2013-01-15 Paul Thomas <pault@gcc.gnu.org>
[official-gcc.git] / gcc / reload1.c
blob5075da0c4140f3c83f0115c38a142dc5420774f4
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
25 #include "machmode.h"
26 #include "hard-reg-set.h"
27 #include "rtl-error.h"
28 #include "tm_p.h"
29 #include "obstack.h"
30 #include "insn-config.h"
31 #include "ggc.h"
32 #include "flags.h"
33 #include "function.h"
34 #include "expr.h"
35 #include "optabs.h"
36 #include "regs.h"
37 #include "addresses.h"
38 #include "basic-block.h"
39 #include "df.h"
40 #include "reload.h"
41 #include "recog.h"
42 #include "except.h"
43 #include "tree.h"
44 #include "ira.h"
45 #include "target.h"
46 #include "emit-rtl.h"
47 #include "dumpfile.h"
49 /* This file contains the reload pass of the compiler, which is
50 run after register allocation has been done. It checks that
51 each insn is valid (operands required to be in registers really
52 are in registers of the proper class) and fixes up invalid ones
53 by copying values temporarily into registers for the insns
54 that need them.
56 The results of register allocation are described by the vector
57 reg_renumber; the insns still contain pseudo regs, but reg_renumber
58 can be used to find which hard reg, if any, a pseudo reg is in.
60 The technique we always use is to free up a few hard regs that are
61 called ``reload regs'', and for each place where a pseudo reg
62 must be in a hard reg, copy it temporarily into one of the reload regs.
64 Reload regs are allocated locally for every instruction that needs
65 reloads. When there are pseudos which are allocated to a register that
66 has been chosen as a reload reg, such pseudos must be ``spilled''.
67 This means that they go to other hard regs, or to stack slots if no other
68 available hard regs can be found. Spilling can invalidate more
69 insns, requiring additional need for reloads, so we must keep checking
70 until the process stabilizes.
72 For machines with different classes of registers, we must keep track
73 of the register class needed for each reload, and make sure that
74 we allocate enough reload registers of each class.
76 The file reload.c contains the code that checks one insn for
77 validity and reports the reloads that it needs. This file
78 is in charge of scanning the entire rtl code, accumulating the
79 reload needs, spilling, assigning reload registers to use for
80 fixing up each insn, and generating the new insns to copy values
81 into the reload registers. */
83 struct target_reload default_target_reload;
84 #if SWITCHABLE_TARGET
85 struct target_reload *this_target_reload = &default_target_reload;
86 #endif
88 #define spill_indirect_levels \
89 (this_target_reload->x_spill_indirect_levels)
91 /* During reload_as_needed, element N contains a REG rtx for the hard reg
92 into which reg N has been reloaded (perhaps for a previous insn). */
93 static rtx *reg_last_reload_reg;
95 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
96 for an output reload that stores into reg N. */
97 static regset_head reg_has_output_reload;
99 /* Indicates which hard regs are reload-registers for an output reload
100 in the current insn. */
101 static HARD_REG_SET reg_is_output_reload;
103 /* Widest width in which each pseudo reg is referred to (via subreg). */
104 static unsigned int *reg_max_ref_width;
106 /* Vector to remember old contents of reg_renumber before spilling. */
107 static short *reg_old_renumber;
109 /* During reload_as_needed, element N contains the last pseudo regno reloaded
110 into hard register N. If that pseudo reg occupied more than one register,
111 reg_reloaded_contents points to that pseudo for each spill register in
112 use; all of these must remain set for an inheritance to occur. */
113 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
115 /* During reload_as_needed, element N contains the insn for which
116 hard register N was last used. Its contents are significant only
117 when reg_reloaded_valid is set for this register. */
118 static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
120 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
121 static HARD_REG_SET reg_reloaded_valid;
122 /* Indicate if the register was dead at the end of the reload.
123 This is only valid if reg_reloaded_contents is set and valid. */
124 static HARD_REG_SET reg_reloaded_dead;
126 /* Indicate whether the register's current value is one that is not
127 safe to retain across a call, even for registers that are normally
128 call-saved. This is only meaningful for members of reg_reloaded_valid. */
129 static HARD_REG_SET reg_reloaded_call_part_clobbered;
131 /* Number of spill-regs so far; number of valid elements of spill_regs. */
132 static int n_spills;
134 /* In parallel with spill_regs, contains REG rtx's for those regs.
135 Holds the last rtx used for any given reg, or 0 if it has never
136 been used for spilling yet. This rtx is reused, provided it has
137 the proper mode. */
138 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
140 /* In parallel with spill_regs, contains nonzero for a spill reg
141 that was stored after the last time it was used.
142 The precise value is the insn generated to do the store. */
143 static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
145 /* This is the register that was stored with spill_reg_store. This is a
146 copy of reload_out / reload_out_reg when the value was stored; if
147 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
148 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
150 /* This table is the inverse mapping of spill_regs:
151 indexed by hard reg number,
152 it contains the position of that reg in spill_regs,
153 or -1 for something that is not in spill_regs.
155 ?!? This is no longer accurate. */
156 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
158 /* This reg set indicates registers that can't be used as spill registers for
159 the currently processed insn. These are the hard registers which are live
160 during the insn, but not allocated to pseudos, as well as fixed
161 registers. */
162 static HARD_REG_SET bad_spill_regs;
164 /* These are the hard registers that can't be used as spill register for any
165 insn. This includes registers used for user variables and registers that
166 we can't eliminate. A register that appears in this set also can't be used
167 to retry register allocation. */
168 static HARD_REG_SET bad_spill_regs_global;
170 /* Describes order of use of registers for reloading
171 of spilled pseudo-registers. `n_spills' is the number of
172 elements that are actually valid; new ones are added at the end.
174 Both spill_regs and spill_reg_order are used on two occasions:
175 once during find_reload_regs, where they keep track of the spill registers
176 for a single insn, but also during reload_as_needed where they show all
177 the registers ever used by reload. For the latter case, the information
178 is calculated during finish_spills. */
179 static short spill_regs[FIRST_PSEUDO_REGISTER];
181 /* This vector of reg sets indicates, for each pseudo, which hard registers
182 may not be used for retrying global allocation because the register was
183 formerly spilled from one of them. If we allowed reallocating a pseudo to
184 a register that it was already allocated to, reload might not
185 terminate. */
186 static HARD_REG_SET *pseudo_previous_regs;
188 /* This vector of reg sets indicates, for each pseudo, which hard
189 registers may not be used for retrying global allocation because they
190 are used as spill registers during one of the insns in which the
191 pseudo is live. */
192 static HARD_REG_SET *pseudo_forbidden_regs;
194 /* All hard regs that have been used as spill registers for any insn are
195 marked in this set. */
196 static HARD_REG_SET used_spill_regs;
198 /* Index of last register assigned as a spill register. We allocate in
199 a round-robin fashion. */
200 static int last_spill_reg;
202 /* Record the stack slot for each spilled hard register. */
203 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
205 /* Width allocated so far for that stack slot. */
206 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
208 /* Record which pseudos needed to be spilled. */
209 static regset_head spilled_pseudos;
211 /* Record which pseudos changed their allocation in finish_spills. */
212 static regset_head changed_allocation_pseudos;
214 /* Used for communication between order_regs_for_reload and count_pseudo.
215 Used to avoid counting one pseudo twice. */
216 static regset_head pseudos_counted;
218 /* First uid used by insns created by reload in this function.
219 Used in find_equiv_reg. */
220 int reload_first_uid;
222 /* Flag set by local-alloc or global-alloc if anything is live in
223 a call-clobbered reg across calls. */
224 int caller_save_needed;
226 /* Set to 1 while reload_as_needed is operating.
227 Required by some machines to handle any generated moves differently. */
228 int reload_in_progress = 0;
230 /* This obstack is used for allocation of rtl during register elimination.
231 The allocated storage can be freed once find_reloads has processed the
232 insn. */
233 static struct obstack reload_obstack;
235 /* Points to the beginning of the reload_obstack. All insn_chain structures
236 are allocated first. */
237 static char *reload_startobj;
239 /* The point after all insn_chain structures. Used to quickly deallocate
240 memory allocated in copy_reloads during calculate_needs_all_insns. */
241 static char *reload_firstobj;
243 /* This points before all local rtl generated by register elimination.
244 Used to quickly free all memory after processing one insn. */
245 static char *reload_insn_firstobj;
247 /* List of insn_chain instructions, one for every insn that reload needs to
248 examine. */
249 struct insn_chain *reload_insn_chain;
251 /* TRUE if we potentially left dead insns in the insn stream and want to
252 run DCE immediately after reload, FALSE otherwise. */
253 static bool need_dce;
255 /* List of all insns needing reloads. */
256 static struct insn_chain *insns_need_reload;
258 /* This structure is used to record information about register eliminations.
259 Each array entry describes one possible way of eliminating a register
260 in favor of another. If there is more than one way of eliminating a
261 particular register, the most preferred should be specified first. */
263 struct elim_table
265 int from; /* Register number to be eliminated. */
266 int to; /* Register number used as replacement. */
267 HOST_WIDE_INT initial_offset; /* Initial difference between values. */
268 int can_eliminate; /* Nonzero if this elimination can be done. */
269 int can_eliminate_previous; /* Value returned by TARGET_CAN_ELIMINATE
270 target hook in previous scan over insns
271 made by reload. */
272 HOST_WIDE_INT offset; /* Current offset between the two regs. */
273 HOST_WIDE_INT previous_offset;/* Offset at end of previous insn. */
274 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
275 rtx from_rtx; /* REG rtx for the register to be eliminated.
276 We cannot simply compare the number since
277 we might then spuriously replace a hard
278 register corresponding to a pseudo
279 assigned to the reg to be eliminated. */
280 rtx to_rtx; /* REG rtx for the replacement. */
283 static struct elim_table *reg_eliminate = 0;
285 /* This is an intermediate structure to initialize the table. It has
286 exactly the members provided by ELIMINABLE_REGS. */
287 static const struct elim_table_1
289 const int from;
290 const int to;
291 } reg_eliminate_1[] =
293 /* If a set of eliminable registers was specified, define the table from it.
