Object_Operation has already verified that there is a valid
3140 -- interpretation, but the form of the actual can only be determined
3141 -- once the primitive operation is identified.
3143 procedure Flag_Effectively_Volatile_Objects (Expr : Node_Id);
3144 -- Emit an error concerning the illegal usage of an effectively volatile
3145 -- object in interfering context (SPARK RM 7.13(12)).
3147 procedure Insert_Default;
3148 -- If the actual is missing in a call, insert in the actuals list
3149 -- an instance of the default expression. The insertion is always
3150 -- a named association.
3152 procedure Property_Error
3153 (Var : Node_Id;
3154 Var_Id : Entity_Id;
3155 Prop_Nam : Name_Id);
3156 -- Emit an error concerning variable Var with entity Var_Id that has
3157 -- enabled property Prop_Nam when it acts as an actual parameter in a
3158 -- call and the corresponding formal parameter is of mode IN.
3160 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean;
3161 -- Check whether T1 and T2, or their full views, are derived from a
3162 -- common type. Used to enforce the restrictions on array conversions
3163 -- of AI95-00246.
3165 function Static_Concatenation (N : Node_Id) return Boolean;
3166 -- Predicate to determine whether an actual that is a concatenation
3167 -- will be evaluated statically and does not need a transient scope.
3168 -- This must be determined before the actual is resolved and expanded
3169 -- because if needed the transient scope must be introduced earlier.
3171 -----------------------------
3172 -- Check_Aliased_Parameter --
3173 -----------------------------
3175 procedure Check_Aliased_Parameter is
3176 Nominal_Subt : Entity_Id;
3178 begin
3179 if Is_Aliased (F) then
3180 if Is_Tagged_Type (A_Typ) then
3181 null;
3183 elsif Is_Aliased_View (A) then
3184 if Is_Constr_Subt_For_U_Nominal (A_Typ) then
3185 Nominal_Subt := Base_Type (A_Typ);
3186 else
3187 Nominal_Subt := A_Typ;
3188 end if;
3190 if Subtypes_Statically_Match (F_Typ, Nominal_Subt) then
3191 null;
3193 -- In a generic body assume the worst for generic formals:
3194 -- they can have a constrained partial view (AI05-041).
3196 elsif Has_Discriminants (F_Typ)
3197 and then not Is_Constrained (F_Typ)
3198 and then not Has_Constrained_Partial_View (F_Typ)
3199 and then not Is_Generic_Type (F_Typ)
3200 then
3201 null;
3203 else
3204 Error_Msg_NE ("untagged actual does not match "
3205 & "aliased formal&", A, F);
3206 end if;
3208 else
3209 Error_Msg_NE ("actual for aliased formal& must be "
3210 & "aliased object", A, F);
3211 end if;
3213 if Ekind (Nam) = E_Procedure then
3214 null;
3216 elsif Ekind (Etype (Nam)) = E_Anonymous_Access_Type then
3217 if Nkind (Parent (N)) = N_Type_Conversion
3218 and then Type_Access_Level (Etype (Parent (N))) <
3219 Object_Access_Level (A)
3220 then
3221 Error_Msg_N ("aliased actual has wrong accessibility", A);
3222 end if;
3224 elsif Nkind (Parent (N)) = N_Qualified_Expression
3225 and then Nkind (Parent (Parent (N))) = N_Allocator
3226 and then Type_Access_Level (Etype (Parent (Parent (N)))) <
3227 Object_Access_Level (A)
3228 then
3229 Error_Msg_N
3230 ("aliased actual in allocator has wrong accessibility", A);
3231 end if;
3232 end if;
3233 end Check_Aliased_Parameter;
3235 --------------------------
3236 -- Check_Argument_Order --
3237 --------------------------
3239 procedure Check_Argument_Order is
3240 begin
3241 -- Nothing to do if no parameters, or original node is neither a
3242 -- function call nor a procedure call statement (happens in the
3243 -- operator-transformed-to-function call case), or the call does
3244 -- not come from source, or this warning is off.
3246 if not Warn_On_Parameter_Order
3247 or else No (Parameter_Associations (N))
3248 or else Nkind (Original_Node (N)) not in N_Subprogram_Call
3249 or else not Comes_From_Source (N)
3250 then
3251 return;
3252 end if;
3254 declare
3255 Nargs : constant Nat := List_Length (Parameter_Associations (N));
3257 begin
3258 -- Nothing to do if only one parameter
3260 if Nargs < 2 then
3261 return;
3262 end if;
3264 -- Here if at least two arguments
3266 declare
3267 Actuals : array (1 .. Nargs) of Node_Id;
3268 Actual : Node_Id;
3269 Formal : Node_Id;
3271 Wrong_Order : Boolean := False;
3272 -- Set True if an out of order case is found
3274 begin
3275 -- Collect identifier names of actuals, fail if any actual is
3276 -- not a simple identifier, and record max length of name.
3278 Actual := First (Parameter_Associations (N));
3279 for J in Actuals'Range loop
3280 if Nkind (Actual) /= N_Identifier then
3281 return;
3282 else
3283 Actuals (J) := Actual;
3284 Next (Actual);
3285 end if;
3286 end loop;
3288 -- If we got this far, all actuals are identifiers and the list
3289 -- of their names is stored in the Actuals array.
3291 Formal := First_Formal (Nam);
3292 for J in Actuals'Range loop
3294 -- If we ran out of formals, that's odd, probably an error
3295 -- which will be detected elsewhere, but abandon the search.
3297 if No (Formal) then
3298 return;
3299 end if;
3301 -- If name matches and is in order OK
3303 if Chars (Formal) = Chars (Actuals (J)) then
3304 null;
3306 else
3307 -- If no match, see if it is elsewhere in list and if so
3308 -- flag potential wrong order if type is compatible.
3310 for K in Actuals'Range loop
3311 if Chars (Formal) = Chars (Actuals (K))
3312 and then
3313 Has_Compatible_Type (Actuals (K), Etype (Formal))
3314 then
3315 Wrong_Order := True;
3316 goto Continue;
3317 end if;
3318 end loop;
3320 -- No match
3322 return;
3323 end if;
3325 <<Continue>> Next_Formal (Formal);
3326 end loop;
3328 -- If Formals left over, also probably an error, skip warning
3330 if Present (Formal) then
3331 return;
3332 end if;
3334 -- Here we give the warning if something was out of order
3336 if Wrong_Order then
3337 Error_Msg_N
3338 ("?P?actuals for this call may be in wrong order", N);
3339 end if;
3340 end;
3341 end;
3342 end Check_Argument_Order;
3344 -------------------------
3345 -- Check_Prefixed_Call --
3346 -------------------------
3348 procedure Check_Prefixed_Call is
3349 Act : constant Node_Id := First_Actual (N);
3350 A_Type : constant Entity_Id := Etype (Act);
3351 F_Type : constant Entity_Id := Etype (First_Formal (Nam));
3352 Orig : constant Node_Id := Original_Node (N);
3353 New_A : Node_Id;
3355 begin
3356 -- Check whether the call is a prefixed call, with or without
3357 -- additional actuals.
3359 if Nkind (Orig) = N_Selected_Component
3360 or else
3361 (Nkind (Orig) = N_Indexed_Component
3362 and then Nkind (Prefix (Orig)) = N_Selected_Component
3363 and then Is_Entity_Name (Prefix (Prefix (Orig)))
3364 and then Is_Entity_Name (Act)
3365 and then Chars (Act) = Chars (Prefix (Prefix (Orig))))
3366 then
3367 if Is_Access_Type (A_Type)
3368 and then not Is_Access_Type (F_Type)
3369 then
3370 -- Introduce dereference on object in prefix
3372 New_A :=
3373 Make_Explicit_Dereference (Sloc (Act),
3374 Prefix => Relocate_Node (Act));
3375 Rewrite (Act, New_A);
3376 Analyze (Act);
3378 elsif Is_Access_Type (F_Type)
3379 and then not Is_Access_Type (A_Type)
3380 then
3381 -- Introduce an implicit 'Access in prefix
3383 if not Is_Aliased_View (Act) then
3384 Error_Msg_NE
3385 ("object in prefixed call to& must be aliased "
3386 & "(RM 4.1.3 (13 1/2))",
3387 Prefix (Act), Nam);
3388 end if;
3390 Rewrite (Act,
3391 Make_Attribute_Reference (Loc,
3392 Attribute_Name => Name_Access,
3393 Prefix => Relocate_Node (Act)));
3394 end if;
3396 Analyze (Act);
3397 end if;
3398 end Check_Prefixed_Call;
3400 ---------------------------------------
3401 -- Flag_Effectively_Volatile_Objects --
3402 ---------------------------------------
3404 procedure Flag_Effectively_Volatile_Objects (Expr : Node_Id) is
3405 function Flag_Object (N : Node_Id) return Traverse_Result;
3406 -- Determine whether arbitrary node N denotes an effectively volatile
3407 -- object and if it does, emit an error.
3409 -----------------
3410 -- Flag_Object --
3411 -----------------
3413 function Flag_Object (N : Node_Id) return Traverse_Result is
3414 Id : Entity_Id;
3416 begin
3417 -- Do not consider nested function calls because they have already
3418 -- been processed during their own resolution.
3420 if Nkind (N) = N_Function_Call then
3421 return Skip;
3423 elsif Is_Entity_Name (N) and then Present (Entity (N)) then
3424 Id := Entity (N);
3426 if Is_Object (Id)
3427 and then Is_Effectively_Volatile (Id)
3428 and then (Async_Writers_Enabled (Id)
3429 or else Effective_Reads_Enabled (Id))
3430 then
3431 Error_Msg_N
3432 ("volatile object cannot appear in this context (SPARK "
3433 & "RM 7.1.3(11))", N);
3434 return Skip;
3435 end if;
3436 end if;
3438 return OK;
3439 end Flag_Object;
3441 procedure Flag_Objects is new Traverse_Proc (Flag_Object);
3443 -- Start of processing for Flag_Effectively_Volatile_Objects
3445 begin
3446 Flag_Objects (Expr);
3447 end Flag_Effectively_Volatile_Objects;
3449 --------------------
3450 -- Insert_Default --
3451 --------------------
3453 procedure Insert_Default is
3454 Actval : Node_Id;
3455 Assoc : Node_Id;
3457 begin
3458 -- Missing argument in call, nothing to insert
3460 if No (Default_Value (F)) then
3461 return;
3463 else
3464 -- Note that we do a full New_Copy_Tree, so that any associated
3465 -- Itypes are properly copied. This may not be needed any more,
3466 -- but it does no harm as a safety measure. Defaults of a generic
3467 -- formal may be out of bounds of the corresponding actual (see
3468 -- cc1311b) and an additional check may be required.
3470 Actval :=
3471 New_Copy_Tree
3472 (Default_Value (F),
3473 New_Scope => Current_Scope,
3474 New_Sloc => Loc);
3476 -- Propagate dimension information, if any.
3478 Copy_Dimensions (Default_Value (F), Actval);
3480 if Is_Concurrent_Type (Scope (Nam))
3481 and then Has_Discriminants (Scope (Nam))
3482 then
3483 Replace_Actual_Discriminants (N, Actval);
3484 end if;
3486 if Is_Overloadable (Nam)
3487 and then Present (Alias (Nam))
3488 then
3489 if Base_Type (Etype (F)) /= Base_Type (Etype (Actval))
3490 and then not Is_Tagged_Type (Etype (F))
3491 then
3492 -- If default is a real literal, do not introduce a
3493 -- conversion whose effect may depend on the run-time
3494 -- size of universal real.
3496 if Nkind (Actval) = N_Real_Literal then
3497 Set_Etype (Actval, Base_Type (Etype (F)));
3498 else
3499 Actval := Unchecked_Convert_To (Etype (F), Actval);
3500 end if;
3501 end if;
3503 if Is_Scalar_Type (Etype (F)) then
3504 Enable_Range_Check (Actval);
3505 end if;
3507 Set_Parent (Actval, N);
3509 -- Resolve aggregates with their base type, to avoid scope
3510 -- anomalies: the subtype was first built in the subprogram
3511 -- declaration, and the current call may be nested.
3513 if Nkind (Actval) = N_Aggregate then
3514 Analyze_And_Resolve (Actval, Etype (F));
3515 else
3516 Analyze_And_Resolve (Actval, Etype (Actval));
3517 end if;
3519 else
3520 Set_Parent (Actval, N);
3522 -- See note above concerning aggregates
3524 if Nkind (Actval) = N_Aggregate
3525 and then Has_Discriminants (Etype (Actval))
3526 then
3527 Analyze_And_Resolve (Actval, Base_Type (Etype (Actval)));
3529 -- Resolve entities with their own type, which may differ from
3530 -- the type of a reference in a generic context (the view
3531 -- swapping mechanism did not anticipate the re-analysis of
3532 -- default values in calls).
3534 elsif Is_Entity_Name (Actval) then
3535 Analyze_And_Resolve (Actval, Etype (Entity (Actval)));
3537 else
3538 Analyze_And_Resolve (Actval, Etype (Actval));
3539 end if;
3540 end if;
3542 -- If default is a tag indeterminate function call, propagate tag
3543 -- to obtain proper dispatching.
3545 if Is_Controlling_Formal (F)
3546 and then Nkind (Default_Value (F)) = N_Function_Call
3547 then
3548 Set_Is_Controlling_Actual (Actval);
3549 end if;
3550 end if;
3552 -- If the default expression raises constraint error, then just
3553 -- silently replace it with an N_Raise_Constraint_Error node, since
3554 -- we already gave the warning on the subprogram spec. If node is
3555 -- already a Raise_Constraint_Error leave as is, to prevent loops in
3556 -- the warnings removal machinery.
3558 if Raises_Constraint_Error (Actval)
3559 and then Nkind (Actval) /= N_Raise_Constraint_Error
3560 then
3561 Rewrite (Actval,
3562 Make_Raise_Constraint_Error (Loc,
3563 Reason => CE_Range_Check_Failed));
3564 Set_Raises_Constraint_Error (Actval);
3565 Set_Etype (Actval, Etype (F));
3566 end if;
3568 Assoc :=
3569 Make_Parameter_Association (Loc,
3570 Explicit_Actual_Parameter => Actval,
3571 Selector_Name => Make_Identifier (Loc, Chars (F)));
3573 -- Case of insertion is first named actual
3575 if No (Prev) or else
3576 Nkind (Parent (Prev)) /= N_Parameter_Association
3577 then
3578 Set_Next_Named_Actual (Assoc, First_Named_Actual (N));
3579 Set_First_Named_Actual (N, Actval);
3581 if No (Prev) then
3582 if No (Parameter_Associations (N)) then
3583 Set_Parameter_Associations (N, New_List (Assoc));
3584 else
3585 Append (Assoc, Parameter_Associations (N));
3586 end if;
3588 else
3589 Insert_After (Prev, Assoc);
3590 end if;
3592 -- Case of insertion is not first named actual
3594 else
3595 Set_Next_Named_Actual
3596 (Assoc, Next_Named_Actual (Parent (Prev)));
3597 Set_Next_Named_Actual (Parent (Prev), Actval);
3598 Append (Assoc, Parameter_Associations (N));
3599 end if;
3601 Mark_Rewrite_Insertion (Assoc);
3602 Mark_Rewrite_Insertion (Actval);
3604 Prev := Actval;
3605 end Insert_Default;
3607 --------------------
3608 -- Property_Error --
3609 --------------------
3611 procedure Property_Error
3612 (Var : Node_Id;
3613 Var_Id : Entity_Id;
3614 Prop_Nam : Name_Id)
3616 begin
3617 Error_Msg_Name_1 := Prop_Nam;
3618 Error_Msg_NE
3619 ("external variable & with enabled property % cannot appear as "
3620 & "actual in procedure call (SPARK RM 7.1.3(10))", Var, Var_Id);
3621 Error_Msg_N ("\\corresponding formal parameter has mode In", Var);
3622 end Property_Error;
3624 -------------------
3625 -- Same_Ancestor --
3626 -------------------
3628 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean is
3629 FT1 : Entity_Id := T1;
3630 FT2 : Entity_Id := T2;
3632 begin
3633 if Is_Private_Type (T1)
3634 and then Present (Full_View (T1))
3635 then
3636 FT1 := Full_View (T1);
3637 end if;
3639 if Is_Private_Type (T2)
3640 and then Present (Full_View (T2))
3641 then
3642 FT2 := Full_View (T2);
3643 end if;
3645 return Root_Type (Base_Type (FT1)) = Root_Type (Base_Type (FT2));
3646 end Same_Ancestor;
3648 --------------------------
3649 -- Static_Concatenation --
3650 --------------------------
3652 function Static_Concatenation (N : Node_Id) return Boolean is
3653 begin
3654 case Nkind (N) is
3655 when N_String_Literal =>
3656 return True;
3658 when N_Op_Concat =>
3660 -- Concatenation is static when both operands are static and
3661 -- the concatenation operator is a predefined one.
3663 return Scope (Entity (N)) = Standard_Standard
3664 and then
3665 Static_Concatenation (Left_Opnd (N))
3666 and then
3667 Static_Concatenation (Right_Opnd (N));
3669 when others =>
3670 if Is_Entity_Name (N) then
3671 declare
3672 Ent : constant Entity_Id := Entity (N);
3673 begin
3674 return Ekind (Ent) = E_Constant
3675 and then Present (Constant_Value (Ent))
3676 and then
3677 Is_OK_Static_Expression (Constant_Value (Ent));
3678 end;
3680 else
3681 return False;
3682 end if;
3683 end case;
3684 end Static_Concatenation;
3686 -- Start of processing for Resolve_Actuals
3688 begin
3689 Check_Argument_Order;
3691 if Is_Overloadable (Nam)
3692 and then Is_Inherited_Operation (Nam)
3693 and then In_Instance
3694 and then Present (Alias (Nam))
3695 and then Present (Overridden_Operation (Alias (Nam)))
3696 then
3697 Real_Subp := Alias (Nam);
3698 else
3699 Real_Subp := Empty;
3700 end if;
3702 if Present (First_Actual (N)) then
3703 Check_Prefixed_Call;
3704 end if;
3706 A := First_Actual (N);
3707 F := First_Formal (Nam);
3709 if Present (Real_Subp) then
3710 Real_F := First_Formal (Real_Subp);
3711 end if;
3713 while Present (F) loop
3714 if No (A) and then Needs_No_Actuals (Nam) then
3715 null;
3717 -- If we have an error in any actual or formal, indicated by a type
3718 -- of Any_Type, then abandon resolution attempt, and set result type
3719 -- to Any_Type. Skip this if the actual is a Raise_Expression, whose
3720 -- type is imposed from context.
3722 elsif (Present (A) and then Etype (A) = Any_Type)
3723 or else Etype (F) = Any_Type
3724 then
3725 if Nkind (A) /= N_Raise_Expression then
3726 Set_Etype (N, Any_Type);
3727 return;
3728 end if;
3729 end if;
3731 -- Case where actual is present
3733 -- If the actual is an entity, generate a reference to it now. We
3734 -- do this before the actual is resolved, because a formal of some
3735 -- protected subprogram, or a task discriminant, will be rewritten
3736 -- during expansion, and the source entity reference may be lost.
3738 if Present (A)
3739 and then Is_Entity_Name (A)
3740 and then Comes_From_Source (A)
3741 then
3742 Orig_A := Entity (A);
3744 if Present (Orig_A) then
3745 if Is_Formal (Orig_A)
3746 and then Ekind (F) /= E_In_Parameter
3747 then
3748 Generate_Reference (Orig_A, A, 'm');
3750 elsif not Is_Overloaded (A) then
3751 if Ekind (F) /= E_Out_Parameter then
3752 Generate_Reference (Orig_A, A);
3754 -- RM 6.4.1(12): For an out parameter that is passed by
3755 -- copy, the formal parameter object is created, and:
3757 -- * For an access type, the formal parameter is initialized
3758 -- from the value of the actual, without checking that the
3759 -- value satisfies any constraint, any predicate, or any
3760 -- exclusion of the null value.
3762 -- * For a scalar type that has the Default_Value aspect
3763 -- specified, the formal parameter is initialized from the
3764 -- value of the actual, without checking that the value
3765 -- satisfies any constraint or any predicate.
3766 -- I do not understand why this case is included??? this is
3767 -- not a case where an OUT parameter is treated as IN OUT.
3769 -- * For a composite type with discriminants or that has
3770 -- implicit initial values for any subcomponents, the
3771 -- behavior is as for an in out parameter passed by copy.
3773 -- Hence for these cases we generate the read reference now
3774 -- (the write reference will be generated later by
3775 -- Note_Possible_Modification).
3777 elsif Is_By_Copy_Type (Etype (F))
3778 and then
3779 (Is_Access_Type (Etype (F))
3780 or else
3781 (Is_Scalar_Type (Etype (F))
3782 and then
3783 Present (Default_Aspect_Value (Etype (F))))
3784 or else
3785 (Is_Composite_Type (Etype (F))
3786 and then (Has_Discriminants (Etype (F))
3787 or else Is_Partially_Initialized_Type
3788 (Etype (F)))))
3789 then
3790 Generate_Reference (Orig_A, A);
3791 end if;
3792 end if;
3793 end if;
3794 end if;
3796 if Present (A)
3797 and then (Nkind (Parent (A)) /= N_Parameter_Association
3798 or else Chars (Selector_Name (Parent (A))) = Chars (F))
3799 then
3800 -- If style checking mode on, check match of formal name
3802 if Style_Check then
3803 if Nkind (Parent (A)) = N_Parameter_Association then
3804 Check_Identifier (Selector_Name (Parent (A)), F);
3805 end if;
3806 end if;
3808 -- If the formal is Out or In_Out, do not resolve and expand the
3809 -- conversion, because it is subsequently expanded into explicit
3810 -- temporaries and assignments. However, the object of the
3811 -- conversion can be resolved. An exception is the case of tagged
3812 -- type conversion with a class-wide actual. In that case we want
3813 -- the tag check to occur and no temporary will be needed (no
3814 -- representation change can occur) and the parameter is passed by
3815 -- reference, so we go ahead and resolve the type conversion.
3816 -- Another exception is the case of reference to component or
3817 -- subcomponent of a bit-packed array, in which case we want to
3818 -- defer expansion to the point the in and out assignments are
3819 -- performed.
3821 if Ekind (F) /= E_In_Parameter
3822 and then Nkind (A) = N_Type_Conversion
3823 and then not Is_Class_Wide_Type (Etype (Expression (A)))
3824 then
3825 if Ekind (F) = E_In_Out_Parameter
3826 and then Is_Array_Type (Etype (F))
3827 then
3828 -- In a view conversion, the conversion must be legal in
3829 -- both directions, and thus both component types must be
3830 -- aliased, or neither (4.6 (8)).
3832 -- The extra rule in 4.6 (24.9.2) seems unduly restrictive:
3833 -- the privacy requirement should not apply to generic
3834 -- types, and should be checked in an instance. ARG query
3835 -- is in order ???
3837 if Has_Aliased_Components (Etype (Expression (A))) /=
3838 Has_Aliased_Components (Etype (F))
3839 then
3840 Error_Msg_N
3841 ("both component types in a view conversion must be"
3842 & " aliased, or neither", A);
3844 -- Comment here??? what set of cases???
3846 elsif
3847 not Same_Ancestor (Etype (F), Etype (Expression (A)))
3848 then
3849 -- Check view conv between unrelated by ref array types
3851 if Is_By_Reference_Type (Etype (F))
3852 or else Is_By_Reference_Type (Etype (Expression (A)))
3853 then
3854 Error_Msg_N
3855 ("view conversion between unrelated by reference "
3856 & "array types not allowed (\'A'I-00246)", A);
3858 -- In Ada 2005 mode, check view conversion component
3859 -- type cannot be private, tagged, or volatile. Note
3860 -- that we only apply this to source conversions. The
3861 -- generated code can contain conversions which are
3862 -- not subject to this test, and we cannot extract the
3863 -- component type in such cases since it is not present.
3865 elsif Comes_From_Source (A)
3866 and then Ada_Version >= Ada_2005
3867 then
3868 declare
3869 Comp_Type : constant Entity_Id :=
3870 Component_Type
3871 (Etype (Expression (A)));
3872 begin
3873 if (Is_Private_Type (Comp_Type)
3874 and then not Is_Generic_Type (Comp_Type))
3875 or else Is_Tagged_Type (Comp_Type)
3876 or else Is_Volatile (Comp_Type)
3877 then
3878 Error_Msg_N
3879 ("component type of a view conversion cannot"
3880 & " be private, tagged, or volatile"
3881 & " (RM 4.6 (24))",
3882 Expression (A));
3883 end if;
3884 end;
3885 end if;
3886 end if;
3887 end if;
3889 -- Resolve expression if conversion is all OK
3891 if (Conversion_OK (A)
3892 or else Valid_Conversion (A, Etype (A), Expression (A)))
3893 and then not Is_Ref_To_Bit_Packed_Array (Expression (A))
3894 then
3895 Resolve (Expression (A));
3896 end if;
3898 -- If the actual is a function call that returns a limited
3899 -- unconstrained object that needs finalization, create a
3900 -- transient scope for it, so that it can receive the proper
3901 -- finalization list.
3903 elsif Nkind (A) = N_Function_Call
3904 and then Is_Limited_Record (Etype (F))
3905 and then not Is_Constrained (Etype (F))
3906 and then Expander_Active
3907 and then (Is_Controlled (Etype (F)) or else Has_Task (Etype (F)))
3908 then
3909 Establish_Transient_Scope (A, Sec_Stack => False);
3910 Resolve (A, Etype (F));
3912 -- A small optimization: if one of the actuals is a concatenation
3913 -- create a block around a procedure call to recover stack space.
3914 -- This alleviates stack usage when several procedure calls in
3915 -- the same statement list use concatenation. We do not perform
3916 -- this wrapping for code statements, where the argument is a
3917 -- static string, and we want to preserve warnings involving
3918 -- sequences of such statements.
3920 elsif Nkind (A) = N_Op_Concat
3921 and then Nkind (N) = N_Procedure_Call_Statement
3922 and then Expander_Active
3923 and then
3924 not (Is_Intrinsic_Subprogram (Nam)
3925 and then Chars (Nam) = Name_Asm)
3926 and then not Static_Concatenation (A)
3927 then
3928 Establish_Transient_Scope (A, Sec_Stack => False);
3929 Resolve (A, Etype (F));
3931 else
3932 if Nkind (A) = N_Type_Conversion
3933 and then Is_Array_Type (Etype (F))
3934 and then not Same_Ancestor (Etype (F), Etype (Expression (A)))
3935 and then
3936 (Is_Limited_Type (Etype (F))
3937 or else Is_Limited_Type (Etype (Expression (A))))
3938 then
3939 Error_Msg_N
3940 ("conversion between unrelated limited array types "
3941 & "not allowed ('A'I-00246)", A);
3943 if Is_Limited_Type (Etype (F)) then
3944 Explain_Limited_Type (Etype (F), A);
3945 end if;
3947 if Is_Limited_Type (Etype (Expression (A))) then
3948 Explain_Limited_Type (Etype (Expression (A)), A);
3949 end if;
3950 end if;
3952 -- (Ada 2005: AI-251): If the actual is an allocator whose
3953 -- directly designated type is a class-wide interface, we build
3954 -- an anonymous access type to use it as the type of the
3955 -- allocator. Later, when the subprogram call is expanded, if
3956 -- the interface has a secondary dispatch table the expander
3957 -- will add a type conversion to force the correct displacement
3958 -- of the pointer.
3960 if Nkind (A) = N_Allocator then
3961 declare
3962 DDT : constant Entity_Id :=
3963 Directly_Designated_Type (Base_Type (Etype (F)));
3965 New_Itype : Entity_Id;
3967 begin
3968 if Is_Class_Wide_Type (DDT)
3969 and then Is_Interface (DDT)
3970 then
3971 New_Itype := Create_Itype (E_Anonymous_Access_Type, A);
3972 Set_Etype (New_Itype, Etype (A));
3973 Set_Directly_Designated_Type
3974 (New_Itype, Directly_Designated_Type (Etype (A)));
3975 Set_Etype (A, New_Itype);
3976 end if;
3978 -- Ada 2005, AI-162:If the actual is an allocator, the
3979 -- innermost enclosing statement is the master of the
3980 -- created object. This needs to be done with expansion
3981 -- enabled only, otherwise the transient scope will not
3982 -- be removed in the expansion of the wrapped construct.
3984 if (Is_Controlled (DDT) or else Has_Task (DDT))
3985 and then Expander_Active
3986 then
3987 Establish_Transient_Scope (A, Sec_Stack => False);
3988 end if;
3989 end;
3991 if Ekind (Etype (F)) = E_Anonymous_Access_Type then
3992 Check_Restriction (No_Access_Parameter_Allocators, A);
3993 end if;
3994 end if;
3996 -- (Ada 2005): The call may be to a primitive operation of a
3997 -- tagged synchronized type, declared outside of the type. In
3998 -- this case the controlling actual must be converted to its
3999 -- corresponding record type, which is the formal type. The
4000 -- actual may be a subtype, either because of a constraint or
4001 -- because it is a generic actual, so use base type to locate
4002 -- concurrent type.
4004 F_Typ := Base_Type (Etype (F));
4006 if Is_Tagged_Type (F_Typ)
4007 and then (Is_Concurrent_Type (F_Typ)
4008 or else Is_Concurrent_Record_Type (F_Typ))
4009 then
4010 -- If the actual is overloaded, look for an interpretation
4011 -- that has a synchronized type.
4013 if not Is_Overloaded (A) then
4014 A_Typ := Base_Type (Etype (A));
4016 else
4017 declare
4018 Index : Interp_Index;
4019 It : Interp;
4021 begin
4022 Get_First_Interp (A, Index, It);
4023 while Present (It.Typ) loop
4024 if Is_Concurrent_Type (It.Typ)
4025 or else Is_Concurrent_Record_Type (It.Typ)
4026 then
4027 A_Typ := Base_Type (It.Typ);
4028 exit;
4029 end if;
4031 Get_Next_Interp (Index, It);
4032 end loop;
4033 end;
4034 end if;
4036 declare
4037 Full_A_Typ : Entity_Id;
4039 begin
4040 if Present (Full_View (A_Typ)) then
4041 Full_A_Typ := Base_Type (Full_View (A_Typ));
4042 else
4043 Full_A_Typ := A_Typ;
4044 end if;
4046 -- Tagged synchronized type (case 1): the actual is a
4047 -- concurrent type.
4049 if Is_Concurrent_Type (A_Typ)
4050 and then Corresponding_Record_Type (A_Typ) = F_Typ
4051 then
4052 Rewrite (A,
4053 Unchecked_Convert_To
4054 (Corresponding_Record_Type (A_Typ), A));
4055 Resolve (A, Etype (F));
4057 -- Tagged synchronized type (case 2): the formal is a
4058 -- concurrent type.
4060 elsif Ekind (Full_A_Typ) = E_Record_Type
4061 and then Present
4062 (Corresponding_Concurrent_Type (Full_A_Typ))
4063 and then Is_Concurrent_Type (F_Typ)
4064 and then Present (Corresponding_Record_Type (F_Typ))
4065 and then Full_A_Typ = Corresponding_Record_Type (F_Typ)
4066 then
4067 Resolve (A, Corresponding_Record_Type (F_Typ));
4069 -- Common case
4071 else
4072 Resolve (A, Etype (F));
4073 end if;
4074 end;
4076 -- Not a synchronized operation
4078 else
4079 Resolve (A, Etype (F));
4080 end if;
4081 end if;
4083 A_Typ := Etype (A);
4084 F_Typ := Etype (F);
4086 -- An actual cannot be an untagged formal incomplete type
4088 if Ekind (A_Typ) = E_Incomplete_Type
4089 and then not Is_Tagged_Type (A_Typ)
4090 and then Is_Generic_Type (A_Typ)
4091 then
4092 Error_Msg_N
4093 ("invalid use of untagged formal incomplete type", A);
4094 end if;
4096 if Comes_From_Source (Original_Node (N))
4097 and then Nkind_In (Original_Node (N), N_Function_Call,
4098 N_Procedure_Call_Statement)
4099 then
4100 -- In formal mode, check that actual parameters matching
4101 -- formals of tagged types are objects (or ancestor type
4102 -- conversions of objects), not general expressions.
4104 if Is_Actual_Tagged_Parameter (A) then
4105 if Is_SPARK_05_Object_Reference (A) then
4106 null;
4108 elsif Nkind (A) = N_Type_Conversion then
4109 declare
4110 Operand : constant Node_Id := Expression (A);
4111 Operand_Typ : constant Entity_Id := Etype (Operand);
4112 Target_Typ : constant Entity_Id := A_Typ;
4114 begin
4115 if not Is_SPARK_05_Object_Reference (Operand) then
4116 Check_SPARK_05_Restriction
4117 ("object required", Operand);
4119 -- In formal mode, the only view conversions are those
4120 -- involving ancestor conversion of an extended type.
4122 elsif not
4123 (Is_Tagged_Type (Target_Typ)
4124 and then not Is_Class_Wide_Type (Target_Typ)
4125 and then Is_Tagged_Type (Operand_Typ)
4126 and then not Is_Class_Wide_Type (Operand_Typ)
4127 and then Is_Ancestor (Target_Typ, Operand_Typ))
4128 then
4129 if Ekind_In
4130 (F, E_Out_Parameter, E_In_Out_Parameter)
4131 then
4132 Check_SPARK_05_Restriction
4133 ("ancestor conversion is the only permitted "
4134 & "view conversion", A);
4135 else
4136 Check_SPARK_05_Restriction
4137 ("ancestor conversion required", A);
4138 end if;
4140 else
4141 null;
4142 end if;
4143 end;
4145 else
4146 Check_SPARK_05_Restriction ("object required", A);
4147 end if;
4149 -- In formal mode, the only view conversions are those
4150 -- involving ancestor conversion of an extended type.
4152 elsif Nkind (A) = N_Type_Conversion
4153 and then Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter)
4154 then
4155 Check_SPARK_05_Restriction
4156 ("ancestor conversion is the only permitted view "
4157 & "conversion", A);
4158 end if;
4159 end if;
4161 -- has warnings suppressed, then we reset Never_Set_In_Source for
4162 -- the calling entity. The reason for this is to catch cases like
4163 -- GNAT.Spitbol.Patterns.Vstring_Var where the called subprogram
4164 -- uses trickery to modify an IN parameter.
4166 if Ekind (F) = E_In_Parameter
4167 and then Is_Entity_Name (A)
4168 and then Present (Entity (A))
4169 and then Ekind (Entity (A)) = E_Variable
4170 and then Has_Warnings_Off (F_Typ)
4171 then
4172 Set_Never_Set_In_Source (Entity (A), False);
4173 end if;
4175 -- Perform error checks for IN and IN OUT parameters
4177 if Ekind (F) /= E_Out_Parameter then
4179 -- Check unset reference. For scalar parameters, it is clearly
4180 -- wrong to pass an uninitialized value as either an IN or
4181 -- IN-OUT parameter. For composites, it is also clearly an
4182 -- error to pass a completely uninitialized value as an IN
4183 -- parameter, but the case of IN OUT is trickier. We prefer
4184 -- not to give a warning here. For example, suppose there is
4185 -- a routine that sets some component of a record to False.
4186 -- It is perfectly reasonable to make this IN-OUT and allow
4187 -- either initialized or uninitialized records to be passed
4188 -- in this case.
4190 -- For partially initialized composite values, we also avoid
4191 -- warnings, since it is quite likely that we are passing a
4192 -- partially initialized value and only the initialized fields
4193 -- will in fact be read in the subprogram.
4195 if Is_Scalar_Type (A_Typ)
4196 or else (Ekind (F) = E_In_Parameter
4197 and then not Is_Partially_Initialized_Type (A_Typ))
4198 then
4199 Check_Unset_Reference (A);
4200 end if;
4202 -- In Ada 83 we cannot pass an OUT parameter as an IN or IN OUT
4203 -- actual to a nested call, since this constitutes a reading of
4204 -- the parameter, which is not allowed.
4206 if Ada_Version = Ada_83
4207 and then Is_Entity_Name (A)
4208 and then Ekind (Entity (A)) = E_Out_Parameter
4209 then
4210 Error_Msg_N ("(Ada 83) illegal reading of out parameter", A);
4211 end if;
4212 end if;
4214 -- In -gnatd.q mode, forget that a given array is constant when
4215 -- it is passed as an IN parameter to a foreign-convention
4216 -- subprogram. This is in case the subprogram evilly modifies the
4217 -- object. Of course, correct code would use IN OUT.
4219 if Debug_Flag_Dot_Q
4220 and then Ekind (F) = E_In_Parameter
4221 and then Has_Foreign_Convention (Nam)
4222 and then Is_Array_Type (F_Typ)
4223 and then Nkind (A) in N_Has_Entity
4224 and then Present (Entity (A))
4225 then
4226 Set_Is_True_Constant (Entity (A), False);
4227 end if;
4229 -- Case of OUT or IN OUT parameter
4231 if Ekind (F) /= E_In_Parameter then
4233 -- For an Out parameter, check for useless assignment. Note
4234 -- that we can't set Last_Assignment this early, because we may
4235 -- kill current values in Resolve_Call, and that call would
4236 -- clobber the Last_Assignment field.
4238 -- Note: call Warn_On_Useless_Assignment before doing the check
4239 -- below for Is_OK_Variable_For_Out_Formal so that the setting
4240 -- of Referenced_As_LHS/Referenced_As_Out_Formal properly
4241 -- reflects the last assignment, not this one.
4243 if Ekind (F) = E_Out_Parameter then
4244 if Warn_On_Modified_As_Out_Parameter (F)
4245 and then Is_Entity_Name (A)
4246 and then Present (Entity (A))
4247 and then Comes_From_Source (N)
4248 then
4249 Warn_On_Useless_Assignment (Entity (A), A);
4250 end if;
4251 end if;
4253 -- Validate the form of the actual. Note that the call to
4254 -- Is_OK_Variable_For_Out_Formal generates the required
4255 -- reference in this case.
4257 -- A call to an initialization procedure for an aggregate
4258 -- component may initialize a nested component of a constant
4259 -- designated object. In this context the object is variable.
4261 if not Is_OK_Variable_For_Out_Formal (A)
4262 and then not Is_Init_Proc (Nam)
4263 then
4264 Error_Msg_NE ("actual for& must be a variable", A, F);
4266 if Is_Subprogram (Current_Scope) then
4267 if Is_Invariant_Procedure (Current_Scope)
4268 or else Is_Partial_Invariant_Procedure (Current_Scope)
4269 then
4270 Error_Msg_N
4271 ("function used in invariant cannot modify its "
4272 & "argument", F);
4274 elsif Is_Predicate_Function (Current_Scope) then
4275 Error_Msg_N
4276 ("function used in predicate cannot modify its "
4277 & "argument", F);
4278 end if;
4279 end if;
4280 end if;
4282 -- What's the following about???
4284 if Is_Entity_Name (A) then
4285 Kill_Checks (Entity (A));
4286 else
4287 Kill_All_Checks;
4288 end if;
4289 end if;
4291 if Etype (A) = Any_Type then
4292 Set_Etype (N, Any_Type);
4293 return;
4294 end if;
4296 -- Apply appropriate constraint/predicate checks for IN [OUT] case
4298 if Ekind_In (F, E_In_Parameter, E_In_Out_Parameter) then
4300 -- Apply predicate tests except in certain special cases. Note
4301 -- that it might be more consistent to apply these only when
4302 -- expansion is active (in Exp_Ch6.Expand_Actuals), as we do
4303 -- for the outbound predicate tests ??? In any case indicate
4304 -- the function being called, for better warnings if the call
4305 -- leads to an infinite recursion.
4307 if Predicate_Tests_On_Arguments (Nam) then
4308 Apply_Predicate_Check (A, F_Typ, Nam);
4309 end if;
4311 -- Apply required constraint checks
4313 -- Gigi looks at the check flag and uses the appropriate types.
4314 -- For now since one flag is used there is an optimization
4315 -- which might not be done in the IN OUT case since Gigi does
4316 -- not do any analysis. More thought required about this ???
4318 -- In fact is this comment obsolete??? doesn't the expander now
4319 -- generate all these tests anyway???
4321 if Is_Scalar_Type (Etype (A)) then
4322 Apply_Scalar_Range_Check (A, F_Typ);
4324 elsif Is_Array_Type (Etype (A)) then
4325 Apply_Length_Check (A, F_Typ);
4327 elsif Is_Record_Type (F_Typ)
4328 and then Has_Discriminants (F_Typ)
4329 and then Is_Constrained (F_Typ)
4330 and then (not Is_Derived_Type (F_Typ)
4331 or else Comes_From_Source (Nam))
4332 then
4333 Apply_Discriminant_Check (A, F_Typ);
4335 -- For view conversions of a discriminated object, apply
4336 -- check to object itself, the conversion alreay has the
4337 -- proper type.
4339 if Nkind (A) = N_Type_Conversion
4340 and then Is_Constrained (Etype (Expression (A)))
4341 then
4342 Apply_Discriminant_Check (Expression (A), F_Typ);
4343 end if;
4345 elsif Is_Access_Type (F_Typ)
4346 and then Is_Array_Type (Designated_Type (F_Typ))
4347 and then Is_Constrained (Designated_Type (F_Typ))
4348 then
4349 Apply_Length_Check (A, F_Typ);
4351 elsif Is_Access_Type (F_Typ)
4352 and then Has_Discriminants (Designated_Type (F_Typ))
4353 and then Is_Constrained (Designated_Type (F_Typ))
4354 then
4355 Apply_Discriminant_Check (A, F_Typ);
4357 else
4358 Apply_Range_Check (A, F_Typ);
4359 end if;
4361 -- Ada 2005 (AI-231): Note that the controlling parameter case
4362 -- already existed in Ada 95, which is partially checked
4363 -- elsewhere (see Checks), and we don't want the warning
4364 -- message to differ.
4366 if Is_Access_Type (F_Typ)
4367 and then Can_Never_Be_Null (F_Typ)
4368 and then Known_Null (A)
4369 then
4370 if Is_Controlling_Formal (F) then
4371 Apply_Compile_Time_Constraint_Error
4372 (N => A,
4373 Msg => "null value not allowed here??",
4374 Reason => CE_Access_Check_Failed);
4376 elsif Ada_Version >= Ada_2005 then
4377 Apply_Compile_Time_Constraint_Error
4378 (N => A,
4379 Msg => "(Ada 2005) null not allowed in "
4380 & "null-excluding formal??",
4381 Reason => CE_Null_Not_Allowed);
4382 end if;
4383 end if;
4384 end if;
4386 -- Checks for OUT parameters and IN OUT parameters
4388 if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter) then
4390 -- If there is a type conversion, make sure the return value
4391 -- meets the constraints of the variable before the conversion.
