1 /* Coalesce SSA_NAMES together for the out-of-ssa pass.
2 Copyright (C) 2004-2013 Free Software Foundation, Inc.
3 Contributed by Andrew MacLeod <amacleod@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
27 #include "tree-pretty-print.h"
30 #include "tree-flow.h"
31 #include "hash-table.h"
32 #include "tree-ssa-live.h"
33 #include "diagnostic-core.h"
36 /* This set of routines implements a coalesce_list. This is an object which
37 is used to track pairs of ssa_names which are desirable to coalesce
38 together to avoid copies. Costs are associated with each pair, and when
39 all desired information has been collected, the object can be used to
40 order the pairs for processing. */
42 /* This structure defines a pair entry. */
44 typedef struct coalesce_pair
50 typedef const struct coalesce_pair
*const_coalesce_pair_p
;
52 typedef struct cost_one_pair_d
56 struct cost_one_pair_d
*next
;
59 /* This structure maintains the list of coalesce pairs. */
61 typedef struct coalesce_list_d
63 htab_t list
; /* Hash table. */
64 coalesce_pair_p
*sorted
; /* List when sorted. */
65 int num_sorted
; /* Number in the sorted list. */
66 cost_one_pair_p cost_one_list
;/* Single use coalesces with cost 1. */
69 #define NO_BEST_COALESCE -1
70 #define MUST_COALESCE_COST INT_MAX
73 /* Return cost of execution of copy instruction with FREQUENCY. */
76 coalesce_cost (int frequency
, bool optimize_for_size
)
78 /* Base costs on BB frequencies bounded by 1. */
84 if (optimize_for_size
)
91 /* Return the cost of executing a copy instruction in basic block BB. */
94 coalesce_cost_bb (basic_block bb
)
96 return coalesce_cost (bb
->frequency
, optimize_bb_for_size_p (bb
));
100 /* Return the cost of executing a copy instruction on edge E. */
103 coalesce_cost_edge (edge e
)
107 /* Inserting copy on critical edge costs more than inserting it elsewhere. */
108 if (EDGE_CRITICAL_P (e
))
110 if (e
->flags
& EDGE_ABNORMAL
)
111 return MUST_COALESCE_COST
;
112 if (e
->flags
& EDGE_EH
)
116 FOR_EACH_EDGE (e2
, ei
, e
->dest
->preds
)
119 /* Putting code on EH edge that leads to BB
120 with multiple predecestors imply splitting of
124 /* If there are multiple EH predecestors, we
125 also copy EH regions and produce separate
126 landing pad. This is expensive. */
127 if (e2
->flags
& EDGE_EH
)
135 return coalesce_cost (EDGE_FREQUENCY (e
),
136 optimize_edge_for_size_p (e
)) * mult
;
140 /* Retrieve a pair to coalesce from the cost_one_list in CL. Returns the
141 2 elements via P1 and P2. 1 is returned by the function if there is a pair,
142 NO_BEST_COALESCE is returned if there aren't any. */
145 pop_cost_one_pair (coalesce_list_p cl
, int *p1
, int *p2
)
149 ptr
= cl
->cost_one_list
;
151 return NO_BEST_COALESCE
;
153 *p1
= ptr
->first_element
;
154 *p2
= ptr
->second_element
;
155 cl
->cost_one_list
= ptr
->next
;
162 /* Retrieve the most expensive remaining pair to coalesce from CL. Returns the
163 2 elements via P1 and P2. Their calculated cost is returned by the function.
