s390.c (optimization_options): Set flag_asynchronous_unwind_tables to 1 by default.
[official-gcc.git] / gcc / dominance.c
blob48c621961e1f37704573befc687c9120fb8bd409
1 /* Calculate (post)dominators in slightly super-linear time.
2 Copyright (C) 2000 Free Software Foundation, Inc.
3 Contributed by Michael Matz (matz@ifh.de).
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file implements the well known algorithm from Lengauer and Tarjan
23 to compute the dominators in a control flow graph. A basic block D is said
24 to dominate another block X, when all paths from the entry node of the CFG
25 to X go also over D. The dominance relation is a transitive reflexive
26 relation and its minimal transitive reduction is a tree, called the
27 dominator tree. So for each block X besides the entry block exists a
28 block I(X), called the immediate dominator of X, which is the parent of X
29 in the dominator tree.
31 The algorithm computes this dominator tree implicitly by computing for
32 each block its immediate dominator. We use tree balancing and path
33 compression, so its the O(e*a(e,v)) variant, where a(e,v) is the very
34 slowly growing functional inverse of the Ackerman function. */
36 #include "config.h"
37 #include "system.h"
38 #include "rtl.h"
39 #include "hard-reg-set.h"
40 #include "basic-block.h"
41 #include "errors.h"
42 #include "et-forest.h"
44 struct dominance_info
46 et_forest_t forest;
47 varray_type varray;
50 #define BB_NODE(info, bb) \
51 ((et_forest_node_t)VARRAY_GENERIC_PTR ((info)->varray, (bb)->index + 2))
52 #define SET_BB_NODE(info, bb, node) \
53 (VARRAY_GENERIC_PTR ((info)->varray, (bb)->index + 2) = (node))
55 /* We name our nodes with integers, beginning with 1. Zero is reserved for
56 'undefined' or 'end of list'. The name of each node is given by the dfs
57 number of the corresponding basic block. Please note, that we include the
58 artificial ENTRY_BLOCK (or EXIT_BLOCK in the post-dom case) in our lists to
59 support multiple entry points. As it has no real basic block index we use
60 'last_basic_block' for that. Its dfs number is of course 1. */
62 /* Type of Basic Block aka. TBB */
63 typedef unsigned int TBB;
65 /* We work in a poor-mans object oriented fashion, and carry an instance of
66 this structure through all our 'methods'. It holds various arrays
67 reflecting the (sub)structure of the flowgraph. Most of them are of type
68 TBB and are also indexed by TBB. */
70 struct dom_info
72 /* The parent of a node in the DFS tree. */
73 TBB *dfs_parent;
74 /* For a node x key[x] is roughly the node nearest to the root from which
75 exists a way to x only over nodes behind x. Such a node is also called
76 semidominator. */
77 TBB *key;
78 /* The value in path_min[x] is the node y on the path from x to the root of
79 the tree x is in with the smallest key[y]. */
80 TBB *path_min;
81 /* bucket[x] points to the first node of the set of nodes having x as key. */
82 TBB *bucket;
83 /* And next_bucket[x] points to the next node. */
84 TBB *next_bucket;
85 /* After the algorithm is done, dom[x] contains the immediate dominator
86 of x. */
87 TBB *dom;
89 /* The following few fields implement the structures needed for disjoint
90 sets. */
91 /* set_chain[x] is the next node on the path from x to the representant
92 of the set containing x. If set_chain[x]==0 then x is a root. */
93 TBB *set_chain;
94 /* set_size[x] is the number of elements in the set named by x. */
95 unsigned int *set_size;
96 /* set_child[x] is used for balancing the tree representing a set. It can
97 be understood as the next sibling of x. */
98 TBB *set_child;
100 /* If b is the number of a basic block (BB->index), dfs_order[b] is the
101 number of that node in DFS order counted from 1. This is an index
102 into most of the other arrays in this structure. */
103 TBB *dfs_order;
104 /* If x is the DFS-index of a node which corresponds with an basic block,
