s390.c (optimization_options): Set flag_asynchronous_unwind_tables to 1 by default.
[official-gcc.git] / gcc / loop.c
blob04f95ab492582736859788838778574f87a99059
1 /* Perform various loop optimizations, including strength reduction.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This is the loop optimization pass of the compiler.
23 It finds invariant computations within loops and moves them
24 to the beginning of the loop. Then it identifies basic and
25 general induction variables. Strength reduction is applied to the general
26 induction variables, and induction variable elimination is applied to
27 the basic induction variables.
29 It also finds cases where
30 a register is set within the loop by zero-extending a narrower value
31 and changes these to zero the entire register once before the loop
32 and merely copy the low part within the loop.
34 Most of the complexity is in heuristics to decide when it is worth
35 while to do these things. */
37 #include "config.h"
38 #include "system.h"
39 #include "rtl.h"
40 #include "tm_p.h"
41 #include "function.h"
42 #include "expr.h"
43 #include "hard-reg-set.h"
44 #include "basic-block.h"
45 #include "insn-config.h"
46 #include "regs.h"
47 #include "recog.h"
48 #include "flags.h"
49 #include "real.h"
50 #include "loop.h"
51 #include "cselib.h"
52 #include "except.h"
53 #include "toplev.h"
54 #include "predict.h"
55 #include "insn-flags.h"
56 #include "optabs.h"
58 /* Not really meaningful values, but at least something. */
59 #ifndef SIMULTANEOUS_PREFETCHES
60 #define SIMULTANEOUS_PREFETCHES 3
61 #endif
62 #ifndef PREFETCH_BLOCK
63 #define PREFETCH_BLOCK 32
64 #endif
65 #ifndef HAVE_prefetch
66 #define HAVE_prefetch 0
67 #define CODE_FOR_prefetch 0
68 #define gen_prefetch(a,b,c) (abort(), NULL_RTX)
69 #endif
71 /* Give up the prefetch optimizations once we exceed a given threshhold.
72 It is unlikely that we would be able to optimize something in a loop
73 with so many detected prefetches. */
74 #define MAX_PREFETCHES 100
75 /* The number of prefetch blocks that are beneficial to fetch at once before
76 a loop with a known (and low) iteration count. */
77 #define PREFETCH_BLOCKS_BEFORE_LOOP_MAX 6
78 /* For very tiny loops it is not worthwhile to prefetch even before the loop,
79 since it is likely that the data are already in the cache. */
80 #define PREFETCH_BLOCKS_BEFORE_LOOP_MIN 2
82 /* Parameterize some prefetch heuristics so they can be turned on and off
83 easily for performance testing on new architecures. These can be
84 defined in target-dependent files. */
86 /* Prefetch is worthwhile only when loads/stores are dense. */
87 #ifndef PREFETCH_ONLY_DENSE_MEM
88 #define PREFETCH_ONLY_DENSE_MEM 1
89 #endif
91 /* Define what we mean by "dense" loads and stores; This value divided by 256
92 is the minimum percentage of memory references that worth prefetching. */
93 #ifndef PREFETCH_DENSE_MEM
94 #define PREFETCH_DENSE_MEM 220
95 #endif
97 /* Do not prefetch for a loop whose iteration count is known to be low. */
98 #ifndef PREFETCH_NO_LOW_LOOPCNT
99 #define PREFETCH_NO_LOW_LOOPCNT 1
100 #endif
102 /* Define what we mean by a "low" iteration count. */
103 #ifndef PREFETCH_LOW_LOOPCNT
104 #define PREFETCH_LOW_LOOPCNT 32
105 #endif
107 /* Do not prefetch for a loop that contains a function call; such a loop is
108 probably not an internal loop. */
109 #ifndef PREFETCH_NO_CALL
110 #define PREFETCH_NO_CALL 1
111 #endif
113 /* Do not prefetch accesses with an extreme stride. */
114 #ifndef PREFETCH_NO_EXTREME_STRIDE
115 #define PREFETCH_NO_EXTREME_STRIDE 1
116 #endif
118 /* Define what we mean by an "extreme" stride. */
119 #ifndef PREFETCH_EXTREME_STRIDE
120 #define PREFETCH_EXTREME_STRIDE 4096
121 #endif
123 /* Define a limit to how far apart indices can be and still be merged
124 into a single prefetch. */
125 #ifndef PREFETCH_EXTREME_DIFFERENCE
126 #define PREFETCH_EXTREME_DIFFERENCE 4096
127 #endif
129 /* Issue prefetch instructions before the loop to fetch data to be used
130 in the first few loop iterations. */
131 #ifndef PREFETCH_BEFORE_LOOP
132 #define PREFETCH_BEFORE_LOOP 1
133 #endif
135 /* Do not handle reversed order prefetches (negative stride). */
136 #ifndef PREFETCH_NO_REVERSE_ORDER
137 #define PREFETCH_NO_REVERSE_ORDER 1
138 #endif
140 /* Prefetch even if the GIV is in conditional code. */
141 #ifndef PREFETCH_CONDITIONAL
142 #define PREFETCH_CONDITIONAL 1
143 #endif
145 #define LOOP_REG_LIFETIME(LOOP, REGNO) \
146 ((REGNO_LAST_LUID (REGNO) - REGNO_FIRST_LUID (REGNO)))
148 #define LOOP_REG_GLOBAL_P(LOOP, REGNO) \
149 ((REGNO_LAST_LUID (REGNO) > INSN_LUID ((LOOP)->end) \
150 || REGNO_FIRST_LUID (REGNO) < INSN_LUID ((LOOP)->start)))
152 #define LOOP_REGNO_NREGS(REGNO, SET_DEST) \
153 ((REGNO) < FIRST_PSEUDO_REGISTER \
154 ? (int) HARD_REGNO_NREGS ((REGNO), GET_MODE (SET_DEST)) : 1)
157 /* Vector mapping INSN_UIDs to luids.
158 The luids are like uids but increase monotonically always.
159 We use them to see whether a jump comes from outside a given loop. */
161 int *uid_luid;
163 /* Indexed by INSN_UID, contains the ordinal giving the (innermost) loop
164 number the insn is contained in. */
166 struct loop **uid_loop;
168 /* 1 + largest uid of any insn. */
170 int max_uid_for_loop;
172 /* 1 + luid of last insn. */
174 static int max_luid;
176 /* Number of loops detected in current function. Used as index to the
177 next few tables. */
179 static int max_loop_num;
181 /* Bound on pseudo register number before loop optimization.
182 A pseudo has valid regscan info if its number is < max_reg_before_loop. */
183 unsigned int max_reg_before_loop;
185 /* The value to pass to the next call of reg_scan_update. */
186 static int loop_max_reg;
188 /* During the analysis of a loop, a chain of `struct movable's
189 is made to record all the movable insns found.
190 Then the entire chain can be scanned to decide which to move. */
192 struct movable
194 rtx insn; /* A movable insn */
195 rtx set_src; /* The expression this reg is set from. */
196 rtx set_dest; /* The destination of this SET. */
197 rtx dependencies; /* When INSN is libcall, this is an EXPR_LIST
198 of any registers used within the LIBCALL. */
199 int consec; /* Number of consecutive following insns
200 that must be moved with this one. */
201 unsigned int regno; /* The register it sets */
202 short lifetime; /* lifetime of that register;
203 may be adjusted when matching movables
204 that load the same value are found. */
205 short savings; /* Number of insns we can move for this reg,
206 including other movables that force this
207 or match this one. */
208 unsigned int cond : 1; /* 1 if only conditionally movable */
209 unsigned int force : 1; /* 1 means MUST move this insn */
210 unsigned int global : 1; /* 1 means reg is live outside this loop */
211 /* If PARTIAL is 1, GLOBAL means something different:
212 that the reg is live outside the range from where it is set
213 to the following label. */
214 unsigned int done : 1; /* 1 inhibits further processing of this */
216 unsigned int partial : 1; /* 1 means this reg is used for zero-extending.
217 In particular, moving it does not make it
218 invariant. */
219 unsigned int move_insn : 1; /* 1 means that we call emit_move_insn to
220 load SRC, rather than copying INSN. */
221 unsigned int move_insn_first:1;/* Same as above, if this is necessary for the
222 first insn of a consecutive sets group. */
223 unsigned int is_equiv : 1; /* 1 means a REG_EQUIV is present on INSN. */
224 enum machine_mode savemode; /* Nonzero means it is a mode for a low part
225 that we should avoid changing when clearing
226 the rest of the reg. */
227 struct movable *match; /* First entry for same value */
228 struct movable *forces; /* An insn that must be moved if this is */
229 struct movable *next;
233 FILE *loop_dump_stream;
235 /* Forward declarations. */
237 static void invalidate_loops_containing_label PARAMS ((rtx));
238 static void find_and_verify_loops PARAMS ((rtx, struct loops *));
239 static void mark_loop_jump PARAMS ((rtx, struct loop *));
240 static void prescan_loop PARAMS ((struct loop *));
241 static int reg_in_basic_block_p PARAMS ((rtx, rtx));
242 static int consec_sets_invariant_p PARAMS ((const struct loop *,
243 rtx, int, rtx));
244 static int labels_in_range_p PARAMS ((rtx, int));
245 static void count_one_set PARAMS ((struct loop_regs *, rtx, rtx, rtx *));
246 static void note_addr_stored PARAMS ((rtx, rtx, void *));
247 static void note_set_pseudo_multiple_uses PARAMS ((rtx, rtx, void *));
248 static int loop_reg_used_before_p PARAMS ((const struct loop *, rtx, rtx));
249 static void scan_loop PARAMS ((struct loop*, int));
250 #if 0
251 static void replace_call_address PARAMS ((rtx, rtx, rtx));
252 #endif
253 static rtx skip_consec_insns PARAMS ((rtx, int));
254 static int libcall_benefit PARAMS ((rtx));
255 static void ignore_some_movables PARAMS ((struct loop_movables *));
256 static void force_movables PARAMS ((struct loop_movables *));
257 static void combine_movables PARAMS ((struct loop_movables *,
258 struct loop_regs *));
259 static int num_unmoved_movables PARAMS ((const struct loop *));
260 static int regs_match_p PARAMS ((rtx, rtx, struct loop_movables *));
261 static int rtx_equal_for_loop_p PARAMS ((rtx, rtx, struct loop_movables *,
262 struct loop_regs *));
263 static void add_label_notes PARAMS ((rtx, rtx));
264 static void move_movables PARAMS ((struct loop *loop, struct loop_movables *,
265 int, int));
266 static void loop_movables_add PARAMS((struct loop_movables *,
267 struct movable *));
268 static void loop_movables_free PARAMS((struct loop_movables *));
269 static int count_nonfixed_reads PARAMS ((const struct loop *, rtx));
270 static void loop_bivs_find PARAMS((struct loop *));
271 static void loop_bivs_init_find PARAMS((struct loop *));
272 static void loop_bivs_check PARAMS((struct loop *));
273 static void loop_givs_find PARAMS((struct loop *));
274 static void loop_givs_check PARAMS((struct loop *));
275 static int loop_biv_eliminable_p PARAMS((struct loop *, struct iv_class *,
276 int, int));
277 static int loop_giv_reduce_benefit PARAMS((struct loop *, struct iv_class *,
278 struct induction *, rtx));
279 static void loop_givs_dead_check PARAMS((struct loop *, struct iv_class *));
280 static void loop_givs_reduce PARAMS((struct loop *, struct iv_class *));
281 static void loop_givs_rescan PARAMS((struct loop *, struct iv_class *,
282 rtx *));
283 static void loop_ivs_free PARAMS((struct loop *));
284 static void strength_reduce PARAMS ((struct loop *, int));
285 static void find_single_use_in_loop PARAMS ((struct loop_regs *, rtx, rtx));
286 static int valid_initial_value_p PARAMS ((rtx, rtx, int, rtx));
287 static void find_mem_givs PARAMS ((const struct loop *, rtx, rtx, int, int));
288 static void record_biv PARAMS ((struct loop *, struct induction *,
289 rtx, rtx, rtx, rtx, rtx *,
290 int, int));
291 static void check_final_value PARAMS ((const struct loop *,
292 struct induction *));
293 static void loop_ivs_dump PARAMS((const struct loop *, FILE *, int));
294 static void loop_iv_class_dump PARAMS((const struct iv_class *, FILE *, int));
295 static void loop_biv_dump PARAMS((const struct induction *, FILE *, int));
296 static void loop_giv_dump PARAMS((const struct induction *, FILE *, int));
297 static void record_giv PARAMS ((const struct loop *, struct induction *,
298 rtx, rtx, rtx, rtx, rtx, rtx, int,
299 enum g_types, int, int, rtx *));
300 static void update_giv_derive PARAMS ((const struct loop *, rtx));
301 static void check_ext_dependent_givs PARAMS ((struct iv_class *,
302 struct loop_info *));
303 static int basic_induction_var PARAMS ((const struct loop *, rtx,
304 enum machine_mode, rtx, rtx,
305 rtx *, rtx *, rtx **));
306 static rtx simplify_giv_expr PARAMS ((const struct loop *, rtx, rtx *, int *));
307 static int general_induction_var PARAMS ((const struct loop *loop, rtx, rtx *,
308 rtx *, rtx *, rtx *, int, int *,
309 enum machine_mode));
310 static int consec_sets_giv PARAMS ((const struct loop *, int, rtx,
311 rtx, rtx, rtx *, rtx *, rtx *, rtx *));
312 static int check_dbra_loop PARAMS ((struct loop *, int));
313 static rtx express_from_1 PARAMS ((rtx, rtx, rtx));
314 static rtx combine_givs_p PARAMS ((struct induction *, struct induction *));
315 static int cmp_combine_givs_stats PARAMS ((const PTR, const PTR));
316 static void combine_givs PARAMS ((struct loop_regs *, struct iv_class *));
317 static int product_cheap_p PARAMS ((rtx, rtx));
318 static int maybe_eliminate_biv PARAMS ((const struct loop *, struct iv_class *,
319 int, int, int));
320 static int maybe_eliminate_biv_1 PARAMS ((const struct loop *, rtx, rtx,
321 struct iv_class *, int,
322 basic_block, rtx));
323 static int last_use_this_basic_block PARAMS ((rtx, rtx));
324 static void record_initial PARAMS ((rtx, rtx, void *));
325 static void update_reg_last_use PARAMS ((rtx, rtx));
326 static rtx next_insn_in_loop PARAMS ((const struct loop *, rtx));
327 static void loop_regs_scan PARAMS ((const struct loop *, int));
328 static int count_insns_in_loop PARAMS ((const struct loop *));
329 static void load_mems PARAMS ((const struct loop *));
330 static int insert_loop_mem PARAMS ((rtx *, void *));
331 static int replace_loop_mem PARAMS ((rtx *, void *));
332 static void replace_loop_mems PARAMS ((rtx, rtx, rtx));
333 static int replace_loop_reg PARAMS ((rtx *, void *));
334 static void replace_loop_regs PARAMS ((rtx insn, rtx, rtx));
335 static void note_reg_stored PARAMS ((rtx, rtx, void *));
336 static void try_copy_prop PARAMS ((const struct loop *, rtx, unsigned int));
337 static void try_swap_copy_prop PARAMS ((const struct loop *, rtx,
338 unsigned int));
339 static int replace_label PARAMS ((rtx *, void *));
340 static rtx check_insn_for_givs PARAMS((struct loop *, rtx, int, int));
341 static rtx check_insn_for_bivs PARAMS((struct loop *, rtx, int, int));
342 static rtx gen_add_mult PARAMS ((rtx, rtx, rtx, rtx));
343 static void loop_regs_update PARAMS ((const struct loop *, rtx));
344 static int iv_add_mult_cost PARAMS ((rtx, rtx, rtx, rtx));
346 static rtx loop_insn_emit_after PARAMS((const struct loop *, basic_block,
347 rtx, rtx));
348 static rtx loop_call_insn_emit_before PARAMS((const struct loop *,
349 basic_block, rtx, rtx));
350 static rtx loop_call_insn_hoist PARAMS((const struct loop *, rtx));
351 static rtx loop_insn_sink_or_swim PARAMS((const struct loop *, rtx));
353 static void loop_dump_aux PARAMS ((const struct loop *, FILE *, int));
354 static void loop_delete_insns PARAMS ((rtx, rtx));
355 static HOST_WIDE_INT remove_constant_addition PARAMS ((rtx *));
356 static rtx gen_load_of_final_value PARAMS ((rtx, rtx));
357 void debug_ivs PARAMS ((const struct loop *));
358 void debug_iv_class PARAMS ((const struct iv_class *));
359 void debug_biv PARAMS ((const struct induction *));
360 void debug_giv PARAMS ((const struct induction *));
361 void debug_loop PARAMS ((const struct loop *));
362 void debug_loops PARAMS ((const struct loops *));
364 typedef struct rtx_pair
366 rtx r1;
367 rtx r2;
368 } rtx_pair;
370 typedef struct loop_replace_args
372 rtx match;
373 rtx replacement;
374 rtx insn;
375 } loop_replace_args;
377 /* Nonzero iff INSN is between START and END, inclusive. */
378 #define INSN_IN_RANGE_P(INSN, START, END) \
379 (INSN_UID (INSN) < max_uid_for_loop \
380 && INSN_LUID (INSN) >= INSN_LUID (START) \
381 && INSN_LUID (INSN) <= INSN_LUID (END))
383 /* Indirect_jump_in_function is computed once per function. */
384 static int indirect_jump_in_function;
385 static int indirect_jump_in_function_p PARAMS ((rtx));
387 static int compute_luids PARAMS ((rtx, rtx, int));
389 static int biv_elimination_giv_has_0_offset PARAMS ((struct induction *,
390 struct induction *,
391 rtx));
393 /* Benefit penalty, if a giv is not replaceable, i.e. must emit an insn to
394 copy the value of the strength reduced giv to its original register. */
395 static int copy_cost;
397 /* Cost of using a register, to normalize the benefits of a giv. */
398 static int reg_address_cost;
400 void
401 init_loop ()
403 rtx reg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
405 reg_address_cost = address_cost (reg, SImode);
407 copy_cost = COSTS_N_INSNS (1);
410 /* Compute the mapping from uids to luids.
411 LUIDs are numbers assigned to insns, like uids,
412 except that luids increase monotonically through the code.
413 Start at insn START and stop just before END. Assign LUIDs
414 starting with PREV_LUID + 1. Return the last assigned LUID + 1. */
415 static int
416 compute_luids (start, end, prev_luid)
417 rtx start, end;
418 int prev_luid;
420 int i;
421 rtx insn;
423 for (insn = start, i = prev_luid; insn != end; insn = NEXT_INSN (insn))
425 if (INSN_UID (insn) >= max_uid_for_loop)
426 continue;
427 /* Don't assign luids to line-number NOTEs, so that the distance in
428 luids between two insns is not affected by -g. */
429 if (GET_CODE (insn) != NOTE
430 || NOTE_LINE_NUMBER (insn) <= 0)
431 uid_luid[INSN_UID (insn)] = ++i;
432 else
433 /* Give a line number note the same luid as preceding insn. */
434 uid_luid[INSN_UID (insn)] = i;
436 return i + 1;
439 /* Entry point of this file. Perform loop optimization
440 on the current function. F is the first insn of the function
441 and DUMPFILE is a stream for output of a trace of actions taken
442 (or 0 if none should be output). */
444 void
445 loop_optimize (f, dumpfile, flags)
446 /* f is the first instruction of a chain of insns for one function */
447 rtx f;
448 FILE *dumpfile;
449 int flags;
451 rtx insn;
452 int i;
453 struct loops loops_data;
454 struct loops *loops = &loops_data;
455 struct loop_info *loops_info;
457 loop_dump_stream = dumpfile;
459 init_recog_no_volatile ();
461 max_reg_before_loop = max_reg_num ();
462 loop_max_reg = max_reg_before_loop;
464 regs_may_share = 0;
466 /* Count the number of loops. */
468 max_loop_num = 0;
469 for (insn = f; insn; insn = NEXT_INSN (insn))
471 if (GET_CODE (insn) == NOTE
472 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
473 max_loop_num++;
476 /* Don't waste time if no loops. */
477 if (max_loop_num == 0)
478 return;
480 loops->num = max_loop_num;
482 /* Get size to use for tables indexed by uids.
483 Leave some space for labels allocated by find_and_verify_loops. */
484 max_uid_for_loop = get_max_uid () + 1 + max_loop_num * 32;
486 uid_luid = (int *) xcalloc (max_uid_for_loop, sizeof (int));
487 uid_loop = (struct loop **) xcalloc (max_uid_for_loop,
488 sizeof (struct loop *));
490 /* Allocate storage for array of loops. */
491 loops->array = (struct loop *)
492 xcalloc (loops->num, sizeof (struct loop));
494 /* Find and process each loop.
495 First, find them, and record them in order of their beginnings. */
496 find_and_verify_loops (f, loops);
498 /* Allocate and initialize auxiliary loop information. */
499 loops_info = xcalloc (loops->num, sizeof (struct loop_info));
500 for (i = 0; i < loops->num; i++)
501 loops->array[i].aux = loops_info + i;
503 /* Now find all register lifetimes. This must be done after
504 find_and_verify_loops, because it might reorder the insns in the
505 function. */
506 reg_scan (f, max_reg_before_loop, 1);
508 /* This must occur after reg_scan so that registers created by gcse
509 will have entries in the register tables.
511 We could have added a call to reg_scan after gcse_main in toplev.c,
512 but moving this call to init_alias_analysis is more efficient. */
513 init_alias_analysis ();
515 /* See if we went too far. Note that get_max_uid already returns
516 one more that the maximum uid of all insn. */
517 if (get_max_uid () > max_uid_for_loop)
518 abort ();
519 /* Now reset it to the actual size we need. See above. */
520 max_uid_for_loop = get_max_uid ();
522 /* find_and_verify_loops has already called compute_luids, but it
523 might have rearranged code afterwards, so we need to recompute
524 the luids now. */
525 max_luid = compute_luids (f, NULL_RTX, 0);
527 /* Don't leave gaps in uid_luid for insns that have been
528 deleted. It is possible that the first or last insn
529 using some register has been deleted by cross-jumping.
530 Make sure that uid_luid for that former insn's uid
531 points to the general area where that insn used to be. */
532 for (i = 0; i < max_uid_for_loop; i++)
534 uid_luid[0] = uid_luid[i];
535 if (uid_luid[0] != 0)
536 break;
538 for (i = 0; i < max_uid_for_loop; i++)
539 if (uid_luid[i] == 0)
540 uid_luid[i] = uid_luid[i - 1];
542 /* Determine if the function has indirect jump. On some systems
543 this prevents low overhead loop instructions from being used. */
544 indirect_jump_in_function = indirect_jump_in_function_p (f);
546 /* Now scan the loops, last ones first, since this means inner ones are done
547 before outer ones. */
548 for (i = max_loop_num - 1; i >= 0; i--)
550 struct loop *loop = &loops->array[i];
552 if (! loop->invalid && loop->end)
553 scan_loop (loop, flags);
556 end_alias_analysis ();
558 /* Clean up. */
559 free (uid_luid);
560 free (uid_loop);
561 free (loops_info);
562 free (loops->array);
565 /* Returns the next insn, in execution order, after INSN. START and
566 END are the NOTE_INSN_LOOP_BEG and NOTE_INSN_LOOP_END for the loop,
567 respectively. LOOP->TOP, if non-NULL, is the top of the loop in the
568 insn-stream; it is used with loops that are entered near the
569 bottom. */
571 static rtx
572 next_insn_in_loop (loop, insn)
573 const struct loop *loop;
574 rtx insn;
576 insn = NEXT_INSN (insn);
578 if (insn == loop->end)
580 if (loop->top)
581 /* Go to the top of the loop, and continue there. */
582 insn = loop->top;
583 else
584 /* We're done. */
585 insn = NULL_RTX;
588 if (insn == loop->scan_start)
589 /* We're done. */
590 insn = NULL_RTX;
592 return insn;
595 /* Optimize one loop described by LOOP. */
597 /* ??? Could also move memory writes out of loops if the destination address
598 is invariant, the source is invariant, the memory write is not volatile,
599 and if we can prove that no read inside the loop can read this address
600 before the write occurs. If there is a read of this address after the
601 write, then we can also mark the memory read as invariant. */
603 static void
604 scan_loop (loop, flags)
605 struct loop *loop;
606 int flags;
608 struct loop_info *loop_info = LOOP_INFO (loop);
609 struct loop_regs *regs = LOOP_REGS (loop);
610 int i;
611 rtx loop_start = loop->start;
612 rtx loop_end = loop->end;
613 rtx p;
614 /* 1 if we are scanning insns that could be executed zero times. */
615 int maybe_never = 0;
616 /* 1 if we are scanning insns that might never be executed
617 due to a subroutine call which might exit before they are reached. */
618 int call_passed = 0;
619 /* Jump insn that enters the loop, or 0 if control drops in. */
620 rtx loop_entry_jump = 0;
621 /* Number of insns in the loop. */
622 int insn_count;
623 int tem;
624 rtx temp, update_start, update_end;
625 /* The SET from an insn, if it is the only SET in the insn. */
626 rtx set, set1;
627 /* Chain describing insns movable in current loop. */
628 struct loop_movables *movables = LOOP_MOVABLES (loop);
629 /* Ratio of extra register life span we can justify
630 for saving an instruction. More if loop doesn't call subroutines
631 since in that case saving an insn makes more difference
632 and more registers are available. */
633 int threshold;
634 /* Nonzero if we are scanning instructions in a sub-loop. */
635 int loop_depth = 0;
636 int in_libcall;
638 loop->top = 0;
640 movables->head = 0;
641 movables->last = 0;
643 /* Determine whether this loop starts with a jump down to a test at
644 the end. This will occur for a small number of loops with a test
645 that is too complex to duplicate in front of the loop.
647 We search for the first insn or label in the loop, skipping NOTEs.
648 However, we must be careful not to skip past a NOTE_INSN_LOOP_BEG
649 (because we might have a loop executed only once that contains a
650 loop which starts with a jump to its exit test) or a NOTE_INSN_LOOP_END
651 (in case we have a degenerate loop).
653 Note that if we mistakenly think that a loop is entered at the top
654 when, in fact, it is entered at the exit test, the only effect will be
655 slightly poorer optimization. Making the opposite error can generate
656 incorrect code. Since very few loops now start with a jump to the
657 exit test, the code here to detect that case is very conservative. */
659 for (p = NEXT_INSN (loop_start);
660 p != loop_end
661 && GET_CODE (p) != CODE_LABEL && ! INSN_P (p)
662 && (GET_CODE (p) != NOTE
663 || (NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_BEG
664 && NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_END));
665 p = NEXT_INSN (p))
668 loop->scan_start = p;
670 /* If loop end is the end of the current function, then emit a
671 NOTE_INSN_DELETED after loop_end and set loop->sink to the dummy
672 note insn. This is the position we use when sinking insns out of
673 the loop. */
674 if (NEXT_INSN (loop->end) != 0)
675 loop->sink = NEXT_INSN (loop->end);
676 else
677 loop->sink = emit_note_after (NOTE_INSN_DELETED, loop->end);
679 /* Set up variables describing this loop. */
680 prescan_loop (loop);
681 threshold = (loop_info->has_call ? 1 : 2) * (1 + n_non_fixed_regs);
683 /* If loop has a jump before the first label,
684 the true entry is the target of that jump.
685 Start scan from there.
686 But record in LOOP->TOP the place where the end-test jumps
687 back to so we can scan that after the end of the loop. */
688 if (GET_CODE (p) == JUMP_INSN)
690 loop_entry_jump = p;
692 /* Loop entry must be unconditional jump (and not a RETURN) */
693 if (any_uncondjump_p (p)
694 && JUMP_LABEL (p) != 0
695 /* Check to see whether the jump actually
696 jumps out of the loop (meaning it's no loop).
697 This case can happen for things like
698 do {..} while (0). If this label was generated previously
699 by loop, we can't tell anything about it and have to reject
700 the loop. */
701 && INSN_IN_RANGE_P (JUMP_LABEL (p), loop_start, loop_end))
703 loop->top = next_label (loop->scan_start);
704 loop->scan_start = JUMP_LABEL (p);
708 /* If LOOP->SCAN_START was an insn created by loop, we don't know its luid
709 as required by loop_reg_used_before_p. So skip such loops. (This
710 test may never be true, but it's best to play it safe.)
712 Also, skip loops where we do not start scanning at a label. This
713 test also rejects loops starting with a JUMP_INSN that failed the
714 test above. */
716 if (INSN_UID (loop->scan_start) >= max_uid_for_loop
717 || GET_CODE (loop->scan_start) != CODE_LABEL)
719 if (loop_dump_stream)
720 fprintf (loop_dump_stream, "\nLoop from %d to %d is phony.\n\n",
721 INSN_UID (loop_start), INSN_UID (loop_end));
722 return;
725 /* Allocate extra space for REGs that might be created by load_mems.
726 We allocate a little extra slop as well, in the hopes that we
727 won't have to reallocate the regs array. */
728 loop_regs_scan (loop, loop_info->mems_idx + 16);
729 insn_count = count_insns_in_loop (loop);
731 if (loop_dump_stream)
733 fprintf (loop_dump_stream, "\nLoop from %d to %d: %d real insns.\n",
734 INSN_UID (loop_start), INSN_UID (loop_end), insn_count);
735 if (loop->cont)
736 fprintf (loop_dump_stream, "Continue at insn %d.\n",
737 INSN_UID (loop->cont));
740 /* Scan through the loop finding insns that are safe to move.
741 Set REGS->ARRAY[I].SET_IN_LOOP negative for the reg I being set, so that
742 this reg will be considered invariant for subsequent insns.
743 We consider whether subsequent insns use the reg
744 in deciding whether it is worth actually moving.
746 MAYBE_NEVER is nonzero if we have passed a conditional jump insn
747 and therefore it is possible that the insns we are scanning
748 would never be executed. At such times, we must make sure
749 that it is safe to execute the insn once instead of zero times.
750 When MAYBE_NEVER is 0, all insns will be executed at least once
751 so that is not a problem. */
753 for (in_libcall = 0, p = next_insn_in_loop (loop, loop->scan_start);
754 p != NULL_RTX;
755 p = next_insn_in_loop (loop, p))
757 if (in_libcall && INSN_P (p) && find_reg_note (p, REG_RETVAL, NULL_RTX))
758 in_libcall--;
759 if (GET_CODE (p) == INSN)
761 temp = find_reg_note (p, REG_LIBCALL, NULL_RTX);
762 if (temp)
763 in_libcall++;
764 if (! in_libcall
765 && (set = single_set (p))
766 && GET_CODE (SET_DEST (set)) == REG
767 #ifdef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
768 && SET_DEST (set) != pic_offset_table_rtx
769 #endif
770 && ! regs->array[REGNO (SET_DEST (set))].may_not_optimize)
772 int tem1 = 0;
773 int tem2 = 0;
774 int move_insn = 0;
775 rtx src = SET_SRC (set);
776 rtx dependencies = 0;
778 /* Figure out what to use as a source of this insn. If a
779 REG_EQUIV note is given or if a REG_EQUAL note with a
780 constant operand is specified, use it as the source and
781 mark that we should move this insn by calling
782 emit_move_insn rather that duplicating the insn.
784 Otherwise, only use the REG_EQUAL contents if a REG_RETVAL
785 note is present. */
786 temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
787 if (temp)
788 src = XEXP (temp, 0), move_insn = 1;
789 else
791 temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
792 if (temp && CONSTANT_P (XEXP (temp, 0)))
793 src = XEXP (temp, 0), move_insn = 1;
794 if (temp && find_reg_note (p, REG_RETVAL, NULL_RTX))
796 src = XEXP (temp, 0);
797 /* A libcall block can use regs that don't appear in
798 the equivalent expression. To move the libcall,
799 we must move those regs too. */
800 dependencies = libcall_other_reg (p, src);
804 /* For parallels, add any possible uses to the depencies, as
805 we can't move the insn without resolving them first. */
806 if (GET_CODE (PATTERN (p)) == PARALLEL)
808 for (i = 0; i < XVECLEN (PATTERN (p), 0); i++)
810 rtx x = XVECEXP (PATTERN (p), 0, i);
811 if (GET_CODE (x) == USE)
812 dependencies
813 = gen_rtx_EXPR_LIST (VOIDmode, XEXP (x, 0),
814 dependencies);
818 /* Don't try to optimize a register that was made
819 by loop-optimization for an inner loop.
820 We don't know its life-span, so we can't compute
821 the benefit. */
822 if (REGNO (SET_DEST (set)) >= max_reg_before_loop)
824 else if (/* The register is used in basic blocks other
825 than the one where it is set (meaning that
826 something after this point in the loop might
827 depend on its value before the set). */
828 ! reg_in_basic_block_p (p, SET_DEST (set))
829 /* And the set is not guaranteed to be executed once
830 the loop starts, or the value before the set is
831 needed before the set occurs...
833 ??? Note we have quadratic behavior here, mitigated
834 by the fact that the previous test will often fail for
835 large loops. Rather than re-scanning the entire loop
836 each time for register usage, we should build tables
837 of the register usage and use them here instead. */
838 && (maybe_never
839 || loop_reg_used_before_p (loop, set, p)))
840 /* It is unsafe to move the set.
842 This code used to consider it OK to move a set of a variable
843 which was not created by the user and not used in an exit
844 test.
845 That behavior is incorrect and was removed. */
847 else if ((tem = loop_invariant_p (loop, src))
848 && (dependencies == 0
849 || (tem2
850 = loop_invariant_p (loop, dependencies)) != 0)
851 && (regs->array[REGNO (SET_DEST (set))].set_in_loop == 1
852 || (tem1
853 = consec_sets_invariant_p
854 (loop, SET_DEST (set),
855 regs->array[REGNO (SET_DEST (set))].set_in_loop,
856 p)))
857 /* If the insn can cause a trap (such as divide by zero),
858 can't move it unless it's guaranteed to be executed
859 once loop is entered. Even a function call might
860 prevent the trap insn from being reached
861 (since it might exit!) */
862 && ! ((maybe_never || call_passed)
863 && may_trap_p (src)))
865 struct movable *m;
866 int regno = REGNO (SET_DEST (set));
868 /* A potential lossage is where we have a case where two insns
869 can be combined as long as they are both in the loop, but
870 we move one of them outside the loop. For large loops,
871 this can lose. The most common case of this is the address
872 of a function being called.
874 Therefore, if this register is marked as being used
875 exactly once if we are in a loop with calls
876 (a "large loop"), see if we can replace the usage of
877 this register with the source of this SET. If we can,
878 delete this insn.
880 Don't do this if P has a REG_RETVAL note or if we have
881 SMALL_REGISTER_CLASSES and SET_SRC is a hard register. */
883 if (loop_info->has_call
884 && regs->array[regno].single_usage != 0
885 && regs->array[regno].single_usage != const0_rtx
886 && REGNO_FIRST_UID (regno) == INSN_UID (p)
887 && (REGNO_LAST_UID (regno)
888 == INSN_UID (regs->array[regno].single_usage))
889 && regs->array[regno].set_in_loop == 1
890 && GET_CODE (SET_SRC (set)) != ASM_OPERANDS
891 && ! side_effects_p (SET_SRC (set))
892 && ! find_reg_note (p, REG_RETVAL, NULL_RTX)
893 && (! SMALL_REGISTER_CLASSES
894 || (! (GET_CODE (SET_SRC (set)) == REG
895 && (REGNO (SET_SRC (set))
896 < FIRST_PSEUDO_REGISTER))))
897 /* This test is not redundant; SET_SRC (set) might be
898 a call-clobbered register and the life of REGNO
899 might span a call. */
900 && ! modified_between_p (SET_SRC (set), p,
901 regs->array[regno].single_usage)
902 && no_labels_between_p (p,
903 regs->array[regno].single_usage)
904 && validate_replace_rtx (SET_DEST (set), SET_SRC (set),
905 regs->array[regno].single_usage))
907 /* Replace any usage in a REG_EQUAL note. Must copy
908 the new source, so that we don't get rtx sharing
909 between the SET_SOURCE and REG_NOTES of insn p. */
910 REG_NOTES (regs->array[regno].single_usage)
911 = (replace_rtx
912 (REG_NOTES (regs->array[regno].single_usage),
913 SET_DEST (set), copy_rtx (SET_SRC (set))));
915 delete_insn (p);
916 for (i = 0; i < LOOP_REGNO_NREGS (regno, SET_DEST (set));
917 i++)
918 regs->array[regno+i].set_in_loop = 0;
919 continue;
922 m = (struct movable *) xmalloc (sizeof (struct movable));
923 m->next = 0;
924 m->insn = p;
925 m->set_src = src;
926 m->dependencies = dependencies;
927 m->set_dest = SET_DEST (set);
928 m->force = 0;
929 m->consec
930 = regs->array[REGNO (SET_DEST (set))].set_in_loop - 1;
931 m->done = 0;
932 m->forces = 0;
933 m->partial = 0;
934 m->move_insn = move_insn;
935 m->move_insn_first = 0;
936 m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
937 m->savemode = VOIDmode;
938 m->regno = regno;
939 /* Set M->cond if either loop_invariant_p
940 or consec_sets_invariant_p returned 2
941 (only conditionally invariant). */
942 m->cond = ((tem | tem1 | tem2) > 1);
943 m->global = LOOP_REG_GLOBAL_P (loop, regno);
944 m->match = 0;
945 m->lifetime = LOOP_REG_LIFETIME (loop, regno);
946 m->savings = regs->array[regno].n_times_set;
947 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
948 m->savings += libcall_benefit (p);
949 for (i = 0; i < LOOP_REGNO_NREGS (regno, SET_DEST (set)); i++)
950 regs->array[regno+i].set_in_loop = move_insn ? -2 : -1;
951 /* Add M to the end of the chain MOVABLES. */
952 loop_movables_add (movables, m);
954 if (m->consec > 0)
956 /* It is possible for the first instruction to have a
957 REG_EQUAL note but a non-invariant SET_SRC, so we must
958 remember the status of the first instruction in case
959 the last instruction doesn't have a REG_EQUAL note. */
960 m->move_insn_first = m->move_insn;
962 /* Skip this insn, not checking REG_LIBCALL notes. */
963 p = next_nonnote_insn (p);
964 /* Skip the consecutive insns, if there are any. */
965 p = skip_consec_insns (p, m->consec);
966 /* Back up to the last insn of the consecutive group. */
967 p = prev_nonnote_insn (p);
969 /* We must now reset m->move_insn, m->is_equiv, and
970 possibly m->set_src to correspond to the effects of
971 all the insns. */
972 temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
973 if (temp)
974 m->set_src = XEXP (temp, 0), m->move_insn = 1;
975 else
977 temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
978 if (temp && CONSTANT_P (XEXP (temp, 0)))
979 m->set_src = XEXP (temp, 0), m->move_insn = 1;
980 else
981 m->move_insn = 0;
984 m->is_equiv
985 = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
988 /* If this register is always set within a STRICT_LOW_PART
989 or set to zero, then its high bytes are constant.
990 So clear them outside the loop and within the loop
991 just load the low bytes.
992 We must check that the machine has an instruction to do so.
993 Also, if the value loaded into the register
994 depends on the same register, this cannot be done. */
995 else if (SET_SRC (set) == const0_rtx
996 && GET_CODE (NEXT_INSN (p)) == INSN
997 && (set1 = single_set (NEXT_INSN (p)))
998 && GET_CODE (set1) == SET
999 && (GET_CODE (SET_DEST (set1)) == STRICT_LOW_PART)
1000 && (GET_CODE (XEXP (SET_DEST (set1), 0)) == SUBREG)
1001 && (SUBREG_REG (XEXP (SET_DEST (set1), 0))
1002 == SET_DEST (set))
1003 && !reg_mentioned_p (SET_DEST (set), SET_SRC (set1)))
1005 int regno = REGNO (SET_DEST (set));
1006 if (regs->array[regno].set_in_loop == 2)
1008 struct movable *m;
1009 m = (struct movable *) xmalloc (sizeof (struct movable));
1010 m->next = 0;
1011 m->insn = p;
1012 m->set_dest = SET_DEST (set);
1013 m->dependencies = 0;
1014 m->force = 0;
1015 m->consec = 0;
1016 m->done = 0;
1017 m->forces = 0;
1018 m->move_insn = 0;
1019 m->move_insn_first = 0;
1020 m->partial = 1;
1021 /* If the insn may not be executed on some cycles,
1022 we can't clear the whole reg; clear just high part.
1023 Not even if the reg is used only within this loop.
1024 Consider this:
1025 while (1)
1026 while (s != t) {
1027 if (foo ()) x = *s;
1028 use (x);
1030 Clearing x before the inner loop could clobber a value
1031 being saved from the last time around the outer loop.
1032 However, if the reg is not used outside this loop
1033 and all uses of the register are in the same
1034 basic block as the store, there is no problem.
1036 If this insn was made by loop, we don't know its
1037 INSN_LUID and hence must make a conservative
1038 assumption. */
1039 m->global = (INSN_UID (p) >= max_uid_for_loop
1040 || LOOP_REG_GLOBAL_P (loop, regno)
1041 || (labels_in_range_p
1042 (p, REGNO_FIRST_LUID (regno))));
1043 if (maybe_never && m->global)
1044 m->savemode = GET_MODE (SET_SRC (set1));
1045 else
1046 m->savemode = VOIDmode;
1047 m->regno = regno;
1048 m->cond = 0;
1049 m->match = 0;
1050 m->lifetime = LOOP_REG_LIFETIME (loop, regno);
1051 m->savings = 1;
1052 for (i = 0;
1053 i < LOOP_REGNO_NREGS (regno, SET_DEST (set));
1054 i++)
1055 regs->array[regno+i].set_in_loop = -1;
1056 /* Add M to the end of the chain MOVABLES. */
1057 loop_movables_add (movables, m);
1062 /* Past a call insn, we get to insns which might not be executed
1063 because the call might exit. This matters for insns that trap.
1064 Constant and pure call insns always return, so they don't count. */
1065 else if (GET_CODE (p) == CALL_INSN && ! CONST_OR_PURE_CALL_P (p))
1066 call_passed = 1;
1067 /* Past a label or a jump, we get to insns for which we
1068 can't count on whether or how many times they will be
1069 executed during each iteration. Therefore, we can
1070 only move out sets of trivial variables
1071 (those not used after the loop). */
1072 /* Similar code appears twice in strength_reduce. */
1073 else if ((GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN)
1074 /* If we enter the loop in the middle, and scan around to the
1075 beginning, don't set maybe_never for that. This must be an
1076 unconditional jump, otherwise the code at the top of the
1077 loop might never be executed. Unconditional jumps are
1078 followed by a barrier then the loop_end. */
1079 && ! (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == loop->top
1080 && NEXT_INSN (NEXT_INSN (p)) == loop_end
1081 && any_uncondjump_p (p)))
1082 maybe_never = 1;
1083 else if (GET_CODE (p) == NOTE)
1085 /* At the virtual top of a converted loop, insns are again known to
1086 be executed: logically, the loop begins here even though the exit
1087 code has been duplicated. */
1088 if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP && loop_depth == 0)
1089 maybe_never = call_passed = 0;
1090 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
1091 loop_depth++;
1092 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
1093 loop_depth--;
1097 /* If one movable subsumes another, ignore that other. */
1099 ignore_some_movables (movables);
1101 /* For each movable insn, see if the reg that it loads
1102 leads when it dies right into another conditionally movable insn.
1103 If so, record that the second insn "forces" the first one,
1104 since the second can be moved only if the first is. */
1106 force_movables (movables);
1108 /* See if there are multiple movable insns that load the same value.
1109 If there are, make all but the first point at the first one
1110 through the `match' field, and add the priorities of them
1111 all together as the priority of the first. */
1113 combine_movables (movables, regs);
1115 /* Now consider each movable insn to decide whether it is worth moving.
1116 Store 0 in regs->array[I].set_in_loop for each reg I that is moved.
1118 Generally this increases code size, so do not move moveables when
1119 optimizing for code size. */
1121 if (! optimize_size)
1123 move_movables (loop, movables, threshold, insn_count);
1125 /* Recalculate regs->array if move_movables has created new
1126 registers. */
1127 if (max_reg_num () > regs->num)
1129 loop_regs_scan (loop, 0);
1130 for (update_start = loop_start;
1131 PREV_INSN (update_start)
1132 && GET_CODE (PREV_INSN (update_start)) != CODE_LABEL;
1133 update_start = PREV_INSN (update_start))
1135 update_end = NEXT_INSN (loop_end);
1137 reg_scan_update (update_start, update_end, loop_max_reg);
1138 loop_max_reg = max_reg_num ();
1142 /* Now candidates that still are negative are those not moved.
1143 Change regs->array[I].set_in_loop to indicate that those are not actually
1144 invariant. */
1145 for (i = 0; i < regs->num; i++)
1146 if (regs->array[i].set_in_loop < 0)
1147 regs->array[i].set_in_loop = regs->array[i].n_times_set;
1149 /* Now that we've moved some things out of the loop, we might be able to
1150 hoist even more memory references. */
1151 load_mems (loop);
1153 /* Recalculate regs->array if load_mems has created new registers. */
1154 if (max_reg_num () > regs->num)
1155 loop_regs_scan (loop, 0);
1157 for (update_start = loop_start;
1158 PREV_INSN (update_start)
1159 && GET_CODE (PREV_INSN (update_start)) != CODE_LABEL;
1160 update_start = PREV_INSN (update_start))
1162 update_end = NEXT_INSN (loop_end);
1164 reg_scan_update (update_start, update_end, loop_max_reg);
1165 loop_max_reg = max_reg_num ();
1167 if (flag_strength_reduce)
1169 if (update_end && GET_CODE (update_end) == CODE_LABEL)
1170 /* Ensure our label doesn't go away. */
1171 LABEL_NUSES (update_end)++;
1173 strength_reduce (loop, flags);
1175 reg_scan_update (update_start, update_end, loop_max_reg);
1176 loop_max_reg = max_reg_num ();
1178 if (update_end && GET_CODE (update_end) == CODE_LABEL
1179 && --LABEL_NUSES (update_end) == 0)
1180 delete_related_insns (update_end);
1184 /* The movable information is required for strength reduction. */
1185 loop_movables_free (movables);
1187 free (regs->array);
1188 regs->array = 0;
1189 regs->num = 0;
1192 /* Add elements to *OUTPUT to record all the pseudo-regs
1193 mentioned in IN_THIS but not mentioned in NOT_IN_THIS. */
1195 void
1196 record_excess_regs (in_this, not_in_this, output)
1197 rtx in_this, not_in_this;
1198 rtx *output;
1200 enum rtx_code code;
1201 const char *fmt;
1202 int i;
1204 code = GET_CODE (in_this);
1206 switch (code)
1208 case PC:
1209 case CC0:
1210 case CONST_INT:
1211 case CONST_DOUBLE:
1212 case CONST:
1213 case SYMBOL_REF:
1214 case LABEL_REF:
1215 return;
1217 case REG:
1218 if (REGNO (in_this) >= FIRST_PSEUDO_REGISTER
1219 && ! reg_mentioned_p (in_this, not_in_this))
1220 *output = gen_rtx_EXPR_LIST (VOIDmode, in_this, *output);
1221 return;
1223 default:
1224 break;
1227 fmt = GET_RTX_FORMAT (code);
1228 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1230 int j;
1232 switch (fmt[i])
1234 case 'E':
1235 for (j = 0; j < XVECLEN (in_this, i); j++)
1236 record_excess_regs (XVECEXP (in_this, i, j), not_in_this, output);
1237 break;
1239 case 'e':
1240 record_excess_regs (XEXP (in_this, i), not_in_this, output);
1241 break;
1246 /* Check what regs are referred to in the libcall block ending with INSN,
1247 aside from those mentioned in the equivalent value.