4393 if Nkind (A) = N_Type_Conversion then
4394 if Is_Scalar_Type (A_Typ) then
4395 Apply_Scalar_Range_Check
4396 (Expression (A), Etype (Expression (A)), A_Typ);
4398 -- In addition, the returned value of the parameter must
4399 -- satisfy the bounds of the object type (see comment
4400 -- below).
4402 Apply_Scalar_Range_Check (A, A_Typ, F_Typ);
4404 else
4405 Apply_Range_Check
4406 (Expression (A), Etype (Expression (A)), A_Typ);
4407 end if;
4409 -- If no conversion, apply scalar range checks and length check
4410 -- based on the subtype of the actual (NOT that of the formal).
4411 -- This indicates that the check takes place on return from the
4412 -- call. During expansion the required constraint checks are
4413 -- inserted. In GNATprove mode, in the absence of expansion,
4414 -- the flag indicates that the returned value is valid.
4416 else
4417 if Is_Scalar_Type (F_Typ) then
4418 Apply_Scalar_Range_Check (A, A_Typ, F_Typ);
4420 elsif Is_Array_Type (F_Typ)
4421 and then Ekind (F) = E_Out_Parameter
4422 then
4423 Apply_Length_Check (A, F_Typ);
4424 else
4425 Apply_Range_Check (A, A_Typ, F_Typ);
4426 end if;
4427 end if;
4429 -- Note: we do not apply the predicate checks for the case of
4430 -- OUT and IN OUT parameters. They are instead applied in the
4431 -- Expand_Actuals routine in Exp_Ch6.
4432 end if;
4434 -- An actual associated with an access parameter is implicitly
4435 -- converted to the anonymous access type of the formal and must
4436 -- satisfy the legality checks for access conversions.
4438 if Ekind (F_Typ) = E_Anonymous_Access_Type then
4439 if not Valid_Conversion (A, F_Typ, A) then
4440 Error_Msg_N
4441 ("invalid implicit conversion for access parameter", A);
4442 end if;
4444 -- If the actual is an access selected component of a variable,
4445 -- the call may modify its designated object. It is reasonable
4446 -- to treat this as a potential modification of the enclosing
4447 -- record, to prevent spurious warnings that it should be
4448 -- declared as a constant, because intuitively programmers
4449 -- regard the designated subcomponent as part of the record.
4451 if Nkind (A) = N_Selected_Component
4452 and then Is_Entity_Name (Prefix (A))
4453 and then not Is_Constant_Object (Entity (Prefix (A)))
4454 then
4455 Note_Possible_Modification (A, Sure => False);
4456 end if;
4457 end if;
4459 -- Check bad case of atomic/volatile argument (RM C.6(12))
4461 if Is_By_Reference_Type (Etype (F))
4462 and then Comes_From_Source (N)
4463 then
4464 if Is_Atomic_Object (A)
4465 and then not Is_Atomic (Etype (F))
4466 then
4467 Error_Msg_NE
4468 ("cannot pass atomic argument to non-atomic formal&",
4469 A, F);
4471 elsif Is_Volatile_Object (A)
4472 and then not Is_Volatile (Etype (F))
4473 then
4474 Error_Msg_NE
4475 ("cannot pass volatile argument to non-volatile formal&",
4476 A, F);
4477 end if;
4478 end if;
4480 -- Check that subprograms don't have improper controlling
4481 -- arguments (RM 3.9.2 (9)).
4483 -- A primitive operation may have an access parameter of an
4484 -- incomplete tagged type, but a dispatching call is illegal
4485 -- if the type is still incomplete.
4487 if Is_Controlling_Formal (F) then
4488 Set_Is_Controlling_Actual (A);
4490 if Ekind (Etype (F)) = E_Anonymous_Access_Type then
4491 declare
4492 Desig : constant Entity_Id := Designated_Type (Etype (F));
4493 begin
4494 if Ekind (Desig) = E_Incomplete_Type
4495 and then No (Full_View (Desig))
4496 and then No (Non_Limited_View (Desig))
4497 then
4498 Error_Msg_NE
4499 ("premature use of incomplete type& "
4500 & "in dispatching call", A, Desig);
4501 end if;
4502 end;
4503 end if;
4505 elsif Nkind (A) = N_Explicit_Dereference then
4506 Validate_Remote_Access_To_Class_Wide_Type (A);
4507 end if;
4509 -- Apply legality rule 3.9.2 (9/1)
4511 if (Is_Class_Wide_Type (A_Typ) or else Is_Dynamically_Tagged (A))
4512 and then not Is_Class_Wide_Type (F_Typ)
4513 and then not Is_Controlling_Formal (F)
4514 and then not In_Instance
4515 then
4516 Error_Msg_N ("class-wide argument not allowed here!", A);
4518 if Is_Subprogram (Nam) and then Comes_From_Source (Nam) then
4519 Error_Msg_Node_2 := F_Typ;
4520 Error_Msg_NE
4521 ("& is not a dispatching operation of &!", A, Nam);
4522 end if;
4524 -- Apply the checks described in 3.10.2(27): if the context is a
4525 -- specific access-to-object, the actual cannot be class-wide.
4526 -- Use base type to exclude access_to_subprogram cases.
4528 elsif Is_Access_Type (A_Typ)
4529 and then Is_Access_Type (F_Typ)
4530 and then not Is_Access_Subprogram_Type (Base_Type (F_Typ))
4531 and then (Is_Class_Wide_Type (Designated_Type (A_Typ))
4532 or else (Nkind (A) = N_Attribute_Reference
4533 and then
4534 Is_Class_Wide_Type (Etype (Prefix (A)))))
4535 and then not Is_Class_Wide_Type (Designated_Type (F_Typ))
4536 and then not Is_Controlling_Formal (F)
4538 -- Disable these checks for call to imported C++ subprograms
4540 and then not
4541 (Is_Entity_Name (Name (N))
4542 and then Is_Imported (Entity (Name (N)))
4543 and then Convention (Entity (Name (N))) = Convention_CPP)
4544 then
4545 Error_Msg_N
4546 ("access to class-wide argument not allowed here!", A);
4548 if Is_Subprogram (Nam) and then Comes_From_Source (Nam) then
4549 Error_Msg_Node_2 := Designated_Type (F_Typ);
4550 Error_Msg_NE
4551 ("& is not a dispatching operation of &!", A, Nam);
4552 end if;
4553 end if;
4555 Check_Aliased_Parameter;
4557 Eval_Actual (A);
4559 -- If it is a named association, treat the selector_name as a
4560 -- proper identifier, and mark the corresponding entity.
4562 if Nkind (Parent (A)) = N_Parameter_Association
4564 -- Ignore reference in SPARK mode, as it refers to an entity not
4565 -- in scope at the point of reference, so the reference should
4566 -- be ignored for computing effects of subprograms.
4568 and then not GNATprove_Mode
4569 then
4570 -- If subprogram is overridden, use name of formal that
4571 -- is being called.
4573 if Present (Real_Subp) then
4574 Set_Entity (Selector_Name (Parent (A)), Real_F);
4575 Set_Etype (Selector_Name (Parent (A)), Etype (Real_F));
4577 else
4578 Set_Entity (Selector_Name (Parent (A)), F);
4579 Generate_Reference (F, Selector_Name (Parent (A)));
4580 Set_Etype (Selector_Name (Parent (A)), F_Typ);
4581 Generate_Reference (F_Typ, N, ' ');
4582 end if;
4583 end if;
4585 Prev := A;
4587 if Ekind (F) /= E_Out_Parameter then
4588 Check_Unset_Reference (A);
4589 end if;
4591 -- The following checks are only relevant when SPARK_Mode is on as
4592 -- they are not standard Ada legality rule. Internally generated
4593 -- temporaries are ignored.
4595 if SPARK_Mode = On and then Comes_From_Source (A) then
4597 -- An effectively volatile object may act as an actual when the
4598 -- corresponding formal is of a non-scalar effectively volatile
4599 -- type (SPARK RM 7.1.3(11)).
4601 if not Is_Scalar_Type (Etype (F))
4602 and then Is_Effectively_Volatile (Etype (F))
4603 then
4604 null;
4606 -- An effectively volatile object may act as an actual in a
4607 -- call to an instance of Unchecked_Conversion.
4608 -- (SPARK RM 7.1.3(11)).
4610 elsif Is_Unchecked_Conversion_Instance (Nam) then
4611 null;
4613 -- The actual denotes an object
4615 elsif Is_Effectively_Volatile_Object (A) then
4616 Error_Msg_N
4617 ("volatile object cannot act as actual in a call (SPARK "
4618 & "RM 7.1.3(11))", A);
4620 -- Otherwise the actual denotes an expression. Inspect the
4621 -- expression and flag each effectively volatile object with
4622 -- enabled property Async_Writers or Effective_Reads as illegal
4623 -- because it apprears within an interfering context. Note that
4624 -- this is usually done in Resolve_Entity_Name, but when the
4625 -- effectively volatile object appears as an actual in a call,
4626 -- the call must be resolved first.
4628 else
4629 Flag_Effectively_Volatile_Objects (A);
4630 end if;
4632 -- Detect an external variable with an enabled property that
4633 -- does not match the mode of the corresponding formal in a
4634 -- procedure call. Functions are not considered because they
4635 -- cannot have effectively volatile formal parameters in the
4636 -- first place.
4638 if Ekind (Nam) = E_Procedure
4639 and then Ekind (F) = E_In_Parameter
4640 and then Is_Entity_Name (A)
4641 and then Present (Entity (A))
4642 and then Ekind (Entity (A)) = E_Variable
4643 then
4644 A_Id := Entity (A);
4646 if Async_Readers_Enabled (A_Id) then
4647 Property_Error (A, A_Id, Name_Async_Readers);
4648 elsif Effective_Reads_Enabled (A_Id) then
4649 Property_Error (A, A_Id, Name_Effective_Reads);
4650 elsif Effective_Writes_Enabled (A_Id) then
4651 Property_Error (A, A_Id, Name_Effective_Writes);
4652 end if;
4653 end if;
4654 end if;
4656 -- A formal parameter of a specific tagged type whose related
4657 -- subprogram is subject to pragma Extensions_Visible with value
4658 -- "False" cannot act as an actual in a subprogram with value
4659 -- "True" (SPARK RM 6.1.7(3)).
4661 if Is_EVF_Expression (A)
4662 and then Extensions_Visible_Status (Nam) =
4663 Extensions_Visible_True
4664 then
4665 Error_Msg_N
4666 ("formal parameter cannot act as actual parameter when "
4667 & "Extensions_Visible is False", A);
4668 Error_Msg_NE
4669 ("\subprogram & has Extensions_Visible True", A, Nam);
4670 end if;
4672 -- The actual parameter of a Ghost subprogram whose formal is of
4673 -- mode IN OUT or OUT must be a Ghost variable (SPARK RM 6.9(12)).
4675 if Comes_From_Source (Nam)
4676 and then Is_Ghost_Entity (Nam)
4677 and then Ekind_In (F, E_In_Out_Parameter, E_Out_Parameter)
4678 and then Is_Entity_Name (A)
4679 and then Present (Entity (A))
4680 and then not Is_Ghost_Entity (Entity (A))
4681 then
4682 Error_Msg_NE
4683 ("non-ghost variable & cannot appear as actual in call to "
4684 & "ghost procedure", A, Entity (A));
4686 if Ekind (F) = E_In_Out_Parameter then
4687 Error_Msg_N ("\corresponding formal has mode `IN OUT`", A);
4688 else
4689 Error_Msg_N ("\corresponding formal has mode OUT", A);
4690 end if;
4691 end if;
4693 Next_Actual (A);
4695 -- Case where actual is not present
4697 else
4698 Insert_Default;
4699 end if;
4701 Next_Formal (F);
4703 if Present (Real_Subp) then
4704 Next_Formal (Real_F);
4705 end if;
4706 end loop;
4707 end Resolve_Actuals;
4709 -----------------------
4710 -- Resolve_Allocator --
4711 -----------------------
4713 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id) is
4714 Desig_T : constant Entity_Id := Designated_Type (Typ);
4715 E : constant Node_Id := Expression (N);
4716 Subtyp : Entity_Id;
4717 Discrim : Entity_Id;
4718 Constr : Node_Id;
4719 Aggr : Node_Id;
4720 Assoc : Node_Id := Empty;
4721 Disc_Exp : Node_Id;
4723 procedure Check_Allocator_Discrim_Accessibility
4724 (Disc_Exp : Node_Id;
4725 Alloc_Typ : Entity_Id);
4726 -- Check that accessibility level associated with an access discriminant
4727 -- initialized in an allocator by the expression Disc_Exp is not deeper
4728 -- than the level of the allocator type Alloc_Typ. An error message is
4729 -- issued if this condition is violated. Specialized checks are done for
4730 -- the cases of a constraint expression which is an access attribute or
4731 -- an access discriminant.
4733 function In_Dispatching_Context return Boolean;
4734 -- If the allocator is an actual in a call, it is allowed to be class-
4735 -- wide when the context is not because it is a controlling actual.
4737 -------------------------------------------
4738 -- Check_Allocator_Discrim_Accessibility --
4739 -------------------------------------------
4741 procedure Check_Allocator_Discrim_Accessibility
4742 (Disc_Exp : Node_Id;
4743 Alloc_Typ : Entity_Id)
4745 begin
4746 if Type_Access_Level (Etype (Disc_Exp)) >
4747 Deepest_Type_Access_Level (Alloc_Typ)
4748 then
4749 Error_Msg_N
4750 ("operand type has deeper level than allocator type", Disc_Exp);
4752 -- When the expression is an Access attribute the level of the prefix
4753 -- object must not be deeper than that of the allocator's type.
4755 elsif Nkind (Disc_Exp) = N_Attribute_Reference
4756 and then Get_Attribute_Id (Attribute_Name (Disc_Exp)) =
4757 Attribute_Access
4758 and then Object_Access_Level (Prefix (Disc_Exp)) >
4759 Deepest_Type_Access_Level (Alloc_Typ)
4760 then
4761 Error_Msg_N
4762 ("prefix of attribute has deeper level than allocator type",
4763 Disc_Exp);
4765 -- When the expression is an access discriminant the check is against
4766 -- the level of the prefix object.
4768 elsif Ekind (Etype (Disc_Exp)) = E_Anonymous_Access_Type
4769 and then Nkind (Disc_Exp) = N_Selected_Component
4770 and then Object_Access_Level (Prefix (Disc_Exp)) >
4771 Deepest_Type_Access_Level (Alloc_Typ)
4772 then
4773 Error_Msg_N
4774 ("access discriminant has deeper level than allocator type",
4775 Disc_Exp);
4777 -- All other cases are legal
4779 else
4780 null;
4781 end if;
4782 end Check_Allocator_Discrim_Accessibility;
4784 ----------------------------
4785 -- In_Dispatching_Context --
4786 ----------------------------
4788 function In_Dispatching_Context return Boolean is
4789 Par : constant Node_Id := Parent (N);
4791 begin
4792 return Nkind (Par) in N_Subprogram_Call
4793 and then Is_Entity_Name (Name (Par))
4794 and then Is_Dispatching_Operation (Entity (Name (Par)));
4795 end In_Dispatching_Context;
4797 -- Start of processing for Resolve_Allocator
4799 begin
4800 -- Replace general access with specific type
4802 if Ekind (Etype (N)) = E_Allocator_Type then
4803 Set_Etype (N, Base_Type (Typ));
4804 end if;
4806 if Is_Abstract_Type (Typ) then
4807 Error_Msg_N ("type of allocator cannot be abstract", N);
4808 end if;
4810 -- For qualified expression, resolve the expression using the given
4811 -- subtype (nothing to do for type mark, subtype indication)
4813 if Nkind (E) = N_Qualified_Expression then
4814 if Is_Class_Wide_Type (Etype (E))
4815 and then not Is_Class_Wide_Type (Desig_T)
4816 and then not In_Dispatching_Context
4817 then
4818 Error_Msg_N
4819 ("class-wide allocator not allowed for this access type", N);
4820 end if;
4822 Resolve (Expression (E), Etype (E));
4823 Check_Non_Static_Context (Expression (E));
4824 Check_Unset_Reference (Expression (E));
4826 -- Allocators generated by the build-in-place expansion mechanism
4827 -- are explicitly marked as coming from source but do not need to be
4828 -- checked for limited initialization. To exclude this case, ensure
4829 -- that the parent of the allocator is a source node.
4831 if Is_Limited_Type (Etype (E))
4832 and then Comes_From_Source (N)
4833 and then Comes_From_Source (Parent (N))
4834 and then not In_Instance_Body
4835 then
4836 if not OK_For_Limited_Init (Etype (E), Expression (E)) then
4837 if Nkind (Parent (N)) = N_Assignment_Statement then
4838 Error_Msg_N
4839 ("illegal expression for initialized allocator of a "
4840 & "limited type (RM 7.5 (2.7/2))", N);
4841 else
4842 Error_Msg_N
4843 ("initialization not allowed for limited types", N);
4844 end if;
4846 Explain_Limited_Type (Etype (E), N);
4847 end if;
4848 end if;
4850 -- A qualified expression requires an exact match of the type. Class-
4851 -- wide matching is not allowed.
4853 if (Is_Class_Wide_Type (Etype (Expression (E)))
4854 or else Is_Class_Wide_Type (Etype (E)))
4855 and then Base_Type (Etype (Expression (E))) /= Base_Type (Etype (E))
4856 then
4857 Wrong_Type (Expression (E), Etype (E));
4858 end if;
4860 -- Calls to build-in-place functions are not currently supported in
4861 -- allocators for access types associated with a simple storage pool.
4862 -- Supporting such allocators may require passing additional implicit
4863 -- parameters to build-in-place functions (or a significant revision
4864 -- of the current b-i-p implementation to unify the handling for
4865 -- multiple kinds of storage pools). ???
4867 if Is_Limited_View (Desig_T)
4868 and then Nkind (Expression (E)) = N_Function_Call
4869 then
4870 declare
4871 Pool : constant Entity_Id :=
4872 Associated_Storage_Pool (Root_Type (Typ));
4873 begin
4874 if Present (Pool)
4875 and then
4876 Present (Get_Rep_Pragma
4877 (Etype (Pool), Name_Simple_Storage_Pool_Type))
4878 then
4879 Error_Msg_N
4880 ("limited function calls not yet supported in simple "
4881 & "storage pool allocators", Expression (E));
4882 end if;
4883 end;
4884 end if;
4886 -- A special accessibility check is needed for allocators that
4887 -- constrain access discriminants. The level of the type of the
4888 -- expression used to constrain an access discriminant cannot be
4889 -- deeper than the type of the allocator (in contrast to access
4890 -- parameters, where the level of the actual can be arbitrary).
4892 -- We can't use Valid_Conversion to perform this check because in
4893 -- general the type of the allocator is unrelated to the type of
4894 -- the access discriminant.
4896 if Ekind (Typ) /= E_Anonymous_Access_Type
4897 or else Is_Local_Anonymous_Access (Typ)
4898 then
4899 Subtyp := Entity (Subtype_Mark (E));
4901 Aggr := Original_Node (Expression (E));
4903 if Has_Discriminants (Subtyp)
4904 and then Nkind_In (Aggr, N_Aggregate, N_Extension_Aggregate)
4905 then
4906 Discrim := First_Discriminant (Base_Type (Subtyp));
4908 -- Get the first component expression of the aggregate
4910 if Present (Expressions (Aggr)) then
4911 Disc_Exp := First (Expressions (Aggr));
4913 elsif Present (Component_Associations (Aggr)) then
4914 Assoc := First (Component_Associations (Aggr));
4916 if Present (Assoc) then
4917 Disc_Exp := Expression (Assoc);
4918 else
4919 Disc_Exp := Empty;
4920 end if;
4922 else
4923 Disc_Exp := Empty;
4924 end if;
4926 while Present (Discrim) and then Present (Disc_Exp) loop
4927 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
4928 Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
4929 end if;
4931 Next_Discriminant (Discrim);
4933 if Present (Discrim) then
4934 if Present (Assoc) then
4935 Next (Assoc);
4936 Disc_Exp := Expression (Assoc);
4938 elsif Present (Next (Disc_Exp)) then
4939 Next (Disc_Exp);
4941 else
4942 Assoc := First (Component_Associations (Aggr));
4944 if Present (Assoc) then
4945 Disc_Exp := Expression (Assoc);
4946 else
4947 Disc_Exp := Empty;
4948 end if;
4949 end if;
4950 end if;
4951 end loop;
4952 end if;
4953 end if;
4955 -- For a subtype mark or subtype indication, freeze the subtype
4957 else
4958 Freeze_Expression (E);
4960 if Is_Access_Constant (Typ) and then not No_Initialization (N) then
4961 Error_Msg_N
4962 ("initialization required for access-to-constant allocator", N);
4963 end if;
4965 -- A special accessibility check is needed for allocators that
4966 -- constrain access discriminants. The level of the type of the
4967 -- expression used to constrain an access discriminant cannot be
4968 -- deeper than the type of the allocator (in contrast to access
4969 -- parameters, where the level of the actual can be arbitrary).
4970 -- We can't use Valid_Conversion to perform this check because
4971 -- in general the type of the allocator is unrelated to the type
4972 -- of the access discriminant.
4974 if Nkind (Original_Node (E)) = N_Subtype_Indication
4975 and then (Ekind (Typ) /= E_Anonymous_Access_Type
4976 or else Is_Local_Anonymous_Access (Typ))
4977 then
4978 Subtyp := Entity (Subtype_Mark (Original_Node (E)));
4980 if Has_Discriminants (Subtyp) then
4981 Discrim := First_Discriminant (Base_Type (Subtyp));
4982 Constr := First (Constraints (Constraint (Original_Node (E))));
4983 while Present (Discrim) and then Present (Constr) loop
4984 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
4985 if Nkind (Constr) = N_Discriminant_Association then
4986 Disc_Exp := Original_Node (Expression (Constr));
4987 else
4988 Disc_Exp := Original_Node (Constr);
4989 end if;
4991 Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
4992 end if;
4994 Next_Discriminant (Discrim);
4995 Next (Constr);
4996 end loop;
4997 end if;
4998 end if;
4999 end if;
5001 -- Ada 2005 (AI-344): A class-wide allocator requires an accessibility
5002 -- check that the level of the type of the created object is not deeper
5003 -- than the level of the allocator's access type, since extensions can
5004 -- now occur at deeper levels than their ancestor types. This is a
5005 -- static accessibility level check; a run-time check is also needed in
5006 -- the case of an initialized allocator with a class-wide argument (see
5007 -- Expand_Allocator_Expression).
5009 if Ada_Version >= Ada_2005
5010 and then Is_Class_Wide_Type (Desig_T)
5011 then
5012 declare
5013 Exp_Typ : Entity_Id;
5015 begin
5016 if Nkind (E) = N_Qualified_Expression then
5017 Exp_Typ := Etype (E);
5018 elsif Nkind (E) = N_Subtype_Indication then
5019 Exp_Typ := Entity (Subtype_Mark (Original_Node (E)));
5020 else
5021 Exp_Typ := Entity (E);
5022 end if;
5024 if Type_Access_Level (Exp_Typ) >
5025 Deepest_Type_Access_Level (Typ)
5026 then
5027 if In_Instance_Body then
5028 Error_Msg_Warn := SPARK_Mode /= On;
5029 Error_Msg_N
5030 ("type in allocator has deeper level than "
5031 & "designated class-wide type<<", E);
5032 Error_Msg_N ("\Program_Error [<<", E);
5033 Rewrite (N,
5034 Make_Raise_Program_Error (Sloc (N),
5035 Reason => PE_Accessibility_Check_Failed));
5036 Set_Etype (N, Typ);
5038 -- Do not apply Ada 2005 accessibility checks on a class-wide
5039 -- allocator if the type given in the allocator is a formal
5040 -- type. A run-time check will be performed in the instance.
5042 elsif not Is_Generic_Type (Exp_Typ) then
5043 Error_Msg_N ("type in allocator has deeper level than "
5044 & "designated class-wide type", E);
5045 end if;
5046 end if;
5047 end;
5048 end if;
5050 -- Check for allocation from an empty storage pool
5052 if No_Pool_Assigned (Typ) then
5053 Error_Msg_N ("allocation from empty storage pool!", N);
5055 -- If the context is an unchecked conversion, as may happen within an
5056 -- inlined subprogram, the allocator is being resolved with its own
5057 -- anonymous type. In that case, if the target type has a specific
5058 -- storage pool, it must be inherited explicitly by the allocator type.
5060 elsif Nkind (Parent (N)) = N_Unchecked_Type_Conversion
5061 and then No (Associated_Storage_Pool (Typ))
5062 then
5063 Set_Associated_Storage_Pool
5064 (Typ, Associated_Storage_Pool (Etype (Parent (N))));
5065 end if;
5067 if Ekind (Etype (N)) = E_Anonymous_Access_Type then
5068 Check_Restriction (No_Anonymous_Allocators, N);
5069 end if;
5071 -- Check that an allocator with task parts isn't for a nested access
5072 -- type when restriction No_Task_Hierarchy applies.
5074 if not Is_Library_Level_Entity (Base_Type (Typ))
5075 and then Has_Task (Base_Type (Desig_T))
5076 then
5077 Check_Restriction (No_Task_Hierarchy, N);
5078 end if;
5080 -- An illegal allocator may be rewritten as a raise Program_Error
5081 -- statement.
5083 if Nkind (N) = N_Allocator then
5085 -- An anonymous access discriminant is the definition of a
5086 -- coextension.
5088 if Ekind (Typ) = E_Anonymous_Access_Type
5089 and then Nkind (Associated_Node_For_Itype (Typ)) =
5090 N_Discriminant_Specification
5091 then
5092 declare
5093 Discr : constant Entity_Id :=
5094 Defining_Identifier (Associated_Node_For_Itype (Typ));
5096 begin
5097 Check_Restriction (No_Coextensions, N);
5099 -- Ada 2012 AI05-0052: If the designated type of the allocator
5100 -- is limited, then the allocator shall not be used to define
5101 -- the value of an access discriminant unless the discriminated
5102 -- type is immutably limited.
5104 if Ada_Version >= Ada_2012
5105 and then Is_Limited_Type (Desig_T)
5106 and then not Is_Limited_View (Scope (Discr))
5107 then
5108 Error_Msg_N
5109 ("only immutably limited types can have anonymous "
5110 & "access discriminants designating a limited type", N);
5111 end if;
5112 end;
5114 -- Avoid marking an allocator as a dynamic coextension if it is
5115 -- within a static construct.
5117 if not Is_Static_Coextension (N) then
5118 Set_Is_Dynamic_Coextension (N);
5119 end if;
5121 -- Cleanup for potential static coextensions
5123 else
5124 Set_Is_Dynamic_Coextension (N, False);
5125 Set_Is_Static_Coextension (N, False);
5126 end if;
5127 end if;
5129 -- Report a simple error: if the designated object is a local task,
5130 -- its body has not been seen yet, and its activation will fail an
5131 -- elaboration check.
5133 if Is_Task_Type (Desig_T)
5134 and then Scope (Base_Type (Desig_T)) = Current_Scope
5135 and then Is_Compilation_Unit (Current_Scope)
5136 and then Ekind (Current_Scope) = E_Package
5137 and then not In_Package_Body (Current_Scope)
5138 then
5139 Error_Msg_Warn := SPARK_Mode /= On;
5140 Error_Msg_N ("cannot activate task before body seen<<", N);
5141 Error_Msg_N ("\Program_Error [<<", N);
5142 end if;
5144 -- Ada 2012 (AI05-0111-3): Detect an attempt to allocate a task or a
5145 -- type with a task component on a subpool. This action must raise
5146 -- Program_Error at runtime.
5148 if Ada_Version >= Ada_2012
5149 and then Nkind (N) = N_Allocator
5150 and then Present (Subpool_Handle_Name (N))
5151 and then Has_Task (Desig_T)
5152 then
5153 Error_Msg_Warn := SPARK_Mode /= On;
5154 Error_Msg_N ("cannot allocate task on subpool<<", N);
5155 Error_Msg_N ("\Program_Error [<<", N);
5157 Rewrite (N,
5158 Make_Raise_Program_Error (Sloc (N),
5159 Reason => PE_Explicit_Raise));
5160 Set_Etype (N, Typ);
5161 end if;
5162 end Resolve_Allocator;
5164 ---------------------------
5165 -- Resolve_Arithmetic_Op --
5166 ---------------------------
5168 -- Used for resolving all arithmetic operators except exponentiation
5170 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id) is
5171 L : constant Node_Id := Left_Opnd (N);
5172 R : constant Node_Id := Right_Opnd (N);
5173 TL : constant Entity_Id := Base_Type (Etype (L));
5174 TR : constant Entity_Id := Base_Type (Etype (R));
5175 T : Entity_Id;
5176 Rop : Node_Id;
5178 B_Typ : constant Entity_Id := Base_Type (Typ);
5179 -- We do the resolution using the base type, because intermediate values
5180 -- in expressions always are of the base type, not a subtype of it.
5182 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean;
5183 -- Returns True if N is in a context that expects "any real type"
5185 function Is_Integer_Or_Universal (N : Node_Id) return Boolean;
5186 -- Return True iff given type is Integer or universal real/integer
5188 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id);
5189 -- Choose type of integer literal in fixed-point operation to conform
5190 -- to available fixed-point type. T is the type of the other operand,
5191 -- which is needed to determine the expected type of N.
5193 procedure Set_Operand_Type (N : Node_Id);
5194 -- Set operand type to T if universal
5196 -------------------------------
5197 -- Expected_Type_Is_Any_Real --
5198 -------------------------------
5200 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean is
5201 begin
5202 -- N is the expression after "delta" in a fixed_point_definition;
5203 -- see RM-3.5.9(6):
5205 return Nkind_In (Parent (N), N_Ordinary_Fixed_Point_Definition,
5206 N_Decimal_Fixed_Point_Definition,
5208 -- N is one of the bounds in a real_range_specification;
5209 -- see RM-3.5.7(5):
5211 N_Real_Range_Specification,
5213 -- N is the expression of a delta_constraint;
5214 -- see RM-J.3(3):
5216 N_Delta_Constraint);
5217 end Expected_Type_Is_Any_Real;
5219 -----------------------------
5220 -- Is_Integer_Or_Universal --
5221 -----------------------------
5223 function Is_Integer_Or_Universal (N : Node_Id) return Boolean is
5224 T : Entity_Id;
5225 Index : Interp_Index;
5226 It : Interp;
5228 begin
5229 if not Is_Overloaded (N) then
5230 T := Etype (N);
5231 return Base_Type (T) = Base_Type (Standard_Integer)
5232 or else T = Universal_Integer
5233 or else T = Universal_Real;
5234 else
5235 Get_First_Interp (N, Index, It);
5236 while Present (It.Typ) loop
5237 if Base_Type (It.Typ) = Base_Type (Standard_Integer)
5238 or else It.Typ = Universal_Integer
5239 or else It.Typ = Universal_Real
5240 then
5241 return True;
5242 end if;
5244 Get_Next_Interp (Index, It);
5245 end loop;
5246 end if;
5248 return False;
5249 end Is_Integer_Or_Universal;
5251 ----------------------------
5252 -- Set_Mixed_Mode_Operand --
5253 ----------------------------
5255 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id) is
5256 Index : Interp_Index;
5257 It : Interp;
5259 begin
5260 if Universal_Interpretation (N) = Universal_Integer then
5262 -- A universal integer literal is resolved as standard integer
5263 -- except in the case of a fixed-point result, where we leave it
5264 -- as universal (to be handled by Exp_Fixd later on)
5266 if Is_Fixed_Point_Type (T) then
5267 Resolve (N, Universal_Integer);
5268 else
5269 Resolve (N, Standard_Integer);
5270 end if;
5272 elsif Universal_Interpretation (N) = Universal_Real
5273 and then (T = Base_Type (Standard_Integer)
5274 or else T = Universal_Integer
5275 or else T = Universal_Real)
5276 then
5277 -- A universal real can appear in a fixed-type context. We resolve
5278 -- the literal with that context, even though this might raise an
5279 -- exception prematurely (the other operand may be zero).
5281 Resolve (N, B_Typ);
5283 elsif Etype (N) = Base_Type (Standard_Integer)
5284 and then T = Universal_Real
5285 and then Is_Overloaded (N)
5286 then
5287 -- Integer arg in mixed-mode operation. Resolve with universal
5288 -- type, in case preference rule must be applied.
5290 Resolve (N, Universal_Integer);
5292 elsif Etype (N) = T
5293 and then B_Typ /= Universal_Fixed
5294 then
5295 -- Not a mixed-mode operation, resolve with context
5297 Resolve (N, B_Typ);
5299 elsif Etype (N) = Any_Fixed then
5301 -- N may itself be a mixed-mode operation, so use context type
5303 Resolve (N, B_Typ);
5305 elsif Is_Fixed_Point_Type (T)
5306 and then B_Typ = Universal_Fixed
5307 and then Is_Overloaded (N)
5308 then
5309 -- Must be (fixed * fixed) operation, operand must have one
5310 -- compatible interpretation.
5312 Resolve (N, Any_Fixed);
5314 elsif Is_Fixed_Point_Type (B_Typ)
5315 and then (T = Universal_Real or else Is_Fixed_Point_Type (T))
5316 and then Is_Overloaded (N)
5317 then
5318 -- C * F(X) in a fixed context, where C is a real literal or a
5319 -- fixed-point expression. F must have either a fixed type
5320 -- interpretation or an integer interpretation, but not both.
5322 Get_First_Interp (N, Index, It);
5323 while Present (It.Typ) loop
5324 if Base_Type (It.Typ) = Base_Type (Standard_Integer) then
5325 if Analyzed (N) then
5326 Error_Msg_N ("ambiguous operand in fixed operation", N);
5327 else
5328 Resolve (N, Standard_Integer);
5329 end if;
5331 elsif Is_Fixed_Point_Type (It.Typ) then
5332 if Analyzed (N) then
5333 Error_Msg_N ("ambiguous operand in fixed operation", N);
5334 else
5335 Resolve (N, It.Typ);
5336 end if;
5337 end if;
5339 Get_Next_Interp (Index, It);
5340 end loop;
5342 -- Reanalyze the literal with the fixed type of the context. If
5343 -- context is Universal_Fixed, we are within a conversion, leave
5344 -- the literal as a universal real because there is no usable
5345 -- fixed type, and the target of the conversion plays no role in
5346 -- the resolution.
5348 declare
5349 Op2 : Node_Id;
5350 T2 : Entity_Id;
5352 begin
5353 if N = L then
5354 Op2 := R;
5355 else
5356 Op2 := L;
5357 end if;
5359 if B_Typ = Universal_Fixed
5360 and then Nkind (Op2) = N_Real_Literal
5361 then
5362 T2 := Universal_Real;
5363 else
5364 T2 := B_Typ;
5365 end if;
5367 Set_Analyzed (Op2, False);
5368 Resolve (Op2, T2);
5369 end;
5371 -- A universal real conditional expression can appear in a fixed-type
5372 -- context and must be resolved with that context to facilitate the
5373 -- code generation to the backend.
5375 elsif Nkind_In (N, N_Case_Expression, N_If_Expression)
5376 and then Etype (N) = Universal_Real
5377 and then Is_Fixed_Point_Type (B_Typ)
5378 then
5379 Resolve (N, B_Typ);
5381 else
5382 Resolve (N);
5383 end if;
5384 end Set_Mixed_Mode_Operand;
5386 ----------------------
5387 -- Set_Operand_Type --
5388 ----------------------
5390 procedure Set_Operand_Type (N : Node_Id) is
5391 begin
5392 if Etype (N) = Universal_Integer
5393 or else Etype (N) = Universal_Real
5394 then
5395 Set_Etype (N, T);
5396 end if;
5397 end Set_Operand_Type;
5399 -- Start of processing for Resolve_Arithmetic_Op
5401 begin
5402 if Comes_From_Source (N)
5403 and then Ekind (Entity (N)) = E_Function
5404 and then Is_Imported (Entity (N))
5405 and then Is_Intrinsic_Subprogram (Entity (N))
5406 then
5407 Resolve_Intrinsic_Operator (N, Typ);
5408 return;
5410 -- Special-case for mixed-mode universal expressions or fixed point type
5411 -- operation: each argument is resolved separately. The same treatment
5412 -- is required if one of the operands of a fixed point operation is
5413 -- universal real, since in this case we don't do a conversion to a
5414 -- specific fixed-point type (instead the expander handles the case).
5416 -- Set the type of the node to its universal interpretation because
5417 -- legality checks on an exponentiation operand need the context.
5419 elsif (B_Typ = Universal_Integer or else B_Typ = Universal_Real)
5420 and then Present (Universal_Interpretation (L))
5421 and then Present (Universal_Interpretation (R))
5422 then
5423 Set_Etype (N, B_Typ);
5424 Resolve (L, Universal_Interpretation (L));
5425 Resolve (R, Universal_Interpretation (R));
5427 elsif (B_Typ = Universal_Real
5428 or else Etype (N) = Universal_Fixed
5429 or else (Etype (N) = Any_Fixed
5430 and then Is_Fixed_Point_Type (B_Typ))
5431 or else (Is_Fixed_Point_Type (B_Typ)
5432 and then (Is_Integer_Or_Universal (L)
5433 or else
5434 Is_Integer_Or_Universal (R))))
5435 and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
5436 then
5437 if TL = Universal_Integer or else TR = Universal_Integer then
5438 Check_For_Visible_Operator (N, B_Typ);
5439 end if;
5441 -- If context is a fixed type and one operand is integer, the other
5442 -- is resolved with the type of the context.
5444 if Is_Fixed_Point_Type (B_Typ)
5445 and then (Base_Type (TL) = Base_Type (Standard_Integer)
5446 or else TL = Universal_Integer)
5447 then
5448 Resolve (R, B_Typ);
5449 Resolve (L, TL);
5451 elsif Is_Fixed_Point_Type (B_Typ)
5452 and then (Base_Type (TR) = Base_Type (Standard_Integer)
5453 or else TR = Universal_Integer)
5454 then
5455 Resolve (L, B_Typ);
5456 Resolve (R, TR);
5458 -- If both operands are universal and the context is a floating
5459 -- point type, the operands are resolved to the type of the context.
5461 elsif Is_Floating_Point_Type (B_Typ) then
5462 Resolve (L, B_Typ);
5463 Resolve (R, B_Typ);
5465 else
5466 Set_Mixed_Mode_Operand (L, TR);
5467 Set_Mixed_Mode_Operand (R, TL);
5468 end if;
5470 -- Check the rule in RM05-4.5.5(19.1/2) disallowing universal_fixed
5471 -- multiplying operators from being used when the expected type is
5472 -- also universal_fixed. Note that B_Typ will be Universal_Fixed in
5473 -- some cases where the expected type is actually Any_Real;
5474 -- Expected_Type_Is_Any_Real takes care of that case.
5476 if Etype (N) = Universal_Fixed
5477 or else Etype (N) = Any_Fixed
5478 then
5479 if B_Typ = Universal_Fixed
5480 and then not Expected_Type_Is_Any_Real (N)
5481 and then not Nkind_In (Parent (N), N_Type_Conversion,
5482 N_Unchecked_Type_Conversion)
5483 then
5484 Error_Msg_N ("type cannot be determined from context!", N);
5485 Error_Msg_N ("\explicit conversion to result type required", N);
5487 Set_Etype (L, Any_Type);
5488 Set_Etype (R, Any_Type);
5490 else
5491 if Ada_Version = Ada_83
5492 and then Etype (N) = Universal_Fixed
5493 and then not
5494 Nkind_In (Parent (N), N_Type_Conversion,
5495 N_Unchecked_Type_Conversion)
5496 then
5497 Error_Msg_N
5498 ("(Ada 83) fixed-point operation needs explicit "
5499 & "conversion", N);
5500 end if;
5502 -- The expected type is "any real type" in contexts like
5504 -- type T is delta <universal_fixed-expression> ...
5506 -- in which case we need to set the type to Universal_Real
5507 -- so that static expression evaluation will work properly.
5509 if Expected_Type_Is_Any_Real (N) then
5510 Set_Etype (N, Universal_Real);
5511 else
5512 Set_Etype (N, B_Typ);
5513 end if;
5514 end if;
5516 elsif Is_Fixed_Point_Type (B_Typ)
5517 and then (Is_Integer_Or_Universal (L)
5518 or else Nkind (L) = N_Real_Literal
5519 or else Nkind (R) = N_Real_Literal
5520 or else Is_Integer_Or_Universal (R))
5521 then
5522 Set_Etype (N, B_Typ);
5524 elsif Etype (N) = Any_Fixed then
5526 -- If no previous errors, this is only possible if one operand is
5527 -- overloaded and the context is universal. Resolve as such.
5529 Set_Etype (N, B_Typ);
5530 end if;
5532 else
5533 if (TL = Universal_Integer or else TL = Universal_Real)
5534 and then
5535 (TR = Universal_Integer or else TR = Universal_Real)
5536 then
5537 Check_For_Visible_Operator (N, B_Typ);
5538 end if;
5540 -- If the context is Universal_Fixed and the operands are also
5541 -- universal fixed, this is an error, unless there is only one
5542 -- applicable fixed_point type (usually Duration).
5544 if B_Typ = Universal_Fixed and then Etype (L) = Universal_Fixed then
5545 T := Unique_Fixed_Point_Type (N);
5547 if T = Any_Type then
5548 Set_Etype (N, T);
5549 return;
5550 else
5551 Resolve (L, T);
5552 Resolve (R, T);
5553 end if;
5555 else
5556 Resolve (L, B_Typ);
5557 Resolve (R, B_Typ);
5558 end if;
5560 -- If one of the arguments was resolved to a non-universal type.
5561 -- label the result of the operation itself with the same type.
5562 -- Do the same for the universal argument, if any.
