1 ------------------------------------------------------------------------------
3 -- GNAT RUN-TIME COMPONENTS --
5 -- A D A . N U M E R I C S . A U X --
8 -- (Machine Version for x86) --
10 -- Copyright (C) 1998-2017, Free Software Foundation, Inc. --
12 -- GNAT is free software; you can redistribute it and/or modify it under --
13 -- terms of the GNU General Public License as published by the Free Soft- --
14 -- ware Foundation; either version 3, or (at your option) any later ver- --
15 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
16 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
17 -- or FITNESS FOR A PARTICULAR PURPOSE. --
19 -- As a special exception under Section 7 of GPL version 3, you are granted --
20 -- additional permissions described in the GCC Runtime Library Exception, --
21 -- version 3.1, as published by the Free Software Foundation. --
23 -- You should have received a copy of the GNU General Public License and --
24 -- a copy of the GCC Runtime Library Exception along with this program; --
25 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
26 -- <http://www.gnu.org/licenses/>. --
28 -- GNAT was originally developed by the GNAT team at New York University. --
29 -- Extensive contributions were provided by Ada Core Technologies Inc. --
31 ------------------------------------------------------------------------------
33 with System
.Machine_Code
; use System
.Machine_Code
;
35 package body Ada
.Numerics
.Aux
is
37 NL
: constant String := ASCII
.LF
& ASCII
.HT
;
39 -----------------------
40 -- Local subprograms --
41 -----------------------
43 function Is_Nan
(X
: Double
) return Boolean;
44 -- Return True iff X is a IEEE NaN value
46 function Logarithmic_Pow
(X
, Y
: Double
) return Double
;
47 -- Implementation of X**Y using Exp and Log functions (binary base)
48 -- to calculate the exponentiation. This is used by Pow for values
49 -- for values of Y in the open interval (-0.25, 0.25)
51 procedure Reduce
(X
: in out Double
; Q
: out Natural);
52 -- Implement reduction of X by Pi/2. Q is the quadrant of the final
53 -- result in the range 0..3. The absolute value of X is at most Pi/4.
54 -- It is needed to avoid a loss of accuracy for sin near Pi and cos
55 -- near Pi/2 due to the use of an insufficiently precise value of Pi
56 -- in the range reduction.
58 pragma Inline
(Is_Nan
);
59 pragma Inline
(Reduce
);
61 --------------------------------
62 -- Basic Elementary Functions --
63 --------------------------------
65 -- This section implements a few elementary functions that are used to
66 -- build the more complex ones. This ordering enables better inlining.
72 function Atan
(X
: Double
) return Double
is
79 Outputs
=> Double
'Asm_Output ("=t", Result
),
80 Inputs
=> Double
'Asm_Input ("0", X
));
82 -- The result value is NaN iff input was invalid
84 if not (Result
= Result
) then
95 function Exp
(X
: Double
) return Double
is
100 & "fmulp %%st, %%st(1)" & NL
-- X * log2 (E)
101 & "fld %%st(0) " & NL
102 & "frndint " & NL
-- Integer (X * Log2 (E))
103 & "fsubr %%st, %%st(1)" & NL
-- Fraction (X * Log2 (E))
105 & "f2xm1 " & NL
-- 2**(...) - 1
107 & "faddp %%st, %%st(1)" & NL
-- 2**(Fraction (X * Log2 (E)))
108 & "fscale " & NL
-- E ** X
110 Outputs
=> Double
'Asm_Output ("=t", Result
),
111 Inputs
=> Double
'Asm_Input ("0", X
));
119 function Is_Nan
(X
: Double
) return Boolean is
121 -- The IEEE NaN values are the only ones that do not equal themselves
130 function Log
(X
: Double
) return Double
is
138 Outputs
=> Double
'Asm_Output ("=t", Result
),
139 Inputs
=> Double
'Asm_Input ("0", X
));
147 procedure Reduce
(X
: in out Double
; Q
: out Natural) is
148 Half_Pi
: constant := Pi
/ 2.0;
149 Two_Over_Pi
: constant := 2.0 / Pi
;
151 HM
: constant := Integer'Min (Double
'Machine_Mantissa / 2, Natural'Size);
152 M
: constant Double
:= 0.5 + 2.0**(1 - HM
); -- Splitting constant
153 P1
: constant Double
:= Double
'Leading_Part (Half_Pi
, HM
);
154 P2
: constant Double
:= Double
'Leading_Part (Half_Pi
- P1
, HM
);
155 P3
: constant Double
:= Double
'Leading_Part (Half_Pi
- P1
- P2
, HM
);
156 P4
: constant Double
:= Double
'Leading_Part (Half_Pi
- P1
- P2
- P3
, HM
);
157 P5
: constant Double
:= Double
'Leading_Part (Half_Pi
- P1
- P2
- P3
159 P6
: constant Double
:= Double
'Model (Half_Pi
- P1
- P2
- P3
- P4
- P5
);
164 -- For X < 2.0**HM, all products below are computed exactly.