164 NO_BEST_COALESCE is returned if the coalesce list is empty. */
167 pop_best_coalesce (coalesce_list_p cl
, int *p1
, int *p2
)
169 coalesce_pair_p node
;
172 if (cl
->sorted
== NULL
)
173 return pop_cost_one_pair (cl
, p1
, p2
);
175 if (cl
->num_sorted
== 0)
176 return pop_cost_one_pair (cl
, p1
, p2
);
178 node
= cl
->sorted
[--(cl
->num_sorted
)];
179 *p1
= node
->first_element
;
180 *p2
= node
->second_element
;
188 #define COALESCE_HASH_FN(R1, R2) ((R2) * ((R2) - 1) / 2 + (R1))
190 /* Hash function for coalesce list. Calculate hash for PAIR. */
193 coalesce_pair_map_hash (const void *pair
)
195 hashval_t a
= (hashval_t
)(((const_coalesce_pair_p
)pair
)->first_element
);
196 hashval_t b
= (hashval_t
)(((const_coalesce_pair_p
)pair
)->second_element
);
198 return COALESCE_HASH_FN (a
,b
);
202 /* Equality function for coalesce list hash table. Compare PAIR1 and PAIR2,
203 returning TRUE if the two pairs are equivalent. */
206 coalesce_pair_map_eq (const void *pair1
, const void *pair2
)
208 const_coalesce_pair_p
const p1
= (const_coalesce_pair_p
) pair1
;
209 const_coalesce_pair_p
const p2
= (const_coalesce_pair_p
) pair2
;
211 return (p1
->first_element
== p2
->first_element
212 && p1
->second_element
== p2
->second_element
);
216 /* Create a new empty coalesce list object and return it. */
218 static inline coalesce_list_p
219 create_coalesce_list (void)
221 coalesce_list_p list
;
222 unsigned size
= num_ssa_names
* 3;
227 list
= (coalesce_list_p
) xmalloc (sizeof (struct coalesce_list_d
));
228 list
->list
= htab_create (size
, coalesce_pair_map_hash
,
229 coalesce_pair_map_eq
, NULL
);
231 list
->num_sorted
= 0;
232 list
->cost_one_list
= NULL
;
237 /* Delete coalesce list CL. */
240 delete_coalesce_list (coalesce_list_p cl
)
242 gcc_assert (cl
->cost_one_list
== NULL
);
243 htab_delete (cl
->list
);
245 gcc_assert (cl
->num_sorted
== 0);
250 /* Find a matching coalesce pair object in CL for the pair P1 and P2. If
251 one isn't found, return NULL if CREATE is false, otherwise create a new
252 coalesce pair object and return it. */
254 static coalesce_pair_p
255 find_coalesce_pair (coalesce_list_p cl
, int p1
, int p2
, bool create
)
257 struct coalesce_pair p
;
261 /* Normalize so that p1 is the smaller value. */
264 p
.first_element
= p2
;
265 p
.second_element
= p1
;
269 p
.first_element
= p1
;
270 p
.second_element
= p2
;
273 hash
= coalesce_pair_map_hash (&p
);
274 slot
= htab_find_slot_with_hash (cl
->list
, &p
, hash
,
275 create
? INSERT
: NO_INSERT
);
281 struct coalesce_pair
* pair
= XNEW (struct coalesce_pair
);
282 gcc_assert (cl
->sorted
== NULL
);
283 pair
->first_element
= p
.first_element
;
284 pair
->second_element
= p
.second_element
;
286 *slot
= (void *)pair
;
289 return (struct coalesce_pair
*) *slot
;
293 add_cost_one_coalesce (coalesce_list_p cl
, int p1
, int p2
)
295 cost_one_pair_p pair
;
297 pair
= XNEW (struct cost_one_pair_d
);
298 pair
->first_element
= p1
;
299 pair
->second_element
= p2
;
300 pair
->next
= cl
->cost_one_list
;
301 cl
->cost_one_list
= pair
;
305 /* Add a coalesce between P1 and P2 in list CL with a cost of VALUE. */
308 add_coalesce (coalesce_list_p cl
, int p1
, int p2
, int value
)
310 coalesce_pair_p node
;
312 gcc_assert (cl
->sorted
== NULL
);
316 node
= find_coalesce_pair (cl
, p1
, p2
, true);
318 /* Once the value is at least MUST_COALESCE_COST - 1, leave it that way. */
319 if (node
->cost
< MUST_COALESCE_COST
- 1)
321 if (value
< MUST_COALESCE_COST
- 1)
329 /* Comparison function to allow qsort to sort P1 and P2 in Ascending order. */
332 compare_pairs (const void *p1
, const void *p2
)
334 const_coalesce_pair_p
const *const pp1
= (const_coalesce_pair_p
const *) p1
;
335 const_coalesce_pair_p
const *const pp2
= (const_coalesce_pair_p
const *) p2
;
338 result
= (* pp1
)->cost
- (* pp2
)->cost
;
339 /* Since qsort does not guarantee stability we use the elements
340 as a secondary key. This provides us with independence from
341 the host's implementation of the sorting algorithm. */
344 result
= (* pp2
)->first_element
- (* pp1
)->first_element
;
346 result
= (* pp2
)->second_element
- (* pp1
)->second_element
;