105 dfs_to_bb[x] is that basic block. Note, that in our structure there are
106 more nodes that basic blocks, so only dfs_to_bb[dfs_order[bb->index]]==bb
107 is true for every basic block bb, but not the opposite. */
108 basic_block *dfs_to_bb;
110 /* This is the next free DFS number when creating the DFS tree or forest. */
111 unsigned int dfsnum;
112 /* The number of nodes in the DFS tree (==dfsnum-1). */
113 unsigned int nodes;
116 static void init_dom_info PARAMS ((struct dom_info *));
117 static void free_dom_info PARAMS ((struct dom_info *));
118 static void calc_dfs_tree_nonrec PARAMS ((struct dom_info *,
119 basic_block,
120 enum cdi_direction));
121 static void calc_dfs_tree PARAMS ((struct dom_info *,
122 enum cdi_direction));
123 static void compress PARAMS ((struct dom_info *, TBB));
124 static TBB eval PARAMS ((struct dom_info *, TBB));
125 static void link_roots PARAMS ((struct dom_info *, TBB, TBB));
126 static void calc_idoms PARAMS ((struct dom_info *,
127 enum cdi_direction));
128 void debug_dominance_info PARAMS ((dominance_info));
130 /* Helper macro for allocating and initializing an array,
131 for aesthetic reasons. */
132 #define init_ar(var, type, num, content) \
133 do \
135 unsigned int i = 1; /* Catch content == i. */ \
136 if (! (content)) \
137 (var) = (type *) xcalloc ((num), sizeof (type)); \
138 else \
140 (var) = (type *) xmalloc ((num) * sizeof (type)); \
141 for (i = 0; i < num; i++) \
142 (var)[i] = (content); \
145 while (0)
147 /* Allocate all needed memory in a pessimistic fashion (so we round up).
148 This initializes the contents of DI, which already must be allocated. */
150 static void
151 init_dom_info (di)
152 struct dom_info *di;
154 /* We need memory for n_basic_blocks nodes and the ENTRY_BLOCK or
155 EXIT_BLOCK. */
156 unsigned int num = n_basic_blocks + 1 + 1;
157 init_ar (di->dfs_parent, TBB, num, 0);
158 init_ar (di->path_min, TBB, num, i);
159 init_ar (di->key, TBB, num, i);
160 init_ar (di->dom, TBB, num, 0);
162 init_ar (di->bucket, TBB, num, 0);
163 init_ar (di->next_bucket, TBB, num, 0);
165 init_ar (di->set_chain, TBB, num, 0);
166 init_ar (di->set_size, unsigned int, num, 1);
167 init_ar (di->set_child, TBB, num, 0);
169 init_ar (di->dfs_order, TBB, (unsigned int) last_basic_block + 1, 0);
170 init_ar (di->dfs_to_bb, basic_block, num, 0);
172 di->dfsnum = 1;
173 di->nodes = 0;
176 #undef init_ar
178 /* Free all allocated memory in DI, but not DI itself. */
180 static void
181 free_dom_info (di)
182 struct dom_info *di;
184 free (di->dfs_parent);
185 free (di->path_min);
186 free (di->key);
187 free (di->dom);
188 free (di->bucket);
189 free (di->next_bucket);
190 free (di->set_chain);
191 free (di->set_size);
192 free (di->set_child);
193 free (di->dfs_order);
194 free (di->dfs_to_bb);
197 /* The nonrecursive variant of creating a DFS tree. DI is our working
198 structure, BB the starting basic block for this tree and REVERSE
199 is true, if predecessors should be visited instead of successors of a
200 node. After this is done all nodes reachable from BB were visited, have
201 assigned their dfs number and are linked together to form a tree. */
203 static void
204 calc_dfs_tree_nonrec (di, bb, reverse)
205 struct dom_info *di;
206 basic_block bb;
207 enum cdi_direction reverse;
209 /* We never call this with bb==EXIT_BLOCK_PTR (ENTRY_BLOCK_PTR if REVERSE). */
210 /* We call this _only_ if bb is not already visited. */
211 edge e;
212 TBB child_i, my_i = 0;
213 edge *stack;
214 int sp;
215 /* Start block (ENTRY_BLOCK_PTR for forward problem, EXIT_BLOCK for backward
216 problem). */
217 basic_block en_block;
218 /* Ending block. */
219 basic_block ex_block;
221 stack = (edge *) xmalloc ((n_basic_blocks + 3) * sizeof (edge));
222 sp = 0;
224 /* Initialize our border blocks, and the first edge. */
225 if (reverse)
227 e = bb->pred;
228 en_block = EXIT_BLOCK_PTR;
229 ex_block = ENTRY_BLOCK_PTR;