5564 T := Intersect_Types (L, R);
5565 Set_Etype (N, Base_Type (T));
5566 Set_Operand_Type (L);
5567 Set_Operand_Type (R);
5568 end if;
5570 Generate_Operator_Reference (N, Typ);
5571 Analyze_Dimension (N);
5572 Eval_Arithmetic_Op (N);
5574 -- In SPARK, a multiplication or division with operands of fixed point
5575 -- types must be qualified or explicitly converted to identify the
5576 -- result type.
5578 if (Is_Fixed_Point_Type (Etype (L))
5579 or else Is_Fixed_Point_Type (Etype (R)))
5580 and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
5581 and then
5582 not Nkind_In (Parent (N), N_Qualified_Expression, N_Type_Conversion)
5583 then
5584 Check_SPARK_05_Restriction
5585 ("operation should be qualified or explicitly converted", N);
5586 end if;
5588 -- Set overflow and division checking bit
5590 if Nkind (N) in N_Op then
5591 if not Overflow_Checks_Suppressed (Etype (N)) then
5592 Enable_Overflow_Check (N);
5593 end if;
5595 -- Give warning if explicit division by zero
5597 if Nkind_In (N, N_Op_Divide, N_Op_Rem, N_Op_Mod)
5598 and then not Division_Checks_Suppressed (Etype (N))
5599 then
5600 Rop := Right_Opnd (N);
5602 if Compile_Time_Known_Value (Rop)
5603 and then ((Is_Integer_Type (Etype (Rop))
5604 and then Expr_Value (Rop) = Uint_0)
5605 or else
5606 (Is_Real_Type (Etype (Rop))
5607 and then Expr_Value_R (Rop) = Ureal_0))
5608 then
5609 -- Specialize the warning message according to the operation.
5610 -- When SPARK_Mode is On, force a warning instead of an error
5611 -- in that case, as this likely corresponds to deactivated
5612 -- code. The following warnings are for the case
5614 case Nkind (N) is
5615 when N_Op_Divide =>
5617 -- For division, we have two cases, for float division
5618 -- of an unconstrained float type, on a machine where
5619 -- Machine_Overflows is false, we don't get an exception
5620 -- at run-time, but rather an infinity or Nan. The Nan
5621 -- case is pretty obscure, so just warn about infinities.
5623 if Is_Floating_Point_Type (Typ)
5624 and then not Is_Constrained (Typ)
5625 and then not Machine_Overflows_On_Target
5626 then
5627 Error_Msg_N
5628 ("float division by zero, may generate "
5629 & "'+'/'- infinity??", Right_Opnd (N));
5631 -- For all other cases, we get a Constraint_Error
5633 else
5634 Apply_Compile_Time_Constraint_Error
5635 (N, "division by zero??", CE_Divide_By_Zero,
5636 Loc => Sloc (Right_Opnd (N)),
5637 Warn => SPARK_Mode = On);
5638 end if;
5640 when N_Op_Rem =>
5641 Apply_Compile_Time_Constraint_Error
5642 (N, "rem with zero divisor??", CE_Divide_By_Zero,
5643 Loc => Sloc (Right_Opnd (N)),
5644 Warn => SPARK_Mode = On);
5646 when N_Op_Mod =>
5647 Apply_Compile_Time_Constraint_Error
5648 (N, "mod with zero divisor??", CE_Divide_By_Zero,
5649 Loc => Sloc (Right_Opnd (N)),
5650 Warn => SPARK_Mode = On);
5652 -- Division by zero can only happen with division, rem,
5653 -- and mod operations.
5655 when others =>
5656 raise Program_Error;
5657 end case;
5659 -- In GNATprove mode, we enable the division check so that
5660 -- GNATprove will issue a message if it cannot be proved.
5662 if GNATprove_Mode then
5663 Activate_Division_Check (N);
5664 end if;
5666 -- Otherwise just set the flag to check at run time
5668 else
5669 Activate_Division_Check (N);
5670 end if;
5671 end if;
5673 -- If Restriction No_Implicit_Conditionals is active, then it is
5674 -- violated if either operand can be negative for mod, or for rem
5675 -- if both operands can be negative.
5677 if Restriction_Check_Required (No_Implicit_Conditionals)
5678 and then Nkind_In (N, N_Op_Rem, N_Op_Mod)
5679 then
5680 declare
5681 Lo : Uint;
5682 Hi : Uint;
5683 OK : Boolean;
5685 LNeg : Boolean;
5686 RNeg : Boolean;
5687 -- Set if corresponding operand might be negative
5689 begin
5690 Determine_Range
5691 (Left_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5692 LNeg := (not OK) or else Lo < 0;
5694 Determine_Range
5695 (Right_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5696 RNeg := (not OK) or else Lo < 0;
5698 -- Check if we will be generating conditionals. There are two
5699 -- cases where that can happen, first for REM, the only case
5700 -- is largest negative integer mod -1, where the division can
5701 -- overflow, but we still have to give the right result. The
5702 -- front end generates a test for this annoying case. Here we
5703 -- just test if both operands can be negative (that's what the
5704 -- expander does, so we match its logic here).
5706 -- The second case is mod where either operand can be negative.
5707 -- In this case, the back end has to generate additional tests.
5709 if (Nkind (N) = N_Op_Rem and then (LNeg and RNeg))
5710 or else
5711 (Nkind (N) = N_Op_Mod and then (LNeg or RNeg))
5712 then
5713 Check_Restriction (No_Implicit_Conditionals, N);
5714 end if;
5715 end;
5716 end if;
5717 end if;
5719 Check_Unset_Reference (L);
5720 Check_Unset_Reference (R);
5721 end Resolve_Arithmetic_Op;
5723 ------------------
5724 -- Resolve_Call --
5725 ------------------
5727 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id) is
5728 function Same_Or_Aliased_Subprograms
5729 (S : Entity_Id;
5730 E : Entity_Id) return Boolean;
5731 -- Returns True if the subprogram entity S is the same as E or else
5732 -- S is an alias of E.
5734 ---------------------------------
5735 -- Same_Or_Aliased_Subprograms --
5736 ---------------------------------
5738 function Same_Or_Aliased_Subprograms
5739 (S : Entity_Id;
5740 E : Entity_Id) return Boolean
5742 Subp_Alias : constant Entity_Id := Alias (S);
5743 begin
5744 return S = E or else (Present (Subp_Alias) and then Subp_Alias = E);
5745 end Same_Or_Aliased_Subprograms;
5747 -- Local variables
5749 Loc : constant Source_Ptr := Sloc (N);
5750 Subp : constant Node_Id := Name (N);
5751 Body_Id : Entity_Id;
5752 I : Interp_Index;
5753 It : Interp;
5754 Nam : Entity_Id;
5755 Nam_Decl : Node_Id;
5756 Nam_UA : Entity_Id;
5757 Norm_OK : Boolean;
5758 Rtype : Entity_Id;
5759 Scop : Entity_Id;
5761 -- Start of processing for Resolve_Call
5763 begin
5764 -- The context imposes a unique interpretation with type Typ on a
5765 -- procedure or function call. Find the entity of the subprogram that
5766 -- yields the expected type, and propagate the corresponding formal
5767 -- constraints on the actuals. The caller has established that an
5768 -- interpretation exists, and emitted an error if not unique.
5770 -- First deal with the case of a call to an access-to-subprogram,
5771 -- dereference made explicit in Analyze_Call.
5773 if Ekind (Etype (Subp)) = E_Subprogram_Type then
5774 if not Is_Overloaded (Subp) then
5775 Nam := Etype (Subp);
5777 else
5778 -- Find the interpretation whose type (a subprogram type) has a
5779 -- return type that is compatible with the context. Analysis of
5780 -- the node has established that one exists.
5782 Nam := Empty;
5784 Get_First_Interp (Subp, I, It);
5785 while Present (It.Typ) loop
5786 if Covers (Typ, Etype (It.Typ)) then
5787 Nam := It.Typ;
5788 exit;
5789 end if;
5791 Get_Next_Interp (I, It);
5792 end loop;
5794 if No (Nam) then
5795 raise Program_Error;
5796 end if;
5797 end if;
5799 -- If the prefix is not an entity, then resolve it
5801 if not Is_Entity_Name (Subp) then
5802 Resolve (Subp, Nam);
5803 end if;
5805 -- For an indirect call, we always invalidate checks, since we do not
5806 -- know whether the subprogram is local or global. Yes we could do
5807 -- better here, e.g. by knowing that there are no local subprograms,
5808 -- but it does not seem worth the effort. Similarly, we kill all
5809 -- knowledge of current constant values.
5811 Kill_Current_Values;
5813 -- If this is a procedure call which is really an entry call, do
5814 -- the conversion of the procedure call to an entry call. Protected
5815 -- operations use the same circuitry because the name in the call
5816 -- can be an arbitrary expression with special resolution rules.
5818 elsif Nkind_In (Subp, N_Selected_Component, N_Indexed_Component)
5819 or else (Is_Entity_Name (Subp)
5820 and then Ekind (Entity (Subp)) = E_Entry)
5821 then
5822 Resolve_Entry_Call (N, Typ);
5823 Check_Elab_Call (N);
5825 -- Kill checks and constant values, as above for indirect case
5826 -- Who knows what happens when another task is activated?
5828 Kill_Current_Values;
5829 return;
5831 -- Normal subprogram call with name established in Resolve
5833 elsif not (Is_Type (Entity (Subp))) then
5834 Nam := Entity (Subp);
5835 Set_Entity_With_Checks (Subp, Nam);
5837 -- Otherwise we must have the case of an overloaded call
5839 else
5840 pragma Assert (Is_Overloaded (Subp));
5842 -- Initialize Nam to prevent warning (we know it will be assigned
5843 -- in the loop below, but the compiler does not know that).
5845 Nam := Empty;
5847 Get_First_Interp (Subp, I, It);
5848 while Present (It.Typ) loop
5849 if Covers (Typ, It.Typ) then
5850 Nam := It.Nam;
5851 Set_Entity_With_Checks (Subp, Nam);
5852 exit;
5853 end if;
5855 Get_Next_Interp (I, It);
5856 end loop;
5857 end if;
5859 if Is_Access_Subprogram_Type (Base_Type (Etype (Nam)))
5860 and then not Is_Access_Subprogram_Type (Base_Type (Typ))
5861 and then Nkind (Subp) /= N_Explicit_Dereference
5862 and then Present (Parameter_Associations (N))
5863 then
5864 -- The prefix is a parameterless function call that returns an access
5865 -- to subprogram. If parameters are present in the current call, add
5866 -- add an explicit dereference. We use the base type here because
5867 -- within an instance these may be subtypes.
5869 -- The dereference is added either in Analyze_Call or here. Should
5870 -- be consolidated ???
5872 Set_Is_Overloaded (Subp, False);
5873 Set_Etype (Subp, Etype (Nam));
5874 Insert_Explicit_Dereference (Subp);
5875 Nam := Designated_Type (Etype (Nam));
5876 Resolve (Subp, Nam);
5877 end if;
5879 -- Check that a call to Current_Task does not occur in an entry body
5881 if Is_RTE (Nam, RE_Current_Task) then
5882 declare
5883 P : Node_Id;
5885 begin
5886 P := N;
5887 loop
5888 P := Parent (P);
5890 -- Exclude calls that occur within the default of a formal
5891 -- parameter of the entry, since those are evaluated outside
5892 -- of the body.
5894 exit when No (P) or else Nkind (P) = N_Parameter_Specification;
5896 if Nkind (P) = N_Entry_Body
5897 or else (Nkind (P) = N_Subprogram_Body
5898 and then Is_Entry_Barrier_Function (P))
5899 then
5900 Rtype := Etype (N);
5901 Error_Msg_Warn := SPARK_Mode /= On;
5902 Error_Msg_NE
5903 ("& should not be used in entry body (RM C.7(17))<<",
5904 N, Nam);
5905 Error_Msg_NE ("\Program_Error [<<", N, Nam);
5906 Rewrite (N,
5907 Make_Raise_Program_Error (Loc,
5908 Reason => PE_Current_Task_In_Entry_Body));
5909 Set_Etype (N, Rtype);
5910 return;
5911 end if;
5912 end loop;
5913 end;
5914 end if;
5916 -- Check that a procedure call does not occur in the context of the
5917 -- entry call statement of a conditional or timed entry call. Note that
5918 -- the case of a call to a subprogram renaming of an entry will also be
5919 -- rejected. The test for N not being an N_Entry_Call_Statement is
5920 -- defensive, covering the possibility that the processing of entry
5921 -- calls might reach this point due to later modifications of the code
5922 -- above.
5924 if Nkind (Parent (N)) = N_Entry_Call_Alternative
5925 and then Nkind (N) /= N_Entry_Call_Statement
5926 and then Entry_Call_Statement (Parent (N)) = N
5927 then
5928 if Ada_Version < Ada_2005 then
5929 Error_Msg_N ("entry call required in select statement", N);
5931 -- Ada 2005 (AI-345): If a procedure_call_statement is used
5932 -- for a procedure_or_entry_call, the procedure_name or
5933 -- procedure_prefix of the procedure_call_statement shall denote
5934 -- an entry renamed by a procedure, or (a view of) a primitive
5935 -- subprogram of a limited interface whose first parameter is
5936 -- a controlling parameter.
5938 elsif Nkind (N) = N_Procedure_Call_Statement
5939 and then not Is_Renamed_Entry (Nam)
5940 and then not Is_Controlling_Limited_Procedure (Nam)
5941 then
5942 Error_Msg_N
5943 ("entry call or dispatching primitive of interface required", N);
5944 end if;
5945 end if;
5947 -- If the SPARK_05 restriction is active, we are not allowed
5948 -- to have a call to a subprogram before we see its completion.
5950 if not Has_Completion (Nam)
5951 and then Restriction_Check_Required (SPARK_05)
5953 -- Don't flag strange internal calls
5955 and then Comes_From_Source (N)
5956 and then Comes_From_Source (Nam)
5958 -- Only flag calls in extended main source
5960 and then In_Extended_Main_Source_Unit (Nam)
5961 and then In_Extended_Main_Source_Unit (N)
5963 -- Exclude enumeration literals from this processing
5965 and then Ekind (Nam) /= E_Enumeration_Literal
5966 then
5967 Check_SPARK_05_Restriction
5968 ("call to subprogram cannot appear before its body", N);
5969 end if;
5971 -- Check that this is not a call to a protected procedure or entry from
5972 -- within a protected function.
5974 Check_Internal_Protected_Use (N, Nam);
5976 -- Freeze the subprogram name if not in a spec-expression. Note that
5977 -- we freeze procedure calls as well as function calls. Procedure calls
5978 -- are not frozen according to the rules (RM 13.14(14)) because it is
5979 -- impossible to have a procedure call to a non-frozen procedure in
5980 -- pure Ada, but in the code that we generate in the expander, this
5981 -- rule needs extending because we can generate procedure calls that
5982 -- need freezing.
5984 -- In Ada 2012, expression functions may be called within pre/post
5985 -- conditions of subsequent functions or expression functions. Such
5986 -- calls do not freeze when they appear within generated bodies,
5987 -- (including the body of another expression function) which would
5988 -- place the freeze node in the wrong scope. An expression function
5989 -- is frozen in the usual fashion, by the appearance of a real body,
5990 -- or at the end of a declarative part.
5992 if Is_Entity_Name (Subp)
5993 and then not In_Spec_Expression
5994 and then not Is_Expression_Function_Or_Completion (Current_Scope)
5995 and then
5996 (not Is_Expression_Function_Or_Completion (Entity (Subp))
5997 or else Scope (Entity (Subp)) = Current_Scope)
5998 then
5999 Freeze_Expression (Subp);
6000 end if;
6002 -- For a predefined operator, the type of the result is the type imposed
6003 -- by context, except for a predefined operation on universal fixed.
6004 -- Otherwise The type of the call is the type returned by the subprogram
6005 -- being called.
6007 if Is_Predefined_Op (Nam) then
6008 if Etype (N) /= Universal_Fixed then
6009 Set_Etype (N, Typ);
6010 end if;
6012 -- If the subprogram returns an array type, and the context requires the
6013 -- component type of that array type, the node is really an indexing of
6014 -- the parameterless call. Resolve as such. A pathological case occurs
6015 -- when the type of the component is an access to the array type. In
6016 -- this case the call is truly ambiguous. If the call is to an intrinsic
6017 -- subprogram, it can't be an indexed component. This check is necessary
6018 -- because if it's Unchecked_Conversion, and we have "type T_Ptr is
6019 -- access T;" and "type T is array (...) of T_Ptr;" (i.e. an array of
6020 -- pointers to the same array), the compiler gets confused and does an
6021 -- infinite recursion.
6023 elsif (Needs_No_Actuals (Nam) or else Needs_One_Actual (Nam))
6024 and then
6025 ((Is_Array_Type (Etype (Nam))
6026 and then Covers (Typ, Component_Type (Etype (Nam))))
6027 or else
6028 (Is_Access_Type (Etype (Nam))
6029 and then Is_Array_Type (Designated_Type (Etype (Nam)))
6030 and then
6031 Covers (Typ, Component_Type (Designated_Type (Etype (Nam))))
6032 and then not Is_Intrinsic_Subprogram (Entity (Subp))))
6033 then
6034 declare
6035 Index_Node : Node_Id;
6036 New_Subp : Node_Id;
6037 Ret_Type : constant Entity_Id := Etype (Nam);
6039 begin
6040 if Is_Access_Type (Ret_Type)
6041 and then Ret_Type = Component_Type (Designated_Type (Ret_Type))
6042 then
6043 Error_Msg_N
6044 ("cannot disambiguate function call and indexing", N);
6045 else
6046 New_Subp := Relocate_Node (Subp);
6048 -- The called entity may be an explicit dereference, in which
6049 -- case there is no entity to set.
6051 if Nkind (New_Subp) /= N_Explicit_Dereference then
6052 Set_Entity (Subp, Nam);
6053 end if;
6055 if (Is_Array_Type (Ret_Type)
6056 and then Component_Type (Ret_Type) /= Any_Type)
6057 or else
6058 (Is_Access_Type (Ret_Type)
6059 and then
6060 Component_Type (Designated_Type (Ret_Type)) /= Any_Type)
6061 then
6062 if Needs_No_Actuals (Nam) then
6064 -- Indexed call to a parameterless function
6066 Index_Node :=
6067 Make_Indexed_Component (Loc,
6068 Prefix =>
6069 Make_Function_Call (Loc, Name => New_Subp),
6070 Expressions => Parameter_Associations (N));
6071 else
6072 -- An Ada 2005 prefixed call to a primitive operation
6073 -- whose first parameter is the prefix. This prefix was
6074 -- prepended to the parameter list, which is actually a
6075 -- list of indexes. Remove the prefix in order to build
6076 -- the proper indexed component.
6078 Index_Node :=
6079 Make_Indexed_Component (Loc,
6080 Prefix =>
6081 Make_Function_Call (Loc,
6082 Name => New_Subp,
6083 Parameter_Associations =>
6084 New_List
6085 (Remove_Head (Parameter_Associations (N)))),
6086 Expressions => Parameter_Associations (N));
6087 end if;
6089 -- Preserve the parenthesis count of the node
6091 Set_Paren_Count (Index_Node, Paren_Count (N));
6093 -- Since we are correcting a node classification error made
6094 -- by the parser, we call Replace rather than Rewrite.
6096 Replace (N, Index_Node);
6098 Set_Etype (Prefix (N), Ret_Type);
6099 Set_Etype (N, Typ);
6100 Resolve_Indexed_Component (N, Typ);
6101 Check_Elab_Call (Prefix (N));
6102 end if;
6103 end if;
6105 return;
6106 end;
6108 else
6109 -- If the called function is not declared in the main unit and it
6110 -- returns the limited view of type then use the available view (as
6111 -- is done in Try_Object_Operation) to prevent back-end confusion;
6112 -- for the function entity itself. The call must appear in a context
6113 -- where the nonlimited view is available. If the function entity is
6114 -- in the extended main unit then no action is needed, because the
6115 -- back end handles this case. In either case the type of the call
6116 -- is the nonlimited view.
6118 if From_Limited_With (Etype (Nam))
6119 and then Present (Available_View (Etype (Nam)))
6120 then
6121 Set_Etype (N, Available_View (Etype (Nam)));
6123 if not In_Extended_Main_Code_Unit (Nam) then
6124 Set_Etype (Nam, Available_View (Etype (Nam)));
6125 end if;
6127 else
6128 Set_Etype (N, Etype (Nam));
6129 end if;
6130 end if;
6132 -- In the case where the call is to an overloaded subprogram, Analyze
6133 -- calls Normalize_Actuals once per overloaded subprogram. Therefore in
6134 -- such a case Normalize_Actuals needs to be called once more to order
6135 -- the actuals correctly. Otherwise the call will have the ordering
6136 -- given by the last overloaded subprogram whether this is the correct
6137 -- one being called or not.
6139 if Is_Overloaded (Subp) then
6140 Normalize_Actuals (N, Nam, False, Norm_OK);
6141 pragma Assert (Norm_OK);
6142 end if;
6144 -- In any case, call is fully resolved now. Reset Overload flag, to
6145 -- prevent subsequent overload resolution if node is analyzed again
6147 Set_Is_Overloaded (Subp, False);
6148 Set_Is_Overloaded (N, False);
6150 -- A Ghost entity must appear in a specific context
6152 if Is_Ghost_Entity (Nam) and then Comes_From_Source (N) then
6153 Check_Ghost_Context (Nam, N);
6154 end if;
6156 -- If we are calling the current subprogram from immediately within its
6157 -- body, then that is the case where we can sometimes detect cases of
6158 -- infinite recursion statically. Do not try this in case restriction
6159 -- No_Recursion is in effect anyway, and do it only for source calls.
6161 if Comes_From_Source (N) then
6162 Scop := Current_Scope;
6164 -- Check violation of SPARK_05 restriction which does not permit
6165 -- a subprogram body to contain a call to the subprogram directly.
6167 if Restriction_Check_Required (SPARK_05)
6168 and then Same_Or_Aliased_Subprograms (Nam, Scop)
6169 then
6170 Check_SPARK_05_Restriction
6171 ("subprogram may not contain direct call to itself", N);
6172 end if;
6174 -- Issue warning for possible infinite recursion in the absence
6175 -- of the No_Recursion restriction.
6177 if Same_Or_Aliased_Subprograms (Nam, Scop)
6178 and then not Restriction_Active (No_Recursion)
6179 and then Check_Infinite_Recursion (N)
6180 then
6181 -- Here we detected and flagged an infinite recursion, so we do
6182 -- not need to test the case below for further warnings. Also we
6183 -- are all done if we now have a raise SE node.
6185 if Nkind (N) = N_Raise_Storage_Error then
6186 return;
6187 end if;
6189 -- If call is to immediately containing subprogram, then check for
6190 -- the case of a possible run-time detectable infinite recursion.
6192 else
6193 Scope_Loop : while Scop /= Standard_Standard loop
6194 if Same_Or_Aliased_Subprograms (Nam, Scop) then
6196 -- Although in general case, recursion is not statically
6197 -- checkable, the case of calling an immediately containing
6198 -- subprogram is easy to catch.
6200 Check_Restriction (No_Recursion, N);
6202 -- If the recursive call is to a parameterless subprogram,
6203 -- then even if we can't statically detect infinite
6204 -- recursion, this is pretty suspicious, and we output a
6205 -- warning. Furthermore, we will try later to detect some
6206 -- cases here at run time by expanding checking code (see
6207 -- Detect_Infinite_Recursion in package Exp_Ch6).
6209 -- If the recursive call is within a handler, do not emit a
6210 -- warning, because this is a common idiom: loop until input
6211 -- is correct, catch illegal input in handler and restart.
6213 if No (First_Formal (Nam))
6214 and then Etype (Nam) = Standard_Void_Type
6215 and then not Error_Posted (N)
6216 and then Nkind (Parent (N)) /= N_Exception_Handler
6217 then
6218 -- For the case of a procedure call. We give the message
6219 -- only if the call is the first statement in a sequence
6220 -- of statements, or if all previous statements are
6221 -- simple assignments. This is simply a heuristic to
6222 -- decrease false positives, without losing too many good
6223 -- warnings. The idea is that these previous statements
6224 -- may affect global variables the procedure depends on.
6225 -- We also exclude raise statements, that may arise from
6226 -- constraint checks and are probably unrelated to the
6227 -- intended control flow.
6229 if Nkind (N) = N_Procedure_Call_Statement
6230 and then Is_List_Member (N)
6231 then
6232 declare
6233 P : Node_Id;
6234 begin
6235 P := Prev (N);
6236 while Present (P) loop
6237 if not Nkind_In (P, N_Assignment_Statement,
6238 N_Raise_Constraint_Error)
6239 then
6240 exit Scope_Loop;
6241 end if;
6243 Prev (P);
6244 end loop;
6245 end;
6246 end if;
6248 -- Do not give warning if we are in a conditional context
6250 declare
6251 K : constant Node_Kind := Nkind (Parent (N));
6252 begin
6253 if (K = N_Loop_Statement
6254 and then Present (Iteration_Scheme (Parent (N))))
6255 or else K = N_If_Statement
6256 or else K = N_Elsif_Part
6257 or else K = N_Case_Statement_Alternative
6258 then
6259 exit Scope_Loop;
6260 end if;
6261 end;
6263 -- Here warning is to be issued
6265 Set_Has_Recursive_Call (Nam);
6266 Error_Msg_Warn := SPARK_Mode /= On;
6267 Error_Msg_N ("possible infinite recursion<<!", N);
6268 Error_Msg_N ("\Storage_Error ]<<!", N);
6269 end if;
6271 exit Scope_Loop;
6272 end if;
6274 Scop := Scope (Scop);
6275 end loop Scope_Loop;
6276 end if;
6277 end if;
6279 -- Check obsolescent reference to Ada.Characters.Handling subprogram
6281 Check_Obsolescent_2005_Entity (Nam, Subp);
6283 -- If subprogram name is a predefined operator, it was given in
6284 -- functional notation. Replace call node with operator node, so
6285 -- that actuals can be resolved appropriately.
6287 if Is_Predefined_Op (Nam) or else Ekind (Nam) = E_Operator then
6288 Make_Call_Into_Operator (N, Typ, Entity (Name (N)));
6289 return;
6291 elsif Present (Alias (Nam))
6292 and then Is_Predefined_Op (Alias (Nam))
6293 then
6294 Resolve_Actuals (N, Nam);
6295 Make_Call_Into_Operator (N, Typ, Alias (Nam));
6296 return;
6297 end if;
6299 -- Create a transient scope if the resulting type requires it
6301 -- There are several notable exceptions:
6303 -- a) In init procs, the transient scope overhead is not needed, and is
6304 -- even incorrect when the call is a nested initialization call for a
6305 -- component whose expansion may generate adjust calls. However, if the
6306 -- call is some other procedure call within an initialization procedure
6307 -- (for example a call to Create_Task in the init_proc of the task
6308 -- run-time record) a transient scope must be created around this call.
6310 -- b) Enumeration literal pseudo-calls need no transient scope
6312 -- c) Intrinsic subprograms (Unchecked_Conversion and source info
6313 -- functions) do not use the secondary stack even though the return
6314 -- type may be unconstrained.
6316 -- d) Calls to a build-in-place function, since such functions may
6317 -- allocate their result directly in a target object, and cases where
6318 -- the result does get allocated in the secondary stack are checked for
6319 -- within the specialized Exp_Ch6 procedures for expanding those
6320 -- build-in-place calls.
6322 -- e) Calls to inlinable expression functions do not use the secondary
6323 -- stack (since the call will be replaced by its returned object).
6325 -- f) If the subprogram is marked Inline_Always, then even if it returns
6326 -- an unconstrained type the call does not require use of the secondary
6327 -- stack. However, inlining will only take place if the body to inline
6328 -- is already present. It may not be available if e.g. the subprogram is
6329 -- declared in a child instance.
6331 -- If this is an initialization call for a type whose construction
6332 -- uses the secondary stack, and it is not a nested call to initialize
6333 -- a component, we do need to create a transient scope for it. We
6334 -- check for this by traversing the type in Check_Initialization_Call.
6336 if Is_Inlined (Nam)
6337 and then Has_Pragma_Inline (Nam)
6338 and then Nkind (Unit_Declaration_Node (Nam)) = N_Subprogram_Declaration
6339 and then Present (Body_To_Inline (Unit_Declaration_Node (Nam)))
6340 then
6341 null;
6343 elsif Ekind (Nam) = E_Enumeration_Literal
6344 or else Is_Build_In_Place_Function (Nam)
6345 or else Is_Intrinsic_Subprogram (Nam)
6346 or else Is_Inlinable_Expression_Function (Nam)
6347 then
6348 null;
6350 elsif Expander_Active
6351 and then Is_Type (Etype (Nam))
6352 and then Requires_Transient_Scope (Etype (Nam))
6353 and then
6354 (not Within_Init_Proc
6355 or else
6356 (not Is_Init_Proc (Nam) and then Ekind (Nam) /= E_Function))
6357 then
6358 Establish_Transient_Scope (N, Sec_Stack => True);
6360 -- If the call appears within the bounds of a loop, it will
6361 -- be rewritten and reanalyzed, nothing left to do here.
6363 if Nkind (N) /= N_Function_Call then
6364 return;
6365 end if;
6367 elsif Is_Init_Proc (Nam)
6368 and then not Within_Init_Proc
6369 then
6370 Check_Initialization_Call (N, Nam);
6371 end if;
6373 -- A protected function cannot be called within the definition of the
6374 -- enclosing protected type, unless it is part of a pre/postcondition
6375 -- on another protected operation. This may appear in the entry wrapper
6376 -- created for an entry with preconditions.
6378 if Is_Protected_Type (Scope (Nam))
6379 and then In_Open_Scopes (Scope (Nam))
6380 and then not Has_Completion (Scope (Nam))
6381 and then not In_Spec_Expression
6382 and then not Is_Entry_Wrapper (Current_Scope)
6383 then
6384 Error_Msg_NE
6385 ("& cannot be called before end of protected definition", N, Nam);
6386 end if;
6388 -- Propagate interpretation to actuals, and add default expressions
6389 -- where needed.
6391 if Present (First_Formal (Nam)) then
6392 Resolve_Actuals (N, Nam);
6394 -- Overloaded literals are rewritten as function calls, for purpose of
6395 -- resolution. After resolution, we can replace the call with the
6396 -- literal itself.
6398 elsif Ekind (Nam) = E_Enumeration_Literal then
6399 Copy_Node (Subp, N);
6400 Resolve_Entity_Name (N, Typ);
6402 -- Avoid validation, since it is a static function call
6404 Generate_Reference (Nam, Subp);
6405 return;
6406 end if;
6408 -- If the subprogram is not global, then kill all saved values and
6409 -- checks. This is a bit conservative, since in many cases we could do
6410 -- better, but it is not worth the effort. Similarly, we kill constant
6411 -- values. However we do not need to do this for internal entities
6412 -- (unless they are inherited user-defined subprograms), since they
6413 -- are not in the business of molesting local values.
6415 -- If the flag Suppress_Value_Tracking_On_Calls is set, then we also
6416 -- kill all checks and values for calls to global subprograms. This
6417 -- takes care of the case where an access to a local subprogram is
6418 -- taken, and could be passed directly or indirectly and then called
6419 -- from almost any context.
6421 -- Note: we do not do this step till after resolving the actuals. That
6422 -- way we still take advantage of the current value information while
6423 -- scanning the actuals.
6425 -- We suppress killing values if we are processing the nodes associated
6426 -- with N_Freeze_Entity nodes. Otherwise the declaration of a tagged
6427 -- type kills all the values as part of analyzing the code that
6428 -- initializes the dispatch tables.
6430 if Inside_Freezing_Actions = 0
6431 and then (not Is_Library_Level_Entity (Nam)
6432 or else Suppress_Value_Tracking_On_Call
6433 (Nearest_Dynamic_Scope (Current_Scope)))
6434 and then (Comes_From_Source (Nam)
6435 or else (Present (Alias (Nam))
6436 and then Comes_From_Source (Alias (Nam))))
6437 then
6438 Kill_Current_Values;
6439 end if;
6441 -- If we are warning about unread OUT parameters, this is the place to
6442 -- set Last_Assignment for OUT and IN OUT parameters. We have to do this
6443 -- after the above call to Kill_Current_Values (since that call clears
6444 -- the Last_Assignment field of all local variables).
6446 if (Warn_On_Modified_Unread or Warn_On_All_Unread_Out_Parameters)
6447 and then Comes_From_Source (N)
6448 and then In_Extended_Main_Source_Unit (N)
6449 then
6450 declare
6451 F : Entity_Id;
6452 A : Node_Id;
6454 begin
6455 F := First_Formal (Nam);
6456 A := First_Actual (N);
6457 while Present (F) and then Present (A) loop
6458 if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter)
6459 and then Warn_On_Modified_As_Out_Parameter (F)
6460 and then Is_Entity_Name (A)
6461 and then Present (Entity (A))
6462 and then Comes_From_Source (N)
6463 and then Safe_To_Capture_Value (N, Entity (A))
6464 then
6465 Set_Last_Assignment (Entity (A), A);
6466 end if;
6468 Next_Formal (F);
6469 Next_Actual (A);
6470 end loop;
6471 end;
6472 end if;
6474 -- If the subprogram is a primitive operation, check whether or not
6475 -- it is a correct dispatching call.
6477 if Is_Overloadable (Nam)
6478 and then Is_Dispatching_Operation (Nam)
6479 then
6480 Check_Dispatching_Call (N);
6482 elsif Ekind (Nam) /= E_Subprogram_Type
6483 and then Is_Abstract_Subprogram (Nam)
6484 and then not In_Instance
6485 then
6486 Error_Msg_NE ("cannot call abstract subprogram &!", N, Nam);
6487 end if;
6489 -- If this is a dispatching call, generate the appropriate reference,
6490 -- for better source navigation in GPS.
6492 if Is_Overloadable (Nam)
6493 and then Present (Controlling_Argument (N))
6494 then
6495 Generate_Reference (Nam, Subp, 'R');
6497 -- Normal case, not a dispatching call: generate a call reference
6499 else
6500 Generate_Reference (Nam, Subp, 's');
6501 end if;
6503 if Is_Intrinsic_Subprogram (Nam) then
6504 Check_Intrinsic_Call (N);
6505 end if;
6507 -- Check for violation of restriction No_Specific_Termination_Handlers
6508 -- and warn on a potentially blocking call to Abort_Task.
6510 if Restriction_Check_Required (No_Specific_Termination_Handlers)
6511 and then (Is_RTE (Nam, RE_Set_Specific_Handler)
6512 or else
6513 Is_RTE (Nam, RE_Specific_Handler))
6514 then
6515 Check_Restriction (No_Specific_Termination_Handlers, N);
6517 elsif Is_RTE (Nam, RE_Abort_Task) then
6518 Check_Potentially_Blocking_Operation (N);
6519 end if;
6521 -- A call to Ada.Real_Time.Timing_Events.Set_Handler to set a relative
6522 -- timing event violates restriction No_Relative_Delay (AI-0211). We
6523 -- need to check the second argument to determine whether it is an
6524 -- absolute or relative timing event.
6526 if Restriction_Check_Required (No_Relative_Delay)
6527 and then Is_RTE (Nam, RE_Set_Handler)
6528 and then Is_RTE (Etype (Next_Actual (First_Actual (N))), RE_Time_Span)
6529 then
6530 Check_Restriction (No_Relative_Delay, N);
6531 end if;
6533 -- Issue an error for a call to an eliminated subprogram. This routine
6534 -- will not perform the check if the call appears within a default
6535 -- expression.
6537 Check_For_Eliminated_Subprogram (Subp, Nam);
6539 -- In formal mode, the primitive operations of a tagged type or type
6540 -- extension do not include functions that return the tagged type.
6542 if Nkind (N) = N_Function_Call
6543 and then Is_Tagged_Type (Etype (N))
6544 and then Is_Entity_Name (Name (N))
6545 and then Is_Inherited_Operation_For_Type (Entity (Name (N)), Etype (N))
6546 then
6547 Check_SPARK_05_Restriction ("function not inherited", N);
6548 end if;
6550 -- Implement rule in 12.5.1 (23.3/2): In an instance, if the actual is
6551 -- class-wide and the call dispatches on result in a context that does
6552 -- not provide a tag, the call raises Program_Error.
6554 if Nkind (N) = N_Function_Call
6555 and then In_Instance
6556 and then Is_Generic_Actual_Type (Typ)
6557 and then Is_Class_Wide_Type (Typ)
6558 and then Has_Controlling_Result (Nam)
6559 and then Nkind (Parent (N)) = N_Object_Declaration
6560 then
6561 -- Verify that none of the formals are controlling
6563 declare
6564 Call_OK : Boolean := False;
6565 F : Entity_Id;
6567 begin
6568 F := First_Formal (Nam);
6569 while Present (F) loop
6570 if Is_Controlling_Formal (F) then
6571 Call_OK := True;
6572 exit;
6573 end if;
6575 Next_Formal (F);
6576 end loop;
6578 if not Call_OK then
6579 Error_Msg_Warn := SPARK_Mode /= On;
6580 Error_Msg_N ("!cannot determine tag of result<<", N);
6581 Error_Msg_N ("\Program_Error [<<!", N);
6582 Insert_Action (N,
6583 Make_Raise_Program_Error (Sloc (N),
6584 Reason => PE_Explicit_Raise));
6585 end if;
6586 end;
6587 end if;
6589 -- Check for calling a function with OUT or IN OUT parameter when the
6590 -- calling context (us right now) is not Ada 2012, so does not allow
6591 -- OUT or IN OUT parameters in function calls. Functions declared in
6592 -- a predefined unit are OK, as they may be called indirectly from a
6593 -- user-declared instantiation.
6595 if Ada_Version < Ada_2012
6596 and then Ekind (Nam) = E_Function
6597 and then Has_Out_Or_In_Out_Parameter (Nam)
6598 and then not In_Predefined_Unit (Nam)
6599 then
6600 Error_Msg_NE ("& has at least one OUT or `IN OUT` parameter", N, Nam);
6601 Error_Msg_N ("\call to this function only allowed in Ada 2012", N);
6602 end if;
6604 -- Check the dimensions of the actuals in the call. For function calls,
6605 -- propagate the dimensions from the returned type to N.
6607 Analyze_Dimension_Call (N, Nam);
6609 -- All done, evaluate call and deal with elaboration issues
6611 Eval_Call (N);
6612 Check_Elab_Call (N);
6614 -- In GNATprove mode, expansion is disabled, but we want to inline some
6615 -- subprograms to facilitate formal verification. Indirect calls through
6616 -- a subprogram type or within a generic cannot be inlined. Inlining is
6617 -- performed only for calls subject to SPARK_Mode on.
6619 if GNATprove_Mode
6620 and then SPARK_Mode = On
6621 and then Is_Overloadable (Nam)
6622 and then not Inside_A_Generic
6623 then
6624 Nam_UA := Ultimate_Alias (Nam);
6625 Nam_Decl := Unit_Declaration_Node (Nam_UA);
6627 if Nkind (Nam_Decl) = N_Subprogram_Declaration then
6628 Body_Id := Corresponding_Body (Nam_Decl);
6630 -- Nothing to do if the subprogram is not eligible for inlining in
6631 -- GNATprove mode, or inlining is disabled with switch -gnatdm
6633 if not Is_Inlined_Always (Nam_UA)
6634 or else not Can_Be_Inlined_In_GNATprove_Mode (Nam_UA, Body_Id)
6635 or else Debug_Flag_M
6636 then
6637 null;
6639 -- Calls cannot be inlined inside assertions, as GNATprove treats
6640 -- assertions as logic expressions. Only issue a message when the
6641 -- body has been seen, otherwise this leads to spurious messages
6642 -- on expression functions.
6644 elsif In_Assertion_Expr /= 0 then
6645 if Present (Body_Id) then
6646 Cannot_Inline
6647 ("cannot inline & (in assertion expression)?", N, Nam_UA);
6648 end if;
6650 -- Calls cannot be inlined inside default expressions
6652 elsif In_Default_Expr then
6653 Cannot_Inline
6654 ("cannot inline & (in default expression)?", N, Nam_UA);
6656 -- Inlining should not be performed during pre-analysis
6658 elsif Full_Analysis then
6660 -- Do not inline calls inside expression functions, as this
6661 -- would prevent interpreting them as logical formulas in
6662 -- GNATprove. Only issue a message when the body has been seen,
6663 -- otherwise this leads to spurious messages on callees that
6664 -- are themselves expression functions.
6666 if Present (Current_Subprogram)
6667 and then Is_Expression_Function_Or_Completion
6668 (Current_Subprogram)
6669 then
6670 if Present (Body_Id)
6671 and then Present (Body_To_Inline (Nam_Decl))
6672 then
6673 Cannot_Inline
6674 ("cannot inline & (inside expression function)?",
6675 N, Nam_UA);
6676 end if;
6678 -- With the one-pass inlining technique, a call cannot be
6679 -- inlined if the corresponding body has not been seen yet.
6681 elsif No (Body_Id) then
6682 Cannot_Inline
6683 ("cannot inline & (body not seen yet)?", N, Nam_UA);
6685 -- Nothing to do if there is no body to inline, indicating that
6686 -- the subprogram is not suitable for inlining in GNATprove
6687 -- mode.
6689 elsif No (Body_To_Inline (Nam_Decl)) then
6690 null;
6692 -- Calls cannot be inlined inside potentially unevaluated
6693 -- expressions, as this would create complex actions inside
6694 -- expressions, that are not handled by GNATprove.
6696 elsif Is_Potentially_Unevaluated (N) then
6697 Cannot_Inline
6698 ("cannot inline & (in potentially unevaluated context)?",
6699 N, Nam_UA);
6701 -- Do not inline calls which would possibly lead to missing a
6702 -- type conversion check on an input parameter.
6704 elsif not Call_Can_Be_Inlined_In_GNATprove_Mode (N, Nam) then
6705 Cannot_Inline
6706 ("cannot inline & (possible check on input parameters)?",
6707 N, Nam_UA);
6709 -- Otherwise, inline the call
6711 else
6712 Expand_Inlined_Call (N, Nam_UA, Nam);
6713 end if;
6714 end if;
6715 end if;
6716 end if;
6718 Warn_On_Overlapping_Actuals (Nam, N);
6719 end Resolve_Call;
6721 -----------------------------
6722 -- Resolve_Case_Expression --
6723 -----------------------------
6725 procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id) is
6726 Alt : Node_Id;
6727 Alt_Expr : Node_Id;
6728 Alt_Typ : Entity_Id;
6729 Is_Dyn : Boolean;
6731 begin
6732 Alt := First (Alternatives (N));
6733 while Present (Alt) loop
6734 Alt_Expr := Expression (Alt);
6736 if Error_Posted (Alt_Expr) then
6737 return;
6738 end if;
6740 Resolve (Alt_Expr, Typ);
6741 Alt_Typ := Etype (Alt_Expr);
6743 -- When the expression is of a scalar subtype different from the
6744 -- result subtype, then insert a conversion to ensure the generation
6745 -- of a constraint check.