353 /* Return the number of unique coalesce pairs in CL. */
356 num_coalesce_pairs (coalesce_list_p cl
)
358 return htab_elements (cl
->list
);
362 /* Iterator over hash table pairs. */
366 } coalesce_pair_iterator
;
369 /* Return first partition pair from list CL, initializing iterator ITER. */
371 static inline coalesce_pair_p
372 first_coalesce_pair (coalesce_list_p cl
, coalesce_pair_iterator
*iter
)
374 coalesce_pair_p pair
;
376 pair
= (coalesce_pair_p
) first_htab_element (&(iter
->hti
), cl
->list
);
381 /* Return TRUE if there are no more partitions in for ITER to process. */
384 end_coalesce_pair_p (coalesce_pair_iterator
*iter
)
386 return end_htab_p (&(iter
->hti
));
390 /* Return the next partition pair to be visited by ITER. */
392 static inline coalesce_pair_p
393 next_coalesce_pair (coalesce_pair_iterator
*iter
)
395 coalesce_pair_p pair
;
397 pair
= (coalesce_pair_p
) next_htab_element (&(iter
->hti
));
402 /* Iterate over CL using ITER, returning values in PAIR. */
404 #define FOR_EACH_PARTITION_PAIR(PAIR, ITER, CL) \
405 for ((PAIR) = first_coalesce_pair ((CL), &(ITER)); \
406 !end_coalesce_pair_p (&(ITER)); \
407 (PAIR) = next_coalesce_pair (&(ITER)))
410 /* Prepare CL for removal of preferred pairs. When finished they are sorted
411 in order from most important coalesce to least important. */
414 sort_coalesce_list (coalesce_list_p cl
)
418 coalesce_pair_iterator ppi
;
420 gcc_assert (cl
->sorted
== NULL
);
422 num
= num_coalesce_pairs (cl
);
423 cl
->num_sorted
= num
;
427 /* Allocate a vector for the pair pointers. */
428 cl
->sorted
= XNEWVEC (coalesce_pair_p
, num
);
430 /* Populate the vector with pointers to the pairs. */
432 FOR_EACH_PARTITION_PAIR (p
, ppi
, cl
)
434 gcc_assert (x
== num
);
436 /* Already sorted. */
440 /* If there are only 2, just pick swap them if the order isn't correct. */
443 if (cl
->sorted
[0]->cost
> cl
->sorted
[1]->cost
)
446 cl
->sorted
[0] = cl
->sorted
[1];
452 /* Only call qsort if there are more than 2 items. */
454 qsort (cl
->sorted
, num
, sizeof (coalesce_pair_p
), compare_pairs
);
458 /* Send debug info for coalesce list CL to file F. */
461 dump_coalesce_list (FILE *f
, coalesce_list_p cl
)
463 coalesce_pair_p node
;
464 coalesce_pair_iterator ppi
;
468 if (cl
->sorted
== NULL
)
470 fprintf (f
, "Coalesce List:\n");
471 FOR_EACH_PARTITION_PAIR (node
, ppi
, cl
)
473 tree var1
= ssa_name (node
->first_element
);
474 tree var2
= ssa_name (node
->second_element
);
475 print_generic_expr (f
, var1
, TDF_SLIM
);
476 fprintf (f
, " <-> ");
477 print_generic_expr (f
, var2
, TDF_SLIM
);
478 fprintf (f
, " (%1d), ", node
->cost
);
484 fprintf (f
, "Sorted Coalesce list:\n");
485 for (x
= cl
->num_sorted
- 1 ; x
>=0; x
--)
487 node
= cl
->sorted
[x
];
488 fprintf (f
, "(%d) ", node
->cost
);
489 var
= ssa_name (node
->first_element
);
490 print_generic_expr (f
, var
, TDF_SLIM
);
491 fprintf (f
, " <-> ");
492 var
= ssa_name (node
->second_element
);
493 print_generic_expr (f
, var
, TDF_SLIM
);
500 /* This represents a conflict graph. Implemented as an array of bitmaps.
501 A full matrix is used for conflicts rather than just upper triangular form.
502 this make sit much simpler and faster to perform conflict merges. */
504 typedef struct ssa_conflicts_d
506 bitmap_obstack obstack
; /* A place to allocate our bitmaps. */
507 vec
<bitmap
> conflicts
;
510 /* Return an empty new conflict graph for SIZE elements. */
512 static inline ssa_conflicts_p
513 ssa_conflicts_new (unsigned size
)
517 ptr
= XNEW (struct ssa_conflicts_d
);
518 bitmap_obstack_initialize (&ptr
->obstack
);
519 ptr
->conflicts
.create (size
);
520 ptr
->conflicts
.safe_grow_cleared (size
);
525 /* Free storage for conflict graph PTR. */
528 ssa_conflicts_delete (ssa_conflicts_p ptr
)
530 bitmap_obstack_release (&ptr
->obstack
);
531 ptr
->conflicts
.release ();
536 /* Test if elements X and Y conflict in graph PTR. */
539 ssa_conflicts_test_p (ssa_conflicts_p ptr
, unsigned x
, unsigned y
)
541 bitmap bx
= ptr
->conflicts
[x
];
542 bitmap by
= ptr
->conflicts
[y
];
544 gcc_checking_assert (x
!= y
);
547 /* Avoid the lookup if Y has no conflicts. */
548 return by
? bitmap_bit_p (bx
, y
) : false;