231 else
233 e = bb->succ;
234 en_block = ENTRY_BLOCK_PTR;
235 ex_block = EXIT_BLOCK_PTR;
238 /* When the stack is empty we break out of this loop. */
239 while (1)
241 basic_block bn;
243 /* This loop traverses edges e in depth first manner, and fills the
244 stack. */
245 while (e)
247 edge e_next;
249 /* Deduce from E the current and the next block (BB and BN), and the
250 next edge. */
251 if (reverse)
253 bn = e->src;
255 /* If the next node BN is either already visited or a border
256 block the current edge is useless, and simply overwritten
257 with the next edge out of the current node. */
258 if (bn == ex_block || di->dfs_order[bn->index])
260 e = e->pred_next;
261 continue;
263 bb = e->dest;
264 e_next = bn->pred;
266 else
268 bn = e->dest;
269 if (bn == ex_block || di->dfs_order[bn->index])
271 e = e->succ_next;
272 continue;
274 bb = e->src;
275 e_next = bn->succ;
278 if (bn == en_block)
279 abort ();
281 /* Fill the DFS tree info calculatable _before_ recursing. */
282 if (bb != en_block)
283 my_i = di->dfs_order[bb->index];
284 else
285 my_i = di->dfs_order[last_basic_block];
286 child_i = di->dfs_order[bn->index] = di->dfsnum++;
287 di->dfs_to_bb[child_i] = bn;
288 di->dfs_parent[child_i] = my_i;
290 /* Save the current point in the CFG on the stack, and recurse. */
291 stack[sp++] = e;
292 e = e_next;
295 if (!sp)
296 break;
297 e = stack[--sp];
299 /* OK. The edge-list was exhausted, meaning normally we would
300 end the recursion. After returning from the recursive call,
301 there were (may be) other statements which were run after a
302 child node was completely considered by DFS. Here is the
303 point to do it in the non-recursive variant.
304 E.g. The block just completed is in e->dest for forward DFS,
305 the block not yet completed (the parent of the one above)
306 in e->src. This could be used e.g. for computing the number of
307 descendants or the tree depth. */
308 if (reverse)
309 e = e->pred_next;
310 else
311 e = e->succ_next;
313 free (stack);
316 /* The main entry for calculating the DFS tree or forest. DI is our working
317 structure and REVERSE is true, if we are interested in the reverse flow
318 graph. In that case the result is not necessarily a tree but a forest,
319 because there may be nodes from which the EXIT_BLOCK is unreachable. */
321 static void
322 calc_dfs_tree (di, reverse)
323 struct dom_info *di;
324 enum cdi_direction reverse;
326 /* The first block is the ENTRY_BLOCK (or EXIT_BLOCK if REVERSE). */
327 basic_block begin = reverse ? EXIT_BLOCK_PTR : ENTRY_BLOCK_PTR;
328 di->dfs_order[last_basic_block] = di->dfsnum;
329 di->dfs_to_bb[di->dfsnum] = begin;
330 di->dfsnum++;
332 calc_dfs_tree_nonrec (di, begin, reverse);
334 if (reverse)
336 /* In the post-dom case we may have nodes without a path to EXIT_BLOCK.
337 They are reverse-unreachable. In the dom-case we disallow such
338 nodes, but in post-dom we have to deal with them, so we simply
339 include them in the DFS tree which actually becomes a forest. */
340 basic_block b;
341 FOR_EACH_BB_REVERSE (b)
343 if (di->dfs_order[b->index])
344 continue;
345 di->dfs_order[b->index] = di->dfsnum;
346 di->dfs_to_bb[di->dfsnum] = b;
347 di->dfsnum++;
348 calc_dfs_tree_nonrec (di, b, reverse);
352 di->nodes = di->dfsnum - 1;
354 /* This aborts e.g. when there is _no_ path from ENTRY to EXIT at all. */
355 if (di->nodes != (unsigned int) n_basic_blocks + 1)
356 abort ();
359 /* Compress the path from V to the root of its set and update path_min at the
360 same time. After compress(di, V) set_chain[V] is the root of the set V is
361 in and path_min[V] is the node with the smallest key[] value on the path
362 from V to that root. */
364 static void
365 compress (di, v)
366 struct dom_info *di;
367 TBB v;
369 /* Btw. It's not worth to unrecurse compress() as the depth is usually not
370 greater than 5 even for huge graphs (I've not seen call depth > 4).