6747 if Is_Scalar_Type (Alt_Typ) and then Alt_Typ /= Typ then
6748 Rewrite (Alt_Expr, Convert_To (Typ, Alt_Expr));
6749 Analyze_And_Resolve (Alt_Expr, Typ);
6750 end if;
6752 Next (Alt);
6753 end loop;
6755 -- Apply RM 4.5.7 (17/3): whether the expression is statically or
6756 -- dynamically tagged must be known statically.
6758 if Is_Tagged_Type (Typ) and then not Is_Class_Wide_Type (Typ) then
6759 Alt := First (Alternatives (N));
6760 Is_Dyn := Is_Dynamically_Tagged (Expression (Alt));
6762 while Present (Alt) loop
6763 if Is_Dynamically_Tagged (Expression (Alt)) /= Is_Dyn then
6764 Error_Msg_N
6765 ("all or none of the dependent expressions can be "
6766 & "dynamically tagged", N);
6767 end if;
6769 Next (Alt);
6770 end loop;
6771 end if;
6773 Set_Etype (N, Typ);
6774 Eval_Case_Expression (N);
6775 Analyze_Dimension (N);
6776 end Resolve_Case_Expression;
6778 -------------------------------
6779 -- Resolve_Character_Literal --
6780 -------------------------------
6782 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id) is
6783 B_Typ : constant Entity_Id := Base_Type (Typ);
6784 C : Entity_Id;
6786 begin
6787 -- Verify that the character does belong to the type of the context
6789 Set_Etype (N, B_Typ);
6790 Eval_Character_Literal (N);
6792 -- Wide_Wide_Character literals must always be defined, since the set
6793 -- of wide wide character literals is complete, i.e. if a character
6794 -- literal is accepted by the parser, then it is OK for wide wide
6795 -- character (out of range character literals are rejected).
6797 if Root_Type (B_Typ) = Standard_Wide_Wide_Character then
6798 return;
6800 -- Always accept character literal for type Any_Character, which
6801 -- occurs in error situations and in comparisons of literals, both
6802 -- of which should accept all literals.
6804 elsif B_Typ = Any_Character then
6805 return;
6807 -- For Standard.Character or a type derived from it, check that the
6808 -- literal is in range.
6810 elsif Root_Type (B_Typ) = Standard_Character then
6811 if In_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
6812 return;
6813 end if;
6815 -- For Standard.Wide_Character or a type derived from it, check that the
6816 -- literal is in range.
6818 elsif Root_Type (B_Typ) = Standard_Wide_Character then
6819 if In_Wide_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
6820 return;
6821 end if;
6823 -- If the entity is already set, this has already been resolved in a
6824 -- generic context, or comes from expansion. Nothing else to do.
6826 elsif Present (Entity (N)) then
6827 return;
6829 -- Otherwise we have a user defined character type, and we can use the
6830 -- standard visibility mechanisms to locate the referenced entity.
6832 else
6833 C := Current_Entity (N);
6834 while Present (C) loop
6835 if Etype (C) = B_Typ then
6836 Set_Entity_With_Checks (N, C);
6837 Generate_Reference (C, N);
6838 return;
6839 end if;
6841 C := Homonym (C);
6842 end loop;
6843 end if;
6845 -- If we fall through, then the literal does not match any of the
6846 -- entries of the enumeration type. This isn't just a constraint error
6847 -- situation, it is an illegality (see RM 4.2).
6849 Error_Msg_NE
6850 ("character not defined for }", N, First_Subtype (B_Typ));
6851 end Resolve_Character_Literal;
6853 ---------------------------
6854 -- Resolve_Comparison_Op --
6855 ---------------------------
6857 -- Context requires a boolean type, and plays no role in resolution.
6858 -- Processing identical to that for equality operators. The result type is
6859 -- the base type, which matters when pathological subtypes of booleans with
6860 -- limited ranges are used.
6862 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id) is
6863 L : constant Node_Id := Left_Opnd (N);
6864 R : constant Node_Id := Right_Opnd (N);
6865 T : Entity_Id;
6867 begin
6868 -- If this is an intrinsic operation which is not predefined, use the
6869 -- types of its declared arguments to resolve the possibly overloaded
6870 -- operands. Otherwise the operands are unambiguous and specify the
6871 -- expected type.
6873 if Scope (Entity (N)) /= Standard_Standard then
6874 T := Etype (First_Entity (Entity (N)));
6876 else
6877 T := Find_Unique_Type (L, R);
6879 if T = Any_Fixed then
6880 T := Unique_Fixed_Point_Type (L);
6881 end if;
6882 end if;
6884 Set_Etype (N, Base_Type (Typ));
6885 Generate_Reference (T, N, ' ');
6887 -- Skip remaining processing if already set to Any_Type
6889 if T = Any_Type then
6890 return;
6891 end if;
6893 -- Deal with other error cases
6895 if T = Any_String or else
6896 T = Any_Composite or else
6897 T = Any_Character
6898 then
6899 if T = Any_Character then
6900 Ambiguous_Character (L);
6901 else
6902 Error_Msg_N ("ambiguous operands for comparison", N);
6903 end if;
6905 Set_Etype (N, Any_Type);
6906 return;
6907 end if;
6909 -- Resolve the operands if types OK
6911 Resolve (L, T);
6912 Resolve (R, T);
6913 Check_Unset_Reference (L);
6914 Check_Unset_Reference (R);
6915 Generate_Operator_Reference (N, T);
6916 Check_Low_Bound_Tested (N);
6918 -- In SPARK, ordering operators <, <=, >, >= are not defined for Boolean
6919 -- types or array types except String.
6921 if Is_Boolean_Type (T) then
6922 Check_SPARK_05_Restriction
6923 ("comparison is not defined on Boolean type", N);
6925 elsif Is_Array_Type (T)
6926 and then Base_Type (T) /= Standard_String
6927 then
6928 Check_SPARK_05_Restriction
6929 ("comparison is not defined on array types other than String", N);
6930 end if;
6932 -- Check comparison on unordered enumeration
6934 if Bad_Unordered_Enumeration_Reference (N, Etype (L)) then
6935 Error_Msg_Sloc := Sloc (Etype (L));
6936 Error_Msg_NE
6937 ("comparison on unordered enumeration type& declared#?U?",
6938 N, Etype (L));
6939 end if;
6941 Analyze_Dimension (N);
6943 -- Evaluate the relation (note we do this after the above check since
6944 -- this Eval call may change N to True/False. Skip this evaluation
6945 -- inside assertions, in order to keep assertions as written by users
6946 -- for tools that rely on these, e.g. GNATprove for loop invariants.
6947 -- Except evaluation is still performed even inside assertions for
6948 -- comparisons between values of universal type, which are useless
6949 -- for static analysis tools, and not supported even by GNATprove.
6951 if In_Assertion_Expr = 0
6952 or else (Is_Universal_Numeric_Type (Etype (L))
6953 and then
6954 Is_Universal_Numeric_Type (Etype (R)))
6955 then
6956 Eval_Relational_Op (N);
6957 end if;
6958 end Resolve_Comparison_Op;
6960 -----------------------------------------
6961 -- Resolve_Discrete_Subtype_Indication --
6962 -----------------------------------------
6964 procedure Resolve_Discrete_Subtype_Indication
6965 (N : Node_Id;
6966 Typ : Entity_Id)
6968 R : Node_Id;
6969 S : Entity_Id;
6971 begin
6972 Analyze (Subtype_Mark (N));
6973 S := Entity (Subtype_Mark (N));
6975 if Nkind (Constraint (N)) /= N_Range_Constraint then
6976 Error_Msg_N ("expect range constraint for discrete type", N);
6977 Set_Etype (N, Any_Type);
6979 else
6980 R := Range_Expression (Constraint (N));
6982 if R = Error then
6983 return;
6984 end if;
6986 Analyze (R);
6988 if Base_Type (S) /= Base_Type (Typ) then
6989 Error_Msg_NE
6990 ("expect subtype of }", N, First_Subtype (Typ));
6992 -- Rewrite the constraint as a range of Typ
6993 -- to allow compilation to proceed further.
6995 Set_Etype (N, Typ);
6996 Rewrite (Low_Bound (R),
6997 Make_Attribute_Reference (Sloc (Low_Bound (R)),
6998 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
6999 Attribute_Name => Name_First));
7000 Rewrite (High_Bound (R),
7001 Make_Attribute_Reference (Sloc (High_Bound (R)),
7002 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
7003 Attribute_Name => Name_First));
7005 else
7006 Resolve (R, Typ);
7007 Set_Etype (N, Etype (R));
7009 -- Additionally, we must check that the bounds are compatible
7010 -- with the given subtype, which might be different from the
7011 -- type of the context.
7013 Apply_Range_Check (R, S);
7015 -- ??? If the above check statically detects a Constraint_Error
7016 -- it replaces the offending bound(s) of the range R with a
7017 -- Constraint_Error node. When the itype which uses these bounds
7018 -- is frozen the resulting call to Duplicate_Subexpr generates
7019 -- a new temporary for the bounds.
7021 -- Unfortunately there are other itypes that are also made depend
7022 -- on these bounds, so when Duplicate_Subexpr is called they get
7023 -- a forward reference to the newly created temporaries and Gigi
7024 -- aborts on such forward references. This is probably sign of a
7025 -- more fundamental problem somewhere else in either the order of
7026 -- itype freezing or the way certain itypes are constructed.
7028 -- To get around this problem we call Remove_Side_Effects right
7029 -- away if either bounds of R are a Constraint_Error.
7031 declare
7032 L : constant Node_Id := Low_Bound (R);
7033 H : constant Node_Id := High_Bound (R);
7035 begin
7036 if Nkind (L) = N_Raise_Constraint_Error then
7037 Remove_Side_Effects (L);
7038 end if;
7040 if Nkind (H) = N_Raise_Constraint_Error then
7041 Remove_Side_Effects (H);
7042 end if;
7043 end;
7045 Check_Unset_Reference (Low_Bound (R));
7046 Check_Unset_Reference (High_Bound (R));
7047 end if;
7048 end if;
7049 end Resolve_Discrete_Subtype_Indication;
7051 -------------------------
7052 -- Resolve_Entity_Name --
7053 -------------------------
7055 -- Used to resolve identifiers and expanded names
7057 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id) is
7058 function Is_Assignment_Or_Object_Expression
7059 (Context : Node_Id;
7060 Expr : Node_Id) return Boolean;
7061 -- Determine whether node Context denotes an assignment statement or an
7062 -- object declaration whose expression is node Expr.
7064 ----------------------------------------
7065 -- Is_Assignment_Or_Object_Expression --
7066 ----------------------------------------
7068 function Is_Assignment_Or_Object_Expression
7069 (Context : Node_Id;
7070 Expr : Node_Id) return Boolean
7072 begin
7073 if Nkind_In (Context, N_Assignment_Statement,
7074 N_Object_Declaration)
7075 and then Expression (Context) = Expr
7076 then
7077 return True;
7079 -- Check whether a construct that yields a name is the expression of
7080 -- an assignment statement or an object declaration.
7082 elsif (Nkind_In (Context, N_Attribute_Reference,
7083 N_Explicit_Dereference,
7084 N_Indexed_Component,
7085 N_Selected_Component,
7086 N_Slice)
7087 and then Prefix (Context) = Expr)
7088 or else
7089 (Nkind_In (Context, N_Type_Conversion,
7090 N_Unchecked_Type_Conversion)
7091 and then Expression (Context) = Expr)
7092 then
7093 return
7094 Is_Assignment_Or_Object_Expression
7095 (Context => Parent (Context),
7096 Expr => Context);
7098 -- Otherwise the context is not an assignment statement or an object
7099 -- declaration.
7101 else
7102 return False;
7103 end if;
7104 end Is_Assignment_Or_Object_Expression;
7106 -- Local variables
7108 E : constant Entity_Id := Entity (N);
7109 Par : Node_Id;
7111 -- Start of processing for Resolve_Entity_Name
7113 begin
7114 -- If garbage from errors, set to Any_Type and return
7116 if No (E) and then Total_Errors_Detected /= 0 then
7117 Set_Etype (N, Any_Type);
7118 return;
7119 end if;
7121 -- Replace named numbers by corresponding literals. Note that this is
7122 -- the one case where Resolve_Entity_Name must reset the Etype, since
7123 -- it is currently marked as universal.
7125 if Ekind (E) = E_Named_Integer then
7126 Set_Etype (N, Typ);
7127 Eval_Named_Integer (N);
7129 elsif Ekind (E) = E_Named_Real then
7130 Set_Etype (N, Typ);
7131 Eval_Named_Real (N);
7133 -- For enumeration literals, we need to make sure that a proper style
7134 -- check is done, since such literals are overloaded, and thus we did
7135 -- not do a style check during the first phase of analysis.
7137 elsif Ekind (E) = E_Enumeration_Literal then
7138 Set_Entity_With_Checks (N, E);
7139 Eval_Entity_Name (N);
7141 -- Case of (sub)type name appearing in a context where an expression
7142 -- is expected. This is legal if occurrence is a current instance.
7143 -- See RM 8.6 (17/3).
7145 elsif Is_Type (E) then
7146 if Is_Current_Instance (N) then
7147 null;
7149 -- Any other use is an error
7151 else
7152 Error_Msg_N
7153 ("invalid use of subtype mark in expression or call", N);
7154 end if;
7156 -- Check discriminant use if entity is discriminant in current scope,
7157 -- i.e. discriminant of record or concurrent type currently being
7158 -- analyzed. Uses in corresponding body are unrestricted.
7160 elsif Ekind (E) = E_Discriminant
7161 and then Scope (E) = Current_Scope
7162 and then not Has_Completion (Current_Scope)
7163 then
7164 Check_Discriminant_Use (N);
7166 -- A parameterless generic function cannot appear in a context that
7167 -- requires resolution.
7169 elsif Ekind (E) = E_Generic_Function then
7170 Error_Msg_N ("illegal use of generic function", N);
7172 -- In Ada 83 an OUT parameter cannot be read
7174 elsif Ekind (E) = E_Out_Parameter
7175 and then (Nkind (Parent (N)) in N_Op
7176 or else Nkind (Parent (N)) = N_Explicit_Dereference
7177 or else Is_Assignment_Or_Object_Expression
7178 (Context => Parent (N),
7179 Expr => N))
7180 then
7181 if Ada_Version = Ada_83 then
7182 Error_Msg_N ("(Ada 83) illegal reading of out parameter", N);
7183 end if;
7185 -- In all other cases, just do the possible static evaluation
7187 else
7188 -- A deferred constant that appears in an expression must have a
7189 -- completion, unless it has been removed by in-place expansion of
7190 -- an aggregate. A constant that is a renaming does not need
7191 -- initialization.
7193 if Ekind (E) = E_Constant
7194 and then Comes_From_Source (E)
7195 and then No (Constant_Value (E))
7196 and then Is_Frozen (Etype (E))
7197 and then not In_Spec_Expression
7198 and then not Is_Imported (E)
7199 and then Nkind (Parent (E)) /= N_Object_Renaming_Declaration
7200 then
7201 if No_Initialization (Parent (E))
7202 or else (Present (Full_View (E))
7203 and then No_Initialization (Parent (Full_View (E))))
7204 then
7205 null;
7206 else
7207 Error_Msg_N
7208 ("deferred constant is frozen before completion", N);
7209 end if;
7210 end if;
7212 Eval_Entity_Name (N);
7213 end if;
7215 Par := Parent (N);
7217 -- When the entity appears in a parameter association, retrieve the
7218 -- related subprogram call.
7220 if Nkind (Par) = N_Parameter_Association then
7221 Par := Parent (Par);
7222 end if;
7224 if Comes_From_Source (N) then
7226 -- The following checks are only relevant when SPARK_Mode is on as
7227 -- they are not standard Ada legality rules.
7229 if SPARK_Mode = On then
7231 -- An effectively volatile object subject to enabled properties
7232 -- Async_Writers or Effective_Reads must appear in non-interfering
7233 -- context (SPARK RM 7.1.3(12)).
7235 if Is_Object (E)
7236 and then Is_Effectively_Volatile (E)
7237 and then (Async_Writers_Enabled (E)
7238 or else Effective_Reads_Enabled (E))
7239 and then not Is_OK_Volatile_Context (Par, N)
7240 then
7241 SPARK_Msg_N
7242 ("volatile object cannot appear in this context "
7243 & "(SPARK RM 7.1.3(12))", N);
7244 end if;
7246 -- Check for possible elaboration issues with respect to reads of
7247 -- variables. The act of renaming the variable is not considered a
7248 -- read as it simply establishes an alias.
7250 if Ekind (E) = E_Variable
7251 and then Dynamic_Elaboration_Checks
7252 and then Nkind (Par) /= N_Object_Renaming_Declaration
7253 then
7254 Check_Elab_Call (N);
7255 end if;
7257 -- The variable may eventually become a constituent of a single
7258 -- protected/task type. Record the reference now and verify its
7259 -- legality when analyzing the contract of the variable
7260 -- (SPARK RM 9.3).
7262 if Ekind (E) = E_Variable then
7263 Record_Possible_Part_Of_Reference (E, N);
7264 end if;
7265 end if;
7267 -- A Ghost entity must appear in a specific context
7269 if Is_Ghost_Entity (E) then
7270 Check_Ghost_Context (E, N);
7271 end if;
7272 end if;
7273 end Resolve_Entity_Name;
7275 -------------------
7276 -- Resolve_Entry --
7277 -------------------
7279 procedure Resolve_Entry (Entry_Name : Node_Id) is
7280 Loc : constant Source_Ptr := Sloc (Entry_Name);
7281 Nam : Entity_Id;
7282 New_N : Node_Id;
7283 S : Entity_Id;
7284 Tsk : Entity_Id;
7285 E_Name : Node_Id;
7286 Index : Node_Id;
7288 function Actual_Index_Type (E : Entity_Id) return Entity_Id;
7289 -- If the bounds of the entry family being called depend on task
7290 -- discriminants, build a new index subtype where a discriminant is
7291 -- replaced with the value of the discriminant of the target task.
7292 -- The target task is the prefix of the entry name in the call.
7294 -----------------------
7295 -- Actual_Index_Type --
7296 -----------------------
7298 function Actual_Index_Type (E : Entity_Id) return Entity_Id is
7299 Typ : constant Entity_Id := Entry_Index_Type (E);
7300 Tsk : constant Entity_Id := Scope (E);
7301 Lo : constant Node_Id := Type_Low_Bound (Typ);
7302 Hi : constant Node_Id := Type_High_Bound (Typ);
7303 New_T : Entity_Id;
7305 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id;
7306 -- If the bound is given by a discriminant, replace with a reference
7307 -- to the discriminant of the same name in the target task. If the
7308 -- entry name is the target of a requeue statement and the entry is
7309 -- in the current protected object, the bound to be used is the
7310 -- discriminal of the object (see Apply_Range_Checks for details of
7311 -- the transformation).
7313 -----------------------------
7314 -- Actual_Discriminant_Ref --
7315 -----------------------------
7317 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id is
7318 Typ : constant Entity_Id := Etype (Bound);
7319 Ref : Node_Id;
7321 begin
7322 Remove_Side_Effects (Bound);
7324 if not Is_Entity_Name (Bound)
7325 or else Ekind (Entity (Bound)) /= E_Discriminant
7326 then
7327 return Bound;
7329 elsif Is_Protected_Type (Tsk)
7330 and then In_Open_Scopes (Tsk)
7331 and then Nkind (Parent (Entry_Name)) = N_Requeue_Statement
7332 then
7333 -- Note: here Bound denotes a discriminant of the corresponding
7334 -- record type tskV, whose discriminal is a formal of the
7335 -- init-proc tskVIP. What we want is the body discriminal,
7336 -- which is associated to the discriminant of the original
7337 -- concurrent type tsk.
7339 return New_Occurrence_Of
7340 (Find_Body_Discriminal (Entity (Bound)), Loc);
7342 else
7343 Ref :=
7344 Make_Selected_Component (Loc,
7345 Prefix => New_Copy_Tree (Prefix (Prefix (Entry_Name))),
7346 Selector_Name => New_Occurrence_Of (Entity (Bound), Loc));
7347 Analyze (Ref);
7348 Resolve (Ref, Typ);
7349 return Ref;
7350 end if;
7351 end Actual_Discriminant_Ref;
7353 -- Start of processing for Actual_Index_Type
7355 begin
7356 if not Has_Discriminants (Tsk)
7357 or else (not Is_Entity_Name (Lo) and then not Is_Entity_Name (Hi))
7358 then
7359 return Entry_Index_Type (E);
7361 else
7362 New_T := Create_Itype (Ekind (Typ), Parent (Entry_Name));
7363 Set_Etype (New_T, Base_Type (Typ));
7364 Set_Size_Info (New_T, Typ);
7365 Set_RM_Size (New_T, RM_Size (Typ));
7366 Set_Scalar_Range (New_T,
7367 Make_Range (Sloc (Entry_Name),
7368 Low_Bound => Actual_Discriminant_Ref (Lo),
7369 High_Bound => Actual_Discriminant_Ref (Hi)));
7371 return New_T;
7372 end if;
7373 end Actual_Index_Type;
7375 -- Start of processing for Resolve_Entry
7377 begin
7378 -- Find name of entry being called, and resolve prefix of name with its
7379 -- own type. The prefix can be overloaded, and the name and signature of
7380 -- the entry must be taken into account.
7382 if Nkind (Entry_Name) = N_Indexed_Component then
7384 -- Case of dealing with entry family within the current tasks
7386 E_Name := Prefix (Entry_Name);
7388 else
7389 E_Name := Entry_Name;
7390 end if;
7392 if Is_Entity_Name (E_Name) then
7394 -- Entry call to an entry (or entry family) in the current task. This
7395 -- is legal even though the task will deadlock. Rewrite as call to
7396 -- current task.
7398 -- This can also be a call to an entry in an enclosing task. If this
7399 -- is a single task, we have to retrieve its name, because the scope
7400 -- of the entry is the task type, not the object. If the enclosing
7401 -- task is a task type, the identity of the task is given by its own
7402 -- self variable.
7404 -- Finally this can be a requeue on an entry of the same task or
7405 -- protected object.
7407 S := Scope (Entity (E_Name));
7409 for J in reverse 0 .. Scope_Stack.Last loop
7410 if Is_Task_Type (Scope_Stack.Table (J).Entity)
7411 and then not Comes_From_Source (S)
7412 then
7413 -- S is an enclosing task or protected object. The concurrent
7414 -- declaration has been converted into a type declaration, and
7415 -- the object itself has an object declaration that follows
7416 -- the type in the same declarative part.
7418 Tsk := Next_Entity (S);
7419 while Etype (Tsk) /= S loop
7420 Next_Entity (Tsk);
7421 end loop;
7423 S := Tsk;
7424 exit;
7426 elsif S = Scope_Stack.Table (J).Entity then
7428 -- Call to current task. Will be transformed into call to Self
7430 exit;
7432 end if;
7433 end loop;
7435 New_N :=
7436 Make_Selected_Component (Loc,
7437 Prefix => New_Occurrence_Of (S, Loc),
7438 Selector_Name =>
7439 New_Occurrence_Of (Entity (E_Name), Loc));
7440 Rewrite (E_Name, New_N);
7441 Analyze (E_Name);
7443 elsif Nkind (Entry_Name) = N_Selected_Component
7444 and then Is_Overloaded (Prefix (Entry_Name))
7445 then
7446 -- Use the entry name (which must be unique at this point) to find
7447 -- the prefix that returns the corresponding task/protected type.
7449 declare
7450 Pref : constant Node_Id := Prefix (Entry_Name);
7451 Ent : constant Entity_Id := Entity (Selector_Name (Entry_Name));
7452 I : Interp_Index;
7453 It : Interp;
7455 begin
7456 Get_First_Interp (Pref, I, It);
7457 while Present (It.Typ) loop
7458 if Scope (Ent) = It.Typ then
7459 Set_Etype (Pref, It.Typ);
7460 exit;
7461 end if;
7463 Get_Next_Interp (I, It);
7464 end loop;
7465 end;
7466 end if;
7468 if Nkind (Entry_Name) = N_Selected_Component then
7469 Resolve (Prefix (Entry_Name));
7471 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7472 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
7473 Resolve (Prefix (Prefix (Entry_Name)));
7474 Index := First (Expressions (Entry_Name));
7475 Resolve (Index, Entry_Index_Type (Nam));
7477 -- Up to this point the expression could have been the actual in a
7478 -- simple entry call, and be given by a named association.
7480 if Nkind (Index) = N_Parameter_Association then
7481 Error_Msg_N ("expect expression for entry index", Index);
7482 else
7483 Apply_Range_Check (Index, Actual_Index_Type (Nam));
7484 end if;
7485 end if;
7486 end Resolve_Entry;
7488 ------------------------
7489 -- Resolve_Entry_Call --
7490 ------------------------
7492 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id) is
7493 Entry_Name : constant Node_Id := Name (N);
7494 Loc : constant Source_Ptr := Sloc (Entry_Name);
7495 Actuals : List_Id;
7496 First_Named : Node_Id;
7497 Nam : Entity_Id;
7498 Norm_OK : Boolean;
7499 Obj : Node_Id;
7500 Was_Over : Boolean;
7502 begin
7503 -- We kill all checks here, because it does not seem worth the effort to
7504 -- do anything better, an entry call is a big operation.
7506 Kill_All_Checks;
7508 -- Processing of the name is similar for entry calls and protected
7509 -- operation calls. Once the entity is determined, we can complete
7510 -- the resolution of the actuals.
7512 -- The selector may be overloaded, in the case of a protected object
7513 -- with overloaded functions. The type of the context is used for
7514 -- resolution.
7516 if Nkind (Entry_Name) = N_Selected_Component
7517 and then Is_Overloaded (Selector_Name (Entry_Name))
7518 and then Typ /= Standard_Void_Type
7519 then
7520 declare
7521 I : Interp_Index;
7522 It : Interp;
7524 begin
7525 Get_First_Interp (Selector_Name (Entry_Name), I, It);
7526 while Present (It.Typ) loop
7527 if Covers (Typ, It.Typ) then
7528 Set_Entity (Selector_Name (Entry_Name), It.Nam);
7529 Set_Etype (Entry_Name, It.Typ);
7531 Generate_Reference (It.Typ, N, ' ');
7532 end if;
7534 Get_Next_Interp (I, It);
7535 end loop;
7536 end;
7537 end if;
7539 Resolve_Entry (Entry_Name);
7541 if Nkind (Entry_Name) = N_Selected_Component then
7543 -- Simple entry or protected operation call
7545 Nam := Entity (Selector_Name (Entry_Name));
7546 Obj := Prefix (Entry_Name);
7548 if Is_Subprogram (Nam) then
7549 Check_For_Eliminated_Subprogram (Entry_Name, Nam);
7550 end if;
7552 Was_Over := Is_Overloaded (Selector_Name (Entry_Name));
7554 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7556 -- Call to member of entry family
7558 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
7559 Obj := Prefix (Prefix (Entry_Name));
7560 Was_Over := Is_Overloaded (Selector_Name (Prefix (Entry_Name)));
7561 end if;
7563 -- We cannot in general check the maximum depth of protected entry calls
7564 -- at compile time. But we can tell that any protected entry call at all
7565 -- violates a specified nesting depth of zero.
7567 if Is_Protected_Type (Scope (Nam)) then
7568 Check_Restriction (Max_Entry_Queue_Length, N);
7569 end if;
7571 -- Use context type to disambiguate a protected function that can be
7572 -- called without actuals and that returns an array type, and where the
7573 -- argument list may be an indexing of the returned value.
7575 if Ekind (Nam) = E_Function
7576 and then Needs_No_Actuals (Nam)
7577 and then Present (Parameter_Associations (N))
7578 and then
7579 ((Is_Array_Type (Etype (Nam))
7580 and then Covers (Typ, Component_Type (Etype (Nam))))
7582 or else (Is_Access_Type (Etype (Nam))
7583 and then Is_Array_Type (Designated_Type (Etype (Nam)))
7584 and then
7585 Covers
7586 (Typ,
7587 Component_Type (Designated_Type (Etype (Nam))))))
7588 then
7589 declare
7590 Index_Node : Node_Id;
7592 begin
7593 Index_Node :=
7594 Make_Indexed_Component (Loc,
7595 Prefix =>
7596 Make_Function_Call (Loc, Name => Relocate_Node (Entry_Name)),
7597 Expressions => Parameter_Associations (N));
7599 -- Since we are correcting a node classification error made by the
7600 -- parser, we call Replace rather than Rewrite.
7602 Replace (N, Index_Node);
7603 Set_Etype (Prefix (N), Etype (Nam));
7604 Set_Etype (N, Typ);
7605 Resolve_Indexed_Component (N, Typ);
7606 return;
7607 end;
7608 end if;
7610 if Ekind_In (Nam, E_Entry, E_Entry_Family)
7611 and then Present (Contract_Wrapper (Nam))
7612 and then Current_Scope /= Contract_Wrapper (Nam)
7613 then
7615 -- Note the entity being called before rewriting the call, so that
7616 -- it appears used at this point.
7618 Generate_Reference (Nam, Entry_Name, 'r');
7620 -- Rewrite as call to the precondition wrapper, adding the task
7621 -- object to the list of actuals. If the call is to a member of an
7622 -- entry family, include the index as well.
7624 declare
7625 New_Call : Node_Id;
7626 New_Actuals : List_Id;
7628 begin
7629 New_Actuals := New_List (Obj);
7631 if Nkind (Entry_Name) = N_Indexed_Component then
7632 Append_To (New_Actuals,
7633 New_Copy_Tree (First (Expressions (Entry_Name))));
7634 end if;
7636 Append_List (Parameter_Associations (N), New_Actuals);
7637 New_Call :=
7638 Make_Procedure_Call_Statement (Loc,
7639 Name =>
7640 New_Occurrence_Of (Contract_Wrapper (Nam), Loc),
7641 Parameter_Associations => New_Actuals);
7642 Rewrite (N, New_Call);
7644 -- Preanalyze and resolve new call. Current procedure is called
7645 -- from Resolve_Call, after which expansion will take place.
7647 Preanalyze_And_Resolve (N);
7648 return;
7649 end;
7650 end if;
7652 -- The operation name may have been overloaded. Order the actuals
7653 -- according to the formals of the resolved entity, and set the return
7654 -- type to that of the operation.
7656 if Was_Over then
7657 Normalize_Actuals (N, Nam, False, Norm_OK);
7658 pragma Assert (Norm_OK);
7659 Set_Etype (N, Etype (Nam));
7661 -- Reset the Is_Overloaded flag, since resolution is now completed
7663 -- Simple entry call
7665 if Nkind (Entry_Name) = N_Selected_Component then
7666 Set_Is_Overloaded (Selector_Name (Entry_Name), False);
7668 -- Call to a member of an entry family
7670 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7671 Set_Is_Overloaded (Selector_Name (Prefix (Entry_Name)), False);
7672 end if;
7673 end if;
7675 Resolve_Actuals (N, Nam);
7676 Check_Internal_Protected_Use (N, Nam);
7678 -- Create a call reference to the entry
7680 Generate_Reference (Nam, Entry_Name, 's');
7682 if Ekind_In (Nam, E_Entry, E_Entry_Family) then
7683 Check_Potentially_Blocking_Operation (N);
7684 end if;
7686 -- Verify that a procedure call cannot masquerade as an entry
7687 -- call where an entry call is expected.
7689 if Ekind (Nam) = E_Procedure then
7690 if Nkind (Parent (N)) = N_Entry_Call_Alternative
7691 and then N = Entry_Call_Statement (Parent (N))
7692 then
7693 Error_Msg_N ("entry call required in select statement", N);
7695 elsif Nkind (Parent (N)) = N_Triggering_Alternative
7696 and then N = Triggering_Statement (Parent (N))
7697 then
7698 Error_Msg_N ("triggering statement cannot be procedure call", N);
7700 elsif Ekind (Scope (Nam)) = E_Task_Type
7701 and then not In_Open_Scopes (Scope (Nam))
7702 then
7703 Error_Msg_N ("task has no entry with this name", Entry_Name);
7704 end if;
7705 end if;
7707 -- After resolution, entry calls and protected procedure calls are
7708 -- changed into entry calls, for expansion. The structure of the node
7709 -- does not change, so it can safely be done in place. Protected
7710 -- function calls must keep their structure because they are
7711 -- subexpressions.
7713 if Ekind (Nam) /= E_Function then
7715 -- A protected operation that is not a function may modify the
7716 -- corresponding object, and cannot apply to a constant. If this
7717 -- is an internal call, the prefix is the type itself.
7719 if Is_Protected_Type (Scope (Nam))
7720 and then not Is_Variable (Obj)
7721 and then (not Is_Entity_Name (Obj)
7722 or else not Is_Type (Entity (Obj)))
7723 then
7724 Error_Msg_N
7725 ("prefix of protected procedure or entry call must be variable",
7726 Entry_Name);
7727 end if;
7729 Actuals := Parameter_Associations (N);
7730 First_Named := First_Named_Actual (N);
7732 Rewrite (N,
7733 Make_Entry_Call_Statement (Loc,
7734 Name => Entry_Name,
7735 Parameter_Associations => Actuals));
7737 Set_First_Named_Actual (N, First_Named);
7738 Set_Analyzed (N, True);
7740 -- Protected functions can return on the secondary stack, in which
7741 -- case we must trigger the transient scope mechanism.
7743 elsif Expander_Active
7744 and then Requires_Transient_Scope (Etype (Nam))
7745 then
7746 Establish_Transient_Scope (N, Sec_Stack => True);
7747 end if;
7748 end Resolve_Entry_Call;
7750 -------------------------
7751 -- Resolve_Equality_Op --
7752 -------------------------
7754 -- Both arguments must have the same type, and the boolean context does
7755 -- not participate in the resolution. The first pass verifies that the
7756 -- interpretation is not ambiguous, and the type of the left argument is
7757 -- correctly set, or is Any_Type in case of ambiguity. If both arguments
7758 -- are strings or aggregates, allocators, or Null, they are ambiguous even
7759 -- though they carry a single (universal) type. Diagnose this case here.
7761 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id) is
7762 L : constant Node_Id := Left_Opnd (N);
7763 R : constant Node_Id := Right_Opnd (N);
7764 T : Entity_Id := Find_Unique_Type (L, R);
7766 procedure Check_If_Expression (Cond : Node_Id);
7767 -- The resolution rule for if expressions requires that each such must
7768 -- have a unique type. This means that if several dependent expressions
7769 -- are of a non-null anonymous access type, and the context does not
7770 -- impose an expected type (as can be the case in an equality operation)
7771 -- the expression must be rejected.
7773 procedure Explain_Redundancy (N : Node_Id);
7774 -- Attempt to explain the nature of a redundant comparison with True. If
7775 -- the expression N is too complex, this routine issues a general error
7776 -- message.
7778 function Find_Unique_Access_Type return Entity_Id;
7779 -- In the case of allocators and access attributes, the context must
7780 -- provide an indication of the specific access type to be used. If
7781 -- one operand is of such a "generic" access type, check whether there
7782 -- is a specific visible access type that has the same designated type.
7783 -- This is semantically dubious, and of no interest to any real code,
7784 -- but c48008a makes it all worthwhile.
7786 -------------------------
7787 -- Check_If_Expression --
7788 -------------------------
7790 procedure Check_If_Expression (Cond : Node_Id) is
7791 Then_Expr : Node_Id;
7792 Else_Expr : Node_Id;
7794 begin
7795 if Nkind (Cond) = N_If_Expression then
7796 Then_Expr := Next (First (Expressions (Cond)));
7797 Else_Expr := Next (Then_Expr);
7799 if Nkind (Then_Expr) /= N_Null
7800 and then Nkind (Else_Expr) /= N_Null
7801 then
7802 Error_Msg_N ("cannot determine type of if expression", Cond);
7803 end if;
7804 end if;
7805 end Check_If_Expression;
7807 ------------------------
7808 -- Explain_Redundancy --
7809 ------------------------
7811 procedure Explain_Redundancy (N : Node_Id) is
7812 Error : Name_Id;
7813 Val : Node_Id;
7814 Val_Id : Entity_Id;
7816 begin
7817 Val := N;
7819 -- Strip the operand down to an entity
7821 loop
7822 if Nkind (Val) = N_Selected_Component then
7823 Val := Selector_Name (Val);
7824 else
7825 exit;
7826 end if;
7827 end loop;
7829 -- The construct denotes an entity
7831 if Is_Entity_Name (Val) and then Present (Entity (Val)) then
7832 Val_Id := Entity (Val);
7834 -- Do not generate an error message when the comparison is done
7835 -- against the enumeration literal Standard.True.
7837 if Ekind (Val_Id) /= E_Enumeration_Literal then
7839 -- Build a customized error message
7841 Name_Len := 0;
7842 Add_Str_To_Name_Buffer ("?r?");
7844 if Ekind (Val_Id) = E_Component then
7845 Add_Str_To_Name_Buffer ("component ");
7847 elsif Ekind (Val_Id) = E_Constant then
7848 Add_Str_To_Name_Buffer ("constant ");
7850 elsif Ekind (Val_Id) = E_Discriminant then
7851 Add_Str_To_Name_Buffer ("discriminant ");
7853 elsif Is_Formal (Val_Id) then
7854 Add_Str_To_Name_Buffer ("parameter ");
7856 elsif Ekind (Val_Id) = E_Variable then
7857 Add_Str_To_Name_Buffer ("variable ");
7858 end if;
7860 Add_Str_To_Name_Buffer ("& is always True!");
7861 Error := Name_Find;
7863 Error_Msg_NE (Get_Name_String (Error), Val, Val_Id);
7864 end if;
7866 -- The construct is too complex to disect, issue a general message
7868 else
7869 Error_Msg_N ("?r?expression is always True!", Val);
7870 end if;
7871 end Explain_Redundancy;
7873 -----------------------------
7874 -- Find_Unique_Access_Type --
7875 -----------------------------
7877 function Find_Unique_Access_Type return Entity_Id is
7878 Acc : Entity_Id;
7879 E : Entity_Id;
7880 S : Entity_Id;
7882 begin
7883 if Ekind_In (Etype (R), E_Allocator_Type,
7884 E_Access_Attribute_Type)
7885 then
7886 Acc := Designated_Type (Etype (R));
7888 elsif Ekind_In (Etype (L), E_Allocator_Type,
7889 E_Access_Attribute_Type)
7890 then
7891 Acc := Designated_Type (Etype (L));
7892 else
7893 return Empty;
7894 end if;
7896 S := Current_Scope;
7897 while S /= Standard_Standard loop
7898 E := First_Entity (S);
7899 while Present (E) loop
7900 if Is_Type (E)
7901 and then Is_Access_Type (E)
7902 and then Ekind (E) /= E_Allocator_Type
7903 and then Designated_Type (E) = Base_Type (Acc)
7904 then
7905 return E;
7906 end if;
7908 Next_Entity (E);
7909 end loop;
7911 S := Scope (S);
7912 end loop;
7914 return Empty;
7915 end Find_Unique_Access_Type;
7917 -- Start of processing for Resolve_Equality_Op
7919 begin
7920 Set_Etype (N, Base_Type (Typ));
7921 Generate_Reference (T, N, ' ');
7923 if T = Any_Fixed then
7924 T := Unique_Fixed_Point_Type (L);
7925 end if;
7927 if T /= Any_Type then
7928 if T = Any_String or else
7929 T = Any_Composite or else
7930 T = Any_Character
7931 then
7932 if T = Any_Character then
7933 Ambiguous_Character (L);
7934 else
7935 Error_Msg_N ("ambiguous operands for equality", N);
7936 end if;
7938 Set_Etype (N, Any_Type);
7939 return;
7941 elsif T = Any_Access
7942 or else Ekind_In (T, E_Allocator_Type, E_Access_Attribute_Type)
7943 then
7944 T := Find_Unique_Access_Type;
7946 if No (T) then
7947 Error_Msg_N ("ambiguous operands for equality", N);
7948 Set_Etype (N, Any_Type);
7949 return;
7950 end if;
7952 -- If expressions must have a single type, and if the context does
7953 -- not impose one the dependent expressions cannot be anonymous
7954 -- access types.
7956 -- Why no similar processing for case expressions???
7958 elsif Ada_Version >= Ada_2012
7959 and then Ekind_In (Etype (L), E_Anonymous_Access_Type,
7960 E_Anonymous_Access_Subprogram_Type)
7961 and then Ekind_In (Etype (R), E_Anonymous_Access_Type,
7962 E_Anonymous_Access_Subprogram_Type)
7963 then
7964 Check_If_Expression (L);
7965 Check_If_Expression (R);
7966 end if;
7968 Resolve (L, T);
7969 Resolve (R, T);
7971 -- In SPARK, equality operators = and /= for array types other than
7972 -- String are only defined when, for each index position, the
7973 -- operands have equal static bounds.
7975 if Is_Array_Type (T) then
7977 -- Protect call to Matching_Static_Array_Bounds to avoid costly
7978 -- operation if not needed.
7980 if Restriction_Check_Required (SPARK_05)
7981 and then Base_Type (T) /= Standard_String
7982 and then Base_Type (Etype (L)) = Base_Type (Etype (R))
7983 and then Etype (L) /= Any_Composite -- or else L in error
7984 and then Etype (R) /= Any_Composite -- or else R in error
7985 and then not Matching_Static_Array_Bounds (Etype (L), Etype (R))
7986 then
7987 Check_SPARK_05_Restriction
7988 ("array types should have matching static bounds", N);
7989 end if;
7990 end if;
7992 -- If the unique type is a class-wide type then it will be expanded
7993 -- into a dispatching call to the predefined primitive. Therefore we
7994 -- check here for potential violation of such restriction.