554 /* Add a conflict with Y to the bitmap for X in graph PTR. */
557 ssa_conflicts_add_one (ssa_conflicts_p ptr
, unsigned x
, unsigned y
)
559 bitmap bx
= ptr
->conflicts
[x
];
560 /* If there are no conflicts yet, allocate the bitmap and set bit. */
562 bx
= ptr
->conflicts
[x
] = BITMAP_ALLOC (&ptr
->obstack
);
563 bitmap_set_bit (bx
, y
);
567 /* Add conflicts between X and Y in graph PTR. */
570 ssa_conflicts_add (ssa_conflicts_p ptr
, unsigned x
, unsigned y
)
572 gcc_checking_assert (x
!= y
);
573 ssa_conflicts_add_one (ptr
, x
, y
);
574 ssa_conflicts_add_one (ptr
, y
, x
);
578 /* Merge all Y's conflict into X in graph PTR. */
581 ssa_conflicts_merge (ssa_conflicts_p ptr
, unsigned x
, unsigned y
)
585 bitmap bx
= ptr
->conflicts
[x
];
586 bitmap by
= ptr
->conflicts
[y
];
588 gcc_checking_assert (x
!= y
);
592 /* Add a conflict between X and every one Y has. If the bitmap doesn't
593 exist, then it has already been coalesced, and we don't need to add a
595 EXECUTE_IF_SET_IN_BITMAP (by
, 0, z
, bi
)
597 bitmap bz
= ptr
->conflicts
[z
];
599 bitmap_set_bit (bz
, x
);
604 /* If X has conflicts, add Y's to X. */
605 bitmap_ior_into (bx
, by
);
607 ptr
->conflicts
[y
] = NULL
;
611 /* If X has no conflicts, simply use Y's. */
612 ptr
->conflicts
[x
] = by
;
613 ptr
->conflicts
[y
] = NULL
;
618 /* Dump a conflicts graph. */
621 ssa_conflicts_dump (FILE *file
, ssa_conflicts_p ptr
)
626 fprintf (file
, "\nConflict graph:\n");
628 FOR_EACH_VEC_ELT (ptr
->conflicts
, x
, b
)
631 fprintf (file
, "%d: ", x
);
632 dump_bitmap (file
, b
);
637 /* This structure is used to efficiently record the current status of live
638 SSA_NAMES when building a conflict graph.
639 LIVE_BASE_VAR has a bit set for each base variable which has at least one
641 LIVE_BASE_PARTITIONS is an array of bitmaps using the basevar table as an
642 index, and is used to track what partitions of each base variable are
643 live. This makes it easy to add conflicts between just live partitions
644 with the same base variable.
645 The values in LIVE_BASE_PARTITIONS are only valid if the base variable is
646 marked as being live. This delays clearing of these bitmaps until
647 they are actually needed again. */
649 typedef struct live_track_d
651 bitmap_obstack obstack
; /* A place to allocate our bitmaps. */
652 bitmap live_base_var
; /* Indicates if a basevar is live. */
653 bitmap
*live_base_partitions
; /* Live partitions for each basevar. */
654 var_map map
; /* Var_map being used for partition mapping. */
658 /* This routine will create a new live track structure based on the partitions
662 new_live_track (var_map map
)
667 /* Make sure there is a partition view in place. */
668 gcc_assert (map
->partition_to_base_index
!= NULL
);
670 ptr
= (live_track_p
) xmalloc (sizeof (struct live_track_d
));
672 lim
= num_basevars (map
);
673 bitmap_obstack_initialize (&ptr
->obstack
);
674 ptr
->live_base_partitions
= (bitmap
*) xmalloc(sizeof (bitmap
*) * lim
);
675 ptr
->live_base_var
= BITMAP_ALLOC (&ptr
->obstack
);
676 for (x
= 0; x
< lim
; x
++)
677 ptr
->live_base_partitions
[x
] = BITMAP_ALLOC (&ptr
->obstack
);
682 /* This routine will free the memory associated with PTR. */
685 delete_live_track (live_track_p ptr
)
687 bitmap_obstack_release (&ptr
->obstack
);
688 free (ptr
->live_base_partitions
);
693 /* This function will remove PARTITION from the live list in PTR. */
696 live_track_remove_partition (live_track_p ptr
, int partition
)
700 root
= basevar_index (ptr
->map
, partition
);
701 bitmap_clear_bit (ptr
->live_base_partitions
[root
], partition
);
702 /* If the element list is empty, make the base variable not live either. */
703 if (bitmap_empty_p (ptr
->live_base_partitions
[root
]))
704 bitmap_clear_bit (ptr
->live_base_var
, root
);
708 /* This function will adds PARTITION to the live list in PTR. */
711 live_track_add_partition (live_track_p ptr
, int partition
)
715 root
= basevar_index (ptr
->map
, partition
);
716 /* If this base var wasn't live before, it is now. Clear the element list
717 since it was delayed until needed. */
718 if (bitmap_set_bit (ptr
->live_base_var
, root
))
719 bitmap_clear (ptr