371 Also performance wise compress() ranges _far_ behind eval(). */
372 TBB parent = di->set_chain[v];
373 if (di->set_chain[parent])
375 compress (di, parent);
376 if (di->key[di->path_min[parent]] < di->key[di->path_min[v]])
377 di->path_min[v] = di->path_min[parent];
378 di->set_chain[v] = di->set_chain[parent];
382 /* Compress the path from V to the set root of V if needed (when the root has
383 changed since the last call). Returns the node with the smallest key[]
384 value on the path from V to the root. */
386 static inline TBB
387 eval (di, v)
388 struct dom_info *di;
389 TBB v;
391 /* The representant of the set V is in, also called root (as the set
392 representation is a tree). */
393 TBB rep = di->set_chain[v];
395 /* V itself is the root. */
396 if (!rep)
397 return di->path_min[v];
399 /* Compress only if necessary. */
400 if (di->set_chain[rep])
402 compress (di, v);
403 rep = di->set_chain[v];
406 if (di->key[di->path_min[rep]] >= di->key[di->path_min[v]])
407 return di->path_min[v];
408 else
409 return di->path_min[rep];
412 /* This essentially merges the two sets of V and W, giving a single set with
413 the new root V. The internal representation of these disjoint sets is a
414 balanced tree. Currently link(V,W) is only used with V being the parent
415 of W. */
417 static void
418 link_roots (di, v, w)
419 struct dom_info *di;
420 TBB v, w;
422 TBB s = w;
424 /* Rebalance the tree. */
425 while (di->key[di->path_min[w]] < di->key[di->path_min[di->set_child[s]]])
427 if (di->set_size[s] + di->set_size[di->set_child[di->set_child[s]]]
428 >= 2 * di->set_size[di->set_child[s]])
430 di->set_chain[di->set_child[s]] = s;
431 di->set_child[s] = di->set_child[di->set_child[s]];
433 else
435 di->set_size[di->set_child[s]] = di->set_size[s];
436 s = di->set_chain[s] = di->set_child[s];
440 di->path_min[s] = di->path_min[w];
441 di->set_size[v] += di->set_size[w];
442 if (di->set_size[v] < 2 * di->set_size[w])
444 TBB tmp = s;
445 s = di->set_child[v];
446 di->set_child[v] = tmp;
449 /* Merge all subtrees. */
450 while (s)
452 di->set_chain[s] = v;
453 s = di->set_child[s];
457 /* This calculates the immediate dominators (or post-dominators if REVERSE is
458 true). DI is our working structure and should hold the DFS forest.
459 On return the immediate dominator to node V is in di->dom[V]. */
461 static void
462 calc_idoms (di, reverse)
463 struct dom_info *di;
464 enum cdi_direction reverse;
466 TBB v, w, k, par;
467 basic_block en_block;
468 if (reverse)
469 en_block = EXIT_BLOCK_PTR;
470 else
471 en_block = ENTRY_BLOCK_PTR;
473 /* Go backwards in DFS order, to first look at the leafs. */
474 v = di->nodes;
475 while (v > 1)
477 basic_block bb = di->dfs_to_bb[v];
478 edge e, e_next;
480 par = di->dfs_parent[v];
481 k = v;
482 if (reverse)
483 e = bb->succ;
484 else
485 e = bb->pred;
487 /* Search all direct predecessors for the smallest node with a path
488 to them. That way we have the smallest node with also a path to
489 us only over nodes behind us. In effect we search for our
490 semidominator. */
491 for (; e; e = e_next)
493 TBB k1;
494 basic_block b;
496 if (reverse)
498 b = e->dest;
499 e_next = e->succ_next;
501 else
503 b = e->src;
504 e_next = e->pred_next;
506 if (b == en_block)
507 k1 = di->dfs_order[last_basic_block];
508 else
509 k1 = di->dfs_order[b->index];
511 /* Call eval() only if really needed. If k1 is above V in DFS tree,
512 then we know, that eval(k1) == k1 and key[k1] == k1. */
513 if (k1 > v)
514 k1 = di->key[eval (di, k1)];
515 if (k1 < k)
516 k = k1;
519 di->key[v] = k;
520 link_roots (di, par, v);
521 di->next_bucket[v] = di->bucket[k];
522 di->bucket[k] = v;
524 /* Transform semidominators into dominators. */
525 for (w = di->bucket[par]; w; w = di->next_bucket[w])
527 k = eval (di, w);
528 if (di->key[k] < di->key[w])
529 di->dom[w] = k;
530 else
531 di->dom[w] = par;
533 /* We don't need to cleanup next_bucket[]. */
534 di->bucket[par] = 0;
535 v--;
538 /* Explicitly define the dominators. */
539 di->dom[1] = 0;
540 for (v = 2; v <= di->nodes; v++)
541 if (di->dom[v] != di->key[v])
542 di->dom[v] = di->dom[di->dom[v]];
545 /* The main entry point into this module. IDOM is an integer array with room
546 for last_basic_block integers, DOMS is a preallocated sbitmap array having
547 room for last_basic_block^2 bits, and POST is true if the caller wants to
548 know post-dominators.