1248 If there are none, return 0.
1249 If there are one or more, return an EXPR_LIST containing all of them. */
1252 libcall_other_reg (insn, equiv)
1253 rtx insn, equiv;
1255 rtx note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1256 rtx p = XEXP (note, 0);
1257 rtx output = 0;
1259 /* First, find all the regs used in the libcall block
1260 that are not mentioned as inputs to the result. */
1262 while (p != insn)
1264 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
1265 || GET_CODE (p) == CALL_INSN)
1266 record_excess_regs (PATTERN (p), equiv, &output);
1267 p = NEXT_INSN (p);
1270 return output;
1273 /* Return 1 if all uses of REG
1274 are between INSN and the end of the basic block. */
1276 static int
1277 reg_in_basic_block_p (insn, reg)
1278 rtx insn, reg;
1280 int regno = REGNO (reg);
1281 rtx p;
1283 if (REGNO_FIRST_UID (regno) != INSN_UID (insn))
1284 return 0;
1286 /* Search this basic block for the already recorded last use of the reg. */
1287 for (p = insn; p; p = NEXT_INSN (p))
1289 switch (GET_CODE (p))
1291 case NOTE:
1292 break;
1294 case INSN:
1295 case CALL_INSN:
1296 /* Ordinary insn: if this is the last use, we win. */
1297 if (REGNO_LAST_UID (regno) == INSN_UID (p))
1298 return 1;
1299 break;
1301 case JUMP_INSN:
1302 /* Jump insn: if this is the last use, we win. */
1303 if (REGNO_LAST_UID (regno) == INSN_UID (p))
1304 return 1;
1305 /* Otherwise, it's the end of the basic block, so we lose. */
1306 return 0;
1308 case CODE_LABEL:
1309 case BARRIER:
1310 /* It's the end of the basic block, so we lose. */
1311 return 0;
1313 default:
1314 break;
1318 /* The "last use" that was recorded can't be found after the first
1319 use. This can happen when the last use was deleted while
1320 processing an inner loop, this inner loop was then completely
1321 unrolled, and the outer loop is always exited after the inner loop,
1322 so that everything after the first use becomes a single basic block. */
1323 return 1;
1326 /* Compute the benefit of eliminating the insns in the block whose
1327 last insn is LAST. This may be a group of insns used to compute a
1328 value directly or can contain a library call. */
1330 static int
1331 libcall_benefit (last)
1332 rtx last;
1334 rtx insn;
1335 int benefit = 0;
1337 for (insn = XEXP (find_reg_note (last, REG_RETVAL, NULL_RTX), 0);
1338 insn != last; insn = NEXT_INSN (insn))
1340 if (GET_CODE (insn) == CALL_INSN)
1341 benefit += 10; /* Assume at least this many insns in a library
1342 routine. */
1343 else if (GET_CODE (insn) == INSN
1344 && GET_CODE (PATTERN (insn)) != USE
1345 && GET_CODE (PATTERN (insn)) != CLOBBER)
1346 benefit++;
1349 return benefit;
1352 /* Skip COUNT insns from INSN, counting library calls as 1 insn. */
1354 static rtx
1355 skip_consec_insns (insn, count)
1356 rtx insn;
1357 int count;
1359 for (; count > 0; count--)
1361 rtx temp;
1363 /* If first insn of libcall sequence, skip to end. */
1364 /* Do this at start of loop, since INSN is guaranteed to
1365 be an insn here. */
1366 if (GET_CODE (insn) != NOTE
1367 && (temp = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
1368 insn = XEXP (temp, 0);
1371 insn = NEXT_INSN (insn);
1372 while (GET_CODE (insn) == NOTE);
1375 return insn;
1378 /* Ignore any movable whose insn falls within a libcall
1379 which is part of another movable.
1380 We make use of the fact that the movable for the libcall value
1381 was made later and so appears later on the chain. */
1383 static void
1384 ignore_some_movables (movables)
1385 struct loop_movables *movables;
1387 struct movable *m, *m1;
1389 for (m = movables->head; m; m = m->next)
1391 /* Is this a movable for the value of a libcall? */
1392 rtx note = find_reg_note (m->insn, REG_RETVAL, NULL_RTX);
1393 if (note)
1395 rtx insn;
1396 /* Check for earlier movables inside that range,
1397 and mark them invalid. We cannot use LUIDs here because
1398 insns created by loop.c for prior loops don't have LUIDs.
1399 Rather than reject all such insns from movables, we just
1400 explicitly check each insn in the libcall (since invariant
1401 libcalls aren't that common). */
1402 for (insn = XEXP (note, 0); insn != m->insn; insn = NEXT_INSN (insn))
1403 for (m1 = movables->head; m1 != m; m1 = m1->next)
1404 if (m1->insn == insn)
1405 m1->done = 1;
1410 /* For each movable insn, see if the reg that it loads
1411 leads when it dies right into another conditionally movable insn.
1412 If so, record that the second insn "forces" the first one,
1413 since the second can be moved only if the first is. */
1415 static void
1416 force_movables (movables)
1417 struct loop_movables *movables;
1419 struct movable *m, *m1;
1421 for (m1 = movables->head; m1; m1 = m1->next)
1422 /* Omit this if moving just the (SET (REG) 0) of a zero-extend. */
1423 if (!m1->partial && !m1->done)
1425 int regno = m1->regno;
1426 for (m = m1->next; m; m = m->next)
1427 /* ??? Could this be a bug? What if CSE caused the
1428 register of M1 to be used after this insn?
1429 Since CSE does not update regno_last_uid,
1430 this insn M->insn might not be where it dies.
1431 But very likely this doesn't matter; what matters is
1432 that M's reg is computed from M1's reg. */
1433 if (INSN_UID (m->insn) == REGNO_LAST_UID (regno)
1434 && !m->done)
1435 break;
1436 if (m != 0 && m->set_src == m1->set_dest
1437 /* If m->consec, m->set_src isn't valid. */
1438 && m->consec == 0)
1439 m = 0;
1441 /* Increase the priority of the moving the first insn
1442 since it permits the second to be moved as well. */
1443 if (m != 0)
1445 m->forces = m1;
1446 m1->lifetime += m->lifetime;
1447 m1->savings += m->savings;
1452 /* Find invariant expressions that are equal and can be combined into
1453 one register. */
1455 static void
1456 combine_movables (movables, regs)
1457 struct loop_movables *movables;
1458 struct loop_regs *regs;
1460 struct movable *m;
1461 char *matched_regs = (char *) xmalloc (regs->num);
1462 enum machine_mode mode;
1464 /* Regs that are set more than once are not allowed to match
1465 or be matched. I'm no longer sure why not. */
1466 /* Only pseudo registers are allowed to match or be matched,
1467 since move_movables does not validate the change. */
1468 /* Perhaps testing m->consec_sets would be more appropriate here? */
1470 for (m = movables->head; m; m = m->next)
1471 if (m->match == 0 && regs->array[m->regno].n_times_set == 1
1472 && m->regno >= FIRST_PSEUDO_REGISTER
1473 && !m->partial)
1475 struct movable *m1;
1476 int regno = m->regno;
1478 memset (matched_regs, 0, regs->num);
1479 matched_regs[regno] = 1;
1481 /* We want later insns to match the first one. Don't make the first
1482 one match any later ones. So start this loop at m->next. */
1483 for (m1 = m->next; m1; m1 = m1->next)
1484 if (m != m1 && m1->match == 0
1485 && regs->array[m1->regno].n_times_set == 1
1486 && m1->regno >= FIRST_PSEUDO_REGISTER
1487 /* A reg used outside the loop mustn't be eliminated. */
1488 && !m1->global
1489 /* A reg used for zero-extending mustn't be eliminated. */
1490 && !m1->partial
1491 && (matched_regs[m1->regno]
1494 /* Can combine regs with different modes loaded from the
1495 same constant only if the modes are the same or
1496 if both are integer modes with M wider or the same
1497 width as M1. The check for integer is redundant, but
1498 safe, since the only case of differing destination
1499 modes with equal sources is when both sources are
1500 VOIDmode, i.e., CONST_INT. */
1501 (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest)
1502 || (GET_MODE_CLASS (GET_MODE (m->set_dest)) == MODE_INT
1503 && GET_MODE_CLASS (GET_MODE (m1->set_dest)) == MODE_INT
1504 && (GET_MODE_BITSIZE (GET_MODE (m->set_dest))
1505 >= GET_MODE_BITSIZE (GET_MODE (m1->set_dest)))))
1506 /* See if the source of M1 says it matches M. */
1507 && ((GET_CODE (m1->set_src) == REG
1508 && matched_regs[REGNO (m1->set_src)])
1509 || rtx_equal_for_loop_p (m->set_src, m1->set_src,
1510 movables, regs))))
1511 && ((m->dependencies == m1->dependencies)
1512 || rtx_equal_p (m->dependencies, m1->dependencies)))
1514 m->lifetime += m1->lifetime;
1515 m->savings += m1->savings;
1516 m1->done = 1;
1517 m1->match = m;
1518 matched_regs[m1->regno] = 1;
1522 /* Now combine the regs used for zero-extension.
1523 This can be done for those not marked `global'
1524 provided their lives don't overlap. */
1526 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1527 mode = GET_MODE_WIDER_MODE (mode))
1529 struct movable *m0 = 0;
1531 /* Combine all the registers for extension from mode MODE.
1532 Don't combine any that are used outside this loop. */
1533 for (m = movables->head; m; m = m->next)
1534 if (m->partial && ! m->global
1535 && mode == GET_MODE (SET_SRC (PATTERN (NEXT_INSN (m->insn)))))
1537 struct movable *m1;
1539 int first = REGNO_FIRST_LUID (m->regno);
1540 int last = REGNO_LAST_LUID (m->regno);
1542 if (m0 == 0)
1544 /* First one: don't check for overlap, just record it. */
1545 m0 = m;
1546 continue;
1549 /* Make sure they extend to the same mode.
1550 (Almost always true.) */
1551 if (GET_MODE (m->set_dest) != GET_MODE (m0->set_dest))
1552 continue;
1554 /* We already have one: check for overlap with those
1555 already combined together. */
1556 for (m1 = movables->head; m1 != m; m1 = m1->next)
1557 if (m1 == m0 || (m1->partial && m1->match == m0))
1558 if (! (REGNO_FIRST_LUID (m1->regno) > last
1559 || REGNO_LAST_LUID (m1->regno) < first))
1560 goto overlap;
1562 /* No overlap: we can combine this with the others. */
1563 m0->lifetime += m->lifetime;
1564 m0->savings += m->savings;
1565 m->done = 1;
1566 m->match = m0;
1568 overlap:
1573 /* Clean up. */
1574 free (matched_regs);
1577 /* Returns the number of movable instructions in LOOP that were not
1578 moved outside the loop. */
1580 static int
1581 num_unmoved_movables (loop)
1582 const struct loop *loop;
1584 int num = 0;
1585 struct movable *m;
1587 for (m = LOOP_MOVABLES (loop)->head; m; m = m->next)
1588 if (!m->done)
1589 ++num;
1591 return num;
1595 /* Return 1 if regs X and Y will become the same if moved. */
1597 static int
1598 regs_match_p (x, y, movables)
1599 rtx x, y;
1600 struct loop_movables *movables;
1602 unsigned int xn = REGNO (x);
1603 unsigned int yn = REGNO (y);
1604 struct movable *mx, *my;
1606 for (mx = movables->head; mx; mx = mx->next)
1607 if (mx->regno == xn)
1608 break;
1610 for (my = movables->head; my; my = my->next)
1611 if (my->regno == yn)
1612 break;
1614 return (mx && my
1615 && ((mx->match == my->match && mx->match != 0)
1616 || mx->match == my
1617 || mx == my->match));
1620 /* Return 1 if X and Y are identical-looking rtx's.
1621 This is the Lisp function EQUAL for rtx arguments.
1623 If two registers are matching movables or a movable register and an
1624 equivalent constant, consider them equal. */
1626 static int
1627 rtx_equal_for_loop_p (x, y, movables, regs)
1628 rtx x, y;
1629 struct loop_movables *movables;
1630 struct loop_regs *regs;
1632 int i;
1633 int j;
1634 struct movable *m;
1635 enum rtx_code code;
1636 const char *fmt;
1638 if (x == y)
1639 return 1;
1640 if (x == 0 || y == 0)
1641 return 0;
1643 code = GET_CODE (x);
1645 /* If we have a register and a constant, they may sometimes be
1646 equal. */
1647 if (GET_CODE (x) == REG && regs->array[REGNO (x)].set_in_loop == -2
1648 && CONSTANT_P (y))
1650 for (m = movables->head; m; m = m->next)
1651 if (m->move_insn && m->regno == REGNO (x)
1652 && rtx_equal_p (m->set_src, y))
1653 return 1;
1655 else if (GET_CODE (y) == REG && regs->array[REGNO (y)].set_in_loop == -2
1656 && CONSTANT_P (x))
1658 for (m = movables->head; m; m = m->next)
1659 if (m->move_insn && m->regno == REGNO (y)
1660 && rtx_equal_p (m->set_src, x))
1661 return 1;
1664 /* Otherwise, rtx's of different codes cannot be equal. */
1665 if (code != GET_CODE (y))
1666 return 0;
1668 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1669 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1671 if (GET_MODE (x) != GET_MODE (y))
1672 return 0;
1674 /* These three types of rtx's can be compared nonrecursively. */
1675 if (code == REG)
1676 return (REGNO (x) == REGNO (y) || regs_match_p (x, y, movables));
1678 if (code == LABEL_REF)
1679 return XEXP (x, 0) == XEXP (y, 0);
1680 if (code == SYMBOL_REF)
1681 return XSTR (x, 0) == XSTR (y, 0);
1683 /* Compare the elements. If any pair of corresponding elements
1684 fail to match, return 0 for the whole things. */
1686 fmt = GET_RTX_FORMAT (code);
1687 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1689 switch (fmt[i])
1691 case 'w':
1692 if (XWINT (x, i) != XWINT (y, i))
1693 return 0;
1694 break;
1696 case 'i':
1697 if (XINT (x, i) != XINT (y, i))
1698 return 0;
1699 break;
1701 case 'E':
1702 /* Two vectors must have the same length. */
1703 if (XVECLEN (x, i) != XVECLEN (y, i))
1704 return 0;
1706 /* And the corresponding elements must match. */
1707 for (j = 0; j < XVECLEN (x, i); j++)
1708 if (rtx_equal_for_loop_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
1709 movables, regs) == 0)
1710 return 0;
1711 break;
1713 case 'e':
1714 if (rtx_equal_for_loop_p (XEXP (x, i), XEXP (y, i), movables, regs)
1715 == 0)
1716 return 0;
1717 break;
1719 case 's':
1720 if (strcmp (XSTR (x, i), XSTR (y, i)))
1721 return 0;
1722 break;
1724 case 'u':
1725 /* These are just backpointers, so they don't matter. */
1726 break;
1728 case '0':
1729 break;
1731 /* It is believed that rtx's at this level will never
1732 contain anything but integers and other rtx's,
1733 except for within LABEL_REFs and SYMBOL_REFs. */
1734 default:
1735 abort ();
1738 return 1;
1741 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to all
1742 insns in INSNS which use the reference. LABEL_NUSES for CODE_LABEL
1743 references is incremented once for each added note. */
1745 static void
1746 add_label_notes (x, insns)
1747 rtx x;
1748 rtx insns;
1750 enum rtx_code code = GET_CODE (x);
1751 int i, j;
1752 const char *fmt;
1753 rtx insn;
1755 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
1757 /* This code used to ignore labels that referred to dispatch tables to
1758 avoid flow generating (slighly) worse code.
1760 We no longer ignore such label references (see LABEL_REF handling in
1761 mark_jump_label for additional information). */
1762 for (insn = insns; insn; insn = NEXT_INSN (insn))
1763 if (reg_mentioned_p (XEXP (x, 0), insn))
1765 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL, XEXP (x, 0),
1766 REG_NOTES (insn));
1767 if (LABEL_P (XEXP (x, 0)))
1768 LABEL_NUSES (XEXP (x, 0))++;
1772 fmt = GET_RTX_FORMAT (code);
1773 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1775 if (fmt[i] == 'e')
1776 add_label_notes (XEXP (x, i), insns);
1777 else if (fmt[i] == 'E')
1778 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1779 add_label_notes (XVECEXP (x, i, j), insns);
1783 /* Scan MOVABLES, and move the insns that deserve to be moved.
1784 If two matching movables are combined, replace one reg with the
1785 other throughout. */
1787 static void
1788 move_movables (loop, movables, threshold, insn_count)
1789 struct loop *loop;
1790 struct loop_movables *movables;
1791 int threshold;
1792 int insn_count;
1794 struct loop_regs *regs = LOOP_REGS (loop);
1795 int nregs = regs->num;
1796 rtx new_start = 0;
1797 struct movable *m;
1798 rtx p;
1799 rtx loop_start = loop->start;
1800 rtx loop_end = loop->end;
1801 /* Map of pseudo-register replacements to handle combining
1802 when we move several insns that load the same value
1803 into different pseudo-registers. */
1804 rtx *reg_map = (rtx *) xcalloc (nregs, sizeof (rtx));
1805 char *already_moved = (char *) xcalloc (nregs, sizeof (char));
1807 for (m = movables->head; m; m = m->next)
1809 /* Describe this movable insn. */
1811 if (loop_dump_stream)
1813 fprintf (loop_dump_stream, "Insn %d: regno %d (life %d), ",
1814 INSN_UID (m->insn), m->regno, m->lifetime);
1815 if (m->consec > 0)
1816 fprintf (loop_dump_stream, "consec %d, ", m->consec);
1817 if (m->cond)
1818 fprintf (loop_dump_stream, "cond ");
1819 if (m->force)
1820 fprintf (loop_dump_stream, "force ");
1821 if (m->global)
1822 fprintf (loop_dump_stream, "global ");
1823 if (m->done)
1824 fprintf (loop_dump_stream, "done ");
1825 if (m->move_insn)
1826 fprintf (loop_dump_stream, "move-insn ");
1827 if (m->match)
1828 fprintf (loop_dump_stream, "matches %d ",
1829 INSN_UID (m->match->insn));
1830 if (m->forces)
1831 fprintf (loop_dump_stream, "forces %d ",
1832 INSN_UID (m->forces->insn));
1835 /* Ignore the insn if it's already done (it matched something else).
1836 Otherwise, see if it is now safe to move. */
1838 if (!m->done
1839 && (! m->cond
1840 || (1 == loop_invariant_p (loop, m->set_src)
1841 && (m->dependencies == 0
1842 || 1 == loop_invariant_p (loop, m->dependencies))
1843 && (m->consec == 0
1844 || 1 == consec_sets_invariant_p (loop, m->set_dest,
1845 m->consec + 1,
1846 m->insn))))
1847 && (! m->forces || m->forces->done))
1849 int regno;
1850 rtx p;
1851 int savings = m->savings;
1853 /* We have an insn that is safe to move.
1854 Compute its desirability. */
1856 p = m->insn;
1857 regno = m->regno;
1859 if (loop_dump_stream)
1860 fprintf (loop_dump_stream, "savings %d ", savings);
1862 if (regs->array[regno].moved_once && loop_dump_stream)
1863 fprintf (loop_dump_stream, "halved since already moved ");
1865 /* An insn MUST be moved if we already moved something else
1866 which is safe only if this one is moved too: that is,
1867 if already_moved[REGNO] is nonzero. */
1869 /* An insn is desirable to move if the new lifetime of the
1870 register is no more than THRESHOLD times the old lifetime.
1871 If it's not desirable, it means the loop is so big
1872 that moving won't speed things up much,
1873 and it is liable to make register usage worse. */
1875 /* It is also desirable to move if it can be moved at no
1876 extra cost because something else was already moved. */
1878 if (already_moved[regno]
1879 || flag_move_all_movables
1880 || (threshold * savings * m->lifetime) >=
1881 (regs->array[regno].moved_once ? insn_count * 2 : insn_count)
1882 || (m->forces && m->forces->done
1883 && regs->array[m->forces->regno].n_times_set == 1))
1885 int count;
1886 struct movable *m1;
1887 rtx first = NULL_RTX;
1889 /* Now move the insns that set the reg. */
1891 if (m->partial && m->match)
1893 rtx newpat, i1;
1894 rtx r1, r2;
1895 /* Find the end of this chain of matching regs.
1896 Thus, we load each reg in the chain from that one reg.
1897 And that reg is loaded with 0 directly,
1898 since it has ->match == 0. */
1899 for (m1 = m; m1->match; m1 = m1->match);
1900 newpat = gen_move_insn (SET_DEST (PATTERN (m->insn)),
1901 SET_DEST (PATTERN (m1->insn)));
1902 i1 = loop_insn_hoist (loop, newpat);
1904 /* Mark the moved, invariant reg as being allowed to
1905 share a hard reg with the other matching invariant. */
1906 REG_NOTES (i1) = REG_NOTES (m->insn);
1907 r1 = SET_DEST (PATTERN (m->insn));
1908 r2 = SET_DEST (PATTERN (m1->insn));
1909 regs_may_share
1910 = gen_rtx_EXPR_LIST (VOIDmode, r1,
1911 gen_rtx_EXPR_LIST (VOIDmode, r2,
1912 regs_may_share));
1913 delete_insn (m->insn);
1915 if (new_start == 0)
1916 new_start = i1;
1918 if (loop_dump_stream)
1919 fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
1921 /* If we are to re-generate the item being moved with a
1922 new move insn, first delete what we have and then emit
1923 the move insn before the loop. */
1924 else if (m->move_insn)
1926 rtx i1, temp, seq;
1928 for (count = m->consec; count >= 0; count--)
1930 /* If this is the first insn of a library call sequence,
1931 something is very wrong. */
1932 if (GET_CODE (p) != NOTE
1933 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
1934 abort ();
1936 /* If this is the last insn of a libcall sequence, then
1937 delete every insn in the sequence except the last.
1938 The last insn is handled in the normal manner. */
1939 if (GET_CODE (p) != NOTE
1940 && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
1942 temp = XEXP (temp, 0);
1943 while (temp != p)
1944 temp = delete_insn (temp);
1947 temp = p;
1948 p = delete_insn (p);
1950 /* simplify_giv_expr expects that it can walk the insns
1951 at m->insn forwards and see this old sequence we are
1952 tossing here. delete_insn does preserve the next
1953 pointers, but when we skip over a NOTE we must fix
1954 it up. Otherwise that code walks into the non-deleted
1955 insn stream. */
1956 while (p && GET_CODE (p) == NOTE)
1957 p = NEXT_INSN (temp) = NEXT_INSN (p);
1960 start_sequence ();
1961 emit_move_insn (m->set_dest, m->set_src);
1962 seq = get_insns ();
1963 end_sequence ();
1965 add_label_notes (m->set_src, seq);
1967 i1 = loop_insn_hoist (loop, seq);
1968 if (! find_reg_note (i1, REG_EQUAL, NULL_RTX))
1969 set_unique_reg_note (i1,
1970 m->is_equiv ? REG_EQUIV : REG_EQUAL,
1971 m->set_src);
1973 if (loop_dump_stream)
1974 fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
1976 /* The more regs we move, the less we like moving them. */
1977 threshold -= 3;
1979 else
1981 for (count = m->consec; count >= 0; count--)
1983 rtx i1, temp;
1985 /* If first insn of libcall sequence, skip to end. */
1986 /* Do this at start of loop, since p is guaranteed to
1987 be an insn here. */
1988 if (GET_CODE (p) != NOTE
1989 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
1990 p = XEXP (temp, 0);
1992 /* If last insn of libcall sequence, move all
1993 insns except the last before the loop. The last
1994 insn is handled in the normal manner. */
1995 if (GET_CODE (p) != NOTE
1996 && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
1998 rtx fn_address = 0;
1999 rtx fn_reg = 0;
2000 rtx fn_address_insn = 0;
2002 first = 0;
2003 for (temp = XEXP (temp, 0); temp != p;
2004 temp = NEXT_INSN (temp))
2006 rtx body;
2007 rtx n;
2008 rtx next;
2010 if (GET_CODE (temp) == NOTE)
2011 continue;
2013 body = PATTERN (temp);
2015 /* Find the next insn after TEMP,
2016 not counting USE or NOTE insns. */
2017 for (next = NEXT_INSN (temp); next != p;
2018 next = NEXT_INSN (next))
2019 if (! (GET_CODE (next) == INSN
2020 && GET_CODE (PATTERN (next)) == USE)
2021 && GET_CODE (next) != NOTE)
2022 break;
2024 /* If that is the call, this may be the insn
2025 that loads the function address.
2027 Extract the function address from the insn
2028 that loads it into a register.
2029 If this insn was cse'd, we get incorrect code.
2031 So emit a new move insn that copies the
2032 function address into the register that the
2033 call insn will use. flow.c will delete any
2034 redundant stores that we have created. */
2035 if (GET_CODE (next) == CALL_INSN
2036 && GET_CODE (body) == SET
2037 && GET_CODE (SET_DEST (body)) == REG
2038 && (n = find_reg_note (temp, REG_EQUAL,
2039 NULL_RTX)))
2041 fn_reg = SET_SRC (body);
2042 if (GET_CODE (fn_reg) != REG)
2043 fn_reg = SET_DEST (body);
2044 fn_address = XEXP (n, 0);
2045 fn_address_insn = temp;
2047 /* We have the call insn.
2048 If it uses the register we suspect it might,
2049 load it with the correct address directly. */
2050 if (GET_CODE (temp) == CALL_INSN
2051 && fn_address != 0
2052 && reg_referenced_p (fn_reg, body))
2053 loop_insn_emit_after (loop, 0, fn_address_insn,
2054 gen_move_insn
2055 (fn_reg, fn_address));
2057 if (GET_CODE (temp) == CALL_INSN)
2059 i1 = loop_call_insn_hoist (loop, body);
2060 /* Because the USAGE information potentially
2061 contains objects other than hard registers
2062 we need to copy it. */
2063 if (CALL_INSN_FUNCTION_USAGE (temp))
2064 CALL_INSN_FUNCTION_USAGE (i1)
2065 = copy_rtx (CALL_INSN_FUNCTION_USAGE (temp));
2067 else
2068 i1 = loop_insn_hoist (loop, body);
2069 if (first == 0)
2070 first = i1;
2071 if (temp == fn_address_insn)
2072 fn_address_insn = i1;
2073 REG_NOTES (i1) = REG_NOTES (temp);
2074 REG_NOTES (temp) = NULL;
2075 delete_insn (temp);
2077 if (new_start == 0)
2078 new_start = first;
2080 if (m->savemode != VOIDmode)
2082 /* P sets REG to zero; but we should clear only
2083 the bits that are not covered by the mode
2084 m->savemode. */
2085 rtx reg = m->set_dest;
2086 rtx sequence;
2087 rtx tem;
2089 start_sequence ();
2090 tem = expand_simple_binop
2091 (GET_MODE (reg), AND, reg,
2092 GEN_INT ((((HOST_WIDE_INT) 1
2093 << GET_MODE_BITSIZE (m->savemode)))
2094 - 1),
2095 reg, 1, OPTAB_LIB_WIDEN);
2096 if (tem == 0)
2097 abort ();
2098 if (tem != reg)
2099 emit_move_insn (reg, tem);
2100 sequence = get_insns ();
2101 end_sequence ();
2102 i1 = loop_insn_hoist (loop, sequence);
2104 else if (GET_CODE (p) == CALL_INSN)
2106 i1 = loop_call_insn_hoist (loop, PATTERN (p));
2107 /* Because the USAGE information potentially
2108 contains objects other than hard registers
2109 we need to copy it. */
2110 if (CALL_INSN_FUNCTION_USAGE (p))
2111 CALL_INSN_FUNCTION_USAGE (i1)
2112 = copy_rtx (CALL_INSN_FUNCTION_USAGE (p));
2114 else if (count == m->consec && m->move_insn_first)
2116 rtx seq;
2117 /* The SET_SRC might not be invariant, so we must
2118 use the REG_EQUAL note. */
2119 start_sequence ();
2120 emit_move_insn (m->set_dest, m->set_src);
2121 seq = get_insns ();
2122 end_sequence ();
2124 add_label_notes (m->set_src, seq);
2126 i1 = loop_insn_hoist (loop, seq);
2127 if (! find_reg_note (i1, REG_EQUAL, NULL_RTX))
2128 set_unique_reg_note (i1, m->is_equiv ? REG_EQUIV
2129 : REG_EQUAL, m->set_src);
2131 else
2132 i1 = loop_insn_hoist (loop, PATTERN (p));
2134 if (REG_NOTES (i1) == 0)
2136 REG_NOTES (i1) = REG_NOTES (p);
2137 REG_NOTES (p) = NULL;
2139 /* If there is a REG_EQUAL note present whose value
2140 is not loop invariant, then delete it, since it
2141 may cause problems with later optimization passes.
2142 It is possible for cse to create such notes
2143 like this as a result of record_jump_cond. */
2145 if ((temp = find_reg_note (i1, REG_EQUAL, NULL_RTX))
2146 && ! loop_invariant_p (loop, XEXP (temp, 0)))
2147 remove_note (i1, temp);
2150 if (new_start == 0)
2151 new_start = i1;
2153 if (loop_dump_stream)
2154 fprintf (loop_dump_stream, " moved to %d",
2155 INSN_UID (i1));
2157 /* If library call, now fix the REG_NOTES that contain
2158 insn pointers, namely REG_LIBCALL on FIRST
2159 and REG_RETVAL on I1. */
2160 if ((temp = find_reg_note (i1, REG_RETVAL, NULL_RTX)))
2162 XEXP (temp, 0) = first;
2163 temp = find_reg_note (first, REG_LIBCALL, NULL_RTX);
2164 XEXP (temp, 0) = i1;
2167 temp = p;
2168 delete_insn (p);
2169 p = NEXT_INSN (p);
2171 /* simplify_giv_expr expects that it can walk the insns
2172 at m->insn forwards and see this old sequence we are
2173 tossing here. delete_insn does preserve the next
2174 pointers, but when we skip over a NOTE we must fix
2175 it up. Otherwise that code walks into the non-deleted
2176 insn stream. */
2177 while (p && GET_CODE (p) == NOTE)
2178 p = NEXT_INSN (temp) = NEXT_INSN (p);
2181 /* The more regs we move, the less we like moving them. */
2182 threshold -= 3;
2185 /* Any other movable that loads the same register
2186 MUST be moved. */
2187 already_moved[regno] = 1;
2189 /* This reg has been moved out of one loop. */
2190 regs->array[regno].moved_once = 1;
2192 /* The reg set here is now invariant. */
2193 if (! m->partial)
2195 int i;
2196 for (i = 0; i < LOOP_REGNO_NREGS (regno, m->set_dest); i++)
2197 regs->array[regno+i].set_in_loop = 0;
2200 m->done = 1;
2202 /* Change the length-of-life info for the register
2203 to say it lives at least the full length of this loop.
2204 This will help guide optimizations in outer loops. */
2206 if (REGNO_FIRST_LUID (regno) > INSN_LUID (loop_start))
2207 /* This is the old insn before all the moved insns.
2208 We can't use the moved insn because it is out of range
2209 in uid_luid. Only the old insns have luids. */
2210 REGNO_FIRST_UID (regno) = INSN_UID (loop_start);
2211 if (REGNO_LAST_LUID (regno) < INSN_LUID (loop_end))
2212 REGNO_LAST_UID (regno) = INSN_UID (loop_end);
2214 /* Combine with this moved insn any other matching movables. */
2216 if (! m->partial)
2217 for (m1 = movables->head; m1; m1 = m1->next)
2218 if (m1->match == m)
2220 rtx temp;
2222 /* Schedule the reg loaded by M1
2223 for replacement so that shares the reg of M.
2224 If the modes differ (only possible in restricted
2225 circumstances, make a SUBREG.
2227 Note this assumes that the target dependent files
2228 treat REG and SUBREG equally, including within
2229 GO_IF_LEGITIMATE_ADDRESS and in all the
2230 predicates since we never verify that replacing the
2231 original register with a SUBREG results in a
2232 recognizable insn. */
2233 if (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest))
2234 reg_map[m1->regno] = m->set_dest;
2235 else
2236 reg_map[m1->regno]
2237 = gen_lowpart_common (GET_MODE (m1->set_dest),
2238 m->set_dest);
2240 /* Get rid of the matching insn
2241 and prevent further processing of it. */
2242 m1->done = 1;
2244 /* if library call, delete all insns. */
2245 if ((temp = find_reg_note (m1->insn, REG_RETVAL,
2246 NULL_RTX)))
2247 delete_insn_chain (XEXP (temp, 0), m1->insn);
2248 else
2249 delete_insn (m1->insn);
2251 /* Any other movable that loads the same register
2252 MUST be moved. */
2253 already_moved[m1->regno] = 1;
2255 /* The reg merged here is now invariant,
2256 if the reg it matches is invariant. */
2257 if (! m->partial)
2259 int i;
2260 for (i = 0;
2261 i < LOOP_REGNO_NREGS (regno, m1->set_dest);
2262 i++)
2263 regs->array[m1->regno+i].set_in_loop = 0;
2267 else if (loop_dump_stream)
2268 fprintf (loop_dump_stream, "not desirable");
2270 else if (loop_dump_stream && !m->match)
2271 fprintf (loop_dump_stream, "not safe");
2273 if (loop_dump_stream)
2274 fprintf (loop_dump_stream, "\n");
2277 if (new_start == 0)
2278 new_start = loop_start;
2280 /* Go through all the instructions in the loop, making
2281 all the register substitutions scheduled in REG_MAP. */
2282 for (p = new_start; p != loop_end; p = NEXT_INSN (p))
2283 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
2284 || GET_CODE (p) == CALL_INSN)
2286 replace_regs (PATTERN (p), reg_map, nregs, 0);
2287 replace_regs (REG_NOTES (p), reg_map, nregs, 0);
2288 INSN_CODE (p) = -1;
2291 /* Clean up. */
2292 free (reg_map);
2293 free (already_moved);
2297 static void
2298 loop_movables_add (movables, m)
2299 struct loop_movables *movables;
2300 struct movable *m;
2302 if (movables->head == 0)
2303 movables->head = m;
2304 else
2305 movables->last->next = m;
2306 movables->last = m;
2310 static void
2311 loop_movables_free (movables)
2312 struct loop_movables *movables;
2314 struct movable *m;
2315 struct movable *m_next;
2317 for (m = movables->head; m; m = m_next)
2319 m_next = m->next;
2320 free (m);
2324 #if 0
2325 /* Scan X and replace the address of any MEM in it with ADDR.
2326 REG is the address that MEM should have before the replacement. */
2328 static void
2329 replace_call_address (x, reg, addr)
2330 rtx x, reg, addr;
2332 enum rtx_code code;
2333 int i;
2334 const char *fmt;
2336 if (x == 0)
2337 return;
2338 code = GET_CODE (x);
2339 switch (code)
2341 case PC:
2342 case CC0:
2343 case CONST_INT:
2344 case CONST_DOUBLE:
2345 case CONST:
2346 case SYMBOL_REF:
2347 case LABEL_REF:
2348 case REG:
2349 return;
2351 case SET:
2352 /* Short cut for very common case. */
2353 replace_call_address (XEXP (x, 1), reg, addr);
2354 return;
2356 case CALL:
2357 /* Short cut for very common case. */
2358 replace_call_address (XEXP (x, 0), reg, addr);
2359 return;
2361 case MEM:
2362 /* If this MEM uses a reg other than the one we expected,
2363 something is wrong. */
2364 if (XEXP (x, 0) != reg)
2365 abort ();
2366 XEXP (x, 0) = addr;
2367 return;
2369 default:
2370 break;
2373 fmt = GET_RTX_FORMAT (code);
2374 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2376 if (fmt[i] == 'e')
2377 replace_call_address (XEXP (x, i), reg, addr);
2378 else if (fmt[i] == 'E')
2380 int j;
2381 for (j = 0; j < XVECLEN (x, i); j++)
2382 replace_call_address (XVECEXP (x, i, j), reg, addr);
2386 #endif
2388 /* Return the number of memory refs to addresses that vary
2389 in the rtx X. */
2391 static int
2392 count_nonfixed_reads (loop, x)
2393 const struct loop *loop;
2394 rtx x;
2396 enum rtx_code code;
2397 int i;
2398 const char *fmt;
2399 int value;
2401 if (x == 0)
2402 return 0;
2404 code = GET_CODE (x);
2405 switch (code)
2407 case PC:
2408 case CC0:
2409 case CONST_INT:
2410 case CONST_DOUBLE:
2411 case CONST:
2412 case SYMBOL_REF:
2413 case LABEL_REF:
2414 case REG:
2415 return 0;
2417 case MEM:
2418 return ((loop_invariant_p (loop, XEXP (x, 0)) != 1)
2419 + count_nonfixed_reads (loop, XEXP (x, 0)));
2421 default:
2422 break;
2425 value = 0;
2426 fmt = GET_RTX_FORMAT (code);
2427 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2429 if (fmt[i] == 'e')
2430 value += count_nonfixed_reads (loop, XEXP (x, i));
2431 if (fmt[i] == 'E')
2433 int j;
2434 for (j = 0; j < XVECLEN (x, i); j++)
2435 value += count_nonfixed_reads (loop, XVECEXP (x, i, j));
2438 return value;
2441 /* Scan a loop setting the elements `cont', `vtop', `loops_enclosed',
2442 `has_call', `has_nonconst_call', `has_volatile', `has_tablejump',
2443 `unknown_address_altered', `unknown_constant_address_altered', and
2444 `num_mem_sets' in LOOP. Also, fill in the array `mems' and the
2445 list `store_mems' in LOOP. */
2447 static void
2448 prescan_loop (loop)
2449 struct loop *loop;
2451 int level = 1;
2452 rtx insn;
2453 struct loop_info *loop_info = LOOP_INFO (loop);
2454 rtx start = loop->start;
2455 rtx end = loop->end;
2456 /* The label after END. Jumping here is just like falling off the
2457 end of the loop. We use next_nonnote_insn instead of next_label
2458 as a hedge against the (pathological) case where some actual insn
2459 might end up between the two. */
2460 rtx exit_target = next_nonnote_insn (end);
2462 loop_info->has_indirect_jump = indirect_jump_in_function;
2463 loop_info->pre_header_has_call = 0;
2464 loop_info->has_call = 0;
2465 loop_info->has_nonconst_call = 0;
2466 loop_info->has_prefetch = 0;
2467 loop_info->has_volatile = 0;
2468 loop_info->has_tablejump = 0;
2469 loop_info->has_multiple_exit_targets = 0;
2470 loop->level = 1;
2472 loop_info->unknown_address_altered = 0;
2473 loop_info->unknown_constant_address_altered = 0;
2474 loop_info->store_mems = NULL_RTX;
2475 loop_info->first_loop_store_insn = NULL_RTX;
2476 loop_info->mems_idx = 0;
2477 loop_info->num_mem_sets = 0;
2478 /* If loop opts run twice, this was set on 1st pass for 2nd. */
2479 loop_info->preconditioned = NOTE_PRECONDITIONED (end);
2481 for (insn = start; insn && GET_CODE (insn) != CODE_LABEL;
2482 insn = PREV_INSN (insn))
2484 if (GET_CODE (insn) == CALL_INSN)
2486 loop_info->pre_header_has_call = 1;
2487 break;
2491 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
2492 insn = NEXT_INSN (insn))
2494 switch (GET_CODE (insn))
2496 case NOTE:
2497 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
2499 ++level;
2500 /* Count number of loops contained in this one. */
2501 loop->level++;
2503 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
2504 --level;
2505 break;
2507 case CALL_INSN:
2508 if (! CONST_OR_PURE_CALL_P (insn))
2510 loop_info->unknown_address_altered = 1;
2511 loop_info->has_nonconst_call = 1;
2513 else if (pure_call_p (insn))
2514 loop_info->has_nonconst_call = 1;
2515 loop_info->has_call = 1;
2516 if (can_throw_internal (insn))
2517 loop_info->has_multiple_exit_targets = 1;
2518 break;
2520 case JUMP_INSN:
2521 if (! loop_info->has_multiple_exit_targets)
2523 rtx set = pc_set (insn);
2525 if (set)
2527 rtx src = SET_SRC (set);
2528 rtx label1, label2;
2530 if (GET_CODE (src) == IF_THEN_ELSE)
2532 label1 = XEXP (src, 1);
2533 label2 = XEXP (src, 2);
2535 else
2537 label1 = src;
2538 label2 = NULL_RTX;
2543 if (label1 && label1 != pc_rtx)
2545 if (GET_CODE (label1) != LABEL_REF)
2547 /* Something tricky. */
2548 loop_info->has_multiple_exit_targets = 1;
2549 break;
2551 else if (XEXP (label1, 0) != exit_target
2552 && LABEL_OUTSIDE_LOOP_P (label1))
2554 /* A jump outside the current loop. */
2555 loop_info->has_multiple_exit_targets = 1;
2556 break;
2560 label1 = label2;
2561 label2 = NULL_RTX;
2563 while (label1);
2565 else
2567 /* A return, or something tricky. */
2568 loop_info->has_multiple_exit_targets = 1;
2571 /* FALLTHRU */
2573 case INSN:
2574 if (volatile_refs_p (PATTERN (insn)))
2575 loop_info->has_volatile = 1;
2577 if (GET_CODE (insn) == JUMP_INSN
2578 && (GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
2579 || GET_CODE (PATTERN (insn)) == ADDR_VEC))
2580 loop_info->has_tablejump = 1;
2582 note_stores (PATTERN (insn), note_addr_stored, loop_info);
2583 if (! loop_info->first_loop_store_insn && loop_info->store_mems)
2584 loop_info->first_loop_store_insn = insn;
2586 if (flag_non_call_exceptions && can_throw_internal (insn))
2587 loop_info->has_multiple_exit_targets = 1;
2588 break;
2590 default:
2591 break;
2595 /* Now, rescan the loop, setting up the LOOP_MEMS array. */
2596 if (/* An exception thrown by a called function might land us
2597 anywhere. */
2598 ! loop_info->has_nonconst_call
2599 /* We don't want loads for MEMs moved to a location before the
2600 one at which their stack memory becomes allocated. (Note
2601 that this is not a problem for malloc, etc., since those
2602 require actual function calls. */
2603 && ! current_function_calls_alloca
2604 /* There are ways to leave the loop other than falling off the
2605 end. */
2606 && ! loop_info->has_multiple_exit_targets)
2607 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
2608 insn = NEXT_INSN (insn))
2609 for_each_rtx (&insn, insert_loop_mem, loop_info);
2611 /* BLKmode MEMs are added to LOOP_STORE_MEM as necessary so
2612 that loop_invariant_p and load_mems can use true_dependence
2613 to determine what is really clobbered. */
2614 if (loop_info->unknown_address_altered)
2616 rtx mem = gen_rtx_MEM (BLKmode, const0_rtx);
2618 loop_info->store_mems
2619 = gen_rtx_EXPR_LIST (VOIDmode, mem, loop_info->store_mems);
2621 if (loop_info->unknown_constant_address_altered)
2623 rtx mem = gen_rtx_MEM (BLKmode, const0_rtx);
2625 RTX_UNCHANGING_P (mem) = 1;
2626 loop_info->store_mems
2627 = gen_rtx_EXPR_LIST (VOIDmode, mem, loop_info->store_mems);
2631 /* Invalidate all loops containing LABEL. */
2633 static void
2634 invalidate_loops_containing_label (label)
2635 rtx label;
2637 struct loop *loop;
2638 for (loop = uid_loop[INSN_UID (label)]; loop; loop = loop->outer)
2639 loop->invalid = 1;
2642 /* Scan the function looking for loops. Record the start and end of each loop.
2643 Also mark as invalid loops any loops that contain a setjmp or are branched
2644 to from outside the loop. */
2646 static void
2647 find_and_verify_loops (f, loops)
2648 rtx f;
2649 struct loops *loops;
2651 rtx insn;
2652 rtx label;
2653 int num_loops;
2654 struct loop *current_loop;
2655 struct loop *next_loop;
2656 struct loop *loop;
2658 num_loops = loops->num;
2660 compute_luids (f, NULL_RTX, 0);
2662 /* If there are jumps to undefined labels,
2663 treat them as jumps out of any/all loops.
2664 This also avoids writing past end of tables when there are no loops. */
2665 uid_loop[0] = NULL;
2667 /* Find boundaries of loops, mark which loops are contained within
2668 loops, and invalidate loops that have setjmp. */
2670 num_loops = 0;
2671 current_loop = NULL;
2672 for (insn = f; insn; insn = NEXT_INSN (insn))
2674 if (GET_CODE (insn) == NOTE)
2675 switch (NOTE_LINE_NUMBER (insn))
2677 case NOTE_INSN_LOOP_BEG:
2678 next_loop = loops->array + num_loops;
2679 next_loop->num = num_loops;
2680 num_loops++;
2681 next_loop->start = insn;
2682 next_loop->outer = current_loop;
2683 current_loop = next_loop;
2684 break;
2686 case NOTE_INSN_LOOP_CONT:
2687 current_loop->cont = insn;
2688 break;
2690 case NOTE_INSN_LOOP_VTOP:
2691 current_loop->vtop = insn;
2692 break;
2694 case NOTE_INSN_LOOP_END:
2695 if (! current_loop)
2696 abort ();
2698 current_loop->end = insn;
2699 current_loop = current_loop->outer;
2700 break;
2702 default:
2703 break;
2706 if (GET_CODE (insn) == CALL_INSN
2707 && find_reg_note (insn, REG_SETJMP, NULL))
2709 /* In this case, we must invalidate our current loop and any
2710 enclosing loop. */
2711 for (loop = current_loop; loop; loop = loop->outer)
2713 loop->invalid = 1;
2714 if (loop_dump_stream)
2715 fprintf (loop_dump_stream,
2716 "\nLoop at %d ignored due to setjmp.\n",
2717 INSN_UID (loop->start));
2721 /* Note that this will mark the NOTE_INSN_LOOP_END note as being in the
2722 enclosing loop, but this doesn't matter. */
2723 uid_loop[INSN_UID (insn)] = current_loop;
2726 /* Any loop containing a label used in an initializer must be invalidated,
2727 because it can be jumped into from anywhere. */
2728 for (label = forced_labels; label; label = XEXP (label, 1))
2729 invalidate_loops_containing_label (XEXP (label, 0));
2731 /* Any loop containing a label used for an exception handler must be
2732 invalidated, because it can be jumped into from anywhere. */
2733 for_each_eh_label (invalidate_loops_containing_label);
2735 /* Now scan all insn's in the function. If any JUMP_INSN branches into a
2736 loop that it is not contained within, that loop is marked invalid.