7996 if Is_Class_Wide_Type (T) then
7997 Check_Restriction (No_Dispatching_Calls, N);
7998 end if;
8000 -- Only warn for redundant equality comparison to True for objects
8001 -- (e.g. "X = True") and operations (e.g. "(X < Y) = True"). For
8002 -- other expressions, it may be a matter of preference to write
8003 -- "Expr = True" or "Expr".
8005 if Warn_On_Redundant_Constructs
8006 and then Comes_From_Source (N)
8007 and then Comes_From_Source (R)
8008 and then Is_Entity_Name (R)
8009 and then Entity (R) = Standard_True
8010 and then
8011 ((Is_Entity_Name (L) and then Is_Object (Entity (L)))
8012 or else
8013 Nkind (L) in N_Op)
8014 then
8015 Error_Msg_N -- CODEFIX
8016 ("?r?comparison with True is redundant!", N);
8017 Explain_Redundancy (Original_Node (R));
8018 end if;
8020 Check_Unset_Reference (L);
8021 Check_Unset_Reference (R);
8022 Generate_Operator_Reference (N, T);
8023 Check_Low_Bound_Tested (N);
8025 -- If this is an inequality, it may be the implicit inequality
8026 -- created for a user-defined operation, in which case the corres-
8027 -- ponding equality operation is not intrinsic, and the operation
8028 -- cannot be constant-folded. Else fold.
8030 if Nkind (N) = N_Op_Eq
8031 or else Comes_From_Source (Entity (N))
8032 or else Ekind (Entity (N)) = E_Operator
8033 or else Is_Intrinsic_Subprogram
8034 (Corresponding_Equality (Entity (N)))
8035 then
8036 Analyze_Dimension (N);
8037 Eval_Relational_Op (N);
8039 elsif Nkind (N) = N_Op_Ne
8040 and then Is_Abstract_Subprogram (Entity (N))
8041 then
8042 Error_Msg_NE ("cannot call abstract subprogram &!", N, Entity (N));
8043 end if;
8045 -- Ada 2005: If one operand is an anonymous access type, convert the
8046 -- other operand to it, to ensure that the underlying types match in
8047 -- the back-end. Same for access_to_subprogram, and the conversion
8048 -- verifies that the types are subtype conformant.
8050 -- We apply the same conversion in the case one of the operands is a
8051 -- private subtype of the type of the other.
8053 -- Why the Expander_Active test here ???
8055 if Expander_Active
8056 and then
8057 (Ekind_In (T, E_Anonymous_Access_Type,
8058 E_Anonymous_Access_Subprogram_Type)
8059 or else Is_Private_Type (T))
8060 then
8061 if Etype (L) /= T then
8062 Rewrite (L,
8063 Make_Unchecked_Type_Conversion (Sloc (L),
8064 Subtype_Mark => New_Occurrence_Of (T, Sloc (L)),
8065 Expression => Relocate_Node (L)));
8066 Analyze_And_Resolve (L, T);
8067 end if;
8069 if (Etype (R)) /= T then
8070 Rewrite (R,
8071 Make_Unchecked_Type_Conversion (Sloc (R),
8072 Subtype_Mark => New_Occurrence_Of (Etype (L), Sloc (R)),
8073 Expression => Relocate_Node (R)));
8074 Analyze_And_Resolve (R, T);
8075 end if;
8076 end if;
8077 end if;
8078 end Resolve_Equality_Op;
8080 ----------------------------------
8081 -- Resolve_Explicit_Dereference --
8082 ----------------------------------
8084 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id) is
8085 Loc : constant Source_Ptr := Sloc (N);
8086 New_N : Node_Id;
8087 P : constant Node_Id := Prefix (N);
8089 P_Typ : Entity_Id;
8090 -- The candidate prefix type, if overloaded
8092 I : Interp_Index;
8093 It : Interp;
8095 begin
8096 Check_Fully_Declared_Prefix (Typ, P);
8097 P_Typ := Empty;
8099 -- A useful optimization: check whether the dereference denotes an
8100 -- element of a container, and if so rewrite it as a call to the
8101 -- corresponding Element function.
8103 -- Disabled for now, on advice of ARG. A more restricted form of the
8104 -- predicate might be acceptable ???
8106 -- if Is_Container_Element (N) then
8107 -- return;
8108 -- end if;
8110 if Is_Overloaded (P) then
8112 -- Use the context type to select the prefix that has the correct
8113 -- designated type. Keep the first match, which will be the inner-
8114 -- most.
8116 Get_First_Interp (P, I, It);
8118 while Present (It.Typ) loop
8119 if Is_Access_Type (It.Typ)
8120 and then Covers (Typ, Designated_Type (It.Typ))
8121 then
8122 if No (P_Typ) then
8123 P_Typ := It.Typ;
8124 end if;
8126 -- Remove access types that do not match, but preserve access
8127 -- to subprogram interpretations, in case a further dereference
8128 -- is needed (see below).
8130 elsif Ekind (It.Typ) /= E_Access_Subprogram_Type then
8131 Remove_Interp (I);
8132 end if;
8134 Get_Next_Interp (I, It);
8135 end loop;
8137 if Present (P_Typ) then
8138 Resolve (P, P_Typ);
8139 Set_Etype (N, Designated_Type (P_Typ));
8141 else
8142 -- If no interpretation covers the designated type of the prefix,
8143 -- this is the pathological case where not all implementations of
8144 -- the prefix allow the interpretation of the node as a call. Now
8145 -- that the expected type is known, Remove other interpretations
8146 -- from prefix, rewrite it as a call, and resolve again, so that
8147 -- the proper call node is generated.
8149 Get_First_Interp (P, I, It);
8150 while Present (It.Typ) loop
8151 if Ekind (It.Typ) /= E_Access_Subprogram_Type then
8152 Remove_Interp (I);
8153 end if;
8155 Get_Next_Interp (I, It);
8156 end loop;
8158 New_N :=
8159 Make_Function_Call (Loc,
8160 Name =>
8161 Make_Explicit_Dereference (Loc,
8162 Prefix => P),
8163 Parameter_Associations => New_List);
8165 Save_Interps (N, New_N);
8166 Rewrite (N, New_N);
8167 Analyze_And_Resolve (N, Typ);
8168 return;
8169 end if;
8171 -- If not overloaded, resolve P with its own type
8173 else
8174 Resolve (P);
8175 end if;
8177 -- If the prefix might be null, add an access check
8179 if Is_Access_Type (Etype (P))
8180 and then not Can_Never_Be_Null (Etype (P))
8181 then
8182 Apply_Access_Check (N);
8183 end if;
8185 -- If the designated type is a packed unconstrained array type, and the
8186 -- explicit dereference is not in the context of an attribute reference,
8187 -- then we must compute and set the actual subtype, since it is needed
8188 -- by Gigi. The reason we exclude the attribute case is that this is
8189 -- handled fine by Gigi, and in fact we use such attributes to build the
8190 -- actual subtype. We also exclude generated code (which builds actual
8191 -- subtypes directly if they are needed).
8193 if Is_Array_Type (Etype (N))
8194 and then Is_Packed (Etype (N))
8195 and then not Is_Constrained (Etype (N))
8196 and then Nkind (Parent (N)) /= N_Attribute_Reference
8197 and then Comes_From_Source (N)
8198 then
8199 Set_Etype (N, Get_Actual_Subtype (N));
8200 end if;
8202 Analyze_Dimension (N);
8204 -- Note: No Eval processing is required for an explicit dereference,
8205 -- because such a name can never be static.
8207 end Resolve_Explicit_Dereference;
8209 -------------------------------------
8210 -- Resolve_Expression_With_Actions --
8211 -------------------------------------
8213 procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id) is
8214 begin
8215 Set_Etype (N, Typ);
8217 -- If N has no actions, and its expression has been constant folded,
8218 -- then rewrite N as just its expression. Note, we can't do this in
8219 -- the general case of Is_Empty_List (Actions (N)) as this would cause
8220 -- Expression (N) to be expanded again.
8222 if Is_Empty_List (Actions (N))
8223 and then Compile_Time_Known_Value (Expression (N))
8224 then
8225 Rewrite (N, Expression (N));
8226 end if;
8227 end Resolve_Expression_With_Actions;
8229 ----------------------------------
8230 -- Resolve_Generalized_Indexing --
8231 ----------------------------------
8233 procedure Resolve_Generalized_Indexing (N : Node_Id; Typ : Entity_Id) is
8234 Indexing : constant Node_Id := Generalized_Indexing (N);
8235 Call : Node_Id;
8236 Indexes : List_Id;
8237 Pref : Node_Id;
8239 begin
8240 -- In ASIS mode, propagate the information about the indexes back to
8241 -- to the original indexing node. The generalized indexing is either
8242 -- a function call, or a dereference of one. The actuals include the
8243 -- prefix of the original node, which is the container expression.
8245 if ASIS_Mode then
8246 Resolve (Indexing, Typ);
8247 Set_Etype (N, Etype (Indexing));
8248 Set_Is_Overloaded (N, False);
8250 Call := Indexing;
8251 while Nkind_In (Call, N_Explicit_Dereference, N_Selected_Component)
8252 loop
8253 Call := Prefix (Call);
8254 end loop;
8256 if Nkind (Call) = N_Function_Call then
8257 Indexes := New_Copy_List (Parameter_Associations (Call));
8258 Pref := Remove_Head (Indexes);
8259 Set_Expressions (N, Indexes);
8261 -- If expression is to be reanalyzed, reset Generalized_Indexing
8262 -- to recreate call node, as is the case when the expression is
8263 -- part of an expression function.
8265 if In_Spec_Expression then
8266 Set_Generalized_Indexing (N, Empty);
8267 end if;
8269 Set_Prefix (N, Pref);
8270 end if;
8272 else
8273 Rewrite (N, Indexing);
8274 Resolve (N, Typ);
8275 end if;
8276 end Resolve_Generalized_Indexing;
8278 ---------------------------
8279 -- Resolve_If_Expression --
8280 ---------------------------
8282 procedure Resolve_If_Expression (N : Node_Id; Typ : Entity_Id) is
8283 Condition : constant Node_Id := First (Expressions (N));
8284 Then_Expr : Node_Id;
8285 Else_Expr : Node_Id;
8286 Else_Typ : Entity_Id;
8287 Then_Typ : Entity_Id;
8289 begin
8290 -- Defend against malformed expressions
8292 if No (Condition) then
8293 return;
8294 end if;
8296 Then_Expr := Next (Condition);
8298 if No (Then_Expr) then
8299 return;
8300 end if;
8302 Else_Expr := Next (Then_Expr);
8304 Resolve (Condition, Any_Boolean);
8305 Resolve (Then_Expr, Typ);
8306 Then_Typ := Etype (Then_Expr);
8308 -- When the "then" expression is of a scalar subtype different from the
8309 -- result subtype, then insert a conversion to ensure the generation of
8310 -- a constraint check. The same is done for the else part below, again
8311 -- comparing subtypes rather than base types.
8313 if Is_Scalar_Type (Then_Typ) and then Then_Typ /= Typ then
8314 Rewrite (Then_Expr, Convert_To (Typ, Then_Expr));
8315 Analyze_And_Resolve (Then_Expr, Typ);
8316 end if;
8318 -- If ELSE expression present, just resolve using the determined type
8319 -- If type is universal, resolve to any member of the class.
8321 if Present (Else_Expr) then
8322 if Typ = Universal_Integer then
8323 Resolve (Else_Expr, Any_Integer);
8325 elsif Typ = Universal_Real then
8326 Resolve (Else_Expr, Any_Real);
8328 else
8329 Resolve (Else_Expr, Typ);
8330 end if;
8332 Else_Typ := Etype (Else_Expr);
8334 if Is_Scalar_Type (Else_Typ) and then Else_Typ /= Typ then
8335 Rewrite (Else_Expr, Convert_To (Typ, Else_Expr));
8336 Analyze_And_Resolve (Else_Expr, Typ);
8338 -- Apply RM 4.5.7 (17/3): whether the expression is statically or
8339 -- dynamically tagged must be known statically.
8341 elsif Is_Tagged_Type (Typ) and then not Is_Class_Wide_Type (Typ) then
8342 if Is_Dynamically_Tagged (Then_Expr) /=
8343 Is_Dynamically_Tagged (Else_Expr)
8344 then
8345 Error_Msg_N ("all or none of the dependent expressions "
8346 & "can be dynamically tagged", N);
8347 end if;
8348 end if;
8350 -- If no ELSE expression is present, root type must be Standard.Boolean
8351 -- and we provide a Standard.True result converted to the appropriate
8352 -- Boolean type (in case it is a derived boolean type).
8354 elsif Root_Type (Typ) = Standard_Boolean then
8355 Else_Expr :=
8356 Convert_To (Typ, New_Occurrence_Of (Standard_True, Sloc (N)));
8357 Analyze_And_Resolve (Else_Expr, Typ);
8358 Append_To (Expressions (N), Else_Expr);
8360 else
8361 Error_Msg_N ("can only omit ELSE expression in Boolean case", N);
8362 Append_To (Expressions (N), Error);
8363 end if;
8365 Set_Etype (N, Typ);
8367 if not Error_Posted (N) then
8368 Eval_If_Expression (N);
8369 end if;
8371 Analyze_Dimension (N);
8372 end Resolve_If_Expression;
8374 -------------------------------
8375 -- Resolve_Indexed_Component --
8376 -------------------------------
8378 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id) is
8379 Name : constant Node_Id := Prefix (N);
8380 Expr : Node_Id;
8381 Array_Type : Entity_Id := Empty; -- to prevent junk warning
8382 Index : Node_Id;
8384 begin
8385 if Present (Generalized_Indexing (N)) then
8386 Resolve_Generalized_Indexing (N, Typ);
8387 return;
8388 end if;
8390 if Is_Overloaded (Name) then
8392 -- Use the context type to select the prefix that yields the correct
8393 -- component type.
8395 declare
8396 I : Interp_Index;
8397 It : Interp;
8398 I1 : Interp_Index := 0;
8399 P : constant Node_Id := Prefix (N);
8400 Found : Boolean := False;
8402 begin
8403 Get_First_Interp (P, I, It);
8404 while Present (It.Typ) loop
8405 if (Is_Array_Type (It.Typ)
8406 and then Covers (Typ, Component_Type (It.Typ)))
8407 or else (Is_Access_Type (It.Typ)
8408 and then Is_Array_Type (Designated_Type (It.Typ))
8409 and then
8410 Covers
8411 (Typ,
8412 Component_Type (Designated_Type (It.Typ))))
8413 then
8414 if Found then
8415 It := Disambiguate (P, I1, I, Any_Type);
8417 if It = No_Interp then
8418 Error_Msg_N ("ambiguous prefix for indexing", N);
8419 Set_Etype (N, Typ);
8420 return;
8422 else
8423 Found := True;
8424 Array_Type := It.Typ;
8425 I1 := I;
8426 end if;
8428 else
8429 Found := True;
8430 Array_Type := It.Typ;
8431 I1 := I;
8432 end if;
8433 end if;
8435 Get_Next_Interp (I, It);
8436 end loop;
8437 end;
8439 else
8440 Array_Type := Etype (Name);
8441 end if;
8443 Resolve (Name, Array_Type);
8444 Array_Type := Get_Actual_Subtype_If_Available (Name);
8446 -- If prefix is access type, dereference to get real array type.
8447 -- Note: we do not apply an access check because the expander always
8448 -- introduces an explicit dereference, and the check will happen there.
8450 if Is_Access_Type (Array_Type) then
8451 Array_Type := Designated_Type (Array_Type);
8452 end if;
8454 -- If name was overloaded, set component type correctly now
8455 -- If a misplaced call to an entry family (which has no index types)
8456 -- return. Error will be diagnosed from calling context.
8458 if Is_Array_Type (Array_Type) then
8459 Set_Etype (N, Component_Type (Array_Type));
8460 else
8461 return;
8462 end if;
8464 Index := First_Index (Array_Type);
8465 Expr := First (Expressions (N));
8467 -- The prefix may have resolved to a string literal, in which case its
8468 -- etype has a special representation. This is only possible currently
8469 -- if the prefix is a static concatenation, written in functional
8470 -- notation.
8472 if Ekind (Array_Type) = E_String_Literal_Subtype then
8473 Resolve (Expr, Standard_Positive);
8475 else
8476 while Present (Index) and Present (Expr) loop
8477 Resolve (Expr, Etype (Index));
8478 Check_Unset_Reference (Expr);
8480 if Is_Scalar_Type (Etype (Expr)) then
8481 Apply_Scalar_Range_Check (Expr, Etype (Index));
8482 else
8483 Apply_Range_Check (Expr, Get_Actual_Subtype (Index));
8484 end if;
8486 Next_Index (Index);
8487 Next (Expr);
8488 end loop;
8489 end if;
8491 Analyze_Dimension (N);
8493 -- Do not generate the warning on suspicious index if we are analyzing
8494 -- package Ada.Tags; otherwise we will report the warning with the
8495 -- Prims_Ptr field of the dispatch table.
8497 if Scope (Etype (Prefix (N))) = Standard_Standard
8498 or else not
8499 Is_RTU (Cunit_Entity (Get_Source_Unit (Etype (Prefix (N)))),
8500 Ada_Tags)
8501 then
8502 Warn_On_Suspicious_Index (Name, First (Expressions (N)));
8503 Eval_Indexed_Component (N);
8504 end if;
8506 -- If the array type is atomic, and the component is not atomic, then
8507 -- this is worth a warning, since we have a situation where the access
8508 -- to the component may cause extra read/writes of the atomic array
8509 -- object, or partial word accesses, which could be unexpected.
8511 if Nkind (N) = N_Indexed_Component
8512 and then Is_Atomic_Ref_With_Address (N)
8513 and then not (Has_Atomic_Components (Array_Type)
8514 or else (Is_Entity_Name (Prefix (N))
8515 and then Has_Atomic_Components
8516 (Entity (Prefix (N)))))
8517 and then not Is_Atomic (Component_Type (Array_Type))
8518 then
8519 Error_Msg_N
8520 ("??access to non-atomic component of atomic array", Prefix (N));
8521 Error_Msg_N
8522 ("??\may cause unexpected accesses to atomic object", Prefix (N));
8523 end if;
8524 end Resolve_Indexed_Component;
8526 -----------------------------
8527 -- Resolve_Integer_Literal --
8528 -----------------------------
8530 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id) is
8531 begin
8532 Set_Etype (N, Typ);
8533 Eval_Integer_Literal (N);
8534 end Resolve_Integer_Literal;
8536 --------------------------------
8537 -- Resolve_Intrinsic_Operator --
8538 --------------------------------
8540 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id) is
8541 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
8542 Op : Entity_Id;
8543 Arg1 : Node_Id;
8544 Arg2 : Node_Id;
8546 function Convert_Operand (Opnd : Node_Id) return Node_Id;
8547 -- If the operand is a literal, it cannot be the expression in a
8548 -- conversion. Use a qualified expression instead.
8550 ---------------------
8551 -- Convert_Operand --
8552 ---------------------
8554 function Convert_Operand (Opnd : Node_Id) return Node_Id is
8555 Loc : constant Source_Ptr := Sloc (Opnd);
8556 Res : Node_Id;
8558 begin
8559 if Nkind_In (Opnd, N_Integer_Literal, N_Real_Literal) then
8560 Res :=
8561 Make_Qualified_Expression (Loc,
8562 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
8563 Expression => Relocate_Node (Opnd));
8564 Analyze (Res);
8566 else
8567 Res := Unchecked_Convert_To (Btyp, Opnd);
8568 end if;
8570 return Res;
8571 end Convert_Operand;
8573 -- Start of processing for Resolve_Intrinsic_Operator
8575 begin
8576 -- We must preserve the original entity in a generic setting, so that
8577 -- the legality of the operation can be verified in an instance.
8579 if not Expander_Active then
8580 return;
8581 end if;
8583 Op := Entity (N);
8584 while Scope (Op) /= Standard_Standard loop
8585 Op := Homonym (Op);
8586 pragma Assert (Present (Op));
8587 end loop;
8589 Set_Entity (N, Op);
8590 Set_Is_Overloaded (N, False);
8592 -- If the result or operand types are private, rewrite with unchecked
8593 -- conversions on the operands and the result, to expose the proper
8594 -- underlying numeric type.
8596 if Is_Private_Type (Typ)
8597 or else Is_Private_Type (Etype (Left_Opnd (N)))
8598 or else Is_Private_Type (Etype (Right_Opnd (N)))
8599 then
8600 Arg1 := Convert_Operand (Left_Opnd (N));
8602 if Nkind (N) = N_Op_Expon then
8603 Arg2 := Unchecked_Convert_To (Standard_Integer, Right_Opnd (N));
8604 else
8605 Arg2 := Convert_Operand (Right_Opnd (N));
8606 end if;
8608 if Nkind (Arg1) = N_Type_Conversion then
8609 Save_Interps (Left_Opnd (N), Expression (Arg1));
8610 end if;
8612 if Nkind (Arg2) = N_Type_Conversion then
8613 Save_Interps (Right_Opnd (N), Expression (Arg2));
8614 end if;
8616 Set_Left_Opnd (N, Arg1);
8617 Set_Right_Opnd (N, Arg2);
8619 Set_Etype (N, Btyp);
8620 Rewrite (N, Unchecked_Convert_To (Typ, N));
8621 Resolve (N, Typ);
8623 elsif Typ /= Etype (Left_Opnd (N))
8624 or else Typ /= Etype (Right_Opnd (N))
8625 then
8626 -- Add explicit conversion where needed, and save interpretations in
8627 -- case operands are overloaded.
8629 Arg1 := Convert_To (Typ, Left_Opnd (N));
8630 Arg2 := Convert_To (Typ, Right_Opnd (N));
8632 if Nkind (Arg1) = N_Type_Conversion then
8633 Save_Interps (Left_Opnd (N), Expression (Arg1));
8634 else
8635 Save_Interps (Left_Opnd (N), Arg1);
8636 end if;
8638 if Nkind (Arg2) = N_Type_Conversion then
8639 Save_Interps (Right_Opnd (N), Expression (Arg2));
8640 else
8641 Save_Interps (Right_Opnd (N), Arg2);
8642 end if;
8644 Rewrite (Left_Opnd (N), Arg1);
8645 Rewrite (Right_Opnd (N), Arg2);
8646 Analyze (Arg1);
8647 Analyze (Arg2);
8648 Resolve_Arithmetic_Op (N, Typ);
8650 else
8651 Resolve_Arithmetic_Op (N, Typ);
8652 end if;
8653 end Resolve_Intrinsic_Operator;
8655 --------------------------------------
8656 -- Resolve_Intrinsic_Unary_Operator --
8657 --------------------------------------
8659 procedure Resolve_Intrinsic_Unary_Operator
8660 (N : Node_Id;
8661 Typ : Entity_Id)
8663 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
8664 Op : Entity_Id;
8665 Arg2 : Node_Id;
8667 begin
8668 Op := Entity (N);
8669 while Scope (Op) /= Standard_Standard loop
8670 Op := Homonym (Op);
8671 pragma Assert (Present (Op));
8672 end loop;
8674 Set_Entity (N, Op);
8676 if Is_Private_Type (Typ) then
8677 Arg2 := Unchecked_Convert_To (Btyp, Right_Opnd (N));
8678 Save_Interps (Right_Opnd (N), Expression (Arg2));
8680 Set_Right_Opnd (N, Arg2);
8682 Set_Etype (N, Btyp);
8683 Rewrite (N, Unchecked_Convert_To (Typ, N));
8684 Resolve (N, Typ);
8686 else
8687 Resolve_Unary_Op (N, Typ);
8688 end if;
8689 end Resolve_Intrinsic_Unary_Operator;
8691 ------------------------
8692 -- Resolve_Logical_Op --
8693 ------------------------
8695 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id) is
8696 B_Typ : Entity_Id;
8698 begin
8699 Check_No_Direct_Boolean_Operators (N);
8701 -- Predefined operations on scalar types yield the base type. On the
8702 -- other hand, logical operations on arrays yield the type of the
8703 -- arguments (and the context).
8705 if Is_Array_Type (Typ) then
8706 B_Typ := Typ;
8707 else
8708 B_Typ := Base_Type (Typ);
8709 end if;
8711 -- The following test is required because the operands of the operation
8712 -- may be literals, in which case the resulting type appears to be
8713 -- compatible with a signed integer type, when in fact it is compatible
8714 -- only with modular types. If the context itself is universal, the
8715 -- operation is illegal.
8717 if not Valid_Boolean_Arg (Typ) then
8718 Error_Msg_N ("invalid context for logical operation", N);
8719 Set_Etype (N, Any_Type);
8720 return;
8722 elsif Typ = Any_Modular then
8723 Error_Msg_N
8724 ("no modular type available in this context", N);
8725 Set_Etype (N, Any_Type);
8726 return;
8728 elsif Is_Modular_Integer_Type (Typ)
8729 and then Etype (Left_Opnd (N)) = Universal_Integer
8730 and then Etype (Right_Opnd (N)) = Universal_Integer
8731 then
8732 Check_For_Visible_Operator (N, B_Typ);
8733 end if;
8735 -- Replace AND by AND THEN, or OR by OR ELSE, if Short_Circuit_And_Or
8736 -- is active and the result type is standard Boolean (do not mess with
8737 -- ops that return a nonstandard Boolean type, because something strange
8738 -- is going on).
8740 -- Note: you might expect this replacement to be done during expansion,
8741 -- but that doesn't work, because when the pragma Short_Circuit_And_Or
8742 -- is used, no part of the right operand of an "and" or "or" operator
8743 -- should be executed if the left operand would short-circuit the
8744 -- evaluation of the corresponding "and then" or "or else". If we left
8745 -- the replacement to expansion time, then run-time checks associated
8746 -- with such operands would be evaluated unconditionally, due to being
8747 -- before the condition prior to the rewriting as short-circuit forms
8748 -- during expansion.
8750 if Short_Circuit_And_Or
8751 and then B_Typ = Standard_Boolean
8752 and then Nkind_In (N, N_Op_And, N_Op_Or)
8753 then
8754 -- Mark the corresponding putative SCO operator as truly a logical
8755 -- (and short-circuit) operator.
8757 if Generate_SCO and then Comes_From_Source (N) then
8758 Set_SCO_Logical_Operator (N);
8759 end if;
8761 if Nkind (N) = N_Op_And then
8762 Rewrite (N,
8763 Make_And_Then (Sloc (N),
8764 Left_Opnd => Relocate_Node (Left_Opnd (N)),
8765 Right_Opnd => Relocate_Node (Right_Opnd (N))));
8766 Analyze_And_Resolve (N, B_Typ);
8768 -- Case of OR changed to OR ELSE
8770 else
8771 Rewrite (N,
8772 Make_Or_Else (Sloc (N),
8773 Left_Opnd => Relocate_Node (Left_Opnd (N)),
8774 Right_Opnd => Relocate_Node (Right_Opnd (N))));
8775 Analyze_And_Resolve (N, B_Typ);
8776 end if;
8778 -- Return now, since analysis of the rewritten ops will take care of
8779 -- other reference bookkeeping and expression folding.
8781 return;
8782 end if;
8784 Resolve (Left_Opnd (N), B_Typ);
8785 Resolve (Right_Opnd (N), B_Typ);
8787 Check_Unset_Reference (Left_Opnd (N));
8788 Check_Unset_Reference (Right_Opnd (N));
8790 Set_Etype (N, B_Typ);
8791 Generate_Operator_Reference (N, B_Typ);
8792 Eval_Logical_Op (N);
8794 -- In SPARK, logical operations AND, OR and XOR for arrays are defined
8795 -- only when both operands have same static lower and higher bounds. Of
8796 -- course the types have to match, so only check if operands are
8797 -- compatible and the node itself has no errors.
8799 if Is_Array_Type (B_Typ)
8800 and then Nkind (N) in N_Binary_Op
8801 then
8802 declare
8803 Left_Typ : constant Node_Id := Etype (Left_Opnd (N));
8804 Right_Typ : constant Node_Id := Etype (Right_Opnd (N));
8806 begin
8807 -- Protect call to Matching_Static_Array_Bounds to avoid costly
8808 -- operation if not needed.
8810 if Restriction_Check_Required (SPARK_05)
8811 and then Base_Type (Left_Typ) = Base_Type (Right_Typ)
8812 and then Left_Typ /= Any_Composite -- or Left_Opnd in error
8813 and then Right_Typ /= Any_Composite -- or Right_Opnd in error
8814 and then not Matching_Static_Array_Bounds (Left_Typ, Right_Typ)
8815 then
8816 Check_SPARK_05_Restriction
8817 ("array types should have matching static bounds", N);
8818 end if;
8819 end;
8820 end if;
8821 end Resolve_Logical_Op;
8823 ---------------------------
8824 -- Resolve_Membership_Op --
8825 ---------------------------
8827 -- The context can only be a boolean type, and does not determine the
8828 -- arguments. Arguments should be unambiguous, but the preference rule for
8829 -- universal types applies.
8831 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id) is
8832 pragma Warnings (Off, Typ);
8834 L : constant Node_Id := Left_Opnd (N);
8835 R : constant Node_Id := Right_Opnd (N);
8836 T : Entity_Id;
8838 procedure Resolve_Set_Membership;
8839 -- Analysis has determined a unique type for the left operand. Use it to
8840 -- resolve the disjuncts.
8842 ----------------------------
8843 -- Resolve_Set_Membership --
8844 ----------------------------
8846 procedure Resolve_Set_Membership is
8847 Alt : Node_Id;
8848 Ltyp : Entity_Id;
8850 begin
8851 -- If the left operand is overloaded, find type compatible with not
8852 -- overloaded alternative of the right operand.
8854 if Is_Overloaded (L) then
8855 Ltyp := Empty;
8856 Alt := First (Alternatives (N));
8857 while Present (Alt) loop
8858 if not Is_Overloaded (Alt) then
8859 Ltyp := Intersect_Types (L, Alt);
8860 exit;
8861 else
8862 Next (Alt);
8863 end if;
8864 end loop;
8866 -- Unclear how to resolve expression if all alternatives are also
8867 -- overloaded.
8869 if No (Ltyp) then
8870 Error_Msg_N ("ambiguous expression", N);
8871 end if;
8873 else
8874 Ltyp := Etype (L);
8875 end if;
8877 Resolve (L, Ltyp);
8879 Alt := First (Alternatives (N));
8880 while Present (Alt) loop
8882 -- Alternative is an expression, a range
8883 -- or a subtype mark.
8885 if not Is_Entity_Name (Alt)
8886 or else not Is_Type (Entity (Alt))
8887 then
8888 Resolve (Alt, Ltyp);
8889 end if;
8891 Next (Alt);
8892 end loop;
8894 -- Check for duplicates for discrete case
8896 if Is_Discrete_Type (Ltyp) then
8897 declare
8898 type Ent is record
8899 Alt : Node_Id;
8900 Val : Uint;
8901 end record;
8903 Alts : array (0 .. List_Length (Alternatives (N))) of Ent;
8904 Nalts : Nat;
8906 begin
8907 -- Loop checking duplicates. This is quadratic, but giant sets
8908 -- are unlikely in this context so it's a reasonable choice.
8910 Nalts := 0;
8911 Alt := First (Alternatives (N));
8912 while Present (Alt) loop
8913 if Is_OK_Static_Expression (Alt)
8914 and then (Nkind_In (Alt, N_Integer_Literal,
8915 N_Character_Literal)
8916 or else Nkind (Alt) in N_Has_Entity)
8917 then
8918 Nalts := Nalts + 1;
8919 Alts (Nalts) := (Alt, Expr_Value (Alt));
8921 for J in 1 .. Nalts - 1 loop
8922 if Alts (J).Val = Alts (Nalts).Val then
8923 Error_Msg_Sloc := Sloc (Alts (J).Alt);
8924 Error_Msg_N ("duplicate of value given#??", Alt);
8925 end if;
8926 end loop;
8927 end if;
8929 Alt := Next (Alt);
8930 end loop;
8931 end;
8932 end if;
8933 end Resolve_Set_Membership;
8935 -- Start of processing for Resolve_Membership_Op
8937 begin
8938 if L = Error or else R = Error then
8939 return;
8940 end if;
8942 if Present (Alternatives (N)) then
8943 Resolve_Set_Membership;
8944 goto SM_Exit;
8946 elsif not Is_Overloaded (R)
8947 and then
8948 (Etype (R) = Universal_Integer
8949 or else
8950 Etype (R) = Universal_Real)
8951 and then Is_Overloaded (L)
8952 then
8953 T := Etype (R);
8955 -- Ada 2005 (AI-251): Support the following case:
8957 -- type I is interface;
8958 -- type T is tagged ...
8960 -- function Test (O : I'Class) is
8961 -- begin
8962 -- return O in T'Class.
8963 -- end Test;
8965 -- In this case we have nothing else to do. The membership test will be
8966 -- done at run time.
8968 elsif Ada_Version >= Ada_2005
8969 and then Is_Class_Wide_Type (Etype (L))
8970 and then Is_Interface (Etype (L))
8971 and then Is_Class_Wide_Type (Etype (R))
8972 and then not Is_Interface (Etype (R))
8973 then
8974 return;
8975 else
8976 T := Intersect_Types (L, R);
8977 end if;
8979 -- If mixed-mode operations are present and operands are all literal,
8980 -- the only interpretation involves Duration, which is probably not
8981 -- the intention of the programmer.
8983 if T = Any_Fixed then
8984 T := Unique_Fixed_Point_Type (N);
8986 if T = Any_Type then
8987 return;
8988 end if;
8989 end if;
8991 Resolve (L, T);
8992 Check_Unset_Reference (L);
8994 if Nkind (R) = N_Range
8995 and then not Is_Scalar_Type (T)
8996 then
8997 Error_Msg_N ("scalar type required for range", R);
8998 end if;
9000 if Is_Entity_Name (R) then
9001 Freeze_Expression (R);
9002 else
9003 Resolve (R, T);
9004 Check_Unset_Reference (R);
9005 end if;
9007 -- Here after resolving membership operation
9009 <<SM_Exit>>
9011 Eval_Membership_Op (N);
9012 end Resolve_Membership_Op;
9014 ------------------
9015 -- Resolve_Null --
9016 ------------------
9018 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id) is
9019 Loc : constant Source_Ptr := Sloc (N);
9021 begin
9022 -- Handle restriction against anonymous null access values This
9023 -- restriction can be turned off using -gnatdj.
9025 -- Ada 2005 (AI-231): Remove restriction
9027 if Ada_Version < Ada_2005
9028 and then not Debug_Flag_J
9029 and then Ekind (Typ) = E_Anonymous_Access_Type
9030 and then Comes_From_Source (N)
9031 then
9032 -- In the common case of a call which uses an explicitly null value
9033 -- for an access parameter, give specialized error message.
9035 if Nkind (Parent (N)) in N_Subprogram_Call then
9036 Error_Msg_N
9037 ("null is not allowed as argument for an access parameter", N);
9039 -- Standard message for all other cases (are there any?)
9041 else
9042 Error_Msg_N
9043 ("null cannot be of an anonymous access type", N);
9044 end if;
9045 end if;
9047 -- Ada 2005 (AI-231): Generate the null-excluding check in case of
9048 -- assignment to a null-excluding object
9050 if Ada_Version >= Ada_2005
9051 and then Can_Never_Be_Null (Typ)
9052 and then Nkind (Parent (N)) = N_Assignment_Statement
9053 then
9054 if not Inside_Init_Proc then
9055 Insert_Action
9056 (Compile_Time_Constraint_Error (N,
9057 "(Ada 2005) null not allowed in null-excluding objects??"),
9058 Make_Raise_Constraint_Error (Loc,
9059 Reason => CE_Access_Check_Failed));
9060 else
9061 Insert_Action (N,
9062 Make_Raise_Constraint_Error (Loc,
9063 Reason => CE_Access_Check_Failed));
9064 end if;
9065 end if;
9067 -- In a distributed context, null for a remote access to subprogram may
9068 -- need to be replaced with a special record aggregate. In this case,
9069 -- return after having done the transformation.
9071 if (Ekind (Typ) = E_Record_Type
9072 or else Is_Remote_Access_To_Subprogram_Type (Typ))
9073 and then Remote_AST_Null_Value (N, Typ)
9074 then
9075 return;
9076 end if;
9078 -- The null literal takes its type from the context
9080 Set_Etype (N, Typ);
9081 end Resolve_Null;
9083 -----------------------
9084 -- Resolve_Op_Concat --
9085 -----------------------
9087 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id) is
9089 -- We wish to avoid deep recursion, because concatenations are often
9090 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
9091 -- operands nonrecursively until we find something that is not a simple
9092 -- concatenation (A in this case). We resolve that, and then walk back
9093 -- up the tree following Parent pointers, calling Resolve_Op_Concat_Rest
9094 -- to do the rest of the work at each level. The Parent pointers allow
9095 -- us to avoid recursion, and thus avoid running out of memory. See also
9096 -- Sem_Ch4.Analyze_Concatenation, where a similar approach is used.
9098 NN : Node_Id := N;
9099 Op1 : Node_Id;
9101 begin
9102 -- The following code is equivalent to:
9104 -- Resolve_Op_Concat_First (NN, Typ);
9105 -- Resolve_Op_Concat_Arg (N, ...);
9106 -- Resolve_Op_Concat_Rest (N, Typ);
9108 -- where the Resolve_Op_Concat_Arg call recurses back here if the left
9109 -- operand is a concatenation.
9111 -- Walk down left operands
9113 loop
9114 Resolve_Op_Concat_First (NN, Typ);
9115 Op1 := Left_Opnd (NN);
9116 exit when not (Nkind (Op1) = N_Op_Concat
9117 and then not Is_Array_Type (Component_Type (Typ))
9118 and then Entity (Op1) = Entity (NN));
9119 NN := Op1;
9120 end loop;
9122 -- Now (given the above example) NN is A&B and Op1 is A
9124 -- First resolve Op1 ...
9126 Resolve_Op_Concat_Arg (NN, Op1, Typ, Is_Component_Left_Opnd (NN));
9128 -- ... then walk NN back up until we reach N (where we started), calling
9129 -- Resolve_Op_Concat_Rest along the way.
9131 loop
9132 Resolve_Op_Concat_Rest (NN, Typ);
9133 exit when NN = N;
9134 NN := Parent (NN);
9135 end loop;
9137 if Base_Type (Etype (N)) /= Standard_String then
9138 Check_SPARK_05_Restriction
9139 ("result of concatenation should have type String", N);
9140 end if;
9141 end Resolve_Op_Concat;
9143 ---------------------------
9144 -- Resolve_Op_Concat_Arg --
9145 ---------------------------
9147 procedure Resolve_Op_Concat_Arg
9148 (N : Node_Id;
9149 Arg : Node_Id;
9150 Typ : Entity_Id;
9151 Is_Comp : Boolean)
9153 Btyp : constant Entity_Id := Base_Type (Typ);
9154 Ctyp : constant Entity_Id := Component_Type (Typ);
9156 begin
9157 if In_Instance then
9158 if Is_Comp
9159 or else (not Is_Overloaded (Arg)
9160 and then Etype (Arg) /= Any_Composite
9161 and then Covers (Ctyp, Etype (Arg)))
9162 then
9163 Resolve (Arg, Ctyp);
9164 else
9165 Resolve (Arg, Btyp);
9166 end if;
9168 -- If both Array & Array and Array & Component are visible, there is a
9169 -- potential ambiguity that must be reported.
9171 elsif Has_Compatible_Type (Arg, Ctyp) then
9172 if Nkind (Arg) = N_Aggregate
9173 and then Is_Composite_Type (Ctyp)
9174 then
9175 if Is_Private_Type (Ctyp) then
9176 Resolve (Arg, Btyp);
9178 -- If the operation is user-defined and not overloaded use its
9179 -- profile. The operation may be a renaming, in which case it has
9180 -- been rewritten, and we want the original profile.
9182 elsif not Is_Overloaded (N)
9183 and then Comes_From_Source (Entity (Original_Node (N)))
9184 and then Ekind (Entity (Original_Node (N))) = E_Function
9185 then
9186 Resolve (Arg,
9187 Etype
9188 (Next_Formal (First_Formal (Entity (Original_Node (N))))));
9189 return;
9191 -- Otherwise an aggregate may match both the array type and the
9192 -- component type.
9194 else
9195 Error_Msg_N ("ambiguous aggregate must be qualified", Arg);
9196 Set_Etype (Arg, Any_Type);
9197 end if;
9199 else
9200 if Is_Overloaded (Arg)
9201 and then Has_Compatible_Type (Arg, Typ)
9202 and then Etype (Arg) /= Any_Type
9203 then
9204 declare
9205 I : Interp_Index;
9206 It : Interp;
9207 Func : Entity_Id;
9209 begin
9210 Get_First_Interp (Arg, I, It);
9211 Func := It.Nam;
9212 Get_Next_Interp (I, It);
9214 -- Special-case the error message when the overloading is
9215 -- caused by a function that yields an array and can be
9216 -- called without parameters.
9218 if It.Nam = Func then
9219 Error_Msg_Sloc := Sloc (Func);
9220 Error_Msg_N ("ambiguous call to function#", Arg);
9221 Error_Msg_NE
9222 ("\\interpretation as call yields&", Arg, Typ);
9223 Error_Msg_NE
9224 ("\\interpretation as indexing of call yields&",
9225 Arg, Component_Type (Typ));
9227 else
9228 Error_Msg_N ("ambiguous operand for concatenation!", Arg);
9230 Get_First_Interp (Arg, I, It);
9231 while Present (It.Nam) loop
9232 Error_Msg_Sloc := Sloc (It.Nam);
9234 if Base_Type (It.Typ) = Btyp
9235 or else
9236 Base_Type (It.Typ) = Base_Type (Ctyp)
9237 then
9238 Error_Msg_N -- CODEFIX
9239 ("\\possible interpretation#", Arg);
9240 end if;
9242 Get_Next_Interp (I, It);
9243 end loop;
9244 end if;
9245 end;
9246 end if;
9248 Resolve (Arg, Component_Type (Typ));
9250 if Nkind (Arg) = N_String_Literal then
9251 Set_Etype (Arg, Component_Type (Typ));
9252 end if;
9254 if Arg = Left_Opnd (N) then
9255 Set_Is_Component_Left_Opnd (N);
9256 else
9257 Set_Is_Component_Right_Opnd (N);
9258 end if;
9259 end if;
9261 else
9262 Resolve (Arg, Btyp);
9263 end if;
9265 -- Concatenation is restricted in SPARK: each operand must be either a
9266 -- string literal, the name of a string constant, a static character or
9267 -- string expression, or another concatenation. Arg cannot be a
9268 -- concatenation here as callers of Resolve_Op_Concat_Arg call it
9269 -- separately on each final operand, past concatenation operations.