294 Otherwise, default to the normal case of the frame pointer being
295 replaced by the stack pointer. */
297 #ifdef ELIMINABLE_REGS
298 ELIMINABLE_REGS;
299 #else
300 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
301 #endif
303 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
305 /* Record the number of pending eliminations that have an offset not equal
306 to their initial offset. If nonzero, we use a new copy of each
307 replacement result in any insns encountered. */
308 int num_not_at_initial_offset;
310 /* Count the number of registers that we may be able to eliminate. */
311 static int num_eliminable;
312 /* And the number of registers that are equivalent to a constant that
313 can be eliminated to frame_pointer / arg_pointer + constant. */
314 static int num_eliminable_invariants;
316 /* For each label, we record the offset of each elimination. If we reach
317 a label by more than one path and an offset differs, we cannot do the
318 elimination. This information is indexed by the difference of the
319 number of the label and the first label number. We can't offset the
320 pointer itself as this can cause problems on machines with segmented
321 memory. The first table is an array of flags that records whether we
322 have yet encountered a label and the second table is an array of arrays,
323 one entry in the latter array for each elimination. */
325 static int first_label_num;
326 static char *offsets_known_at;
327 static HOST_WIDE_INT (*offsets_at)[NUM_ELIMINABLE_REGS];
329 vec<reg_equivs_t, va_gc> *reg_equivs;
331 /* Stack of addresses where an rtx has been changed. We can undo the
332 changes by popping items off the stack and restoring the original
333 value at each location.
335 We use this simplistic undo capability rather than copy_rtx as copy_rtx
336 will not make a deep copy of a normally sharable rtx, such as
337 (const (plus (symbol_ref) (const_int))). If such an expression appears
338 as R1 in gen_reload_chain_without_interm_reg_p, then a shared
339 rtx expression would be changed. See PR 42431. */
341 typedef rtx *rtx_p;
342 static vec<rtx_p> substitute_stack;
344 /* Number of labels in the current function. */
346 static int num_labels;
348 static void replace_pseudos_in (rtx *, enum machine_mode, rtx);
349 static void maybe_fix_stack_asms (void);
350 static void copy_reloads (struct insn_chain *);
351 static void calculate_needs_all_insns (int);
352 static int find_reg (struct insn_chain *, int);
353 static void find_reload_regs (struct insn_chain *);
354 static void select_reload_regs (void);
355 static void delete_caller_save_insns (void);
357 static void spill_failure (rtx, enum reg_class);
358 static void count_spilled_pseudo (int, int, int);
359 static void delete_dead_insn (rtx);
360 static void alter_reg (int, int, bool);
361 static void set_label_offsets (rtx, rtx, int);
362 static void check_eliminable_occurrences (rtx);
363 static void elimination_effects (rtx, enum machine_mode);
364 static rtx eliminate_regs_1 (rtx, enum machine_mode, rtx, bool, bool);
365 static int eliminate_regs_in_insn (rtx, int);
366 static void update_eliminable_offsets (void);
367 static void mark_not_eliminable (rtx, const_rtx, void *);
368 static void set_initial_elim_offsets (void);
369 static bool verify_initial_elim_offsets (void);
370 static void set_initial_label_offsets (void);
371 static void set_offsets_for_label (rtx);
372 static void init_eliminable_invariants (rtx, bool);
373 static void init_elim_table (void);
374 static void free_reg_equiv (void);
375 static void update_eliminables (HARD_REG_SET *);
376 static void elimination_costs_in_insn (rtx);
377 static void spill_hard_reg (unsigned int, int);
378 static int finish_spills (int);
379 static void scan_paradoxical_subregs (rtx);
380 static void count_pseudo (int);
381 static void order_regs_for_reload (struct insn_chain *);
382 static void reload_as_needed (int);
383 static void forget_old_reloads_1 (rtx, const_rtx, void *);
384 static void forget_marked_reloads (regset);
385 static int reload_reg_class_lower (const void *, const void *);
386 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
387 enum machine_mode);
388 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
389 enum machine_mode);
390 static int reload_reg_free_p (unsigned int, int, enum reload_type);
391 static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
392 rtx, rtx, int, int);
393 static int free_for_value_p (int, enum machine_mode, int, enum reload_type,
394 rtx, rtx, int, int);
395 static int allocate_reload_reg (struct insn_chain *, int, int);
396 static int conflicts_with_override (rtx);
397 static void failed_reload (rtx, int);
398 static int set_reload_reg (int, int);
399 static void choose_reload_regs_init (struct insn_chain *, rtx *);
400 static void choose_reload_regs (struct insn_chain *);
401 static void emit_input_reload_insns (struct insn_chain *, struct reload *,
402 rtx, int);
403 static void emit_output_reload_insns (struct insn_chain *, struct reload *,
404 int);
405 static void do_input_reload (struct insn_chain *, struct reload *, int);
406 static void do_output_reload (struct insn_chain *, struct reload *, int);
407 static void emit_reload_insns (struct insn_chain *);
408 static void delete_output_reload (rtx, int, int, rtx);
409 static void delete_address_reloads (rtx, rtx);
410 static void delete_address_reloads_1 (rtx, rtx, rtx);
411 static void inc_for_reload (rtx, rtx, rtx, int);
412 #ifdef AUTO_INC_DEC
413 static void add_auto_inc_notes (rtx, rtx);
414 #endif
415 static void substitute (rtx *, const_rtx, rtx);
416 static bool gen_reload_chain_without_interm_reg_p (int, int);
417 static int reloads_conflict (int, int);
418 static rtx gen_reload (rtx, rtx, int, enum reload_type);
419 static rtx emit_insn_if_valid_for_reload (rtx);
421 /* Initialize the reload pass. This is called at the beginning of compilation
422 and may be called again if the target is reinitialized. */
424 void
425 init_reload (void)
427 int i;
429 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
430 Set spill_indirect_levels to the number of levels such addressing is
431 permitted, zero if it is not permitted at all. */
433 rtx tem
434 = gen_rtx_MEM (Pmode,
435 gen_rtx_PLUS (Pmode,
436 gen_rtx_REG (Pmode,
437 LAST_VIRTUAL_REGISTER + 1),
438 GEN_INT (4)));
439 spill_indirect_levels = 0;
441 while (memory_address_p (QImode, tem))
443 spill_indirect_levels++;
444 tem = gen_rtx_MEM (Pmode, tem);
447 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
449 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
450 indirect_symref_ok = memory_address_p (QImode, tem);
452 /* See if reg+reg is a valid (and offsettable) address. */
454 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
456 tem = gen_rtx_PLUS (Pmode,
457 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
458 gen_rtx_REG (Pmode, i));
460 /* This way, we make sure that reg+reg is an offsettable address. */
461 tem = plus_constant (Pmode, tem, 4);
463 if (memory_address_p (QImode, tem))
465 double_reg_address_ok = 1;
466 break;
470 /* Initialize obstack for our rtl allocation. */
471 gcc_obstack_init (&reload_obstack);
472 reload_startobj = XOBNEWVAR (&reload_obstack, char, 0);
474 INIT_REG_SET (&spilled_pseudos);
475 INIT_REG_SET (&changed_allocation_pseudos);
476 INIT_REG_SET (&pseudos_counted);
479 /* List of insn chains that are currently unused. */
480 static struct insn_chain *unused_insn_chains = 0;
482 /* Allocate an empty insn_chain structure. */
483 struct insn_chain *
484 new_insn_chain (void)
486 struct insn_chain *c;
488 if (unused_insn_chains == 0)
490 c = XOBNEW (&reload_obstack, struct insn_chain);
491 INIT_REG_SET (&c->live_throughout);
492 INIT_REG_SET (&c->dead_or_set);
494 else
496 c = unused_insn_chains;
497 unused_insn_chains = c->next;
499 c->is_caller_save_insn = 0;
500 c->need_operand_change = 0;
501 c->need_reload = 0;
502 c->need_elim = 0;
503 return c;
506 /* Small utility function to set all regs in hard reg set TO which are
507 allocated to pseudos in regset FROM. */
509 void
510 compute_use_by_pseudos (HARD_REG_SET *to, regset from)
512 unsigned int regno;
513 reg_set_iterator rsi;
515 EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
517 int r = reg_renumber[regno];
519 if (r < 0)
521 /* reload_combine uses the information from DF_LIVE_IN,
522 which might still contain registers that have not
523 actually been allocated since they have an
524 equivalence. */
525 gcc_assert (ira_conflicts_p || reload_completed);
527 else
528 add_to_hard_reg_set (to, PSEUDO_REGNO_MODE (regno), r);
532 /* Replace all pseudos found in LOC with their corresponding
533 equivalences. */
535 static void
536 replace_pseudos_in (rtx *loc, enum machine_mode mem_mode, rtx usage)
538 rtx x = *loc;
539 enum rtx_code code;
540 const char *fmt;
541 int i, j;
543 if (! x)
544 return;
546 code = GET_CODE (x);
547 if (code == REG)
549 unsigned int regno = REGNO (x);
551 if (regno < FIRST_PSEUDO_REGISTER)
552 return;
554 x = eliminate_regs_1 (x, mem_mode, usage, true, false);
555 if (x != *loc)
557 *loc = x;
558 replace_pseudos_in (loc, mem_mode, usage);
559 return;
562 if (reg_equiv_constant (regno))
563 *loc = reg_equiv_constant (regno);
564 else if (reg_equiv_invariant (regno))
565 *loc = reg_equiv_invariant (regno);
566 else if (reg_equiv_mem (regno))
567 *loc = reg_equiv_mem (regno);
568 else if (reg_equiv_address (regno))
569 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address (regno));
570 else
572 gcc_assert (!REG_P (regno_reg_rtx[regno])
573 || REGNO (regno_reg_rtx[regno]) != regno);
574 *loc = regno_reg_rtx[regno];
577 return;
579 else if (code == MEM)
581 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
582 return;
585 /* Process each of our operands recursively. */
586 fmt = GET_RTX_FORMAT (code);
587 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
588 if (*fmt == 'e')
589 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
590 else if (*fmt == 'E')
591 for (j = 0; j < XVECLEN (x, i); j++)
592 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
595 /* Determine if the current function has an exception receiver block
596 that reaches the exit block via non-exceptional edges */
598 static bool
599 has_nonexceptional_receiver (void)
601 edge e;
602 edge_iterator ei;
603 basic_block *tos, *worklist, bb;
605 /* If we're not optimizing, then just err on the safe side. */
606 if (!optimize)
607 return true;
609 /* First determine which blocks can reach exit via normal paths. */
610 tos = worklist = XNEWVEC (basic_block, n_basic_blocks + 1);
612 FOR_EACH_BB (bb)
613 bb->flags &= ~BB_REACHABLE;
615 /* Place the exit block on our worklist. */
616 EXIT_BLOCK_PTR->flags |= BB_REACHABLE;
617 *tos++ = EXIT_BLOCK_PTR;
619 /* Iterate: find everything reachable from what we've already seen. */
620 while (tos != worklist)
622 bb = *--tos;
624 FOR_EACH_EDGE (e, ei, bb->preds)
625 if (!(e->flags & EDGE_ABNORMAL))
627 basic_block src = e->src;
629 if (!(src->flags & BB_REACHABLE))
631 src->flags |= BB_REACHABLE;
632 *tos++ = src;
636 free (worklist);
638 /* Now see if there's a reachable block with an exceptional incoming
639 edge. */
640 FOR_EACH_BB (bb)
641 if (bb->flags & BB_REACHABLE && bb_has_abnormal_pred (bb))
642 return true;
644 /* No exceptional block reached exit unexceptionally. */
645 return false;
648 /* Grow (or allocate) the REG_EQUIVS array from its current size (which may be
649 zero elements) to MAX_REG_NUM elements.