2737 If any INSN or CALL_INSN uses a label's address, then the loop containing
2738 that label is marked invalid, because it could be jumped into from
2739 anywhere.
2741 Also look for blocks of code ending in an unconditional branch that
2742 exits the loop. If such a block is surrounded by a conditional
2743 branch around the block, move the block elsewhere (see below) and
2744 invert the jump to point to the code block. This may eliminate a
2745 label in our loop and will simplify processing by both us and a
2746 possible second cse pass. */
2748 for (insn = f; insn; insn = NEXT_INSN (insn))
2749 if (INSN_P (insn))
2751 struct loop *this_loop = uid_loop[INSN_UID (insn)];
2753 if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
2755 rtx note = find_reg_note (insn, REG_LABEL, NULL_RTX);
2756 if (note)
2757 invalidate_loops_containing_label (XEXP (note, 0));
2760 if (GET_CODE (insn) != JUMP_INSN)
2761 continue;
2763 mark_loop_jump (PATTERN (insn), this_loop);
2765 /* See if this is an unconditional branch outside the loop. */
2766 if (this_loop
2767 && (GET_CODE (PATTERN (insn)) == RETURN
2768 || (any_uncondjump_p (insn)
2769 && onlyjump_p (insn)
2770 && (uid_loop[INSN_UID (JUMP_LABEL (insn))]
2771 != this_loop)))
2772 && get_max_uid () < max_uid_for_loop)
2774 rtx p;
2775 rtx our_next = next_real_insn (insn);
2776 rtx last_insn_to_move = NEXT_INSN (insn);
2777 struct loop *dest_loop;
2778 struct loop *outer_loop = NULL;
2780 /* Go backwards until we reach the start of the loop, a label,
2781 or a JUMP_INSN. */
2782 for (p = PREV_INSN (insn);
2783 GET_CODE (p) != CODE_LABEL
2784 && ! (GET_CODE (p) == NOTE
2785 && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
2786 && GET_CODE (p) != JUMP_INSN;
2787 p = PREV_INSN (p))
2790 /* Check for the case where we have a jump to an inner nested
2791 loop, and do not perform the optimization in that case. */
2793 if (JUMP_LABEL (insn))
2795 dest_loop = uid_loop[INSN_UID (JUMP_LABEL (insn))];
2796 if (dest_loop)
2798 for (outer_loop = dest_loop; outer_loop;
2799 outer_loop = outer_loop->outer)
2800 if (outer_loop == this_loop)
2801 break;
2805 /* Make sure that the target of P is within the current loop. */
2807 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
2808 && uid_loop[INSN_UID (JUMP_LABEL (p))] != this_loop)
2809 outer_loop = this_loop;
2811 /* If we stopped on a JUMP_INSN to the next insn after INSN,
2812 we have a block of code to try to move.
2814 We look backward and then forward from the target of INSN
2815 to find a BARRIER at the same loop depth as the target.
2816 If we find such a BARRIER, we make a new label for the start
2817 of the block, invert the jump in P and point it to that label,
2818 and move the block of code to the spot we found. */
2820 if (! outer_loop
2821 && GET_CODE (p) == JUMP_INSN
2822 && JUMP_LABEL (p) != 0
2823 /* Just ignore jumps to labels that were never emitted.
2824 These always indicate compilation errors. */
2825 && INSN_UID (JUMP_LABEL (p)) != 0
2826 && any_condjump_p (p) && onlyjump_p (p)
2827 && next_real_insn (JUMP_LABEL (p)) == our_next
2828 /* If it's not safe to move the sequence, then we
2829 mustn't try. */
2830 && insns_safe_to_move_p (p, NEXT_INSN (insn),
2831 &last_insn_to_move))
2833 rtx target
2834 = JUMP_LABEL (insn) ? JUMP_LABEL (insn) : get_last_insn ();
2835 struct loop *target_loop = uid_loop[INSN_UID (target)];
2836 rtx loc, loc2;
2837 rtx tmp;
2839 /* Search for possible garbage past the conditional jumps
2840 and look for the last barrier. */
2841 for (tmp = last_insn_to_move;
2842 tmp && GET_CODE (tmp) != CODE_LABEL; tmp = NEXT_INSN (tmp))
2843 if (GET_CODE (tmp) == BARRIER)
2844 last_insn_to_move = tmp;
2846 for (loc = target; loc; loc = PREV_INSN (loc))
2847 if (GET_CODE (loc) == BARRIER
2848 /* Don't move things inside a tablejump. */
2849 && ((loc2 = next_nonnote_insn (loc)) == 0
2850 || GET_CODE (loc2) != CODE_LABEL
2851 || (loc2 = next_nonnote_insn (loc2)) == 0
2852 || GET_CODE (loc2) != JUMP_INSN
2853 || (GET_CODE (PATTERN (loc2)) != ADDR_VEC
2854 && GET_CODE (PATTERN (loc2)) != ADDR_DIFF_VEC))
2855 && uid_loop[INSN_UID (loc)] == target_loop)
2856 break;
2858 if (loc == 0)
2859 for (loc = target; loc; loc = NEXT_INSN (loc))
2860 if (GET_CODE (loc) == BARRIER
2861 /* Don't move things inside a tablejump. */
2862 && ((loc2 = next_nonnote_insn (loc)) == 0
2863 || GET_CODE (loc2) != CODE_LABEL
2864 || (loc2 = next_nonnote_insn (loc2)) == 0
2865 || GET_CODE (loc2) != JUMP_INSN
2866 || (GET_CODE (PATTERN (loc2)) != ADDR_VEC
2867 && GET_CODE (PATTERN (loc2)) != ADDR_DIFF_VEC))
2868 && uid_loop[INSN_UID (loc)] == target_loop)
2869 break;
2871 if (loc)
2873 rtx cond_label = JUMP_LABEL (p);
2874 rtx new_label = get_label_after (p);
2876 /* Ensure our label doesn't go away. */
2877 LABEL_NUSES (cond_label)++;
2879 /* Verify that uid_loop is large enough and that
2880 we can invert P. */
2881 if (invert_jump (p, new_label, 1))
2883 rtx q, r;
2885 /* If no suitable BARRIER was found, create a suitable
2886 one before TARGET. Since TARGET is a fall through
2887 path, we'll need to insert an jump around our block
2888 and add a BARRIER before TARGET.
2890 This creates an extra unconditional jump outside
2891 the loop. However, the benefits of removing rarely
2892 executed instructions from inside the loop usually
2893 outweighs the cost of the extra unconditional jump
2894 outside the loop. */
2895 if (loc == 0)
2897 rtx temp;
2899 temp = gen_jump (JUMP_LABEL (insn));
2900 temp = emit_jump_insn_before (temp, target);
2901 JUMP_LABEL (temp) = JUMP_LABEL (insn);
2902 LABEL_NUSES (JUMP_LABEL (insn))++;
2903 loc = emit_barrier_before (target);
2906 /* Include the BARRIER after INSN and copy the
2907 block after LOC. */
2908 if (squeeze_notes (&new_label, &last_insn_to_move))
2909 abort ();
2910 reorder_insns (new_label, last_insn_to_move, loc);
2912 /* All those insns are now in TARGET_LOOP. */
2913 for (q = new_label;
2914 q != NEXT_INSN (last_insn_to_move);
2915 q = NEXT_INSN (q))
2916 uid_loop[INSN_UID (q)] = target_loop;
2918 /* The label jumped to by INSN is no longer a loop
2919 exit. Unless INSN does not have a label (e.g.,
2920 it is a RETURN insn), search loop->exit_labels
2921 to find its label_ref, and remove it. Also turn
2922 off LABEL_OUTSIDE_LOOP_P bit. */
2923 if (JUMP_LABEL (insn))
2925 for (q = 0, r = this_loop->exit_labels;
2927 q = r, r = LABEL_NEXTREF (r))
2928 if (XEXP (r, 0) == JUMP_LABEL (insn))
2930 LABEL_OUTSIDE_LOOP_P (r) = 0;
2931 if (q)
2932 LABEL_NEXTREF (q) = LABEL_NEXTREF (r);
2933 else
2934 this_loop->exit_labels = LABEL_NEXTREF (r);
2935 break;
2938 for (loop = this_loop; loop && loop != target_loop;
2939 loop = loop->outer)
2940 loop->exit_count--;
2942 /* If we didn't find it, then something is
2943 wrong. */
2944 if (! r)
2945 abort ();
2948 /* P is now a jump outside the loop, so it must be put
2949 in loop->exit_labels, and marked as such.
2950 The easiest way to do this is to just call
2951 mark_loop_jump again for P. */
2952 mark_loop_jump (PATTERN (p), this_loop);
2954 /* If INSN now jumps to the insn after it,
2955 delete INSN. */
2956 if (JUMP_LABEL (insn) != 0
2957 && (next_real_insn (JUMP_LABEL (insn))
2958 == next_real_insn (insn)))
2959 delete_related_insns (insn);
2962 /* Continue the loop after where the conditional
2963 branch used to jump, since the only branch insn
2964 in the block (if it still remains) is an inter-loop
2965 branch and hence needs no processing. */
2966 insn = NEXT_INSN (cond_label);
2968 if (--LABEL_NUSES (cond_label) == 0)
2969 delete_related_insns (cond_label);
2971 /* This loop will be continued with NEXT_INSN (insn). */
2972 insn = PREV_INSN (insn);
2979 /* If any label in X jumps to a loop different from LOOP_NUM and any of the
2980 loops it is contained in, mark the target loop invalid.
2982 For speed, we assume that X is part of a pattern of a JUMP_INSN. */
2984 static void
2985 mark_loop_jump (x, loop)
2986 rtx x;
2987 struct loop *loop;
2989 struct loop *dest_loop;
2990 struct loop *outer_loop;
2991 int i;
2993 switch (GET_CODE (x))
2995 case PC:
2996 case USE:
2997 case CLOBBER:
2998 case REG:
2999 case MEM:
3000 case CONST_INT:
3001 case CONST_DOUBLE:
3002 case RETURN:
3003 return;
3005 case CONST:
3006 /* There could be a label reference in here. */
3007 mark_loop_jump (XEXP (x, 0), loop);
3008 return;
3010 case PLUS:
3011 case MINUS:
3012 case MULT:
3013 mark_loop_jump (XEXP (x, 0), loop);
3014 mark_loop_jump (XEXP (x, 1), loop);
3015 return;
3017 case LO_SUM:
3018 /* This may refer to a LABEL_REF or SYMBOL_REF. */
3019 mark_loop_jump (XEXP (x, 1), loop);
3020 return;
3022 case SIGN_EXTEND:
3023 case ZERO_EXTEND:
3024 mark_loop_jump (XEXP (x, 0), loop);
3025 return;
3027 case LABEL_REF:
3028 dest_loop = uid_loop[INSN_UID (XEXP (x, 0))];
3030 /* Link together all labels that branch outside the loop. This
3031 is used by final_[bg]iv_value and the loop unrolling code. Also
3032 mark this LABEL_REF so we know that this branch should predict
3033 false. */
3035 /* A check to make sure the label is not in an inner nested loop,
3036 since this does not count as a loop exit. */
3037 if (dest_loop)
3039 for (outer_loop = dest_loop; outer_loop;
3040 outer_loop = outer_loop->outer)
3041 if (outer_loop == loop)
3042 break;
3044 else
3045 outer_loop = NULL;
3047 if (loop && ! outer_loop)
3049 LABEL_OUTSIDE_LOOP_P (x) = 1;
3050 LABEL_NEXTREF (x) = loop->exit_labels;
3051 loop->exit_labels = x;
3053 for (outer_loop = loop;
3054 outer_loop && outer_loop != dest_loop;
3055 outer_loop = outer_loop->outer)
3056 outer_loop->exit_count++;
3059 /* If this is inside a loop, but not in the current loop or one enclosed
3060 by it, it invalidates at least one loop. */
3062 if (! dest_loop)
3063 return;
3065 /* We must invalidate every nested loop containing the target of this
3066 label, except those that also contain the jump insn. */
3068 for (; dest_loop; dest_loop = dest_loop->outer)
3070 /* Stop when we reach a loop that also contains the jump insn. */
3071 for (outer_loop = loop; outer_loop; outer_loop = outer_loop->outer)
3072 if (dest_loop == outer_loop)
3073 return;
3075 /* If we get here, we know we need to invalidate a loop. */
3076 if (loop_dump_stream && ! dest_loop->invalid)
3077 fprintf (loop_dump_stream,
3078 "\nLoop at %d ignored due to multiple entry points.\n",
3079 INSN_UID (dest_loop->start));
3081 dest_loop->invalid = 1;
3083 return;
3085 case SET:
3086 /* If this is not setting pc, ignore. */
3087 if (SET_DEST (x) == pc_rtx)
3088 mark_loop_jump (SET_SRC (x), loop);
3089 return;
3091 case IF_THEN_ELSE:
3092 mark_loop_jump (XEXP (x, 1), loop);
3093 mark_loop_jump (XEXP (x, 2), loop);
3094 return;
3096 case PARALLEL:
3097 case ADDR_VEC:
3098 for (i = 0; i < XVECLEN (x, 0); i++)
3099 mark_loop_jump (XVECEXP (x, 0, i), loop);
3100 return;
3102 case ADDR_DIFF_VEC:
3103 for (i = 0; i < XVECLEN (x, 1); i++)
3104 mark_loop_jump (XVECEXP (x, 1, i), loop);
3105 return;
3107 default:
3108 /* Strictly speaking this is not a jump into the loop, only a possible
3109 jump out of the loop. However, we have no way to link the destination
3110 of this jump onto the list of exit labels. To be safe we mark this
3111 loop and any containing loops as invalid. */
3112 if (loop)
3114 for (outer_loop = loop; outer_loop; outer_loop = outer_loop->outer)
3116 if (loop_dump_stream && ! outer_loop->invalid)
3117 fprintf (loop_dump_stream,
3118 "\nLoop at %d ignored due to unknown exit jump.\n",
3119 INSN_UID (outer_loop->start));
3120 outer_loop->invalid = 1;
3123 return;
3127 /* Return nonzero if there is a label in the range from
3128 insn INSN to and including the insn whose luid is END
3129 INSN must have an assigned luid (i.e., it must not have
3130 been previously created by loop.c). */
3132 static int
3133 labels_in_range_p (insn, end)
3134 rtx insn;
3135 int end;
3137 while (insn && INSN_LUID (insn) <= end)
3139 if (GET_CODE (insn) == CODE_LABEL)
3140 return 1;
3141 insn = NEXT_INSN (insn);
3144 return 0;
3147 /* Record that a memory reference X is being set. */
3149 static void
3150 note_addr_stored (x, y, data)
3151 rtx x;
3152 rtx y ATTRIBUTE_UNUSED;
3153 void *data ATTRIBUTE_UNUSED;
3155 struct loop_info *loop_info = data;
3157 if (x == 0 || GET_CODE (x) != MEM)
3158 return;
3160 /* Count number of memory writes.
3161 This affects heuristics in strength_reduce. */
3162 loop_info->num_mem_sets++;
3164 /* BLKmode MEM means all memory is clobbered. */
3165 if (GET_MODE (x) == BLKmode)
3167 if (RTX_UNCHANGING_P (x))
3168 loop_info->unknown_constant_address_altered = 1;
3169 else
3170 loop_info->unknown_address_altered = 1;
3172 return;
3175 loop_info->store_mems = gen_rtx_EXPR_LIST (VOIDmode, x,
3176 loop_info->store_mems);
3179 /* X is a value modified by an INSN that references a biv inside a loop
3180 exit test (ie, X is somehow related to the value of the biv). If X
3181 is a pseudo that is used more than once, then the biv is (effectively)
3182 used more than once. DATA is a pointer to a loop_regs structure. */
3184 static void
3185 note_set_pseudo_multiple_uses (x, y, data)
3186 rtx x;
3187 rtx y ATTRIBUTE_UNUSED;
3188 void *data;
3190 struct loop_regs *regs = (struct loop_regs *) data;
3192 if (x == 0)
3193 return;
3195 while (GET_CODE (x) == STRICT_LOW_PART
3196 || GET_CODE (x) == SIGN_EXTRACT
3197 || GET_CODE (x) == ZERO_EXTRACT
3198 || GET_CODE (x) == SUBREG)
3199 x = XEXP (x, 0);
3201 if (GET_CODE (x) != REG || REGNO (x) < FIRST_PSEUDO_REGISTER)
3202 return;
3204 /* If we do not have usage information, or if we know the register
3205 is used more than once, note that fact for check_dbra_loop. */
3206 if (REGNO (x) >= max_reg_before_loop
3207 || ! regs->array[REGNO (x)].single_usage
3208 || regs->array[REGNO (x)].single_usage == const0_rtx)
3209 regs->multiple_uses = 1;
3212 /* Return nonzero if the rtx X is invariant over the current loop.
3214 The value is 2 if we refer to something only conditionally invariant.
3216 A memory ref is invariant if it is not volatile and does not conflict
3217 with anything stored in `loop_info->store_mems'. */
3220 loop_invariant_p (loop, x)
3221 const struct loop *loop;
3222 rtx x;
3224 struct loop_info *loop_info = LOOP_INFO (loop);
3225 struct loop_regs *regs = LOOP_REGS (loop);
3226 int i;
3227 enum rtx_code code;
3228 const char *fmt;
3229 int conditional = 0;
3230 rtx mem_list_entry;
3232 if (x == 0)
3233 return 1;
3234 code = GET_CODE (x);
3235 switch (code)
3237 case CONST_INT:
3238 case CONST_DOUBLE:
3239 case SYMBOL_REF:
3240 case CONST:
3241 return 1;
3243 case LABEL_REF:
3244 /* A LABEL_REF is normally invariant, however, if we are unrolling
3245 loops, and this label is inside the loop, then it isn't invariant.
3246 This is because each unrolled copy of the loop body will have
3247 a copy of this label. If this was invariant, then an insn loading
3248 the address of this label into a register might get moved outside
3249 the loop, and then each loop body would end up using the same label.
3251 We don't know the loop bounds here though, so just fail for all
3252 labels. */
3253 if (flag_unroll_loops)
3254 return 0;
3255 else
3256 return 1;
3258 case PC:
3259 case CC0:
3260 case UNSPEC_VOLATILE:
3261 return 0;
3263 case REG:
3264 /* We used to check RTX_UNCHANGING_P (x) here, but that is invalid
3265 since the reg might be set by initialization within the loop. */
3267 if ((x == frame_pointer_rtx || x == hard_frame_pointer_rtx
3268 || x == arg_pointer_rtx || x == pic_offset_table_rtx)
3269 && ! current_function_has_nonlocal_goto)
3270 return 1;
3272 if (LOOP_INFO (loop)->has_call
3273 && REGNO (x) < FIRST_PSEUDO_REGISTER && call_used_regs[REGNO (x)])
3274 return 0;
3276 /* Out-of-range regs can occur when we are called from unrolling.
3277 These have always been created by the unroller and are set in
3278 the loop, hence are never invariant. */
3280 if (REGNO (x) >= regs->num)
3281 return 0;
3283 if (regs->array[REGNO (x)].set_in_loop < 0)
3284 return 2;
3286 return regs->array[REGNO (x)].set_in_loop == 0;
3288 case MEM:
3289 /* Volatile memory references must be rejected. Do this before
3290 checking for read-only items, so that volatile read-only items
3291 will be rejected also. */
3292 if (MEM_VOLATILE_P (x))
3293 return 0;
3295 /* See if there is any dependence between a store and this load. */
3296 mem_list_entry = loop_info->store_mems;
3297 while (mem_list_entry)
3299 if (true_dependence (XEXP (mem_list_entry, 0), VOIDmode,
3300 x, rtx_varies_p))
3301 return 0;
3303 mem_list_entry = XEXP (mem_list_entry, 1);
3306 /* It's not invalidated by a store in memory
3307 but we must still verify the address is invariant. */
3308 break;
3310 case ASM_OPERANDS:
3311 /* Don't mess with insns declared volatile. */
3312 if (MEM_VOLATILE_P (x))
3313 return 0;
3314 break;
3316 default:
3317 break;
3320 fmt = GET_RTX_FORMAT (code);
3321 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3323 if (fmt[i] == 'e')
3325 int tem = loop_invariant_p (loop, XEXP (x, i));
3326 if (tem == 0)
3327 return 0;
3328 if (tem == 2)
3329 conditional = 1;
3331 else if (fmt[i] == 'E')
3333 int j;
3334 for (j = 0; j < XVECLEN (x, i); j++)
3336 int tem = loop_invariant_p (loop, XVECEXP (x, i, j));
3337 if (tem == 0)
3338 return 0;
3339 if (tem == 2)
3340 conditional = 1;
3346 return 1 + conditional;
3349 /* Return nonzero if all the insns in the loop that set REG
3350 are INSN and the immediately following insns,
3351 and if each of those insns sets REG in an invariant way
3352 (not counting uses of REG in them).
3354 The value is 2 if some of these insns are only conditionally invariant.
3356 We assume that INSN itself is the first set of REG
3357 and that its source is invariant. */
3359 static int
3360 consec_sets_invariant_p (loop, reg, n_sets, insn)
3361 const struct loop *loop;
3362 int n_sets;
3363 rtx reg, insn;
3365 struct loop_regs *regs = LOOP_REGS (loop);
3366 rtx p = insn;
3367 unsigned int regno = REGNO (reg);
3368 rtx temp;
3369 /* Number of sets we have to insist on finding after INSN. */
3370 int count = n_sets - 1;
3371 int old = regs->array[regno].set_in_loop;
3372 int value = 0;
3373 int this;
3375 /* If N_SETS hit the limit, we can't rely on its value. */
3376 if (n_sets == 127)
3377 return 0;
3379 regs->array[regno].set_in_loop = 0;
3381 while (count > 0)
3383 enum rtx_code code;
3384 rtx set;
3386 p = NEXT_INSN (p);
3387 code = GET_CODE (p);
3389 /* If library call, skip to end of it. */
3390 if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
3391 p = XEXP (temp, 0);
3393 this = 0;
3394 if (code == INSN
3395 && (set = single_set (p))
3396 && GET_CODE (SET_DEST (set)) == REG
3397 && REGNO (SET_DEST (set)) == regno)
3399 this = loop_invariant_p (loop, SET_SRC (set));
3400 if (this != 0)
3401 value |= this;
3402 else if ((temp = find_reg_note (p, REG_EQUAL, NULL_RTX)))
3404 /* If this is a libcall, then any invariant REG_EQUAL note is OK.
3405 If this is an ordinary insn, then only CONSTANT_P REG_EQUAL
3406 notes are OK. */
3407 this = (CONSTANT_P (XEXP (temp, 0))
3408 || (find_reg_note (p, REG_RETVAL, NULL_RTX)
3409 && loop_invariant_p (loop, XEXP (temp, 0))));
3410 if (this != 0)
3411 value |= this;
3414 if (this != 0)
3415 count--;
3416 else if (code != NOTE)
3418 regs->array[regno].set_in_loop = old;
3419 return 0;
3423 regs->array[regno].set_in_loop = old;
3424 /* If loop_invariant_p ever returned 2, we return 2. */
3425 return 1 + (value & 2);
3428 #if 0
3429 /* I don't think this condition is sufficient to allow INSN
3430 to be moved, so we no longer test it. */
3432 /* Return 1 if all insns in the basic block of INSN and following INSN
3433 that set REG are invariant according to TABLE. */
3435 static int
3436 all_sets_invariant_p (reg, insn, table)
3437 rtx reg, insn;
3438 short *table;
3440 rtx p = insn;
3441 int regno = REGNO (reg);
3443 while (1)
3445 enum rtx_code code;
3446 p = NEXT_INSN (p);
3447 code = GET_CODE (p);
3448 if (code == CODE_LABEL || code == JUMP_INSN)
3449 return 1;
3450 if (code == INSN && GET_CODE (PATTERN (p)) == SET
3451 && GET_CODE (SET_DEST (PATTERN (p))) == REG
3452 && REGNO (SET_DEST (PATTERN (p))) == regno)
3454 if (! loop_invariant_p (loop, SET_SRC (PATTERN (p)), table))
3455 return 0;
3459 #endif /* 0 */
3461 /* Look at all uses (not sets) of registers in X. For each, if it is
3462 the single use, set USAGE[REGNO] to INSN; if there was a previous use in
3463 a different insn, set USAGE[REGNO] to const0_rtx. */
3465 static void
3466 find_single_use_in_loop (regs, insn, x)
3467 struct loop_regs *regs;
3468 rtx insn;
3469 rtx x;
3471 enum rtx_code code = GET_CODE (x);
3472 const char *fmt = GET_RTX_FORMAT (code);
3473 int i, j;
3475 if (code == REG)
3476 regs->array[REGNO (x)].single_usage
3477 = (regs->array[REGNO (x)].single_usage != 0
3478 && regs->array[REGNO (x)].single_usage != insn)
3479 ? const0_rtx : insn;
3481 else if (code == SET)
3483 /* Don't count SET_DEST if it is a REG; otherwise count things
3484 in SET_DEST because if a register is partially modified, it won't
3485 show up as a potential movable so we don't care how USAGE is set
3486 for it. */
3487 if (GET_CODE (SET_DEST (x)) != REG)
3488 find_single_use_in_loop (regs, insn, SET_DEST (x));
3489 find_single_use_in_loop (regs, insn, SET_SRC (x));
3491 else
3492 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3494 if (fmt[i] == 'e' && XEXP (x, i) != 0)
3495 find_single_use_in_loop (regs, insn, XEXP (x, i));
3496 else if (fmt[i] == 'E')
3497 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3498 find_single_use_in_loop (regs, insn, XVECEXP (x, i, j));
3502 /* Count and record any set in X which is contained in INSN. Update
3503 REGS->array[I].MAY_NOT_OPTIMIZE and LAST_SET for any register I set
3504 in X. */
3506 static void
3507 count_one_set (regs, insn, x, last_set)
3508 struct loop_regs *regs;
3509 rtx insn, x;
3510 rtx *last_set;
3512 if (GET_CODE (x) == CLOBBER && GET_CODE (XEXP (x, 0)) == REG)
3513 /* Don't move a reg that has an explicit clobber.
3514 It's not worth the pain to try to do it correctly. */
3515 regs->array[REGNO (XEXP (x, 0))].may_not_optimize = 1;
3517 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
3519 rtx dest = SET_DEST (x);
3520 while (GET_CODE (dest) == SUBREG
3521 || GET_CODE (dest) == ZERO_EXTRACT
3522 || GET_CODE (dest) == SIGN_EXTRACT
3523 || GET_CODE (dest) == STRICT_LOW_PART)
3524 dest = XEXP (dest, 0);
3525 if (GET_CODE (dest) == REG)
3527 int i;
3528 int regno = REGNO (dest);
3529 for (i = 0; i < LOOP_REGNO_NREGS (regno, dest); i++)
3531 /* If this is the first setting of this reg
3532 in current basic block, and it was set before,
3533 it must be set in two basic blocks, so it cannot
3534 be moved out of the loop. */
3535 if (regs->array[regno].set_in_loop > 0
3536 && last_set == 0)
3537 regs->array[regno+i].may_not_optimize = 1;
3538 /* If this is not first setting in current basic block,
3539 see if reg was used in between previous one and this.
3540 If so, neither one can be moved. */
3541 if (last_set[regno] != 0
3542 && reg_used_between_p (dest, last_set[regno], insn))
3543 regs->array[regno+i].may_not_optimize = 1;
3544 if (regs->array[regno+i].set_in_loop < 127)
3545 ++regs->array[regno+i].set_in_loop;
3546 last_set[regno+i] = insn;
3552 /* Given a loop that is bounded by LOOP->START and LOOP->END and that
3553 is entered at LOOP->SCAN_START, return 1 if the register set in SET
3554 contained in insn INSN is used by any insn that precedes INSN in
3555 cyclic order starting from the loop entry point.
3557 We don't want to use INSN_LUID here because if we restrict INSN to those
3558 that have a valid INSN_LUID, it means we cannot move an invariant out
3559 from an inner loop past two loops. */
3561 static int
3562 loop_reg_used_before_p (loop, set, insn)
3563 const struct loop *loop;
3564 rtx set, insn;
3566 rtx reg = SET_DEST (set);
3567 rtx p;
3569 /* Scan forward checking for register usage. If we hit INSN, we
3570 are done. Otherwise, if we hit LOOP->END, wrap around to LOOP->START. */
3571 for (p = loop->scan_start; p != insn; p = NEXT_INSN (p))
3573 if (INSN_P (p) && reg_overlap_mentioned_p (reg, PATTERN (p)))
3574 return 1;
3576 if (p == loop->end)
3577 p = loop->start;
3580 return 0;
3584 /* Information we collect about arrays that we might want to prefetch. */
3585 struct prefetch_info
3587 struct iv_class *class; /* Class this prefetch is based on. */
3588 struct induction *giv; /* GIV this prefetch is based on. */
3589 rtx base_address; /* Start prefetching from this address plus
3590 index. */
3591 HOST_WIDE_INT index;
3592 HOST_WIDE_INT stride; /* Prefetch stride in bytes in each
3593 iteration. */
3594 unsigned int bytes_accessed; /* Sum of sizes of all accesses to this
3595 prefetch area in one iteration. */
3596 unsigned int total_bytes; /* Total bytes loop will access in this block.
3597 This is set only for loops with known
3598 iteration counts and is 0xffffffff
3599 otherwise. */
3600 int prefetch_in_loop; /* Number of prefetch insns in loop. */
3601 int prefetch_before_loop; /* Number of prefetch insns before loop. */
3602 unsigned int write : 1; /* 1 for read/write prefetches. */
3605 /* Data used by check_store function. */
3606 struct check_store_data
3608 rtx mem_address;
3609 int mem_write;
3612 static void check_store PARAMS ((rtx, rtx, void *));
3613 static void emit_prefetch_instructions PARAMS ((struct loop *));
3614 static int rtx_equal_for_prefetch_p PARAMS ((rtx, rtx));
3616 /* Set mem_write when mem_address is found. Used as callback to
3617 note_stores. */
3618 static void
3619 check_store (x, pat, data)
3620 rtx x, pat ATTRIBUTE_UNUSED;
3621 void *data;
3623 struct check_store_data *d = (struct check_store_data *) data;
3625 if ((GET_CODE (x) == MEM) && rtx_equal_p (d->mem_address, XEXP (x, 0)))
3626 d->mem_write = 1;
3629 /* Like rtx_equal_p, but attempts to swap commutative operands. This is
3630 important to get some addresses combined. Later more sophisticated
3631 transformations can be added when necesary.
3633 ??? Same trick with swapping operand is done at several other places.
3634 It can be nice to develop some common way to handle this. */
3636 static int
3637 rtx_equal_for_prefetch_p (x, y)
3638 rtx x, y;
3640 int i;
3641 int j;
3642 enum rtx_code code = GET_CODE (x);
3643 const char *fmt;
3645 if (x == y)
3646 return 1;
3647 if (code != GET_CODE (y))
3648 return 0;
3650 code = GET_CODE (x);
3652 if (GET_RTX_CLASS (code) == 'c')
3654 return ((rtx_equal_for_prefetch_p (XEXP (x, 0), XEXP (y, 0))
3655 && rtx_equal_for_prefetch_p (XEXP (x, 1), XEXP (y, 1)))
3656 || (rtx_equal_for_prefetch_p (XEXP (x, 0), XEXP (y, 1))
3657 && rtx_equal_for_prefetch_p (XEXP (x, 1), XEXP (y, 0))));
3659 /* Compare the elements. If any pair of corresponding elements fails to
3660 match, return 0 for the whole thing. */
3662 fmt = GET_RTX_FORMAT (code);
3663 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3665 switch (fmt[i])
3667 case 'w':
3668 if (XWINT (x, i) != XWINT (y, i))
3669 return 0;
3670 break;
3672 case 'i':
3673 if (XINT (x, i) != XINT (y, i))
3674 return 0;
3675 break;
3677 case 'E':
3678 /* Two vectors must have the same length. */
3679 if (XVECLEN (x, i) != XVECLEN (y, i))
3680 return 0;
3682 /* And the corresponding elements must match. */
3683 for (j = 0; j < XVECLEN (x, i); j++)
3684 if (rtx_equal_for_prefetch_p (XVECEXP (x, i, j),
3685 XVECEXP (y, i, j)) == 0)
3686 return 0;
3687 break;
3689 case 'e':
3690 if (rtx_equal_for_prefetch_p (XEXP (x, i), XEXP (y, i)) == 0)
3691 return 0;
3692 break;
3694 case 's':
3695 if (strcmp (XSTR (x, i), XSTR (y, i)))
3696 return 0;
3697 break;
3699 case 'u':
3700 /* These are just backpointers, so they don't matter. */
3701 break;
3703 case '0':
3704 break;
3706 /* It is believed that rtx's at this level will never
3707 contain anything but integers and other rtx's,
3708 except for within LABEL_REFs and SYMBOL_REFs. */
3709 default:
3710 abort ();
3713 return 1;
3716 /* Remove constant addition value from the expression X (when present)
3717 and return it. */
3719 static HOST_WIDE_INT
3720 remove_constant_addition (x)
3721 rtx *x;
3723 HOST_WIDE_INT addval = 0;
3724 rtx exp = *x;
3726 /* Avoid clobbering a shared CONST expression. */
3727 if (GET_CODE (exp) == CONST)
3729 if (GET_CODE (XEXP (exp, 0)) == PLUS
3730 && GET_CODE (XEXP (XEXP (exp, 0), 0)) == SYMBOL_REF
3731 && GET_CODE (XEXP (XEXP (exp, 0), 1)) == CONST_INT)
3733 *x = XEXP (XEXP (exp, 0), 0);
3734 return INTVAL (XEXP (XEXP (exp, 0), 1));
3736 return 0;
3739 if (GET_CODE (exp) == CONST_INT)
3741 addval = INTVAL (exp);
3742 *x = const0_rtx;
3745 /* For plus expression recurse on ourself. */
3746 else if (GET_CODE (exp) == PLUS)
3748 addval += remove_constant_addition (&XEXP (exp, 0));
3749 addval += remove_constant_addition (&XEXP (exp, 1));
3751 /* In case our parameter was constant, remove extra zero from the
3752 expression. */
3753 if (XEXP (exp, 0) == const0_rtx)
3754 *x = XEXP (exp, 1);
3755 else if (XEXP (exp, 1) == const0_rtx)
3756 *x = XEXP (exp, 0);
3759 return addval;
3762 /* Attempt to identify accesses to arrays that are most likely to cause cache
3763 misses, and emit prefetch instructions a few prefetch blocks forward.
3765 To detect the arrays we use the GIV information that was collected by the
3766 strength reduction pass.
3768 The prefetch instructions are generated after the GIV information is done
3769 and before the strength reduction process. The new GIVs are injected into
3770 the strength reduction tables, so the prefetch addresses are optimized as
3771 well.
3773 GIVs are split into base address, stride, and constant addition values.
3774 GIVs with the same address, stride and close addition values are combined
3775 into a single prefetch. Also writes to GIVs are detected, so that prefetch
3776 for write instructions can be used for the block we write to, on machines
3777 that support write prefetches.
3779 Several heuristics are used to determine when to prefetch. They are
3780 controlled by defined symbols that can be overridden for each target. */
3782 static void
3783 emit_prefetch_instructions (loop)
3784 struct loop *loop;
3786 int num_prefetches = 0;
3787 int num_real_prefetches = 0;
3788 int num_real_write_prefetches = 0;
3789 int num_prefetches_before = 0;
3790 int num_write_prefetches_before = 0;
3791 int ahead = 0;
3792 int i;
3793 struct iv_class *bl;
3794 struct induction *iv;
3795 struct prefetch_info info[MAX_PREFETCHES];
3796 struct loop_ivs *ivs = LOOP_IVS (loop);
3798 if (!HAVE_prefetch)
3799 return;
3801 /* Consider only loops w/o calls. When a call is done, the loop is probably
3802 slow enough to read the memory. */
3803 if (PREFETCH_NO_CALL && LOOP_INFO (loop)->has_call)
3805 if (loop_dump_stream)
3806 fprintf (loop_dump_stream, "Prefetch: ignoring loop: has call.\n");
3808 return;
3811 /* Don't prefetch in loops known to have few iterations. */
3812 if (PREFETCH_NO_LOW_LOOPCNT
3813 && LOOP_INFO (loop)->n_iterations
3814 && LOOP_INFO (loop)->n_iterations <= PREFETCH_LOW_LOOPCNT)
3816 if (loop_dump_stream)
3817 fprintf (loop_dump_stream,
3818 "Prefetch: ignoring loop: not enough iterations.\n");
3819 return;
3822 /* Search all induction variables and pick those interesting for the prefetch
3823 machinery. */
3824 for (bl = ivs->list; bl; bl = bl->next)
3826 struct induction *biv = bl->biv, *biv1;
3827 int basestride = 0;
3829 biv1 = biv;
3831 /* Expect all BIVs to be executed in each iteration. This makes our
3832 analysis more conservative. */
3833 while (biv1)
3835 /* Discard non-constant additions that we can't handle well yet, and
3836 BIVs that are executed multiple times; such BIVs ought to be
3837 handled in the nested loop. We accept not_every_iteration BIVs,
3838 since these only result in larger strides and make our
3839 heuristics more conservative. */
3840 if (GET_CODE (biv->add_val) != CONST_INT)
3842 if (loop_dump_stream)
3844 fprintf (loop_dump_stream,
3845 "Prefetch: ignoring biv %d: non-constant addition at insn %d:",
3846 REGNO (biv->src_reg), INSN_UID (biv->insn));
3847 print_rtl (loop_dump_stream, biv->add_val);
3848 fprintf (loop_dump_stream, "\n");
3850 break;
3853 if (biv->maybe_multiple)
3855 if (loop_dump_stream)
3857 fprintf (loop_dump_stream,
3858 "Prefetch: ignoring biv %d: maybe_multiple at insn %i:",
3859 REGNO (biv->src_reg), INSN_UID (biv->insn));
3860 print_rtl (loop_dump_stream, biv->add_val);
3861 fprintf (loop_dump_stream, "\n");
3863 break;
3866 basestride += INTVAL (biv1->add_val);
3867 biv1 = biv1->next_iv;
3870 if (biv1 || !basestride)
3871 continue;
3873 for (iv = bl->giv; iv; iv = iv->next_iv)
3875 rtx address;
3876 rtx temp;
3877 HOST_WIDE_INT index = 0;
3878 int add = 1;
3879 HOST_WIDE_INT stride = 0;
3880 int stride_sign = 1;
3881 struct check_store_data d;
3882 const char *ignore_reason = NULL;
3883 int size = GET_MODE_SIZE (GET_MODE (iv));
3885 /* See whether an induction variable is interesting to us and if
3886 not, report the reason. */
3887 if (iv->giv_type != DEST_ADDR)
3888 ignore_reason = "giv is not a destination address";
3890 /* We are interested only in constant stride memory references
3891 in order to be able to compute density easily. */
3892 else if (GET_CODE (iv->mult_val) != CONST_INT)
3893 ignore_reason = "stride is not constant";
3895 else
3897 stride = INTVAL (iv->mult_val) * basestride;
3898 if (stride < 0)
3900 stride = -stride;
3901 stride_sign = -1;
3904 /* On some targets, reversed order prefetches are not
3905 worthwhile. */
3906 if (PREFETCH_NO_REVERSE_ORDER && stride_sign < 0)
3907 ignore_reason = "reversed order stride";
3909 /* Prefetch of accesses with an extreme stride might not be
3910 worthwhile, either. */
3911 else if (PREFETCH_NO_EXTREME_STRIDE
3912 && stride > PREFETCH_EXTREME_STRIDE)
3913 ignore_reason = "extreme stride";
3915 /* Ignore GIVs with varying add values; we can't predict the
3916 value for the next iteration. */
3917 else if (!loop_invariant_p (loop, iv->add_val))
3918 ignore_reason = "giv has varying add value";
3920 /* Ignore GIVs in the nested loops; they ought to have been
3921 handled already. */
3922 else if (iv->maybe_multiple)
3923 ignore_reason = "giv is in nested loop";
3926 if (ignore_reason != NULL)
3928 if (loop_dump_stream)
3929 fprintf (loop_dump_stream,
3930 "Prefetch: ignoring giv at %d: %s.\n",
3931 INSN_UID (iv->insn), ignore_reason);
3932 continue;
3935 /* Determine the pointer to the basic array we are examining. It is
3936 the sum of the BIV's initial value and the GIV's add_val. */
3937 address = copy_rtx (iv->add_val);
3938 temp = copy_rtx (bl->initial_value);
3940 address = simplify_gen_binary (PLUS, Pmode, temp, address);
3941 index = remove_constant_addition (&address);
3943 d.mem_write = 0;
3944 d.mem_address = *iv->location;
3946 /* When the GIV is not always executed, we might be better off by
3947 not dirtying the cache pages. */
3948 if (PREFETCH_CONDITIONAL || iv->always_executed)
3949 note_stores (PATTERN (iv->insn), check_store, &d);
3950 else
3952 if (loop_dump_stream)
3953 fprintf (loop_dump_stream, "Prefetch: Ignoring giv at %d: %s\n",
3954 INSN_UID (iv->insn), "in conditional code.");
3955 continue;
3958 /* Attempt to find another prefetch to the same array and see if we
3959 can merge this one. */
3960 for (i = 0; i < num_prefetches; i++)
3961 if (rtx_equal_for_prefetch_p (address, info[i].base_address)
3962 && stride == info[i].stride)
3964 /* In case both access same array (same location
3965 just with small difference in constant indexes), merge
3966 the prefetches. Just do the later and the earlier will
3967 get prefetched from previous iteration.