165 -- Due to cancellation effects all subtractions are exact as well.
166 -- As no double extended floating-point number has more than 75
167 -- zeros after the binary point, the result will be the correctly
168 -- rounded result of X - K * (Pi / 2.0).
170 K
:= X
* Two_Over_Pi
;
171 while abs K
>= 2.0**HM
loop
172 K
:= K
* M
- (K
* M
- K
);
174 (((((X
- K
* P1
) - K
* P2
) - K
* P3
) - K
* P4
) - K
* P5
) - K
* P6
;
175 K
:= X
* Two_Over_Pi
;
178 -- If K is not a number (because X was not finite) raise exception
181 raise Constraint_Error
;
184 -- Go through an integer temporary so as to use machine instructions
186 R
:= Integer (Double
'Rounding (K
));
189 X
:= (((((X
- K
* P1
) - K
* P2
) - K
* P3
) - K
* P4
) - K
* P5
) - K
* P6
;
196 function Sqrt
(X
: Double
) return Double
is
201 raise Argument_Error
;
204 Asm
(Template
=> "fsqrt",
205 Outputs
=> Double
'Asm_Output ("=t", Result
),
206 Inputs
=> Double
'Asm_Input ("0", X
));
211 --------------------------------
212 -- Other Elementary Functions --
213 --------------------------------
215 -- These are built using the previously implemented basic functions
221 function Acos
(X
: Double
) return Double
is
225 Result
:= 2.0 * Atan
(Sqrt
((1.0 - X
) / (1.0 + X
)));
227 -- The result value is NaN iff input was invalid
229 if Is_Nan
(Result
) then
230 raise Argument_Error
;
240 function Asin
(X
: Double
) return Double
is
244 Result
:= Atan
(X
/ Sqrt
((1.0 - X
) * (1.0 + X
)));
246 -- The result value is NaN iff input was invalid
248 if Is_Nan
(Result
) then
249 raise Argument_Error
;
259 function Cos
(X
: Double
) return Double
is
260 Reduced_X
: Double
:= abs X
;
262 Quadrant
: Natural range 0 .. 3;
265 if Reduced_X
> Pi
/ 4.0 then
266 Reduce
(Reduced_X
, Quadrant
);
270 Asm
(Template
=> "fcos",
271 Outputs
=> Double
'Asm_Output ("=t", Result
),
272 Inputs
=> Double
'Asm_Input ("0", Reduced_X
));
275 Asm
(Template
=> "fsin",
276 Outputs
=> Double
'Asm_Output ("=t", Result
),
277 Inputs
=> Double
'Asm_Input ("0", -Reduced_X
));
280 Asm
(Template
=> "fcos ; fchs",
281 Outputs
=> Double
'Asm_Output ("=t", Result
),
282 Inputs
=> Double
'Asm_Input ("0", Reduced_X
));
285 Asm
(Template
=> "fsin",
286 Outputs
=> Double
'Asm_Output ("=t", Result
),
287 Inputs
=> Double
'Asm_Input ("0", Reduced_X
));
291 Asm
(Template
=> "fcos",
292 Outputs
=> Double
'Asm_Output ("=t", Result
),
293 Inputs
=> Double
'Asm_Input ("0", Reduced_X
));
299 ---------------------
300 -- Logarithmic_Pow --
301 ---------------------
303 function Logarithmic_Pow
(X
, Y
: Double
) return Double
is
306 Asm
(Template
=> "" -- X : Y
307 & "fyl2x " & NL
-- Y * Log2 (X)
308 & "fld %%st(0) " & NL
-- Y * Log2 (X) : Y * Log2 (X)
309 & "frndint " & NL
-- Int (...) : Y * Log2 (X)
310 & "fsubr %%st, %%st(1)" & NL
-- Int (...) : Fract (...)