651 Initialize all new fields to NULL and update REG_EQUIVS_SIZE. */
652 void
653 grow_reg_equivs (void)
655 int old_size = vec_safe_length (reg_equivs);
656 int max_regno = max_reg_num ();
657 int i;
658 reg_equivs_t ze;
660 memset (&ze, 0, sizeof (reg_equivs_t));
661 vec_safe_reserve (reg_equivs, max_regno);
662 for (i = old_size; i < max_regno; i++)
663 reg_equivs->quick_insert (i, ze);
667 /* Global variables used by reload and its subroutines. */
669 /* The current basic block while in calculate_elim_costs_all_insns. */
670 static basic_block elim_bb;
672 /* Set during calculate_needs if an insn needs register elimination. */
673 static int something_needs_elimination;
674 /* Set during calculate_needs if an insn needs an operand changed. */
675 static int something_needs_operands_changed;
676 /* Set by alter_regs if we spilled a register to the stack. */
677 static bool something_was_spilled;
679 /* Nonzero means we couldn't get enough spill regs. */
680 static int failure;
682 /* Temporary array of pseudo-register number. */
683 static int *temp_pseudo_reg_arr;
685 /* Main entry point for the reload pass.
687 FIRST is the first insn of the function being compiled.
689 GLOBAL nonzero means we were called from global_alloc
690 and should attempt to reallocate any pseudoregs that we
691 displace from hard regs we will use for reloads.
692 If GLOBAL is zero, we do not have enough information to do that,
693 so any pseudo reg that is spilled must go to the stack.
695 Return value is TRUE if reload likely left dead insns in the
696 stream and a DCE pass should be run to elimiante them. Else the
697 return value is FALSE. */
699 bool
700 reload (rtx first, int global)
702 int i, n;
703 rtx insn;
704 struct elim_table *ep;
705 basic_block bb;
706 bool inserted;
708 /* Make sure even insns with volatile mem refs are recognizable. */
709 init_recog ();
711 failure = 0;
713 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
715 /* Make sure that the last insn in the chain
716 is not something that needs reloading. */
717 emit_note (NOTE_INSN_DELETED);
719 /* Enable find_equiv_reg to distinguish insns made by reload. */
720 reload_first_uid = get_max_uid ();
722 #ifdef SECONDARY_MEMORY_NEEDED
723 /* Initialize the secondary memory table. */
724 clear_secondary_mem ();
725 #endif
727 /* We don't have a stack slot for any spill reg yet. */
728 memset (spill_stack_slot, 0, sizeof spill_stack_slot);
729 memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
731 /* Initialize the save area information for caller-save, in case some
732 are needed. */
733 init_save_areas ();
735 /* Compute which hard registers are now in use
736 as homes for pseudo registers.
737 This is done here rather than (eg) in global_alloc
738 because this point is reached even if not optimizing. */
739 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
740 mark_home_live (i);
742 /* A function that has a nonlocal label that can reach the exit
743 block via non-exceptional paths must save all call-saved
744 registers. */
745 if (cfun->has_nonlocal_label
746 && has_nonexceptional_receiver ())
747 crtl->saves_all_registers = 1;
749 if (crtl->saves_all_registers)
750 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
751 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
752 df_set_regs_ever_live (i, true);
754 /* Find all the pseudo registers that didn't get hard regs
755 but do have known equivalent constants or memory slots.
756 These include parameters (known equivalent to parameter slots)
757 and cse'd or loop-moved constant memory addresses.
759 Record constant equivalents in reg_equiv_constant
760 so they will be substituted by find_reloads.
761 Record memory equivalents in reg_mem_equiv so they can
762 be substituted eventually by altering the REG-rtx's. */
764 grow_reg_equivs ();
765 reg_old_renumber = XCNEWVEC (short, max_regno);
766 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
767 pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno);
768 pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno);
770 CLEAR_HARD_REG_SET (bad_spill_regs_global);
772 init_eliminable_invariants (first, true);
773 init_elim_table ();
775 /* Alter each pseudo-reg rtx to contain its hard reg number. Assign
776 stack slots to the pseudos that lack hard regs or equivalents.
777 Do not touch virtual registers. */
779 temp_pseudo_reg_arr = XNEWVEC (int, max_regno - LAST_VIRTUAL_REGISTER - 1);
780 for (n = 0, i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
781 temp_pseudo_reg_arr[n++] = i;
783 if (ira_conflicts_p)
784 /* Ask IRA to order pseudo-registers for better stack slot
785 sharing. */
786 ira_sort_regnos_for_alter_reg (temp_pseudo_reg_arr, n, reg_max_ref_width);
788 for (i = 0; i < n; i++)
789 alter_reg (temp_pseudo_reg_arr[i], -1, false);
791 /* If we have some registers we think can be eliminated, scan all insns to
792 see if there is an insn that sets one of these registers to something
793 other than itself plus a constant. If so, the register cannot be
794 eliminated. Doing this scan here eliminates an extra pass through the
795 main reload loop in the most common case where register elimination
796 cannot be done. */
797 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
798 if (INSN_P (insn))
799 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
801 maybe_fix_stack_asms ();
803 insns_need_reload = 0;
804 something_needs_elimination = 0;
806 /* Initialize to -1, which means take the first spill register. */
807 last_spill_reg = -1;
809 /* Spill any hard regs that we know we can't eliminate. */
810 CLEAR_HARD_REG_SET (used_spill_regs);
811 /* There can be multiple ways to eliminate a register;
812 they should be listed adjacently.
813 Elimination for any register fails only if all possible ways fail. */
814 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
816 int from = ep->from;
817 int can_eliminate = 0;
820 can_eliminate |= ep->can_eliminate;
821 ep++;
823 while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
824 if (! can_eliminate)
825 spill_hard_reg (from, 1);
828 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
829 if (frame_pointer_needed)
830 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
831 #endif
832 finish_spills (global);
834 /* From now on, we may need to generate moves differently. We may also
835 allow modifications of insns which cause them to not be recognized.
836 Any such modifications will be cleaned up during reload itself. */
837 reload_in_progress = 1;
839 /* This loop scans the entire function each go-round
840 and repeats until one repetition spills no additional hard regs. */
841 for (;;)
843 int something_changed;
844 int did_spill;
845 HOST_WIDE_INT starting_frame_size;
847 starting_frame_size = get_frame_size ();
848 something_was_spilled = false;
850 set_initial_elim_offsets ();
851 set_initial_label_offsets ();
853 /* For each pseudo register that has an equivalent location defined,
854 try to eliminate any eliminable registers (such as the frame pointer)
855 assuming initial offsets for the replacement register, which
856 is the normal case.
858 If the resulting location is directly addressable, substitute
859 the MEM we just got directly for the old REG.
861 If it is not addressable but is a constant or the sum of a hard reg
862 and constant, it is probably not addressable because the constant is
863 out of range, in that case record the address; we will generate
864 hairy code to compute the address in a register each time it is
865 needed. Similarly if it is a hard register, but one that is not
866 valid as an address register.
868 If the location is not addressable, but does not have one of the
869 above forms, assign a stack slot. We have to do this to avoid the
870 potential of producing lots of reloads if, e.g., a location involves
871 a pseudo that didn't get a hard register and has an equivalent memory
872 location that also involves a pseudo that didn't get a hard register.
874 Perhaps at some point we will improve reload_when_needed handling
875 so this problem goes away. But that's very hairy. */
877 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
878 if (reg_renumber[i] < 0 && reg_equiv_memory_loc (i))
880 rtx x = eliminate_regs (reg_equiv_memory_loc (i), VOIDmode,
881 NULL_RTX);
883 if (strict_memory_address_addr_space_p
884 (GET_MODE (regno_reg_rtx[i]), XEXP (x, 0),
885 MEM_ADDR_SPACE (x)))
886 reg_equiv_mem (i) = x, reg_equiv_address (i) = 0;
887 else if (CONSTANT_P (XEXP (x, 0))
888 || (REG_P (XEXP (x, 0))
889 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
890 || (GET_CODE (XEXP (x, 0)) == PLUS
891 && REG_P (XEXP (XEXP (x, 0), 0))
892 && (REGNO (XEXP (XEXP (x, 0), 0))
893 < FIRST_PSEUDO_REGISTER)
894 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
895 reg_equiv_address (i) = XEXP (x, 0), reg_equiv_mem (i) = 0;
896 else
898 /* Make a new stack slot. Then indicate that something
899 changed so we go back and recompute offsets for
900 eliminable registers because the allocation of memory
901 below might change some offset. reg_equiv_{mem,address}
902 will be set up for this pseudo on the next pass around
903 the loop. */
904 reg_equiv_memory_loc (i) = 0;
905 reg_equiv_init (i) = 0;
906 alter_reg (i, -1, true);
910 if (caller_save_needed)
911 setup_save_areas ();
913 /* If we allocated another stack slot, redo elimination bookkeeping. */
914 if (something_was_spilled || starting_frame_size != get_frame_size ())
915 continue;
916 if (starting_frame_size && crtl->stack_alignment_needed)
918 /* If we have a stack frame, we must align it now. The
919 stack size may be a part of the offset computation for
920 register elimination. So if this changes the stack size,
921 then repeat the elimination bookkeeping. We don't
922 realign when there is no stack, as that will cause a
923 stack frame when none is needed should
924 STARTING_FRAME_OFFSET not be already aligned to
925 STACK_BOUNDARY. */
926 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
927 if (starting_frame_size != get_frame_size ())
928 continue;
931 if (caller_save_needed)
933 save_call_clobbered_regs ();
934 /* That might have allocated new insn_chain structures. */
935 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
938 calculate_needs_all_insns (global);
940 if (! ira_conflicts_p)
941 /* Don't do it for IRA. We need this info because we don't
942 change live_throughout and dead_or_set for chains when IRA
943 is used. */
944 CLEAR_REG_SET (&spilled_pseudos);
946 did_spill = 0;
948 something_changed = 0;
950 /* If we allocated any new memory locations, make another pass
951 since it might have changed elimination offsets. */
952 if (something_was_spilled || starting_frame_size != get_frame_size ())
953 something_changed = 1;
955 /* Even if the frame size remained the same, we might still have
956 changed elimination offsets, e.g. if find_reloads called
957 force_const_mem requiring the back end to allocate a constant
958 pool base register that needs to be saved on the stack. */
959 else if (!verify_initial_elim_offsets ())
960 something_changed = 1;
963 HARD_REG_SET to_spill;
964 CLEAR_HARD_REG_SET (to_spill);
965 update_eliminables (&to_spill);
966 AND_COMPL_HARD_REG_SET (used_spill_regs, to_spill);
968 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
969 if (TEST_HARD_REG_BIT (to_spill, i))
971 spill_hard_reg (i, 1);
972 did_spill = 1;
974 /* Regardless of the state of spills, if we previously had
975 a register that we thought we could eliminate, but now can
976 not eliminate, we must run another pass.