3968 The artificial threshold should not be too small,
3969 but also not bigger than small portion of memory usually
3970 traversed by single loop. */
3971 if (index >= info[i].index
3972 && index - info[i].index < PREFETCH_EXTREME_DIFFERENCE)
3974 info[i].write |= d.mem_write;
3975 info[i].bytes_accessed += size;
3976 info[i].index = index;
3977 info[i].giv = iv;
3978 info[i].class = bl;
3979 info[num_prefetches].base_address = address;
3980 add = 0;
3981 break;
3984 if (index < info[i].index
3985 && info[i].index - index < PREFETCH_EXTREME_DIFFERENCE)
3987 info[i].write |= d.mem_write;
3988 info[i].bytes_accessed += size;
3989 add = 0;
3990 break;
3994 /* Merging failed. */
3995 if (add)
3997 info[num_prefetches].giv = iv;
3998 info[num_prefetches].class = bl;
3999 info[num_prefetches].index = index;
4000 info[num_prefetches].stride = stride;
4001 info[num_prefetches].base_address = address;
4002 info[num_prefetches].write = d.mem_write;
4003 info[num_prefetches].bytes_accessed = size;
4004 num_prefetches++;
4005 if (num_prefetches >= MAX_PREFETCHES)
4007 if (loop_dump_stream)
4008 fprintf (loop_dump_stream,
4009 "Maximal number of prefetches exceeded.\n");
4010 return;
4016 for (i = 0; i < num_prefetches; i++)
4018 int density;
4020 /* Attempt to calculate the total number of bytes fetched by all
4021 iterations of the loop. Avoid overflow. */
4022 if (LOOP_INFO (loop)->n_iterations
4023 && ((unsigned HOST_WIDE_INT) (0xffffffff / info[i].stride)
4024 >= LOOP_INFO (loop)->n_iterations))
4025 info[i].total_bytes = info[i].stride * LOOP_INFO (loop)->n_iterations;
4026 else
4027 info[i].total_bytes = 0xffffffff;
4029 density = info[i].bytes_accessed * 100 / info[i].stride;
4031 /* Prefetch might be worthwhile only when the loads/stores are dense. */
4032 if (PREFETCH_ONLY_DENSE_MEM)
4033 if (density * 256 > PREFETCH_DENSE_MEM * 100
4034 && (info[i].total_bytes / PREFETCH_BLOCK
4035 >= PREFETCH_BLOCKS_BEFORE_LOOP_MIN))
4037 info[i].prefetch_before_loop = 1;
4038 info[i].prefetch_in_loop
4039 = (info[i].total_bytes / PREFETCH_BLOCK
4040 > PREFETCH_BLOCKS_BEFORE_LOOP_MAX);
4042 else
4044 info[i].prefetch_in_loop = 0, info[i].prefetch_before_loop = 0;
4045 if (loop_dump_stream)
4046 fprintf (loop_dump_stream,
4047 "Prefetch: ignoring giv at %d: %d%% density is too low.\n",
4048 INSN_UID (info[i].giv->insn), density);
4050 else
4051 info[i].prefetch_in_loop = 1, info[i].prefetch_before_loop = 1;
4053 /* Find how many prefetch instructions we'll use within the loop. */
4054 if (info[i].prefetch_in_loop != 0)
4056 info[i].prefetch_in_loop = ((info[i].stride + PREFETCH_BLOCK - 1)
4057 / PREFETCH_BLOCK);
4058 num_real_prefetches += info[i].prefetch_in_loop;
4059 if (info[i].write)
4060 num_real_write_prefetches += info[i].prefetch_in_loop;
4064 /* Determine how many iterations ahead to prefetch within the loop, based
4065 on how many prefetches we currently expect to do within the loop. */
4066 if (num_real_prefetches != 0)
4068 if ((ahead = SIMULTANEOUS_PREFETCHES / num_real_prefetches) == 0)
4070 if (loop_dump_stream)
4071 fprintf (loop_dump_stream,
4072 "Prefetch: ignoring prefetches within loop: ahead is zero; %d < %d\n",
4073 SIMULTANEOUS_PREFETCHES, num_real_prefetches);
4074 num_real_prefetches = 0, num_real_write_prefetches = 0;
4077 /* We'll also use AHEAD to determine how many prefetch instructions to
4078 emit before a loop, so don't leave it zero. */
4079 if (ahead == 0)
4080 ahead = PREFETCH_BLOCKS_BEFORE_LOOP_MAX;
4082 for (i = 0; i < num_prefetches; i++)
4084 /* Update if we've decided not to prefetch anything within the loop. */
4085 if (num_real_prefetches == 0)
4086 info[i].prefetch_in_loop = 0;
4088 /* Find how many prefetch instructions we'll use before the loop. */
4089 if (info[i].prefetch_before_loop != 0)
4091 int n = info[i].total_bytes / PREFETCH_BLOCK;
4092 if (n > ahead)
4093 n = ahead;
4094 info[i].prefetch_before_loop = n;
4095 num_prefetches_before += n;
4096 if (info[i].write)
4097 num_write_prefetches_before += n;
4100 if (loop_dump_stream)
4102 if (info[i].prefetch_in_loop == 0
4103 && info[i].prefetch_before_loop == 0)
4104 continue;
4105 fprintf (loop_dump_stream, "Prefetch insn: %d",
4106 INSN_UID (info[i].giv->insn));
4107 fprintf (loop_dump_stream,
4108 "; in loop: %d; before: %d; %s\n",
4109 info[i].prefetch_in_loop,
4110 info[i].prefetch_before_loop,
4111 info[i].write ? "read/write" : "read only");
4112 fprintf (loop_dump_stream,
4113 " density: %d%%; bytes_accessed: %u; total_bytes: %u\n",
4114 (int) (info[i].bytes_accessed * 100 / info[i].stride),
4115 info[i].bytes_accessed, info[i].total_bytes);
4116 fprintf (loop_dump_stream, " index: ");
4117 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC, info[i].index);
4118 fprintf (loop_dump_stream, "; stride: ");
4119 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC, info[i].stride);
4120 fprintf (loop_dump_stream, "; address: ");
4121 print_rtl (loop_dump_stream, info[i].base_address);
4122 fprintf (loop_dump_stream, "\n");
4126 if (num_real_prefetches + num_prefetches_before > 0)
4128 /* Record that this loop uses prefetch instructions. */
4129 LOOP_INFO (loop)->has_prefetch = 1;
4131 if (loop_dump_stream)
4133 fprintf (loop_dump_stream, "Real prefetches needed within loop: %d (write: %d)\n",
4134 num_real_prefetches, num_real_write_prefetches);
4135 fprintf (loop_dump_stream, "Real prefetches needed before loop: %d (write: %d)\n",
4136 num_prefetches_before, num_write_prefetches_before);
4140 for (i = 0; i < num_prefetches; i++)
4142 int y;
4144 for (y = 0; y < info[i].prefetch_in_loop; y++)
4146 rtx loc = copy_rtx (*info[i].giv->location);
4147 rtx insn;
4148 int bytes_ahead = PREFETCH_BLOCK * (ahead + y);
4149 rtx before_insn = info[i].giv->insn;
4150 rtx prev_insn = PREV_INSN (info[i].giv->insn);
4151 rtx seq;
4153 /* We can save some effort by offsetting the address on
4154 architectures with offsettable memory references. */
4155 if (offsettable_address_p (0, VOIDmode, loc))
4156 loc = plus_constant (loc, bytes_ahead);
4157 else
4159 rtx reg = gen_reg_rtx (Pmode);
4160 loop_iv_add_mult_emit_before (loop, loc, const1_rtx,
4161 GEN_INT (bytes_ahead), reg,
4162 0, before_insn);
4163 loc = reg;
4166 start_sequence ();
4167 /* Make sure the address operand is valid for prefetch. */
4168 if (! (*insn_data[(int)CODE_FOR_prefetch].operand[0].predicate)
4169 (loc, insn_data[(int)CODE_FOR_prefetch].operand[0].mode))
4170 loc = force_reg (Pmode, loc);
4171 emit_insn (gen_prefetch (loc, GEN_INT (info[i].write),
4172 GEN_INT (3)));
4173 seq = get_insns ();
4174 end_sequence ();
4175 emit_insn_before (seq, before_insn);
4177 /* Check all insns emitted and record the new GIV
4178 information. */
4179 insn = NEXT_INSN (prev_insn);
4180 while (insn != before_insn)
4182 insn = check_insn_for_givs (loop, insn,
4183 info[i].giv->always_executed,
4184 info[i].giv->maybe_multiple);
4185 insn = NEXT_INSN (insn);
4189 if (PREFETCH_BEFORE_LOOP)
4191 /* Emit insns before the loop to fetch the first cache lines or,
4192 if we're not prefetching within the loop, everything we expect
4193 to need. */
4194 for (y = 0; y < info[i].prefetch_before_loop; y++)
4196 rtx reg = gen_reg_rtx (Pmode);
4197 rtx loop_start = loop->start;
4198 rtx init_val = info[i].class->initial_value;
4199 rtx add_val = simplify_gen_binary (PLUS, Pmode,
4200 info[i].giv->add_val,
4201 GEN_INT (y * PREFETCH_BLOCK));
4203 /* Functions called by LOOP_IV_ADD_EMIT_BEFORE expect a
4204 non-constant INIT_VAL to have the same mode as REG, which
4205 in this case we know to be Pmode. */
4206 if (GET_MODE (init_val) != Pmode && !CONSTANT_P (init_val))
4207 init_val = convert_to_mode (Pmode, init_val, 0);
4208 loop_iv_add_mult_emit_before (loop, init_val,
4209 info[i].giv->mult_val,
4210 add_val, reg, 0, loop_start);
4211 emit_insn_before (gen_prefetch (reg, GEN_INT (info[i].write),
4212 GEN_INT (3)),
4213 loop_start);
4218 return;
4221 /* A "basic induction variable" or biv is a pseudo reg that is set
4222 (within this loop) only by incrementing or decrementing it. */
4223 /* A "general induction variable" or giv is a pseudo reg whose
4224 value is a linear function of a biv. */
4226 /* Bivs are recognized by `basic_induction_var';
4227 Givs by `general_induction_var'. */
4229 /* Communication with routines called via `note_stores'. */
4231 static rtx note_insn;
4233 /* Dummy register to have nonzero DEST_REG for DEST_ADDR type givs. */
4235 static rtx addr_placeholder;
4237 /* ??? Unfinished optimizations, and possible future optimizations,
4238 for the strength reduction code. */
4240 /* ??? The interaction of biv elimination, and recognition of 'constant'
4241 bivs, may cause problems. */
4243 /* ??? Add heuristics so that DEST_ADDR strength reduction does not cause
4244 performance problems.
4246 Perhaps don't eliminate things that can be combined with an addressing
4247 mode. Find all givs that have the same biv, mult_val, and add_val;
4248 then for each giv, check to see if its only use dies in a following
4249 memory address. If so, generate a new memory address and check to see
4250 if it is valid. If it is valid, then store the modified memory address,
4251 otherwise, mark the giv as not done so that it will get its own iv. */
4253 /* ??? Could try to optimize branches when it is known that a biv is always
4254 positive. */
4256 /* ??? When replace a biv in a compare insn, we should replace with closest
4257 giv so that an optimized branch can still be recognized by the combiner,
4258 e.g. the VAX acb insn. */
4260 /* ??? Many of the checks involving uid_luid could be simplified if regscan
4261 was rerun in loop_optimize whenever a register was added or moved.
4262 Also, some of the optimizations could be a little less conservative. */
4264 /* Scan the loop body and call FNCALL for each insn. In the addition to the
4265 LOOP and INSN parameters pass MAYBE_MULTIPLE and NOT_EVERY_ITERATION to the
4266 callback.
4268 NOT_EVERY_ITERATION is 1 if current insn is not known to be executed at
4269 least once for every loop iteration except for the last one.
4271 MAYBE_MULTIPLE is 1 if current insn may be executed more than once for every
4272 loop iteration.
4274 void
4275 for_each_insn_in_loop (loop, fncall)
4276 struct loop *loop;
4277 loop_insn_callback fncall;
4279 int not_every_iteration = 0;
4280 int maybe_multiple = 0;
4281 int past_loop_latch = 0;
4282 int loop_depth = 0;
4283 rtx p;
4285 /* If loop_scan_start points to the loop exit test, we have to be wary of
4286 subversive use of gotos inside expression statements. */
4287 if (prev_nonnote_insn (loop->scan_start) != prev_nonnote_insn (loop->start))
4288 maybe_multiple = back_branch_in_range_p (loop, loop->scan_start);
4290 /* Scan through loop and update NOT_EVERY_ITERATION and MAYBE_MULTIPLE. */
4291 for (p = next_insn_in_loop (loop, loop->scan_start);
4292 p != NULL_RTX;
4293 p = next_insn_in_loop (loop, p))
4295 p = fncall (loop, p, not_every_iteration, maybe_multiple);
4297 /* Past CODE_LABEL, we get to insns that may be executed multiple
4298 times. The only way we can be sure that they can't is if every
4299 jump insn between here and the end of the loop either
4300 returns, exits the loop, is a jump to a location that is still
4301 behind the label, or is a jump to the loop start. */
4303 if (GET_CODE (p) == CODE_LABEL)
4305 rtx insn = p;
4307 maybe_multiple = 0;
4309 while (1)
4311 insn = NEXT_INSN (insn);
4312 if (insn == loop->scan_start)
4313 break;
4314 if (insn == loop->end)
4316 if (loop->top != 0)
4317 insn = loop->top;
4318 else
4319 break;
4320 if (insn == loop->scan_start)
4321 break;
4324 if (GET_CODE (insn) == JUMP_INSN
4325 && GET_CODE (PATTERN (insn)) != RETURN
4326 && (!any_condjump_p (insn)
4327 || (JUMP_LABEL (insn) != 0
4328 && JUMP_LABEL (insn) != loop->scan_start
4329 && !loop_insn_first_p (p, JUMP_LABEL (insn)))))
4331 maybe_multiple = 1;
4332 break;
4337 /* Past a jump, we get to insns for which we can't count
4338 on whether they will be executed during each iteration. */
4339 /* This code appears twice in strength_reduce. There is also similar
4340 code in scan_loop. */
4341 if (GET_CODE (p) == JUMP_INSN
4342 /* If we enter the loop in the middle, and scan around to the
4343 beginning, don't set not_every_iteration for that.
4344 This can be any kind of jump, since we want to know if insns
4345 will be executed if the loop is executed. */
4346 && !(JUMP_LABEL (p) == loop->top
4347 && ((NEXT_INSN (NEXT_INSN (p)) == loop->end
4348 && any_uncondjump_p (p))
4349 || (NEXT_INSN (p) == loop->end && any_condjump_p (p)))))
4351 rtx label = 0;
4353 /* If this is a jump outside the loop, then it also doesn't
4354 matter. Check to see if the target of this branch is on the
4355 loop->exits_labels list. */
4357 for (label = loop->exit_labels; label; label = LABEL_NEXTREF (label))
4358 if (XEXP (label, 0) == JUMP_LABEL (p))
4359 break;
4361 if (!label)
4362 not_every_iteration = 1;
4365 else if (GET_CODE (p) == NOTE)
4367 /* At the virtual top of a converted loop, insns are again known to
4368 be executed each iteration: logically, the loop begins here
4369 even though the exit code has been duplicated.
4371 Insns are also again known to be executed each iteration at
4372 the LOOP_CONT note. */
4373 if ((NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP
4374 || NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_CONT)
4375 && loop_depth == 0)
4376 not_every_iteration = 0;
4377 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
4378 loop_depth++;
4379 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
4380 loop_depth--;
4383 /* Note if we pass a loop latch. If we do, then we can not clear
4384 NOT_EVERY_ITERATION below when we pass the last CODE_LABEL in
4385 a loop since a jump before the last CODE_LABEL may have started
4386 a new loop iteration.
4388 Note that LOOP_TOP is only set for rotated loops and we need
4389 this check for all loops, so compare against the CODE_LABEL
4390 which immediately follows LOOP_START. */
4391 if (GET_CODE (p) == JUMP_INSN
4392 && JUMP_LABEL (p) == NEXT_INSN (loop->start))
4393 past_loop_latch = 1;
4395 /* Unlike in the code motion pass where MAYBE_NEVER indicates that
4396 an insn may never be executed, NOT_EVERY_ITERATION indicates whether
4397 or not an insn is known to be executed each iteration of the
4398 loop, whether or not any iterations are known to occur.
4400 Therefore, if we have just passed a label and have no more labels
4401 between here and the test insn of the loop, and we have not passed
4402 a jump to the top of the loop, then we know these insns will be
4403 executed each iteration. */
4405 if (not_every_iteration
4406 && !past_loop_latch
4407 && GET_CODE (p) == CODE_LABEL
4408 && no_labels_between_p (p, loop->end)
4409 && loop_insn_first_p (p, loop->cont))
4410 not_every_iteration = 0;
4414 static void
4415 loop_bivs_find (loop)
4416 struct loop *loop;
4418 struct loop_regs *regs = LOOP_REGS (loop);
4419 struct loop_ivs *ivs = LOOP_IVS (loop);
4420 /* Temporary list pointers for traversing ivs->list. */
4421 struct iv_class *bl, **backbl;
4423 ivs->list = 0;
4425 for_each_insn_in_loop (loop, check_insn_for_bivs);
4427 /* Scan ivs->list to remove all regs that proved not to be bivs.
4428 Make a sanity check against regs->n_times_set. */
4429 for (backbl = &ivs->list, bl = *backbl; bl; bl = bl->next)
4431 if (REG_IV_TYPE (ivs, bl->regno) != BASIC_INDUCT
4432 /* Above happens if register modified by subreg, etc. */
4433 /* Make sure it is not recognized as a basic induction var: */
4434 || regs->array[bl->regno].n_times_set != bl->biv_count
4435 /* If never incremented, it is invariant that we decided not to
4436 move. So leave it alone. */
4437 || ! bl->incremented)
4439 if (loop_dump_stream)
4440 fprintf (loop_dump_stream, "Biv %d: discarded, %s\n",
4441 bl->regno,
4442 (REG_IV_TYPE (ivs, bl->regno) != BASIC_INDUCT
4443 ? "not induction variable"
4444 : (! bl->incremented ? "never incremented"
4445 : "count error")));
4447 REG_IV_TYPE (ivs, bl->regno) = NOT_BASIC_INDUCT;
4448 *backbl = bl->next;
4450 else
4452 backbl = &bl->next;
4454 if (loop_dump_stream)
4455 fprintf (loop_dump_stream, "Biv %d: verified\n", bl->regno);
4461 /* Determine how BIVS are initialized by looking through pre-header
4462 extended basic block. */
4463 static void
4464 loop_bivs_init_find (loop)
4465 struct loop *loop;
4467 struct loop_ivs *ivs = LOOP_IVS (loop);
4468 /* Temporary list pointers for traversing ivs->list. */
4469 struct iv_class *bl;
4470 int call_seen;
4471 rtx p;
4473 /* Find initial value for each biv by searching backwards from loop_start,
4474 halting at first label. Also record any test condition. */
4476 call_seen = 0;
4477 for (p = loop->start; p && GET_CODE (p) != CODE_LABEL; p = PREV_INSN (p))
4479 rtx test;
4481 note_insn = p;
4483 if (GET_CODE (p) == CALL_INSN)
4484 call_seen = 1;
4486 if (INSN_P (p))
4487 note_stores (PATTERN (p), record_initial, ivs);
4489 /* Record any test of a biv that branches around the loop if no store
4490 between it and the start of loop. We only care about tests with
4491 constants and registers and only certain of those. */
4492 if (GET_CODE (p) == JUMP_INSN
4493 && JUMP_LABEL (p) != 0
4494 && next_real_insn (JUMP_LABEL (p)) == next_real_insn (loop->end)
4495 && (test = get_condition_for_loop (loop, p)) != 0
4496 && GET_CODE (XEXP (test, 0)) == REG
4497 && REGNO (XEXP (test, 0)) < max_reg_before_loop
4498 && (bl = REG_IV_CLASS (ivs, REGNO (XEXP (test, 0)))) != 0
4499 && valid_initial_value_p (XEXP (test, 1), p, call_seen, loop->start)
4500 && bl->init_insn == 0)
4502 /* If an NE test, we have an initial value! */
4503 if (GET_CODE (test) == NE)
4505 bl->init_insn = p;
4506 bl->init_set = gen_rtx_SET (VOIDmode,
4507 XEXP (test, 0), XEXP (test, 1));
4509 else
4510 bl->initial_test = test;
4516 /* Look at the each biv and see if we can say anything better about its
4517 initial value from any initializing insns set up above. (This is done
4518 in two passes to avoid missing SETs in a PARALLEL.) */
4519 static void
4520 loop_bivs_check (loop)
4521 struct loop *loop;
4523 struct loop_ivs *ivs = LOOP_IVS (loop);
4524 /* Temporary list pointers for traversing ivs->list. */
4525 struct iv_class *bl;
4526 struct iv_class **backbl;
4528 for (backbl = &ivs->list; (bl = *backbl); backbl = &bl->next)
4530 rtx src;
4531 rtx note;
4533 if (! bl->init_insn)
4534 continue;
4536 /* IF INIT_INSN has a REG_EQUAL or REG_EQUIV note and the value
4537 is a constant, use the value of that. */
4538 if (((note = find_reg_note (bl->init_insn, REG_EQUAL, 0)) != NULL
4539 && CONSTANT_P (XEXP (note, 0)))
4540 || ((note = find_reg_note (bl->init_insn, REG_EQUIV, 0)) != NULL
4541 && CONSTANT_P (XEXP (note, 0))))
4542 src = XEXP (note, 0);
4543 else
4544 src = SET_SRC (bl->init_set);
4546 if (loop_dump_stream)
4547 fprintf (loop_dump_stream,
4548 "Biv %d: initialized at insn %d: initial value ",
4549 bl->regno, INSN_UID (bl->init_insn));
4551 if ((GET_MODE (src) == GET_MODE (regno_reg_rtx[bl->regno])
4552 || GET_MODE (src) == VOIDmode)
4553 && valid_initial_value_p (src, bl->init_insn,
4554 LOOP_INFO (loop)->pre_header_has_call,
4555 loop->start))
4557 bl->initial_value = src;
4559 if (loop_dump_stream)
4561 print_simple_rtl (loop_dump_stream, src);
4562 fputc ('\n', loop_dump_stream);
4565 /* If we can't make it a giv,
4566 let biv keep initial value of "itself". */
4567 else if (loop_dump_stream)
4568 fprintf (loop_dump_stream, "is complex\n");
4573 /* Search the loop for general induction variables. */
4575 static void
4576 loop_givs_find (loop)
4577 struct loop* loop;
4579 for_each_insn_in_loop (loop, check_insn_for_givs);
4583 /* For each giv for which we still don't know whether or not it is
4584 replaceable, check to see if it is replaceable because its final value
4585 can be calculated. */
4587 static void
4588 loop_givs_check (loop)
4589 struct loop *loop;
4591 struct loop_ivs *ivs = LOOP_IVS (loop);
4592 struct iv_class *bl;
4594 for (bl = ivs->list; bl; bl = bl->next)
4596 struct induction *v;
4598 for (v = bl->giv; v; v = v->next_iv)
4599 if (! v->replaceable && ! v->not_replaceable)
4600 check_final_value (loop, v);
4605 /* Return nonzero if it is possible to eliminate the biv BL provided
4606 all givs are reduced. This is possible if either the reg is not
4607 used outside the loop, or we can compute what its final value will
4608 be. */
4610 static int
4611 loop_biv_eliminable_p (loop, bl, threshold, insn_count)
4612 struct loop *loop;
4613 struct iv_class *bl;
4614 int threshold;
4615 int insn_count;
4617 /* For architectures with a decrement_and_branch_until_zero insn,
4618 don't do this if we put a REG_NONNEG note on the endtest for this
4619 biv. */
4621 #ifdef HAVE_decrement_and_branch_until_zero
4622 if (bl->nonneg)
4624 if (loop_dump_stream)
4625 fprintf (loop_dump_stream,
4626 "Cannot eliminate nonneg biv %d.\n", bl->regno);
4627 return 0;
4629 #endif
4631 /* Check that biv is used outside loop or if it has a final value.
4632 Compare against bl->init_insn rather than loop->start. We aren't
4633 concerned with any uses of the biv between init_insn and
4634 loop->start since these won't be affected by the value of the biv
4635 elsewhere in the function, so long as init_insn doesn't use the
4636 biv itself. */
4638 if ((REGNO_LAST_LUID (bl->regno) < INSN_LUID (loop->end)
4639 && bl->init_insn
4640 && INSN_UID (bl->init_insn) < max_uid_for_loop
4641 && REGNO_FIRST_LUID (bl->regno) >= INSN_LUID (bl->init_insn)
4642 && ! reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
4643 || (bl->final_value = final_biv_value (loop, bl)))
4644 return maybe_eliminate_biv (loop, bl, 0, threshold, insn_count);
4646 if (loop_dump_stream)
4648 fprintf (loop_dump_stream,
4649 "Cannot eliminate biv %d.\n",
4650 bl->regno);
4651 fprintf (loop_dump_stream,
4652 "First use: insn %d, last use: insn %d.\n",
4653 REGNO_FIRST_UID (bl->regno),
4654 REGNO_LAST_UID (bl->regno));
4656 return 0;
4660 /* Reduce each giv of BL that we have decided to reduce. */
4662 static void
4663 loop_givs_reduce (loop, bl)
4664 struct loop *loop;
4665 struct iv_class *bl;
4667 struct induction *v;
4669 for (v = bl->giv; v; v = v->next_iv)
4671 struct induction *tv;
4672 if (! v->ignore && v->same == 0)
4674 int auto_inc_opt = 0;
4676 /* If the code for derived givs immediately below has already
4677 allocated a new_reg, we must keep it. */
4678 if (! v->new_reg)
4679 v->new_reg = gen_reg_rtx (v->mode);
4681 #ifdef AUTO_INC_DEC
4682 /* If the target has auto-increment addressing modes, and
4683 this is an address giv, then try to put the increment
4684 immediately after its use, so that flow can create an
4685 auto-increment addressing mode. */
4686 if (v->giv_type == DEST_ADDR && bl->biv_count == 1
4687 && bl->biv->always_executed && ! bl->biv->maybe_multiple
4688 /* We don't handle reversed biv's because bl->biv->insn
4689 does not have a valid INSN_LUID. */
4690 && ! bl->reversed
4691 && v->always_executed && ! v->maybe_multiple
4692 && INSN_UID (v->insn) < max_uid_for_loop)
4694 /* If other giv's have been combined with this one, then
4695 this will work only if all uses of the other giv's occur
4696 before this giv's insn. This is difficult to check.
4698 We simplify this by looking for the common case where
4699 there is one DEST_REG giv, and this giv's insn is the
4700 last use of the dest_reg of that DEST_REG giv. If the
4701 increment occurs after the address giv, then we can
4702 perform the optimization. (Otherwise, the increment
4703 would have to go before other_giv, and we would not be
4704 able to combine it with the address giv to get an
4705 auto-inc address.) */
4706 if (v->combined_with)
4708 struct induction *other_giv = 0;
4710 for (tv = bl->giv; tv; tv = tv->next_iv)
4711 if (tv->same == v)
4713 if (other_giv)
4714 break;
4715 else
4716 other_giv = tv;
4718 if (! tv && other_giv
4719 && REGNO (other_giv->dest_reg) < max_reg_before_loop
4720 && (REGNO_LAST_UID (REGNO (other_giv->dest_reg))
4721 == INSN_UID (v->insn))
4722 && INSN_LUID (v->insn) < INSN_LUID (bl->biv->insn))
4723 auto_inc_opt = 1;
4725 /* Check for case where increment is before the address
4726 giv. Do this test in "loop order". */
4727 else if ((INSN_LUID (v->insn) > INSN_LUID (bl->biv->insn)
4728 && (INSN_LUID (v->insn) < INSN_LUID (loop->scan_start)
4729 || (INSN_LUID (bl->biv->insn)
4730 > INSN_LUID (loop->scan_start))))
4731 || (INSN_LUID (v->insn) < INSN_LUID (loop->scan_start)
4732 && (INSN_LUID (loop->scan_start)
4733 < INSN_LUID (bl->biv->insn))))
4734 auto_inc_opt = -1;
4735 else
4736 auto_inc_opt = 1;
4738 #ifdef HAVE_cc0
4740 rtx prev;
4742 /* We can't put an insn immediately after one setting
4743 cc0, or immediately before one using cc0. */
4744 if ((auto_inc_opt == 1 && sets_cc0_p (PATTERN (v->insn)))
4745 || (auto_inc_opt == -1
4746 && (prev = prev_nonnote_insn (v->insn)) != 0
4747 && INSN_P (prev)
4748 && sets_cc0_p (PATTERN (prev))))
4749 auto_inc_opt = 0;
4751 #endif
4753 if (auto_inc_opt)
4754 v->auto_inc_opt = 1;
4756 #endif
4758 /* For each place where the biv is incremented, add an insn
4759 to increment the new, reduced reg for the giv. */
4760 for (tv = bl->biv; tv; tv = tv->next_iv)
4762 rtx insert_before;
4764 if (! auto_inc_opt)
4765 insert_before = NEXT_INSN (tv->insn);
4766 else if (auto_inc_opt == 1)
4767 insert_before = NEXT_INSN (v->insn);
4768 else
4769 insert_before = v->insn;
4771 if (tv->mult_val == const1_rtx)
4772 loop_iv_add_mult_emit_before (loop, tv->add_val, v->mult_val,
4773 v->new_reg, v->new_reg,
4774 0, insert_before);
4775 else /* tv->mult_val == const0_rtx */
4776 /* A multiply is acceptable here
4777 since this is presumed to be seldom executed. */
4778 loop_iv_add_mult_emit_before (loop, tv->add_val, v->mult_val,
4779 v->add_val, v->new_reg,
4780 0, insert_before);
4783 /* Add code at loop start to initialize giv's reduced reg. */
4785 loop_iv_add_mult_hoist (loop,
4786 extend_value_for_giv (v, bl->initial_value),
4787 v->mult_val, v->add_val, v->new_reg);
4793 /* Check for givs whose first use is their definition and whose
4794 last use is the definition of another giv. If so, it is likely
4795 dead and should not be used to derive another giv nor to
4796 eliminate a biv. */
4798 static void
4799 loop_givs_dead_check (loop, bl)
4800 struct loop *loop ATTRIBUTE_UNUSED;
4801 struct iv_class *bl;
4803 struct induction *v;
4805 for (v = bl->giv; v; v = v->next_iv)
4807 if (v->ignore
4808 || (v->same && v->same->ignore))
4809 continue;
4811 if (v->giv_type == DEST_REG
4812 && REGNO_FIRST_UID (REGNO (v->dest_reg)) == INSN_UID (v->insn))
4814 struct induction *v1;
4816 for (v1 = bl->giv; v1; v1 = v1->next_iv)
4817 if (REGNO_LAST_UID (REGNO (v->dest_reg)) == INSN_UID (v1->insn))
4818 v->maybe_dead = 1;
4824 static void
4825 loop_givs_rescan (loop, bl, reg_map)
4826 struct loop *loop;
4827 struct iv_class *bl;
4828 rtx *reg_map;
4830 struct induction *v;
4832 for (v = bl->giv; v; v = v->next_iv)
4834 if (v->same && v->same->ignore)
4835 v->ignore = 1;
4837 if (v->ignore)
4838 continue;
4840 /* Update expression if this was combined, in case other giv was
4841 replaced. */
4842 if (v->same)
4843 v->new_reg = replace_rtx (v->new_reg,
4844 v->same->dest_reg, v->same->new_reg);
4846 /* See if this register is known to be a pointer to something. If
4847 so, see if we can find the alignment. First see if there is a
4848 destination register that is a pointer. If so, this shares the
4849 alignment too. Next see if we can deduce anything from the
4850 computational information. If not, and this is a DEST_ADDR
4851 giv, at least we know that it's a pointer, though we don't know
4852 the alignment. */
4853 if (GET_CODE (v->new_reg) == REG
4854 && v->giv_type == DEST_REG
4855 && REG_POINTER (v->dest_reg))
4856 mark_reg_pointer (v->new_reg,
4857 REGNO_POINTER_ALIGN (REGNO (v->dest_reg)));
4858 else if (GET_CODE (v->new_reg) == REG
4859 && REG_POINTER (v->src_reg))
4861 unsigned int align = REGNO_POINTER_ALIGN (REGNO (v->src_reg));
4863 if (align == 0
4864 || GET_CODE (v->add_val) != CONST_INT
4865 || INTVAL (v->add_val) % (align / BITS_PER_UNIT) != 0)
4866 align = 0;
4868 mark_reg_pointer (v->new_reg, align);
4870 else if (GET_CODE (v->new_reg) == REG
4871 && GET_CODE (v->add_val) == REG
4872 && REG_POINTER (v->add_val))
4874 unsigned int align = REGNO_POINTER_ALIGN (REGNO (v->add_val));
4876 if (align == 0 || GET_CODE (v->mult_val) != CONST_INT
4877 || INTVAL (v->mult_val) % (align / BITS_PER_UNIT) != 0)
4878 align = 0;
4880 mark_reg_pointer (v->new_reg, align);
4882 else if (GET_CODE (v->new_reg) == REG && v->giv_type == DEST_ADDR)
4883 mark_reg_pointer (v->new_reg, 0);
4885 if (v->giv_type == DEST_ADDR)
4886 /* Store reduced reg as the address in the memref where we found
4887 this giv. */
4888 validate_change (v->insn, v->location, v->new_reg, 0);
4889 else if (v->replaceable)
4891 reg_map[REGNO (v->dest_reg)] = v->new_reg;
4893 else
4895 rtx original_insn = v->insn;
4896 rtx note;
4898 /* Not replaceable; emit an insn to set the original giv reg from
4899 the reduced giv, same as above. */
4900 v->insn = loop_insn_emit_after (loop, 0, original_insn,
4901 gen_move_insn (v->dest_reg,
4902 v->new_reg));
4904 /* The original insn may have a REG_EQUAL note. This note is
4905 now incorrect and may result in invalid substitutions later.
4906 The original insn is dead, but may be part of a libcall
4907 sequence, which doesn't seem worth the bother of handling. */
4908 note = find_reg_note (original_insn, REG_EQUAL, NULL_RTX);
4909 if (note)
4910 remove_note (original_insn, note);
4913 /* When a loop is reversed, givs which depend on the reversed
4914 biv, and which are live outside the loop, must be set to their
4915 correct final value. This insn is only needed if the giv is
4916 not replaceable. The correct final value is the same as the
4917 value that the giv starts the reversed loop with. */
4918 if (bl->reversed && ! v->replaceable)
4919 loop_iv_add_mult_sink (loop,
4920 extend_value_for_giv (v, bl->initial_value),
4921 v->mult_val, v->add_val, v->dest_reg);
4922 else if (v->final_value)
4923 loop_insn_sink_or_swim (loop,
4924 gen_load_of_final_value (v->dest_reg,
4925 v->final_value));
4927 if (loop_dump_stream)
4929 fprintf (loop_dump_stream, "giv at %d reduced to ",
4930 INSN_UID (v->insn));
4931 print_simple_rtl (loop_dump_stream, v->new_reg);
4932 fprintf (loop_dump_stream, "\n");
4938 static int
4939 loop_giv_reduce_benefit (loop, bl, v, test_reg)
4940 struct loop *loop ATTRIBUTE_UNUSED;
4941 struct iv_class *bl;
4942 struct induction *v;
4943 rtx test_reg;
4945 int add_cost;
4946 int benefit;
4948 benefit = v->benefit;
4949 PUT_MODE (test_reg, v->mode);
4950 add_cost = iv_add_mult_cost (bl->biv->add_val, v->mult_val,
4951 test_reg, test_reg);
4953 /* Reduce benefit if not replaceable, since we will insert a
4954 move-insn to replace the insn that calculates this giv. Don't do
4955 this unless the giv is a user variable, since it will often be
4956 marked non-replaceable because of the duplication of the exit
4957 code outside the loop. In such a case, the copies we insert are
4958 dead and will be deleted. So they don't have a cost. Similar
4959 situations exist. */
4960 /* ??? The new final_[bg]iv_value code does a much better job of
4961 finding replaceable giv's, and hence this code may no longer be
4962 necessary. */
4963 if (! v->replaceable && ! bl->eliminable
4964 && REG_USERVAR_P (v->dest_reg))
4965 benefit -= copy_cost;
4967 /* Decrease the benefit to count the add-insns that we will insert
4968 to increment the reduced reg for the giv. ??? This can
4969 overestimate the run-time cost of the additional insns, e.g. if
4970 there are multiple basic blocks that increment the biv, but only
4971 one of these blocks is executed during each iteration. There is
4972 no good way to detect cases like this with the current structure
4973 of the loop optimizer. This code is more accurate for
4974 determining code size than run-time benefits. */
4975 benefit -= add_cost * bl->biv_count;
4977 /* Decide whether to strength-reduce this giv or to leave the code
4978 unchanged (recompute it from the biv each time it is used). This
4979 decision can be made independently for each giv. */
4981 #ifdef AUTO_INC_DEC
4982 /* Attempt to guess whether autoincrement will handle some of the
4983 new add insns; if so, increase BENEFIT (undo the subtraction of
4984 add_cost that was done above). */
4985 if (v->giv_type == DEST_ADDR
4986 /* Increasing the benefit is risky, since this is only a guess.
4987 Avoid increasing register pressure in cases where there would
4988 be no other benefit from reducing this giv. */
4989 && benefit > 0
4990 && GET_CODE (v->mult_val) == CONST_INT)
4992 int size = GET_MODE_SIZE (GET_MODE (v->mem));
4994 if (HAVE_POST_INCREMENT
4995 && INTVAL (v->mult_val) == size)
4996 benefit += add_cost * bl->biv_count;
4997 else if (HAVE_PRE_INCREMENT
4998 && INTVAL (v->mult_val) == size)
4999 benefit += add_cost * bl->biv_count;
5000 else if (HAVE_POST_DECREMENT
5001 && -INTVAL (v->mult_val) == size)
5002 benefit += add_cost * bl->biv_count;
5003 else if (HAVE_PRE_DECREMENT
5004 && -INTVAL (v->mult_val) == size)
5005 benefit += add_cost * bl->biv_count;
5007 #endif
5009 return benefit;
5013 /* Free IV structures for LOOP. */
5015 static void
5016 loop_ivs_free (loop)
5017 struct loop *loop;
5019 struct loop_ivs *ivs = LOOP_IVS (loop);
5020 struct iv_class *iv = ivs->list;
5022 free (ivs->regs);
5024 while (iv)
5026 struct iv_class *next = iv->next;
5027 struct induction *induction;
5028 struct induction *next_induction;
5030 for (induction = iv->biv; induction; induction = next_induction)
5032 next_induction = induction->next_iv;
5033 free (induction);
5035 for (induction = iv->giv; induction; induction = next_induction)
5037 next_induction = induction->next_iv;
5038 free (induction);
5041 free (iv);
5042 iv = next;
5047 /* Perform strength reduction and induction variable elimination.
5049 Pseudo registers created during this function will be beyond the
5050 last valid index in several tables including
5051 REGS->ARRAY[I].N_TIMES_SET and REGNO_LAST_UID. This does not cause a
5052 problem here, because the added registers cannot be givs outside of
5053 their loop, and hence will never be reconsidered. But scan_loop
5054 must check regnos to make sure they are in bounds. */
5056 static void
5057 strength_reduce (loop, flags)
5058 struct loop *loop;
5059 int flags;
5061 struct loop_info *loop_info = LOOP_INFO (loop);
5062 struct loop_regs *regs = LOOP_REGS (loop);
5063 struct loop_ivs *ivs = LOOP_IVS (loop);
5064 rtx p;
5065 /* Temporary list pointer for traversing ivs->list. */
5066 struct iv_class *bl;
5067 /* Ratio of extra register life span we can justify
5068 for saving an instruction. More if loop doesn't call subroutines
5069 since in that case saving an insn makes more difference
5070 and more registers are available. */
5071 /* ??? could set this to last value of threshold in move_movables */
5072 int threshold = (loop_info->has_call ? 1 : 2) * (3 + n_non_fixed_regs);
5073 /* Map of pseudo-register replacements. */
5074 rtx *reg_map = NULL;
5075 int reg_map_size;
5076 int unrolled_insn_copies = 0;
5077 rtx test_reg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
5078 int insn_count = count_insns_in_loop (loop);
5080 addr_placeholder = gen_reg_rtx (Pmode);
5082 ivs->n_regs = max_reg_before_loop;
5083 ivs->regs = (struct iv *) xcalloc (ivs->n_regs, sizeof (struct iv));
5085 /* Find all BIVs in loop. */
5086 loop_bivs_find (loop);
5088 /* Exit if there are no bivs. */
5089 if (! ivs->list)
5091 /* Can still unroll the loop anyways, but indicate that there is no
5092 strength reduction info available. */
5093 if (flags & LOOP_UNROLL)
5094 unroll_loop (loop, insn_count, 0);
5096 loop_ivs_free (loop);
5097 return;
5100 /* Determine how BIVS are initialized by looking through pre-header
5101 extended basic block. */
5102 loop_bivs_init_find (loop);
5104 /* Look at the each biv and see if we can say anything better about its
5105 initial value from any initializing insns set up above. */
5106 loop_bivs_check (loop);
5108 /* Search the loop for general induction variables. */
5109 loop_givs_find (loop);
5111 /* Try to calculate and save the number of loop iterations. This is
5112 set to zero if the actual number can not be calculated. This must
5113 be called after all giv's have been identified, since otherwise it may
5114 fail if the iteration variable is a giv. */
5115 loop_iterations (loop);
5117 #ifdef HAVE_prefetch
5118 if (flags & LOOP_PREFETCH)
5119 emit_prefetch_instructions (loop);
5120 #endif
5122 /* Now for each giv for which we still don't know whether or not it is
5123 replaceable, check to see if it is replaceable because its final value
5124 can be calculated. This must be done after loop_iterations is called,
5125 so that final_giv_value will work correctly. */
5126 loop_givs_check (loop);
5128 /* Try to prove that the loop counter variable (if any) is always
5129 nonnegative; if so, record that fact with a REG_NONNEG note
5130 so that "decrement and branch until zero" insn can be used. */
5131 check_dbra_loop (loop, insn_count);
5133 /* Create reg_map to hold substitutions for replaceable giv regs.
5134 Some givs might have been made from biv increments, so look at
5135 ivs->reg_iv_type for a suitable size. */
5136 reg_map_size = ivs->n_regs;
5137 reg_map = (rtx *) xcalloc (reg_map_size, sizeof (rtx));
5139 /* Examine each iv class for feasibility of strength reduction/induction
5140 variable elimination. */
5142 for (bl = ivs->list; bl; bl = bl->next)
5144 struct induction *v;
5145 int benefit;
5147 /* Test whether it will be possible to eliminate this biv
5148 provided all givs are reduced. */
5149 bl->eliminable = loop_biv_eliminable_p (loop, bl, threshold, insn_count);
5151 /* This will be true at the end, if all givs which depend on this
5152 biv have been strength reduced.
5153 We can't (currently) eliminate the biv unless this is so. */
5154 bl->all_reduced = 1;
5156 /* Check each extension dependent giv in this class to see if its
5157 root biv is safe from wrapping in the interior mode. */
5158 check_ext_dependent_givs (bl, loop_info);
5160 /* Combine all giv's for this iv_class. */
5161 combine_givs (regs, bl);
5163 for (v = bl->giv; v; v = v->next_iv)
5165 struct induction *tv;
5167 if (v->ignore || v->same)
5168 continue;
5170 benefit = loop_giv_reduce_benefit (loop, bl, v, test_reg);
5172 /* If an insn is not to be strength reduced, then set its ignore
5173 flag, and clear bl->all_reduced. */
5175 /* A giv that depends on a reversed biv must be reduced if it is
5176 used after the loop exit, otherwise, it would have the wrong
5177 value after the loop exit. To make it simple, just reduce all
5178 of such giv's whether or not we know they are used after the loop
5179 exit. */
5181 if (! flag_reduce_all_givs
5182 && v->lifetime * threshold * benefit < insn_count
5183 && ! bl->reversed)
5185 if (loop_dump_stream)
5186 fprintf (loop_dump_stream,
5187 "giv of insn %d not worth while, %d vs %d.\n",
5188 INSN_UID (v->insn),
5189 v->lifetime * threshold * benefit, insn_count);
5190 v->ignore = 1;
5191 bl->all_reduced = 0;
5193 else
5195 /* Check that we can increment the reduced giv without a
5196 multiply insn. If not, reject it. */
5198 for (tv = bl->biv; tv; tv = tv->next_iv)
5199 if (tv->mult_val == const1_rtx
5200 && ! product_cheap_p (tv->add_val, v->mult_val))
5202 if (loop_dump_stream)
5203 fprintf (loop_dump_stream,
5204 "giv of insn %d: would need a multiply.\n",
5205 INSN_UID (v->insn));
5206 v->ignore = 1;
5207 bl->all_reduced = 0;
5208 break;
5213 /* Check for givs whose first use is their definition and whose
5214 last use is the definition of another giv. If so, it is likely
5215 dead and should not be used to derive another giv nor to
5216 eliminate a biv. */
5217 loop_givs_dead_check (loop, bl);
5219 /* Reduce each giv that we decided to reduce. */
5220 loop_givs_reduce (loop, bl);
5222 /* Rescan all givs. If a giv is the same as a giv not reduced, mark it
5223 as not reduced.
5225 For each giv register that can be reduced now: if replaceable,
5226 substitute reduced reg wherever the old giv occurs;
5227 else add new move insn "giv_reg = reduced_reg". */
5228 loop_givs_rescan (loop, bl, reg_map);
5230 /* All the givs based on the biv bl have been reduced if they
5231 merit it. */
5233 /* For each giv not marked as maybe dead that has been combined with a
5234 second giv, clear any "maybe dead" mark on that second giv.
5235 v->new_reg will either be or refer to the register of the giv it
5236 combined with.
5238 Doing this clearing avoids problems in biv elimination where
5239 a giv's new_reg is a complex value that can't be put in the
5240 insn but the giv combined with (with a reg as new_reg) is
5241 marked maybe_dead. Since the register will be used in either
5242 case, we'd prefer it be used from the simpler giv. */
5244 for (v = bl->giv; v; v = v->next_iv)
5245 if (! v->maybe_dead && v->same)
5246 v->same->maybe_dead = 0;
5248 /* Try to eliminate the biv, if it is a candidate.
5249 This won't work if ! bl->all_reduced,
5250 since the givs we planned to use might not have been reduced.
5252 We have to be careful that we didn't initially think we could
5253 eliminate this biv because of a giv that we now think may be
5254 dead and shouldn't be used as a biv replacement.
5256 Also, there is the possibility that we may have a giv that looks
5257 like it can be used to eliminate a biv, but the resulting insn
5258 isn't valid. This can happen, for example, on the 88k, where a
5259 JUMP_INSN can compare a register only with zero. Attempts to
5260 replace it with a compare with a constant will fail.
5262 Note that in cases where this call fails, we may have replaced some
5263 of the occurrences of the biv with a giv, but no harm was done in
5264 doing so in the rare cases where it can occur. */
5266 if (bl->all_reduced == 1 && bl->eliminable
5267 && maybe_eliminate_biv (loop, bl, 1, threshold, insn_count))
5269 /* ?? If we created a new test to bypass the loop entirely,
5270 or otherwise drop straight in, based on this test, then
5271 we might want to rewrite it also. This way some later
5272 pass has more hope of removing the initialization of this
5273 biv entirely. */
5275 /* If final_value != 0, then the biv may be used after loop end
5276 and we must emit an insn to set it just in case.
5278 Reversed bivs already have an insn after the loop setting their
5279 value, so we don't need another one. We can't calculate the
5280 proper final value for such a biv here anyways. */
5281 if (bl->final_value && ! bl->reversed)
5282 loop_insn_sink_or_swim (loop,
5283 gen_load_of_final_value (bl->biv->dest_reg,
5284 bl->final_value));
5286 if (loop_dump_stream)
5287 fprintf (loop_dump_stream, "Reg %d: biv eliminated\n",
5288 bl->regno);
5290 /* See above note wrt final_value. But since we couldn't eliminate
5291 the biv, we must set the value after the loop instead of before. */
5292 else if (bl->final_value && ! bl->reversed)
5293 loop_insn_sink (loop, gen_load_of_final_value (bl->biv->dest_reg,
5294 bl->final_value));
5297 /* Go through all the instructions in the loop, making all the
5298 register substitutions scheduled in REG_MAP. */
5300 for (p = loop->start; p != loop->end; p = NEXT_INSN (p))
5301 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
5302 || GET_CODE (p) == CALL_INSN)
5304 replace_regs (PATTERN (p), reg_map, reg_map_size, 0);
5305 replace_regs (REG_NOTES (p), reg_map, reg_map_size, 0);
5306 INSN_CODE (p) = -1;
5309 if (loop_info->n_iterations > 0)
5311 /* When we completely unroll a loop we will likely not need the increment
5312 of the loop BIV and we will not need the conditional branch at the
5313 end of the loop. */
5314 unrolled_insn_copies = insn_count - 2;
5316 #ifdef HAVE_cc0
5317 /* When we completely unroll a loop on a HAVE_cc0 machine we will not
5318 need the comparison before the conditional branch at the end of the
5319 loop. */
5320 unrolled_insn_copies -= 1;
5321 #endif
5323 /* We'll need one copy for each loop iteration. */
5324 unrolled_insn_copies *= loop_info->n_iterations;
5326 /* A little slop to account for the ability to remove initialization
5327 code, better CSE, and other secondary benefits of completely
5328 unrolling some loops. */
5329 unrolled_insn_copies -= 1;
5331 /* Clamp the value. */
5332 if (unrolled_insn_copies < 0)
5333 unrolled_insn_copies = 0;
5336 /* Unroll loops from within strength reduction so that we can use the
5337 induction variable information that strength_reduce has already
5338 collected. Always unroll loops that would be as small or smaller
5339 unrolled than when rolled. */
5340 if ((flags & LOOP_UNROLL)
5341 || ((flags & LOOP_AUTO_UNROLL)
5342 && loop_info->n_iterations > 0
5343 && unrolled_insn_copies <= insn_count))
5344 unroll_loop (loop, insn_count, 1);
5346 #ifdef HAVE_doloop_end
5347 if (HAVE_doloop_end && (flags & LOOP_BCT) && flag_branch_on_count_reg)
5348 doloop_optimize (loop);
5349 #endif /* HAVE_doloop_end */
5351 /* In case number of iterations is known, drop branch prediction note
5352 in the branch. Do that only in second loop pass, as loop unrolling
5353 may change the number of iterations performed. */
5354 if (flags & LOOP_BCT)
5356 unsigned HOST_WIDE_INT n
5357 = loop_info->n_iterations / loop_info->unroll_number;
5358 if (n > 1)
5359 predict_insn (prev_nonnote_insn (loop->end), PRED_LOOP_ITERATIONS,
5360 REG_BR_PROB_BASE - REG_BR_PROB_BASE / n);
5363 if (loop_dump_stream)
5364 fprintf (loop_dump_stream, "\n");
5366 loop_ivs_free (loop);
5367 if (reg_map)
5368 free (reg_map);
5371 /*Record all basic induction variables calculated in the insn. */
5372 static rtx
5373 check_insn_for_bivs (loop, p, not_every_iteration, maybe_multiple)
5374 struct loop *loop;
5375 rtx p;
5376 int not_every_iteration;
5377 int maybe_multiple;
5379 struct loop_ivs *ivs = LOOP_IVS (loop);
5380 rtx set;
5381 rtx dest_reg;
5382 rtx inc_val;
5383 rtx mult_val;
5384 rtx *location;
5386 if (GET_CODE (p) == INSN
5387 && (set = single_set (p))
5388 && GET_CODE (SET_DEST (set)) == REG)
5390 dest_reg = SET_DEST (set);
5391 if (REGNO (dest_reg) < max_reg_before_loop
5392 && REGNO (dest_reg) >= FIRST_PSEUDO_REGISTER
5393 && REG_IV_TYPE (ivs, REGNO (dest_reg)) != NOT_BASIC_INDUCT)
5395 if (basic_induction_var (loop, SET_SRC (set),
5396 GET_MODE (SET_SRC (set)),
5397 dest_reg, p, &inc_val, &mult_val,
5398 &location))
5400 /* It is a possible basic induction variable.