9271 if Is_Character_Type (Etype (Arg)) then
9272 if not Is_OK_Static_Expression (Arg) then
9273 Check_SPARK_05_Restriction
9274 ("character operand for concatenation should be static", Arg);
9275 end if;
9277 elsif Is_String_Type (Etype (Arg)) then
9278 if not (Nkind_In (Arg, N_Identifier, N_Expanded_Name)
9279 and then Is_Constant_Object (Entity (Arg)))
9280 and then not Is_OK_Static_Expression (Arg)
9281 then
9282 Check_SPARK_05_Restriction
9283 ("string operand for concatenation should be static", Arg);
9284 end if;
9286 -- Do not issue error on an operand that is neither a character nor a
9287 -- string, as the error is issued in Resolve_Op_Concat.
9289 else
9290 null;
9291 end if;
9293 Check_Unset_Reference (Arg);
9294 end Resolve_Op_Concat_Arg;
9296 -----------------------------
9297 -- Resolve_Op_Concat_First --
9298 -----------------------------
9300 procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id) is
9301 Btyp : constant Entity_Id := Base_Type (Typ);
9302 Op1 : constant Node_Id := Left_Opnd (N);
9303 Op2 : constant Node_Id := Right_Opnd (N);
9305 begin
9306 -- The parser folds an enormous sequence of concatenations of string
9307 -- literals into "" & "...", where the Is_Folded_In_Parser flag is set
9308 -- in the right operand. If the expression resolves to a predefined "&"
9309 -- operator, all is well. Otherwise, the parser's folding is wrong, so
9310 -- we give an error. See P_Simple_Expression in Par.Ch4.
9312 if Nkind (Op2) = N_String_Literal
9313 and then Is_Folded_In_Parser (Op2)
9314 and then Ekind (Entity (N)) = E_Function
9315 then
9316 pragma Assert (Nkind (Op1) = N_String_Literal -- should be ""
9317 and then String_Length (Strval (Op1)) = 0);
9318 Error_Msg_N ("too many user-defined concatenations", N);
9319 return;
9320 end if;
9322 Set_Etype (N, Btyp);
9324 if Is_Limited_Composite (Btyp) then
9325 Error_Msg_N ("concatenation not available for limited array", N);
9326 Explain_Limited_Type (Btyp, N);
9327 end if;
9328 end Resolve_Op_Concat_First;
9330 ----------------------------
9331 -- Resolve_Op_Concat_Rest --
9332 ----------------------------
9334 procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id) is
9335 Op1 : constant Node_Id := Left_Opnd (N);
9336 Op2 : constant Node_Id := Right_Opnd (N);
9338 begin
9339 Resolve_Op_Concat_Arg (N, Op2, Typ, Is_Component_Right_Opnd (N));
9341 Generate_Operator_Reference (N, Typ);
9343 if Is_String_Type (Typ) then
9344 Eval_Concatenation (N);
9345 end if;
9347 -- If this is not a static concatenation, but the result is a string
9348 -- type (and not an array of strings) ensure that static string operands
9349 -- have their subtypes properly constructed.
9351 if Nkind (N) /= N_String_Literal
9352 and then Is_Character_Type (Component_Type (Typ))
9353 then
9354 Set_String_Literal_Subtype (Op1, Typ);
9355 Set_String_Literal_Subtype (Op2, Typ);
9356 end if;
9357 end Resolve_Op_Concat_Rest;
9359 ----------------------
9360 -- Resolve_Op_Expon --
9361 ----------------------
9363 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id) is
9364 B_Typ : constant Entity_Id := Base_Type (Typ);
9366 begin
9367 -- Catch attempts to do fixed-point exponentiation with universal
9368 -- operands, which is a case where the illegality is not caught during
9369 -- normal operator analysis. This is not done in preanalysis mode
9370 -- since the tree is not fully decorated during preanalysis.
9372 if Full_Analysis then
9373 if Is_Fixed_Point_Type (Typ) and then Comes_From_Source (N) then
9374 Error_Msg_N ("exponentiation not available for fixed point", N);
9375 return;
9377 elsif Nkind (Parent (N)) in N_Op
9378 and then Present (Etype (Parent (N)))
9379 and then Is_Fixed_Point_Type (Etype (Parent (N)))
9380 and then Etype (N) = Universal_Real
9381 and then Comes_From_Source (N)
9382 then
9383 Error_Msg_N ("exponentiation not available for fixed point", N);
9384 return;
9385 end if;
9386 end if;
9388 if Comes_From_Source (N)
9389 and then Ekind (Entity (N)) = E_Function
9390 and then Is_Imported (Entity (N))
9391 and then Is_Intrinsic_Subprogram (Entity (N))
9392 then
9393 Resolve_Intrinsic_Operator (N, Typ);
9394 return;
9395 end if;
9397 if Etype (Left_Opnd (N)) = Universal_Integer
9398 or else Etype (Left_Opnd (N)) = Universal_Real
9399 then
9400 Check_For_Visible_Operator (N, B_Typ);
9401 end if;
9403 -- We do the resolution using the base type, because intermediate values
9404 -- in expressions are always of the base type, not a subtype of it.
9406 Resolve (Left_Opnd (N), B_Typ);
9407 Resolve (Right_Opnd (N), Standard_Integer);
9409 -- For integer types, right argument must be in Natural range
9411 if Is_Integer_Type (Typ) then
9412 Apply_Scalar_Range_Check (Right_Opnd (N), Standard_Natural);
9413 end if;
9415 Check_Unset_Reference (Left_Opnd (N));
9416 Check_Unset_Reference (Right_Opnd (N));
9418 Set_Etype (N, B_Typ);
9419 Generate_Operator_Reference (N, B_Typ);
9421 Analyze_Dimension (N);
9423 if Ada_Version >= Ada_2012 and then Has_Dimension_System (B_Typ) then
9424 -- Evaluate the exponentiation operator for dimensioned type
9426 Eval_Op_Expon_For_Dimensioned_Type (N, B_Typ);
9427 else
9428 Eval_Op_Expon (N);
9429 end if;
9431 -- Set overflow checking bit. Much cleverer code needed here eventually
9432 -- and perhaps the Resolve routines should be separated for the various
9433 -- arithmetic operations, since they will need different processing. ???
9435 if Nkind (N) in N_Op then
9436 if not Overflow_Checks_Suppressed (Etype (N)) then
9437 Enable_Overflow_Check (N);
9438 end if;
9439 end if;
9440 end Resolve_Op_Expon;
9442 --------------------
9443 -- Resolve_Op_Not --
9444 --------------------
9446 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id) is
9447 B_Typ : Entity_Id;
9449 function Parent_Is_Boolean return Boolean;
9450 -- This function determines if the parent node is a boolean operator or
9451 -- operation (comparison op, membership test, or short circuit form) and
9452 -- the not in question is the left operand of this operation. Note that
9453 -- if the not is in parens, then false is returned.
9455 -----------------------
9456 -- Parent_Is_Boolean --
9457 -----------------------
9459 function Parent_Is_Boolean return Boolean is
9460 begin
9461 if Paren_Count (N) /= 0 then
9462 return False;
9464 else
9465 case Nkind (Parent (N)) is
9466 when N_And_Then
9467 | N_In
9468 | N_Not_In
9469 | N_Op_And
9470 | N_Op_Eq
9471 | N_Op_Ge
9472 | N_Op_Gt
9473 | N_Op_Le
9474 | N_Op_Lt
9475 | N_Op_Ne
9476 | N_Op_Or
9477 | N_Op_Xor
9478 | N_Or_Else
9480 return Left_Opnd (Parent (N)) = N;
9482 when others =>
9483 return False;
9484 end case;
9485 end if;
9486 end Parent_Is_Boolean;
9488 -- Start of processing for Resolve_Op_Not
9490 begin
9491 -- Predefined operations on scalar types yield the base type. On the
9492 -- other hand, logical operations on arrays yield the type of the
9493 -- arguments (and the context).
9495 if Is_Array_Type (Typ) then
9496 B_Typ := Typ;
9497 else
9498 B_Typ := Base_Type (Typ);
9499 end if;
9501 -- Straightforward case of incorrect arguments
9503 if not Valid_Boolean_Arg (Typ) then
9504 Error_Msg_N ("invalid operand type for operator&", N);
9505 Set_Etype (N, Any_Type);
9506 return;
9508 -- Special case of probable missing parens
9510 elsif Typ = Universal_Integer or else Typ = Any_Modular then
9511 if Parent_Is_Boolean then
9512 Error_Msg_N
9513 ("operand of not must be enclosed in parentheses",
9514 Right_Opnd (N));
9515 else
9516 Error_Msg_N
9517 ("no modular type available in this context", N);
9518 end if;
9520 Set_Etype (N, Any_Type);
9521 return;
9523 -- OK resolution of NOT
9525 else
9526 -- Warn if non-boolean types involved. This is a case like not a < b
9527 -- where a and b are modular, where we will get (not a) < b and most
9528 -- likely not (a < b) was intended.
9530 if Warn_On_Questionable_Missing_Parens
9531 and then not Is_Boolean_Type (Typ)
9532 and then Parent_Is_Boolean
9533 then
9534 Error_Msg_N ("?q?not expression should be parenthesized here!", N);
9535 end if;
9537 -- Warn on double negation if checking redundant constructs
9539 if Warn_On_Redundant_Constructs
9540 and then Comes_From_Source (N)
9541 and then Comes_From_Source (Right_Opnd (N))
9542 and then Root_Type (Typ) = Standard_Boolean
9543 and then Nkind (Right_Opnd (N)) = N_Op_Not
9544 then
9545 Error_Msg_N ("redundant double negation?r?", N);
9546 end if;
9548 -- Complete resolution and evaluation of NOT
9550 Resolve (Right_Opnd (N), B_Typ);
9551 Check_Unset_Reference (Right_Opnd (N));
9552 Set_Etype (N, B_Typ);
9553 Generate_Operator_Reference (N, B_Typ);
9554 Eval_Op_Not (N);
9555 end if;
9556 end Resolve_Op_Not;
9558 -----------------------------
9559 -- Resolve_Operator_Symbol --
9560 -----------------------------
9562 -- Nothing to be done, all resolved already
9564 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id) is
9565 pragma Warnings (Off, N);
9566 pragma Warnings (Off, Typ);
9568 begin
9569 null;
9570 end Resolve_Operator_Symbol;
9572 ----------------------------------
9573 -- Resolve_Qualified_Expression --
9574 ----------------------------------
9576 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id) is
9577 pragma Warnings (Off, Typ);
9579 Target_Typ : constant Entity_Id := Entity (Subtype_Mark (N));
9580 Expr : constant Node_Id := Expression (N);
9582 begin
9583 Resolve (Expr, Target_Typ);
9585 -- Protect call to Matching_Static_Array_Bounds to avoid costly
9586 -- operation if not needed.
9588 if Restriction_Check_Required (SPARK_05)
9589 and then Is_Array_Type (Target_Typ)
9590 and then Is_Array_Type (Etype (Expr))
9591 and then Etype (Expr) /= Any_Composite -- or else Expr in error
9592 and then not Matching_Static_Array_Bounds (Target_Typ, Etype (Expr))
9593 then
9594 Check_SPARK_05_Restriction
9595 ("array types should have matching static bounds", N);
9596 end if;
9598 -- A qualified expression requires an exact match of the type, class-
9599 -- wide matching is not allowed. However, if the qualifying type is
9600 -- specific and the expression has a class-wide type, it may still be
9601 -- okay, since it can be the result of the expansion of a call to a
9602 -- dispatching function, so we also have to check class-wideness of the
9603 -- type of the expression's original node.
9605 if (Is_Class_Wide_Type (Target_Typ)
9606 or else
9607 (Is_Class_Wide_Type (Etype (Expr))
9608 and then Is_Class_Wide_Type (Etype (Original_Node (Expr)))))
9609 and then Base_Type (Etype (Expr)) /= Base_Type (Target_Typ)
9610 then
9611 Wrong_Type (Expr, Target_Typ);
9612 end if;
9614 -- If the target type is unconstrained, then we reset the type of the
9615 -- result from the type of the expression. For other cases, the actual
9616 -- subtype of the expression is the target type.
9618 if Is_Composite_Type (Target_Typ)
9619 and then not Is_Constrained (Target_Typ)
9620 then
9621 Set_Etype (N, Etype (Expr));
9622 end if;
9624 Analyze_Dimension (N);
9625 Eval_Qualified_Expression (N);
9627 -- If we still have a qualified expression after the static evaluation,
9628 -- then apply a scalar range check if needed. The reason that we do this
9629 -- after the Eval call is that otherwise, the application of the range
9630 -- check may convert an illegal static expression and result in warning
9631 -- rather than giving an error (e.g Integer'(Integer'Last + 1)).
9633 if Nkind (N) = N_Qualified_Expression and then Is_Scalar_Type (Typ) then
9634 Apply_Scalar_Range_Check (Expr, Typ);
9635 end if;
9637 -- Finally, check whether a predicate applies to the target type. This
9638 -- comes from AI12-0100. As for type conversions, check the enclosing
9639 -- context to prevent an infinite expansion.
9641 if Has_Predicates (Target_Typ) then
9642 if Nkind (Parent (N)) = N_Function_Call
9643 and then Present (Name (Parent (N)))
9644 and then (Is_Predicate_Function (Entity (Name (Parent (N))))
9645 or else
9646 Is_Predicate_Function_M (Entity (Name (Parent (N)))))
9647 then
9648 null;
9650 -- In the case of a qualified expression in an allocator, the check
9651 -- is applied when expanding the allocator, so avoid redundant check.
9653 elsif Nkind (N) = N_Qualified_Expression
9654 and then Nkind (Parent (N)) /= N_Allocator
9655 then
9656 Apply_Predicate_Check (N, Target_Typ);
9657 end if;
9658 end if;
9659 end Resolve_Qualified_Expression;
9661 ------------------------------
9662 -- Resolve_Raise_Expression --
9663 ------------------------------
9665 procedure Resolve_Raise_Expression (N : Node_Id; Typ : Entity_Id) is
9666 begin
9667 if Typ = Raise_Type then
9668 Error_Msg_N ("cannot find unique type for raise expression", N);
9669 Set_Etype (N, Any_Type);
9670 else
9671 Set_Etype (N, Typ);
9672 end if;
9673 end Resolve_Raise_Expression;
9675 -------------------
9676 -- Resolve_Range --
9677 -------------------
9679 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id) is
9680 L : constant Node_Id := Low_Bound (N);
9681 H : constant Node_Id := High_Bound (N);
9683 function First_Last_Ref return Boolean;
9684 -- Returns True if N is of the form X'First .. X'Last where X is the
9685 -- same entity for both attributes.
9687 --------------------
9688 -- First_Last_Ref --
9689 --------------------
9691 function First_Last_Ref return Boolean is
9692 Lorig : constant Node_Id := Original_Node (L);
9693 Horig : constant Node_Id := Original_Node (H);
9695 begin
9696 if Nkind (Lorig) = N_Attribute_Reference
9697 and then Nkind (Horig) = N_Attribute_Reference
9698 and then Attribute_Name (Lorig) = Name_First
9699 and then Attribute_Name (Horig) = Name_Last
9700 then
9701 declare
9702 PL : constant Node_Id := Prefix (Lorig);
9703 PH : constant Node_Id := Prefix (Horig);
9704 begin
9705 if Is_Entity_Name (PL)
9706 and then Is_Entity_Name (PH)
9707 and then Entity (PL) = Entity (PH)
9708 then
9709 return True;
9710 end if;
9711 end;
9712 end if;
9714 return False;
9715 end First_Last_Ref;
9717 -- Start of processing for Resolve_Range
9719 begin
9720 Set_Etype (N, Typ);
9722 -- The lower bound should be in Typ. The higher bound can be in Typ's
9723 -- base type if the range is null. It may still be invalid if it is
9724 -- higher than the lower bound. This is checked later in the context in
9725 -- which the range appears.
9727 Resolve (L, Typ);
9728 Resolve (H, Base_Type (Typ));
9730 -- Check for inappropriate range on unordered enumeration type
9732 if Bad_Unordered_Enumeration_Reference (N, Typ)
9734 -- Exclude X'First .. X'Last if X is the same entity for both
9736 and then not First_Last_Ref
9737 then
9738 Error_Msg_Sloc := Sloc (Typ);
9739 Error_Msg_NE
9740 ("subrange of unordered enumeration type& declared#?U?", N, Typ);
9741 end if;
9743 Check_Unset_Reference (L);
9744 Check_Unset_Reference (H);
9746 -- We have to check the bounds for being within the base range as
9747 -- required for a non-static context. Normally this is automatic and
9748 -- done as part of evaluating expressions, but the N_Range node is an
9749 -- exception, since in GNAT we consider this node to be a subexpression,
9750 -- even though in Ada it is not. The circuit in Sem_Eval could check for
9751 -- this, but that would put the test on the main evaluation path for
9752 -- expressions.
9754 Check_Non_Static_Context (L);
9755 Check_Non_Static_Context (H);
9757 -- Check for an ambiguous range over character literals. This will
9758 -- happen with a membership test involving only literals.
9760 if Typ = Any_Character then
9761 Ambiguous_Character (L);
9762 Set_Etype (N, Any_Type);
9763 return;
9764 end if;
9766 -- If bounds are static, constant-fold them, so size computations are
9767 -- identical between front-end and back-end. Do not perform this
9768 -- transformation while analyzing generic units, as type information
9769 -- would be lost when reanalyzing the constant node in the instance.
9771 if Is_Discrete_Type (Typ) and then Expander_Active then
9772 if Is_OK_Static_Expression (L) then
9773 Fold_Uint (L, Expr_Value (L), Is_OK_Static_Expression (L));
9774 end if;
9776 if Is_OK_Static_Expression (H) then
9777 Fold_Uint (H, Expr_Value (H), Is_OK_Static_Expression (H));
9778 end if;
9779 end if;
9780 end Resolve_Range;
9782 --------------------------
9783 -- Resolve_Real_Literal --
9784 --------------------------
9786 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id) is
9787 Actual_Typ : constant Entity_Id := Etype (N);
9789 begin
9790 -- Special processing for fixed-point literals to make sure that the
9791 -- value is an exact multiple of small where this is required. We skip
9792 -- this for the universal real case, and also for generic types.
9794 if Is_Fixed_Point_Type (Typ)
9795 and then Typ /= Universal_Fixed
9796 and then Typ /= Any_Fixed
9797 and then not Is_Generic_Type (Typ)
9798 then
9799 declare
9800 Val : constant Ureal := Realval (N);
9801 Cintr : constant Ureal := Val / Small_Value (Typ);
9802 Cint : constant Uint := UR_Trunc (Cintr);
9803 Den : constant Uint := Norm_Den (Cintr);
9804 Stat : Boolean;
9806 begin
9807 -- Case of literal is not an exact multiple of the Small
9809 if Den /= 1 then
9811 -- For a source program literal for a decimal fixed-point type,
9812 -- this is statically illegal (RM 4.9(36)).
9814 if Is_Decimal_Fixed_Point_Type (Typ)
9815 and then Actual_Typ = Universal_Real
9816 and then Comes_From_Source (N)
9817 then
9818 Error_Msg_N ("value has extraneous low order digits", N);
9819 end if;
9821 -- Generate a warning if literal from source
9823 if Is_OK_Static_Expression (N)
9824 and then Warn_On_Bad_Fixed_Value
9825 then
9826 Error_Msg_N
9827 ("?b?static fixed-point value is not a multiple of Small!",
9829 end if;
9831 -- Replace literal by a value that is the exact representation
9832 -- of a value of the type, i.e. a multiple of the small value,
9833 -- by truncation, since Machine_Rounds is false for all GNAT
9834 -- fixed-point types (RM 4.9(38)).
9836 Stat := Is_OK_Static_Expression (N);
9837 Rewrite (N,
9838 Make_Real_Literal (Sloc (N),
9839 Realval => Small_Value (Typ) * Cint));
9841 Set_Is_Static_Expression (N, Stat);
9842 end if;
9844 -- In all cases, set the corresponding integer field
9846 Set_Corresponding_Integer_Value (N, Cint);
9847 end;
9848 end if;
9850 -- Now replace the actual type by the expected type as usual
9852 Set_Etype (N, Typ);
9853 Eval_Real_Literal (N);
9854 end Resolve_Real_Literal;
9856 -----------------------
9857 -- Resolve_Reference --
9858 -----------------------
9860 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id) is
9861 P : constant Node_Id := Prefix (N);
9863 begin
9864 -- Replace general access with specific type
9866 if Ekind (Etype (N)) = E_Allocator_Type then
9867 Set_Etype (N, Base_Type (Typ));
9868 end if;
9870 Resolve (P, Designated_Type (Etype (N)));
9872 -- If we are taking the reference of a volatile entity, then treat it as
9873 -- a potential modification of this entity. This is too conservative,
9874 -- but necessary because remove side effects can cause transformations
9875 -- of normal assignments into reference sequences that otherwise fail to
9876 -- notice the modification.
9878 if Is_Entity_Name (P) and then Treat_As_Volatile (Entity (P)) then
9879 Note_Possible_Modification (P, Sure => False);
9880 end if;
9881 end Resolve_Reference;
9883 --------------------------------
9884 -- Resolve_Selected_Component --
9885 --------------------------------
9887 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id) is
9888 Comp : Entity_Id;
9889 Comp1 : Entity_Id := Empty; -- prevent junk warning
9890 P : constant Node_Id := Prefix (N);
9891 S : constant Node_Id := Selector_Name (N);
9892 T : Entity_Id := Etype (P);
9893 I : Interp_Index;
9894 I1 : Interp_Index := 0; -- prevent junk warning
9895 It : Interp;
9896 It1 : Interp;
9897 Found : Boolean;
9899 function Init_Component return Boolean;
9900 -- Check whether this is the initialization of a component within an
9901 -- init proc (by assignment or call to another init proc). If true,
9902 -- there is no need for a discriminant check.
9904 --------------------
9905 -- Init_Component --
9906 --------------------
9908 function Init_Component return Boolean is
9909 begin
9910 return Inside_Init_Proc
9911 and then Nkind (Prefix (N)) = N_Identifier
9912 and then Chars (Prefix (N)) = Name_uInit
9913 and then Nkind (Parent (Parent (N))) = N_Case_Statement_Alternative;
9914 end Init_Component;
9916 -- Start of processing for Resolve_Selected_Component
9918 begin
9919 if Is_Overloaded (P) then
9921 -- Use the context type to select the prefix that has a selector
9922 -- of the correct name and type.
9924 Found := False;
9925 Get_First_Interp (P, I, It);
9927 Search : while Present (It.Typ) loop
9928 if Is_Access_Type (It.Typ) then
9929 T := Designated_Type (It.Typ);
9930 else
9931 T := It.Typ;
9932 end if;
9934 -- Locate selected component. For a private prefix the selector
9935 -- can denote a discriminant.
9937 if Is_Record_Type (T) or else Is_Private_Type (T) then
9939 -- The visible components of a class-wide type are those of
9940 -- the root type.
9942 if Is_Class_Wide_Type (T) then
9943 T := Etype (T);
9944 end if;
9946 Comp := First_Entity (T);
9947 while Present (Comp) loop
9948 if Chars (Comp) = Chars (S)
9949 and then Covers (Typ, Etype (Comp))
9950 then
9951 if not Found then
9952 Found := True;
9953 I1 := I;
9954 It1 := It;
9955 Comp1 := Comp;
9957 else
9958 It := Disambiguate (P, I1, I, Any_Type);
9960 if It = No_Interp then
9961 Error_Msg_N
9962 ("ambiguous prefix for selected component", N);
9963 Set_Etype (N, Typ);
9964 return;
9966 else
9967 It1 := It;
9969 -- There may be an implicit dereference. Retrieve
9970 -- designated record type.
9972 if Is_Access_Type (It1.Typ) then
9973 T := Designated_Type (It1.Typ);
9974 else
9975 T := It1.Typ;
9976 end if;
9978 if Scope (Comp1) /= T then
9980 -- Resolution chooses the new interpretation.
9981 -- Find the component with the right name.
9983 Comp1 := First_Entity (T);
9984 while Present (Comp1)
9985 and then Chars (Comp1) /= Chars (S)
9986 loop
9987 Comp1 := Next_Entity (Comp1);
9988 end loop;
9989 end if;
9991 exit Search;
9992 end if;
9993 end if;
9994 end if;
9996 Comp := Next_Entity (Comp);
9997 end loop;
9998 end if;
10000 Get_Next_Interp (I, It);
10001 end loop Search;
10003 -- There must be a legal interpretation at this point
10005 pragma Assert (Found);
10006 Resolve (P, It1.Typ);
10007 Set_Etype (N, Typ);
10008 Set_Entity_With_Checks (S, Comp1);
10010 else
10011 -- Resolve prefix with its type
10013 Resolve (P, T);
10014 end if;
10016 -- Generate cross-reference. We needed to wait until full overloading
10017 -- resolution was complete to do this, since otherwise we can't tell if
10018 -- we are an lvalue or not.
10020 if May_Be_Lvalue (N) then
10021 Generate_Reference (Entity (S), S, 'm');
10022 else
10023 Generate_Reference (Entity (S), S, 'r');
10024 end if;
10026 -- If prefix is an access type, the node will be transformed into an
10027 -- explicit dereference during expansion. The type of the node is the
10028 -- designated type of that of the prefix.
10030 if Is_Access_Type (Etype (P)) then
10031 T := Designated_Type (Etype (P));
10032 Check_Fully_Declared_Prefix (T, P);
10033 else
10034 T := Etype (P);
10035 end if;
10037 -- Set flag for expander if discriminant check required on a component
10038 -- appearing within a variant.
10040 if Has_Discriminants (T)
10041 and then Ekind (Entity (S)) = E_Component
10042 and then Present (Original_Record_Component (Entity (S)))
10043 and then Ekind (Original_Record_Component (Entity (S))) = E_Component
10044 and then
10045 Is_Declared_Within_Variant (Original_Record_Component (Entity (S)))
10046 and then not Discriminant_Checks_Suppressed (T)
10047 and then not Init_Component
10048 then
10049 Set_Do_Discriminant_Check (N);
10050 end if;
10052 if Ekind (Entity (S)) = E_Void then
10053 Error_Msg_N ("premature use of component", S);
10054 end if;
10056 -- If the prefix is a record conversion, this may be a renamed
10057 -- discriminant whose bounds differ from those of the original
10058 -- one, so we must ensure that a range check is performed.
10060 if Nkind (P) = N_Type_Conversion
10061 and then Ekind (Entity (S)) = E_Discriminant
10062 and then Is_Discrete_Type (Typ)
10063 then
10064 Set_Etype (N, Base_Type (Typ));
10065 end if;
10067 -- Note: No Eval processing is required, because the prefix is of a
10068 -- record type, or protected type, and neither can possibly be static.
10070 -- If the record type is atomic, and the component is non-atomic, then
10071 -- this is worth a warning, since we have a situation where the access
10072 -- to the component may cause extra read/writes of the atomic array
10073 -- object, or partial word accesses, both of which may be unexpected.
10075 if Nkind (N) = N_Selected_Component
10076 and then Is_Atomic_Ref_With_Address (N)
10077 and then not Is_Atomic (Entity (S))
10078 and then not Is_Atomic (Etype (Entity (S)))
10079 then
10080 Error_Msg_N
10081 ("??access to non-atomic component of atomic record",
10082 Prefix (N));
10083 Error_Msg_N
10084 ("\??may cause unexpected accesses to atomic object",
10085 Prefix (N));
10086 end if;
10088 Analyze_Dimension (N);
10089 end Resolve_Selected_Component;
10091 -------------------
10092 -- Resolve_Shift --
10093 -------------------
10095 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id) is
10096 B_Typ : constant Entity_Id := Base_Type (Typ);
10097 L : constant Node_Id := Left_Opnd (N);
10098 R : constant Node_Id := Right_Opnd (N);
10100 begin
10101 -- We do the resolution using the base type, because intermediate values
10102 -- in expressions always are of the base type, not a subtype of it.
10104 Resolve (L, B_Typ);
10105 Resolve (R, Standard_Natural);
10107 Check_Unset_Reference (L);
10108 Check_Unset_Reference (R);
10110 Set_Etype (N, B_Typ);
10111 Generate_Operator_Reference (N, B_Typ);
10112 Eval_Shift (N);
10113 end Resolve_Shift;
10115 ---------------------------
10116 -- Resolve_Short_Circuit --
10117 ---------------------------
10119 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id) is
10120 B_Typ : constant Entity_Id := Base_Type (Typ);
10121 L : constant Node_Id := Left_Opnd (N);
10122 R : constant Node_Id := Right_Opnd (N);
10124 begin
10125 -- Ensure all actions associated with the left operand (e.g.
10126 -- finalization of transient objects) are fully evaluated locally within
10127 -- an expression with actions. This is particularly helpful for coverage
10128 -- analysis. However this should not happen in generics or if option
10129 -- Minimize_Expression_With_Actions is set.
10131 if Expander_Active and not Minimize_Expression_With_Actions then
10132 declare
10133 Reloc_L : constant Node_Id := Relocate_Node (L);
10134 begin
10135 Save_Interps (Old_N => L, New_N => Reloc_L);
10137 Rewrite (L,
10138 Make_Expression_With_Actions (Sloc (L),
10139 Actions => New_List,
10140 Expression => Reloc_L));
10142 -- Set Comes_From_Source on L to preserve warnings for unset
10143 -- reference.
10145 Set_Comes_From_Source (L, Comes_From_Source (Reloc_L));
10146 end;
10147 end if;
10149 Resolve (L, B_Typ);
10150 Resolve (R, B_Typ);
10152 -- Check for issuing warning for always False assert/check, this happens
10153 -- when assertions are turned off, in which case the pragma Assert/Check
10154 -- was transformed into:
10156 -- if False and then <condition> then ...
10158 -- and we detect this pattern
10160 if Warn_On_Assertion_Failure
10161 and then Is_Entity_Name (R)
10162 and then Entity (R) = Standard_False
10163 and then Nkind (Parent (N)) = N_If_Statement
10164 and then Nkind (N) = N_And_Then
10165 and then Is_Entity_Name (L)
10166 and then Entity (L) = Standard_False
10167 then
10168 declare
10169 Orig : constant Node_Id := Original_Node (Parent (N));
10171 begin
10172 -- Special handling of Asssert pragma
10174 if Nkind (Orig) = N_Pragma
10175 and then Pragma_Name (Orig) = Name_Assert
10176 then
10177 declare
10178 Expr : constant Node_Id :=
10179 Original_Node
10180 (Expression
10181 (First (Pragma_Argument_Associations (Orig))));
10183 begin
10184 -- Don't warn if original condition is explicit False,
10185 -- since obviously the failure is expected in this case.
10187 if Is_Entity_Name (Expr)
10188 and then Entity (Expr) = Standard_False
10189 then
10190 null;
10192 -- Issue warning. We do not want the deletion of the
10193 -- IF/AND-THEN to take this message with it. We achieve this
10194 -- by making sure that the expanded code points to the Sloc
10195 -- of the expression, not the original pragma.
10197 else
10198 -- Note: Use Error_Msg_F here rather than Error_Msg_N.
10199 -- The source location of the expression is not usually
10200 -- the best choice here. For example, it gets located on
10201 -- the last AND keyword in a chain of boolean expressiond
10202 -- AND'ed together. It is best to put the message on the
10203 -- first character of the assertion, which is the effect
10204 -- of the First_Node call here.
10206 Error_Msg_F
10207 ("?A?assertion would fail at run time!",
10208 Expression
10209 (First (Pragma_Argument_Associations (Orig))));
10210 end if;
10211 end;
10213 -- Similar processing for Check pragma
10215 elsif Nkind (Orig) = N_Pragma
10216 and then Pragma_Name (Orig) = Name_Check
10217 then
10218 -- Don't want to warn if original condition is explicit False
10220 declare
10221 Expr : constant Node_Id :=
10222 Original_Node
10223 (Expression
10224 (Next (First (Pragma_Argument_Associations (Orig)))));
10225 begin
10226 if Is_Entity_Name (Expr)
10227 and then Entity (Expr) = Standard_False
10228 then
10229 null;
10231 -- Post warning
10233 else
10234 -- Again use Error_Msg_F rather than Error_Msg_N, see
10235 -- comment above for an explanation of why we do this.
10237 Error_Msg_F
10238 ("?A?check would fail at run time!",
10239 Expression
10240 (Last (Pragma_Argument_Associations (Orig))));
10241 end if;
10242 end;
10243 end if;
10244 end;
10245 end if;
10247 -- Continue with processing of short circuit
10249 Check_Unset_Reference (L);
10250 Check_Unset_Reference (R);
10252 Set_Etype (N, B_Typ);
10253 Eval_Short_Circuit (N);
10254 end Resolve_Short_Circuit;
10256 -------------------
10257 -- Resolve_Slice --
10258 -------------------
10260 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id) is
10261 Drange : constant Node_Id := Discrete_Range (N);
10262 Name : constant Node_Id := Prefix (N);
10263 Array_Type : Entity_Id := Empty;
10264 Dexpr : Node_Id := Empty;
10265 Index_Type : Entity_Id;
10267 begin
10268 if Is_Overloaded (Name) then
10270 -- Use the context type to select the prefix that yields the correct
10271 -- array type.
10273 declare
10274 I : Interp_Index;
10275 I1 : Interp_Index := 0;
10276 It : Interp;
10277 P : constant Node_Id := Prefix (N);
10278 Found : Boolean := False;
10280 begin
10281 Get_First_Interp (P, I, It);
10282 while Present (It.Typ) loop
10283 if (Is_Array_Type (It.Typ)
10284 and then Covers (Typ, It.Typ))
10285 or else (Is_Access_Type (It.Typ)
10286 and then Is_Array_Type (Designated_Type (It.Typ))
10287 and then Covers (Typ, Designated_Type (It.Typ)))
10288 then
10289 if Found then
10290 It := Disambiguate (P, I1, I, Any_Type);
10292 if It = No_Interp then
10293 Error_Msg_N ("ambiguous prefix for slicing", N);
10294 Set_Etype (N, Typ);
10295 return;
10296 else
10297 Found := True;
10298 Array_Type := It.Typ;
10299 I1 := I;
10300 end if;
10301 else
10302 Found := True;
10303 Array_Type := It.Typ;
10304 I1 := I;
10305 end if;
10306 end if;
10308 Get_Next_Interp (I, It);
10309 end loop;
10310 end;
10312 else
10313 Array_Type := Etype (Name);
10314 end if;
10316 Resolve (Name, Array_Type);
10318 if Is_Access_Type (Array_Type) then
10319 Apply_Access_Check (N);
10320 Array_Type := Designated_Type (Array_Type);
10322 -- If the prefix is an access to an unconstrained array, we must use
10323 -- the actual subtype of the object to perform the index checks. The
10324 -- object denoted by the prefix is implicit in the node, so we build
10325 -- an explicit representation for it in order to compute the actual
10326 -- subtype.
10328 if not Is_Constrained (Array_Type) then
10329 Remove_Side_Effects (Prefix (N));
10331 declare
10332 Obj : constant Node_Id :=
10333 Make_Explicit_Dereference (Sloc (N),
10334 Prefix => New_Copy_Tree (Prefix (N)));
10335 begin
10336 Set_Etype (Obj, Array_Type);
10337 Set_Parent (Obj, Parent (N));
10338 Array_Type := Get_Actual_Subtype (Obj);
10339 end;
10340 end if;
10342 elsif Is_Entity_Name (Name)
10343 or else Nkind (Name) = N_Explicit_Dereference
10344 or else (Nkind (Name) = N_Function_Call
10345 and then not Is_Constrained (Etype (Name)))
10346 then
10347 Array_Type := Get_Actual_Subtype (Name);
10349 -- If the name is a selected component that depends on discriminants,
10350 -- build an actual subtype for it. This can happen only when the name
10351 -- itself is overloaded; otherwise the actual subtype is created when
10352 -- the selected component is analyzed.
10354 elsif Nkind (Name) = N_Selected_Component
10355 and then Full_Analysis
10356 and then Depends_On_Discriminant (First_Index (Array_Type))
10357 then
10358 declare
10359 Act_Decl : constant Node_Id :=
10360 Build_Actual_Subtype_Of_Component (Array_Type, Name);
10361 begin
10362 Insert_Action (N, Act_Decl);
10363 Array_Type := Defining_Identifier (Act_Decl);
10364 end;
10366 -- Maybe this should just be "else", instead of checking for the
10367 -- specific case of slice??? This is needed for the case where the
10368 -- prefix is an Image attribute, which gets expanded to a slice, and so
10369 -- has a constrained subtype which we want to use for the slice range
10370 -- check applied below (the range check won't get done if the
10371 -- unconstrained subtype of the 'Image is used).
10373 elsif Nkind (Name) = N_Slice then
10374 Array_Type := Etype (Name);
10375 end if;
10377 -- Obtain the type of the array index
10379 if Ekind (Array_Type) = E_String_Literal_Subtype then
10380 Index_Type := Etype (String_Literal_Low_Bound (Array_Type));
10381 else
10382 Index_Type := Etype (First_Index (Array_Type));
10383 end if;
10385 -- If name was overloaded, set slice type correctly now
10387 Set_Etype (N, Array_Type);
10389 -- Handle the generation of a range check that compares the array index
10390 -- against the discrete_range. The check is not applied to internally
10391 -- built nodes associated with the expansion of dispatch tables. Check
10392 -- that Ada.Tags has already been loaded to avoid extra dependencies on
10393 -- the unit.
10395 if Tagged_Type_Expansion
10396 and then RTU_Loaded (Ada_Tags)
10397 and then Nkind (Prefix (N)) = N_Selected_Component
10398 and then Present (Entity (Selector_Name (Prefix (N))))
10399 and then Entity (Selector_Name (Prefix (N))) =
10400 RTE_Record_Component (RE_Prims_Ptr)
10401 then
10402 null;
10404 -- The discrete_range is specified by a subtype indication. Create a
10405 -- shallow copy and inherit the type, parent and source location from
10406 -- the discrete_range. This ensures that the range check is inserted
10407 -- relative to the slice and that the runtime exception points to the
10408 -- proper construct.
10410 elsif Is_Entity_Name (Drange) then
10411 Dexpr := New_Copy (Scalar_Range (Entity (Drange)));
10413 Set_Etype (Dexpr, Etype (Drange));
10414 Set_Parent (Dexpr, Parent (Drange));
10415 Set_Sloc (Dexpr, Sloc (Drange));
10417 -- The discrete_range is a regular range. Resolve the bounds and remove
10418 -- their side effects.
10420 else
10421 Resolve (Drange, Base_Type (Index_Type));
10423 if Nkind (Drange) = N_Range then
10424 Force_Evaluation (Low_Bound (Drange));
10425 Force_Evaluation (High_Bound (Drange));
10427 Dexpr := Drange;
10428 end if;
10429 end if;
10431 if Present (Dexpr) then
10432 Apply_Range_Check (Dexpr, Index_Type);
10433 end if;
10435 Set_Slice_Subtype (N);
10437 -- Check bad use of type with predicates
10439 declare
10440 Subt : Entity_Id;
10442 begin
10443 if Nkind (Drange) = N_Subtype_Indication
10444 and then Has_Predicates (Entity (Subtype_Mark (Drange)))
10445 then
10446 Subt := Entity (Subtype_Mark (Drange));
10447 else
10448 Subt := Etype (Drange);
10449 end if;
10451 if Has_Predicates (Subt) then
10452 Bad_Predicated_Subtype_Use
10453 ("subtype& has predicate, not allowed in slice", Drange, Subt);
10454 end if;
10455 end;
10457 -- Otherwise here is where we check suspicious indexes
10459 if Nkind (Drange) = N_Range then
10460 Warn_On_Suspicious_Index (Name, Low_Bound (Drange));
10461 Warn_On_Suspicious_Index (Name, High_Bound (Drange));
10462 end if;
10464 Analyze_Dimension (N);
10465 Eval_Slice (N);
10466 end Resolve_Slice;
10468 ----------------------------
10469 -- Resolve_String_Literal --
10470 ----------------------------
10472 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id) is
10473 C_Typ : constant Entity_Id := Component_Type (Typ);
10474 R_Typ : constant Entity_Id := Root_Type (C_Typ);
10475 Loc : constant Source_Ptr := Sloc (N);
10476 Str : constant String_Id := Strval (N);
10477 Strlen : constant Nat := String_Length (Str);
10478 Subtype_Id : Entity_Id;
10479 Need_Check : Boolean;
10481 begin
10482 -- For a string appearing in a concatenation, defer creation of the
10483 -- string_literal_subtype until the end of the resolution of the
10484 -- concatenation, because the literal may be constant-folded away. This
10485 -- is a useful optimization for long concatenation expressions.
10487 -- If the string is an aggregate built for a single character (which
10488 -- happens in a non-static context) or a is null string to which special
10489 -- checks may apply, we build the subtype. Wide strings must also get a
10490 -- string subtype if they come from a one character aggregate. Strings
10491 -- generated by attributes might be static, but it is often hard to
10492 -- determine whether the enclosing context is static, so we generate
10493 -- subtypes for them as well, thus losing some rarer optimizations ???
10494 -- Same for strings that come from a static conversion.
10496 Need_Check :=
10497 (Strlen = 0 and then Typ /= Standard_String)
10498 or else Nkind (Parent (N)) /= N_Op_Concat
10499 or else (N /= Left_Opnd (Parent (N))
10500 and then N /= Right_Opnd (Parent (N)))
10501 or else ((Typ = Standard_Wide_String
10502 or else Typ = Standard_Wide_Wide_String)
10503 and then Nkind (Original_Node (N)) /= N_String_Literal);
10505 -- If the resolving type is itself a string literal subtype, we can just
10506 -- reuse it, since there is no point in creating another.