978 Consider pseudos which have an entry in reg_equiv_* which
979 reference an eliminable register. We must make another pass
980 to update reg_equiv_* so that we do not substitute in the
981 old value from when we thought the elimination could be
982 performed. */
983 something_changed = 1;
987 select_reload_regs ();
988 if (failure)
989 goto failed;
991 if (insns_need_reload != 0 || did_spill)
992 something_changed |= finish_spills (global);
994 if (! something_changed)
995 break;
997 if (caller_save_needed)
998 delete_caller_save_insns ();
1000 obstack_free (&reload_obstack, reload_firstobj);
1003 /* If global-alloc was run, notify it of any register eliminations we have
1004 done. */
1005 if (global)
1006 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1007 if (ep->can_eliminate)
1008 mark_elimination (ep->from, ep->to);
1010 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
1011 If that insn didn't set the register (i.e., it copied the register to
1012 memory), just delete that insn instead of the equivalencing insn plus
1013 anything now dead. If we call delete_dead_insn on that insn, we may
1014 delete the insn that actually sets the register if the register dies
1015 there and that is incorrect. */
1017 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1019 if (reg_renumber[i] < 0 && reg_equiv_init (i) != 0)
1021 rtx list;
1022 for (list = reg_equiv_init (i); list; list = XEXP (list, 1))
1024 rtx equiv_insn = XEXP (list, 0);
1026 /* If we already deleted the insn or if it may trap, we can't
1027 delete it. The latter case shouldn't happen, but can
1028 if an insn has a variable address, gets a REG_EH_REGION
1029 note added to it, and then gets converted into a load
1030 from a constant address. */
1031 if (NOTE_P (equiv_insn)
1032 || can_throw_internal (equiv_insn))
1034 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
1035 delete_dead_insn (equiv_insn);
1036 else
1037 SET_INSN_DELETED (equiv_insn);
1042 /* Use the reload registers where necessary
1043 by generating move instructions to move the must-be-register
1044 values into or out of the reload registers. */
1046 if (insns_need_reload != 0 || something_needs_elimination
1047 || something_needs_operands_changed)
1049 HOST_WIDE_INT old_frame_size = get_frame_size ();
1051 reload_as_needed (global);
1053 gcc_assert (old_frame_size == get_frame_size ());
1055 gcc_assert (verify_initial_elim_offsets ());
1058 /* If we were able to eliminate the frame pointer, show that it is no
1059 longer live at the start of any basic block. If it ls live by
1060 virtue of being in a pseudo, that pseudo will be marked live
1061 and hence the frame pointer will be known to be live via that
1062 pseudo. */
1064 if (! frame_pointer_needed)
1065 FOR_EACH_BB (bb)
1066 bitmap_clear_bit (df_get_live_in (bb), HARD_FRAME_POINTER_REGNUM);
1068 /* Come here (with failure set nonzero) if we can't get enough spill
1069 regs. */
1070 failed:
1072 CLEAR_REG_SET (&changed_allocation_pseudos);
1073 CLEAR_REG_SET (&spilled_pseudos);
1074 reload_in_progress = 0;
1076 /* Now eliminate all pseudo regs by modifying them into
1077 their equivalent memory references.
1078 The REG-rtx's for the pseudos are modified in place,
1079 so all insns that used to refer to them now refer to memory.
1081 For a reg that has a reg_equiv_address, all those insns
1082 were changed by reloading so that no insns refer to it any longer;
1083 but the DECL_RTL of a variable decl may refer to it,
1084 and if so this causes the debugging info to mention the variable. */
1086 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1088 rtx addr = 0;
1090 if (reg_equiv_mem (i))
1091 addr = XEXP (reg_equiv_mem (i), 0);
1093 if (reg_equiv_address (i))
1094 addr = reg_equiv_address (i);
1096 if (addr)
1098 if (reg_renumber[i] < 0)
1100 rtx reg = regno_reg_rtx[i];
1102 REG_USERVAR_P (reg) = 0;
1103 PUT_CODE (reg, MEM);
1104 XEXP (reg, 0) = addr;
1105 if (reg_equiv_memory_loc (i))
1106 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc (i));
1107 else
1108 MEM_ATTRS (reg) = 0;
1109 MEM_NOTRAP_P (reg) = 1;
1111 else if (reg_equiv_mem (i))
1112 XEXP (reg_equiv_mem (i), 0) = addr;
1115 /* We don't want complex addressing modes in debug insns
1116 if simpler ones will do, so delegitimize equivalences
1117 in debug insns. */
1118 if (MAY_HAVE_DEBUG_INSNS && reg_renumber[i] < 0)
1120 rtx reg = regno_reg_rtx[i];
1121 rtx equiv = 0;
1122 df_ref use, next;
1124 if (reg_equiv_constant (i))
1125 equiv = reg_equiv_constant (i);
1126 else if (reg_equiv_invariant (i))
1127 equiv = reg_equiv_invariant (i);
1128 else if (reg && MEM_P (reg))
1129 equiv = targetm.delegitimize_address (reg);
1130 else if (reg && REG_P (reg) && (int)REGNO (reg) != i)
1131 equiv = reg;
1133 if (equiv == reg)
1134 continue;
1136 for (use = DF_REG_USE_CHAIN (i); use; use = next)
1138 insn = DF_REF_INSN (use);
1140 /* Make sure the next ref is for a different instruction,
1141 so that we're not affected by the rescan. */
1142 next = DF_REF_NEXT_REG (use);
1143 while (next && DF_REF_INSN (next) == insn)
1144 next = DF_REF_NEXT_REG (next);
1146 if (DEBUG_INSN_P (insn))
1148 if (!equiv)
1150 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1151 df_insn_rescan_debug_internal (insn);
1153 else
1154 INSN_VAR_LOCATION_LOC (insn)
1155 = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (insn),
1156 reg, equiv);
1162 /* We must set reload_completed now since the cleanup_subreg_operands call
1163 below will re-recognize each insn and reload may have generated insns
1164 which are only valid during and after reload. */
1165 reload_completed = 1;
1167 /* Make a pass over all the insns and delete all USEs which we inserted
1168 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1169 notes. Delete all CLOBBER insns, except those that refer to the return
1170 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1171 from misarranging variable-array code, and simplify (subreg (reg))
1172 operands. Strip and regenerate REG_INC notes that may have been moved
1173 around. */
1175 for (insn = first; insn; insn = NEXT_INSN (insn))
1176 if (INSN_P (insn))
1178 rtx *pnote;
1180 if (CALL_P (insn))
1181 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1182 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1184 if ((GET_CODE (PATTERN (insn)) == USE
1185 /* We mark with QImode USEs introduced by reload itself. */
1186 && (GET_MODE (insn) == QImode
1187 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1188 || (GET_CODE (PATTERN (insn)) == CLOBBER
1189 && (!MEM_P (XEXP (PATTERN (insn), 0))
1190 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1191 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1192 && XEXP (XEXP (PATTERN (insn), 0), 0)
1193 != stack_pointer_rtx))
1194 && (!REG_P (XEXP (PATTERN (insn), 0))
1195 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1197 delete_insn (insn);
1198 continue;
1201 /* Some CLOBBERs may survive until here and still reference unassigned
1202 pseudos with const equivalent, which may in turn cause ICE in later
1203 passes if the reference remains in place. */
1204 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1205 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1206 VOIDmode, PATTERN (insn));
1208 /* Discard obvious no-ops, even without -O. This optimization
1209 is fast and doesn't interfere with debugging. */
1210 if (NONJUMP_INSN_P (insn)
1211 && GET_CODE (PATTERN (insn)) == SET
1212 && REG_P (SET_SRC (PATTERN (insn)))
1213 && REG_P (SET_DEST (PATTERN (insn)))
1214 && (REGNO (SET_SRC (PATTERN (insn)))
1215 == REGNO (SET_DEST (PATTERN (insn)))))
1217 delete_insn (insn);
1218 continue;
1221 pnote = &REG_NOTES (insn);
1222 while (*pnote != 0)
1224 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1225 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1226 || REG_NOTE_KIND (*pnote) == REG_INC)
1227 *pnote = XEXP (*pnote, 1);
1228 else
1229 pnote = &XEXP (*pnote, 1);
1232 #ifdef AUTO_INC_DEC
1233 add_auto_inc_notes (insn, PATTERN (insn));
1234 #endif
1236 /* Simplify (subreg (reg)) if it appears as an operand. */
1237 cleanup_subreg_operands (insn);
1239 /* Clean up invalid ASMs so that they don't confuse later passes.