->live_base_partitions
[root
]);
720 bitmap_set_bit (ptr
->live_base_partitions
[root
], partition
);
725 /* Clear the live bit for VAR in PTR. */
728 live_track_clear_var (live_track_p ptr
, tree var
)
732 p
= var_to_partition (ptr
->map
, var
);
733 if (p
!= NO_PARTITION
)
734 live_track_remove_partition (ptr
, p
);
738 /* Return TRUE if VAR is live in PTR. */
741 live_track_live_p (live_track_p ptr
, tree var
)
745 p
= var_to_partition (ptr
->map
, var
);
746 if (p
!= NO_PARTITION
)
748 root
= basevar_index (ptr
->map
, p
);
749 if (bitmap_bit_p (ptr
->live_base_var
, root
))
750 return bitmap_bit_p (ptr
->live_base_partitions
[root
], p
);
756 /* This routine will add USE to PTR. USE will be marked as live in both the
757 ssa live map and the live bitmap for the root of USE. */
760 live_track_process_use (live_track_p ptr
, tree use
)
764 p
= var_to_partition (ptr
->map
, use
);
765 if (p
== NO_PARTITION
)
768 /* Mark as live in the appropriate live list. */
769 live_track_add_partition (ptr
, p
);
773 /* This routine will process a DEF in PTR. DEF will be removed from the live
774 lists, and if there are any other live partitions with the same base
775 variable, conflicts will be added to GRAPH. */
778 live_track_process_def (live_track_p ptr
, tree def
, ssa_conflicts_p graph
)
785 p
= var_to_partition (ptr
->map
, def
);
786 if (p
== NO_PARTITION
)
789 /* Clear the liveness bit. */
790 live_track_remove_partition (ptr
, p
);
792 /* If the bitmap isn't empty now, conflicts need to be added. */
793 root
= basevar_index (ptr
->map
, p
);
794 if (bitmap_bit_p (ptr
->live_base_var
, root
))
796 b
= ptr
->live_base_partitions
[root
];
797 EXECUTE_IF_SET_IN_BITMAP (b
, 0, x
, bi
)
798 ssa_conflicts_add (graph
, p
, x
);
803 /* Initialize PTR with the partitions set in INIT. */
806 live_track_init (live_track_p ptr
, bitmap init
)
811 /* Mark all live on exit partitions. */
812 EXECUTE_IF_SET_IN_BITMAP (init
, 0, p
, bi
)
813 live_track_add_partition (ptr
, p
);
817 /* This routine will clear all live partitions in PTR. */
820 live_track_clear_base_vars (live_track_p ptr
)
822 /* Simply clear the live base list. Anything marked as live in the element
823 lists will be cleared later if/when the base variable ever comes alive
825 bitmap_clear (ptr
->live_base_var
);
829 /* Build a conflict graph based on LIVEINFO. Any partitions which are in the
830 partition view of the var_map liveinfo is based on get entries in the
831 conflict graph. Only conflicts between ssa_name partitions with the same
832 base variable are added. */
834 static ssa_conflicts_p
835 build_ssa_conflict_graph (tree_live_info_p liveinfo
)
837 ssa_conflicts_p graph
;
843 map
= live_var_map (liveinfo
);
844 graph
= ssa_conflicts_new (num_var_partitions (map
));
846 live
= new_live_track (map
);
850 gimple_stmt_iterator gsi
;
852 /* Start with live on exit temporaries. */
853 live_track_init (live
, live_on_exit (liveinfo
, bb
));
855 for (gsi
= gsi_last_bb (bb
); !gsi_end_p (gsi
); gsi_prev (&gsi
))
858 gimple stmt
= gsi_stmt (gsi
);
860 /* A copy between 2 partitions does not introduce an interference
861 by itself. If they did, you would never be able to coalesce
862 two things which are copied. If the two variables really do
863 conflict, they will conflict elsewhere in the program.
865 This is handled by simply removing the SRC of the copy from the
866 live list, and processing the stmt normally. */
867 if (is_gimple_assign (stmt
))
869 tree lhs
= gimple_assign_lhs (stmt
);
870 tree rhs1
= gimple_assign_rhs1 (stmt
);
871 if (gimple_assign_copy_p (stmt
)
872 && TREE_CODE (lhs
) == SSA_NAME
873 && TREE_CODE (rhs1
) == SSA_NAME
)
874 live_track_clear_var (live
, rhs1
);
876 else if (is_gimple_debug (stmt
))
879 FOR_EACH_SSA_TREE_OPERAND (var
, stmt
, iter
, SSA_OP_DEF
)
880 live_track_process_def (live
, var
, graph
);
882 FOR_EACH_SSA_TREE_OPERAND (var
, stmt
, iter
, SSA_OP_USE
)
883 live_track_process_use (live
, var
);
886 /* If result of a PHI is unused, looping over the statements will not
887 record any conflicts since the def was never live. Since the PHI node
888 is going to be translated out of SSA form, it will insert a copy.