10508 if Ekind (Typ) = E_String_Literal_Subtype then
10509 Subtype_Id := Typ;
10511 elsif Nkind (Parent (N)) = N_Op_Concat
10512 and then not Need_Check
10513 and then not Nkind_In (Original_Node (N), N_Character_Literal,
10514 N_Attribute_Reference,
10515 N_Qualified_Expression,
10516 N_Type_Conversion)
10517 then
10518 Subtype_Id := Typ;
10520 -- Do not generate a string literal subtype for the default expression
10521 -- of a formal parameter in GNATprove mode. This is because the string
10522 -- subtype is associated with the freezing actions of the subprogram,
10523 -- however freezing is disabled in GNATprove mode and as a result the
10524 -- subtype is unavailable.
10526 elsif GNATprove_Mode
10527 and then Nkind (Parent (N)) = N_Parameter_Specification
10528 then
10529 Subtype_Id := Typ;
10531 -- Otherwise we must create a string literal subtype. Note that the
10532 -- whole idea of string literal subtypes is simply to avoid the need
10533 -- for building a full fledged array subtype for each literal.
10535 else
10536 Set_String_Literal_Subtype (N, Typ);
10537 Subtype_Id := Etype (N);
10538 end if;
10540 if Nkind (Parent (N)) /= N_Op_Concat
10541 or else Need_Check
10542 then
10543 Set_Etype (N, Subtype_Id);
10544 Eval_String_Literal (N);
10545 end if;
10547 if Is_Limited_Composite (Typ)
10548 or else Is_Private_Composite (Typ)
10549 then
10550 Error_Msg_N ("string literal not available for private array", N);
10551 Set_Etype (N, Any_Type);
10552 return;
10553 end if;
10555 -- The validity of a null string has been checked in the call to
10556 -- Eval_String_Literal.
10558 if Strlen = 0 then
10559 return;
10561 -- Always accept string literal with component type Any_Character, which
10562 -- occurs in error situations and in comparisons of literals, both of
10563 -- which should accept all literals.
10565 elsif R_Typ = Any_Character then
10566 return;
10568 -- If the type is bit-packed, then we always transform the string
10569 -- literal into a full fledged aggregate.
10571 elsif Is_Bit_Packed_Array (Typ) then
10572 null;
10574 -- Deal with cases of Wide_Wide_String, Wide_String, and String
10576 else
10577 -- For Standard.Wide_Wide_String, or any other type whose component
10578 -- type is Standard.Wide_Wide_Character, we know that all the
10579 -- characters in the string must be acceptable, since the parser
10580 -- accepted the characters as valid character literals.
10582 if R_Typ = Standard_Wide_Wide_Character then
10583 null;
10585 -- For the case of Standard.String, or any other type whose component
10586 -- type is Standard.Character, we must make sure that there are no
10587 -- wide characters in the string, i.e. that it is entirely composed
10588 -- of characters in range of type Character.
10590 -- If the string literal is the result of a static concatenation, the
10591 -- test has already been performed on the components, and need not be
10592 -- repeated.
10594 elsif R_Typ = Standard_Character
10595 and then Nkind (Original_Node (N)) /= N_Op_Concat
10596 then
10597 for J in 1 .. Strlen loop
10598 if not In_Character_Range (Get_String_Char (Str, J)) then
10600 -- If we are out of range, post error. This is one of the
10601 -- very few places that we place the flag in the middle of
10602 -- a token, right under the offending wide character. Not
10603 -- quite clear if this is right wrt wide character encoding
10604 -- sequences, but it's only an error message.
10606 Error_Msg
10607 ("literal out of range of type Standard.Character",
10608 Source_Ptr (Int (Loc) + J));
10609 return;
10610 end if;
10611 end loop;
10613 -- For the case of Standard.Wide_String, or any other type whose
10614 -- component type is Standard.Wide_Character, we must make sure that
10615 -- there are no wide characters in the string, i.e. that it is
10616 -- entirely composed of characters in range of type Wide_Character.
10618 -- If the string literal is the result of a static concatenation,
10619 -- the test has already been performed on the components, and need
10620 -- not be repeated.
10622 elsif R_Typ = Standard_Wide_Character
10623 and then Nkind (Original_Node (N)) /= N_Op_Concat
10624 then
10625 for J in 1 .. Strlen loop
10626 if not In_Wide_Character_Range (Get_String_Char (Str, J)) then
10628 -- If we are out of range, post error. This is one of the
10629 -- very few places that we place the flag in the middle of
10630 -- a token, right under the offending wide character.
10632 -- This is not quite right, because characters in general
10633 -- will take more than one character position ???
10635 Error_Msg
10636 ("literal out of range of type Standard.Wide_Character",
10637 Source_Ptr (Int (Loc) + J));
10638 return;
10639 end if;
10640 end loop;
10642 -- If the root type is not a standard character, then we will convert
10643 -- the string into an aggregate and will let the aggregate code do
10644 -- the checking. Standard Wide_Wide_Character is also OK here.
10646 else
10647 null;
10648 end if;
10650 -- See if the component type of the array corresponding to the string
10651 -- has compile time known bounds. If yes we can directly check
10652 -- whether the evaluation of the string will raise constraint error.
10653 -- Otherwise we need to transform the string literal into the
10654 -- corresponding character aggregate and let the aggregate code do
10655 -- the checking.
10657 if Is_Standard_Character_Type (R_Typ) then
10659 -- Check for the case of full range, where we are definitely OK
10661 if Component_Type (Typ) = Base_Type (Component_Type (Typ)) then
10662 return;
10663 end if;
10665 -- Here the range is not the complete base type range, so check
10667 declare
10668 Comp_Typ_Lo : constant Node_Id :=
10669 Type_Low_Bound (Component_Type (Typ));
10670 Comp_Typ_Hi : constant Node_Id :=
10671 Type_High_Bound (Component_Type (Typ));
10673 Char_Val : Uint;
10675 begin
10676 if Compile_Time_Known_Value (Comp_Typ_Lo)
10677 and then Compile_Time_Known_Value (Comp_Typ_Hi)
10678 then
10679 for J in 1 .. Strlen loop
10680 Char_Val := UI_From_Int (Int (Get_String_Char (Str, J)));
10682 if Char_Val < Expr_Value (Comp_Typ_Lo)
10683 or else Char_Val > Expr_Value (Comp_Typ_Hi)
10684 then
10685 Apply_Compile_Time_Constraint_Error
10686 (N, "character out of range??",
10687 CE_Range_Check_Failed,
10688 Loc => Source_Ptr (Int (Loc) + J));
10689 end if;
10690 end loop;
10692 return;
10693 end if;
10694 end;
10695 end if;
10696 end if;
10698 -- If we got here we meed to transform the string literal into the
10699 -- equivalent qualified positional array aggregate. This is rather
10700 -- heavy artillery for this situation, but it is hard work to avoid.
10702 declare
10703 Lits : constant List_Id := New_List;
10704 P : Source_Ptr := Loc + 1;
10705 C : Char_Code;
10707 begin
10708 -- Build the character literals, we give them source locations that
10709 -- correspond to the string positions, which is a bit tricky given
10710 -- the possible presence of wide character escape sequences.
10712 for J in 1 .. Strlen loop
10713 C := Get_String_Char (Str, J);
10714 Set_Character_Literal_Name (C);
10716 Append_To (Lits,
10717 Make_Character_Literal (P,
10718 Chars => Name_Find,
10719 Char_Literal_Value => UI_From_CC (C)));
10721 if In_Character_Range (C) then
10722 P := P + 1;
10724 -- Should we have a call to Skip_Wide here ???
10726 -- ??? else
10727 -- Skip_Wide (P);
10729 end if;
10730 end loop;
10732 Rewrite (N,
10733 Make_Qualified_Expression (Loc,
10734 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
10735 Expression =>
10736 Make_Aggregate (Loc, Expressions => Lits)));
10738 Analyze_And_Resolve (N, Typ);
10739 end;
10740 end Resolve_String_Literal;
10742 -------------------------
10743 -- Resolve_Target_Name --
10744 -------------------------
10746 procedure Resolve_Target_Name (N : Node_Id; Typ : Entity_Id) is
10747 begin
10748 Set_Etype (N, Typ);
10749 end Resolve_Target_Name;
10751 -----------------------------
10752 -- Resolve_Type_Conversion --
10753 -----------------------------
10755 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id) is
10756 Conv_OK : constant Boolean := Conversion_OK (N);
10757 Operand : constant Node_Id := Expression (N);
10758 Operand_Typ : constant Entity_Id := Etype (Operand);
10759 Target_Typ : constant Entity_Id := Etype (N);
10760 Rop : Node_Id;
10761 Orig_N : Node_Id;
10762 Orig_T : Node_Id;
10764 Test_Redundant : Boolean := Warn_On_Redundant_Constructs;
10765 -- Set to False to suppress cases where we want to suppress the test
10766 -- for redundancy to avoid possible false positives on this warning.
10768 begin
10769 if not Conv_OK
10770 and then not Valid_Conversion (N, Target_Typ, Operand)
10771 then
10772 return;
10773 end if;
10775 -- If the Operand Etype is Universal_Fixed, then the conversion is
10776 -- never redundant. We need this check because by the time we have
10777 -- finished the rather complex transformation, the conversion looks
10778 -- redundant when it is not.
10780 if Operand_Typ = Universal_Fixed then
10781 Test_Redundant := False;
10783 -- If the operand is marked as Any_Fixed, then special processing is
10784 -- required. This is also a case where we suppress the test for a
10785 -- redundant conversion, since most certainly it is not redundant.
10787 elsif Operand_Typ = Any_Fixed then
10788 Test_Redundant := False;
10790 -- Mixed-mode operation involving a literal. Context must be a fixed
10791 -- type which is applied to the literal subsequently.
10793 -- Multiplication and division involving two fixed type operands must
10794 -- yield a universal real because the result is computed in arbitrary
10795 -- precision.
10797 if Is_Fixed_Point_Type (Typ)
10798 and then Nkind_In (Operand, N_Op_Divide, N_Op_Multiply)
10799 and then Etype (Left_Opnd (Operand)) = Any_Fixed
10800 and then Etype (Right_Opnd (Operand)) = Any_Fixed
10801 then
10802 Set_Etype (Operand, Universal_Real);
10804 elsif Is_Numeric_Type (Typ)
10805 and then Nkind_In (Operand, N_Op_Multiply, N_Op_Divide)
10806 and then (Etype (Right_Opnd (Operand)) = Universal_Real
10807 or else
10808 Etype (Left_Opnd (Operand)) = Universal_Real)
10809 then
10810 -- Return if expression is ambiguous
10812 if Unique_Fixed_Point_Type (N) = Any_Type then
10813 return;
10815 -- If nothing else, the available fixed type is Duration
10817 else
10818 Set_Etype (Operand, Standard_Duration);
10819 end if;
10821 -- Resolve the real operand with largest available precision
10823 if Etype (Right_Opnd (Operand)) = Universal_Real then
10824 Rop := New_Copy_Tree (Right_Opnd (Operand));
10825 else
10826 Rop := New_Copy_Tree (Left_Opnd (Operand));
10827 end if;
10829 Resolve (Rop, Universal_Real);
10831 -- If the operand is a literal (it could be a non-static and
10832 -- illegal exponentiation) check whether the use of Duration
10833 -- is potentially inaccurate.
10835 if Nkind (Rop) = N_Real_Literal
10836 and then Realval (Rop) /= Ureal_0
10837 and then abs (Realval (Rop)) < Delta_Value (Standard_Duration)
10838 then
10839 Error_Msg_N
10840 ("??universal real operand can only "
10841 & "be interpreted as Duration!", Rop);
10842 Error_Msg_N
10843 ("\??precision will be lost in the conversion!", Rop);
10844 end if;
10846 elsif Is_Numeric_Type (Typ)
10847 and then Nkind (Operand) in N_Op
10848 and then Unique_Fixed_Point_Type (N) /= Any_Type
10849 then
10850 Set_Etype (Operand, Standard_Duration);
10852 else
10853 Error_Msg_N ("invalid context for mixed mode operation", N);
10854 Set_Etype (Operand, Any_Type);
10855 return;
10856 end if;
10857 end if;
10859 Resolve (Operand);
10861 -- In SPARK, a type conversion between array types should be restricted
10862 -- to types which have matching static bounds.
10864 -- Protect call to Matching_Static_Array_Bounds to avoid costly
10865 -- operation if not needed.
10867 if Restriction_Check_Required (SPARK_05)
10868 and then Is_Array_Type (Target_Typ)
10869 and then Is_Array_Type (Operand_Typ)
10870 and then Operand_Typ /= Any_Composite -- or else Operand in error
10871 and then not Matching_Static_Array_Bounds (Target_Typ, Operand_Typ)
10872 then
10873 Check_SPARK_05_Restriction
10874 ("array types should have matching static bounds", N);
10875 end if;
10877 -- In formal mode, the operand of an ancestor type conversion must be an
10878 -- object (not an expression).
10880 if Is_Tagged_Type (Target_Typ)
10881 and then not Is_Class_Wide_Type (Target_Typ)
10882 and then Is_Tagged_Type (Operand_Typ)
10883 and then not Is_Class_Wide_Type (Operand_Typ)
10884 and then Is_Ancestor (Target_Typ, Operand_Typ)
10885 and then not Is_SPARK_05_Object_Reference (Operand)
10886 then
10887 Check_SPARK_05_Restriction ("object required", Operand);
10888 end if;
10890 Analyze_Dimension (N);
10892 -- Note: we do the Eval_Type_Conversion call before applying the
10893 -- required checks for a subtype conversion. This is important, since
10894 -- both are prepared under certain circumstances to change the type
10895 -- conversion to a constraint error node, but in the case of
10896 -- Eval_Type_Conversion this may reflect an illegality in the static
10897 -- case, and we would miss the illegality (getting only a warning
10898 -- message), if we applied the type conversion checks first.
10900 Eval_Type_Conversion (N);
10902 -- Even when evaluation is not possible, we may be able to simplify the
10903 -- conversion or its expression. This needs to be done before applying
10904 -- checks, since otherwise the checks may use the original expression
10905 -- and defeat the simplifications. This is specifically the case for
10906 -- elimination of the floating-point Truncation attribute in
10907 -- float-to-int conversions.
10909 Simplify_Type_Conversion (N);
10911 -- If after evaluation we still have a type conversion, then we may need
10912 -- to apply checks required for a subtype conversion.
10914 -- Skip these type conversion checks if universal fixed operands
10915 -- operands involved, since range checks are handled separately for
10916 -- these cases (in the appropriate Expand routines in unit Exp_Fixd).
10918 if Nkind (N) = N_Type_Conversion
10919 and then not Is_Generic_Type (Root_Type (Target_Typ))
10920 and then Target_Typ /= Universal_Fixed
10921 and then Operand_Typ /= Universal_Fixed
10922 then
10923 Apply_Type_Conversion_Checks (N);
10924 end if;
10926 -- Issue warning for conversion of simple object to its own type. We
10927 -- have to test the original nodes, since they may have been rewritten
10928 -- by various optimizations.
10930 Orig_N := Original_Node (N);
10932 -- Here we test for a redundant conversion if the warning mode is
10933 -- active (and was not locally reset), and we have a type conversion
10934 -- from source not appearing in a generic instance.
10936 if Test_Redundant
10937 and then Nkind (Orig_N) = N_Type_Conversion
10938 and then Comes_From_Source (Orig_N)
10939 and then not In_Instance
10940 then
10941 Orig_N := Original_Node (Expression (Orig_N));
10942 Orig_T := Target_Typ;
10944 -- If the node is part of a larger expression, the Target_Type
10945 -- may not be the original type of the node if the context is a
10946 -- condition. Recover original type to see if conversion is needed.
10948 if Is_Boolean_Type (Orig_T)
10949 and then Nkind (Parent (N)) in N_Op
10950 then
10951 Orig_T := Etype (Parent (N));
10952 end if;
10954 -- If we have an entity name, then give the warning if the entity
10955 -- is the right type, or if it is a loop parameter covered by the
10956 -- original type (that's needed because loop parameters have an
10957 -- odd subtype coming from the bounds).
10959 if (Is_Entity_Name (Orig_N)
10960 and then
10961 (Etype (Entity (Orig_N)) = Orig_T
10962 or else
10963 (Ekind (Entity (Orig_N)) = E_Loop_Parameter
10964 and then Covers (Orig_T, Etype (Entity (Orig_N))))))
10966 -- If not an entity, then type of expression must match
10968 or else Etype (Orig_N) = Orig_T
10969 then
10970 -- One more check, do not give warning if the analyzed conversion
10971 -- has an expression with non-static bounds, and the bounds of the
10972 -- target are static. This avoids junk warnings in cases where the
10973 -- conversion is necessary to establish staticness, for example in
10974 -- a case statement.
10976 if not Is_OK_Static_Subtype (Operand_Typ)
10977 and then Is_OK_Static_Subtype (Target_Typ)
10978 then
10979 null;
10981 -- Finally, if this type conversion occurs in a context requiring
10982 -- a prefix, and the expression is a qualified expression then the
10983 -- type conversion is not redundant, since a qualified expression
10984 -- is not a prefix, whereas a type conversion is. For example, "X
10985 -- := T'(Funx(...)).Y;" is illegal because a selected component
10986 -- requires a prefix, but a type conversion makes it legal: "X :=
10987 -- T(T'(Funx(...))).Y;"
10989 -- In Ada 2012, a qualified expression is a name, so this idiom is
10990 -- no longer needed, but we still suppress the warning because it
10991 -- seems unfriendly for warnings to pop up when you switch to the
10992 -- newer language version.
10994 elsif Nkind (Orig_N) = N_Qualified_Expression
10995 and then Nkind_In (Parent (N), N_Attribute_Reference,
10996 N_Indexed_Component,
10997 N_Selected_Component,
10998 N_Slice,
10999 N_Explicit_Dereference)
11000 then
11001 null;
11003 -- Never warn on conversion to Long_Long_Integer'Base since
11004 -- that is most likely an artifact of the extended overflow
11005 -- checking and comes from complex expanded code.
11007 elsif Orig_T = Base_Type (Standard_Long_Long_Integer) then
11008 null;
11010 -- Here we give the redundant conversion warning. If it is an
11011 -- entity, give the name of the entity in the message. If not,
11012 -- just mention the expression.
11014 -- Shoudn't we test Warn_On_Redundant_Constructs here ???
11016 else
11017 if Is_Entity_Name (Orig_N) then
11018 Error_Msg_Node_2 := Orig_T;
11019 Error_Msg_NE -- CODEFIX
11020 ("??redundant conversion, & is of type &!",
11021 N, Entity (Orig_N));
11022 else
11023 Error_Msg_NE
11024 ("??redundant conversion, expression is of type&!",
11025 N, Orig_T);
11026 end if;
11027 end if;
11028 end if;
11029 end if;
11031 -- Ada 2005 (AI-251): Handle class-wide interface type conversions.
11032 -- No need to perform any interface conversion if the type of the
11033 -- expression coincides with the target type.
11035 if Ada_Version >= Ada_2005
11036 and then Expander_Active
11037 and then Operand_Typ /= Target_Typ
11038 then
11039 declare
11040 Opnd : Entity_Id := Operand_Typ;
11041 Target : Entity_Id := Target_Typ;
11043 begin
11044 -- If the type of the operand is a limited view, use nonlimited
11045 -- view when available. If it is a class-wide type, recover the
11046 -- class-wide type of the nonlimited view.
11048 if From_Limited_With (Opnd)
11049 and then Has_Non_Limited_View (Opnd)
11050 then
11051 Opnd := Non_Limited_View (Opnd);
11052 Set_Etype (Expression (N), Opnd);
11053 end if;
11055 if Is_Access_Type (Opnd) then
11056 Opnd := Designated_Type (Opnd);
11057 end if;
11059 if Is_Access_Type (Target_Typ) then
11060 Target := Designated_Type (Target);
11061 end if;
11063 if Opnd = Target then
11064 null;
11066 -- Conversion from interface type
11068 elsif Is_Interface (Opnd) then
11070 -- Ada 2005 (AI-217): Handle entities from limited views
11072 if From_Limited_With (Opnd) then
11073 Error_Msg_Qual_Level := 99;
11074 Error_Msg_NE -- CODEFIX
11075 ("missing WITH clause on package &", N,
11076 Cunit_Entity (Get_Source_Unit (Base_Type (Opnd))));
11077 Error_Msg_N
11078 ("type conversions require visibility of the full view",
11081 elsif From_Limited_With (Target)
11082 and then not
11083 (Is_Access_Type (Target_Typ)
11084 and then Present (Non_Limited_View (Etype (Target))))
11085 then
11086 Error_Msg_Qual_Level := 99;
11087 Error_Msg_NE -- CODEFIX
11088 ("missing WITH clause on package &", N,
11089 Cunit_Entity (Get_Source_Unit (Base_Type (Target))));
11090 Error_Msg_N
11091 ("type conversions require visibility of the full view",
11094 else
11095 Expand_Interface_Conversion (N);
11096 end if;
11098 -- Conversion to interface type
11100 elsif Is_Interface (Target) then
11102 -- Handle subtypes
11104 if Ekind_In (Opnd, E_Protected_Subtype, E_Task_Subtype) then
11105 Opnd := Etype (Opnd);
11106 end if;
11108 if Is_Class_Wide_Type (Opnd)
11109 or else Interface_Present_In_Ancestor
11110 (Typ => Opnd,
11111 Iface => Target)
11112 then
11113 Expand_Interface_Conversion (N);
11114 else
11115 Error_Msg_Name_1 := Chars (Etype (Target));
11116 Error_Msg_Name_2 := Chars (Opnd);
11117 Error_Msg_N
11118 ("wrong interface conversion (% is not a progenitor "
11119 & "of %)", N);
11120 end if;
11121 end if;
11122 end;
11123 end if;
11125 -- Ada 2012: once the type conversion is resolved, check whether the
11126 -- operand statisfies the static predicate of the target type.
11128 if Has_Predicates (Target_Typ) then
11129 Check_Expression_Against_Static_Predicate (N, Target_Typ);
11130 end if;
11132 -- If at this stage we have a real to integer conversion, make sure that
11133 -- the Do_Range_Check flag is set, because such conversions in general
11134 -- need a range check. We only need this if expansion is off.
11135 -- In GNATprove mode, we only do that when converting from fixed-point
11136 -- (as floating-point to integer conversions are now handled in
11137 -- GNATprove mode).
11139 if Nkind (N) = N_Type_Conversion
11140 and then not Expander_Active
11141 and then Is_Integer_Type (Target_Typ)
11142 and then (Is_Fixed_Point_Type (Operand_Typ)
11143 or else (not GNATprove_Mode
11144 and then Is_Floating_Point_Type (Operand_Typ)))
11145 then
11146 Set_Do_Range_Check (Operand);
11147 end if;
11149 -- Generating C code a type conversion of an access to constrained
11150 -- array type to access to unconstrained array type involves building
11151 -- a fat pointer which in general cannot be generated on the fly. We
11152 -- remove side effects in order to store the result of the conversion
11153 -- into a temporary.
11155 if Modify_Tree_For_C
11156 and then Nkind (N) = N_Type_Conversion
11157 and then Nkind (Parent (N)) /= N_Object_Declaration
11158 and then Is_Access_Type (Etype (N))
11159 and then Is_Array_Type (Designated_Type (Etype (N)))
11160 and then not Is_Constrained (Designated_Type (Etype (N)))
11161 and then Is_Constrained (Designated_Type (Etype (Expression (N))))
11162 then
11163 Remove_Side_Effects (N);
11164 end if;
11165 end Resolve_Type_Conversion;
11167 ----------------------
11168 -- Resolve_Unary_Op --
11169 ----------------------
11171 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id) is
11172 B_Typ : constant Entity_Id := Base_Type (Typ);
11173 R : constant Node_Id := Right_Opnd (N);
11174 OK : Boolean;
11175 Lo : Uint;
11176 Hi : Uint;
11178 begin
11179 if Is_Modular_Integer_Type (Typ) and then Nkind (N) /= N_Op_Not then
11180 Error_Msg_Name_1 := Chars (Typ);
11181 Check_SPARK_05_Restriction
11182 ("unary operator not defined for modular type%", N);
11183 end if;
11185 -- Deal with intrinsic unary operators
11187 if Comes_From_Source (N)
11188 and then Ekind (Entity (N)) = E_Function
11189 and then Is_Imported (Entity (N))
11190 and then Is_Intrinsic_Subprogram (Entity (N))
11191 then
11192 Resolve_Intrinsic_Unary_Operator (N, Typ);
11193 return;
11194 end if;
11196 -- Deal with universal cases
11198 if Etype (R) = Universal_Integer
11199 or else
11200 Etype (R) = Universal_Real
11201 then
11202 Check_For_Visible_Operator (N, B_Typ);
11203 end if;
11205 Set_Etype (N, B_Typ);
11206 Resolve (R, B_Typ);
11208 -- Generate warning for expressions like abs (x mod 2)
11210 if Warn_On_Redundant_Constructs
11211 and then Nkind (N) = N_Op_Abs
11212 then
11213 Determine_Range (Right_Opnd (N), OK, Lo, Hi);
11215 if OK and then Hi >= Lo and then Lo >= 0 then
11216 Error_Msg_N -- CODEFIX
11217 ("?r?abs applied to known non-negative value has no effect", N);
11218 end if;
11219 end if;
11221 -- Deal with reference generation
11223 Check_Unset_Reference (R);
11224 Generate_Operator_Reference (N, B_Typ);
11225 Analyze_Dimension (N);
11226 Eval_Unary_Op (N);
11228 -- Set overflow checking bit. Much cleverer code needed here eventually
11229 -- and perhaps the Resolve routines should be separated for the various
11230 -- arithmetic operations, since they will need different processing ???
11232 if Nkind (N) in N_Op then
11233 if not Overflow_Checks_Suppressed (Etype (N)) then
11234 Enable_Overflow_Check (N);
11235 end if;
11236 end if;
11238 -- Generate warning for expressions like -5 mod 3 for integers. No need
11239 -- to worry in the floating-point case, since parens do not affect the
11240 -- result so there is no point in giving in a warning.
11242 declare
11243 Norig : constant Node_Id := Original_Node (N);
11244 Rorig : Node_Id;
11245 Val : Uint;
11246 HB : Uint;
11247 LB : Uint;
11248 Lval : Uint;
11249 Opnd : Node_Id;
11251 begin
11252 if Warn_On_Questionable_Missing_Parens
11253 and then Comes_From_Source (Norig)
11254 and then Is_Integer_Type (Typ)
11255 and then Nkind (Norig) = N_Op_Minus
11256 then
11257 Rorig := Original_Node (Right_Opnd (Norig));
11259 -- We are looking for cases where the right operand is not
11260 -- parenthesized, and is a binary operator, multiply, divide, or
11261 -- mod. These are the cases where the grouping can affect results.
11263 if Paren_Count (Rorig) = 0
11264 and then Nkind_In (Rorig, N_Op_Mod, N_Op_Multiply, N_Op_Divide)
11265 then
11266 -- For mod, we always give the warning, since the value is
11267 -- affected by the parenthesization (e.g. (-5) mod 315 /=
11268 -- -(5 mod 315)). But for the other cases, the only concern is
11269 -- overflow, e.g. for the case of 8 big signed (-(2 * 64)
11270 -- overflows, but (-2) * 64 does not). So we try to give the
11271 -- message only when overflow is possible.
11273 if Nkind (Rorig) /= N_Op_Mod
11274 and then Compile_Time_Known_Value (R)
11275 then
11276 Val := Expr_Value (R);
11278 if Compile_Time_Known_Value (Type_High_Bound (Typ)) then
11279 HB := Expr_Value (Type_High_Bound (Typ));
11280 else
11281 HB := Expr_Value (Type_High_Bound (Base_Type (Typ)));
11282 end if;
11284 if Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
11285 LB := Expr_Value (Type_Low_Bound (Typ));
11286 else
11287 LB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
11288 end if;
11290 -- Note that the test below is deliberately excluding the
11291 -- largest negative number, since that is a potentially
11292 -- troublesome case (e.g. -2 * x, where the result is the
11293 -- largest negative integer has an overflow with 2 * x).
11295 if Val > LB and then Val <= HB then
11296 return;
11297 end if;
11298 end if;
11300 -- For the multiplication case, the only case we have to worry
11301 -- about is when (-a)*b is exactly the largest negative number
11302 -- so that -(a*b) can cause overflow. This can only happen if
11303 -- a is a power of 2, and more generally if any operand is a
11304 -- constant that is not a power of 2, then the parentheses
11305 -- cannot affect whether overflow occurs. We only bother to
11306 -- test the left most operand
11308 -- Loop looking at left operands for one that has known value
11310 Opnd := Rorig;
11311 Opnd_Loop : while Nkind (Opnd) = N_Op_Multiply loop
11312 if Compile_Time_Known_Value (Left_Opnd (Opnd)) then
11313 Lval := UI_Abs (Expr_Value (Left_Opnd (Opnd)));
11315 -- Operand value of 0 or 1 skips warning
11317 if Lval <= 1 then
11318 return;
11320 -- Otherwise check power of 2, if power of 2, warn, if
11321 -- anything else, skip warning.
11323 else
11324 while Lval /= 2 loop
11325 if Lval mod 2 = 1 then
11326 return;
11327 else
11328 Lval := Lval / 2;
11329 end if;
11330 end loop;
11332 exit Opnd_Loop;
11333 end if;
11334 end if;
11336 -- Keep looking at left operands
11338 Opnd := Left_Opnd (Opnd);
11339 end loop Opnd_Loop;
11341 -- For rem or "/" we can only have a problematic situation
11342 -- if the divisor has a value of minus one or one. Otherwise
11343 -- overflow is impossible (divisor > 1) or we have a case of
11344 -- division by zero in any case.
11346 if Nkind_In (Rorig, N_Op_Divide, N_Op_Rem)
11347 and then Compile_Time_Known_Value (Right_Opnd (Rorig))
11348 and then UI_Abs (Expr_Value (Right_Opnd (Rorig))) /= 1
11349 then
11350 return;
11351 end if;
11353 -- If we fall through warning should be issued
11355 -- Shouldn't we test Warn_On_Questionable_Missing_Parens ???
11357 Error_Msg_N
11358 ("??unary minus expression should be parenthesized here!", N);
11359 end if;
11360 end if;
11361 end;
11362 end Resolve_Unary_Op;
11364 ----------------------------------
11365 -- Resolve_Unchecked_Expression --
11366 ----------------------------------
11368 procedure Resolve_Unchecked_Expression
11369 (N : Node_Id;
11370 Typ : Entity_Id)
11372 begin
11373 Resolve (Expression (N), Typ, Suppress => All_Checks);
11374 Set_Etype (N, Typ);
11375 end Resolve_Unchecked_Expression;
11377 ---------------------------------------
11378 -- Resolve_Unchecked_Type_Conversion --
11379 ---------------------------------------
11381 procedure Resolve_Unchecked_Type_Conversion
11382 (N : Node_Id;
11383 Typ : Entity_Id)
11385 pragma Warnings (Off, Typ);
11387 Operand : constant Node_Id := Expression (N);
11388 Opnd_Type : constant Entity_Id := Etype (Operand);
11390 begin
11391 -- Resolve operand using its own type
11393 Resolve (Operand, Opnd_Type);
11395 -- In an inlined context, the unchecked conversion may be applied
11396 -- to a literal, in which case its type is the type of the context.
11397 -- (In other contexts conversions cannot apply to literals).
11399 if In_Inlined_Body
11400 and then (Opnd_Type = Any_Character or else
11401 Opnd_Type = Any_Integer or else
11402 Opnd_Type = Any_Real)
11403 then
11404 Set_Etype (Operand, Typ);
11405 end if;
11407 Analyze_Dimension (N);
11408 Eval_Unchecked_Conversion (N);
11409 end Resolve_Unchecked_Type_Conversion;
11411 ------------------------------
11412 -- Rewrite_Operator_As_Call --
11413 ------------------------------
11415 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id) is
11416 Loc : constant Source_Ptr := Sloc (N);
11417 Actuals : constant List_Id := New_List;
11418 New_N : Node_Id;
11420 begin
11421 if Nkind (N) in N_Binary_Op then
11422 Append (Left_Opnd (N), Actuals);
11423 end if;
11425 Append (Right_Opnd (N), Actuals);
11427 New_N :=
11428 Make_Function_Call (Sloc => Loc,
11429 Name => New_Occurrence_Of (Nam, Loc),
11430 Parameter_Associations => Actuals);
11432 Preserve_Comes_From_Source (New_N, N);
11433 Preserve_Comes_From_Source (Name (New_N), N);
11434 Rewrite (N, New_N);
11435 Set_Etype (N, Etype (Nam));
11436 end Rewrite_Operator_As_Call;
11438 ------------------------------
11439 -- Rewrite_Renamed_Operator --
11440 ------------------------------
11442 procedure Rewrite_Renamed_Operator
11443 (N : Node_Id;
11444 Op : Entity_Id;
11445 Typ : Entity_Id)
11447 Nam : constant Name_Id := Chars (Op);
11448 Is_Binary : constant Boolean := Nkind (N) in N_Binary_Op;
11449 Op_Node : Node_Id;
11451 begin
11452 -- Do not perform this transformation within a pre/postcondition,
11453 -- because the expression will be reanalyzed, and the transformation
11454 -- might affect the visibility of the operator, e.g. in an instance.
11455 -- Note that fully analyzed and expanded pre/postconditions appear as
11456 -- pragma Check equivalents.
11458 if In_Pre_Post_Condition (N) then
11459 return;
11460 end if;
11462 -- Likewise when an expression function is being preanalyzed, since the
11463 -- expression will be reanalyzed as part of the generated body.
11465 if In_Spec_Expression then
11466 declare
11467 S : constant Entity_Id := Current_Scope_No_Loops;
11468 begin
11469 if Ekind (S) = E_Function
11470 and then Nkind (Original_Node (Unit_Declaration_Node (S)))
11471 = N_Expression_Function
11472 then
11473 return;
11474 end if;
11475 end;
11476 end if;
11478 -- Rewrite the operator node using the real operator, not its renaming.
11479 -- Exclude user-defined intrinsic operations of the same name, which are
11480 -- treated separately and rewritten as calls.
11482 if Ekind (Op) /= E_Function or else Chars (N) /= Nam then
11483 Op_Node := New_Node (Operator_Kind (Nam, Is_Binary), Sloc (N));
11484 Set_Chars (Op_Node, Nam);
11485 Set_Etype (Op_Node, Etype (N));
11486 Set_Entity (Op_Node, Op);
11487 Set_Right_Opnd (Op_Node, Right_Opnd (N));
11489 -- Indicate that both the original entity and its renaming are
11490 -- referenced at this point.
11492 Generate_Reference (Entity (N), N);
11493 Generate_Reference (Op, N);
11495 if Is_Binary then
11496 Set_Left_Opnd (Op_Node, Left_Opnd (N));
11497 end if;
11499 Rewrite (N, Op_Node);
11501 -- If the context type is private, add the appropriate conversions so
11502 -- that the operator is applied to the full view. This is done in the
11503 -- routines that resolve intrinsic operators.
11505 if Is_Intrinsic_Subprogram (Op) and then Is_Private_Type (Typ) then
11506 case Nkind (N) is
11507 when N_Op_Add
11508 | N_Op_Divide
11509 | N_Op_Expon
11510 | N_Op_Mod
11511 | N_Op_Multiply
11512 | N_Op_Rem
11513 | N_Op_Subtract
11515 Resolve_Intrinsic_Operator (N, Typ);
11517 when N_Op_Abs
11518 | N_Op_Minus
11519 | N_Op_Plus
11521 Resolve_Intrinsic_Unary_Operator (N, Typ);
11523 when others =>
11524 Resolve (N, Typ);
11525 end case;
11526 end if;
11528 elsif Ekind (Op) = E_Function and then Is_Intrinsic_Subprogram (Op) then
11530 -- Operator renames a user-defined operator of the same name. Use the
11531 -- original operator in the node, which is the one Gigi knows about.
11533 Set_Entity (N, Op);
11534 Set_Is_Overloaded (N, False);
11535 end if;
11536 end Rewrite_Renamed_Operator;
11538 -----------------------
11539 -- Set_Slice_Subtype --
11540 -----------------------
11542 -- Build an implicit subtype declaration to represent the type delivered by
11543 -- the slice. This is an abbreviated version of an array subtype. We define
11544 -- an index subtype for the slice, using either the subtype name or the
11545 -- discrete range of the slice. To be consistent with index usage elsewhere
11546 -- we create a list header to hold the single index. This list is not
11547 -- otherwise attached to the syntax tree.
11549 procedure Set_Slice_Subtype (N : Node_Id) is
11550 Loc : constant Source_Ptr := Sloc (N);
11551 Index_List : constant List_Id := New_List;
11552 Index : Node_Id;
11553 Index_Subtype : Entity_Id;
11554 Index_Type : Entity_Id;
11555 Slice_Subtype : Entity_Id;
11556 Drange : constant Node_Id := Discrete_Range (N);
11558 begin
11559 Index_Type := Base_Type (Etype (Drange));
11561 if Is_Entity_Name (Drange) then
11562 Index_Subtype := Entity (Drange);
11564 else
11565 -- We force the evaluation of a range. This is definitely needed in
11566 -- the renamed case, and seems safer to do unconditionally. Note in
11567 -- any case that since we will create and insert an Itype referring
11568 -- to this range, we must make sure any side effect removal actions
11569 -- are inserted before the Itype definition.
11571 if Nkind (Drange) = N_Range then
11572 Force_Evaluation (Low_Bound (Drange));
11573 Force_Evaluation (High_Bound (Drange));
11575 -- If the discrete range is given by a subtype indication, the
11576 -- type of the slice is the base of the subtype mark.
11578 elsif Nkind (Drange) = N_Subtype_Indication then
11579 declare
11580 R : constant Node_Id := Range_Expression (Constraint (Drange));
11581 begin
11582 Index_Type := Base_Type (Entity (Subtype_Mark (Drange)));
11583 Force_Evaluation (Low_Bound (R));
11584 Force_Evaluation (High_Bound (R));
11585 end;
11586 end if;
11588 Index_Subtype := Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
11590 -- Take a new copy of Drange (where bounds have been rewritten to
11591 -- reference side-effect-free names). Using a separate tree ensures
11592 -- that further expansion (e.g. while rewriting a slice assignment
11593 -- into a FOR loop) does not attempt to remove side effects on the
11594 -- bounds again (which would cause the bounds in the index subtype
11595 -- definition to refer to temporaries before they are defined) (the
11596 -- reason is that some names are considered side effect free here
11597 -- for the subtype, but not in the context of a loop iteration
11598 -- scheme).
11600 Set_Scalar_Range (Index_Subtype, New_Copy_Tree (Drange));
11601 Set_Parent (Scalar_Range (Index_Subtype), Index_Subtype);
11602 Set_Etype (Index_Subtype, Index_Type);
11603 Set_Size_Info (Index_Subtype, Index_Type);
11604 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
11605 end if;
11607 Slice_Subtype := Create_Itype (E_Array_Subtype, N);
11609 Index := New_Occurrence_Of (Index_Subtype, Loc);
11610 Set_Etype (Index, Index_Subtype);
11611 Append (Index, Index_List);
11613 Set_First_Index (Slice_Subtype, Index);
11614 Set_Etype (Slice_Subtype, Base_Type (Etype (N)));
11615 Set_Is_Constrained (Slice_Subtype, True);
11617 Check_Compile_Time_Size (Slice_Subtype);
11619 -- The Etype of the existing Slice node is reset to this slice subtype.
11620 -- Its bounds are obtained from its first index.
11622 Set_Etype (N, Slice_Subtype);
11624 -- For bit-packed slice subtypes, freeze immediately (except in the case
11625 -- of being in a "spec expression" where we never freeze when we first
11626 -- see the expression).
11628 if Is_Bit_Packed_Array (Slice_Subtype) and not In_Spec_Expression then
11629 Freeze_Itype (Slice_Subtype, N);
11631 -- For all other cases insert an itype reference in the slice's actions
11632 -- so that the itype is frozen at the proper place in the tree (i.e. at
11633 -- the point where actions for the slice are analyzed). Note that this
11634 -- is different from freezing the itype immediately, which might be
11635 -- premature (e.g. if the slice is within a transient scope). This needs
11636 -- to be done only if expansion is enabled.
11638 elsif Expander_Active then
11639 Ensure_Defined (Typ => Slice_Subtype, N => N);
11640 end if;
11641 end Set_Slice_Subtype;
11643 --------------------------------
11644 -- Set_String_Literal_Subtype --
11645 --------------------------------
11647 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id) is
11648 Loc : constant Source_Ptr := Sloc (N);
11649 Low_Bound : constant Node_Id :=
11650 Type_Low_Bound (Etype (First_Index (Typ)));
11651 Subtype_Id : Entity_Id;
11653 begin
11654 if Nkind (N) /= N_String_Literal then
11655 return;
11656 end if;
11658 Subtype_Id := Create_Itype (E_String_Literal_Subtype, N);
11659 Set_String_Literal_Length (Subtype_Id, UI_From_Int
11660 (String_Length (Strval (N))));
11661 Set_Etype (Subtype_Id, Base_Type (Typ));
11662 Set_Is_Constrained (Subtype_Id);
11663 Set_Etype (N, Subtype_Id);
11665 -- The low bound is set from the low bound of the corresponding index
11666 -- type. Note that we do not store the high bound in the string literal
11667 -- subtype, but it can be deduced if necessary from the length and the
11668 -- low bound.
11670 if Is_OK_Static_Expression (Low_Bound) then
11671 Set_String_Literal_Low_Bound (Subtype_Id, Low_Bound);
11673 -- If the lower bound is not static we create a range for the string
11674 -- literal, using the index type and the known length of the literal.
11675 -- The index type is not necessarily Positive, so the upper bound is
11676 -- computed as T'Val (T'Pos (Low_Bound) + L - 1).
11678 else
11679 declare
11680 Index_List : constant List_Id := New_List;
11681 Index_Type : constant Entity_Id := Etype (First_Index (Typ));
11682 High_Bound : constant Node_Id :=
11683 Make_Attribute_Reference (Loc,
11684 Attribute_Name => Name_Val,
11685 Prefix =>
11686 New_Occurrence_Of (Index_Type, Loc),
11687 Expressions => New_List (
11688 Make_Op_Add (Loc,
11689 Left_Opnd =>
11690 Make_Attribute_Reference (Loc,
11691 Attribute_Name => Name_Pos,
11692 Prefix =>
11693 New_Occurrence_Of (Index_Type, Loc),
11694 Expressions =>
11695 New_List (New_Copy_Tree (Low_Bound))),
11696 Right_Opnd =>
11697 Make_Integer_Literal (Loc,
11698 String_Length (Strval (N)) - 1))));
11700 Array_Subtype : Entity_Id;
11701 Drange : Node_Id;
11702 Index : Node_Id;
11703 Index_Subtype : Entity_Id;
11705 begin
11706 if Is_Integer_Type (Index_Type) then
11707 Set_String_Literal_Low_Bound
11708 (Subtype_Id, Make_Integer_Literal (Loc, 1));
11710 else
11711 -- If the index type is an enumeration type, build bounds
11712 -- expression with attributes.