1240 See PR 21299. */
1241 if (asm_noperands (PATTERN (insn)) >= 0)
1243 extract_insn (insn);
1244 if (!constrain_operands (1))
1246 error_for_asm (insn,
1247 "%<asm%> operand has impossible constraints");
1248 delete_insn (insn);
1249 continue;
1254 /* If we are doing generic stack checking, give a warning if this
1255 function's frame size is larger than we expect. */
1256 if (flag_stack_check == GENERIC_STACK_CHECK)
1258 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
1259 static int verbose_warned = 0;
1261 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1262 if (df_regs_ever_live_p (i) && ! fixed_regs[i] && call_used_regs[i])
1263 size += UNITS_PER_WORD;
1265 if (size > STACK_CHECK_MAX_FRAME_SIZE)
1267 warning (0, "frame size too large for reliable stack checking");
1268 if (! verbose_warned)
1270 warning (0, "try reducing the number of local variables");
1271 verbose_warned = 1;
1276 free (temp_pseudo_reg_arr);
1278 /* Indicate that we no longer have known memory locations or constants. */
1279 free_reg_equiv ();
1281 free (reg_max_ref_width);
1282 free (reg_old_renumber);
1283 free (pseudo_previous_regs);
1284 free (pseudo_forbidden_regs);
1286 CLEAR_HARD_REG_SET (used_spill_regs);
1287 for (i = 0; i < n_spills; i++)
1288 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1290 /* Free all the insn_chain structures at once. */
1291 obstack_free (&reload_obstack, reload_startobj);
1292 unused_insn_chains = 0;
1294 inserted = fixup_abnormal_edges ();
1296 /* We've possibly turned single trapping insn into multiple ones. */
1297 if (cfun->can_throw_non_call_exceptions)
1299 sbitmap blocks;
1300 blocks = sbitmap_alloc (last_basic_block);
1301 bitmap_ones (blocks);
1302 find_many_sub_basic_blocks (blocks);
1303 sbitmap_free (blocks);
1306 if (inserted)
1307 commit_edge_insertions ();
1309 /* Replacing pseudos with their memory equivalents might have
1310 created shared rtx. Subsequent passes would get confused
1311 by this, so unshare everything here. */
1312 unshare_all_rtl_again (first);
1314 #ifdef STACK_BOUNDARY
1315 /* init_emit has set the alignment of the hard frame pointer
1316 to STACK_BOUNDARY. It is very likely no longer valid if
1317 the hard frame pointer was used for register allocation. */
1318 if (!frame_pointer_needed)
1319 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1320 #endif
1322 substitute_stack.release ();
1324 gcc_assert (bitmap_empty_p (&spilled_pseudos));
1326 reload_completed = !failure;
1328 return need_dce;
1331 /* Yet another special case. Unfortunately, reg-stack forces people to
1332 write incorrect clobbers in asm statements. These clobbers must not
1333 cause the register to appear in bad_spill_regs, otherwise we'll call
1334 fatal_insn later. We clear the corresponding regnos in the live
1335 register sets to avoid this.
1336 The whole thing is rather sick, I'm afraid. */
1338 static void
1339 maybe_fix_stack_asms (void)
1341 #ifdef STACK_REGS
1342 const char *constraints[MAX_RECOG_OPERANDS];
1343 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1344 struct insn_chain *chain;
1346 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1348 int i, noperands;
1349 HARD_REG_SET clobbered, allowed;
1350 rtx pat;
1352 if (! INSN_P (chain->insn)
1353 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1354 continue;
1355 pat = PATTERN (chain->insn);
1356 if (GET_CODE (pat) != PARALLEL)
1357 continue;
1359 CLEAR_HARD_REG_SET (clobbered);
1360 CLEAR_HARD_REG_SET (allowed);
1362 /* First, make a mask of all stack regs that are clobbered. */
1363 for (i = 0; i < XVECLEN (pat, 0); i++)
1365 rtx t = XVECEXP (pat, 0, i);
1366 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1367 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1370 /* Get the operand values and constraints out of the insn. */
1371 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1372 constraints, operand_mode, NULL);
1374 /* For every operand, see what registers are allowed. */
1375 for (i = 0; i < noperands; i++)
1377 const char *p = constraints[i];
1378 /* For every alternative, we compute the class of registers allowed
1379 for reloading in CLS, and merge its contents into the reg set
1380 ALLOWED. */
1381 int cls = (int) NO_REGS;
1383 for (;;)
1385 char c = *p;
1387 if (c == '\0' || c == ',' || c == '#')
1389 /* End of one alternative - mark the regs in the current
1390 class, and reset the class. */
1391 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1392 cls = NO_REGS;
1393 p++;
1394 if (c == '#')
1395 do {
1396 c = *p++;
1397 } while (c != '\0' && c != ',');
1398 if (c == '\0')
1399 break;
1400 continue;
1403 switch (c)
1405 case '=': case '+': case '*': case '%': case '?': case '!':
1406 case '0': case '1': case '2': case '3': case '4': case '<':
1407 case '>': case 'V': case 'o': case '&': case 'E': case 'F':
1408 case 's': case 'i': case 'n': case 'X': case 'I': case 'J':
1409 case 'K': case 'L': case 'M': case 'N': case 'O': case 'P':
1410 case TARGET_MEM_CONSTRAINT:
1411 break;
1413 case 'p':
1414 cls = (int) reg_class_subunion[cls]
1415 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1416 ADDRESS, SCRATCH)];
1417 break;
1419 case 'g':
1420 case 'r':
1421 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1422 break;
1424 default:
1425 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1426 cls = (int) reg_class_subunion[cls]
1427 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1428 ADDRESS, SCRATCH)];
1429 else
1430 cls = (int) reg_class_subunion[cls]
1431 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
1433 p += CONSTRAINT_LEN (c, p);
1436 /* Those of the registers which are clobbered, but allowed by the
1437 constraints, must be usable as reload registers. So clear them
1438 out of the life information. */
1439 AND_HARD_REG_SET (allowed, clobbered);
1440 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1441 if (TEST_HARD_REG_BIT (allowed, i))
1443 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1444 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1448 #endif
1451 /* Copy the global variables n_reloads and rld into the corresponding elts
1452 of CHAIN. */
1453 static void
1454 copy_reloads (struct insn_chain *chain)
1456 chain->n_reloads = n_reloads;
1457 chain->rld = XOBNEWVEC (&reload_obstack, struct reload, n_reloads);
1458 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1459 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1462 /* Walk the chain of insns, and determine for each whether it needs reloads
1463 and/or eliminations. Build the corresponding insns_need_reload list, and
1464 set something_needs_elimination as appropriate. */
1465 static void
1466 calculate_needs_all_insns (int global)
1468 struct insn_chain **pprev_reload = &insns_need_reload;
1469 struct insn_chain *chain, *next = 0;
1471 something_needs_elimination = 0;
1473 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1474 for (chain = reload_insn_chain; chain != 0; chain = next)
1476 rtx insn = chain->insn;
1478 next = chain->next;
1480 /* Clear out the shortcuts. */
1481 chain->n_reloads = 0;
1482 chain->need_elim = 0;
1483 chain->need_reload = 0;
1484 chain->need_operand_change = 0;
1486 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1487 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1488 what effects this has on the known offsets at labels. */
1490 if (LABEL_P (insn) || JUMP_P (insn)
1491 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1492 set_label_offsets (insn, insn, 0);
1494 if (INSN_P (insn))
1496 rtx old_body = PATTERN (insn);
1497 int old_code = INSN_CODE (insn);
1498 rtx old_notes = REG_NOTES (insn);
1499 int did_elimination = 0;
1500 int operands_changed = 0;
1501 rtx set = single_set (insn);
1503 /* Skip insns that only set an equivalence. */
1504 if (set && REG_P (SET_DEST (set))
1505 && reg_renumber[REGNO (SET_DEST (set))] < 0
1506 && (reg_equiv_constant (REGNO (SET_DEST (set)))
1507 || (reg_equiv_invariant (REGNO (SET_DEST (set)))))
1508 && reg_equiv_init (REGNO (SET_DEST (set))))
1509 continue;
1511 /* If needed, eliminate any eliminable registers. */
1512 if (num_eliminable || num_eliminable_invariants)
1513 did_elimination = eliminate_regs_in_insn (insn, 0);
1515 /* Analyze the instruction. */
1516 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1517 global, spill_reg_order);
1519 /* If a no-op set needs more than one reload, this is likely
1520 to be something that needs input address reloads. We
1521 can't get rid of this cleanly later, and it is of no use
1522 anyway, so discard it now.