5401 Create and initialize an induction structure for it. */
5403 struct induction *v
5404 = (struct induction *) xmalloc (sizeof (struct induction));
5406 record_biv (loop, v, p, dest_reg, inc_val, mult_val, location,
5407 not_every_iteration, maybe_multiple);
5408 REG_IV_TYPE (ivs, REGNO (dest_reg)) = BASIC_INDUCT;
5410 else if (REGNO (dest_reg) < ivs->n_regs)
5411 REG_IV_TYPE (ivs, REGNO (dest_reg)) = NOT_BASIC_INDUCT;
5414 return p;
5417 /* Record all givs calculated in the insn.
5418 A register is a giv if: it is only set once, it is a function of a
5419 biv and a constant (or invariant), and it is not a biv. */
5420 static rtx
5421 check_insn_for_givs (loop, p, not_every_iteration, maybe_multiple)
5422 struct loop *loop;
5423 rtx p;
5424 int not_every_iteration;
5425 int maybe_multiple;
5427 struct loop_regs *regs = LOOP_REGS (loop);
5429 rtx set;
5430 /* Look for a general induction variable in a register. */
5431 if (GET_CODE (p) == INSN
5432 && (set = single_set (p))
5433 && GET_CODE (SET_DEST (set)) == REG
5434 && ! regs->array[REGNO (SET_DEST (set))].may_not_optimize)
5436 rtx src_reg;
5437 rtx dest_reg;
5438 rtx add_val;
5439 rtx mult_val;
5440 rtx ext_val;
5441 int benefit;
5442 rtx regnote = 0;
5443 rtx last_consec_insn;
5445 dest_reg = SET_DEST (set);
5446 if (REGNO (dest_reg) < FIRST_PSEUDO_REGISTER)
5447 return p;
5449 if (/* SET_SRC is a giv. */
5450 (general_induction_var (loop, SET_SRC (set), &src_reg, &add_val,
5451 &mult_val, &ext_val, 0, &benefit, VOIDmode)
5452 /* Equivalent expression is a giv. */
5453 || ((regnote = find_reg_note (p, REG_EQUAL, NULL_RTX))
5454 && general_induction_var (loop, XEXP (regnote, 0), &src_reg,
5455 &add_val, &mult_val, &ext_val, 0,
5456 &benefit, VOIDmode)))
5457 /* Don't try to handle any regs made by loop optimization.
5458 We have nothing on them in regno_first_uid, etc. */
5459 && REGNO (dest_reg) < max_reg_before_loop
5460 /* Don't recognize a BASIC_INDUCT_VAR here. */
5461 && dest_reg != src_reg
5462 /* This must be the only place where the register is set. */
5463 && (regs->array[REGNO (dest_reg)].n_times_set == 1
5464 /* or all sets must be consecutive and make a giv. */
5465 || (benefit = consec_sets_giv (loop, benefit, p,
5466 src_reg, dest_reg,
5467 &add_val, &mult_val, &ext_val,
5468 &last_consec_insn))))
5470 struct induction *v
5471 = (struct induction *) xmalloc (sizeof (struct induction));
5473 /* If this is a library call, increase benefit. */
5474 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
5475 benefit += libcall_benefit (p);
5477 /* Skip the consecutive insns, if there are any. */
5478 if (regs->array[REGNO (dest_reg)].n_times_set != 1)
5479 p = last_consec_insn;
5481 record_giv (loop, v, p, src_reg, dest_reg, mult_val, add_val,
5482 ext_val, benefit, DEST_REG, not_every_iteration,
5483 maybe_multiple, (rtx*) 0);
5488 #ifndef DONT_REDUCE_ADDR
5489 /* Look for givs which are memory addresses. */
5490 /* This resulted in worse code on a VAX 8600. I wonder if it
5491 still does. */
5492 if (GET_CODE (p) == INSN)
5493 find_mem_givs (loop, PATTERN (p), p, not_every_iteration,
5494 maybe_multiple);
5495 #endif
5497 /* Update the status of whether giv can derive other givs. This can
5498 change when we pass a label or an insn that updates a biv. */
5499 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
5500 || GET_CODE (p) == CODE_LABEL)
5501 update_giv_derive (loop, p);
5502 return p;
5505 /* Return 1 if X is a valid source for an initial value (or as value being
5506 compared against in an initial test).
5508 X must be either a register or constant and must not be clobbered between
5509 the current insn and the start of the loop.
5511 INSN is the insn containing X. */
5513 static int
5514 valid_initial_value_p (x, insn, call_seen, loop_start)
5515 rtx x;
5516 rtx insn;
5517 int call_seen;
5518 rtx loop_start;
5520 if (CONSTANT_P (x))
5521 return 1;
5523 /* Only consider pseudos we know about initialized in insns whose luids
5524 we know. */
5525 if (GET_CODE (x) != REG
5526 || REGNO (x) >= max_reg_before_loop)
5527 return 0;
5529 /* Don't use call-clobbered registers across a call which clobbers it. On
5530 some machines, don't use any hard registers at all. */
5531 if (REGNO (x) < FIRST_PSEUDO_REGISTER
5532 && (SMALL_REGISTER_CLASSES
5533 || (call_used_regs[REGNO (x)] && call_seen)))
5534 return 0;
5536 /* Don't use registers that have been clobbered before the start of the
5537 loop. */
5538 if (reg_set_between_p (x, insn, loop_start))
5539 return 0;
5541 return 1;
5544 /* Scan X for memory refs and check each memory address
5545 as a possible giv. INSN is the insn whose pattern X comes from.
5546 NOT_EVERY_ITERATION is 1 if the insn might not be executed during
5547 every loop iteration. MAYBE_MULTIPLE is 1 if the insn might be executed
5548 more thanonce in each loop iteration. */
5550 static void
5551 find_mem_givs (loop, x, insn, not_every_iteration, maybe_multiple)
5552 const struct loop *loop;
5553 rtx x;
5554 rtx insn;
5555 int not_every_iteration, maybe_multiple;
5557 int i, j;
5558 enum rtx_code code;
5559 const char *fmt;
5561 if (x == 0)
5562 return;
5564 code = GET_CODE (x);
5565 switch (code)
5567 case REG:
5568 case CONST_INT:
5569 case CONST:
5570 case CONST_DOUBLE:
5571 case SYMBOL_REF:
5572 case LABEL_REF:
5573 case PC:
5574 case CC0:
5575 case ADDR_VEC:
5576 case ADDR_DIFF_VEC:
5577 case USE:
5578 case CLOBBER:
5579 return;
5581 case MEM:
5583 rtx src_reg;
5584 rtx add_val;
5585 rtx mult_val;
5586 rtx ext_val;
5587 int benefit;
5589 /* This code used to disable creating GIVs with mult_val == 1 and
5590 add_val == 0. However, this leads to lost optimizations when
5591 it comes time to combine a set of related DEST_ADDR GIVs, since
5592 this one would not be seen. */
5594 if (general_induction_var (loop, XEXP (x, 0), &src_reg, &add_val,
5595 &mult_val, &ext_val, 1, &benefit,
5596 GET_MODE (x)))
5598 /* Found one; record it. */
5599 struct induction *v
5600 = (struct induction *) xmalloc (sizeof (struct induction));
5602 record_giv (loop, v, insn, src_reg, addr_placeholder, mult_val,
5603 add_val, ext_val, benefit, DEST_ADDR,
5604 not_every_iteration, maybe_multiple, &XEXP (x, 0));
5606 v->mem = x;
5609 return;
5611 default:
5612 break;
5615 /* Recursively scan the subexpressions for other mem refs. */
5617 fmt = GET_RTX_FORMAT (code);
5618 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5619 if (fmt[i] == 'e')
5620 find_mem_givs (loop, XEXP (x, i), insn, not_every_iteration,
5621 maybe_multiple);
5622 else if (fmt[i] == 'E')
5623 for (j = 0; j < XVECLEN (x, i); j++)
5624 find_mem_givs (loop, XVECEXP (x, i, j), insn, not_every_iteration,
5625 maybe_multiple);
5628 /* Fill in the data about one biv update.
5629 V is the `struct induction' in which we record the biv. (It is
5630 allocated by the caller, with alloca.)
5631 INSN is the insn that sets it.
5632 DEST_REG is the biv's reg.
5634 MULT_VAL is const1_rtx if the biv is being incremented here, in which case
5635 INC_VAL is the increment. Otherwise, MULT_VAL is const0_rtx and the biv is
5636 being set to INC_VAL.
5638 NOT_EVERY_ITERATION is nonzero if this biv update is not know to be
5639 executed every iteration; MAYBE_MULTIPLE is nonzero if this biv update
5640 can be executed more than once per iteration. If MAYBE_MULTIPLE
5641 and NOT_EVERY_ITERATION are both zero, we know that the biv update is
5642 executed exactly once per iteration. */
5644 static void
5645 record_biv (loop, v, insn, dest_reg, inc_val, mult_val, location,
5646 not_every_iteration, maybe_multiple)
5647 struct loop *loop;
5648 struct induction *v;
5649 rtx insn;
5650 rtx dest_reg;
5651 rtx inc_val;
5652 rtx mult_val;
5653 rtx *location;
5654 int not_every_iteration;
5655 int maybe_multiple;
5657 struct loop_ivs *ivs = LOOP_IVS (loop);
5658 struct iv_class *bl;
5660 v->insn = insn;
5661 v->src_reg = dest_reg;
5662 v->dest_reg = dest_reg;
5663 v->mult_val = mult_val;
5664 v->add_val = inc_val;
5665 v->ext_dependent = NULL_RTX;
5666 v->location = location;
5667 v->mode = GET_MODE (dest_reg);
5668 v->always_computable = ! not_every_iteration;
5669 v->always_executed = ! not_every_iteration;
5670 v->maybe_multiple = maybe_multiple;
5672 /* Add this to the reg's iv_class, creating a class
5673 if this is the first incrementation of the reg. */
5675 bl = REG_IV_CLASS (ivs, REGNO (dest_reg));
5676 if (bl == 0)
5678 /* Create and initialize new iv_class. */
5680 bl = (struct iv_class *) xmalloc (sizeof (struct iv_class));
5682 bl->regno = REGNO (dest_reg);
5683 bl->biv = 0;
5684 bl->giv = 0;
5685 bl->biv_count = 0;
5686 bl->giv_count = 0;
5688 /* Set initial value to the reg itself. */
5689 bl->initial_value = dest_reg;
5690 bl->final_value = 0;
5691 /* We haven't seen the initializing insn yet */
5692 bl->init_insn = 0;
5693 bl->init_set = 0;
5694 bl->initial_test = 0;
5695 bl->incremented = 0;
5696 bl->eliminable = 0;
5697 bl->nonneg = 0;
5698 bl->reversed = 0;
5699 bl->total_benefit = 0;
5701 /* Add this class to ivs->list. */
5702 bl->next = ivs->list;
5703 ivs->list = bl;
5705 /* Put it in the array of biv register classes. */
5706 REG_IV_CLASS (ivs, REGNO (dest_reg)) = bl;
5709 /* Update IV_CLASS entry for this biv. */
5710 v->next_iv = bl->biv;
5711 bl->biv = v;
5712 bl->biv_count++;
5713 if (mult_val == const1_rtx)
5714 bl->incremented = 1;
5716 if (loop_dump_stream)
5717 loop_biv_dump (v, loop_dump_stream, 0);
5720 /* Fill in the data about one giv.
5721 V is the `struct induction' in which we record the giv. (It is
5722 allocated by the caller, with alloca.)
5723 INSN is the insn that sets it.
5724 BENEFIT estimates the savings from deleting this insn.
5725 TYPE is DEST_REG or DEST_ADDR; it says whether the giv is computed
5726 into a register or is used as a memory address.
5728 SRC_REG is the biv reg which the giv is computed from.
5729 DEST_REG is the giv's reg (if the giv is stored in a reg).
5730 MULT_VAL and ADD_VAL are the coefficients used to compute the giv.
5731 LOCATION points to the place where this giv's value appears in INSN. */
5733 static void
5734 record_giv (loop, v, insn, src_reg, dest_reg, mult_val, add_val, ext_val,
5735 benefit, type, not_every_iteration, maybe_multiple, location)
5736 const struct loop *loop;
5737 struct induction *v;
5738 rtx insn;
5739 rtx src_reg;
5740 rtx dest_reg;
5741 rtx mult_val, add_val, ext_val;
5742 int benefit;
5743 enum g_types type;
5744 int not_every_iteration, maybe_multiple;
5745 rtx *location;
5747 struct loop_ivs *ivs = LOOP_IVS (loop);
5748 struct induction *b;
5749 struct iv_class *bl;
5750 rtx set = single_set (insn);
5751 rtx temp;
5753 /* Attempt to prove constantness of the values. Don't let simplity_rtx
5754 undo the MULT canonicalization that we performed earlier. */
5755 temp = simplify_rtx (add_val);
5756 if (temp
5757 && ! (GET_CODE (add_val) == MULT
5758 && GET_CODE (temp) == ASHIFT))
5759 add_val = temp;
5761 v->insn = insn;
5762 v->src_reg = src_reg;
5763 v->giv_type = type;
5764 v->dest_reg = dest_reg;
5765 v->mult_val = mult_val;
5766 v->add_val = add_val;
5767 v->ext_dependent = ext_val;
5768 v->benefit = benefit;
5769 v->location = location;
5770 v->cant_derive = 0;
5771 v->combined_with = 0;
5772 v->maybe_multiple = maybe_multiple;
5773 v->maybe_dead = 0;
5774 v->derive_adjustment = 0;
5775 v->same = 0;
5776 v->ignore = 0;
5777 v->new_reg = 0;
5778 v->final_value = 0;
5779 v->same_insn = 0;
5780 v->auto_inc_opt = 0;
5781 v->unrolled = 0;
5782 v->shared = 0;
5784 /* The v->always_computable field is used in update_giv_derive, to
5785 determine whether a giv can be used to derive another giv. For a
5786 DEST_REG giv, INSN computes a new value for the giv, so its value
5787 isn't computable if INSN insn't executed every iteration.
5788 However, for a DEST_ADDR giv, INSN merely uses the value of the giv;
5789 it does not compute a new value. Hence the value is always computable
5790 regardless of whether INSN is executed each iteration. */
5792 if (type == DEST_ADDR)
5793 v->always_computable = 1;
5794 else
5795 v->always_computable = ! not_every_iteration;
5797 v->always_executed = ! not_every_iteration;
5799 if (type == DEST_ADDR)
5801 v->mode = GET_MODE (*location);
5802 v->lifetime = 1;
5804 else /* type == DEST_REG */
5806 v->mode = GET_MODE (SET_DEST (set));
5808 v->lifetime = LOOP_REG_LIFETIME (loop, REGNO (dest_reg));
5810 /* If the lifetime is zero, it means that this register is
5811 really a dead store. So mark this as a giv that can be
5812 ignored. This will not prevent the biv from being eliminated. */
5813 if (v->lifetime == 0)
5814 v->ignore = 1;
5816 REG_IV_TYPE (ivs, REGNO (dest_reg)) = GENERAL_INDUCT;
5817 REG_IV_INFO (ivs, REGNO (dest_reg)) = v;
5820 /* Add the giv to the class of givs computed from one biv. */
5822 bl = REG_IV_CLASS (ivs, REGNO (src_reg));
5823 if (bl)
5825 v->next_iv = bl->giv;
5826 bl->giv = v;
5827 /* Don't count DEST_ADDR. This is supposed to count the number of
5828 insns that calculate givs. */
5829 if (type == DEST_REG)
5830 bl->giv_count++;
5831 bl->total_benefit += benefit;
5833 else
5834 /* Fatal error, biv missing for this giv? */
5835 abort ();
5837 if (type == DEST_ADDR)
5838 v->replaceable = 1;
5839 else
5841 /* The giv can be replaced outright by the reduced register only if all
5842 of the following conditions are true:
5843 - the insn that sets the giv is always executed on any iteration
5844 on which the giv is used at all
5845 (there are two ways to deduce this:
5846 either the insn is executed on every iteration,
5847 or all uses follow that insn in the same basic block),
5848 - the giv is not used outside the loop
5849 - no assignments to the biv occur during the giv's lifetime. */
5851 if (REGNO_FIRST_UID (REGNO (dest_reg)) == INSN_UID (insn)
5852 /* Previous line always fails if INSN was moved by loop opt. */
5853 && REGNO_LAST_LUID (REGNO (dest_reg))
5854 < INSN_LUID (loop->end)
5855 && (! not_every_iteration
5856 || last_use_this_basic_block (dest_reg, insn)))
5858 /* Now check that there are no assignments to the biv within the
5859 giv's lifetime. This requires two separate checks. */
5861 /* Check each biv update, and fail if any are between the first
5862 and last use of the giv.
5864 If this loop contains an inner loop that was unrolled, then
5865 the insn modifying the biv may have been emitted by the loop
5866 unrolling code, and hence does not have a valid luid. Just
5867 mark the biv as not replaceable in this case. It is not very
5868 useful as a biv, because it is used in two different loops.
5869 It is very unlikely that we would be able to optimize the giv
5870 using this biv anyways. */
5872 v->replaceable = 1;
5873 for (b = bl->biv; b; b = b->next_iv)
5875 if (INSN_UID (b->insn) >= max_uid_for_loop
5876 || ((INSN_LUID (b->insn)
5877 >= REGNO_FIRST_LUID (REGNO (dest_reg)))
5878 && (INSN_LUID (b->insn)
5879 <= REGNO_LAST_LUID (REGNO (dest_reg)))))
5881 v->replaceable = 0;
5882 v->not_replaceable = 1;
5883 break;
5887 /* If there are any backwards branches that go from after the
5888 biv update to before it, then this giv is not replaceable. */
5889 if (v->replaceable)
5890 for (b = bl->biv; b; b = b->next_iv)
5891 if (back_branch_in_range_p (loop, b->insn))
5893 v->replaceable = 0;
5894 v->not_replaceable = 1;
5895 break;
5898 else
5900 /* May still be replaceable, we don't have enough info here to
5901 decide. */
5902 v->replaceable = 0;
5903 v->not_replaceable = 0;
5907 /* Record whether the add_val contains a const_int, for later use by
5908 combine_givs. */
5910 rtx tem = add_val;
5912 v->no_const_addval = 1;
5913 if (tem == const0_rtx)
5915 else if (CONSTANT_P (add_val))
5916 v->no_const_addval = 0;
5917 if (GET_CODE (tem) == PLUS)
5919 while (1)
5921 if (GET_CODE (XEXP (tem, 0)) == PLUS)
5922 tem = XEXP (tem, 0);
5923 else if (GET_CODE (XEXP (tem, 1)) == PLUS)
5924 tem = XEXP (tem, 1);
5925 else
5926 break;
5928 if (CONSTANT_P (XEXP (tem, 1)))
5929 v->no_const_addval = 0;
5933 if (loop_dump_stream)
5934 loop_giv_dump (v, loop_dump_stream, 0);
5937 /* All this does is determine whether a giv can be made replaceable because
5938 its final value can be calculated. This code can not be part of record_giv
5939 above, because final_giv_value requires that the number of loop iterations
5940 be known, and that can not be accurately calculated until after all givs
5941 have been identified. */
5943 static void
5944 check_final_value (loop, v)
5945 const struct loop *loop;
5946 struct induction *v;
5948 struct loop_ivs *ivs = LOOP_IVS (loop);
5949 struct iv_class *bl;
5950 rtx final_value = 0;
5952 bl = REG_IV_CLASS (ivs, REGNO (v->src_reg));
5954 /* DEST_ADDR givs will never reach here, because they are always marked
5955 replaceable above in record_giv. */
5957 /* The giv can be replaced outright by the reduced register only if all
5958 of the following conditions are true:
5959 - the insn that sets the giv is always executed on any iteration
5960 on which the giv is used at all
5961 (there are two ways to deduce this:
5962 either the insn is executed on every iteration,
5963 or all uses follow that insn in the same basic block),
5964 - its final value can be calculated (this condition is different
5965 than the one above in record_giv)
5966 - it's not used before the it's set
5967 - no assignments to the biv occur during the giv's lifetime. */
5969 #if 0
5970 /* This is only called now when replaceable is known to be false. */
5971 /* Clear replaceable, so that it won't confuse final_giv_value. */
5972 v->replaceable = 0;
5973 #endif
5975 if ((final_value = final_giv_value (loop, v))
5976 && (v->always_executed
5977 || last_use_this_basic_block (v->dest_reg, v->insn)))
5979 int biv_increment_seen = 0, before_giv_insn = 0;
5980 rtx p = v->insn;
5981 rtx last_giv_use;
5983 v->replaceable = 1;
5985 /* When trying to determine whether or not a biv increment occurs
5986 during the lifetime of the giv, we can ignore uses of the variable
5987 outside the loop because final_value is true. Hence we can not
5988 use regno_last_uid and regno_first_uid as above in record_giv. */
5990 /* Search the loop to determine whether any assignments to the
5991 biv occur during the giv's lifetime. Start with the insn
5992 that sets the giv, and search around the loop until we come
5993 back to that insn again.
5995 Also fail if there is a jump within the giv's lifetime that jumps
5996 to somewhere outside the lifetime but still within the loop. This
5997 catches spaghetti code where the execution order is not linear, and
5998 hence the above test fails. Here we assume that the giv lifetime
5999 does not extend from one iteration of the loop to the next, so as
6000 to make the test easier. Since the lifetime isn't known yet,
6001 this requires two loops. See also record_giv above. */
6003 last_giv_use = v->insn;
6005 while (1)
6007 p = NEXT_INSN (p);
6008 if (p == loop->end)
6010 before_giv_insn = 1;
6011 p = NEXT_INSN (loop->start);
6013 if (p == v->insn)
6014 break;
6016 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
6017 || GET_CODE (p) == CALL_INSN)
6019 /* It is possible for the BIV increment to use the GIV if we
6020 have a cycle. Thus we must be sure to check each insn for
6021 both BIV and GIV uses, and we must check for BIV uses
6022 first. */
6024 if (! biv_increment_seen
6025 && reg_set_p (v->src_reg, PATTERN (p)))
6026 biv_increment_seen = 1;
6028 if (reg_mentioned_p (v->dest_reg, PATTERN (p)))
6030 if (biv_increment_seen || before_giv_insn)
6032 v->replaceable = 0;
6033 v->not_replaceable = 1;
6034 break;
6036 last_giv_use = p;
6041 /* Now that the lifetime of the giv is known, check for branches
6042 from within the lifetime to outside the lifetime if it is still
6043 replaceable. */
6045 if (v->replaceable)
6047 p = v->insn;
6048 while (1)
6050 p = NEXT_INSN (p);
6051 if (p == loop->end)
6052 p = NEXT_INSN (loop->start);
6053 if (p == last_giv_use)
6054 break;
6056 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
6057 && LABEL_NAME (JUMP_LABEL (p))
6058 && ((loop_insn_first_p (JUMP_LABEL (p), v->insn)
6059 && loop_insn_first_p (loop->start, JUMP_LABEL (p)))
6060 || (loop_insn_first_p (last_giv_use, JUMP_LABEL (p))
6061 && loop_insn_first_p (JUMP_LABEL (p), loop->end))))
6063 v->replaceable = 0;
6064 v->not_replaceable = 1;
6066 if (loop_dump_stream)
6067 fprintf (loop_dump_stream,
6068 "Found branch outside giv lifetime.\n");
6070 break;
6075 /* If it is replaceable, then save the final value. */
6076 if (v->replaceable)
6077 v->final_value = final_value;
6080 if (loop_dump_stream && v->replaceable)
6081 fprintf (loop_dump_stream, "Insn %d: giv reg %d final_value replaceable\n",
6082 INSN_UID (v->insn), REGNO (v->dest_reg));
6085 /* Update the status of whether a giv can derive other givs.
6087 We need to do something special if there is or may be an update to the biv
6088 between the time the giv is defined and the time it is used to derive
6089 another giv.
6091 In addition, a giv that is only conditionally set is not allowed to
6092 derive another giv once a label has been passed.
6094 The cases we look at are when a label or an update to a biv is passed. */
6096 static void
6097 update_giv_derive (loop, p)
6098 const struct loop *loop;
6099 rtx p;
6101 struct loop_ivs *ivs = LOOP_IVS (loop);
6102 struct iv_class *bl;
6103 struct induction *biv, *giv;
6104 rtx tem;
6105 int dummy;
6107 /* Search all IV classes, then all bivs, and finally all givs.
6109 There are three cases we are concerned with. First we have the situation
6110 of a giv that is only updated conditionally. In that case, it may not
6111 derive any givs after a label is passed.
6113 The second case is when a biv update occurs, or may occur, after the
6114 definition of a giv. For certain biv updates (see below) that are
6115 known to occur between the giv definition and use, we can adjust the
6116 giv definition. For others, or when the biv update is conditional,
6117 we must prevent the giv from deriving any other givs. There are two
6118 sub-cases within this case.
6120 If this is a label, we are concerned with any biv update that is done
6121 conditionally, since it may be done after the giv is defined followed by
6122 a branch here (actually, we need to pass both a jump and a label, but
6123 this extra tracking doesn't seem worth it).
6125 If this is a jump, we are concerned about any biv update that may be
6126 executed multiple times. We are actually only concerned about
6127 backward jumps, but it is probably not worth performing the test
6128 on the jump again here.
6130 If this is a biv update, we must adjust the giv status to show that a
6131 subsequent biv update was performed. If this adjustment cannot be done,
6132 the giv cannot derive further givs. */
6134 for (bl = ivs->list; bl; bl = bl->next)
6135 for (biv = bl->biv; biv; biv = biv->next_iv)
6136 if (GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN
6137 || biv->insn == p)
6139 for (giv = bl->giv; giv; giv = giv->next_iv)
6141 /* If cant_derive is already true, there is no point in
6142 checking all of these conditions again. */
6143 if (giv->cant_derive)
6144 continue;
6146 /* If this giv is conditionally set and we have passed a label,
6147 it cannot derive anything. */
6148 if (GET_CODE (p) == CODE_LABEL && ! giv->always_computable)
6149 giv->cant_derive = 1;
6151 /* Skip givs that have mult_val == 0, since
6152 they are really invariants. Also skip those that are
6153 replaceable, since we know their lifetime doesn't contain
6154 any biv update. */
6155 else if (giv->mult_val == const0_rtx || giv->replaceable)
6156 continue;
6158 /* The only way we can allow this giv to derive another
6159 is if this is a biv increment and we can form the product
6160 of biv->add_val and giv->mult_val. In this case, we will
6161 be able to compute a compensation. */
6162 else if (biv->insn == p)
6164 rtx ext_val_dummy;
6166 tem = 0;
6167 if (biv->mult_val == const1_rtx)
6168 tem = simplify_giv_expr (loop,
6169 gen_rtx_MULT (giv->mode,
6170 biv->add_val,
6171 giv->mult_val),
6172 &ext_val_dummy, &dummy);
6174 if (tem && giv->derive_adjustment)
6175 tem = simplify_giv_expr
6176 (loop,
6177 gen_rtx_PLUS (giv->mode, tem, giv->derive_adjustment),
6178 &ext_val_dummy, &dummy);
6180 if (tem)
6181 giv->derive_adjustment = tem;
6182 else
6183 giv->cant_derive = 1;
6185 else if ((GET_CODE (p) == CODE_LABEL && ! biv->always_computable)
6186 || (GET_CODE (p) == JUMP_INSN && biv->maybe_multiple))
6187 giv->cant_derive = 1;
6192 /* Check whether an insn is an increment legitimate for a basic induction var.
6193 X is the source of insn P, or a part of it.
6194 MODE is the mode in which X should be interpreted.
6196 DEST_REG is the putative biv, also the destination of the insn.
6197 We accept patterns of these forms:
6198 REG = REG + INVARIANT (includes REG = REG - CONSTANT)
6199 REG = INVARIANT + REG
6201 If X is suitable, we return 1, set *MULT_VAL to CONST1_RTX,
6202 store the additive term into *INC_VAL, and store the place where
6203 we found the additive term into *LOCATION.
6205 If X is an assignment of an invariant into DEST_REG, we set
6206 *MULT_VAL to CONST0_RTX, and store the invariant into *INC_VAL.
6208 We also want to detect a BIV when it corresponds to a variable
6209 whose mode was promoted via PROMOTED_MODE. In that case, an increment
6210 of the variable may be a PLUS that adds a SUBREG of that variable to
6211 an invariant and then sign- or zero-extends the result of the PLUS
6212 into the variable.
6214 Most GIVs in such cases will be in the promoted mode, since that is the
6215 probably the natural computation mode (and almost certainly the mode
6216 used for addresses) on the machine. So we view the pseudo-reg containing
6217 the variable as the BIV, as if it were simply incremented.
6219 Note that treating the entire pseudo as a BIV will result in making
6220 simple increments to any GIVs based on it. However, if the variable
6221 overflows in its declared mode but not its promoted mode, the result will
6222 be incorrect. This is acceptable if the variable is signed, since
6223 overflows in such cases are undefined, but not if it is unsigned, since
6224 those overflows are defined. So we only check for SIGN_EXTEND and
6225 not ZERO_EXTEND.
6227 If we cannot find a biv, we return 0. */
6229 static int
6230 basic_induction_var (loop, x, mode, dest_reg, p, inc_val, mult_val, location)
6231 const struct loop *loop;
6232 rtx x;
6233 enum machine_mode mode;
6234 rtx dest_reg;
6235 rtx p;
6236 rtx *inc_val;
6237 rtx *mult_val;
6238 rtx **location;
6240 enum rtx_code code;
6241 rtx *argp, arg;
6242 rtx insn, set = 0;
6244 code = GET_CODE (x);
6245 *location = NULL;
6246 switch (code)
6248 case PLUS:
6249 if (rtx_equal_p (XEXP (x, 0), dest_reg)
6250 || (GET_CODE (XEXP (x, 0)) == SUBREG
6251 && SUBREG_PROMOTED_VAR_P (XEXP (x, 0))
6252 && SUBREG_REG (XEXP (x, 0)) == dest_reg))
6254 argp = &XEXP (x, 1);
6256 else if (rtx_equal_p (XEXP (x, 1), dest_reg)
6257 || (GET_CODE (XEXP (x, 1)) == SUBREG
6258 && SUBREG_PROMOTED_VAR_P (XEXP (x, 1))
6259 && SUBREG_REG (XEXP (x, 1)) == dest_reg))
6261 argp = &XEXP (x, 0);
6263 else
6264 return 0;
6266 arg = *argp;
6267 if (loop_invariant_p (loop, arg) != 1)
6268 return 0;
6270 *inc_val = convert_modes (GET_MODE (dest_reg), GET_MODE (x), arg, 0);
6271 *mult_val = const1_rtx;
6272 *location = argp;
6273 return 1;
6275 case SUBREG:
6276 /* If what's inside the SUBREG is a BIV, then the SUBREG. This will
6277 handle addition of promoted variables.
6278 ??? The comment at the start of this function is wrong: promoted
6279 variable increments don't look like it says they do. */
6280 return basic_induction_var (loop, SUBREG_REG (x),
6281 GET_MODE (SUBREG_REG (x)),
6282 dest_reg, p, inc_val, mult_val, location);
6284 case REG:
6285 /* If this register is assigned in a previous insn, look at its
6286 source, but don't go outside the loop or past a label. */
6288 /* If this sets a register to itself, we would repeat any previous
6289 biv increment if we applied this strategy blindly. */
6290 if (rtx_equal_p (dest_reg, x))
6291 return 0;
6293 insn = p;
6294 while (1)
6296 rtx dest;
6299 insn = PREV_INSN (insn);
6301 while (insn && GET_CODE (insn) == NOTE
6302 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
6304 if (!insn)
6305 break;
6306 set = single_set (insn);
6307 if (set == 0)
6308 break;
6309 dest = SET_DEST (set);
6310 if (dest == x
6311 || (GET_CODE (dest) == SUBREG
6312 && (GET_MODE_SIZE (GET_MODE (dest)) <= UNITS_PER_WORD)
6313 && (GET_MODE_CLASS (GET_MODE (dest)) == MODE_INT)
6314 && SUBREG_REG (dest) == x))
6315 return basic_induction_var (loop, SET_SRC (set),
6316 (GET_MODE (SET_SRC (set)) == VOIDmode
6317 ? GET_MODE (x)
6318 : GET_MODE (SET_SRC (set))),
6319 dest_reg, insn,
6320 inc_val, mult_val, location);
6322 while (GET_CODE (dest) == SIGN_EXTRACT
6323 || GET_CODE (dest) == ZERO_EXTRACT
6324 || GET_CODE (dest) == SUBREG
6325 || GET_CODE (dest) == STRICT_LOW_PART)
6326 dest = XEXP (dest, 0);
6327 if (dest == x)
6328 break;
6330 /* Fall through. */
6332 /* Can accept constant setting of biv only when inside inner most loop.
6333 Otherwise, a biv of an inner loop may be incorrectly recognized
6334 as a biv of the outer loop,
6335 causing code to be moved INTO the inner loop. */
6336 case MEM:
6337 if (loop_invariant_p (loop, x) != 1)
6338 return 0;
6339 case CONST_INT:
6340 case SYMBOL_REF:
6341 case CONST:
6342 /* convert_modes aborts if we try to convert to or from CCmode, so just
6343 exclude that case. It is very unlikely that a condition code value
6344 would be a useful iterator anyways. convert_modes aborts if we try to
6345 convert a float mode to non-float or vice versa too. */
6346 if (loop->level == 1
6347 && GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (dest_reg))
6348 && GET_MODE_CLASS (mode) != MODE_CC)
6350 /* Possible bug here? Perhaps we don't know the mode of X. */
6351 *inc_val = convert_modes (GET_MODE (dest_reg), mode, x, 0);
6352 *mult_val = const0_rtx;
6353 return 1;
6355 else
6356 return 0;
6358 case SIGN_EXTEND:
6359 return basic_induction_var (loop, XEXP (x, 0), GET_MODE (XEXP (x, 0)),
6360 dest_reg, p, inc_val, mult_val, location);
6362 case ASHIFTRT:
6363 /* Similar, since this can be a sign extension. */
6364 for (insn = PREV_INSN (p);
6365 (insn && GET_CODE (insn) == NOTE
6366 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
6367 insn = PREV_INSN (insn))
6370 if (insn)
6371 set = single_set (insn);
6373 if (! rtx_equal_p (dest_reg, XEXP (x, 0))
6374 && set && SET_DEST (set) == XEXP (x, 0)
6375 && GET_CODE (XEXP (x, 1)) == CONST_INT
6376 && INTVAL (XEXP (x, 1)) >= 0
6377 && GET_CODE (SET_SRC (set)) == ASHIFT
6378 && XEXP (x, 1) == XEXP (SET_SRC (set), 1))
6379 return basic_induction_var (loop, XEXP (SET_SRC (set), 0),
6380 GET_MODE (XEXP (x, 0)),
6381 dest_reg, insn, inc_val, mult_val,
6382 location);
6383 return 0;
6385 default:
6386 return 0;
6390 /* A general induction variable (giv) is any quantity that is a linear
6391 function of a basic induction variable,
6392 i.e. giv = biv * mult_val + add_val.
6393 The coefficients can be any loop invariant quantity.
6394 A giv need not be computed directly from the biv;
6395 it can be computed by way of other givs. */
6397 /* Determine whether X computes a giv.
6398 If it does, return a nonzero value
6399 which is the benefit from eliminating the computation of X;
6400 set *SRC_REG to the register of the biv that it is computed from;
6401 set *ADD_VAL and *MULT_VAL to the coefficients,
6402 such that the value of X is biv * mult + add; */
6404 static int
6405 general_induction_var (loop, x, src_reg, add_val, mult_val, ext_val,
6406 is_addr, pbenefit, addr_mode)
6407 const struct loop *loop;
6408 rtx x;
6409 rtx *src_reg;
6410 rtx *add_val;
6411 rtx *mult_val;
6412 rtx *ext_val;
6413 int is_addr;
6414 int *pbenefit;
6415 enum machine_mode addr_mode;
6417 struct loop_ivs *ivs = LOOP_IVS (loop);
6418 rtx orig_x = x;
6420 /* If this is an invariant, forget it, it isn't a giv. */
6421 if (loop_invariant_p (loop, x) == 1)
6422 return 0;
6424 *pbenefit = 0;
6425 *ext_val = NULL_RTX;
6426 x = simplify_giv_expr (loop, x, ext_val, pbenefit);
6427 if (x == 0)
6428 return 0;
6430 switch (GET_CODE (x))
6432 case USE:
6433 case CONST_INT:
6434 /* Since this is now an invariant and wasn't before, it must be a giv
6435 with MULT_VAL == 0. It doesn't matter which BIV we associate this
6436 with. */
6437 *src_reg = ivs->list->biv->dest_reg;
6438 *mult_val = const0_rtx;
6439 *add_val = x;
6440 break;
6442 case REG:
6443 /* This is equivalent to a BIV. */
6444 *src_reg = x;
6445 *mult_val = const1_rtx;
6446 *add_val = const0_rtx;
6447 break;
6449 case PLUS:
6450 /* Either (plus (biv) (invar)) or
6451 (plus (mult (biv) (invar_1)) (invar_2)). */
6452 if (GET_CODE (XEXP (x, 0)) == MULT)
6454 *src_reg = XEXP (XEXP (x, 0), 0);
6455 *mult_val = XEXP (XEXP (x, 0), 1);
6457 else
6459 *src_reg = XEXP (x, 0);
6460 *mult_val = const1_rtx;
6462 *add_val = XEXP (x, 1);
6463 break;
6465 case MULT:
6466 /* ADD_VAL is zero. */
6467 *src_reg = XEXP (x, 0);
6468 *mult_val = XEXP (x, 1);
6469 *add_val = const0_rtx;
6470 break;
6472 default:
6473 abort ();
6476 /* Remove any enclosing USE from ADD_VAL and MULT_VAL (there will be
6477 unless they are CONST_INT). */
6478 if (GET_CODE (*add_val) == USE)
6479 *add_val = XEXP (*add_val, 0);
6480 if (GET_CODE (*mult_val) == USE)
6481 *mult_val = XEXP (*mult_val, 0);
6483 if (is_addr)
6484 *pbenefit += address_cost (orig_x, addr_mode) - reg_address_cost;
6485 else
6486 *pbenefit += rtx_cost (orig_x, SET);
6488 /* Always return true if this is a giv so it will be detected as such,
6489 even if the benefit is zero or negative. This allows elimination
6490 of bivs that might otherwise not be eliminated. */
6491 return 1;
6494 /* Given an expression, X, try to form it as a linear function of a biv.
6495 We will canonicalize it to be of the form
6496 (plus (mult (BIV) (invar_1))
6497 (invar_2))
6498 with possible degeneracies.
6500 The invariant expressions must each be of a form that can be used as a
6501 machine operand. We surround then with a USE rtx (a hack, but localized
6502 and certainly unambiguous!) if not a CONST_INT for simplicity in this
6503 routine; it is the caller's responsibility to strip them.
6505 If no such canonicalization is possible (i.e., two biv's are used or an
6506 expression that is neither invariant nor a biv or giv), this routine
6507 returns 0.
6509 For a nonzero return, the result will have a code of CONST_INT, USE,
6510 REG (for a BIV), PLUS, or MULT. No other codes will occur.
6512 *BENEFIT will be incremented by the benefit of any sub-giv encountered. */
6514 static rtx sge_plus PARAMS ((enum machine_mode, rtx, rtx));
6515 static rtx sge_plus_constant PARAMS ((rtx, rtx));
6517 static rtx
6518 simplify_giv_expr (loop, x, ext_val, benefit)
6519 const struct loop *loop;
6520 rtx x;
6521 rtx *ext_val;
6522 int *benefit;
6524 struct loop_ivs *ivs = LOOP_IVS (loop);
6525 struct loop_regs *regs = LOOP_REGS (loop);
6526 enum machine_mode mode = GET_MODE (x);
6527 rtx arg0, arg1;
6528 rtx tem;
6530 /* If this is not an integer mode, or if we cannot do arithmetic in this
6531 mode, this can't be a giv. */
6532 if (mode != VOIDmode
6533 && (GET_MODE_CLASS (mode) != MODE_INT
6534 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT))
6535 return NULL_RTX;
6537 switch (GET_CODE (x))
6539 case PLUS:
6540 arg0 = simplify_giv_expr (loop, XEXP (x, 0), ext_val, benefit);
6541 arg1 = simplify_giv_expr (loop, XEXP (x, 1), ext_val, benefit);
6542 if (arg0 == 0 || arg1 == 0)
6543 return NULL_RTX;
6545 /* Put constant last, CONST_INT last if both constant. */
6546 if ((GET_CODE (arg0) == USE
6547 || GET_CODE (arg0) == CONST_INT)
6548 && ! ((GET_CODE (arg0) == USE
6549 && GET_CODE (arg1) == USE)
6550 || GET_CODE (arg1) == CONST_INT))
6551 tem = arg0, arg0 = arg1, arg1 = tem;
6553 /* Handle addition of zero, then addition of an invariant. */
6554 if (arg1 == const0_rtx)
6555 return arg0;
6556 else if (GET_CODE (arg1) == CONST_INT || GET_CODE (arg1) == USE)
6557 switch (GET_CODE (arg0))
6559 case CONST_INT:
6560 case USE:
6561 /* Adding two invariants must result in an invariant, so enclose
6562 addition operation inside a USE and return it. */
6563 if (GET_CODE (arg0) == USE)
6564 arg0 = XEXP (arg0, 0);
6565 if (GET_CODE (arg1) == USE)
6566 arg1 = XEXP (arg1, 0);
6568 if (GET_CODE (arg0) == CONST_INT)
6569 tem = arg0, arg0 = arg1, arg1 = tem;
6570 if (GET_CODE (arg1) == CONST_INT)
6571 tem = sge_plus_constant (arg0, arg1);
6572 else
6573 tem = sge_plus (mode, arg0, arg1);
6575 if (GET_CODE (tem) != CONST_INT)
6576 tem = gen_rtx_USE (mode, tem);
6577 return tem;
6579 case REG:
6580 case MULT:
6581 /* biv + invar or mult + invar. Return sum. */
6582 return gen_rtx_PLUS (mode, arg0, arg1);
6584 case PLUS:
6585 /* (a + invar_1) + invar_2. Associate. */
6586 return
6587 simplify_giv_expr (loop,
6588 gen_rtx_PLUS (mode,
6589 XEXP (arg0, 0),
6590 gen_rtx_PLUS (mode,
6591 XEXP (arg0, 1),
6592 arg1)),
6593 ext_val, benefit);
6595 default:
6596 abort ();
6599 /* Each argument must be either REG, PLUS, or MULT. Convert REG to
6600 MULT to reduce cases. */
6601 if (GET_CODE (arg0) == REG)
6602 arg0 = gen_rtx_MULT (mode, arg0, const1_rtx);
6603 if (GET_CODE (arg1) == REG)
6604 arg1 = gen_rtx_MULT (mode, arg1, const1_rtx);
6606 /* Now have PLUS + PLUS, PLUS + MULT, MULT + PLUS, or MULT + MULT.