11714 Set_String_Literal_Low_Bound
11715 (Subtype_Id,
11716 Make_Attribute_Reference (Loc,
11717 Attribute_Name => Name_First,
11718 Prefix =>
11719 New_Occurrence_Of (Base_Type (Index_Type), Loc)));
11720 Set_Etype (String_Literal_Low_Bound (Subtype_Id), Index_Type);
11721 end if;
11723 Analyze_And_Resolve (String_Literal_Low_Bound (Subtype_Id));
11725 -- Build bona fide subtype for the string, and wrap it in an
11726 -- unchecked conversion, because the backend expects the
11727 -- String_Literal_Subtype to have a static lower bound.
11729 Index_Subtype :=
11730 Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
11731 Drange := Make_Range (Loc, New_Copy_Tree (Low_Bound), High_Bound);
11732 Set_Scalar_Range (Index_Subtype, Drange);
11733 Set_Parent (Drange, N);
11734 Analyze_And_Resolve (Drange, Index_Type);
11736 -- In the context, the Index_Type may already have a constraint,
11737 -- so use common base type on string subtype. The base type may
11738 -- be used when generating attributes of the string, for example
11739 -- in the context of a slice assignment.
11741 Set_Etype (Index_Subtype, Base_Type (Index_Type));
11742 Set_Size_Info (Index_Subtype, Index_Type);
11743 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
11745 Array_Subtype := Create_Itype (E_Array_Subtype, N);
11747 Index := New_Occurrence_Of (Index_Subtype, Loc);
11748 Set_Etype (Index, Index_Subtype);
11749 Append (Index, Index_List);
11751 Set_First_Index (Array_Subtype, Index);
11752 Set_Etype (Array_Subtype, Base_Type (Typ));
11753 Set_Is_Constrained (Array_Subtype, True);
11755 Rewrite (N,
11756 Make_Unchecked_Type_Conversion (Loc,
11757 Subtype_Mark => New_Occurrence_Of (Array_Subtype, Loc),
11758 Expression => Relocate_Node (N)));
11759 Set_Etype (N, Array_Subtype);
11760 end;
11761 end if;
11762 end Set_String_Literal_Subtype;
11764 ------------------------------
11765 -- Simplify_Type_Conversion --
11766 ------------------------------
11768 procedure Simplify_Type_Conversion (N : Node_Id) is
11769 begin
11770 if Nkind (N) = N_Type_Conversion then
11771 declare
11772 Operand : constant Node_Id := Expression (N);
11773 Target_Typ : constant Entity_Id := Etype (N);
11774 Opnd_Typ : constant Entity_Id := Etype (Operand);
11776 begin
11777 -- Special processing if the conversion is the expression of a
11778 -- Rounding or Truncation attribute reference. In this case we
11779 -- replace:
11781 -- ityp (ftyp'Rounding (x)) or ityp (ftyp'Truncation (x))
11783 -- by
11785 -- ityp (x)
11787 -- with the Float_Truncate flag set to False or True respectively,
11788 -- which is more efficient.
11790 if Is_Floating_Point_Type (Opnd_Typ)
11791 and then
11792 (Is_Integer_Type (Target_Typ)
11793 or else (Is_Fixed_Point_Type (Target_Typ)
11794 and then Conversion_OK (N)))
11795 and then Nkind (Operand) = N_Attribute_Reference
11796 and then Nam_In (Attribute_Name (Operand), Name_Rounding,
11797 Name_Truncation)
11798 then
11799 declare
11800 Truncate : constant Boolean :=
11801 Attribute_Name (Operand) = Name_Truncation;
11802 begin
11803 Rewrite (Operand,
11804 Relocate_Node (First (Expressions (Operand))));
11805 Set_Float_Truncate (N, Truncate);
11806 end;
11807 end if;
11808 end;
11809 end if;
11810 end Simplify_Type_Conversion;
11812 -----------------------------
11813 -- Unique_Fixed_Point_Type --
11814 -----------------------------
11816 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id is
11817 procedure Fixed_Point_Error (T1 : Entity_Id; T2 : Entity_Id);
11818 -- Give error messages for true ambiguity. Messages are posted on node
11819 -- N, and entities T1, T2 are the possible interpretations.
11821 -----------------------
11822 -- Fixed_Point_Error --
11823 -----------------------
11825 procedure Fixed_Point_Error (T1 : Entity_Id; T2 : Entity_Id) is
11826 begin
11827 Error_Msg_N ("ambiguous universal_fixed_expression", N);
11828 Error_Msg_NE ("\\possible interpretation as}", N, T1);
11829 Error_Msg_NE ("\\possible interpretation as}", N, T2);
11830 end Fixed_Point_Error;
11832 -- Local variables
11834 ErrN : Node_Id;
11835 Item : Node_Id;
11836 Scop : Entity_Id;
11837 T1 : Entity_Id;
11838 T2 : Entity_Id;
11840 -- Start of processing for Unique_Fixed_Point_Type
11842 begin
11843 -- The operations on Duration are visible, so Duration is always a
11844 -- possible interpretation.
11846 T1 := Standard_Duration;
11848 -- Look for fixed-point types in enclosing scopes
11850 Scop := Current_Scope;
11851 while Scop /= Standard_Standard loop
11852 T2 := First_Entity (Scop);
11853 while Present (T2) loop
11854 if Is_Fixed_Point_Type (T2)
11855 and then Current_Entity (T2) = T2
11856 and then Scope (Base_Type (T2)) = Scop
11857 then
11858 if Present (T1) then
11859 Fixed_Point_Error (T1, T2);
11860 return Any_Type;
11861 else
11862 T1 := T2;
11863 end if;
11864 end if;
11866 Next_Entity (T2);
11867 end loop;
11869 Scop := Scope (Scop);
11870 end loop;
11872 -- Look for visible fixed type declarations in the context
11874 Item := First (Context_Items (Cunit (Current_Sem_Unit)));
11875 while Present (Item) loop
11876 if Nkind (Item) = N_With_Clause then
11877 Scop := Entity (Name (Item));
11878 T2 := First_Entity (Scop);
11879 while Present (T2) loop
11880 if Is_Fixed_Point_Type (T2)
11881 and then Scope (Base_Type (T2)) = Scop
11882 and then (Is_Potentially_Use_Visible (T2) or else In_Use (T2))
11883 then
11884 if Present (T1) then
11885 Fixed_Point_Error (T1, T2);
11886 return Any_Type;
11887 else
11888 T1 := T2;
11889 end if;
11890 end if;
11892 Next_Entity (T2);
11893 end loop;
11894 end if;
11896 Next (Item);
11897 end loop;
11899 if Nkind (N) = N_Real_Literal then
11900 Error_Msg_NE ("??real literal interpreted as }!", N, T1);
11902 else
11903 -- When the context is a type conversion, issue the warning on the
11904 -- expression of the conversion because it is the actual operation.
11906 if Nkind_In (N, N_Type_Conversion, N_Unchecked_Type_Conversion) then
11907 ErrN := Expression (N);
11908 else
11909 ErrN := N;
11910 end if;
11912 Error_Msg_NE
11913 ("??universal_fixed expression interpreted as }!", ErrN, T1);
11914 end if;
11916 return T1;
11917 end Unique_Fixed_Point_Type;
11919 ----------------------
11920 -- Valid_Conversion --
11921 ----------------------
11923 function Valid_Conversion
11924 (N : Node_Id;
11925 Target : Entity_Id;
11926 Operand : Node_Id;
11927 Report_Errs : Boolean := True) return Boolean
11929 Target_Type : constant Entity_Id := Base_Type (Target);
11930 Opnd_Type : Entity_Id := Etype (Operand);
11931 Inc_Ancestor : Entity_Id;
11933 function Conversion_Check
11934 (Valid : Boolean;
11935 Msg : String) return Boolean;
11936 -- Little routine to post Msg if Valid is False, returns Valid value
11938 procedure Conversion_Error_N (Msg : String; N : Node_Or_Entity_Id);
11939 -- If Report_Errs, then calls Errout.Error_Msg_N with its arguments
11941 procedure Conversion_Error_NE
11942 (Msg : String;
11943 N : Node_Or_Entity_Id;
11944 E : Node_Or_Entity_Id);
11945 -- If Report_Errs, then calls Errout.Error_Msg_NE with its arguments
11947 function In_Instance_Code return Boolean;
11948 -- Return True if expression is within an instance but is not in one of
11949 -- the actuals of the instantiation. Type conversions within an instance
11950 -- are not rechecked because type visbility may lead to spurious errors,
11951 -- but conversions in an actual for a formal object must be checked.
11953 function Valid_Tagged_Conversion
11954 (Target_Type : Entity_Id;
11955 Opnd_Type : Entity_Id) return Boolean;
11956 -- Specifically test for validity of tagged conversions
11958 function Valid_Array_Conversion return Boolean;
11959 -- Check index and component conformance, and accessibility levels if
11960 -- the component types are anonymous access types (Ada 2005).
11962 ----------------------
11963 -- Conversion_Check --
11964 ----------------------
11966 function Conversion_Check
11967 (Valid : Boolean;
11968 Msg : String) return Boolean
11970 begin
11971 if not Valid
11973 -- A generic unit has already been analyzed and we have verified
11974 -- that a particular conversion is OK in that context. Since the
11975 -- instance is reanalyzed without relying on the relationships
11976 -- established during the analysis of the generic, it is possible
11977 -- to end up with inconsistent views of private types. Do not emit
11978 -- the error message in such cases. The rest of the machinery in
11979 -- Valid_Conversion still ensures the proper compatibility of
11980 -- target and operand types.
11982 and then not In_Instance_Code
11983 then
11984 Conversion_Error_N (Msg, Operand);
11985 end if;
11987 return Valid;
11988 end Conversion_Check;
11990 ------------------------
11991 -- Conversion_Error_N --
11992 ------------------------
11994 procedure Conversion_Error_N (Msg : String; N : Node_Or_Entity_Id) is
11995 begin
11996 if Report_Errs then
11997 Error_Msg_N (Msg, N);
11998 end if;
11999 end Conversion_Error_N;
12001 -------------------------
12002 -- Conversion_Error_NE --
12003 -------------------------
12005 procedure Conversion_Error_NE
12006 (Msg : String;
12007 N : Node_Or_Entity_Id;
12008 E : Node_Or_Entity_Id)
12010 begin
12011 if Report_Errs then
12012 Error_Msg_NE (Msg, N, E);
12013 end if;
12014 end Conversion_Error_NE;
12016 ----------------------
12017 -- In_Instance_Code --
12018 ----------------------
12020 function In_Instance_Code return Boolean is
12021 Par : Node_Id;
12023 begin
12024 if not In_Instance then
12025 return False;
12027 else
12028 Par := Parent (N);
12029 while Present (Par) loop
12031 -- The expression is part of an actual object if it appears in
12032 -- the generated object declaration in the instance.
12034 if Nkind (Par) = N_Object_Declaration
12035 and then Present (Corresponding_Generic_Association (Par))
12036 then
12037 return False;
12039 else
12040 exit when
12041 Nkind (Par) in N_Statement_Other_Than_Procedure_Call
12042 or else Nkind (Par) in N_Subprogram_Call
12043 or else Nkind (Par) in N_Declaration;
12044 end if;
12046 Par := Parent (Par);
12047 end loop;
12049 -- Otherwise the expression appears within the instantiated unit
12051 return True;
12052 end if;
12053 end In_Instance_Code;
12055 ----------------------------
12056 -- Valid_Array_Conversion --
12057 ----------------------------
12059 function Valid_Array_Conversion return Boolean is
12060 Opnd_Comp_Type : constant Entity_Id := Component_Type (Opnd_Type);
12061 Opnd_Comp_Base : constant Entity_Id := Base_Type (Opnd_Comp_Type);
12063 Opnd_Index : Node_Id;
12064 Opnd_Index_Type : Entity_Id;
12066 Target_Comp_Type : constant Entity_Id :=
12067 Component_Type (Target_Type);
12068 Target_Comp_Base : constant Entity_Id :=
12069 Base_Type (Target_Comp_Type);
12071 Target_Index : Node_Id;
12072 Target_Index_Type : Entity_Id;
12074 begin
12075 -- Error if wrong number of dimensions
12078 Number_Dimensions (Target_Type) /= Number_Dimensions (Opnd_Type)
12079 then
12080 Conversion_Error_N
12081 ("incompatible number of dimensions for conversion", Operand);
12082 return False;
12084 -- Number of dimensions matches
12086 else
12087 -- Loop through indexes of the two arrays
12089 Target_Index := First_Index (Target_Type);
12090 Opnd_Index := First_Index (Opnd_Type);
12091 while Present (Target_Index) and then Present (Opnd_Index) loop
12092 Target_Index_Type := Etype (Target_Index);
12093 Opnd_Index_Type := Etype (Opnd_Index);
12095 -- Error if index types are incompatible
12097 if not (Is_Integer_Type (Target_Index_Type)
12098 and then Is_Integer_Type (Opnd_Index_Type))
12099 and then (Root_Type (Target_Index_Type)
12100 /= Root_Type (Opnd_Index_Type))
12101 then
12102 Conversion_Error_N
12103 ("incompatible index types for array conversion",
12104 Operand);
12105 return False;
12106 end if;
12108 Next_Index (Target_Index);
12109 Next_Index (Opnd_Index);
12110 end loop;
12112 -- If component types have same base type, all set
12114 if Target_Comp_Base = Opnd_Comp_Base then
12115 null;
12117 -- Here if base types of components are not the same. The only
12118 -- time this is allowed is if we have anonymous access types.
12120 -- The conversion of arrays of anonymous access types can lead
12121 -- to dangling pointers. AI-392 formalizes the accessibility
12122 -- checks that must be applied to such conversions to prevent
12123 -- out-of-scope references.
12125 elsif Ekind_In
12126 (Target_Comp_Base, E_Anonymous_Access_Type,
12127 E_Anonymous_Access_Subprogram_Type)
12128 and then Ekind (Opnd_Comp_Base) = Ekind (Target_Comp_Base)
12129 and then
12130 Subtypes_Statically_Match (Target_Comp_Type, Opnd_Comp_Type)
12131 then
12132 if Type_Access_Level (Target_Type) <
12133 Deepest_Type_Access_Level (Opnd_Type)
12134 then
12135 if In_Instance_Body then
12136 Error_Msg_Warn := SPARK_Mode /= On;
12137 Conversion_Error_N
12138 ("source array type has deeper accessibility "
12139 & "level than target<<", Operand);
12140 Conversion_Error_N ("\Program_Error [<<", Operand);
12141 Rewrite (N,
12142 Make_Raise_Program_Error (Sloc (N),
12143 Reason => PE_Accessibility_Check_Failed));
12144 Set_Etype (N, Target_Type);
12145 return False;
12147 -- Conversion not allowed because of accessibility levels
12149 else
12150 Conversion_Error_N
12151 ("source array type has deeper accessibility "
12152 & "level than target", Operand);
12153 return False;
12154 end if;
12156 else
12157 null;
12158 end if;
12160 -- All other cases where component base types do not match
12162 else
12163 Conversion_Error_N
12164 ("incompatible component types for array conversion",
12165 Operand);
12166 return False;
12167 end if;
12169 -- Check that component subtypes statically match. For numeric
12170 -- types this means that both must be either constrained or
12171 -- unconstrained. For enumeration types the bounds must match.
12172 -- All of this is checked in Subtypes_Statically_Match.
12174 if not Subtypes_Statically_Match
12175 (Target_Comp_Type, Opnd_Comp_Type)
12176 then
12177 Conversion_Error_N
12178 ("component subtypes must statically match", Operand);
12179 return False;
12180 end if;
12181 end if;
12183 return True;
12184 end Valid_Array_Conversion;
12186 -----------------------------
12187 -- Valid_Tagged_Conversion --
12188 -----------------------------
12190 function Valid_Tagged_Conversion
12191 (Target_Type : Entity_Id;
12192 Opnd_Type : Entity_Id) return Boolean
12194 begin
12195 -- Upward conversions are allowed (RM 4.6(22))
12197 if Covers (Target_Type, Opnd_Type)
12198 or else Is_Ancestor (Target_Type, Opnd_Type)
12199 then
12200 return True;
12202 -- Downward conversion are allowed if the operand is class-wide
12203 -- (RM 4.6(23)).
12205 elsif Is_Class_Wide_Type (Opnd_Type)
12206 and then Covers (Opnd_Type, Target_Type)
12207 then
12208 return True;
12210 elsif Covers (Opnd_Type, Target_Type)
12211 or else Is_Ancestor (Opnd_Type, Target_Type)
12212 then
12213 return
12214 Conversion_Check (False,
12215 "downward conversion of tagged objects not allowed");
12217 -- Ada 2005 (AI-251): The conversion to/from interface types is
12218 -- always valid. The types involved may be class-wide (sub)types.
12220 elsif Is_Interface (Etype (Base_Type (Target_Type)))
12221 or else Is_Interface (Etype (Base_Type (Opnd_Type)))
12222 then
12223 return True;
12225 -- If the operand is a class-wide type obtained through a limited_
12226 -- with clause, and the context includes the nonlimited view, use
12227 -- it to determine whether the conversion is legal.
12229 elsif Is_Class_Wide_Type (Opnd_Type)
12230 and then From_Limited_With (Opnd_Type)
12231 and then Present (Non_Limited_View (Etype (Opnd_Type)))
12232 and then Is_Interface (Non_Limited_View (Etype (Opnd_Type)))
12233 then
12234 return True;
12236 elsif Is_Access_Type (Opnd_Type)
12237 and then Is_Interface (Directly_Designated_Type (Opnd_Type))
12238 then
12239 return True;
12241 else
12242 Conversion_Error_NE
12243 ("invalid tagged conversion, not compatible with}",
12244 N, First_Subtype (Opnd_Type));
12245 return False;
12246 end if;
12247 end Valid_Tagged_Conversion;
12249 -- Start of processing for Valid_Conversion
12251 begin
12252 Check_Parameterless_Call (Operand);
12254 if Is_Overloaded (Operand) then
12255 declare
12256 I : Interp_Index;
12257 I1 : Interp_Index;
12258 It : Interp;
12259 It1 : Interp;
12260 N1 : Entity_Id;
12261 T1 : Entity_Id;
12263 begin
12264 -- Remove procedure calls, which syntactically cannot appear in
12265 -- this context, but which cannot be removed by type checking,
12266 -- because the context does not impose a type.
12268 -- The node may be labelled overloaded, but still contain only one
12269 -- interpretation because others were discarded earlier. If this
12270 -- is the case, retain the single interpretation if legal.
12272 Get_First_Interp (Operand, I, It);
12273 Opnd_Type := It.Typ;
12274 Get_Next_Interp (I, It);
12276 if Present (It.Typ)
12277 and then Opnd_Type /= Standard_Void_Type
12278 then
12279 -- More than one candidate interpretation is available
12281 Get_First_Interp (Operand, I, It);
12282 while Present (It.Typ) loop
12283 if It.Typ = Standard_Void_Type then
12284 Remove_Interp (I);
12285 end if;
12287 -- When compiling for a system where Address is of a visible
12288 -- integer type, spurious ambiguities can be produced when
12289 -- arithmetic operations have a literal operand and return
12290 -- System.Address or a descendant of it. These ambiguities
12291 -- are usually resolved by the context, but for conversions
12292 -- there is no context type and the removal of the spurious
12293 -- operations must be done explicitly here.
12295 if not Address_Is_Private
12296 and then Is_Descendant_Of_Address (It.Typ)
12297 then
12298 Remove_Interp (I);
12299 end if;
12301 Get_Next_Interp (I, It);
12302 end loop;
12303 end if;
12305 Get_First_Interp (Operand, I, It);
12306 I1 := I;
12307 It1 := It;
12309 if No (It.Typ) then
12310 Conversion_Error_N ("illegal operand in conversion", Operand);
12311 return False;
12312 end if;
12314 Get_Next_Interp (I, It);
12316 if Present (It.Typ) then
12317 N1 := It1.Nam;
12318 T1 := It1.Typ;
12319 It1 := Disambiguate (Operand, I1, I, Any_Type);
12321 if It1 = No_Interp then
12322 Conversion_Error_N
12323 ("ambiguous operand in conversion", Operand);
12325 -- If the interpretation involves a standard operator, use
12326 -- the location of the type, which may be user-defined.
12328 if Sloc (It.Nam) = Standard_Location then
12329 Error_Msg_Sloc := Sloc (It.Typ);
12330 else
12331 Error_Msg_Sloc := Sloc (It.Nam);
12332 end if;
12334 Conversion_Error_N -- CODEFIX
12335 ("\\possible interpretation#!", Operand);
12337 if Sloc (N1) = Standard_Location then
12338 Error_Msg_Sloc := Sloc (T1);
12339 else
12340 Error_Msg_Sloc := Sloc (N1);
12341 end if;
12343 Conversion_Error_N -- CODEFIX
12344 ("\\possible interpretation#!", Operand);
12346 return False;
12347 end if;
12348 end if;
12350 Set_Etype (Operand, It1.Typ);
12351 Opnd_Type := It1.Typ;
12352 end;
12353 end if;
12355 -- Deal with conversion of integer type to address if the pragma
12356 -- Allow_Integer_Address is in effect. We convert the conversion to
12357 -- an unchecked conversion in this case and we are all done.
12359 if Address_Integer_Convert_OK (Opnd_Type, Target_Type) then
12360 Rewrite (N, Unchecked_Convert_To (Target_Type, Expression (N)));
12361 Analyze_And_Resolve (N, Target_Type);
12362 return True;
12363 end if;
12365 -- If we are within a child unit, check whether the type of the
12366 -- expression has an ancestor in a parent unit, in which case it
12367 -- belongs to its derivation class even if the ancestor is private.
12368 -- See RM 7.3.1 (5.2/3).
12370 Inc_Ancestor := Get_Incomplete_View_Of_Ancestor (Opnd_Type);
12372 -- Numeric types
12374 if Is_Numeric_Type (Target_Type) then
12376 -- A universal fixed expression can be converted to any numeric type
12378 if Opnd_Type = Universal_Fixed then
12379 return True;
12381 -- Also no need to check when in an instance or inlined body, because
12382 -- the legality has been established when the template was analyzed.
12383 -- Furthermore, numeric conversions may occur where only a private
12384 -- view of the operand type is visible at the instantiation point.
12385 -- This results in a spurious error if we check that the operand type
12386 -- is a numeric type.
12388 -- Note: in a previous version of this unit, the following tests were
12389 -- applied only for generated code (Comes_From_Source set to False),
12390 -- but in fact the test is required for source code as well, since
12391 -- this situation can arise in source code.
12393 elsif In_Instance_Code or else In_Inlined_Body then
12394 return True;
12396 -- Otherwise we need the conversion check
12398 else
12399 return Conversion_Check
12400 (Is_Numeric_Type (Opnd_Type)
12401 or else
12402 (Present (Inc_Ancestor)
12403 and then Is_Numeric_Type (Inc_Ancestor)),
12404 "illegal operand for numeric conversion");
12405 end if;
12407 -- Array types
12409 elsif Is_Array_Type (Target_Type) then
12410 if not Is_Array_Type (Opnd_Type)
12411 or else Opnd_Type = Any_Composite
12412 or else Opnd_Type = Any_String
12413 then
12414 Conversion_Error_N
12415 ("illegal operand for array conversion", Operand);
12416 return False;
12418 else
12419 return Valid_Array_Conversion;
12420 end if;
12422 -- Ada 2005 (AI-251): Internally generated conversions of access to
12423 -- interface types added to force the displacement of the pointer to
12424 -- reference the corresponding dispatch table.
12426 elsif not Comes_From_Source (N)
12427 and then Is_Access_Type (Target_Type)
12428 and then Is_Interface (Designated_Type (Target_Type))
12429 then
12430 return True;
12432 -- Ada 2005 (AI-251): Anonymous access types where target references an
12433 -- interface type.
12435 elsif Is_Access_Type (Opnd_Type)
12436 and then Ekind_In (Target_Type, E_General_Access_Type,
12437 E_Anonymous_Access_Type)
12438 and then Is_Interface (Directly_Designated_Type (Target_Type))
12439 then
12440 -- Check the static accessibility rule of 4.6(17). Note that the
12441 -- check is not enforced when within an instance body, since the
12442 -- RM requires such cases to be caught at run time.
12444 -- If the operand is a rewriting of an allocator no check is needed
12445 -- because there are no accessibility issues.
12447 if Nkind (Original_Node (N)) = N_Allocator then
12448 null;
12450 elsif Ekind (Target_Type) /= E_Anonymous_Access_Type then
12451 if Type_Access_Level (Opnd_Type) >
12452 Deepest_Type_Access_Level (Target_Type)
12453 then
12454 -- In an instance, this is a run-time check, but one we know
12455 -- will fail, so generate an appropriate warning. The raise
12456 -- will be generated by Expand_N_Type_Conversion.
12458 if In_Instance_Body then
12459 Error_Msg_Warn := SPARK_Mode /= On;
12460 Conversion_Error_N
12461 ("cannot convert local pointer to non-local access type<<",
12462 Operand);
12463 Conversion_Error_N ("\Program_Error [<<", Operand);
12465 else
12466 Conversion_Error_N
12467 ("cannot convert local pointer to non-local access type",
12468 Operand);
12469 return False;
12470 end if;
12472 -- Special accessibility checks are needed in the case of access
12473 -- discriminants declared for a limited type.
12475 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
12476 and then not Is_Local_Anonymous_Access (Opnd_Type)
12477 then
12478 -- When the operand is a selected access discriminant the check
12479 -- needs to be made against the level of the object denoted by
12480 -- the prefix of the selected name (Object_Access_Level handles
12481 -- checking the prefix of the operand for this case).
12483 if Nkind (Operand) = N_Selected_Component
12484 and then Object_Access_Level (Operand) >
12485 Deepest_Type_Access_Level (Target_Type)
12486 then
12487 -- In an instance, this is a run-time check, but one we know
12488 -- will fail, so generate an appropriate warning. The raise
12489 -- will be generated by Expand_N_Type_Conversion.
12491 if In_Instance_Body then
12492 Error_Msg_Warn := SPARK_Mode /= On;
12493 Conversion_Error_N
12494 ("cannot convert access discriminant to non-local "
12495 & "access type<<", Operand);
12496 Conversion_Error_N ("\Program_Error [<<", Operand);
12498 -- Real error if not in instance body
12500 else
12501 Conversion_Error_N
12502 ("cannot convert access discriminant to non-local "
12503 & "access type", Operand);
12504 return False;
12505 end if;
12506 end if;
12508 -- The case of a reference to an access discriminant from
12509 -- within a limited type declaration (which will appear as
12510 -- a discriminal) is always illegal because the level of the
12511 -- discriminant is considered to be deeper than any (nameable)
12512 -- access type.
12514 if Is_Entity_Name (Operand)
12515 and then not Is_Local_Anonymous_Access (Opnd_Type)
12516 and then
12517 Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
12518 and then Present (Discriminal_Link (Entity (Operand)))
12519 then
12520 Conversion_Error_N
12521 ("discriminant has deeper accessibility level than target",
12522 Operand);
12523 return False;
12524 end if;
12525 end if;
12526 end if;
12528 return True;
12530 -- General and anonymous access types
12532 elsif Ekind_In (Target_Type, E_General_Access_Type,
12533 E_Anonymous_Access_Type)
12534 and then
12535 Conversion_Check
12536 (Is_Access_Type (Opnd_Type)
12537 and then not
12538 Ekind_In (Opnd_Type, E_Access_Subprogram_Type,
12539 E_Access_Protected_Subprogram_Type),
12540 "must be an access-to-object type")
12541 then
12542 if Is_Access_Constant (Opnd_Type)
12543 and then not Is_Access_Constant (Target_Type)
12544 then
12545 Conversion_Error_N
12546 ("access-to-constant operand type not allowed", Operand);
12547 return False;
12548 end if;
12550 -- Check the static accessibility rule of 4.6(17). Note that the
12551 -- check is not enforced when within an instance body, since the RM
12552 -- requires such cases to be caught at run time.
12554 if Ekind (Target_Type) /= E_Anonymous_Access_Type
12555 or else Is_Local_Anonymous_Access (Target_Type)
12556 or else Nkind (Associated_Node_For_Itype (Target_Type)) =
12557 N_Object_Declaration
12558 then
12559 -- Ada 2012 (AI05-0149): Perform legality checking on implicit
12560 -- conversions from an anonymous access type to a named general
12561 -- access type. Such conversions are not allowed in the case of
12562 -- access parameters and stand-alone objects of an anonymous
12563 -- access type. The implicit conversion case is recognized by
12564 -- testing that Comes_From_Source is False and that it's been
12565 -- rewritten. The Comes_From_Source test isn't sufficient because
12566 -- nodes in inlined calls to predefined library routines can have
12567 -- Comes_From_Source set to False. (Is there a better way to test
12568 -- for implicit conversions???)
12570 if Ada_Version >= Ada_2012
12571 and then not Comes_From_Source (N)
12572 and then N /= Original_Node (N)
12573 and then Ekind (Target_Type) = E_General_Access_Type
12574 and then Ekind (Opnd_Type) = E_Anonymous_Access_Type
12575 then
12576 if Is_Itype (Opnd_Type) then
12578 -- Implicit conversions aren't allowed for objects of an
12579 -- anonymous access type, since such objects have nonstatic
12580 -- levels in Ada 2012.
12582 if Nkind (Associated_Node_For_Itype (Opnd_Type)) =
12583 N_Object_Declaration
12584 then
12585 Conversion_Error_N
12586 ("implicit conversion of stand-alone anonymous "
12587 & "access object not allowed", Operand);
12588 return False;
12590 -- Implicit conversions aren't allowed for anonymous access
12591 -- parameters. The "not Is_Local_Anonymous_Access_Type" test
12592 -- is done to exclude anonymous access results.
12594 elsif not Is_Local_Anonymous_Access (Opnd_Type)
12595 and then Nkind_In (Associated_Node_For_Itype (Opnd_Type),
12596 N_Function_Specification,
12597 N_Procedure_Specification)
12598 then
12599 Conversion_Error_N
12600 ("implicit conversion of anonymous access formal "
12601 & "not allowed", Operand);
12602 return False;
12604 -- This is a case where there's an enclosing object whose
12605 -- to which the "statically deeper than" relationship does
12606 -- not apply (such as an access discriminant selected from
12607 -- a dereference of an access parameter).
12609 elsif Object_Access_Level (Operand)
12610 = Scope_Depth (Standard_Standard)
12611 then
12612 Conversion_Error_N
12613 ("implicit conversion of anonymous access value "
12614 & "not allowed", Operand);
12615 return False;
12617 -- In other cases, the level of the operand's type must be
12618 -- statically less deep than that of the target type, else
12619 -- implicit conversion is disallowed (by RM12-8.6(27.1/3)).
12621 elsif Type_Access_Level (Opnd_Type) >
12622 Deepest_Type_Access_Level (Target_Type)
12623 then
12624 Conversion_Error_N
12625 ("implicit conversion of anonymous access value "
12626 & "violates accessibility", Operand);
12627 return False;
12628 end if;
12629 end if;
12631 elsif Type_Access_Level (Opnd_Type) >
12632 Deepest_Type_Access_Level (Target_Type)
12633 then
12634 -- In an instance, this is a run-time check, but one we know
12635 -- will fail, so generate an appropriate warning. The raise
12636 -- will be generated by Expand_N_Type_Conversion.
12638 if In_Instance_Body then
12639 Error_Msg_Warn := SPARK_Mode /= On;
12640 Conversion_Error_N
12641 ("cannot convert local pointer to non-local access type<<",
12642 Operand);
12643 Conversion_Error_N ("\Program_Error [<<", Operand);
12645 -- If not in an instance body, this is a real error
12647 else
12648 -- Avoid generation of spurious error message
12650 if not Error_Posted (N) then
12651 Conversion_Error_N
12652 ("cannot convert local pointer to non-local access type",
12653 Operand);
12654 end if;
12656 return False;
12657 end if;
12659 -- Special accessibility checks are needed in the case of access
12660 -- discriminants declared for a limited type.
12662 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
12663 and then not Is_Local_Anonymous_Access (Opnd_Type)
12664 then
12665 -- When the operand is a selected access discriminant the check
12666 -- needs to be made against the level of the object denoted by
12667 -- the prefix of the selected name (Object_Access_Level handles
12668 -- checking the prefix of the operand for this case).
12670 if Nkind (Operand) = N_Selected_Component
12671 and then Object_Access_Level (Operand) >
12672 Deepest_Type_Access_Level (Target_Type)
12673 then
12674 -- In an instance, this is a run-time check, but one we know
12675 -- will fail, so generate an appropriate warning. The raise
12676 -- will be generated by Expand_N_Type_Conversion.
12678 if In_Instance_Body then
12679 Error_Msg_Warn := SPARK_Mode /= On;
12680 Conversion_Error_N
12681 ("cannot convert access discriminant to non-local "
12682 & "access type<<", Operand);
12683 Conversion_Error_N ("\Program_Error [<<", Operand);
12685 -- If not in an instance body, this is a real error
12687 else
12688 Conversion_Error_N
12689 ("cannot convert access discriminant to non-local "
12690 & "access type", Operand);
12691 return False;
12692 end if;
12693 end if;
12695 -- The case of a reference to an access discriminant from
12696 -- within a limited type declaration (which will appear as
12697 -- a discriminal) is always illegal because the level of the
12698 -- discriminant is considered to be deeper than any (nameable)
12699 -- access type.
12701 if Is_Entity_Name (Operand)
12702 and then
12703 Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
12704 and then Present (Discriminal_Link (Entity (Operand)))
12705 then
12706 Conversion_Error_N
12707 ("discriminant has deeper accessibility level than target",
12708 Operand);
12709 return False;
12710 end if;
12711 end if;
12712 end if;
12714 -- In the presence of limited_with clauses we have to use nonlimited
12715 -- views, if available.
12717 Check_Limited : declare
12718 function Full_Designated_Type (T : Entity_Id) return Entity_Id;
12719 -- Helper function to handle limited views
12721 --------------------------
12722 -- Full_Designated_Type --
12723 --------------------------
12725 function Full_Designated_Type (T : Entity_Id) return Entity_Id is
12726 Desig : constant Entity_Id := Designated_Type (T);
12728 begin
12729 -- Handle the limited view of a type
12731 if From_Limited_With (Desig)
12732 and then Has_Non_Limited_View (Desig)
12733 then
12734 return Available_View (Desig);
12735 else
12736 return Desig;
12737 end if;
12738 end Full_Designated_Type;
12740 -- Local Declarations
12742 Target : constant Entity_Id := Full_Designated_Type (Target_Type);
12743 Opnd : constant Entity_Id := Full_Designated_Type (Opnd_Type);
12745 Same_Base : constant Boolean :=
12746 Base_Type (Target) = Base_Type (Opnd);
12748 -- Start of processing for Check_Limited
12750 begin
12751 if Is_Tagged_Type (Target) then
12752 return Valid_Tagged_Conversion (Target, Opnd);
12754 else
12755 if not Same_Base then
12756 Conversion_Error_NE
12757 ("target designated type not compatible with }",
12758 N, Base_Type (Opnd));
12759 return False;
12761 -- Ada 2005 AI-384: legality rule is symmetric in both
12762 -- designated types. The conversion is legal (with possible
12763 -- constraint check) if either designated type is
12764 -- unconstrained.
12766 elsif Subtypes_Statically_Match (Target, Opnd)
12767 or else
12768 (Has_Discriminants (Target)
12769 and then
12770 (not Is_Constrained (Opnd)
12771 or else not Is_Constrained (Target)))
12772 then
12773 -- Special case, if Value_Size has been used to make the
12774 -- sizes different, the conversion is not allowed even
12775 -- though the subtypes statically match.
12777 if Known_Static_RM_Size (Target)
12778 and then Known_Static_RM_Size (Opnd)
12779 and then RM_Size (Target) /= RM_Size (Opnd)
12780 then
12781 Conversion_Error_NE
12782 ("target designated subtype not compatible with }",
12783 N, Opnd);
12784 Conversion_Error_NE
12785 ("\because sizes of the two designated subtypes differ",
12786 N, Opnd);
12787 return False;
12789 -- Normal case where conversion is allowed
12791 else
12792 return True;
12793 end if;
12795 else
12796 Error_Msg_NE
12797 ("target designated subtype not compatible with }",
12798 N, Opnd);
12799 return False;
12800 end if;
12801 end if;
12802 end Check_Limited;
12804 -- Access to subprogram types. If the operand is an access parameter,
12805 -- the type has a deeper accessibility that any master, and cannot be
12806 -- assigned. We must make an exception if the conversion is part of an
12807 -- assignment and the target is the return object of an extended return
12808 -- statement, because in that case the accessibility check takes place
12809 -- after the return.
12811 elsif Is_Access_Subprogram_Type (Target_Type)
12813 -- Note: this test of Opnd_Type is there to prevent entering this
12814 -- branch in the case of a remote access to subprogram type, which
12815 -- is internally represented as an E_Record_Type.
12817 and then Is_Access_Type (Opnd_Type)
12818 then
12819 if Ekind (Base_Type (Opnd_Type)) = E_Anonymous_Access_Subprogram_Type
12820 and then Is_Entity_Name (Operand)
12821 and then Ekind (Entity (Operand)) = E_In_Parameter
12822 and then
12823 (Nkind (Parent (N)) /= N_Assignment_Statement
12824 or else not Is_Entity_Name (Name (Parent (N)))
12825 or else not Is_Return_Object (Entity (Name (Parent (N)))))
12826 then
12827 Conversion_Error_N
12828 ("illegal attempt to store anonymous access to subprogram",
12829 Operand);
12830 Conversion_Error_N
12831 ("\value has deeper accessibility than any master "
12832 & "(RM 3.10.2 (13))",
12833 Operand);
12835 Error_Msg_NE
12836 ("\use named access type for& instead of access parameter",
12837 Operand, Entity (Operand));
12838 end if;
12840 -- Check that the designated types are subtype conformant
12842 Check_Subtype_Conformant (New_Id => Designated_Type (Target_Type),
12843 Old_Id => Designated_Type (Opnd_Type),
12844 Err_Loc => N);
12846 -- Check the static accessibility rule of 4.6(20)
12848 if Type_Access_Level (Opnd_Type) >
12849 Deepest_Type_Access_Level (Target_Type)
12850 then
12851 Conversion_Error_N
12852 ("operand type has deeper accessibility level than target",
12853 Operand);
12855 -- Check that if the operand type is declared in a generic body,
12856 -- then the target type must be declared within that same body
12857 -- (enforces last sentence of 4.6(20)).
12859 elsif Present (Enclosing_Generic_Body (Opnd_Type)) then
12860 declare
12861 O_Gen : constant Node_Id :=
12862 Enclosing_Generic_Body (Opnd_Type);
12864 T_Gen : Node_Id;
12866 begin
12867 T_Gen := Enclosing_Generic_Body (Target_Type);
12868 while Present (T_Gen) and then T_Gen /= O_Gen loop
12869 T_Gen := Enclosing_Generic_Body (T_Gen);
12870 end loop;
12872 if T_Gen /= O_Gen then
12873 Conversion_Error_N
12874 ("target type must be declared in same generic body "
12875 & "as operand type", N);
12876 end if;
12877 end;
12878 end if;
12880 return True;
12882 -- Remote access to subprogram types
12884 elsif Is_Remote_Access_To_Subprogram_Type (Target_Type)
12885 and then Is_Remote_Access_To_Subprogram_Type (Opnd_Type)
12886 then
12887 -- It is valid to convert from one RAS type to another provided
12888 -- that their specification statically match.
12890 -- Note: at this point, remote access to subprogram types have been
12891 -- expanded to their E_Record_Type representation, and we need to
12892 -- go back to the original access type definition using the
12893 -- Corresponding_Remote_Type attribute in order to check that the
12894 -- designated profiles match.
12896 pragma Assert (Ekind (Target_Type) = E_Record_Type);
12897 pragma Assert (Ekind (Opnd_Type) = E_Record_Type);
12899 Check_Subtype_Conformant
12900 (New_Id =>
12901 Designated_Type (Corresponding_Remote_Type (Target_Type)),
12902 Old_Id =>
12903 Designated_Type (Corresponding_Remote_Type (Opnd_Type)),
12904 Err_Loc =>
12906 return True;
12908 -- If it was legal in the generic, it's legal in the instance
12910 elsif In_Instance_Body then
12911 return True;
12913 -- If both are tagged types, check legality of view conversions
12915 elsif Is_Tagged_Type (Target_Type)
12916 and then
12917 Is_Tagged_Type (Opnd_Type)
12918 then
12919 return Valid_Tagged_Conversion (Target_Type, Opnd_Type);
12921 -- Types derived from the same root type are convertible
12923 elsif Root_Type (Target_Type) = Root_Type (Opnd_Type) then
12924 return True;
12926 -- In an instance or an inlined body, there may be inconsistent views of
12927 -- the same type, or of types derived from a common root.
12929 elsif (In_Instance or In_Inlined_Body)
12930 and then
12931 Root_Type (Underlying_Type (Target_Type)) =
12932 Root_Type (Underlying_Type (Opnd_Type))
12933 then
12934 return True;
12936 -- Special check for common access type error case
12938 elsif Ekind (Target_Type) = E_Access_Type
12939 and then Is_Access_Type (Opnd_Type)
12940 then
12941 Conversion_Error_N ("target type must be general access type!", N);
12942 Conversion_Error_NE -- CODEFIX
12943 ("add ALL to }!", N, Target_Type);
12944 return False;
12946 -- Here we have a real conversion error
12948 else
12949 Conversion_Error_NE
12950 ("invalid conversion, not compatible with }", N, Opnd_Type);
12951 return False;
12952 end if;
12953 end Valid_Conversion;
12955 end Sem_Res;