1523 We only do this when expensive_optimizations is enabled,
1524 since this complements reload inheritance / output
1525 reload deletion, and it can make debugging harder. */
1526 if (flag_expensive_optimizations && n_reloads > 1)
1528 rtx set = single_set (insn);
1529 if (set
1531 ((SET_SRC (set) == SET_DEST (set)
1532 && REG_P (SET_SRC (set))
1533 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1534 || (REG_P (SET_SRC (set)) && REG_P (SET_DEST (set))
1535 && reg_renumber[REGNO (SET_SRC (set))] < 0
1536 && reg_renumber[REGNO (SET_DEST (set))] < 0
1537 && reg_equiv_memory_loc (REGNO (SET_SRC (set))) != NULL
1538 && reg_equiv_memory_loc (REGNO (SET_DEST (set))) != NULL
1539 && rtx_equal_p (reg_equiv_memory_loc (REGNO (SET_SRC (set))),
1540 reg_equiv_memory_loc (REGNO (SET_DEST (set)))))))
1542 if (ira_conflicts_p)
1543 /* Inform IRA about the insn deletion. */
1544 ira_mark_memory_move_deletion (REGNO (SET_DEST (set)),
1545 REGNO (SET_SRC (set)));
1546 delete_insn (insn);
1547 /* Delete it from the reload chain. */
1548 if (chain->prev)
1549 chain->prev->next = next;
1550 else
1551 reload_insn_chain = next;
1552 if (next)
1553 next->prev = chain->prev;
1554 chain->next = unused_insn_chains;
1555 unused_insn_chains = chain;
1556 continue;
1559 if (num_eliminable)
1560 update_eliminable_offsets ();
1562 /* Remember for later shortcuts which insns had any reloads or
1563 register eliminations. */
1564 chain->need_elim = did_elimination;
1565 chain->need_reload = n_reloads > 0;
1566 chain->need_operand_change = operands_changed;
1568 /* Discard any register replacements done. */
1569 if (did_elimination)
1571 obstack_free (&reload_obstack, reload_insn_firstobj);
1572 PATTERN (insn) = old_body;
1573 INSN_CODE (insn) = old_code;
1574 REG_NOTES (insn) = old_notes;
1575 something_needs_elimination = 1;
1578 something_needs_operands_changed |= operands_changed;
1580 if (n_reloads != 0)
1582 copy_reloads (chain);
1583 *pprev_reload = chain;
1584 pprev_reload = &chain->next_need_reload;
1588 *pprev_reload = 0;
1591 /* This function is called from the register allocator to set up estimates
1592 for the cost of eliminating pseudos which have REG_EQUIV equivalences to
1593 an invariant. The structure is similar to calculate_needs_all_insns. */
1595 void
1596 calculate_elim_costs_all_insns (void)
1598 int *reg_equiv_init_cost;
1599 basic_block bb;
1600 int i;
1602 reg_equiv_init_cost = XCNEWVEC (int, max_regno);
1603 init_elim_table ();
1604 init_eliminable_invariants (get_insns (), false);
1606 set_initial_elim_offsets ();
1607 set_initial_label_offsets ();
1609 FOR_EACH_BB (bb)
1611 rtx insn;
1612 elim_bb = bb;
1614 FOR_BB_INSNS (bb, insn)
1616 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1617 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1618 what effects this has on the known offsets at labels. */
1620 if (LABEL_P (insn) || JUMP_P (insn)
1621 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1622 set_label_offsets (insn, insn, 0);
1624 if (INSN_P (insn))
1626 rtx set = single_set (insn);
1628 /* Skip insns that only set an equivalence. */
1629 if (set && REG_P (SET_DEST (set))
1630 && reg_renumber[REGNO (SET_DEST (set))] < 0
1631 && (reg_equiv_constant (REGNO (SET_DEST (set)))
1632 || reg_equiv_invariant (REGNO (SET_DEST (set)))))
1634 unsigned regno = REGNO (SET_DEST (set));
1635 rtx init = reg_equiv_init (regno);
1636 if (init)
1638 rtx t = eliminate_regs_1 (SET_SRC (set), VOIDmode, insn,
1639 false, true);
1640 int cost = set_src_cost (t, optimize_bb_for_speed_p (bb));
1641 int freq = REG_FREQ_FROM_BB (bb);
1643 reg_equiv_init_cost[regno] = cost * freq;
1644 continue;
1647 /* If needed, eliminate any eliminable registers. */
1648 if (num_eliminable || num_eliminable_invariants)
1649 elimination_costs_in_insn (insn);
1651 if (num_eliminable)
1652 update_eliminable_offsets ();
1656 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1658 if (reg_equiv_invariant (i))
1660 if (reg_equiv_init (i))
1662 int cost = reg_equiv_init_cost[i];
1663 if (dump_file)
1664 fprintf (dump_file,
1665 "Reg %d has equivalence, initial gains %d\n", i, cost);
1666 if (cost != 0)
1667 ira_adjust_equiv_reg_cost (i, cost);
1669 else
1671 if (dump_file)
1672 fprintf (dump_file,
1673 "Reg %d had equivalence, but can't be eliminated\n",
1675 ira_adjust_equiv_reg_cost (i, 0);
1680 free (reg_equiv_init_cost);
1681 free (offsets_known_at);
1682 free (offsets_at);
1683 offsets_at = NULL;
1684 offsets_known_at = NULL;
1687 /* Comparison function for qsort to decide which of two reloads
1688 should be handled first. *P1 and *P2 are the reload numbers. */
1690 static int
1691 reload_reg_class_lower (const void *r1p, const void *r2p)
1693 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1694 int t;
1696 /* Consider required reloads before optional ones. */
1697 t = rld[r1].optional - rld[r2].optional;
1698 if (t != 0)
1699 return t;
1701 /* Count all solitary classes before non-solitary ones. */
1702 t = ((reg_class_size[(int) rld[r2].rclass] == 1)
1703 - (reg_class_size[(int) rld[r1].rclass] == 1));
1704 if (t != 0)
1705 return t;
1707 /* Aside from solitaires, consider all multi-reg groups first. */
1708 t = rld[r2].nregs - rld[r1].nregs;
1709 if (t != 0)
1710 return t;
1712 /* Consider reloads in order of increasing reg-class number. */
1713 t = (int) rld[r1].rclass - (int) rld[r2].rclass;
1714 if (t != 0)
1715 return t;
1717 /* If reloads are equally urgent, sort by reload number,
1718 so that the results of qsort leave nothing to chance. */
1719 return r1 - r2;
1722 /* The cost of spilling each hard reg. */
1723 static int spill_cost[FIRST_PSEUDO_REGISTER];
1725 /* When spilling multiple hard registers, we use SPILL_COST for the first
1726 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1727 only the first hard reg for a multi-reg pseudo. */
1728 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1730 /* Map of hard regno to pseudo regno currently occupying the hard
1731 reg. */
1732 static int hard_regno_to_pseudo_regno[FIRST_PSEUDO_REGISTER];
1734 /* Update the spill cost arrays, considering that pseudo REG is live. */
1736 static void
1737 count_pseudo (int reg)
1739 int freq = REG_FREQ (reg);
1740 int r = reg_renumber[reg];
1741 int nregs;
1743 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1744 if (ira_conflicts_p && r < 0)
1745 return;
1747 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1748 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1749 return;
1751 SET_REGNO_REG_SET (&pseudos_counted, reg);
1753 gcc_assert (r >= 0);
1755 spill_add_cost[r] += freq;
1756 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1757 while (nregs-- > 0)
1759 hard_regno_to_pseudo_regno[r + nregs] = reg;
1760 spill_cost[r + nregs] += freq;
1764 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1765 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1767 static void
1768 order_regs_for_reload (struct insn_chain *chain)
1770 unsigned i;
1771 HARD_REG_SET used_by_pseudos;
1772 HARD_REG_SET used_by_pseudos2;
1773 reg_set_iterator rsi;
1775 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1777 memset (spill_cost, 0, sizeof spill_cost);
1778 memset (spill_add_cost, 0, sizeof spill_add_cost);
1779 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1780 hard_regno_to_pseudo_regno[i] = -1;
1782 /* Count number of uses of each hard reg by pseudo regs allocated to it
1783 and then order them by decreasing use. First exclude hard registers
1784 that are live in or across this insn. */
1786 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1787 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1788 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1789 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1791 /* Now find out which pseudos are allocated to it, and update
1792 hard_reg_n_uses. */
1793 CLEAR_REG_SET (&pseudos_counted);
1795 EXECUTE_IF_SET_IN_REG_SET
1796 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
1798 count_pseudo (i);
1800 EXECUTE_IF_SET_IN_REG_SET
1801 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
1803 count_pseudo (i);
1805 CLEAR_REG_SET (&pseudos_counted);
1808 /* Vector of reload-numbers showing the order in which the reloads should
1809 be processed. */
1810 static short reload_order[MAX_RELOADS];
1812 /* This is used to keep track of the spill regs used in one insn. */
1813 static HARD_REG_SET used_spill_regs_local;
1815 /* We decided to spill hard register SPILLED, which has a size of
1816 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1817 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1818 update SPILL_COST/SPILL_ADD_COST. */
1820 static void
1821 count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1823 int freq = REG_FREQ (reg);
1824 int r = reg_renumber[reg];
1825 int nregs;
1827 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1828 if (ira_conflicts_p && r < 0)
1829 return;
1831 gcc_assert (r >= 0);
1833 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1835 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1836 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1837 return;
1839 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1841 spill_add_cost[r] -= freq;
1842 while (nregs-- > 0)
1844 hard_regno_to_pseudo_regno[r + nregs] = -1;
1845 spill_cost[r + nregs] -= freq;
1849 /* Find reload register to use for reload number ORDER. */
1851 static int
1852 find_reg (struct insn_chain *chain, int order)
1854 int rnum = reload_order[order];
1855 struct reload *rl = rld + rnum;
1856 int best_cost = INT_MAX;
1857 int best_reg = -1;
1858 unsigned int i, j, n;
1859 int k;
1860 HARD_REG_SET not_usable;
1861 HARD_REG_SET used_by_other_reload;
1862 reg_set_iterator rsi;
1863 static int regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1864 static int best_regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1866 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1867 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1868 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->rclass]);
1870 CLEAR_HARD_REG_SET (used_by_other_reload);
1871 for (k = 0; k < order; k++)
1873 int other = reload_order[k];
1875 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1876 for (j = 0; j < rld[other].nregs; j++)
1877 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1880 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1882 #ifdef REG_ALLOC_ORDER
1883 unsigned int regno = reg_alloc_order[i];
1884 #else
1885 unsigned int regno = i;
1886 #endif
1888 if (! TEST_HARD_REG_BIT (not_usable, regno)
1889 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1890 && HARD_REGNO_MODE_OK (regno, rl->mode))
1892 int this_cost = spill_cost[regno];
1893 int ok = 1;
1894 unsigned int this_nregs = hard_regno_nregs[regno][rl->mode];
1896 for (j = 1; j < this_nregs; j++)
1898 this_cost += spill_add_cost[regno + j];
1899 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1900 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1901 ok = 0;
1903 if (! ok)
1904 continue;
1906 if (ira_conflicts_p)
1908 /* Ask IRA to find a better pseudo-register for
1909 spilling. */
1910 for (n = j = 0; j < this_nregs; j++)
1912 int r = hard_regno_to_pseudo_regno[regno + j];
1914 if (r < 0)
1915 continue;
1916 if (n == 0 || regno_pseudo_regs[n - 1] != r)
1917 regno_pseudo_regs[n++] = r;
1919 regno_pseudo_regs[n++] = -1;
1920 if (best_reg < 0
1921 || ira_better_spill_reload_regno_p (regno_pseudo_regs,
1922 best_regno_pseudo_regs,
1923 rl->in, rl->out,
1924 chain->insn))
1926 best_reg = regno;
1927 for (j = 0;; j++)
1929 best_regno_pseudo_regs[j] = regno_pseudo_regs[j];
1930 if (regno_pseudo_regs[j] < 0)
1931 break;
1934 continue;
1937 if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
1938 this_cost--;
1939 if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
1940 this_cost--;
1941 if (this_cost < best_cost
1942 /* Among registers with equal cost, prefer caller-saved ones, or
1943 use REG_ALLOC_ORDER if it is defined. */
1944 || (this_cost == best_cost
1945 #ifdef REG_ALLOC_ORDER
1946 && (inv_reg_alloc_order[regno]
1947 < inv_reg_alloc_order[best_reg])
1948 #else
1949 && call_used_regs[regno]
1950 && ! call_used_regs[best_reg]
1951 #endif
1954 best_reg = regno;
1955 best_cost = this_cost;
1959 if (best_reg == -1)
1960 return 0;
1962 if (dump_file)
1963 fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1965 rl->nregs = hard_regno_nregs[best_reg][rl->mode];
1966 rl->regno = best_reg;
1968 EXECUTE_IF_SET_IN_REG_SET
1969 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
1971 count_spilled_pseudo (best_reg, rl->nregs, j);
1974 EXECUTE_IF_SET_IN_REG_SET
1975 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
1977 count_spilled_pseudo (best_reg, rl->nregs, j);
1980 for (i = 0; i < rl->nregs; i++)
1982 gcc_assert (spill_cost[best_reg + i] == 0);
1983 gcc_assert (spill_add_cost[best_reg + i] == 0);
1984 gcc_assert (hard_regno_to_pseudo_regno[best_reg + i] == -1);
1985 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1987 return 1;
1990 /* Find more reload regs to satisfy the remaining need of an insn, which
1991 is given by CHAIN.