889 There must be a conflict recorded between the result of the PHI and
890 any variables that are live. Otherwise the out-of-ssa translation
891 may create incorrect code. */
892 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
894 gimple phi
= gsi_stmt (gsi
);
895 tree result
= PHI_RESULT (phi
);
896 if (live_track_live_p (live
, result
))
897 live_track_process_def (live
, result
, graph
);
900 live_track_clear_base_vars (live
);
903 delete_live_track (live
);
908 /* Shortcut routine to print messages to file F of the form:
909 "STR1 EXPR1 STR2 EXPR2 STR3." */
912 print_exprs (FILE *f
, const char *str1
, tree expr1
, const char *str2
,
913 tree expr2
, const char *str3
)
915 fprintf (f
, "%s", str1
);
916 print_generic_expr (f
, expr1
, TDF_SLIM
);
917 fprintf (f
, "%s", str2
);
918 print_generic_expr (f
, expr2
, TDF_SLIM
);
919 fprintf (f
, "%s", str3
);
923 /* Print a failure to coalesce a MUST_COALESCE pair X and Y. */
926 fail_abnormal_edge_coalesce (int x
, int y
)
928 fprintf (stderr
, "\nUnable to coalesce ssa_names %d and %d",x
, y
);
929 fprintf (stderr
, " which are marked as MUST COALESCE.\n");
930 print_generic_expr (stderr
, ssa_name (x
), TDF_SLIM
);
931 fprintf (stderr
, " and ");
932 print_generic_stmt (stderr
, ssa_name (y
), TDF_SLIM
);
934 internal_error ("SSA corruption");
938 /* This function creates a var_map for the current function as well as creating
939 a coalesce list for use later in the out of ssa process. */
942 create_outofssa_var_map (coalesce_list_p cl
, bitmap used_in_copy
)
944 gimple_stmt_iterator gsi
;
954 map
= init_var_map (num_ssa_names
);
960 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
962 gimple phi
= gsi_stmt (gsi
);
966 bool saw_copy
= false;
968 res
= gimple_phi_result (phi
);
969 ver
= SSA_NAME_VERSION (res
);
970 register_ssa_partition (map
, res
);
972 /* Register ssa_names and coalesces between the args and the result
974 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
976 edge e
= gimple_phi_arg_edge (phi
, i
);
977 arg
= PHI_ARG_DEF (phi
, i
);
978 if (TREE_CODE (arg
) != SSA_NAME
)
981 register_ssa_partition (map
, arg
);
982 if ((SSA_NAME_VAR (arg
) == SSA_NAME_VAR (res
)
983 && TREE_TYPE (arg
) == TREE_TYPE (res
))
984 || (e
->flags
& EDGE_ABNORMAL
))
987 bitmap_set_bit (used_in_copy
, SSA_NAME_VERSION (arg
));
988 if ((e
->flags
& EDGE_ABNORMAL
) == 0)
990 int cost
= coalesce_cost_edge (e
);
991 if (cost
== 1 && has_single_use (arg
))
992 add_cost_one_coalesce (cl
, ver
, SSA_NAME_VERSION (arg
));
994 add_coalesce (cl
, ver
, SSA_NAME_VERSION (arg
), cost
);
999 bitmap_set_bit (used_in_copy
, ver
);
1002 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1004 stmt
= gsi_stmt (gsi
);
1006 if (is_gimple_debug (stmt
))
1009 /* Register USE and DEF operands in each statement. */
1010 FOR_EACH_SSA_TREE_OPERAND (var
, stmt
, iter
, (SSA_OP_DEF
|SSA_OP_USE
))
1011 register_ssa_partition (map
, var
);
1013 /* Check for copy coalesces. */
1014 switch (gimple_code (stmt
))
1018 tree lhs
= gimple_assign_lhs (stmt
);
1019 tree rhs1
= gimple_assign_rhs1 (stmt
);
1021 if (gimple_assign_copy_p (stmt
)
1022 && TREE_CODE (lhs
) == SSA_NAME
1023 && TREE_CODE (rhs1
) == SSA_NAME
1024 && SSA_NAME_VAR (lhs
) == SSA_NAME_VAR (rhs1
)
1025 && TREE_TYPE (lhs
) == TREE_TYPE (rhs1
))
1027 v1
= SSA_NAME_VERSION (lhs
);
1028 v2
= SSA_NAME_VERSION (rhs1
);
1029 cost
= coalesce_cost_bb (bb
);
1030 add_coalesce (cl
, v1
, v2
, cost
);
1031 bitmap_set_bit (used_in_copy
, v1
);
1032 bitmap_set_bit (used_in_copy
, v2
);
1039 unsigned long noutputs
, i
;
1040 unsigned long ninputs
;
1041 tree
*outputs
, link
;
1042 noutputs
= gimple_asm_noutputs (stmt
);
1043 ninputs
= gimple_asm_ninputs (stmt
);
1044 outputs
= (tree
*) alloca (noutputs
* sizeof (tree
));
1045 for (i
= 0; i
< noutputs
; ++i
)
1047 link
= gimple_asm_output_op (stmt
, i
);
1048 outputs
[i
] = TREE_VALUE (link