311 & "fxch " & NL
-- Fract (...) : Int (...)
312 & "f2xm1 " & NL
-- 2**Fract (...) - 1 : Int (...)
313 & "fld1 " & NL
-- 1 : 2**Fract (...) - 1 : Int (...)
314 & "faddp %%st, %%st(1)" & NL
-- 2**Fract (...) : Int (...)
315 & "fscale ", -- 2**(Fract (...) + Int (...))
316 Outputs
=> Double
'Asm_Output ("=t", Result
),
318 (Double
'Asm_Input ("0", X
),
319 Double
'Asm_Input ("u", Y
)));
327 function Pow
(X
, Y
: Double
) return Double
is
328 type Mantissa_Type
is mod 2**Double
'Machine_Mantissa;
329 -- Modular type that can hold all bits of the mantissa of Double
331 -- For negative exponents, do divide at the end of the processing
333 Negative_Y
: constant Boolean := Y
< 0.0;
334 Abs_Y
: constant Double
:= abs Y
;
336 -- During this function the following invariant is kept:
337 -- X ** (abs Y) = Base**(Exp_High + Exp_Mid + Exp_Low) * Factor
341 Exp_High
: Double
:= Double
'Floor (Abs_Y
);
344 Exp_Int
: Mantissa_Type
;
346 Factor
: Double
:= 1.0;
349 -- Select algorithm for calculating Pow (integer cases fall through)
351 if Exp_High
>= 2.0**Double
'Machine_Mantissa then
353 -- In case of Y that is IEEE infinity, just raise constraint error
355 if Exp_High
> Double
'Safe_Last then
356 raise Constraint_Error
;
359 -- Large values of Y are even integers and will stay integer
360 -- after division by two.
363 -- Exp_Mid and Exp_Low are zero, so
364 -- X**(abs Y) = Base ** Exp_High = (Base**2) ** (Exp_High / 2)
366 Exp_High
:= Exp_High
/ 2.0;
368 exit when Exp_High
< 2.0**Double
'Machine_Mantissa;
371 elsif Exp_High
/= Abs_Y
then
372 Exp_Low
:= Abs_Y
- Exp_High
;
375 if Exp_Low
/= 0.0 then
377 -- Exp_Low now is in interval (0.0, 1.0)
378 -- Exp_Mid := Double'Floor (Exp_Low * 4.0) / 4.0;
381 Exp_Low
:= Exp_Low
- Exp_Mid
;
383 if Exp_Low
>= 0.5 then
385 Exp_Low
:= Exp_Low
- 0.5; -- exact
387 if Exp_Low
>= 0.25 then
388 Factor
:= Factor
* Sqrt
(Factor
);
389 Exp_Low
:= Exp_Low
- 0.25; -- exact
392 elsif Exp_Low
>= 0.25 then
393 Factor
:= Sqrt
(Sqrt
(X
));
394 Exp_Low
:= Exp_Low
- 0.25; -- exact
397 -- Exp_Low now is in interval (0.0, 0.25)
399 -- This means it is safe to call Logarithmic_Pow
400 -- for the remaining part.