6607 Put a MULT first, leaving PLUS + PLUS, MULT + PLUS, or MULT + MULT.
6608 Recurse to associate the second PLUS. */
6609 if (GET_CODE (arg1) == MULT)
6610 tem = arg0, arg0 = arg1, arg1 = tem;
6612 if (GET_CODE (arg1) == PLUS)
6613 return
6614 simplify_giv_expr (loop,
6615 gen_rtx_PLUS (mode,
6616 gen_rtx_PLUS (mode, arg0,
6617 XEXP (arg1, 0)),
6618 XEXP (arg1, 1)),
6619 ext_val, benefit);
6621 /* Now must have MULT + MULT. Distribute if same biv, else not giv. */
6622 if (GET_CODE (arg0) != MULT || GET_CODE (arg1) != MULT)
6623 return NULL_RTX;
6625 if (!rtx_equal_p (arg0, arg1))
6626 return NULL_RTX;
6628 return simplify_giv_expr (loop,
6629 gen_rtx_MULT (mode,
6630 XEXP (arg0, 0),
6631 gen_rtx_PLUS (mode,
6632 XEXP (arg0, 1),
6633 XEXP (arg1, 1))),
6634 ext_val, benefit);
6636 case MINUS:
6637 /* Handle "a - b" as "a + b * (-1)". */
6638 return simplify_giv_expr (loop,
6639 gen_rtx_PLUS (mode,
6640 XEXP (x, 0),
6641 gen_rtx_MULT (mode,
6642 XEXP (x, 1),
6643 constm1_rtx)),
6644 ext_val, benefit);
6646 case MULT:
6647 arg0 = simplify_giv_expr (loop, XEXP (x, 0), ext_val, benefit);
6648 arg1 = simplify_giv_expr (loop, XEXP (x, 1), ext_val, benefit);
6649 if (arg0 == 0 || arg1 == 0)
6650 return NULL_RTX;
6652 /* Put constant last, CONST_INT last if both constant. */
6653 if ((GET_CODE (arg0) == USE || GET_CODE (arg0) == CONST_INT)
6654 && GET_CODE (arg1) != CONST_INT)
6655 tem = arg0, arg0 = arg1, arg1 = tem;
6657 /* If second argument is not now constant, not giv. */
6658 if (GET_CODE (arg1) != USE && GET_CODE (arg1) != CONST_INT)
6659 return NULL_RTX;
6661 /* Handle multiply by 0 or 1. */
6662 if (arg1 == const0_rtx)
6663 return const0_rtx;
6665 else if (arg1 == const1_rtx)
6666 return arg0;
6668 switch (GET_CODE (arg0))
6670 case REG:
6671 /* biv * invar. Done. */
6672 return gen_rtx_MULT (mode, arg0, arg1);
6674 case CONST_INT:
6675 /* Product of two constants. */
6676 return GEN_INT (INTVAL (arg0) * INTVAL (arg1));
6678 case USE:
6679 /* invar * invar is a giv, but attempt to simplify it somehow. */
6680 if (GET_CODE (arg1) != CONST_INT)
6681 return NULL_RTX;
6683 arg0 = XEXP (arg0, 0);
6684 if (GET_CODE (arg0) == MULT)
6686 /* (invar_0 * invar_1) * invar_2. Associate. */
6687 return simplify_giv_expr (loop,
6688 gen_rtx_MULT (mode,
6689 XEXP (arg0, 0),
6690 gen_rtx_MULT (mode,
6691 XEXP (arg0,
6693 arg1)),
6694 ext_val, benefit);
6696 /* Porpagate the MULT expressions to the intermost nodes. */
6697 else if (GET_CODE (arg0) == PLUS)
6699 /* (invar_0 + invar_1) * invar_2. Distribute. */
6700 return simplify_giv_expr (loop,
6701 gen_rtx_PLUS (mode,
6702 gen_rtx_MULT (mode,
6703 XEXP (arg0,
6705 arg1),
6706 gen_rtx_MULT (mode,
6707 XEXP (arg0,
6709 arg1)),
6710 ext_val, benefit);
6712 return gen_rtx_USE (mode, gen_rtx_MULT (mode, arg0, arg1));
6714 case MULT:
6715 /* (a * invar_1) * invar_2. Associate. */
6716 return simplify_giv_expr (loop,
6717 gen_rtx_MULT (mode,
6718 XEXP (arg0, 0),
6719 gen_rtx_MULT (mode,
6720 XEXP (arg0, 1),
6721 arg1)),
6722 ext_val, benefit);
6724 case PLUS:
6725 /* (a + invar_1) * invar_2. Distribute. */
6726 return simplify_giv_expr (loop,
6727 gen_rtx_PLUS (mode,
6728 gen_rtx_MULT (mode,
6729 XEXP (arg0, 0),
6730 arg1),
6731 gen_rtx_MULT (mode,
6732 XEXP (arg0, 1),
6733 arg1)),
6734 ext_val, benefit);
6736 default:
6737 abort ();
6740 case ASHIFT:
6741 /* Shift by constant is multiply by power of two. */
6742 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6743 return 0;
6745 return
6746 simplify_giv_expr (loop,
6747 gen_rtx_MULT (mode,
6748 XEXP (x, 0),
6749 GEN_INT ((HOST_WIDE_INT) 1
6750 << INTVAL (XEXP (x, 1)))),
6751 ext_val, benefit);
6753 case NEG:
6754 /* "-a" is "a * (-1)" */
6755 return simplify_giv_expr (loop,
6756 gen_rtx_MULT (mode, XEXP (x, 0), constm1_rtx),
6757 ext_val, benefit);
6759 case NOT:
6760 /* "~a" is "-a - 1". Silly, but easy. */
6761 return simplify_giv_expr (loop,
6762 gen_rtx_MINUS (mode,
6763 gen_rtx_NEG (mode, XEXP (x, 0)),
6764 const1_rtx),
6765 ext_val, benefit);
6767 case USE:
6768 /* Already in proper form for invariant. */
6769 return x;
6771 case SIGN_EXTEND:
6772 case ZERO_EXTEND:
6773 case TRUNCATE:
6774 /* Conditionally recognize extensions of simple IVs. After we've
6775 computed loop traversal counts and verified the range of the
6776 source IV, we'll reevaluate this as a GIV. */
6777 if (*ext_val == NULL_RTX)
6779 arg0 = simplify_giv_expr (loop, XEXP (x, 0), ext_val, benefit);
6780 if (arg0 && *ext_val == NULL_RTX && GET_CODE (arg0) == REG)
6782 *ext_val = gen_rtx_fmt_e (GET_CODE (x), mode, arg0);
6783 return arg0;
6786 goto do_default;
6788 case REG:
6789 /* If this is a new register, we can't deal with it. */
6790 if (REGNO (x) >= max_reg_before_loop)
6791 return 0;
6793 /* Check for biv or giv. */
6794 switch (REG_IV_TYPE (ivs, REGNO (x)))
6796 case BASIC_INDUCT:
6797 return x;
6798 case GENERAL_INDUCT:
6800 struct induction *v = REG_IV_INFO (ivs, REGNO (x));
6802 /* Form expression from giv and add benefit. Ensure this giv
6803 can derive another and subtract any needed adjustment if so. */
6805 /* Increasing the benefit here is risky. The only case in which it
6806 is arguably correct is if this is the only use of V. In other
6807 cases, this will artificially inflate the benefit of the current
6808 giv, and lead to suboptimal code. Thus, it is disabled, since
6809 potentially not reducing an only marginally beneficial giv is
6810 less harmful than reducing many givs that are not really
6811 beneficial. */
6813 rtx single_use = regs->array[REGNO (x)].single_usage;
6814 if (single_use && single_use != const0_rtx)
6815 *benefit += v->benefit;
6818 if (v->cant_derive)
6819 return 0;
6821 tem = gen_rtx_PLUS (mode, gen_rtx_MULT (mode,
6822 v->src_reg, v->mult_val),
6823 v->add_val);
6825 if (v->derive_adjustment)
6826 tem = gen_rtx_MINUS (mode, tem, v->derive_adjustment);
6827 arg0 = simplify_giv_expr (loop, tem, ext_val, benefit);
6828 if (*ext_val)
6830 if (!v->ext_dependent)
6831 return arg0;
6833 else
6835 *ext_val = v->ext_dependent;
6836 return arg0;
6838 return 0;
6841 default:
6842 do_default:
6843 /* If it isn't an induction variable, and it is invariant, we
6844 may be able to simplify things further by looking through
6845 the bits we just moved outside the loop. */
6846 if (loop_invariant_p (loop, x) == 1)
6848 struct movable *m;
6849 struct loop_movables *movables = LOOP_MOVABLES (loop);
6851 for (m = movables->head; m; m = m->next)
6852 if (rtx_equal_p (x, m->set_dest))
6854 /* Ok, we found a match. Substitute and simplify. */
6856 /* If we match another movable, we must use that, as
6857 this one is going away. */
6858 if (m->match)
6859 return simplify_giv_expr (loop, m->match->set_dest,
6860 ext_val, benefit);
6862 /* If consec is nonzero, this is a member of a group of
6863 instructions that were moved together. We handle this
6864 case only to the point of seeking to the last insn and
6865 looking for a REG_EQUAL. Fail if we don't find one. */
6866 if (m->consec != 0)
6868 int i = m->consec;
6869 tem = m->insn;
6872 tem = NEXT_INSN (tem);
6874 while (--i > 0);
6876 tem = find_reg_note (tem, REG_EQUAL, NULL_RTX);
6877 if (tem)
6878 tem = XEXP (tem, 0);
6880 else
6882 tem = single_set (m->insn);
6883 if (tem)
6884 tem = SET_SRC (tem);
6887 if (tem)
6889 /* What we are most interested in is pointer
6890 arithmetic on invariants -- only take
6891 patterns we may be able to do something with. */
6892 if (GET_CODE (tem) == PLUS
6893 || GET_CODE (tem) == MULT
6894 || GET_CODE (tem) == ASHIFT
6895 || GET_CODE (tem) == CONST_INT
6896 || GET_CODE (tem) == SYMBOL_REF)
6898 tem = simplify_giv_expr (loop, tem, ext_val,
6899 benefit);
6900 if (tem)
6901 return tem;
6903 else if (GET_CODE (tem) == CONST
6904 && GET_CODE (XEXP (tem, 0)) == PLUS
6905 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == SYMBOL_REF
6906 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)
6908 tem = simplify_giv_expr (loop, XEXP (tem, 0),
6909 ext_val, benefit);
6910 if (tem)
6911 return tem;
6914 break;
6917 break;
6920 /* Fall through to general case. */
6921 default:
6922 /* If invariant, return as USE (unless CONST_INT).
6923 Otherwise, not giv. */
6924 if (GET_CODE (x) == USE)
6925 x = XEXP (x, 0);
6927 if (loop_invariant_p (loop, x) == 1)
6929 if (GET_CODE (x) == CONST_INT)
6930 return x;
6931 if (GET_CODE (x) == CONST
6932 && GET_CODE (XEXP (x, 0)) == PLUS
6933 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
6934 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
6935 x = XEXP (x, 0);
6936 return gen_rtx_USE (mode, x);
6938 else
6939 return 0;
6943 /* This routine folds invariants such that there is only ever one
6944 CONST_INT in the summation. It is only used by simplify_giv_expr. */
6946 static rtx
6947 sge_plus_constant (x, c)
6948 rtx x, c;
6950 if (GET_CODE (x) == CONST_INT)
6951 return GEN_INT (INTVAL (x) + INTVAL (c));
6952 else if (GET_CODE (x) != PLUS)
6953 return gen_rtx_PLUS (GET_MODE (x), x, c);
6954 else if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6956 return gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0),
6957 GEN_INT (INTVAL (XEXP (x, 1)) + INTVAL (c)));
6959 else if (GET_CODE (XEXP (x, 0)) == PLUS
6960 || GET_CODE (XEXP (x, 1)) != PLUS)
6962 return gen_rtx_PLUS (GET_MODE (x),
6963 sge_plus_constant (XEXP (x, 0), c), XEXP (x, 1));
6965 else
6967 return gen_rtx_PLUS (GET_MODE (x),
6968 sge_plus_constant (XEXP (x, 1), c), XEXP (x, 0));
6972 static rtx
6973 sge_plus (mode, x, y)
6974 enum machine_mode mode;
6975 rtx x, y;
6977 while (GET_CODE (y) == PLUS)
6979 rtx a = XEXP (y, 0);
6980 if (GET_CODE (a) == CONST_INT)
6981 x = sge_plus_constant (x, a);
6982 else
6983 x = gen_rtx_PLUS (mode, x, a);
6984 y = XEXP (y, 1);
6986 if (GET_CODE (y) == CONST_INT)
6987 x = sge_plus_constant (x, y);
6988 else
6989 x = gen_rtx_PLUS (mode, x, y);
6990 return x;
6993 /* Help detect a giv that is calculated by several consecutive insns;
6994 for example,
6995 giv = biv * M
6996 giv = giv + A
6997 The caller has already identified the first insn P as having a giv as dest;
6998 we check that all other insns that set the same register follow
6999 immediately after P, that they alter nothing else,
7000 and that the result of the last is still a giv.
7002 The value is 0 if the reg set in P is not really a giv.
7003 Otherwise, the value is the amount gained by eliminating
7004 all the consecutive insns that compute the value.
7006 FIRST_BENEFIT is the amount gained by eliminating the first insn, P.
7007 SRC_REG is the reg of the biv; DEST_REG is the reg of the giv.
7009 The coefficients of the ultimate giv value are stored in
7010 *MULT_VAL and *ADD_VAL. */
7012 static int
7013 consec_sets_giv (loop, first_benefit, p, src_reg, dest_reg,
7014 add_val, mult_val, ext_val, last_consec_insn)
7015 const struct loop *loop;
7016 int first_benefit;
7017 rtx p;
7018 rtx src_reg;
7019 rtx dest_reg;
7020 rtx *add_val;
7021 rtx *mult_val;
7022 rtx *ext_val;
7023 rtx *last_consec_insn;
7025 struct loop_ivs *ivs = LOOP_IVS (loop);
7026 struct loop_regs *regs = LOOP_REGS (loop);
7027 int count;
7028 enum rtx_code code;
7029 int benefit;
7030 rtx temp;
7031 rtx set;
7033 /* Indicate that this is a giv so that we can update the value produced in
7034 each insn of the multi-insn sequence.
7036 This induction structure will be used only by the call to
7037 general_induction_var below, so we can allocate it on our stack.
7038 If this is a giv, our caller will replace the induct var entry with
7039 a new induction structure. */
7040 struct induction *v;
7042 if (REG_IV_TYPE (ivs, REGNO (dest_reg)) != UNKNOWN_INDUCT)
7043 return 0;
7045 v = (struct induction *) alloca (sizeof (struct induction));
7046 v->src_reg = src_reg;
7047 v->mult_val = *mult_val;
7048 v->add_val = *add_val;
7049 v->benefit = first_benefit;
7050 v->cant_derive = 0;
7051 v->derive_adjustment = 0;
7052 v->ext_dependent = NULL_RTX;
7054 REG_IV_TYPE (ivs, REGNO (dest_reg)) = GENERAL_INDUCT;
7055 REG_IV_INFO (ivs, REGNO (dest_reg)) = v;
7057 count = regs->array[REGNO (dest_reg)].n_times_set - 1;
7059 while (count > 0)
7061 p = NEXT_INSN (p);
7062 code = GET_CODE (p);
7064 /* If libcall, skip to end of call sequence. */
7065 if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
7066 p = XEXP (temp, 0);
7068 if (code == INSN
7069 && (set = single_set (p))
7070 && GET_CODE (SET_DEST (set)) == REG
7071 && SET_DEST (set) == dest_reg
7072 && (general_induction_var (loop, SET_SRC (set), &src_reg,
7073 add_val, mult_val, ext_val, 0,
7074 &benefit, VOIDmode)
7075 /* Giv created by equivalent expression. */
7076 || ((temp = find_reg_note (p, REG_EQUAL, NULL_RTX))
7077 && general_induction_var (loop, XEXP (temp, 0), &src_reg,
7078 add_val, mult_val, ext_val, 0,
7079 &benefit, VOIDmode)))
7080 && src_reg == v->src_reg)
7082 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
7083 benefit += libcall_benefit (p);
7085 count--;
7086 v->mult_val = *mult_val;
7087 v->add_val = *add_val;
7088 v->benefit += benefit;
7090 else if (code != NOTE)
7092 /* Allow insns that set something other than this giv to a
7093 constant. Such insns are needed on machines which cannot
7094 include long constants and should not disqualify a giv. */
7095 if (code == INSN
7096 && (set = single_set (p))
7097 && SET_DEST (set) != dest_reg
7098 && CONSTANT_P (SET_SRC (set)))
7099 continue;
7101 REG_IV_TYPE (ivs, REGNO (dest_reg)) = UNKNOWN_INDUCT;
7102 return 0;
7106 REG_IV_TYPE (ivs, REGNO (dest_reg)) = UNKNOWN_INDUCT;
7107 *last_consec_insn = p;
7108 return v->benefit;
7111 /* Return an rtx, if any, that expresses giv G2 as a function of the register
7112 represented by G1. If no such expression can be found, or it is clear that
7113 it cannot possibly be a valid address, 0 is returned.
7115 To perform the computation, we note that
7116 G1 = x * v + a and
7117 G2 = y * v + b
7118 where `v' is the biv.
7120 So G2 = (y/b) * G1 + (b - a*y/x).
7122 Note that MULT = y/x.
7124 Update: A and B are now allowed to be additive expressions such that
7125 B contains all variables in A. That is, computing B-A will not require
7126 subtracting variables. */
7128 static rtx
7129 express_from_1 (a, b, mult)
7130 rtx a, b, mult;
7132 /* If MULT is zero, then A*MULT is zero, and our expression is B. */
7134 if (mult == const0_rtx)
7135 return b;
7137 /* If MULT is not 1, we cannot handle A with non-constants, since we
7138 would then be required to subtract multiples of the registers in A.
7139 This is theoretically possible, and may even apply to some Fortran
7140 constructs, but it is a lot of work and we do not attempt it here. */
7142 if (mult != const1_rtx && GET_CODE (a) != CONST_INT)
7143 return NULL_RTX;
7145 /* In general these structures are sorted top to bottom (down the PLUS
7146 chain), but not left to right across the PLUS. If B is a higher
7147 order giv than A, we can strip one level and recurse. If A is higher
7148 order, we'll eventually bail out, but won't know that until the end.
7149 If they are the same, we'll strip one level around this loop. */
7151 while (GET_CODE (a) == PLUS && GET_CODE (b) == PLUS)
7153 rtx ra, rb, oa, ob, tmp;
7155 ra = XEXP (a, 0), oa = XEXP (a, 1);
7156 if (GET_CODE (ra) == PLUS)
7157 tmp = ra, ra = oa, oa = tmp;
7159 rb = XEXP (b, 0), ob = XEXP (b, 1);
7160 if (GET_CODE (rb) == PLUS)
7161 tmp = rb, rb = ob, ob = tmp;
7163 if (rtx_equal_p (ra, rb))
7164 /* We matched: remove one reg completely. */
7165 a = oa, b = ob;
7166 else if (GET_CODE (ob) != PLUS && rtx_equal_p (ra, ob))
7167 /* An alternate match. */
7168 a = oa, b = rb;
7169 else if (GET_CODE (oa) != PLUS && rtx_equal_p (oa, rb))
7170 /* An alternate match. */
7171 a = ra, b = ob;
7172 else
7174 /* Indicates an extra register in B. Strip one level from B and
7175 recurse, hoping B was the higher order expression. */
7176 ob = express_from_1 (a, ob, mult);
7177 if (ob == NULL_RTX)
7178 return NULL_RTX;
7179 return gen_rtx_PLUS (GET_MODE (b), rb, ob);
7183 /* Here we are at the last level of A, go through the cases hoping to
7184 get rid of everything but a constant. */
7186 if (GET_CODE (a) == PLUS)
7188 rtx ra, oa;
7190 ra = XEXP (a, 0), oa = XEXP (a, 1);
7191 if (rtx_equal_p (oa, b))
7192 oa = ra;
7193 else if (!rtx_equal_p (ra, b))
7194 return NULL_RTX;
7196 if (GET_CODE (oa) != CONST_INT)
7197 return NULL_RTX;
7199 return GEN_INT (-INTVAL (oa) * INTVAL (mult));
7201 else if (GET_CODE (a) == CONST_INT)
7203 return plus_constant (b, -INTVAL (a) * INTVAL (mult));
7205 else if (CONSTANT_P (a))
7207 enum machine_mode mode_a = GET_MODE (a);
7208 enum machine_mode mode_b = GET_MODE (b);
7209 enum machine_mode mode = mode_b == VOIDmode ? mode_a : mode_b;
7210 return simplify_gen_binary (MINUS, mode, b, a);
7212 else if (GET_CODE (b) == PLUS)
7214 if (rtx_equal_p (a, XEXP (b, 0)))
7215 return XEXP (b, 1);
7216 else if (rtx_equal_p (a, XEXP (b, 1)))
7217 return XEXP (b, 0);
7218 else
7219 return NULL_RTX;
7221 else if (rtx_equal_p (a, b))
7222 return const0_rtx;
7224 return NULL_RTX;
7228 express_from (g1, g2)
7229 struct induction *g1, *g2;
7231 rtx mult, add;
7233 /* The value that G1 will be multiplied by must be a constant integer. Also,
7234 the only chance we have of getting a valid address is if b*c/a (see above
7235 for notation) is also an integer. */
7236 if (GET_CODE (g1->mult_val) == CONST_INT
7237 && GET_CODE (g2->mult_val) == CONST_INT)
7239 if (g1->mult_val == const0_rtx
7240 || INTVAL (g2->mult_val) % INTVAL (g1->mult_val) != 0)
7241 return NULL_RTX;
7242 mult = GEN_INT (INTVAL (g2->mult_val) / INTVAL (g1->mult_val));
7244 else if (rtx_equal_p (g1->mult_val, g2->mult_val))
7245 mult = const1_rtx;
7246 else
7248 /* ??? Find out if the one is a multiple of the other? */
7249 return NULL_RTX;
7252 add = express_from_1 (g1->add_val, g2->add_val, mult);
7253 if (add == NULL_RTX)
7255 /* Failed. If we've got a multiplication factor between G1 and G2,
7256 scale G1's addend and try again. */
7257 if (INTVAL (mult) > 1)
7259 rtx g1_add_val = g1->add_val;
7260 if (GET_CODE (g1_add_val) == MULT
7261 && GET_CODE (XEXP (g1_add_val, 1)) == CONST_INT)
7263 HOST_WIDE_INT m;
7264 m = INTVAL (mult) * INTVAL (XEXP (g1_add_val, 1));
7265 g1_add_val = gen_rtx_MULT (GET_MODE (g1_add_val),
7266 XEXP (g1_add_val, 0), GEN_INT (m));
7268 else
7270 g1_add_val = gen_rtx_MULT (GET_MODE (g1_add_val), g1_add_val,
7271 mult);
7274 add = express_from_1 (g1_add_val, g2->add_val, const1_rtx);
7277 if (add == NULL_RTX)
7278 return NULL_RTX;
7280 /* Form simplified final result. */
7281 if (mult == const0_rtx)
7282 return add;
7283 else if (mult == const1_rtx)
7284 mult = g1->dest_reg;
7285 else
7286 mult = gen_rtx_MULT (g2->mode, g1->dest_reg, mult);
7288 if (add == const0_rtx)
7289 return mult;
7290 else
7292 if (GET_CODE (add) == PLUS
7293 && CONSTANT_P (XEXP (add, 1)))
7295 rtx tem = XEXP (add, 1);
7296 mult = gen_rtx_PLUS (g2->mode, mult, XEXP (add, 0));
7297 add = tem;
7300 return gen_rtx_PLUS (g2->mode, mult, add);
7304 /* Return an rtx, if any, that expresses giv G2 as a function of the register
7305 represented by G1. This indicates that G2 should be combined with G1 and
7306 that G2 can use (either directly or via an address expression) a register
7307 used to represent G1. */
7309 static rtx
7310 combine_givs_p (g1, g2)
7311 struct induction *g1, *g2;
7313 rtx comb, ret;
7315 /* With the introduction of ext dependent givs, we must care for modes.
7316 G2 must not use a wider mode than G1. */
7317 if (GET_MODE_SIZE (g1->mode) < GET_MODE_SIZE (g2->mode))
7318 return NULL_RTX;
7320 ret = comb = express_from (g1, g2);
7321 if (comb == NULL_RTX)
7322 return NULL_RTX;
7323 if (g1->mode != g2->mode)
7324 ret = gen_lowpart (g2->mode, comb);
7326 /* If these givs are identical, they can be combined. We use the results
7327 of express_from because the addends are not in a canonical form, so
7328 rtx_equal_p is a weaker test. */
7329 /* But don't combine a DEST_REG giv with a DEST_ADDR giv; we want the
7330 combination to be the other way round. */
7331 if (comb == g1->dest_reg
7332 && (g1->giv_type == DEST_REG || g2->giv_type == DEST_ADDR))
7334 return ret;
7337 /* If G2 can be expressed as a function of G1 and that function is valid
7338 as an address and no more expensive than using a register for G2,
7339 the expression of G2 in terms of G1 can be used. */
7340 if (ret != NULL_RTX
7341 && g2->giv_type == DEST_ADDR
7342 && memory_address_p (GET_MODE (g2->mem), ret)
7343 /* ??? Looses, especially with -fforce-addr, where *g2->location
7344 will always be a register, and so anything more complicated
7345 gets discarded. */
7346 #if 0
7347 #ifdef ADDRESS_COST
7348 && ADDRESS_COST (tem) <= ADDRESS_COST (*g2->location)
7349 #else
7350 && rtx_cost (tem, MEM) <= rtx_cost (*g2->location, MEM)
7351 #endif
7352 #endif
7355 return ret;
7358 return NULL_RTX;
7361 /* Check each extension dependent giv in this class to see if its
7362 root biv is safe from wrapping in the interior mode, which would
7363 make the giv illegal. */
7365 static void
7366 check_ext_dependent_givs (bl, loop_info)
7367 struct iv_class *bl;
7368 struct loop_info *loop_info;
7370 int ze_ok = 0, se_ok = 0, info_ok = 0;
7371 enum machine_mode biv_mode = GET_MODE (bl->biv->src_reg);
7372 HOST_WIDE_INT start_val;
7373 unsigned HOST_WIDE_INT u_end_val = 0;
7374 unsigned HOST_WIDE_INT u_start_val = 0;
7375 rtx incr = pc_rtx;
7376 struct induction *v;
7378 /* Make sure the iteration data is available. We must have
7379 constants in order to be certain of no overflow. */
7380 /* ??? An unknown iteration count with an increment of +-1
7381 combined with friendly exit tests of against an invariant
7382 value is also ameanable to optimization. Not implemented. */
7383 if (loop_info->n_iterations > 0
7384 && bl->initial_value
7385 && GET_CODE (bl->initial_value) == CONST_INT
7386 && (incr = biv_total_increment (bl))
7387 && GET_CODE (incr) == CONST_INT
7388 /* Make sure the host can represent the arithmetic. */
7389 && HOST_BITS_PER_WIDE_INT >= GET_MODE_BITSIZE (biv_mode))
7391 unsigned HOST_WIDE_INT abs_incr, total_incr;
7392 HOST_WIDE_INT s_end_val;
7393 int neg_incr;
7395 info_ok = 1;
7396 start_val = INTVAL (bl->initial_value);
7397 u_start_val = start_val;
7399 neg_incr = 0, abs_incr = INTVAL (incr);
7400 if (INTVAL (incr) < 0)
7401 neg_incr = 1, abs_incr = -abs_incr;
7402 total_incr = abs_incr * loop_info->n_iterations;
7404 /* Check for host arithmatic overflow. */
7405 if (total_incr / loop_info->n_iterations == abs_incr)
7407 unsigned HOST_WIDE_INT u_max;
7408 HOST_WIDE_INT s_max;
7410 u_end_val = start_val + (neg_incr ? -total_incr : total_incr);
7411 s_end_val = u_end_val;
7412 u_max = GET_MODE_MASK (biv_mode);
7413 s_max = u_max >> 1;
7415 /* Check zero extension of biv ok. */
7416 if (start_val >= 0
7417 /* Check for host arithmatic overflow. */
7418 && (neg_incr
7419 ? u_end_val < u_start_val
7420 : u_end_val > u_start_val)
7421 /* Check for target arithmetic overflow. */
7422 && (neg_incr
7423 ? 1 /* taken care of with host overflow */
7424 : u_end_val <= u_max))
7426 ze_ok = 1;
7429 /* Check sign extension of biv ok. */
7430 /* ??? While it is true that overflow with signed and pointer
7431 arithmetic is undefined, I fear too many programmers don't
7432 keep this fact in mind -- myself included on occasion.
7433 So leave alone with the signed overflow optimizations. */
7434 if (start_val >= -s_max - 1
7435 /* Check for host arithmatic overflow. */
7436 && (neg_incr
7437 ? s_end_val < start_val
7438 : s_end_val > start_val)
7439 /* Check for target arithmetic overflow. */
7440 && (neg_incr
7441 ? s_end_val >= -s_max - 1
7442 : s_end_val <= s_max))
7444 se_ok = 1;
7449 /* Invalidate givs that fail the tests. */
7450 for (v = bl->giv; v; v = v->next_iv)
7451 if (v->ext_dependent)
7453 enum rtx_code code = GET_CODE (v->ext_dependent);
7454 int ok = 0;
7456 switch (code)
7458 case SIGN_EXTEND:
7459 ok = se_ok;
7460 break;
7461 case ZERO_EXTEND:
7462 ok = ze_ok;
7463 break;
7465 case TRUNCATE:
7466 /* We don't know whether this value is being used as either
7467 signed or unsigned, so to safely truncate we must satisfy
7468 both. The initial check here verifies the BIV itself;
7469 once that is successful we may check its range wrt the
7470 derived GIV. */
7471 if (se_ok && ze_ok)
7473 enum machine_mode outer_mode = GET_MODE (v->ext_dependent);
7474 unsigned HOST_WIDE_INT max = GET_MODE_MASK (outer_mode) >> 1;
7476 /* We know from the above that both endpoints are nonnegative,
7477 and that there is no wrapping. Verify that both endpoints
7478 are within the (signed) range of the outer mode. */
7479 if (u_start_val <= max && u_end_val <= max)
7480 ok = 1;
7482 break;
7484 default:
7485 abort ();
7488 if (ok)
7490 if (loop_dump_stream)
7492 fprintf (loop_dump_stream,
7493 "Verified ext dependent giv at %d of reg %d\n",
7494 INSN_UID (v->insn), bl->regno);
7497 else
7499 if (loop_dump_stream)
7501 const char *why;
7503 if (info_ok)
7504 why = "biv iteration values overflowed";
7505 else
7507 if (incr == pc_rtx)
7508 incr = biv_total_increment (bl);
7509 if (incr == const1_rtx)
7510 why = "biv iteration info incomplete; incr by 1";
7511 else
7512 why = "biv iteration info incomplete";
7515 fprintf (loop_dump_stream,
7516 "Failed ext dependent giv at %d, %s\n",
7517 INSN_UID (v->insn), why);
7519 v->ignore = 1;
7520 bl->all_reduced = 0;
7525 /* Generate a version of VALUE in a mode appropriate for initializing V. */
7528 extend_value_for_giv (v, value)
7529 struct induction *v;
7530 rtx value;
7532 rtx ext_dep = v->ext_dependent;
7534 if (! ext_dep)
7535 return value;
7537 /* Recall that check_ext_dependent_givs verified that the known bounds
7538 of a biv did not overflow or wrap with respect to the extension for
7539 the giv. Therefore, constants need no additional adjustment. */
7540 if (CONSTANT_P (value) && GET_MODE (value) == VOIDmode)
7541 return value;
7543 /* Otherwise, we must adjust the value to compensate for the
7544 differing modes of the biv and the giv. */
7545 return gen_rtx_fmt_e (GET_CODE (ext_dep), GET_MODE (ext_dep), value);
7548 struct combine_givs_stats
7550 int giv_number;
7551 int total_benefit;
7554 static int
7555 cmp_combine_givs_stats (xp, yp)
7556 const PTR xp;
7557 const PTR yp;
7559 const struct combine_givs_stats * const x =
7560 (const struct combine_givs_stats *) xp;
7561 const struct combine_givs_stats * const y =
7562 (const struct combine_givs_stats *) yp;
7563 int d;
7564 d = y->total_benefit - x->total_benefit;
7565 /* Stabilize the sort. */
7566 if (!d)
7567 d = x->giv_number - y->giv_number;
7568 return d;
7571 /* Check all pairs of givs for iv_class BL and see if any can be combined with
7572 any other. If so, point SAME to the giv combined with and set NEW_REG to
7573 be an expression (in terms of the other giv's DEST_REG) equivalent to the
7574 giv. Also, update BENEFIT and related fields for cost/benefit analysis. */
7576 static void
7577 combine_givs (regs, bl)
7578 struct loop_regs *regs;
7579 struct iv_class *bl;
7581 /* Additional benefit to add for being combined multiple times. */
7582 const int extra_benefit = 3;
7584 struct induction *g1, *g2, **giv_array;
7585 int i, j, k, giv_count;
7586 struct combine_givs_stats *stats;
7587 rtx *can_combine;
7589 /* Count givs, because bl->giv_count is incorrect here. */
7590 giv_count = 0;
7591 for (g1 = bl->giv; g1; g1 = g1->next_iv)
7592 if (!g1->ignore)
7593 giv_count++;
7595 giv_array
7596 = (struct induction **) alloca (giv_count * sizeof (struct induction *));
7597 i = 0;
7598 for (g1 = bl->giv; g1; g1 = g1->next_iv)
7599 if (!g1->ignore)
7600 giv_array[i++] = g1;
7602 stats = (struct combine_givs_stats *) xcalloc (giv_count, sizeof (*stats));
7603 can_combine = (rtx *) xcalloc (giv_count, giv_count * sizeof (rtx));
7605 for (i = 0; i < giv_count; i++)
7607 int this_benefit;
7608 rtx single_use;
7610 g1 = giv_array[i];
7611 stats[i].giv_number = i;
7613 /* If a DEST_REG GIV is used only once, do not allow it to combine
7614 with anything, for in doing so we will gain nothing that cannot
7615 be had by simply letting the GIV with which we would have combined
7616 to be reduced on its own. The losage shows up in particular with
7617 DEST_ADDR targets on hosts with reg+reg addressing, though it can
7618 be seen elsewhere as well. */
7619 if (g1->giv_type == DEST_REG
7620 && (single_use = regs->array[REGNO (g1->dest_reg)].single_usage)
7621 && single_use != const0_rtx)
7622 continue;
7624 this_benefit = g1->benefit;
7625 /* Add an additional weight for zero addends. */
7626 if (g1->no_const_addval)
7627 this_benefit += 1;
7629 for (j = 0; j < giv_count; j++)
7631 rtx this_combine;
7633 g2 = giv_array[j];
7634 if (g1 != g2
7635 && (this_combine = combine_givs_p (g1, g2)) != NULL_RTX)
7637 can_combine[i * giv_count + j] = this_combine;
7638 this_benefit += g2->benefit + extra_benefit;
7641 stats[i].total_benefit = this_benefit;
7644 /* Iterate, combining until we can't. */
7645 restart:
7646 qsort (stats, giv_count, sizeof (*stats), cmp_combine_givs_stats);
7648 if (loop_dump_stream)
7650 fprintf (loop_dump_stream, "Sorted combine statistics:\n");
7651 for (k = 0; k < giv_count; k++)
7653 g1 = giv_array[stats[k].giv_number];
7654 if (!g1->combined_with && !g1->same)
7655 fprintf (loop_dump_stream, " {%d, %d}",
7656 INSN_UID (giv_array[stats[k].giv_number]->insn),
7657 stats[k].total_benefit);
7659 putc ('\n', loop_dump_stream);
7662 for (k = 0; k < giv_count; k++)
7664 int g1_add_benefit = 0;
7666 i = stats[k].giv_number;
7667 g1 = giv_array[i];
7669 /* If it has already been combined, skip. */
7670 if (g1->combined_with || g1->same)
7671 continue;
7673 for (j = 0; j < giv_count; j++)
7675 g2 = giv_array[j];
7676 if (g1 != g2 && can_combine[i * giv_count + j]
7677 /* If it has already been combined, skip. */
7678 && ! g2->same && ! g2->combined_with)
7680 int l;
7682 g2->new_reg = can_combine[i * giv_count + j];
7683 g2->same = g1;
7684 /* For destination, we now may replace by mem expression instead
7685 of register. This changes the costs considerably, so add the
7686 compensation. */
7687 if (g2->giv_type == DEST_ADDR)
7688 g2->benefit = (g2->benefit + reg_address_cost
7689 - address_cost (g2->new_reg,
7690 GET_MODE (g2->mem)));
7691 g1->combined_with++;
7692 g1->lifetime += g2->lifetime;
7694 g1_add_benefit += g2->benefit;
7696 /* ??? The new final_[bg]iv_value code does a much better job
7697 of finding replaceable giv's, and hence this code may no
7698 longer be necessary. */
7699 if (! g2->replaceable && REG_USERVAR_P (g2->dest_reg))
7700 g1_add_benefit -= copy_cost;
7702 /* To help optimize the next set of combinations, remove
7703 this giv from the benefits of other potential mates. */
7704 for (l = 0; l < giv_count; ++l)
7706 int m = stats[l].giv_number;
7707 if (can_combine[m * giv_count + j])
7708 stats[l].total_benefit -= g2->benefit + extra_benefit;
7711 if (loop_dump_stream)
7712 fprintf (loop_dump_stream,
7713 "giv at %d combined with giv at %d; new benefit %d + %d, lifetime %d\n",
7714 INSN_UID (g2->insn), INSN_UID (g1->insn),
7715 g1->benefit, g1_add_benefit, g1->lifetime);
7719 /* To help optimize the next set of combinations, remove
7720 this giv from the benefits of other potential mates. */
7721 if (g1->combined_with)
7723 for (j = 0; j < giv_count; ++j)
7725 int m = stats[j].giv_number;
7726 if (can_combine[m * giv_count + i])
7727 stats[j].total_benefit -= g1->benefit + extra_benefit;
7730 g1->benefit += g1_add_benefit;
7732 /* We've finished with this giv, and everything it touched.
7733 Restart the combination so that proper weights for the
7734 rest of the givs are properly taken into account. */
7735 /* ??? Ideally we would compact the arrays at this point, so
7736 as to not cover old ground. But sanely compacting
7737 can_combine is tricky. */
7738 goto restart;
7742 /* Clean up. */
7743 free (stats);
7744 free (can_combine);
7747 /* Generate sequence for REG = B * M + A. */
7749 static rtx
7750 gen_add_mult (b, m, a, reg)
7751 rtx b; /* initial value of basic induction variable */
7752 rtx m; /* multiplicative constant */
7753 rtx a; /* additive constant */
7754 rtx reg; /* destination register */
7756 rtx seq;
7757 rtx result;
7759 start_sequence ();
7760 /* Use unsigned arithmetic. */
7761 result = expand_mult_add (b, reg, m, a, GET_MODE (reg), 1);
7762 if (reg != result)
7763 emit_move_insn (reg, result);
7764 seq = get_insns ();
7765 end_sequence ();
7767 return seq;
7771 /* Update registers created in insn sequence SEQ. */
7773 static void
7774 loop_regs_update (loop, seq)
7775 const struct loop *loop ATTRIBUTE_UNUSED;
7776 rtx seq;
7778 rtx insn;
7780 /* Update register info for alias analysis. */
7782 if (seq == NULL_RTX)
7783 return;
7785 if (INSN_P (seq))
7787 insn = seq;
7788 while (insn != NULL_RTX)
7790 rtx set = single_set (insn);
7792 if (set && GET_CODE (SET_DEST (set)) == REG)
7793 record_base_value (REGNO (SET_DEST (set)), SET_SRC (set), 0);
7795 insn = NEXT_INSN (insn);
7798 else if (GET_CODE (seq) == SET
7799 && GET_CODE (SET_DEST (seq)) == REG)
7800 record_base_value (REGNO (SET_DEST (seq)), SET_SRC (seq), 0);
7804 /* EMIT code before BEFORE_BB/BEFORE_INSN to set REG = B * M + A. */
7806 void
7807 loop_iv_add_mult_emit_before (loop, b, m, a, reg, before_bb, before_insn)
7808 const struct loop *loop;
7809 rtx b; /* initial value of basic induction variable */
7810 rtx m; /* multiplicative constant */
7811 rtx a; /* additive constant */
7812 rtx reg; /* destination register */
7813 basic_block before_bb;
7814 rtx before_insn;
7816 rtx seq;
7818 if (! before_insn)
7820 loop_iv_add_mult_hoist (loop, b, m, a, reg);
7821 return;
7824 /* Use copy_rtx to prevent unexpected sharing of these rtx. */
7825 seq = gen_add_mult (copy_rtx (b), copy_rtx (m), copy_rtx (a), reg);
7827 /* Increase the lifetime of any invariants moved further in code. */
7828 update_reg_last_use (a, before_insn);
7829 update_reg_last_use (b, before_insn);
7830 update_reg_last_use (m, before_insn);
7832 loop_insn_emit_before (loop, before_bb, before_insn, seq);
7834 /* It is possible that the expansion created lots of new registers.
7835 Iterate over the sequence we just created and record them all. */
7836 loop_regs_update (loop, seq);
7840 /* Emit insns in loop pre-header to set REG = B * M + A. */
7842 void
7843 loop_iv_add_mult_sink (loop, b, m, a, reg)
7844 const struct loop *loop;
7845 rtx b; /* initial value of basic induction variable */
7846 rtx m; /* multiplicative constant */
7847 rtx a; /* additive constant */
7848 rtx reg; /* destination register */
7850 rtx seq;
7852 /* Use copy_rtx to prevent unexpected sharing of these rtx. */
7853 seq = gen_add_mult (copy_rtx (b), copy_rtx (m), copy_rtx (a), reg);
7855 /* Increase the lifetime of any invariants moved further in code.
7856 ???? Is this really necessary? */
7857 update_reg_last_use (a, loop->sink);
7858 update_reg_last_use (b, loop->sink);
7859 update_reg_last_use (m, loop->sink);
7861 loop_insn_sink (loop, seq);
7863 /* It is possible that the expansion created lots of new registers.
7864 Iterate over the sequence we just created and record them all. */
7865 loop_regs_update (loop, seq);
7869 /* Emit insns after loop to set REG = B * M + A. */
7871 void
7872 loop_iv_add_mult_hoist (loop, b, m, a, reg)
7873 const struct loop *loop;
7874 rtx b; /* initial value of basic induction variable */
7875 rtx m; /* multiplicative constant */
7876 rtx a; /* additive constant */
7877 rtx reg; /* destination register */
7879 rtx seq;
7881 /* Use copy_rtx to prevent unexpected sharing of these rtx. */
7882 seq = gen_add_mult (copy_rtx (b), copy_rtx (m), copy_rtx (a), reg);
7884 loop_insn_hoist (loop, seq);
7886 /* It is possible that the expansion created lots of new registers.
7887 Iterate over the sequence we just created and record them all. */
7888 loop_regs_update (loop, seq);
7893 /* Similar to gen_add_mult, but compute cost rather than generating
7894 sequence. */
7896 static int
7897 iv_add_mult_cost (b, m, a, reg)
7898 rtx b; /* initial value of basic induction variable */
7899 rtx m; /* multiplicative constant */
7900 rtx a; /* additive constant */
7901 rtx reg; /* destination register */
7903 int cost = 0;
7904 rtx last, result;
7906 start_sequence ();
7907 result = expand_mult_add (b, reg, m, a, GET_MODE (reg), 1);
7908 if (reg != result)
7909 emit_move_insn (reg, result);
7910 last = get_last_insn ();
7911 while (last)
7913 rtx t = single_set (last);
7914 if (t)
7915 cost += rtx_cost (SET_SRC (t), SET);
7916 last = PREV_INSN (last);
7918 end_sequence ();
7919 return cost;
7922 /* Test whether A * B can be computed without
7923 an actual multiply insn. Value is 1 if so.
7925 ??? This function stinks because it generates a ton of wasted RTL
7926 ??? and as a result fragments GC memory to no end. There are other
7927 ??? places in the compiler which are invoked a lot and do the same
7928 ??? thing, generate wasted RTL just to see if something is possible. */
7930 static int
7931 product_cheap_p (a, b)
7932 rtx a;
7933 rtx b;
7935 rtx tmp;
7936 int win, n_insns;
7938 /* If only one is constant, make it B. */
7939 if (GET_CODE (a) == CONST_INT)
7940 tmp = a, a = b, b = tmp;
7942 /* If first constant, both constant, so don't need multiply. */
7943 if (GET_CODE (a) == CONST_INT)
7944 return 1;
7946 /* If second not constant, neither is constant, so would need multiply. */
7947 if (GET_CODE (b) != CONST_INT)
7948 return 0;
7950 /* One operand is constant, so might not need multiply insn. Generate the
7951 code for the multiply and see if a call or multiply, or long sequence
7952 of insns is generated. */
7954 start_sequence ();
7955 expand_mult (GET_MODE (a), a, b, NULL_RTX, 1);
7956 tmp = get_insns ();
7957 end_sequence ();
7959 win = 1;
7960 if (INSN_P (tmp))
7962 n_insns = 0;
7963 while (tmp != NULL_RTX)
7965 rtx next = NEXT_INSN (tmp);
7967 if (++n_insns > 3
7968 || GET_CODE (tmp) != INSN
7969 || (GET_CODE (PATTERN (tmp)) == SET
7970 && GET_CODE (SET_SRC (PATTERN (tmp))) == MULT)
7971 || (GET_CODE (PATTERN (tmp)) == PARALLEL
7972 && GET_CODE (XVECEXP (PATTERN (tmp), 0, 0)) == SET
7973 && GET_CODE (SET_SRC (XVECEXP (PATTERN (tmp), 0, 0))) == MULT))
7975 win = 0;
7976 break;
7979 tmp = next;
7982 else if (GET_CODE (tmp) == SET
7983 && GET_CODE (SET_SRC (tmp)) == MULT)
7984 win = 0;
7985 else if (GET_CODE (tmp) == PARALLEL
7986 && GET_CODE (XVECEXP (tmp, 0, 0)) == SET
7987 && GET_CODE (SET_SRC (XVECEXP (tmp, 0, 0))) == MULT)
7988 win = 0;
7990 return win;
7993 /* Check to see if loop can be terminated by a "decrement and branch until
7994 zero" instruction. If so, add a REG_NONNEG note to the branch insn if so.
7995 Also try reversing an increment loop to a decrement loop
7996 to see if the optimization can be performed.
7997 Value is nonzero if optimization was performed. */
7999 /* This is useful even if the architecture doesn't have such an insn,
8000 because it might change a loops which increments from 0 to n to a loop
8001 which decrements from n to 0. A loop that decrements to zero is usually
8002 faster than one that increments from zero. */
8004 /* ??? This could be rewritten to use some of the loop unrolling procedures,
8005 such as approx_final_value, biv_total_increment, loop_iterations, and
8006 final_[bg]iv_value. */
8008 static int
8009 check_dbra_loop (loop, insn_count)
8010 struct loop *loop;
8011 int insn_count;
8013 struct loop_info *loop_info = LOOP_INFO (loop);
8014 struct loop_regs *regs = LOOP_REGS (loop);
8015 struct loop_ivs *ivs = LOOP_IVS (loop);
8016 struct iv_class *bl;
8017 rtx reg;
8018 rtx jump_label;
8019 rtx final_value;
8020 rtx start_value;
8021 rtx new_add_val;
8022 rtx comparison;
8023 rtx before_comparison;
8024 rtx p;
8025 rtx jump;
8026 rtx first_compare;
8027 int compare_and_branch;
8028 rtx loop_start = loop->start;
8029 rtx loop_end = loop->end;
8031 /* If last insn is a conditional branch, and the insn before tests a
8032 register value, try to optimize it. Otherwise, we can't do anything. */
8034 jump = PREV_INSN (loop_end);
8035 comparison = get_condition_for_loop (loop, jump);
8036 if (comparison == 0)
8037 return 0;
8038 if (!onlyjump_p (jump))
8039 return 0;
8041 /* Try to compute whether the compare/branch at the loop end is one or
8042 two instructions. */
8043 get_condition (jump, &first_compare);
8044 if (first_compare == jump)
8045 compare_and_branch = 1;
8046 else if (first_compare == prev_nonnote_insn (jump))
8047 compare_and_branch = 2;
8048 else
8049 return 0;
8052 /* If more than one condition is present to control the loop, then
8053 do not proceed, as this function does not know how to rewrite
8054 loop tests with more than one condition.
8056 Look backwards from the first insn in the last comparison
8057 sequence and see if we've got another comparison sequence. */
8059 rtx jump1;
8060 if ((jump1 = prev_nonnote_insn (first_compare)) != loop->cont)
8061 if (GET_CODE (jump1) == JUMP_INSN)
8062 return 0;
8065 /* Check all of the bivs to see if the compare uses one of them.