);
1051 for (i
= 0; i
< ninputs
; ++i
)
1053 const char *constraint
;
1056 unsigned long match
;
1058 link
= gimple_asm_input_op (stmt
, i
);
1060 = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link
)));
1061 input
= TREE_VALUE (link
);
1063 if (TREE_CODE (input
) != SSA_NAME
)
1066 match
= strtoul (constraint
, &end
, 10);
1067 if (match
>= noutputs
|| end
== constraint
)
1070 if (TREE_CODE (outputs
[match
]) != SSA_NAME
)
1073 v1
= SSA_NAME_VERSION (outputs
[match
]);
1074 v2
= SSA_NAME_VERSION (input
);
1076 if (SSA_NAME_VAR (outputs
[match
]) == SSA_NAME_VAR (input
)
1077 && TREE_TYPE (outputs
[match
]) == TREE_TYPE (input
))
1079 cost
= coalesce_cost (REG_BR_PROB_BASE
,
1080 optimize_bb_for_size_p (bb
));
1081 add_coalesce (cl
, v1
, v2
, cost
);
1082 bitmap_set_bit (used_in_copy
, v1
);
1083 bitmap_set_bit (used_in_copy
, v2
);
1095 /* Now process result decls and live on entry variables for entry into
1096 the coalesce list. */
1098 for (i
= 1; i
< num_ssa_names
; i
++)
1101 if (var
!= NULL_TREE
&& !virtual_operand_p (var
))
1103 /* Add coalesces between all the result decls. */
1104 if (SSA_NAME_VAR (var
)
1105 && TREE_CODE (SSA_NAME_VAR (var
)) == RESULT_DECL
)
1107 if (first
== NULL_TREE
)
1111 gcc_assert (SSA_NAME_VAR (var
) == SSA_NAME_VAR (first
)
1112 && TREE_TYPE (var
) == TREE_TYPE (first
));
1113 v1
= SSA_NAME_VERSION (first
);
1114 v2
= SSA_NAME_VERSION (var
);
1115 bitmap_set_bit (used_in_copy
, v1
);
1116 bitmap_set_bit (used_in_copy
, v2
);
1117 cost
= coalesce_cost_bb (EXIT_BLOCK_PTR
);
1118 add_coalesce (cl
, v1
, v2
, cost
);
1121 /* Mark any default_def variables as being in the coalesce list
1122 since they will have to be coalesced with the base variable. If
1123 not marked as present, they won't be in the coalesce view. */
1124 if (SSA_NAME_IS_DEFAULT_DEF (var
)
1125 && !has_zero_uses (var
))
1126 bitmap_set_bit (used_in_copy
, SSA_NAME_VERSION (var
));
1134 /* Attempt to coalesce ssa versions X and Y together using the partition
1135 mapping in MAP and checking conflicts in GRAPH. Output any debug info to
1136 DEBUG, if it is nun-NULL. */
1139 attempt_coalesce (var_map map
, ssa_conflicts_p graph
, int x
, int y
,
1146 p1
= var_to_partition (map
, ssa_name (x
));
1147 p2
= var_to_partition (map
, ssa_name (y
));
1151 fprintf (debug
, "(%d)", x
);
1152 print_generic_expr (debug
, partition_to_var (map
, p1
), TDF_SLIM
);
1153 fprintf (debug
, " & (%d)", y
);
1154 print_generic_expr (debug
, partition_to_var (map
, p2
), TDF_SLIM
);
1160 fprintf (debug
, ": Already Coalesced.\n");
1165 fprintf (debug
, " [map: %d, %d] ", p1
, p2
);
1168 if (!ssa_conflicts_test_p (graph
, p1
, p2
))
1170 var1
= partition_to_var (map
, p1
);
1171 var2
= partition_to_var (map
, p2
);
1172 z
= var_union (map
, var1
, var2
);
1173 if (z
== NO_PARTITION
)
1176 fprintf (debug
, ": Unable to perform partition union.\n");
1180 /* z is the new combined partition. Remove the other partition from
1181 the list, and merge the conflicts. */
1183 ssa_conflicts_merge (graph
, p1
, p2
);
1185 ssa_conflicts_merge (graph
, p2
, p1
);
1188 fprintf (debug
, ": Success -> %d\n", z
);
1193 fprintf (debug
, ": Fail due to conflict\n");
1199 /* Attempt to Coalesce partitions in MAP which occur in the list CL using
1200 GRAPH. Debug output is sent to DEBUG if it is non-NULL. */
1203 coalesce_partitions (var_map map
, ssa_conflicts_p graph
, coalesce_list_p cl
,
1213 /* First, coalesce all the copies across abnormal edges. These are not placed
1214 in the coalesce list because they do not need to be sorted, and simply
1215 consume extra memory/compilation time in large programs. */
1219 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1220 if (e
->flags
& EDGE_ABNORMAL
)
1222 gimple_stmt_iterator gsi
;
1223 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
);
1226 gimple phi
= gsi_stmt (gsi
);
1227 tree res