550 On return IDOM[i] will be the BB->index of the immediate (post) dominator
551 of basic block i, and DOMS[i] will have set bit j if basic block j is a
552 (post)dominator for block i.
554 Either IDOM or DOMS may be NULL (meaning the caller is not interested in
555 immediate resp. all dominators). */
557 dominance_info
558 calculate_dominance_info (reverse)
559 enum cdi_direction reverse;
561 struct dom_info di;
562 dominance_info info;
563 basic_block b;
565 /* allocate structure for dominance information. */
566 info = xmalloc (sizeof (struct dominance_info));
567 info->forest = et_forest_create ();
568 VARRAY_GENERIC_PTR_INIT (info->varray, last_basic_block + 3, "dominance info");
570 /* Add the two well-known basic blocks. */
571 SET_BB_NODE (info, ENTRY_BLOCK_PTR, et_forest_add_node (info->forest,
572 ENTRY_BLOCK_PTR));
573 SET_BB_NODE (info, EXIT_BLOCK_PTR, et_forest_add_node (info->forest,
574 EXIT_BLOCK_PTR));
575 FOR_EACH_BB (b)
576 SET_BB_NODE (info, b, et_forest_add_node (info->forest, b));
578 init_dom_info (&di);
579 calc_dfs_tree (&di, reverse);
580 calc_idoms (&di, reverse);
583 FOR_EACH_BB (b)
585 TBB d = di.dom[di.dfs_order[b->index]];
587 if (di.dfs_to_bb[d])
588 et_forest_add_edge (info->forest, BB_NODE (info, di.dfs_to_bb[d]), BB_NODE (info, b));
591 free_dom_info (&di);
592 return info;
595 /* Free dominance information. */
596 void
597 free_dominance_info (info)
598 dominance_info info;
600 basic_block bb;
602 /* Allow users to create new basic block without setting up the dominance
603 information for them. */
604 FOR_EACH_BB (bb)
605 if (bb->index < (int)(info->varray->num_elements - 2)
606 && BB_NODE (info, bb))
607 delete_from_dominance_info (info, bb);
608 delete_from_dominance_info (info, ENTRY_BLOCK_PTR);
609 delete_from_dominance_info (info, EXIT_BLOCK_PTR);
610 et_forest_delete (info->forest);
611 VARRAY_GROW (info->varray, 0);
612 free (info);
615 /* Return the immediate dominator of basic block BB. */
616 basic_block
617 get_immediate_dominator (dom, bb)
618 dominance_info dom;
619 basic_block bb;
621 return et_forest_node_value (dom->forest,
622 et_forest_parent (dom->forest,
623 BB_NODE (dom, bb)));
626 /* Set the immediate dominator of the block possibly removing
627 existing edge. NULL can be used to remove any edge. */
628 inline void
629 set_immediate_dominator (dom, bb, dominated_by)
630 dominance_info dom;
631 basic_block bb, dominated_by;
633 void *aux_bb_node;
634 et_forest_node_t bb_node = BB_NODE (dom, bb);
636 aux_bb_node = et_forest_parent (dom->forest, bb_node);
637 if (aux_bb_node)
638 et_forest_remove_edge (dom->forest, aux_bb_node, bb_node);
639 if (dominated_by != NULL)
641 if (bb == dominated_by)
642 abort ();
643 if (!et_forest_add_edge (dom->forest, BB_NODE (dom, dominated_by), bb_node))
644 abort ();
648 /* Store all basic blocks dominated by BB into BBS and return their number. */
650 get_dominated_by (dom, bb, bbs)
651 dominance_info dom;
652 basic_block bb;
653 basic_block **bbs;
655 int n, i;
657 *bbs = xmalloc (n_basic_blocks * sizeof (basic_block));
658 n = et_forest_enumerate_sons (dom->forest, BB_NODE (dom, bb), (et_forest_node_t *)*bbs);
659 for (i = 0; i < n; i++)
660 (*bbs)[i] = et_forest_node_value (dom->forest, (et_forest_node_t)(*bbs)[i]);