8066 Skip biv's set more than once because we can't guarantee that
8067 it will be zero on the last iteration. Also skip if the biv is
8068 used between its update and the test insn. */
8070 for (bl = ivs->list; bl; bl = bl->next)
8072 if (bl->biv_count == 1
8073 && ! bl->biv->maybe_multiple
8074 && bl->biv->dest_reg == XEXP (comparison, 0)
8075 && ! reg_used_between_p (regno_reg_rtx[bl->regno], bl->biv->insn,
8076 first_compare))
8077 break;
8080 if (! bl)
8081 return 0;
8083 /* Look for the case where the basic induction variable is always
8084 nonnegative, and equals zero on the last iteration.
8085 In this case, add a reg_note REG_NONNEG, which allows the
8086 m68k DBRA instruction to be used. */
8088 if (((GET_CODE (comparison) == GT
8089 && GET_CODE (XEXP (comparison, 1)) == CONST_INT
8090 && INTVAL (XEXP (comparison, 1)) == -1)
8091 || (GET_CODE (comparison) == NE && XEXP (comparison, 1) == const0_rtx))
8092 && GET_CODE (bl->biv->add_val) == CONST_INT
8093 && INTVAL (bl->biv->add_val) < 0)
8095 /* Initial value must be greater than 0,
8096 init_val % -dec_value == 0 to ensure that it equals zero on
8097 the last iteration */
8099 if (GET_CODE (bl->initial_value) == CONST_INT
8100 && INTVAL (bl->initial_value) > 0
8101 && (INTVAL (bl->initial_value)
8102 % (-INTVAL (bl->biv->add_val))) == 0)
8104 /* register always nonnegative, add REG_NOTE to branch */
8105 if (! find_reg_note (jump, REG_NONNEG, NULL_RTX))
8106 REG_NOTES (jump)
8107 = gen_rtx_EXPR_LIST (REG_NONNEG, bl->biv->dest_reg,
8108 REG_NOTES (jump));
8109 bl->nonneg = 1;
8111 return 1;
8114 /* If the decrement is 1 and the value was tested as >= 0 before
8115 the loop, then we can safely optimize. */
8116 for (p = loop_start; p; p = PREV_INSN (p))
8118 if (GET_CODE (p) == CODE_LABEL)
8119 break;
8120 if (GET_CODE (p) != JUMP_INSN)
8121 continue;
8123 before_comparison = get_condition_for_loop (loop, p);
8124 if (before_comparison
8125 && XEXP (before_comparison, 0) == bl->biv->dest_reg
8126 && GET_CODE (before_comparison) == LT
8127 && XEXP (before_comparison, 1) == const0_rtx
8128 && ! reg_set_between_p (bl->biv->dest_reg, p, loop_start)
8129 && INTVAL (bl->biv->add_val) == -1)
8131 if (! find_reg_note (jump, REG_NONNEG, NULL_RTX))
8132 REG_NOTES (jump)
8133 = gen_rtx_EXPR_LIST (REG_NONNEG, bl->biv->dest_reg,
8134 REG_NOTES (jump));
8135 bl->nonneg = 1;
8137 return 1;
8141 else if (GET_CODE (bl->biv->add_val) == CONST_INT
8142 && INTVAL (bl->biv->add_val) > 0)
8144 /* Try to change inc to dec, so can apply above optimization. */
8145 /* Can do this if:
8146 all registers modified are induction variables or invariant,
8147 all memory references have non-overlapping addresses
8148 (obviously true if only one write)
8149 allow 2 insns for the compare/jump at the end of the loop. */
8150 /* Also, we must avoid any instructions which use both the reversed
8151 biv and another biv. Such instructions will fail if the loop is
8152 reversed. We meet this condition by requiring that either
8153 no_use_except_counting is true, or else that there is only
8154 one biv. */
8155 int num_nonfixed_reads = 0;
8156 /* 1 if the iteration var is used only to count iterations. */
8157 int no_use_except_counting = 0;
8158 /* 1 if the loop has no memory store, or it has a single memory store
8159 which is reversible. */
8160 int reversible_mem_store = 1;
8162 if (bl->giv_count == 0
8163 && !loop->exit_count
8164 && !loop_info->has_multiple_exit_targets)
8166 rtx bivreg = regno_reg_rtx[bl->regno];
8167 struct iv_class *blt;
8169 /* If there are no givs for this biv, and the only exit is the
8170 fall through at the end of the loop, then
8171 see if perhaps there are no uses except to count. */
8172 no_use_except_counting = 1;
8173 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
8174 if (INSN_P (p))
8176 rtx set = single_set (p);
8178 if (set && GET_CODE (SET_DEST (set)) == REG
8179 && REGNO (SET_DEST (set)) == bl->regno)
8180 /* An insn that sets the biv is okay. */
8182 else if ((p == prev_nonnote_insn (prev_nonnote_insn (loop_end))
8183 || p == prev_nonnote_insn (loop_end))
8184 && reg_mentioned_p (bivreg, PATTERN (p)))
8186 /* If either of these insns uses the biv and sets a pseudo
8187 that has more than one usage, then the biv has uses
8188 other than counting since it's used to derive a value
8189 that is used more than one time. */
8190 note_stores (PATTERN (p), note_set_pseudo_multiple_uses,
8191 regs);
8192 if (regs->multiple_uses)
8194 no_use_except_counting = 0;
8195 break;
8198 else if (reg_mentioned_p (bivreg, PATTERN (p)))
8200 no_use_except_counting = 0;
8201 break;
8205 /* A biv has uses besides counting if it is used to set
8206 another biv. */
8207 for (blt = ivs->list; blt; blt = blt->next)
8208 if (blt->init_set
8209 && reg_mentioned_p (bivreg, SET_SRC (blt->init_set)))
8211 no_use_except_counting = 0;
8212 break;
8216 if (no_use_except_counting)
8217 /* No need to worry about MEMs. */
8219 else if (loop_info->num_mem_sets <= 1)
8221 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
8222 if (INSN_P (p))
8223 num_nonfixed_reads += count_nonfixed_reads (loop, PATTERN (p));
8225 /* If the loop has a single store, and the destination address is
8226 invariant, then we can't reverse the loop, because this address
8227 might then have the wrong value at loop exit.
8228 This would work if the source was invariant also, however, in that
8229 case, the insn should have been moved out of the loop. */
8231 if (loop_info->num_mem_sets == 1)
8233 struct induction *v;
8235 /* If we could prove that each of the memory locations
8236 written to was different, then we could reverse the
8237 store -- but we don't presently have any way of
8238 knowing that. */
8239 reversible_mem_store = 0;
8241 /* If the store depends on a register that is set after the
8242 store, it depends on the initial value, and is thus not
8243 reversible. */
8244 for (v = bl->giv; reversible_mem_store && v; v = v->next_iv)
8246 if (v->giv_type == DEST_REG
8247 && reg_mentioned_p (v->dest_reg,
8248 PATTERN (loop_info->first_loop_store_insn))
8249 && loop_insn_first_p (loop_info->first_loop_store_insn,
8250 v->insn))
8251 reversible_mem_store = 0;
8255 else
8256 return 0;
8258 /* This code only acts for innermost loops. Also it simplifies
8259 the memory address check by only reversing loops with
8260 zero or one memory access.
8261 Two memory accesses could involve parts of the same array,
8262 and that can't be reversed.
8263 If the biv is used only for counting, than we don't need to worry
8264 about all these things. */
8266 if ((num_nonfixed_reads <= 1
8267 && ! loop_info->has_nonconst_call
8268 && ! loop_info->has_prefetch
8269 && ! loop_info->has_volatile
8270 && reversible_mem_store
8271 && (bl->giv_count + bl->biv_count + loop_info->num_mem_sets
8272 + num_unmoved_movables (loop) + compare_and_branch == insn_count)
8273 && (bl == ivs->list && bl->next == 0))
8274 || (no_use_except_counting && ! loop_info->has_prefetch))
8276 rtx tem;
8278 /* Loop can be reversed. */
8279 if (loop_dump_stream)
8280 fprintf (loop_dump_stream, "Can reverse loop\n");
8282 /* Now check other conditions:
8284 The increment must be a constant, as must the initial value,
8285 and the comparison code must be LT.
8287 This test can probably be improved since +/- 1 in the constant
8288 can be obtained by changing LT to LE and vice versa; this is
8289 confusing. */
8291 if (comparison
8292 /* for constants, LE gets turned into LT */
8293 && (GET_CODE (comparison) == LT
8294 || (GET_CODE (comparison) == LE
8295 && no_use_except_counting)))
8297 HOST_WIDE_INT add_val, add_adjust, comparison_val = 0;
8298 rtx initial_value, comparison_value;
8299 int nonneg = 0;
8300 enum rtx_code cmp_code;
8301 int comparison_const_width;
8302 unsigned HOST_WIDE_INT comparison_sign_mask;
8304 add_val = INTVAL (bl->biv->add_val);
8305 comparison_value = XEXP (comparison, 1);
8306 if (GET_MODE (comparison_value) == VOIDmode)
8307 comparison_const_width
8308 = GET_MODE_BITSIZE (GET_MODE (XEXP (comparison, 0)));
8309 else
8310 comparison_const_width
8311 = GET_MODE_BITSIZE (GET_MODE (comparison_value));
8312 if (comparison_const_width > HOST_BITS_PER_WIDE_INT)
8313 comparison_const_width = HOST_BITS_PER_WIDE_INT;
8314 comparison_sign_mask
8315 = (unsigned HOST_WIDE_INT) 1 << (comparison_const_width - 1);
8317 /* If the comparison value is not a loop invariant, then we
8318 can not reverse this loop.
8320 ??? If the insns which initialize the comparison value as
8321 a whole compute an invariant result, then we could move
8322 them out of the loop and proceed with loop reversal. */
8323 if (! loop_invariant_p (loop, comparison_value))
8324 return 0;
8326 if (GET_CODE (comparison_value) == CONST_INT)
8327 comparison_val = INTVAL (comparison_value);
8328 initial_value = bl->initial_value;
8330 /* Normalize the initial value if it is an integer and
8331 has no other use except as a counter. This will allow
8332 a few more loops to be reversed. */
8333 if (no_use_except_counting
8334 && GET_CODE (comparison_value) == CONST_INT
8335 && GET_CODE (initial_value) == CONST_INT)
8337 comparison_val = comparison_val - INTVAL (bl->initial_value);
8338 /* The code below requires comparison_val to be a multiple
8339 of add_val in order to do the loop reversal, so
8340 round up comparison_val to a multiple of add_val.
8341 Since comparison_value is constant, we know that the
8342 current comparison code is LT. */
8343 comparison_val = comparison_val + add_val - 1;
8344 comparison_val
8345 -= (unsigned HOST_WIDE_INT) comparison_val % add_val;
8346 /* We postpone overflow checks for COMPARISON_VAL here;
8347 even if there is an overflow, we might still be able to
8348 reverse the loop, if converting the loop exit test to
8349 NE is possible. */
8350 initial_value = const0_rtx;
8353 /* First check if we can do a vanilla loop reversal. */
8354 if (initial_value == const0_rtx
8355 /* If we have a decrement_and_branch_on_count,
8356 prefer the NE test, since this will allow that
8357 instruction to be generated. Note that we must
8358 use a vanilla loop reversal if the biv is used to
8359 calculate a giv or has a non-counting use. */
8360 #if ! defined (HAVE_decrement_and_branch_until_zero) \
8361 && defined (HAVE_decrement_and_branch_on_count)
8362 && (! (add_val == 1 && loop->vtop
8363 && (bl->biv_count == 0
8364 || no_use_except_counting)))
8365 #endif
8366 && GET_CODE (comparison_value) == CONST_INT
8367 /* Now do postponed overflow checks on COMPARISON_VAL. */
8368 && ! (((comparison_val - add_val) ^ INTVAL (comparison_value))
8369 & comparison_sign_mask))
8371 /* Register will always be nonnegative, with value
8372 0 on last iteration */
8373 add_adjust = add_val;
8374 nonneg = 1;
8375 cmp_code = GE;
8377 else if (add_val == 1 && loop->vtop
8378 && (bl->biv_count == 0
8379 || no_use_except_counting))
8381 add_adjust = 0;
8382 cmp_code = NE;
8384 else
8385 return 0;
8387 if (GET_CODE (comparison) == LE)
8388 add_adjust -= add_val;
8390 /* If the initial value is not zero, or if the comparison
8391 value is not an exact multiple of the increment, then we
8392 can not reverse this loop. */
8393 if (initial_value == const0_rtx
8394 && GET_CODE (comparison_value) == CONST_INT)
8396 if (((unsigned HOST_WIDE_INT) comparison_val % add_val) != 0)
8397 return 0;
8399 else
8401 if (! no_use_except_counting || add_val != 1)
8402 return 0;
8405 final_value = comparison_value;
8407 /* Reset these in case we normalized the initial value
8408 and comparison value above. */
8409 if (GET_CODE (comparison_value) == CONST_INT
8410 && GET_CODE (initial_value) == CONST_INT)
8412 comparison_value = GEN_INT (comparison_val);
8413 final_value
8414 = GEN_INT (comparison_val + INTVAL (bl->initial_value));
8416 bl->initial_value = initial_value;
8418 /* Save some info needed to produce the new insns. */
8419 reg = bl->biv->dest_reg;
8420 jump_label = condjump_label (PREV_INSN (loop_end));
8421 new_add_val = GEN_INT (-INTVAL (bl->biv->add_val));
8423 /* Set start_value; if this is not a CONST_INT, we need
8424 to generate a SUB.
8425 Initialize biv to start_value before loop start.
8426 The old initializing insn will be deleted as a
8427 dead store by flow.c. */
8428 if (initial_value == const0_rtx
8429 && GET_CODE (comparison_value) == CONST_INT)
8431 start_value = GEN_INT (comparison_val - add_adjust);
8432 loop_insn_hoist (loop, gen_move_insn (reg, start_value));
8434 else if (GET_CODE (initial_value) == CONST_INT)
8436 enum machine_mode mode = GET_MODE (reg);
8437 rtx offset = GEN_INT (-INTVAL (initial_value) - add_adjust);
8438 rtx add_insn = gen_add3_insn (reg, comparison_value, offset);
8440 if (add_insn == 0)
8441 return 0;
8443 start_value
8444 = gen_rtx_PLUS (mode, comparison_value, offset);
8445 loop_insn_hoist (loop, add_insn);
8446 if (GET_CODE (comparison) == LE)
8447 final_value = gen_rtx_PLUS (mode, comparison_value,
8448 GEN_INT (add_val));
8450 else if (! add_adjust)
8452 enum machine_mode mode = GET_MODE (reg);
8453 rtx sub_insn = gen_sub3_insn (reg, comparison_value,
8454 initial_value);
8456 if (sub_insn == 0)
8457 return 0;
8458 start_value
8459 = gen_rtx_MINUS (mode, comparison_value, initial_value);
8460 loop_insn_hoist (loop, sub_insn);
8462 else
8463 /* We could handle the other cases too, but it'll be
8464 better to have a testcase first. */
8465 return 0;
8467 /* We may not have a single insn which can increment a reg, so
8468 create a sequence to hold all the insns from expand_inc. */
8469 start_sequence ();
8470 expand_inc (reg, new_add_val);
8471 tem = get_insns ();
8472 end_sequence ();
8474 p = loop_insn_emit_before (loop, 0, bl->biv->insn, tem);
8475 delete_insn (bl->biv->insn);
8477 /* Update biv info to reflect its new status. */
8478 bl->biv->insn = p;
8479 bl->initial_value = start_value;
8480 bl->biv->add_val = new_add_val;
8482 /* Update loop info. */
8483 loop_info->initial_value = reg;
8484 loop_info->initial_equiv_value = reg;
8485 loop_info->final_value = const0_rtx;
8486 loop_info->final_equiv_value = const0_rtx;
8487 loop_info->comparison_value = const0_rtx;
8488 loop_info->comparison_code = cmp_code;
8489 loop_info->increment = new_add_val;
8491 /* Inc LABEL_NUSES so that delete_insn will
8492 not delete the label. */
8493 LABEL_NUSES (XEXP (jump_label, 0))++;
8495 /* Emit an insn after the end of the loop to set the biv's
8496 proper exit value if it is used anywhere outside the loop. */
8497 if ((REGNO_LAST_UID (bl->regno) != INSN_UID (first_compare))
8498 || ! bl->init_insn
8499 || REGNO_FIRST_UID (bl->regno) != INSN_UID (bl->init_insn))
8500 loop_insn_sink (loop, gen_load_of_final_value (reg, final_value));
8502 /* Delete compare/branch at end of loop. */
8503 delete_related_insns (PREV_INSN (loop_end));
8504 if (compare_and_branch == 2)
8505 delete_related_insns (first_compare);
8507 /* Add new compare/branch insn at end of loop. */
8508 start_sequence ();
8509 emit_cmp_and_jump_insns (reg, const0_rtx, cmp_code, NULL_RTX,
8510 GET_MODE (reg), 0,
8511 XEXP (jump_label, 0));
8512 tem = get_insns ();
8513 end_sequence ();
8514 emit_jump_insn_before (tem, loop_end);
8516 for (tem = PREV_INSN (loop_end);
8517 tem && GET_CODE (tem) != JUMP_INSN;
8518 tem = PREV_INSN (tem))
8521 if (tem)
8522 JUMP_LABEL (tem) = XEXP (jump_label, 0);
8524 if (nonneg)
8526 if (tem)
8528 /* Increment of LABEL_NUSES done above. */
8529 /* Register is now always nonnegative,
8530 so add REG_NONNEG note to the branch. */
8531 REG_NOTES (tem) = gen_rtx_EXPR_LIST (REG_NONNEG, reg,
8532 REG_NOTES (tem));
8534 bl->nonneg = 1;
8537 /* No insn may reference both the reversed and another biv or it
8538 will fail (see comment near the top of the loop reversal
8539 code).
8540 Earlier on, we have verified that the biv has no use except
8541 counting, or it is the only biv in this function.
8542 However, the code that computes no_use_except_counting does
8543 not verify reg notes. It's possible to have an insn that
8544 references another biv, and has a REG_EQUAL note with an
8545 expression based on the reversed biv. To avoid this case,
8546 remove all REG_EQUAL notes based on the reversed biv
8547 here. */
8548 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
8549 if (INSN_P (p))
8551 rtx *pnote;
8552 rtx set = single_set (p);
8553 /* If this is a set of a GIV based on the reversed biv, any
8554 REG_EQUAL notes should still be correct. */
8555 if (! set
8556 || GET_CODE (SET_DEST (set)) != REG
8557 || (size_t) REGNO (SET_DEST (set)) >= ivs->n_regs
8558 || REG_IV_TYPE (ivs, REGNO (SET_DEST (set))) != GENERAL_INDUCT
8559 || REG_IV_INFO (ivs, REGNO (SET_DEST (set)))->src_reg != bl->biv->src_reg)
8560 for (pnote = &REG_NOTES (p); *pnote;)
8562 if (REG_NOTE_KIND (*pnote) == REG_EQUAL
8563 && reg_mentioned_p (regno_reg_rtx[bl->regno],
8564 XEXP (*pnote, 0)))
8565 *pnote = XEXP (*pnote, 1);
8566 else
8567 pnote = &XEXP (*pnote, 1);
8571 /* Mark that this biv has been reversed. Each giv which depends
8572 on this biv, and which is also live past the end of the loop
8573 will have to be fixed up. */
8575 bl->reversed = 1;
8577 if (loop_dump_stream)
8579 fprintf (loop_dump_stream, "Reversed loop");
8580 if (bl->nonneg)
8581 fprintf (loop_dump_stream, " and added reg_nonneg\n");
8582 else
8583 fprintf (loop_dump_stream, "\n");
8586 return 1;
8591 return 0;
8594 /* Verify whether the biv BL appears to be eliminable,
8595 based on the insns in the loop that refer to it.
8597 If ELIMINATE_P is nonzero, actually do the elimination.
8599 THRESHOLD and INSN_COUNT are from loop_optimize and are used to
8600 determine whether invariant insns should be placed inside or at the
8601 start of the loop. */
8603 static int
8604 maybe_eliminate_biv (loop, bl, eliminate_p, threshold, insn_count)
8605 const struct loop *loop;
8606 struct iv_class *bl;
8607 int eliminate_p;
8608 int threshold, insn_count;
8610 struct loop_ivs *ivs = LOOP_IVS (loop);
8611 rtx reg = bl->biv->dest_reg;
8612 rtx p;
8614 /* Scan all insns in the loop, stopping if we find one that uses the
8615 biv in a way that we cannot eliminate. */
8617 for (p = loop->start; p != loop->end; p = NEXT_INSN (p))
8619 enum rtx_code code = GET_CODE (p);
8620 basic_block where_bb = 0;
8621 rtx where_insn = threshold >= insn_count ? 0 : p;
8623 /* If this is a libcall that sets a giv, skip ahead to its end. */
8624 if (GET_RTX_CLASS (code) == 'i')
8626 rtx note = find_reg_note (p, REG_LIBCALL, NULL_RTX);
8628 if (note)
8630 rtx last = XEXP (note, 0);
8631 rtx set = single_set (last);
8633 if (set && GET_CODE (SET_DEST (set)) == REG)
8635 unsigned int regno = REGNO (SET_DEST (set));
8637 if (regno < ivs->n_regs
8638 && REG_IV_TYPE (ivs, regno) == GENERAL_INDUCT
8639 && REG_IV_INFO (ivs, regno)->src_reg == bl->biv->src_reg)
8640 p = last;
8644 if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
8645 && reg_mentioned_p (reg, PATTERN (p))
8646 && ! maybe_eliminate_biv_1 (loop, PATTERN (p), p, bl,
8647 eliminate_p, where_bb, where_insn))
8649 if (loop_dump_stream)
8650 fprintf (loop_dump_stream,
8651 "Cannot eliminate biv %d: biv used in insn %d.\n",
8652 bl->regno, INSN_UID (p));
8653 break;
8657 if (p == loop->end)
8659 if (loop_dump_stream)
8660 fprintf (loop_dump_stream, "biv %d %s eliminated.\n",
8661 bl->regno, eliminate_p ? "was" : "can be");
8662 return 1;
8665 return 0;
8668 /* INSN and REFERENCE are instructions in the same insn chain.
8669 Return nonzero if INSN is first. */
8672 loop_insn_first_p (insn, reference)
8673 rtx insn, reference;
8675 rtx p, q;
8677 for (p = insn, q = reference;;)
8679 /* Start with test for not first so that INSN == REFERENCE yields not
8680 first. */
8681 if (q == insn || ! p)
8682 return 0;
8683 if (p == reference || ! q)
8684 return 1;
8686 /* Either of P or Q might be a NOTE. Notes have the same LUID as the
8687 previous insn, hence the <= comparison below does not work if
8688 P is a note. */
8689 if (INSN_UID (p) < max_uid_for_loop
8690 && INSN_UID (q) < max_uid_for_loop
8691 && GET_CODE (p) != NOTE)
8692 return INSN_LUID (p) <= INSN_LUID (q);
8694 if (INSN_UID (p) >= max_uid_for_loop
8695 || GET_CODE (p) == NOTE)
8696 p = NEXT_INSN (p);
8697 if (INSN_UID (q) >= max_uid_for_loop)
8698 q = NEXT_INSN (q);
8702 /* We are trying to eliminate BIV in INSN using GIV. Return nonzero if
8703 the offset that we have to take into account due to auto-increment /
8704 div derivation is zero. */
8705 static int
8706 biv_elimination_giv_has_0_offset (biv, giv, insn)
8707 struct induction *biv, *giv;
8708 rtx insn;
8710 /* If the giv V had the auto-inc address optimization applied
8711 to it, and INSN occurs between the giv insn and the biv
8712 insn, then we'd have to adjust the value used here.
8713 This is rare, so we don't bother to make this possible. */
8714 if (giv->auto_inc_opt
8715 && ((loop_insn_first_p (giv->insn, insn)
8716 && loop_insn_first_p (insn, biv->insn))
8717 || (loop_insn_first_p (biv->insn, insn)
8718 && loop_insn_first_p (insn, giv->insn))))
8719 return 0;
8721 return 1;
8724 /* If BL appears in X (part of the pattern of INSN), see if we can
8725 eliminate its use. If so, return 1. If not, return 0.
8727 If BIV does not appear in X, return 1.
8729 If ELIMINATE_P is nonzero, actually do the elimination.
8730 WHERE_INSN/WHERE_BB indicate where extra insns should be added.
8731 Depending on how many items have been moved out of the loop, it
8732 will either be before INSN (when WHERE_INSN is nonzero) or at the
8733 start of the loop (when WHERE_INSN is zero). */
8735 static int
8736 maybe_eliminate_biv_1 (loop, x, insn, bl, eliminate_p, where_bb, where_insn)
8737 const struct loop *loop;
8738 rtx x, insn;
8739 struct iv_class *bl;
8740 int eliminate_p;
8741 basic_block where_bb;
8742 rtx where_insn;
8744 enum rtx_code code = GET_CODE (x);
8745 rtx reg = bl->biv->dest_reg;
8746 enum machine_mode mode = GET_MODE (reg);
8747 struct induction *v;
8748 rtx arg, tem;
8749 #ifdef HAVE_cc0
8750 rtx new;
8751 #endif
8752 int arg_operand;
8753 const char *fmt;
8754 int i, j;
8756 switch (code)
8758 case REG:
8759 /* If we haven't already been able to do something with this BIV,
8760 we can't eliminate it. */
8761 if (x == reg)
8762 return 0;
8763 return 1;
8765 case SET:
8766 /* If this sets the BIV, it is not a problem. */
8767 if (SET_DEST (x) == reg)
8768 return 1;
8770 /* If this is an insn that defines a giv, it is also ok because
8771 it will go away when the giv is reduced. */
8772 for (v = bl->giv; v; v = v->next_iv)
8773 if (v->giv_type == DEST_REG && SET_DEST (x) == v->dest_reg)
8774 return 1;
8776 #ifdef HAVE_cc0
8777 if (SET_DEST (x) == cc0_rtx && SET_SRC (x) == reg)
8779 /* Can replace with any giv that was reduced and
8780 that has (MULT_VAL != 0) and (ADD_VAL == 0).
8781 Require a constant for MULT_VAL, so we know it's nonzero.
8782 ??? We disable this optimization to avoid potential
8783 overflows. */
8785 for (v = bl->giv; v; v = v->next_iv)
8786 if (GET_CODE (v->mult_val) == CONST_INT && v->mult_val != const0_rtx
8787 && v->add_val == const0_rtx
8788 && ! v->ignore && ! v->maybe_dead && v->always_computable
8789 && v->mode == mode
8790 && 0)
8792 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8793 continue;
8795 if (! eliminate_p)
8796 return 1;
8798 /* If the giv has the opposite direction of change,
8799 then reverse the comparison. */
8800 if (INTVAL (v->mult_val) < 0)
8801 new = gen_rtx_COMPARE (GET_MODE (v->new_reg),
8802 const0_rtx, v->new_reg);
8803 else
8804 new = v->new_reg;
8806 /* We can probably test that giv's reduced reg. */
8807 if (validate_change (insn, &SET_SRC (x), new, 0))
8808 return 1;
8811 /* Look for a giv with (MULT_VAL != 0) and (ADD_VAL != 0);
8812 replace test insn with a compare insn (cmp REDUCED_GIV ADD_VAL).
8813 Require a constant for MULT_VAL, so we know it's nonzero.
8814 ??? Do this only if ADD_VAL is a pointer to avoid a potential
8815 overflow problem. */
8817 for (v = bl->giv; v; v = v->next_iv)
8818 if (GET_CODE (v->mult_val) == CONST_INT
8819 && v->mult_val != const0_rtx
8820 && ! v->ignore && ! v->maybe_dead && v->always_computable
8821 && v->mode == mode
8822 && (GET_CODE (v->add_val) == SYMBOL_REF
8823 || GET_CODE (v->add_val) == LABEL_REF
8824 || GET_CODE (v->add_val) == CONST
8825 || (GET_CODE (v->add_val) == REG
8826 && REG_POINTER (v->add_val))))
8828 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8829 continue;
8831 if (! eliminate_p)
8832 return 1;
8834 /* If the giv has the opposite direction of change,
8835 then reverse the comparison. */
8836 if (INTVAL (v->mult_val) < 0)
8837 new = gen_rtx_COMPARE (VOIDmode, copy_rtx (v->add_val),
8838 v->new_reg);
8839 else
8840 new = gen_rtx_COMPARE (VOIDmode, v->new_reg,
8841 copy_rtx (v->add_val));
8843 /* Replace biv with the giv's reduced register. */
8844 update_reg_last_use (v->add_val, insn);
8845 if (validate_change (insn, &SET_SRC (PATTERN (insn)), new, 0))
8846 return 1;
8848 /* Insn doesn't support that constant or invariant. Copy it
8849 into a register (it will be a loop invariant.) */
8850 tem = gen_reg_rtx (GET_MODE (v->new_reg));
8852 loop_insn_emit_before (loop, 0, where_insn,
8853 gen_move_insn (tem,
8854 copy_rtx (v->add_val)));
8856 /* Substitute the new register for its invariant value in
8857 the compare expression. */
8858 XEXP (new, (INTVAL (v->mult_val) < 0) ? 0 : 1) = tem;
8859 if (validate_change (insn, &SET_SRC (PATTERN (insn)), new, 0))
8860 return 1;
8863 #endif
8864 break;
8866 case COMPARE:
8867 case EQ: case NE:
8868 case GT: case GE: case GTU: case GEU:
8869 case LT: case LE: case LTU: case LEU:
8870 /* See if either argument is the biv. */
8871 if (XEXP (x, 0) == reg)
8872 arg = XEXP (x, 1), arg_operand = 1;
8873 else if (XEXP (x, 1) == reg)
8874 arg = XEXP (x, 0), arg_operand = 0;
8875 else
8876 break;
8878 if (CONSTANT_P (arg))
8880 /* First try to replace with any giv that has constant positive
8881 mult_val and constant add_val. We might be able to support
8882 negative mult_val, but it seems complex to do it in general. */
8884 for (v = bl->giv; v; v = v->next_iv)
8885 if (GET_CODE (v->mult_val) == CONST_INT
8886 && INTVAL (v->mult_val) > 0
8887 && (GET_CODE (v->add_val) == SYMBOL_REF
8888 || GET_CODE (v->add_val) == LABEL_REF
8889 || GET_CODE (v->add_val) == CONST
8890 || (GET_CODE (v->add_val) == REG
8891 && REG_POINTER (v->add_val)))
8892 && ! v->ignore && ! v->maybe_dead && v->always_computable
8893 && v->mode == mode)
8895 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8896 continue;
8898 /* Don't eliminate if the linear combination that makes up
8899 the giv overflows when it is applied to ARG. */
8900 if (GET_CODE (arg) == CONST_INT)
8902 rtx add_val;
8904 if (GET_CODE (v->add_val) == CONST_INT)
8905 add_val = v->add_val;
8906 else
8907 add_val = const0_rtx;
8909 if (const_mult_add_overflow_p (arg, v->mult_val,
8910 add_val, mode, 1))
8911 continue;
8914 if (! eliminate_p)
8915 return 1;
8917 /* Replace biv with the giv's reduced reg. */
8918 validate_change (insn, &XEXP (x, 1 - arg_operand), v->new_reg, 1);
8920 /* If all constants are actually constant integers and
8921 the derived constant can be directly placed in the COMPARE,
8922 do so. */
8923 if (GET_CODE (arg) == CONST_INT
8924 && GET_CODE (v->add_val) == CONST_INT)
8926 tem = expand_mult_add (arg, NULL_RTX, v->mult_val,
8927 v->add_val, mode, 1);
8929 else
8931 /* Otherwise, load it into a register. */
8932 tem = gen_reg_rtx (mode);
8933 loop_iv_add_mult_emit_before (loop, arg,
8934 v->mult_val, v->add_val,
8935 tem, where_bb, where_insn);
8938 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
8940 if (apply_change_group ())
8941 return 1;
8944 /* Look for giv with positive constant mult_val and nonconst add_val.
8945 Insert insns to calculate new compare value.
8946 ??? Turn this off due to possible overflow. */
8948 for (v = bl->giv; v; v = v->next_iv)
8949 if (GET_CODE (v->mult_val) == CONST_INT
8950 && INTVAL (v->mult_val) > 0
8951 && ! v->ignore && ! v->maybe_dead && v->always_computable
8952 && v->mode == mode
8953 && 0)
8955 rtx tem;
8957 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8958 continue;
8960 if (! eliminate_p)
8961 return 1;
8963 tem = gen_reg_rtx (mode);
8965 /* Replace biv with giv's reduced register. */
8966 validate_change (insn, &XEXP (x, 1 - arg_operand),
8967 v->new_reg, 1);
8969 /* Compute value to compare against. */
8970 loop_iv_add_mult_emit_before (loop, arg,
8971 v->mult_val, v->add_val,
8972 tem, where_bb, where_insn);
8973 /* Use it in this insn. */
8974 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
8975 if (apply_change_group ())
8976 return 1;
8979 else if (GET_CODE (arg) == REG || GET_CODE (arg) == MEM)
8981 if (loop_invariant_p (loop, arg) == 1)
8983 /* Look for giv with constant positive mult_val and nonconst
8984 add_val. Insert insns to compute new compare value.
8985 ??? Turn this off due to possible overflow. */
8987 for (v = bl->giv; v; v = v->next_iv)
8988 if (GET_CODE (v->mult_val) == CONST_INT && INTVAL (v->mult_val) > 0
8989 && ! v->ignore && ! v->maybe_dead && v->always_computable
8990 && v->mode == mode
8991 && 0)
8993 rtx tem;
8995 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8996 continue;
8998 if (! eliminate_p)
8999 return 1;
9001 tem = gen_reg_rtx (mode);
9003 /* Replace biv with giv's reduced register. */
9004 validate_change (insn, &XEXP (x, 1 - arg_operand),
9005 v->new_reg, 1);
9007 /* Compute value to compare against. */
9008 loop_iv_add_mult_emit_before (loop, arg,
9009 v->mult_val, v->add_val,
9010 tem, where_bb, where_insn);
9011 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
9012 if (apply_change_group ())
9013 return 1;
9017 /* This code has problems. Basically, you can't know when
9018 seeing if we will eliminate BL, whether a particular giv
9019 of ARG will be reduced. If it isn't going to be reduced,
9020 we can't eliminate BL. We can try forcing it to be reduced,
9021 but that can generate poor code.
9023 The problem is that the benefit of reducing TV, below should
9024 be increased if BL can actually be eliminated, but this means
9025 we might have to do a topological sort of the order in which
9026 we try to process biv. It doesn't seem worthwhile to do
9027 this sort of thing now. */
9029 #if 0
9030 /* Otherwise the reg compared with had better be a biv. */
9031 if (GET_CODE (arg) != REG
9032 || REG_IV_TYPE (ivs, REGNO (arg)) != BASIC_INDUCT)
9033 return 0;
9035 /* Look for a pair of givs, one for each biv,
9036 with identical coefficients. */
9037 for (v = bl->giv; v; v = v->next_iv)
9039 struct induction *tv;
9041 if (v->ignore || v->maybe_dead || v->mode != mode)
9042 continue;
9044 for (tv = REG_IV_CLASS (ivs, REGNO (arg))->giv; tv;
9045 tv = tv->next_iv)
9046 if (! tv->ignore && ! tv->maybe_dead
9047 && rtx_equal_p (tv->mult_val, v->mult_val)
9048 && rtx_equal_p (tv->add_val, v->add_val)
9049 && tv->mode == mode)
9051 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
9052 continue;
9054 if (! eliminate_p)
9055 return 1;
9057 /* Replace biv with its giv's reduced reg. */
9058 XEXP (x, 1 - arg_operand) = v->new_reg;
9059 /* Replace other operand with the other giv's
9060 reduced reg. */
9061 XEXP (x, arg_operand) = tv->new_reg;
9062 return 1;
9065 #endif
9068 /* If we get here, the biv can't be eliminated. */
9069 return 0;
9071 case MEM:
9072 /* If this address is a DEST_ADDR giv, it doesn't matter if the
9073 biv is used in it, since it will be replaced. */
9074 for (v = bl->giv; v; v = v->next_iv)
9075 if (v->giv_type == DEST_ADDR && v->location == &XEXP (x, 0))
9076 return 1;
9077 break;
9079 default:
9080 break;
9083 /* See if any subexpression fails elimination. */
9084 fmt = GET_RTX_FORMAT (code);
9085 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9087 switch (fmt[i])
9089 case 'e':
9090 if (! maybe_eliminate_biv_1 (loop, XEXP (x, i), insn, bl,
9091 eliminate_p, where_bb, where_insn))
9092 return 0;
9093 break;
9095 case 'E':
9096 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9097 if (! maybe_eliminate_biv_1 (loop, XVECEXP (x, i, j), insn, bl,
9098 eliminate_p, where_bb, where_insn))
9099 return 0;
9100 break;
9104 return 1;
9107 /* Return nonzero if the last use of REG
9108 is in an insn following INSN in the same basic block. */
9110 static int
9111 last_use_this_basic_block (reg, insn)
9112 rtx reg;
9113 rtx insn;
9115 rtx n;
9116 for (n = insn;
9117 n && GET_CODE (n) != CODE_LABEL && GET_CODE (n) != JUMP_INSN;
9118 n = NEXT_INSN (n))
9120 if (REGNO_LAST_UID (REGNO (reg)) == INSN_UID (n))
9121 return 1;
9123 return 0;
9126 /* Called via `note_stores' to record the initial value of a biv. Here we
9127 just record the location of the set and process it later. */
9129 static void
9130 record_initial (dest, set, data)
9131 rtx dest;
9132 rtx set;
9133 void *data ATTRIBUTE_UNUSED;
9135 struct loop_ivs *ivs = (struct loop_ivs *) data;
9136 struct iv_class *bl;
9138 if (GET_CODE (dest) != REG
9139 || REGNO (dest) >= ivs->n_regs
9140 || REG_IV_TYPE (ivs, REGNO (dest)) != BASIC_INDUCT)
9141 return;
9143 bl = REG_IV_CLASS (ivs, REGNO (dest));
9145 /* If this is the first set found, record it. */
9146 if (bl->init_insn == 0)
9148 bl->init_insn = note_insn;
9149 bl->init_set = set;
9153 /* If any of the registers in X are "old" and currently have a last use earlier
9154 than INSN, update them to have a last use of INSN. Their actual last use
9155 will be the previous insn but it will not have a valid uid_luid so we can't
9156 use it. X must be a source expression only. */
9158 static void
9159 update_reg_last_use (x, insn)
9160 rtx x;
9161 rtx insn;
9163 /* Check for the case where INSN does not have a valid luid. In this case,
9164 there is no need to modify the regno_last_uid, as this can only happen
9165 when code is inserted after the loop_end to set a pseudo's final value,
9166 and hence this insn will never be the last use of x.
9167 ???? This comment is not correct. See for example loop_givs_reduce.
9168 This may insert an insn before another new insn. */
9169 if (GET_CODE (x) == REG && REGNO (x) < max_reg_before_loop
9170 && INSN_UID (insn) < max_uid_for_loop
9171 && REGNO_LAST_LUID (REGNO (x)) < INSN_LUID (insn))
9173 REGNO_LAST_UID (REGNO (x)) = INSN_UID (insn);
9175 else
9177 int i, j;
9178 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
9179 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
9181 if (fmt[i] == 'e')
9182 update_reg_last_use (XEXP (x, i), insn);
9183 else if (fmt[i] == 'E')
9184 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9185 update_reg_last_use (XVECEXP (x, i, j), insn);
9190 /* Given an insn INSN and condition COND, return the condition in a
9191 canonical form to simplify testing by callers. Specifically:
9193 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
9194 (2) Both operands will be machine operands; (cc0) will have been replaced.
9195 (3) If an operand is a constant, it will be the second operand.
9196 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
9197 for GE, GEU, and LEU.
9199 If the condition cannot be understood, or is an inequality floating-point
9200 comparison which needs to be reversed, 0 will be returned.
9202 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
9204 If EARLIEST is nonzero, it is a pointer to a place where the earliest
9205 insn used in locating the condition was found. If a replacement test
9206 of the condition is desired, it should be placed in front of that
9207 insn and we will be sure that the inputs are still valid.
9209 If WANT_REG is nonzero, we wish the condition to be relative to that
9210 register, if possible. Therefore, do not canonicalize the condition
9211 further. */
9214 canonicalize_condition (insn, cond, reverse, earliest, want_reg)
9215 rtx insn;
9216 rtx cond;
9217 int reverse;
9218 rtx *earliest;
9219 rtx want_reg;
9221 enum rtx_code code;
9222 rtx prev = insn;
9223 rtx set;
9224 rtx tem;
9225 rtx op0, op1;
9226 int reverse_code = 0;
9227 enum machine_mode mode;
9229 code = GET_CODE (cond);
9230 mode = GET_MODE (cond);
9231 op0 = XEXP (cond, 0);
9232 op1 = XEXP (cond, 1);
9234 if (reverse)
9235 code = reversed_comparison_code (cond, insn);
9236 if (code == UNKNOWN)
9237 return 0;
9239 if (earliest)
9240 *earliest = insn;
9242 /* If we are comparing a register with zero, see if the register is set
9243 in the previous insn to a COMPARE or a comparison operation. Perform
9244 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
9245 in cse.c */
9247 while (GET_RTX_CLASS (code) == '<'
9248 && op1 == CONST0_RTX (GET_MODE (op0))
9249 && op0 != want_reg)
9251 /* Set nonzero when we find something of interest. */
9252 rtx x = 0;
9254 #ifdef HAVE_cc0
9255 /* If comparison with cc0, import actual comparison from compare
9256 insn. */
9257 if (op0 == cc0_rtx)
9259 if ((prev = prev_nonnote_insn (prev)) == 0
9260 || GET_CODE (prev) != INSN
9261 || (set = single_set (prev)) == 0
9262 || SET_DEST (set) != cc0_rtx)
9263 return 0;
9265 op0 = SET_SRC (set);
9266 op1 = CONST0_RTX (GET_MODE (op0));
9267 if (earliest)
9268 *earliest = prev;
9270 #endif
9272 /* If this is a COMPARE, pick up the two things being compared. */
9273 if (GET_CODE (op0) == COMPARE)
9275 op1 = XEXP (op0, 1);
9276 op0 = XEXP (op0, 0);
9277 continue;
9279 else if (GET_CODE (op0) != REG)
9280 break;
9282 /* Go back to the previous insn. Stop if it is not an INSN. We also
9283 stop if it isn't a single set or if it has a REG_INC note because
9284 we don't want to bother dealing with it. */
9286 if ((prev = prev_nonnote_insn (prev)) == 0
9287 || GET_CODE (prev) != INSN
9288 || FIND_REG_INC_NOTE (prev, NULL_RTX))
9289 break;
9291 set = set_of (op0, prev);
9293 if (set
9294 && (GET_CODE (set) != SET
9295 || !rtx_equal_p (SET_DEST (set), op0)))
9296 break;
9298 /* If this is setting OP0, get what it sets it to if it looks
9299 relevant. */
9300 if (set)
9302 enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
9303 #ifdef FLOAT_STORE_FLAG_VALUE
9304 REAL_VALUE_TYPE fsfv;
9305 #endif
9307 /* ??? We may not combine comparisons done in a CCmode with
9308 comparisons not done in a CCmode. This is to aid targets
9309 like Alpha that have an IEEE compliant EQ instruction, and
9310 a non-IEEE compliant BEQ instruction. The use of CCmode is
9311 actually artificial, simply to prevent the combination, but
9312 should not affect other platforms.
9314 However, we must allow VOIDmode comparisons to match either
9315 CCmode or non-CCmode comparison, because some ports have
9316 modeless comparisons inside branch patterns.
9318 ??? This mode check should perhaps look more like the mode check
9319 in simplify_comparison in combine. */
9321 if ((GET_CODE (SET_SRC (set)) == COMPARE
9322 || (((code == NE
9323 || (code == LT
9324 && GET_MODE_CLASS (inner_mode) == MODE_INT
9325 && (GET_MODE_BITSIZE (inner_mode)
9326 <= HOST_BITS_PER_WIDE_INT)
9327 && (STORE_FLAG_VALUE
9328 & ((HOST_WIDE_INT) 1
9329 << (GET_MODE_BITSIZE (inner_mode) - 1))))
9330 #ifdef FLOAT_STORE_FLAG_VALUE
9331 || (code == LT
9332 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
9333 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
9334 REAL_VALUE_NEGATIVE (fsfv)))
9335 #endif
9337 && GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<'))
9338 && (((GET_MODE_CLASS (mode) == MODE_CC)
9339 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
9340 || mode == VOIDmode || inner_mode == VOIDmode))
9341 x = SET_SRC (set);
9342 else if (((code == EQ
9343 || (code == GE
9344 && (GET_MODE_BITSIZE (inner_mode)
9345 <= HOST_BITS_PER_WIDE_INT)
9346 && GET_MODE_CLASS (inner_mode) == MODE_INT
9347 && (STORE_FLAG_VALUE
9348 & ((HOST_WIDE_INT) 1
9349 << (GET_MODE_BITSIZE (inner_mode) - 1))))
9350 #ifdef FLOAT_STORE_FLAG_VALUE
9351 || (code == GE
9352 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
9353 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
9354 REAL_VALUE_NEGATIVE (fsfv)))
9355 #endif
9357 && GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<'
9358 && (((GET_MODE_CLASS (mode) == MODE_CC)
9359 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
9360 || mode == VOIDmode || inner_mode == VOIDmode))
9363 reverse_code = 1;
9364 x = SET_SRC (set);
9366 else
9367 break;
9370 else if (reg_set_p (op0, prev))
9371 /* If this sets OP0, but not directly, we have to give up. */
9372 break;
9374 if (x)
9376 if (GET_RTX_CLASS (GET_CODE (x)) == '<')
9377 code = GET_CODE (x);
9378 if (reverse_code)
9380 code = reversed_comparison_code (x, prev);
9381 if (code == UNKNOWN)
9382 return 0;
9383 reverse_code = 0;
9386 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
9387 if (earliest)
9388 *earliest = prev;
9392 /* If constant is first, put it last. */
9393 if (CONSTANT_P (op0))
9394 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
9396 /* If OP0 is the result of a comparison, we weren't able to find what
9397 was really being compared, so fail. */
9398 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
9399 return 0;
9401 /* Canonicalize any ordered comparison with integers involving equality
9402 if we can do computations in the relevant mode and we do not
9403 overflow. */
9405 if (GET_CODE (op1) == CONST_INT
9406 && GET_MODE (op0) != VOIDmode
9407 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
9409 HOST_WIDE_INT const_val = INTVAL (op1);
9410 unsigned HOST_WIDE_INT uconst_val = const_val;
9411 unsigned HOST_WIDE_INT max_val
9412 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
9414 switch (code)
9416 case LE:
9417 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
9418 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
9419 break;
9421 /* When cross-compiling, const_val might be sign-extended from
9422 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
9423 case GE:
9424 if ((HOST_WIDE_INT) (const_val & max_val)
9425 != (((HOST_WIDE_INT) 1
9426 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
9427 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
9428 break;
9430 case LEU:
9431 if (uconst_val < max_val)
9432 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
9433 break;
9435 case GEU:
9436 if (uconst_val != 0)
9437 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
9438 break;
9440 default:
9441 break;
9445 #ifdef HAVE_cc0
9446 /* Never return CC0; return zero instead. */
9447 if (op0 == cc0_rtx)
9448 return 0;
9449 #endif
9451 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
9454 /* Given a jump insn JUMP, return the condition that will cause it to branch
9455 to its JUMP_LABEL. If the condition cannot be understood, or is an
9456 inequality floating-point comparison which needs to be reversed, 0 will
9457 be returned.