= PHI_RESULT (phi
);
1228 tree arg
= PHI_ARG_DEF (phi
, e
->dest_idx
);
1229 int v1
= SSA_NAME_VERSION (res
);
1230 int v2
= SSA_NAME_VERSION (arg
);
1233 fprintf (debug
, "Abnormal coalesce: ");
1235 if (!attempt_coalesce (map
, graph
, v1
, v2
, debug
))
1236 fail_abnormal_edge_coalesce (v1
, v2
);
1241 /* Now process the items in the coalesce list. */
1243 while ((cost
= pop_best_coalesce (cl
, &x
, &y
)) != NO_BEST_COALESCE
)
1245 var1
= ssa_name (x
);
1246 var2
= ssa_name (y
);
1248 /* Assert the coalesces have the same base variable. */
1249 gcc_assert (SSA_NAME_VAR (var1
) == SSA_NAME_VAR (var2
)
1250 && TREE_TYPE (var1
) == TREE_TYPE (var2
));
1253 fprintf (debug
, "Coalesce list: ");
1254 attempt_coalesce (map
, graph
, x
, y
, debug
);
1259 /* Hashtable support for storing SSA names hashed by their SSA_NAME_VAR. */
1261 struct ssa_name_var_hash
: typed_noop_remove
<tree_node
>
1263 typedef union tree_node value_type
;
1264 typedef union tree_node compare_type
;
1265 static inline hashval_t
hash (const value_type
*);
1266 static inline int equal (const value_type
*, const compare_type
*);
1270 ssa_name_var_hash::hash (const_tree n
)
1272 return DECL_UID (SSA_NAME_VAR (n
));
1276 ssa_name_var_hash::equal (const value_type
*n1
, const compare_type
*n2
)
1278 return SSA_NAME_VAR (n1
) == SSA_NAME_VAR (n2
);
1282 /* Reduce the number of copies by coalescing variables in the function. Return
1283 a partition map with the resulting coalesces. */
1286 coalesce_ssa_name (void)
1288 tree_live_info_p liveinfo
;
1289 ssa_conflicts_p graph
;
1291 bitmap used_in_copies
= BITMAP_ALLOC (NULL
);
1295 cl
= create_coalesce_list ();
1296 map
= create_outofssa_var_map (cl
, used_in_copies
);
1298 /* We need to coalesce all names originating same SSA_NAME_VAR
1299 so debug info remains undisturbed. */
1302 hash_table
<ssa_name_var_hash
> ssa_name_hash
;
1304 ssa_name_hash
.create (10);
1305 for (i
= 1; i
< num_ssa_names
; i
++)
1307 tree a
= ssa_name (i
);
1311 && !DECL_IGNORED_P (SSA_NAME_VAR (a
))
1312 && (!has_zero_uses (a
) || !SSA_NAME_IS_DEFAULT_DEF (a
)))
1314 tree
*slot
= ssa_name_hash
.find_slot (a
, INSERT
);
1320 add_coalesce (cl
, SSA_NAME_VERSION (a
), SSA_NAME_VERSION (*slot
),
1321 MUST_COALESCE_COST
- 1);
1322 bitmap_set_bit (used_in_copies
, SSA_NAME_VERSION (a
));
1323 bitmap_set_bit (used_in_copies
, SSA_NAME_VERSION (*slot
));
1327 ssa_name_hash
.dispose ();
1329 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1330 dump_var_map (dump_file
, map
);
1332 /* Don't calculate live ranges for variables not in the coalesce list. */
1333 partition_view_bitmap (map
, used_in_copies
, true);
1334 BITMAP_FREE (used_in_copies
);
1336 if (num_var_partitions (map
) < 1)
1338 delete_coalesce_list (cl
);
1342 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1343 dump_var_map (dump_file
, map
);
1345 liveinfo
= calculate_live_ranges (map
);
1347 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1348 dump_live_info (dump_file
, liveinfo
, LIVEDUMP_ENTRY
);
1350 /* Build a conflict graph. */
1351 graph
= build_ssa_conflict_graph (liveinfo
);
1352 delete_tree_live_info (liveinfo
);
1353 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1354 ssa_conflicts_dump (dump_file
, graph
);
1356 sort_coalesce_list (cl
);
1358 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1360 fprintf (dump_file
, "\nAfter sorting:\n");
1361 dump_coalesce_list (dump_file
, cl
);
1364 /* First, coalesce all live on entry variables to their base variable.
1365 This will ensure the first use is coming from the correct location. */
1367 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1368 dump_var_map (dump_file
, map
);
1370 /* Now coalesce everything in the list. */
1371 coalesce_partitions (map
, graph
, cl
,
1372 ((dump_flags
& TDF_DETAILS
) ? dump_file
1375 delete_coalesce_list (cl
);
1376 ssa_conflicts_delete (graph
);