1992 Do it by ascending class number, since otherwise a reg
1993 might be spilled for a big class and might fail to count
1994 for a smaller class even though it belongs to that class. */
1996 static void
1997 find_reload_regs (struct insn_chain *chain)
1999 int i;
2001 /* In order to be certain of getting the registers we need,
2002 we must sort the reloads into order of increasing register class.
2003 Then our grabbing of reload registers will parallel the process
2004 that provided the reload registers. */
2005 for (i = 0; i < chain->n_reloads; i++)
2007 /* Show whether this reload already has a hard reg. */
2008 if (chain->rld[i].reg_rtx)
2010 int regno = REGNO (chain->rld[i].reg_rtx);
2011 chain->rld[i].regno = regno;
2012 chain->rld[i].nregs
2013 = hard_regno_nregs[regno][GET_MODE (chain->rld[i].reg_rtx)];
2015 else
2016 chain->rld[i].regno = -1;
2017 reload_order[i] = i;
2020 n_reloads = chain->n_reloads;
2021 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
2023 CLEAR_HARD_REG_SET (used_spill_regs_local);
2025 if (dump_file)
2026 fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
2028 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
2030 /* Compute the order of preference for hard registers to spill. */
2032 order_regs_for_reload (chain);
2034 for (i = 0; i < n_reloads; i++)
2036 int r = reload_order[i];
2038 /* Ignore reloads that got marked inoperative. */
2039 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
2040 && ! rld[r].optional
2041 && rld[r].regno == -1)
2042 if (! find_reg (chain, i))
2044 if (dump_file)
2045 fprintf (dump_file, "reload failure for reload %d\n", r);
2046 spill_failure (chain->insn, rld[r].rclass);
2047 failure = 1;
2048 return;
2052 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
2053 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
2055 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
2058 static void
2059 select_reload_regs (void)
2061 struct insn_chain *chain;
2063 /* Try to satisfy the needs for each insn. */
2064 for (chain = insns_need_reload; chain != 0;
2065 chain = chain->next_need_reload)
2066 find_reload_regs (chain);
2069 /* Delete all insns that were inserted by emit_caller_save_insns during
2070 this iteration. */
2071 static void
2072 delete_caller_save_insns (void)
2074 struct insn_chain *c = reload_insn_chain;
2076 while (c != 0)
2078 while (c != 0 && c->is_caller_save_insn)
2080 struct insn_chain *next = c->next;
2081 rtx insn = c->insn;
2083 if (c == reload_insn_chain)
2084 reload_insn_chain = next;
2085 delete_insn (insn);
2087 if (next)
2088 next->prev = c->prev;
2089 if (c->prev)
2090 c->prev->next = next;
2091 c->next = unused_insn_chains;
2092 unused_insn_chains = c;
2093 c = next;
2095 if (c != 0)
2096 c = c->next;
2100 /* Handle the failure to find a register to spill.
2101 INSN should be one of the insns which needed this particular spill reg. */
2103 static void
2104 spill_failure (rtx insn, enum reg_class rclass)
2106 if (asm_noperands (PATTERN (insn)) >= 0)
2107 error_for_asm (insn, "can%'t find a register in class %qs while "
2108 "reloading %<asm%>",
2109 reg_class_names[rclass]);
2110 else
2112 error ("unable to find a register to spill in class %qs",
2113 reg_class_names[rclass]);
2115 if (dump_file)
2117 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
2118 debug_reload_to_stream (dump_file);
2120 fatal_insn ("this is the insn:", insn);
2124 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
2125 data that is dead in INSN. */
2127 static void
2128 delete_dead_insn (rtx insn)
2130 rtx prev = prev_active_insn (insn);
2131 rtx prev_dest;
2133 /* If the previous insn sets a register that dies in our insn make
2134 a note that we want to run DCE immediately after reload.
2136 We used to delete the previous insn & recurse, but that's wrong for
2137 block local equivalences. Instead of trying to figure out the exact
2138 circumstances where we can delete the potentially dead insns, just
2139 let DCE do the job. */
2140 if (prev && GET_CODE (PATTERN (prev)) == SET
2141 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
2142 && reg_mentioned_p (prev_dest, PATTERN (insn))
2143 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
2144 && ! side_effects_p (SET_SRC (PATTERN (prev))))
2145 need_dce = 1;
2147 SET_INSN_DELETED (insn);
2150 /* Modify the home of pseudo-reg I.
2151 The new home is present in reg_renumber[I].
2153 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
2154 or it may be -1, meaning there is none or it is not relevant.
2155 This is used so that all pseudos spilled from a given hard reg
2156 can share one stack slot. */
2158 static void
2159 alter_reg (int i, int from_reg, bool dont_share_p)
2161 /* When outputting an inline function, this can happen
2162 for a reg that isn't actually used. */
2163 if (regno_reg_rtx[i] == 0)
2164 return;
2166 /* If the reg got changed to a MEM at rtl-generation time,
2167 ignore it. */
2168 if (!REG_P (regno_reg_rtx[i]))
2169 return;
2171 /* Modify the reg-rtx to contain the new hard reg
2172 number or else to contain its pseudo reg number. */
2173 SET_REGNO (regno_reg_rtx[i],
2174 reg_renumber[i] >= 0 ? reg_renumber[i] : i);
2176 /* If we have a pseudo that is needed but has no hard reg or equivalent,
2177 allocate a stack slot for it. */
2179 if (reg_renumber[i] < 0
2180 && REG_N_REFS (i) > 0
2181 && reg_equiv_constant (i) == 0
2182 && (reg_equiv_invariant (i) == 0
2183 || reg_equiv_init (i) == 0)
2184 && reg_equiv_memory_loc (i) == 0)
2186 rtx x = NULL_RTX;
2187 enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2188 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
2189 unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
2190 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
2191 unsigned int min_align = reg_max_ref_width[i] * BITS_PER_UNIT;
2192 int adjust = 0;
2194 something_was_spilled = true;
2196 if (ira_conflicts_p)
2198 /* Mark the spill for IRA. */
2199 SET_REGNO_REG_SET (&spilled_pseudos, i);
2200 if (!dont_share_p)
2201 x = ira_reuse_stack_slot (i, inherent_size, total_size);
2204 if (x)
2207 /* Each pseudo reg has an inherent size which comes from its own mode,
2208 and a total size which provides room for paradoxical subregs
2209 which refer to the pseudo reg in wider modes.
2211 We can use a slot already allocated if it provides both
2212 enough inherent space and enough total space.
2213 Otherwise, we allocate a new slot, making sure that it has no less
2214 inherent space, and no less total space, then the previous slot. */
2215 else if (from_reg == -1 || (!dont_share_p && ira_conflicts_p))
2217 rtx stack_slot;
2219 /* No known place to spill from => no slot to reuse. */
2220 x = assign_stack_local (mode, total_size,
2221 min_align > inherent_align
2222 || total_size > inherent_size ? -1 : 0);
2224 stack_slot = x;
2226 /* Cancel the big-endian correction done in assign_stack_local.
2227 Get the address of the beginning of the slot. This is so we
2228 can do a big-endian correction unconditionally below. */
2229 if (BYTES_BIG_ENDIAN)
2231 adjust = inherent_size - total_size;
2232 if (adjust)
2233 stack_slot
2234 = adjust_address_nv (x, mode_for_size (total_size
2235 * BITS_PER_UNIT,
2236 MODE_INT, 1),
2237 adjust);
2240 if (! dont_share_p && ira_conflicts_p)
2241 /* Inform IRA about allocation a new stack slot. */
2242 ira_mark_new_stack_slot (stack_slot, i, total_size);
2245 /* Reuse a stack slot if possible. */
2246 else if (spill_stack_slot[from_reg] != 0
2247 && spill_stack_slot_width[from_reg] >= total_size
2248 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2249 >= inherent_size)
2250 && MEM_ALIGN (spill_stack_slot[from_reg]) >= min_align)
2251 x = spill_stack_slot[from_reg];
2253 /* Allocate a bigger slot. */
2254 else
2256 /* Compute maximum size needed, both for inherent size
2257 and for total size. */
2258 rtx stack_slot;
2260 if (spill_stack_slot[from_reg])
2262 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2263 > inherent_size)
2264 mode = GET_MODE (spill_stack_slot[from_reg]);
2265 if (spill_stack_slot_width[from_reg] > total_size)
2266 total_size = spill_stack_slot_width[from_reg];
2267 if (MEM_ALIGN (spill_stack_slot[from_reg]) > min_align)
2268 min_align = MEM_ALIGN (spill_stack_slot[from_reg]);
2271 /* Make a slot with that size. */
2272 x = assign_stack_local (mode, total_size,
2273 min_align > inherent_align
2274 || total_size > inherent_size ? -1 : 0);
2275 stack_slot = x;
2277 /* Cancel the big-endian correction done in assign_stack_local.