661 return n;
664 /* Redirect all edges pointing to BB to TO. */
665 void
666 redirect_immediate_dominators (dom, bb, to)
667 dominance_info dom;
668 basic_block bb;
669 basic_block to;
671 et_forest_node_t *bbs = xmalloc (n_basic_blocks * sizeof (basic_block));
672 et_forest_node_t node = BB_NODE (dom, bb);
673 et_forest_node_t node2 = BB_NODE (dom, to);
674 int n = et_forest_enumerate_sons (dom->forest, node, bbs);
675 int i;
677 for (i = 0; i < n; i++)
679 et_forest_remove_edge (dom->forest, node, bbs[i]);
680 et_forest_add_edge (dom->forest, node2, bbs[i]);
682 free (bbs);
685 /* Find first basic block in the tree dominating both BB1 and BB2. */
686 basic_block
687 nearest_common_dominator (dom, bb1, bb2)
688 dominance_info dom;
689 basic_block bb1;
690 basic_block bb2;
692 if (!bb1)
693 return bb2;
694 if (!bb2)
695 return bb1;
696 return et_forest_node_value (dom->forest,
697 et_forest_common_ancestor (dom->forest,
698 BB_NODE (dom, bb1),
699 BB_NODE (dom,
700 bb2)));
703 /* Return TRUE in case BB1 is dominated by BB2. */
704 bool
705 dominated_by_p (dom, bb1, bb2)
706 dominance_info dom;
707 basic_block bb1;
708 basic_block bb2;
710 return nearest_common_dominator (dom, bb1, bb2) == bb2;
713 /* Verify invariants of dominator structure. */
714 void
715 verify_dominators (dom)
716 dominance_info dom;
718 int err = 0;
719 basic_block bb;
721 FOR_EACH_BB (bb)
723 basic_block dom_bb;
725 dom_bb = recount_dominator (dom, bb);
726 if (dom_bb != get_immediate_dominator (dom, bb))
728 error ("dominator of %d should be %d, not %d",
729 bb->index, dom_bb->index, get_immediate_dominator(dom, bb)->index);
730 err = 1;
733 if (err)
734 abort ();
737 /* Recount dominator of BB. */
738 basic_block
739 recount_dominator (dom, bb)
740 dominance_info dom;
741 basic_block bb;
743 basic_block dom_bb = NULL;
744 edge e;
746 for (e = bb->pred; e; e = e->pred_next)
748 if (!dominated_by_p (dom, e->src, bb))
749 dom_bb = nearest_common_dominator (dom, dom_bb, e->src);
752 return dom_bb;
755 /* Iteratively recount dominators of BBS. The change is supposed to be local
756 and not to grow further. */
757 void
758 iterate_fix_dominators (dom, bbs, n)
759 dominance_info dom;
760 basic_block *bbs;
761 int n;
763 int i, changed = 1;
764 basic_block old_dom, new_dom;
766 while (changed)
768 changed = 0;
769 for (i = 0; i < n; i++)
771 old_dom = get_immediate_dominator (dom, bbs[i]);
772 new_dom = recount_dominator (dom, bbs[i]);
773 if (old_dom != new_dom)
775 changed = 1;
776 set_immediate_dominator (dom, bbs[i], new_dom);
782 void
783 add_to_dominance_info (dom, bb)
784 dominance_info dom;
785 basic_block bb;
787 VARRAY_GROW (dom->varray, last_basic_block + 3);
788 #ifdef ENABLE_CHECKING
789 if (BB_NODE (dom, bb))
790 abort ();
791 #endif
792 SET_BB_NODE (dom, bb, et_forest_add_node (dom->forest, bb));
795 void
796 delete_from_dominance_info (dom, bb)
797 dominance_info dom;
798 basic_block bb;
800 et_forest_remove_node (dom->forest, BB_NODE (dom, bb));
801 SET_BB_NODE (dom, bb, NULL);
804 void
805 debug_dominance_info (dom)
806 dominance_info dom;
808 basic_block bb, bb2;
809 FOR_EACH_BB (bb)
810 if ((bb2 = get_immediate_dominator (dom, bb)))
811 fprintf (stderr, "%i %i\n", bb->index, bb2->index);