9459 If EARLIEST is nonzero, it is a pointer to a place where the earliest
9460 insn used in locating the condition was found. If a replacement test
9461 of the condition is desired, it should be placed in front of that
9462 insn and we will be sure that the inputs are still valid. */
9465 get_condition (jump, earliest)
9466 rtx jump;
9467 rtx *earliest;
9469 rtx cond;
9470 int reverse;
9471 rtx set;
9473 /* If this is not a standard conditional jump, we can't parse it. */
9474 if (GET_CODE (jump) != JUMP_INSN
9475 || ! any_condjump_p (jump))
9476 return 0;
9477 set = pc_set (jump);
9479 cond = XEXP (SET_SRC (set), 0);
9481 /* If this branches to JUMP_LABEL when the condition is false, reverse
9482 the condition. */
9483 reverse
9484 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
9485 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump);
9487 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX);
9490 /* Similar to above routine, except that we also put an invariant last
9491 unless both operands are invariants. */
9494 get_condition_for_loop (loop, x)
9495 const struct loop *loop;
9496 rtx x;
9498 rtx comparison = get_condition (x, (rtx*) 0);
9500 if (comparison == 0
9501 || ! loop_invariant_p (loop, XEXP (comparison, 0))
9502 || loop_invariant_p (loop, XEXP (comparison, 1)))
9503 return comparison;
9505 return gen_rtx_fmt_ee (swap_condition (GET_CODE (comparison)), VOIDmode,
9506 XEXP (comparison, 1), XEXP (comparison, 0));
9509 /* Scan the function and determine whether it has indirect (computed) jumps.
9511 This is taken mostly from flow.c; similar code exists elsewhere
9512 in the compiler. It may be useful to put this into rtlanal.c. */
9513 static int
9514 indirect_jump_in_function_p (start)
9515 rtx start;
9517 rtx insn;
9519 for (insn = start; insn; insn = NEXT_INSN (insn))
9520 if (computed_jump_p (insn))
9521 return 1;
9523 return 0;
9526 /* Add MEM to the LOOP_MEMS array, if appropriate. See the
9527 documentation for LOOP_MEMS for the definition of `appropriate'.
9528 This function is called from prescan_loop via for_each_rtx. */
9530 static int
9531 insert_loop_mem (mem, data)
9532 rtx *mem;
9533 void *data ATTRIBUTE_UNUSED;
9535 struct loop_info *loop_info = data;
9536 int i;
9537 rtx m = *mem;
9539 if (m == NULL_RTX)
9540 return 0;
9542 switch (GET_CODE (m))
9544 case MEM:
9545 break;
9547 case CLOBBER:
9548 /* We're not interested in MEMs that are only clobbered. */
9549 return -1;
9551 case CONST_DOUBLE:
9552 /* We're not interested in the MEM associated with a
9553 CONST_DOUBLE, so there's no need to traverse into this. */
9554 return -1;
9556 case EXPR_LIST:
9557 /* We're not interested in any MEMs that only appear in notes. */
9558 return -1;
9560 default:
9561 /* This is not a MEM. */
9562 return 0;
9565 /* See if we've already seen this MEM. */
9566 for (i = 0; i < loop_info->mems_idx; ++i)
9567 if (rtx_equal_p (m, loop_info->mems[i].mem))
9569 if (GET_MODE (m) != GET_MODE (loop_info->mems[i].mem))
9570 /* The modes of the two memory accesses are different. If
9571 this happens, something tricky is going on, and we just
9572 don't optimize accesses to this MEM. */
9573 loop_info->mems[i].optimize = 0;
9575 return 0;
9578 /* Resize the array, if necessary. */
9579 if (loop_info->mems_idx == loop_info->mems_allocated)
9581 if (loop_info->mems_allocated != 0)
9582 loop_info->mems_allocated *= 2;
9583 else
9584 loop_info->mems_allocated = 32;
9586 loop_info->mems = (loop_mem_info *)
9587 xrealloc (loop_info->mems,
9588 loop_info->mems_allocated * sizeof (loop_mem_info));
9591 /* Actually insert the MEM. */
9592 loop_info->mems[loop_info->mems_idx].mem = m;
9593 /* We can't hoist this MEM out of the loop if it's a BLKmode MEM
9594 because we can't put it in a register. We still store it in the
9595 table, though, so that if we see the same address later, but in a
9596 non-BLK mode, we'll not think we can optimize it at that point. */
9597 loop_info->mems[loop_info->mems_idx].optimize = (GET_MODE (m) != BLKmode);
9598 loop_info->mems[loop_info->mems_idx].reg = NULL_RTX;
9599 ++loop_info->mems_idx;
9601 return 0;
9605 /* Allocate REGS->ARRAY or reallocate it if it is too small.
9607 Increment REGS->ARRAY[I].SET_IN_LOOP at the index I of each
9608 register that is modified by an insn between FROM and TO. If the
9609 value of an element of REGS->array[I].SET_IN_LOOP becomes 127 or
9610 more, stop incrementing it, to avoid overflow.
9612 Store in REGS->ARRAY[I].SINGLE_USAGE the single insn in which
9613 register I is used, if it is only used once. Otherwise, it is set
9614 to 0 (for no uses) or const0_rtx for more than one use. This
9615 parameter may be zero, in which case this processing is not done.
9617 Set REGS->ARRAY[I].MAY_NOT_OPTIMIZE nonzero if we should not
9618 optimize register I. */
9620 static void
9621 loop_regs_scan (loop, extra_size)
9622 const struct loop *loop;
9623 int extra_size;
9625 struct loop_regs *regs = LOOP_REGS (loop);
9626 int old_nregs;
9627 /* last_set[n] is nonzero iff reg n has been set in the current
9628 basic block. In that case, it is the insn that last set reg n. */
9629 rtx *last_set;
9630 rtx insn;
9631 int i;
9633 old_nregs = regs->num;
9634 regs->num = max_reg_num ();
9636 /* Grow the regs array if not allocated or too small. */
9637 if (regs->num >= regs->size)
9639 regs->size = regs->num + extra_size;
9641 regs->array = (struct loop_reg *)
9642 xrealloc (regs->array, regs->size * sizeof (*regs->array));
9644 /* Zero the new elements. */
9645 memset (regs->array + old_nregs, 0,
9646 (regs->size - old_nregs) * sizeof (*regs->array));
9649 /* Clear previously scanned fields but do not clear n_times_set. */
9650 for (i = 0; i < old_nregs; i++)
9652 regs->array[i].set_in_loop = 0;
9653 regs->array[i].may_not_optimize = 0;
9654 regs->array[i].single_usage = NULL_RTX;
9657 last_set = (rtx *) xcalloc (regs->num, sizeof (rtx));
9659 /* Scan the loop, recording register usage. */
9660 for (insn = loop->top ? loop->top : loop->start; insn != loop->end;
9661 insn = NEXT_INSN (insn))
9663 if (INSN_P (insn))
9665 /* Record registers that have exactly one use. */
9666 find_single_use_in_loop (regs, insn, PATTERN (insn));
9668 /* Include uses in REG_EQUAL notes. */
9669 if (REG_NOTES (insn))
9670 find_single_use_in_loop (regs, insn, REG_NOTES (insn));
9672 if (GET_CODE (PATTERN (insn)) == SET
9673 || GET_CODE (PATTERN (insn)) == CLOBBER)
9674 count_one_set (regs, insn, PATTERN (insn), last_set);
9675 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
9677 int i;
9678 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
9679 count_one_set (regs, insn, XVECEXP (PATTERN (insn), 0, i),
9680 last_set);
9684 if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN)
9685 memset (last_set, 0, regs->num * sizeof (rtx));
9687 /* Invalidate all registers used for function argument passing.
9688 We check rtx_varies_p for the same reason as below, to allow
9689 optimizing PIC calculations. */
9690 if (GET_CODE (insn) == CALL_INSN)
9692 rtx link;
9693 for (link = CALL_INSN_FUNCTION_USAGE (insn);
9694 link;
9695 link = XEXP (link, 1))
9697 rtx op, reg;
9699 if (GET_CODE (op = XEXP (link, 0)) == USE
9700 && GET_CODE (reg = XEXP (op, 0)) == REG
9701 && rtx_varies_p (reg, 1))
9702 regs->array[REGNO (reg)].may_not_optimize = 1;
9707 /* Invalidate all hard registers clobbered by calls. With one exception:
9708 a call-clobbered PIC register is still function-invariant for our
9709 purposes, since we can hoist any PIC calculations out of the loop.
9710 Thus the call to rtx_varies_p. */
9711 if (LOOP_INFO (loop)->has_call)
9712 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
9713 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i)
9714 && rtx_varies_p (regno_reg_rtx[i], 1))
9716 regs->array[i].may_not_optimize = 1;
9717 regs->array[i].set_in_loop = 1;
9720 #ifdef AVOID_CCMODE_COPIES
9721 /* Don't try to move insns which set CC registers if we should not
9722 create CCmode register copies. */
9723 for (i = regs->num - 1; i >= FIRST_PSEUDO_REGISTER; i--)
9724 if (GET_MODE_CLASS (GET_MODE (regno_reg_rtx[i])) == MODE_CC)
9725 regs->array[i].may_not_optimize = 1;
9726 #endif
9728 /* Set regs->array[I].n_times_set for the new registers. */
9729 for (i = old_nregs; i < regs->num; i++)
9730 regs->array[i].n_times_set = regs->array[i].set_in_loop;
9732 free (last_set);
9735 /* Returns the number of real INSNs in the LOOP. */
9737 static int
9738 count_insns_in_loop (loop)
9739 const struct loop *loop;
9741 int count = 0;
9742 rtx insn;
9744 for (insn = loop->top ? loop->top : loop->start; insn != loop->end;
9745 insn = NEXT_INSN (insn))
9746 if (INSN_P (insn))
9747 ++count;
9749 return count;
9752 /* Move MEMs into registers for the duration of the loop. */
9754 static void
9755 load_mems (loop)
9756 const struct loop *loop;
9758 struct loop_info *loop_info = LOOP_INFO (loop);
9759 struct loop_regs *regs = LOOP_REGS (loop);
9760 int maybe_never = 0;
9761 int i;
9762 rtx p, prev_ebb_head;
9763 rtx label = NULL_RTX;
9764 rtx end_label;
9765 /* Nonzero if the next instruction may never be executed. */
9766 int next_maybe_never = 0;
9767 unsigned int last_max_reg = max_reg_num ();
9769 if (loop_info->mems_idx == 0)
9770 return;
9772 /* We cannot use next_label here because it skips over normal insns. */
9773 end_label = next_nonnote_insn (loop->end);
9774 if (end_label && GET_CODE (end_label) != CODE_LABEL)
9775 end_label = NULL_RTX;
9777 /* Check to see if it's possible that some instructions in the loop are
9778 never executed. Also check if there is a goto out of the loop other
9779 than right after the end of the loop. */
9780 for (p = next_insn_in_loop (loop, loop->scan_start);
9781 p != NULL_RTX;
9782 p = next_insn_in_loop (loop, p))
9784 if (GET_CODE (p) == CODE_LABEL)
9785 maybe_never = 1;
9786 else if (GET_CODE (p) == JUMP_INSN
9787 /* If we enter the loop in the middle, and scan
9788 around to the beginning, don't set maybe_never
9789 for that. This must be an unconditional jump,
9790 otherwise the code at the top of the loop might
9791 never be executed. Unconditional jumps are
9792 followed a by barrier then loop end. */
9793 && ! (GET_CODE (p) == JUMP_INSN
9794 && JUMP_LABEL (p) == loop->top
9795 && NEXT_INSN (NEXT_INSN (p)) == loop->end
9796 && any_uncondjump_p (p)))
9798 /* If this is a jump outside of the loop but not right
9799 after the end of the loop, we would have to emit new fixup
9800 sequences for each such label. */
9801 if (/* If we can't tell where control might go when this
9802 JUMP_INSN is executed, we must be conservative. */
9803 !JUMP_LABEL (p)
9804 || (JUMP_LABEL (p) != end_label
9805 && (INSN_UID (JUMP_LABEL (p)) >= max_uid_for_loop
9806 || INSN_LUID (JUMP_LABEL (p)) < INSN_LUID (loop->start)
9807 || INSN_LUID (JUMP_LABEL (p)) > INSN_LUID (loop->end))))
9808 return;
9810 if (!any_condjump_p (p))
9811 /* Something complicated. */
9812 maybe_never = 1;
9813 else
9814 /* If there are any more instructions in the loop, they
9815 might not be reached. */
9816 next_maybe_never = 1;
9818 else if (next_maybe_never)
9819 maybe_never = 1;
9822 /* Find start of the extended basic block that enters the loop. */
9823 for (p = loop->start;
9824 PREV_INSN (p) && GET_CODE (p) != CODE_LABEL;
9825 p = PREV_INSN (p))
9827 prev_ebb_head = p;
9829 cselib_init ();
9831 /* Build table of mems that get set to constant values before the
9832 loop. */
9833 for (; p != loop->start; p = NEXT_INSN (p))
9834 cselib_process_insn (p);
9836 /* Actually move the MEMs. */
9837 for (i = 0; i < loop_info->mems_idx; ++i)
9839 regset_head load_copies;
9840 regset_head store_copies;
9841 int written = 0;
9842 rtx reg;
9843 rtx mem = loop_info->mems[i].mem;
9844 rtx mem_list_entry;
9846 if (MEM_VOLATILE_P (mem)
9847 || loop_invariant_p (loop, XEXP (mem, 0)) != 1)
9848 /* There's no telling whether or not MEM is modified. */
9849 loop_info->mems[i].optimize = 0;
9851 /* Go through the MEMs written to in the loop to see if this
9852 one is aliased by one of them. */
9853 mem_list_entry = loop_info->store_mems;
9854 while (mem_list_entry)
9856 if (rtx_equal_p (mem, XEXP (mem_list_entry, 0)))
9857 written = 1;
9858 else if (true_dependence (XEXP (mem_list_entry, 0), VOIDmode,
9859 mem, rtx_varies_p))
9861 /* MEM is indeed aliased by this store. */
9862 loop_info->mems[i].optimize = 0;
9863 break;
9865 mem_list_entry = XEXP (mem_list_entry, 1);
9868 if (flag_float_store && written
9869 && GET_MODE_CLASS (GET_MODE (mem)) == MODE_FLOAT)
9870 loop_info->mems[i].optimize = 0;
9872 /* If this MEM is written to, we must be sure that there
9873 are no reads from another MEM that aliases this one. */
9874 if (loop_info->mems[i].optimize && written)
9876 int j;
9878 for (j = 0; j < loop_info->mems_idx; ++j)
9880 if (j == i)
9881 continue;
9882 else if (true_dependence (mem,
9883 VOIDmode,
9884 loop_info->mems[j].mem,
9885 rtx_varies_p))
9887 /* It's not safe to hoist loop_info->mems[i] out of
9888 the loop because writes to it might not be
9889 seen by reads from loop_info->mems[j]. */
9890 loop_info->mems[i].optimize = 0;
9891 break;
9896 if (maybe_never && may_trap_p (mem))
9897 /* We can't access the MEM outside the loop; it might
9898 cause a trap that wouldn't have happened otherwise. */
9899 loop_info->mems[i].optimize = 0;
9901 if (!loop_info->mems[i].optimize)
9902 /* We thought we were going to lift this MEM out of the
9903 loop, but later discovered that we could not. */
9904 continue;
9906 INIT_REG_SET (&load_copies);
9907 INIT_REG_SET (&store_copies);
9909 /* Allocate a pseudo for this MEM. We set REG_USERVAR_P in
9910 order to keep scan_loop from moving stores to this MEM
9911 out of the loop just because this REG is neither a
9912 user-variable nor used in the loop test. */
9913 reg = gen_reg_rtx (GET_MODE (mem));
9914 REG_USERVAR_P (reg) = 1;
9915 loop_info->mems[i].reg = reg;
9917 /* Now, replace all references to the MEM with the
9918 corresponding pseudos. */
9919 maybe_never = 0;
9920 for (p = next_insn_in_loop (loop, loop->scan_start);
9921 p != NULL_RTX;
9922 p = next_insn_in_loop (loop, p))
9924 if (INSN_P (p))
9926 rtx set;
9928 set = single_set (p);
9930 /* See if this copies the mem into a register that isn't
9931 modified afterwards. We'll try to do copy propagation
9932 a little further on. */
9933 if (set
9934 /* @@@ This test is _way_ too conservative. */
9935 && ! maybe_never
9936 && GET_CODE (SET_DEST (set)) == REG
9937 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
9938 && REGNO (SET_DEST (set)) < last_max_reg
9939 && regs->array[REGNO (SET_DEST (set))].n_times_set == 1
9940 && rtx_equal_p (SET_SRC (set), mem))
9941 SET_REGNO_REG_SET (&load_copies, REGNO (SET_DEST (set)));
9943 /* See if this copies the mem from a register that isn't
9944 modified afterwards. We'll try to remove the
9945 redundant copy later on by doing a little register
9946 renaming and copy propagation. This will help
9947 to untangle things for the BIV detection code. */
9948 if (set
9949 && ! maybe_never
9950 && GET_CODE (SET_SRC (set)) == REG
9951 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER
9952 && REGNO (SET_SRC (set)) < last_max_reg
9953 && regs->array[REGNO (SET_SRC (set))].n_times_set == 1
9954 && rtx_equal_p (SET_DEST (set), mem))
9955 SET_REGNO_REG_SET (&store_copies, REGNO (SET_SRC (set)));
9957 /* If this is a call which uses / clobbers this memory
9958 location, we must not change the interface here. */
9959 if (GET_CODE (p) == CALL_INSN
9960 && reg_mentioned_p (loop_info->mems[i].mem,
9961 CALL_INSN_FUNCTION_USAGE (p)))
9963 cancel_changes (0);
9964 loop_info->mems[i].optimize = 0;
9965 break;
9967 else
9968 /* Replace the memory reference with the shadow register. */
9969 replace_loop_mems (p, loop_info->mems[i].mem,
9970 loop_info->mems[i].reg);
9973 if (GET_CODE (p) == CODE_LABEL
9974 || GET_CODE (p) == JUMP_INSN)
9975 maybe_never = 1;
9978 if (! loop_info->mems[i].optimize)
9979 ; /* We found we couldn't do the replacement, so do nothing. */
9980 else if (! apply_change_group ())
9981 /* We couldn't replace all occurrences of the MEM. */
9982 loop_info->mems[i].optimize = 0;
9983 else
9985 /* Load the memory immediately before LOOP->START, which is
9986 the NOTE_LOOP_BEG. */
9987 cselib_val *e = cselib_lookup (mem, VOIDmode, 0);
9988 rtx set;
9989 rtx best = mem;
9990 int j;
9991 struct elt_loc_list *const_equiv = 0;
9993 if (e)
9995 struct elt_loc_list *equiv;
9996 struct elt_loc_list *best_equiv = 0;
9997 for (equiv = e->locs; equiv; equiv = equiv->next)
9999 if (CONSTANT_P (equiv->loc))
10000 const_equiv = equiv;
10001 else if (GET_CODE (equiv->loc) == REG
10002 /* Extending hard register lifetimes causes crash
10003 on SRC targets. Doing so on non-SRC is
10004 probably also not good idea, since we most
10005 probably have pseudoregister equivalence as
10006 well. */
10007 && REGNO (equiv->loc) >= FIRST_PSEUDO_REGISTER)
10008 best_equiv = equiv;
10010 /* Use the constant equivalence if that is cheap enough. */
10011 if (! best_equiv)
10012 best_equiv = const_equiv;
10013 else if (const_equiv
10014 && (rtx_cost (const_equiv->loc, SET)
10015 <= rtx_cost (best_equiv->loc, SET)))
10017 best_equiv = const_equiv;
10018 const_equiv = 0;
10021 /* If best_equiv is nonzero, we know that MEM is set to a
10022 constant or register before the loop. We will use this
10023 knowledge to initialize the shadow register with that
10024 constant or reg rather than by loading from MEM. */
10025 if (best_equiv)
10026 best = copy_rtx (best_equiv->loc);
10029 set = gen_move_insn (reg, best);
10030 set = loop_insn_hoist (loop, set);
10031 if (REG_P (best))
10033 for (p = prev_ebb_head; p != loop->start; p = NEXT_INSN (p))
10034 if (REGNO_LAST_UID (REGNO (best)) == INSN_UID (p))
10036 REGNO_LAST_UID (REGNO (best)) = INSN_UID (set);
10037 break;
10041 if (const_equiv)
10042 set_unique_reg_note (set, REG_EQUAL, copy_rtx (const_equiv->loc));
10044 if (written)
10046 if (label == NULL_RTX)
10048 label = gen_label_rtx ();
10049 emit_label_after (label, loop->end);
10052 /* Store the memory immediately after END, which is
10053 the NOTE_LOOP_END. */
10054 set = gen_move_insn (copy_rtx (mem), reg);
10055 loop_insn_emit_after (loop, 0, label, set);
10058 if (loop_dump_stream)
10060 fprintf (loop_dump_stream, "Hoisted regno %d %s from ",
10061 REGNO (reg), (written ? "r/w" : "r/o"));
10062 print_rtl (loop_dump_stream, mem);
10063 fputc ('\n', loop_dump_stream);
10066 /* Attempt a bit of copy propagation. This helps untangle the
10067 data flow, and enables {basic,general}_induction_var to find
10068 more bivs/givs. */
10069 EXECUTE_IF_SET_IN_REG_SET
10070 (&load_copies, FIRST_PSEUDO_REGISTER, j,
10072 try_copy_prop (loop, reg, j);
10074 CLEAR_REG_SET (&load_copies);
10076 EXECUTE_IF_SET_IN_REG_SET
10077 (&store_copies, FIRST_PSEUDO_REGISTER, j,
10079 try_swap_copy_prop (loop, reg, j);
10081 CLEAR_REG_SET (&store_copies);
10085 if (label != NULL_RTX && end_label != NULL_RTX)
10087 /* Now, we need to replace all references to the previous exit
10088 label with the new one. */
10089 rtx_pair rr;
10090 rr.r1 = end_label;
10091 rr.r2 = label;
10093 for (p = loop->start; p != loop->end; p = NEXT_INSN (p))
10095 for_each_rtx (&p, replace_label, &rr);
10097 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
10098 field. This is not handled by for_each_rtx because it doesn't
10099 handle unprinted ('0') fields. We need to update JUMP_LABEL
10100 because the immediately following unroll pass will use it.
10101 replace_label would not work anyways, because that only handles
10102 LABEL_REFs. */
10103 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == end_label)
10104 JUMP_LABEL (p) = label;
10108 cselib_finish ();
10111 /* For communication between note_reg_stored and its caller. */
10112 struct note_reg_stored_arg
10114 int set_seen;
10115 rtx reg;
10118 /* Called via note_stores, record in SET_SEEN whether X, which is written,
10119 is equal to ARG. */
10120 static void
10121 note_reg_stored (x, setter, arg)
10122 rtx x, setter ATTRIBUTE_UNUSED;
10123 void *arg;
10125 struct note_reg_stored_arg *t = (struct note_reg_stored_arg *) arg;
10126 if (t->reg == x)
10127 t->set_seen = 1;
10130 /* Try to replace every occurrence of pseudo REGNO with REPLACEMENT.
10131 There must be exactly one insn that sets this pseudo; it will be
10132 deleted if all replacements succeed and we can prove that the register
10133 is not used after the loop. */
10135 static void
10136 try_copy_prop (loop, replacement, regno)
10137 const struct loop *loop;
10138 rtx replacement;
10139 unsigned int regno;
10141 /* This is the reg that we are copying from. */
10142 rtx reg_rtx = regno_reg_rtx[regno];
10143 rtx init_insn = 0;
10144 rtx insn;
10145 /* These help keep track of whether we replaced all uses of the reg. */
10146 int replaced_last = 0;
10147 int store_is_first = 0;
10149 for (insn = next_insn_in_loop (loop, loop->scan_start);
10150 insn != NULL_RTX;
10151 insn = next_insn_in_loop (loop, insn))
10153 rtx set;
10155 /* Only substitute within one extended basic block from the initializing
10156 insn. */
10157 if (GET_CODE (insn) == CODE_LABEL && init_insn)
10158 break;
10160 if (! INSN_P (insn))
10161 continue;
10163 /* Is this the initializing insn? */
10164 set = single_set (insn);
10165 if (set
10166 && GET_CODE (SET_DEST (set)) == REG
10167 && REGNO (SET_DEST (set)) == regno)
10169 if (init_insn)
10170 abort ();
10172 init_insn = insn;
10173 if (REGNO_FIRST_UID (regno) == INSN_UID (insn))
10174 store_is_first = 1;
10177 /* Only substitute after seeing the initializing insn. */
10178 if (init_insn && insn != init_insn)
10180 struct note_reg_stored_arg arg;
10182 replace_loop_regs (insn, reg_rtx, replacement);
10183 if (REGNO_LAST_UID (regno) == INSN_UID (insn))
10184 replaced_last = 1;
10186 /* Stop replacing when REPLACEMENT is modified. */
10187 arg.reg = replacement;
10188 arg.set_seen = 0;
10189 note_stores (PATTERN (insn), note_reg_stored, &arg);
10190 if (arg.set_seen)
10192 rtx note = find_reg_note (insn, REG_EQUAL, NULL);
10194 /* It is possible that we've turned previously valid REG_EQUAL to
10195 invalid, as we change the REGNO to REPLACEMENT and unlike REGNO,
10196 REPLACEMENT is modified, we get different meaning. */
10197 if (note && reg_mentioned_p (replacement, XEXP (note, 0)))
10198 remove_note (insn, note);
10199 break;
10203 if (! init_insn)
10204 abort ();
10205 if (apply_change_group ())
10207 if (loop_dump_stream)
10208 fprintf (loop_dump_stream, " Replaced reg %d", regno);
10209 if (store_is_first && replaced_last)
10211 rtx first;
10212 rtx retval_note;
10214 /* Assume we're just deleting INIT_INSN. */
10215 first = init_insn;
10216 /* Look for REG_RETVAL note. If we're deleting the end of
10217 the libcall sequence, the whole sequence can go. */
10218 retval_note = find_reg_note (init_insn, REG_RETVAL, NULL_RTX);
10219 /* If we found a REG_RETVAL note, find the first instruction
10220 in the sequence. */
10221 if (retval_note)
10222 first = XEXP (retval_note, 0);
10224 /* Delete the instructions. */
10225 loop_delete_insns (first, init_insn);
10227 if (loop_dump_stream)
10228 fprintf (loop_dump_stream, ".\n");
10232 /* Replace all the instructions from FIRST up to and including LAST
10233 with NOTE_INSN_DELETED notes. */
10235 static void
10236 loop_delete_insns (first, last)
10237 rtx first;
10238 rtx last;
10240 while (1)
10242 if (loop_dump_stream)
10243 fprintf (loop_dump_stream, ", deleting init_insn (%d)",
10244 INSN_UID (first));
10245 delete_insn (first);
10247 /* If this was the LAST instructions we're supposed to delete,
10248 we're done. */
10249 if (first == last)
10250 break;
10252 first = NEXT_INSN (first);
10256 /* Try to replace occurrences of pseudo REGNO with REPLACEMENT within
10257 loop LOOP if the order of the sets of these registers can be
10258 swapped. There must be exactly one insn within the loop that sets
10259 this pseudo followed immediately by a move insn that sets
10260 REPLACEMENT with REGNO. */
10261 static void
10262 try_swap_copy_prop (loop, replacement, regno)
10263 const struct loop *loop;
10264 rtx replacement;
10265 unsigned int regno;
10267 rtx insn;
10268 rtx set = NULL_RTX;
10269 unsigned int new_regno;
10271 new_regno = REGNO (replacement);
10273 for (insn = next_insn_in_loop (loop, loop->scan_start);
10274 insn != NULL_RTX;
10275 insn = next_insn_in_loop (loop, insn))
10277 /* Search for the insn that copies REGNO to NEW_REGNO? */
10278 if (INSN_P (insn)
10279 && (set = single_set (insn))
10280 && GET_CODE (SET_DEST (set)) == REG
10281 && REGNO (SET_DEST (set)) == new_regno
10282 && GET_CODE (SET_SRC (set)) == REG
10283 && REGNO (SET_SRC (set)) == regno)
10284 break;
10287 if (insn != NULL_RTX)
10289 rtx prev_insn;
10290 rtx prev_set;
10292 /* Some DEF-USE info would come in handy here to make this
10293 function more general. For now, just check the previous insn
10294 which is the most likely candidate for setting REGNO. */
10296 prev_insn = PREV_INSN (insn);
10298 if (INSN_P (insn)
10299 && (prev_set = single_set (prev_insn))
10300 && GET_CODE (SET_DEST (prev_set)) == REG
10301 && REGNO (SET_DEST (prev_set)) == regno)
10303 /* We have:
10304 (set (reg regno) (expr))
10305 (set (reg new_regno) (reg regno))
10307 so try converting this to:
10308 (set (reg new_regno) (expr))
10309 (set (reg regno) (reg new_regno))
10311 The former construct is often generated when a global
10312 variable used for an induction variable is shadowed by a
10313 register (NEW_REGNO). The latter construct improves the
10314 chances of GIV replacement and BIV elimination. */
10316 validate_change (prev_insn, &SET_DEST (prev_set),
10317 replacement, 1);
10318 validate_change (insn, &SET_DEST (set),
10319 SET_SRC (set), 1);
10320 validate_change (insn, &SET_SRC (set),
10321 replacement, 1);
10323 if (apply_change_group ())
10325 if (loop_dump_stream)
10326 fprintf (loop_dump_stream,
10327 " Swapped set of reg %d at %d with reg %d at %d.\n",
10328 regno, INSN_UID (insn),
10329 new_regno, INSN_UID (prev_insn));
10331 /* Update first use of REGNO. */
10332 if (REGNO_FIRST_UID (regno) == INSN_UID (prev_insn))
10333 REGNO_FIRST_UID (regno) = INSN_UID (insn);
10335 /* Now perform copy propagation to hopefully
10336 remove all uses of REGNO within the loop. */
10337 try_copy_prop (loop, replacement, regno);
10343 /* Replace MEM with its associated pseudo register. This function is
10344 called from load_mems via for_each_rtx. DATA is actually a pointer
10345 to a structure describing the instruction currently being scanned
10346 and the MEM we are currently replacing. */
10348 static int
10349 replace_loop_mem (mem, data)
10350 rtx *mem;
10351 void *data;
10353 loop_replace_args *args = (loop_replace_args *) data;
10354 rtx m = *mem;
10356 if (m == NULL_RTX)
10357 return 0;
10359 switch (GET_CODE (m))
10361 case MEM:
10362 break;
10364 case CONST_DOUBLE:
10365 /* We're not interested in the MEM associated with a
10366 CONST_DOUBLE, so there's no need to traverse into one. */
10367 return -1;
10369 default:
10370 /* This is not a MEM. */
10371 return 0;
10374 if (!rtx_equal_p (args->match, m))
10375 /* This is not the MEM we are currently replacing. */
10376 return 0;
10378 /* Actually replace the MEM. */
10379 validate_change (args->insn, mem, args->replacement, 1);
10381 return 0;
10384 static void
10385 replace_loop_mems (insn, mem, reg)
10386 rtx insn;
10387 rtx mem;
10388 rtx reg;
10390 loop_replace_args args;
10392 args.insn = insn;
10393 args.match = mem;
10394 args.replacement = reg;
10396 for_each_rtx (&insn, replace_loop_mem, &args);
10399 /* Replace one register with another. Called through for_each_rtx; PX points
10400 to the rtx being scanned. DATA is actually a pointer to
10401 a structure of arguments. */
10403 static int
10404 replace_loop_reg (px, data)
10405 rtx *px;
10406 void *data;
10408 rtx x = *px;
10409 loop_replace_args *args = (loop_replace_args *) data;
10411 if (x == NULL_RTX)
10412 return 0;
10414 if (x == args->match)
10415 validate_change (args->insn, px, args->replacement, 1);
10417 return 0;
10420 static void
10421 replace_loop_regs (insn, reg, replacement)
10422 rtx insn;
10423 rtx reg;
10424 rtx replacement;
10426 loop_replace_args args;
10428 args.insn = insn;
10429 args.match = reg;
10430 args.replacement = replacement;
10432 for_each_rtx (&insn, replace_loop_reg, &args);
10435 /* Replace occurrences of the old exit label for the loop with the new
10436 one. DATA is an rtx_pair containing the old and new labels,
10437 respectively. */
10439 static int
10440 replace_label (x, data)
10441 rtx *x;
10442 void *data;
10444 rtx l = *x;
10445 rtx old_label = ((rtx_pair *) data)->r1;
10446 rtx new_label = ((rtx_pair *) data)->r2;
10448 if (l == NULL_RTX)
10449 return 0;
10451 if (GET_CODE (l) != LABEL_REF)
10452 return 0;
10454 if (XEXP (l, 0) != old_label)
10455 return 0;
10457 XEXP (l, 0) = new_label;
10458 ++LABEL_NUSES (new_label);
10459 --LABEL_NUSES (old_label);
10461 return 0;
10464 /* Emit insn for PATTERN after WHERE_INSN in basic block WHERE_BB
10465 (ignored in the interim). */
10467 static rtx
10468 loop_insn_emit_after (loop, where_bb, where_insn, pattern)
10469 const struct loop *loop ATTRIBUTE_UNUSED;
10470 basic_block where_bb ATTRIBUTE_UNUSED;
10471 rtx where_insn;
10472 rtx pattern;
10474 return emit_insn_after (pattern, where_insn);
10478 /* If WHERE_INSN is nonzero emit insn for PATTERN before WHERE_INSN
10479 in basic block WHERE_BB (ignored in the interim) within the loop
10480 otherwise hoist PATTERN into the loop pre-header. */
10483 loop_insn_emit_before (loop, where_bb, where_insn, pattern)
10484 const struct loop *loop;
10485 basic_block where_bb ATTRIBUTE_UNUSED;
10486 rtx where_insn;
10487 rtx pattern;
10489 if (! where_insn)
10490 return loop_insn_hoist (loop, pattern);
10491 return emit_insn_before (pattern, where_insn);
10495 /* Emit call insn for PATTERN before WHERE_INSN in basic block
10496 WHERE_BB (ignored in the interim) within the loop. */
10498 static rtx
10499 loop_call_insn_emit_before (loop, where_bb, where_insn, pattern)
10500 const struct loop *loop ATTRIBUTE_UNUSED;
10501 basic_block where_bb ATTRIBUTE_UNUSED;
10502 rtx where_insn;
10503 rtx pattern;
10505 return emit_call_insn_before (pattern, where_insn);
10509 /* Hoist insn for PATTERN into the loop pre-header. */
10512 loop_insn_hoist (loop, pattern)
10513 const struct loop *loop;
10514 rtx pattern;
10516 return loop_insn_emit_before (loop, 0, loop->start, pattern);
10520 /* Hoist call insn for PATTERN into the loop pre-header. */
10522 static rtx
10523 loop_call_insn_hoist (loop, pattern)
10524 const struct loop *loop;
10525 rtx pattern;
10527 return loop_call_insn_emit_before (loop, 0, loop->start, pattern);
10531 /* Sink insn for PATTERN after the loop end. */
10534 loop_insn_sink (loop, pattern)
10535 const struct loop *loop;
10536 rtx pattern;
10538 return loop_insn_emit_before (loop, 0, loop->sink, pattern);
10541 /* bl->final_value can be eighter general_operand or PLUS of general_operand
10542 and constant. Emit sequence of intructions to load it into REG */
10543 static rtx
10544 gen_load_of_final_value (reg, final_value)
10545 rtx reg, final_value;
10547 rtx seq;
10548 start_sequence ();
10549 final_value = force_operand (final_value, reg);
10550 if (final_value != reg)
10551 emit_move_insn (reg, final_value);
10552 seq = get_insns ();
10553 end_sequence ();
10554 return seq;
10557 /* If the loop has multiple exits, emit insn for PATTERN before the
10558 loop to ensure that it will always be executed no matter how the
10559 loop exits. Otherwise, emit the insn for PATTERN after the loop,
10560 since this is slightly more efficient. */
10562 static rtx
10563 loop_insn_sink_or_swim (loop, pattern)
10564 const struct loop *loop;
10565 rtx pattern;
10567 if (loop->exit_count)
10568 return loop_insn_hoist (loop, pattern);
10569 else
10570 return loop_insn_sink (loop, pattern);
10573 static void
10574 loop_ivs_dump (loop, file, verbose)
10575 const struct loop *loop;
10576 FILE *file;
10577 int verbose;
10579 struct iv_class *bl;
10580 int iv_num = 0;
10582 if (! loop || ! file)
10583 return;
10585 for (bl = LOOP_IVS (loop)->list; bl; bl = bl->next)
10586 iv_num++;
10588 fprintf (file, "Loop %d: %d IV classes\n", loop->num, iv_num);
10590 for (bl = LOOP_IVS (loop)->list; bl; bl = bl->next)
10592 loop_iv_class_dump (bl, file, verbose);
10593 fputc ('\n', file);
10598 static void
10599 loop_iv_class_dump (bl, file, verbose)
10600 const struct iv_class *bl;
10601 FILE *file;
10602 int verbose ATTRIBUTE_UNUSED;
10604 struct induction *v;
10605 rtx incr;
10606 int i;
10608 if (! bl || ! file)
10609 return;
10611 fprintf (file, "IV class for reg %d, benefit %d\n",
10612 bl->regno, bl->total_benefit);
10614 fprintf (file, " Init insn %d", INSN_UID (bl->init_insn));
10615 if (bl->initial_value)
10617 fprintf (file, ", init val: ");
10618 print_simple_rtl (file, bl->initial_value);
10620 if (bl->initial_test)
10622 fprintf (file, ", init test: ");
10623 print_simple_rtl (file, bl->initial_test);
10625 fputc ('\n', file);
10627 if (bl->final_value)
10629 fprintf (file, " Final val: ");
10630 print_simple_rtl (file, bl->final_value);
10631 fputc ('\n', file);
10634 if ((incr = biv_total_increment (bl)))
10636 fprintf (file, " Total increment: ");
10637 print_simple_rtl (file, incr);
10638 fputc ('\n', file);
10641 /* List the increments. */
10642 for (i = 0, v = bl->biv; v; v = v->next_iv, i++)
10644 fprintf (file, " Inc%d: insn %d, incr: ", i, INSN_UID (v->insn));
10645 print_simple_rtl (file, v->add_val);
10646 fputc ('\n', file);
10649 /* List the givs. */
10650 for (i = 0, v = bl->giv; v; v = v->next_iv, i++)
10652 fprintf (file, " Giv%d: insn %d, benefit %d, ",
10653 i, INSN_UID (v->insn), v->benefit);
10654 if (v->giv_type == DEST_ADDR)
10655 print_simple_rtl (file, v->mem);
10656 else
10657 print_simple_rtl (file, single_set (v->insn));
10658 fputc ('\n', file);
10663 static void
10664 loop_biv_dump (v, file, verbose)
10665 const struct induction *v;
10666 FILE *file;
10667 int verbose;
10669 if (! v || ! file)
10670 return;
10672 fprintf (file,
10673 "Biv %d: insn %d",
10674 REGNO (v->dest_reg), INSN_UID (v->insn));
10675 fprintf (file, " const ");
10676 print_simple_rtl (file, v->add_val);
10678 if (verbose && v->final_value)
10680 fputc ('\n', file);
10681 fprintf (file, " final ");
10682 print_simple_rtl (file, v->final_value);
10685 fputc ('\n', file);
10689 static void
10690 loop_giv_dump (v, file, verbose)
10691 const struct induction *v;
10692 FILE *file;
10693 int verbose;
10695 if (! v || ! file)
10696 return;
10698 if (v->giv_type == DEST_REG)
10699 fprintf (file, "Giv %d: insn %d",
10700 REGNO (v->dest_reg), INSN_UID (v->insn));
10701 else
10702 fprintf (file, "Dest address: insn %d",
10703 INSN_UID (v->insn));
10705 fprintf (file, " src reg %d benefit %d",
10706 REGNO (v->src_reg), v->benefit);
10707 fprintf (file, " lifetime %d",
10708 v->lifetime);
10710 if (v->replaceable)
10711 fprintf (file, " replaceable");
10713 if (v->no_const_addval)
10714 fprintf (file, " ncav");
10716 if (v->ext_dependent)
10718 switch (GET_CODE (v->ext_dependent))
10720 case SIGN_EXTEND:
10721 fprintf (file, " ext se");
10722 break;
10723 case ZERO_EXTEND:
10724 fprintf (file, " ext ze");
10725 break;
10726 case TRUNCATE:
10727 fprintf (file, " ext tr");
10728 break;
10729 default:
10730 abort ();
10734 fputc ('\n', file);
10735 fprintf (file, " mult ");
10736 print_simple_rtl (file, v->mult_val);
10738 fputc ('\n', file);
10739 fprintf (file, " add ");
10740 print_simple_rtl (file, v->add_val);
10742 if (verbose && v->final_value)
10744 fputc ('\n', file);
10745 fprintf (file, " final ");
10746 print_simple_rtl (file, v->final_value);
10749 fputc ('\n', file);
10753 void
10754 debug_ivs (loop)
10755 const struct loop *loop;
10757 loop_ivs_dump (loop, stderr, 1);
10761 void
10762 debug_iv_class (bl)
10763 const struct iv_class *bl;
10765 loop_iv_class_dump (bl, stderr, 1);
10769 void
10770 debug_biv (v)
10771 const struct induction *v;
10773 loop_biv_dump (v, stderr, 1);
10777 void
10778 debug_giv (v)
10779 const struct induction *v;
10781 loop_giv_dump (v, stderr, 1);
10785 #define LOOP_BLOCK_NUM_1(INSN) \
10786 ((INSN) ? (BLOCK_FOR_INSN (INSN) ? BLOCK_NUM (INSN) : - 1) : -1)
10788 /* The notes do not have an assigned block, so look at the next insn. */
10789 #define LOOP_BLOCK_NUM(INSN) \
10790 ((INSN) ? (GET_CODE (INSN) == NOTE \
10791 ? LOOP_BLOCK_NUM_1 (next_nonnote_insn (INSN)) \
10792 : LOOP_BLOCK_NUM_1 (INSN)) \
10793 : -1)
10795 #define LOOP_INSN_UID(INSN) ((INSN) ? INSN_UID (INSN) : -1)
10797 static void
10798 loop_dump_aux (loop, file, verbose)
10799 const struct loop *loop;
10800 FILE *file;
10801 int verbose ATTRIBUTE_UNUSED;
10803 rtx label;
10805 if (! loop || ! file)
10806 return;
10808 /* Print diagnostics to compare our concept of a loop with
10809 what the loop notes say. */
10810 if (! PREV_INSN (loop->first->head)
10811 || GET_CODE (PREV_INSN (loop->first->head)) != NOTE
10812 || NOTE_LINE_NUMBER (PREV_INSN (loop->first->head))
10813 != NOTE_INSN_LOOP_BEG)
10814 fprintf (file, ";; No NOTE_INSN_LOOP_BEG at %d\n",
10815 INSN_UID (PREV_INSN (loop->first->head)));
10816 if (! NEXT_INSN (loop->last->end)
10817 || GET_CODE (NEXT_INSN (loop->last->end)) != NOTE
10818 || NOTE_LINE_NUMBER (NEXT_INSN (loop->last->end))
10819 != NOTE_INSN_LOOP_END)
10820 fprintf (file, ";; No NOTE_INSN_LOOP_END at %d\n",
10821 INSN_UID (NEXT_INSN (loop->last->end)));
10823 if (loop->start)
10825 fprintf (file,
10826 ";; start %d (%d), cont dom %d (%d), cont %d (%d), vtop %d (%d), end %d (%d)\n",
10827 LOOP_BLOCK_NUM (loop->start),
10828 LOOP_INSN_UID (loop->start),
10829 LOOP_BLOCK_NUM (loop->cont),
10830 LOOP_INSN_UID (loop->cont),
10831 LOOP_BLOCK_NUM (loop->cont),
10832 LOOP_INSN_UID (loop->cont),
10833 LOOP_BLOCK_NUM (loop->vtop),
10834 LOOP_INSN_UID (loop->vtop),
10835 LOOP_BLOCK_NUM (loop->end),
10836 LOOP_INSN_UID (loop->end));
10837 fprintf (file, ";; top %d (%d), scan start %d (%d)\n",
10838 LOOP_BLOCK_NUM (loop->top),
10839 LOOP_INSN_UID (loop->top),
10840 LOOP_BLOCK_NUM (loop->scan_start),
10841 LOOP_INSN_UID (loop->scan_start));
10842 fprintf (file, ";; exit_count %d", loop->exit_count);
10843 if (loop->exit_count)
10845 fputs (", labels:", file);
10846 for (label = loop->exit_labels; label; label = LABEL_NEXTREF (label))
10848 fprintf (file, " %d ",
10849 LOOP_INSN_UID (XEXP (label, 0)));
10852 fputs ("\n", file);
10854 /* This can happen when a marked loop appears as two nested loops,
10855 say from while (a || b) {}. The inner loop won't match
10856 the loop markers but the outer one will. */
10857 if (LOOP_BLOCK_NUM (loop->cont) != loop->latch->index)
10858 fprintf (file, ";; NOTE_INSN_LOOP_CONT not in loop latch\n");
10862 /* Call this function from the debugger to dump LOOP. */
10864 void
10865 debug_loop (loop)
10866 const struct loop *loop;
10868 flow_loop_dump (loop, stderr, loop_dump_aux, 1);
10871 /* Call this function from the debugger to dump LOOPS. */
10873 void
10874 debug_loops (loops)
10875 const struct loops *loops;
10877 flow_loops_dump (loops, stderr, loop_dump_aux, 1);