402 Factor
:= Factor
* Logarithmic_Pow
(X
, Exp_Low
);
409 -- Exp_High is non-zero integer smaller than 2**Double'Machine_Mantissa
411 Exp_Int
:= Mantissa_Type
(Exp_High
);
413 -- Standard way for processing integer powers > 0
415 while Exp_Int
> 1 loop
416 if (Exp_Int
and 1) = 1 then
418 -- Base**Y = Base**(Exp_Int - 1) * Exp_Int for Exp_Int > 0
420 Factor
:= Factor
* Base
;
423 -- Exp_Int is even and Exp_Int > 0, so
424 -- Base**Y = (Base**2)**(Exp_Int / 2)
427 Exp_Int
:= Exp_Int
/ 2;
430 -- Exp_Int = 1 or Exp_Int = 0
433 Factor
:= Base
* Factor
;
437 Factor
:= 1.0 / Factor
;
447 function Sin
(X
: Double
) return Double
is
448 Reduced_X
: Double
:= X
;
450 Quadrant
: Natural range 0 .. 3;
453 if abs X
> Pi
/ 4.0 then
454 Reduce
(Reduced_X
, Quadrant
);
458 Asm
(Template
=> "fsin",
459 Outputs
=> Double
'Asm_Output ("=t", Result
),
460 Inputs
=> Double
'Asm_Input ("0", Reduced_X
));
463 Asm
(Template
=> "fcos",
464 Outputs
=> Double
'Asm_Output ("=t", Result
),
465 Inputs
=> Double
'Asm_Input ("0", Reduced_X
));
468 Asm
(Template
=> "fsin",
469 Outputs
=> Double
'Asm_Output ("=t", Result
),
470 Inputs
=> Double
'Asm_Input ("0", -Reduced_X
));
473 Asm
(Template
=> "fcos ; fchs",
474 Outputs
=> Double
'Asm_Output ("=t", Result
),
475 Inputs
=> Double
'Asm_Input ("0", Reduced_X
));
479 Asm
(Template
=> "fsin",
480 Outputs
=> Double
'Asm_Output ("=t", Result
),
481 Inputs
=> Double
'Asm_Input ("0", Reduced_X
));
491 function Tan
(X
: Double
) return Double
is
492 Reduced_X
: Double
:= X
;
494 Quadrant
: Natural range 0 .. 3;
497 if abs X
> Pi
/ 4.0 then
498 Reduce
(Reduced_X
, Quadrant
);
500 if Quadrant
mod 2 = 0 then
501 Asm
(Template
=> "fptan" & NL
502 & "ffree %%st(0)" & NL
504 Outputs
=> Double
'Asm_Output ("=t", Result
),
505 Inputs
=> Double
'Asm_Input ("0", Reduced_X
));
507 Asm
(Template
=> "fsincos" & NL
508 & "fdivp %%st, %%st(1)" & NL
510 Outputs
=> Double
'Asm_Output ("=t", Result
),
511 Inputs
=> Double
'Asm_Input ("0", Reduced_X
));
517 & "ffree %%st(0) " & NL
519 Outputs
=> Double
'Asm_Output ("=t", Result
),
520 Inputs
=> Double
'Asm_Input ("0", Reduced_X
));
530 function Sinh
(X
: Double
) return Double
is
532 -- Mathematically Sinh (x) is defined to be (Exp (X) - Exp (-X)) / 2.0
535 return (Exp
(X
) - Exp
(-X
)) / 2.0;
537 return Exp
(X
) / 2.0;
545 function Cosh
(X
: Double
) return Double
is
547 -- Mathematically Cosh (X) is defined to be (Exp (X) + Exp (-X)) / 2.0
550 return (Exp
(X
) + Exp
(-X
)) / 2.0;
552 return Exp
(X
) / 2.0;
560 function Tanh
(X
: Double
) return Double
is
562 -- Return the Hyperbolic Tangent of x
566 -- Tanh (X) is defined to be ----------- = --------
571 return Double
'Copy_Sign (1.0, X
);
574 return 1.0 / (1.0 + Exp
(-(2.0 * X
))) - 1.0 / (1.0 + Exp
(2.0 * X
));
577 end Ada
.Numerics
.Aux
;