2278 Get the address of the beginning of the slot. This is so we
2279 can do a big-endian correction unconditionally below. */
2280 if (BYTES_BIG_ENDIAN)
2282 adjust = GET_MODE_SIZE (mode) - total_size;
2283 if (adjust)
2284 stack_slot
2285 = adjust_address_nv (x, mode_for_size (total_size
2286 * BITS_PER_UNIT,
2287 MODE_INT, 1),
2288 adjust);
2291 spill_stack_slot[from_reg] = stack_slot;
2292 spill_stack_slot_width[from_reg] = total_size;
2295 /* On a big endian machine, the "address" of the slot
2296 is the address of the low part that fits its inherent mode. */
2297 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2298 adjust += (total_size - inherent_size);
2300 /* If we have any adjustment to make, or if the stack slot is the
2301 wrong mode, make a new stack slot. */
2302 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2304 /* Set all of the memory attributes as appropriate for a spill. */
2305 set_mem_attrs_for_spill (x);
2307 /* Save the stack slot for later. */
2308 reg_equiv_memory_loc (i) = x;
2312 /* Mark the slots in regs_ever_live for the hard regs used by
2313 pseudo-reg number REGNO, accessed in MODE. */
2315 static void
2316 mark_home_live_1 (int regno, enum machine_mode mode)
2318 int i, lim;
2320 i = reg_renumber[regno];
2321 if (i < 0)
2322 return;
2323 lim = end_hard_regno (mode, i);
2324 while (i < lim)
2325 df_set_regs_ever_live(i++, true);
2328 /* Mark the slots in regs_ever_live for the hard regs
2329 used by pseudo-reg number REGNO. */
2331 void
2332 mark_home_live (int regno)
2334 if (reg_renumber[regno] >= 0)
2335 mark_home_live_1 (regno, PSEUDO_REGNO_MODE (regno));
2338 /* This function handles the tracking of elimination offsets around branches.
2340 X is a piece of RTL being scanned.
2342 INSN is the insn that it came from, if any.
2344 INITIAL_P is nonzero if we are to set the offset to be the initial
2345 offset and zero if we are setting the offset of the label to be the
2346 current offset. */
2348 static void
2349 set_label_offsets (rtx x, rtx insn, int initial_p)
2351 enum rtx_code code = GET_CODE (x);
2352 rtx tem;
2353 unsigned int i;
2354 struct elim_table *p;
2356 switch (code)
2358 case LABEL_REF:
2359 if (LABEL_REF_NONLOCAL_P (x))
2360 return;
2362 x = XEXP (x, 0);
2364 /* ... fall through ... */
2366 case CODE_LABEL:
2367 /* If we know nothing about this label, set the desired offsets. Note
2368 that this sets the offset at a label to be the offset before a label
2369 if we don't know anything about the label. This is not correct for
2370 the label after a BARRIER, but is the best guess we can make. If
2371 we guessed wrong, we will suppress an elimination that might have
2372 been possible had we been able to guess correctly. */
2374 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2376 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2377 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2378 = (initial_p ? reg_eliminate[i].initial_offset
2379 : reg_eliminate[i].offset);
2380 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2383 /* Otherwise, if this is the definition of a label and it is
2384 preceded by a BARRIER, set our offsets to the known offset of
2385 that label. */
2387 else if (x == insn
2388 && (tem = prev_nonnote_insn (insn)) != 0
2389 && BARRIER_P (tem))
2390 set_offsets_for_label (insn);
2391 else
2392 /* If neither of the above cases is true, compare each offset
2393 with those previously recorded and suppress any eliminations
2394 where the offsets disagree. */
2396 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2397 if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2398 != (initial_p ? reg_eliminate[i].initial_offset
2399 : reg_eliminate[i].offset))
2400 reg_eliminate[i].can_eliminate = 0;
2402 return;
2404 case JUMP_INSN:
2405 set_label_offsets (PATTERN (insn), insn, initial_p);
2407 /* ... fall through ... */
2409 case INSN:
2410 case CALL_INSN:
2411 /* Any labels mentioned in REG_LABEL_OPERAND notes can be branched
2412 to indirectly and hence must have all eliminations at their
2413 initial offsets. */
2414 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2415 if (REG_NOTE_KIND (tem) == REG_LABEL_OPERAND)
2416 set_label_offsets (XEXP (tem, 0), insn, 1);
2417 return;
2419 case PARALLEL:
2420 case ADDR_VEC:
2421 case ADDR_DIFF_VEC:
2422 /* Each of the labels in the parallel or address vector must be
2423 at their initial offsets. We want the first field for PARALLEL
2424 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2426 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2427 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2428 insn, initial_p);
2429 return;
2431 case SET:
2432 /* We only care about setting PC. If the source is not RETURN,
2433 IF_THEN_ELSE, or a label, disable any eliminations not at
2434 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2435 isn't one of those possibilities. For branches to a label,
2436 call ourselves recursively.
2438 Note that this can disable elimination unnecessarily when we have
2439 a non-local goto since it will look like a non-constant jump to
2440 someplace in the current function. This isn't a significant
2441 problem since such jumps will normally be when all elimination
2442 pairs are back to their initial offsets. */
2444 if (SET_DEST (x) != pc_rtx)
2445 return;
2447 switch (GET_CODE (SET_SRC (x)))
2449 case PC:
2450 case RETURN:
2451 return;
2453 case LABEL_REF:
2454 set_label_offsets (SET_SRC (x), insn, initial_p);
2455 return;
2457 case IF_THEN_ELSE:
2458 tem = XEXP (SET_SRC (x), 1);
2459 if (GET_CODE (tem) == LABEL_REF)
2460 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2461 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2462 break;
2464 tem = XEXP (SET_SRC (x), 2);
2465 if (GET_CODE (tem) == LABEL_REF)
2466 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2467 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2468 break;
2469 return;
2471 default:
2472 break;
2475 /* If we reach here, all eliminations must be at their initial
2476 offset because we are doing a jump to a variable address. */
2477 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2478 if (p->offset != p->initial_offset)
2479 p->can_eliminate = 0;
2480 break;
2482 default:
2483 break;
2487 /* Called through for_each_rtx, this function examines every reg that occurs
2488 in PX and adjusts the costs for its elimination which are gathered by IRA.
2489 DATA is the insn in which PX occurs. We do not recurse into MEM
2490 expressions. */
2492 static int
2493 note_reg_elim_costly (rtx *px, void *data)
2495 rtx insn = (rtx)data;
2496 rtx x = *px;
2498 if (MEM_P (x))
2499 return -1;
2501 if (REG_P (x)
2502 && REGNO (x) >= FIRST_PSEUDO_REGISTER
2503 && reg_equiv_init (REGNO (x))
2504 && reg_equiv_invariant (REGNO (x)))
2506 rtx t = reg_equiv_invariant (REGNO (x));
2507 rtx new_rtx = eliminate_regs_1 (t, Pmode, insn, true, true);
2508 int cost = set_src_cost (new_rtx, optimize_bb_for_speed_p (elim_bb));
2509 int freq = REG_FREQ_FROM_BB (elim_bb);
2511 if (cost != 0)
2512 ira_adjust_equiv_reg_cost (REGNO (x), -cost * freq);
2514 return 0;
2517 /* Scan X and replace any eliminable registers (such as fp) with a
2518 replacement (such as sp), plus an offset.
2520 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2521 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2522 MEM, we are allowed to replace a sum of a register and the constant zero
2523 with the register, which we cannot do outside a MEM. In addition, we need
2524 to record the fact that a register is referenced outside a MEM.
2526 If INSN is an insn, it is the insn containing X. If we replace a REG
2527 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2528 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2529 the REG is being modified.
2531 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2532 That's used when we eliminate in expressions stored in notes.
2533 This means, do not set ref_outside_mem even if the reference
2534 is outside of MEMs.
2536 If FOR_COSTS is true, we are being called before reload in order to
2537 estimate the costs of keeping registers with an equivalence unallocated.
2539 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2540 replacements done assuming all offsets are at their initial values. If
2541 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2542 encounter, return the actual location so that find_reloads will do
2543 the proper thing. */
2545 static rtx
2546 eliminate_regs_1 (rtx x, enum machine_mode mem_mode, rtx insn,
2547 bool may_use_invariant, bool for_costs)
2549 enum rtx_code code = GET_CODE (x);
2550 struct elim_table *ep;
2551 int regno;
2552 rtx new_rtx;
2553 int i, j;
2554 const char *fmt;
2555 int copied = 0;
2557 if (! current_function_decl)
2558 return x;
2560 switch (code)
2562 CASE_CONST_ANY:
2563 case CONST:
2564 case SYMBOL_REF:
2565 case CODE_LABEL:
2566 case PC:
2567 case CC0:
2568 case ASM_INPUT:
2569 case ADDR_VEC:
2570 case ADDR_DIFF_VEC:
2571 case RETURN:
2572 return x;
2574 case REG:
2575 regno = REGNO (x);
2577 /* First handle the case where we encounter a bare register that
2578 is eliminable. Replace it with a PLUS. */
2579 if (regno < FIRST_PSEUDO_REGISTER)
2581 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2582 ep++)
2583 if (ep->from_rtx == x && ep->can_eliminate)
2584 return plus_constant (Pmode, ep->to_rtx, ep->previous_offset);
2587 else if (reg_renumber && reg_renumber[regno] < 0
2588 && reg_equivs
2589 && reg_equiv_invariant (regno))
2591 if (may_use_invariant || (insn && DEBUG_INSN_P (insn)))
2592 return eliminate_regs_1 (copy_rtx (reg_equiv_invariant (regno)),
2593 mem_mode, insn, true, for_costs);
2594 /* There exists at least one use of REGNO that cannot be
2595 eliminated. Prevent the defining insn from being deleted. */
2596 reg_equiv_init (regno) = NULL_RTX;
2597 if (!for_costs)
2598 alter_reg (regno, -1, true);
2600 return x;
2602 /* You might think handling MINUS in a manner similar to PLUS is a
2603 good idea. It is not. It has been tried multiple times and every
2604 time the change has had to have been reverted.
2606 Other parts of reload know a PLUS is special (gen_reload for example)
2607 and require special code to handle code a reloaded PLUS operand.
2609 Also consider backends where the flags register is clobbered by a
2610 MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2611 lea instruction comes to mind). If we try to reload a MINUS, we
2612 may kill the flags register that was holding a useful value.
2614 So, please before trying to handle MINUS, consider reload as a
2615 whole instead of this little section as well as the backend issues. */
2616 case PLUS:
2617 /* If this is the sum of an eliminable register and a constant, rework
2618 the sum. */
2619 if (REG_P (XEXP (x, 0))
2620 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2621 && CONSTANT_P (XEXP (x, 1)))
2623 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2624 ep++)
2625 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2627 /* The only time we want to replace a PLUS with a REG (this
2628 occurs when the constant operand of the PLUS is the negative
2629 of the offset) is when we are inside a MEM. We won't want
2630 to do so at other times because that would change the
2631 structure of the insn in a way that reload can't handle.
2632 We special-case the commonest situation in
2633 eliminate_regs_in_insn, so just replace a PLUS with a
2634 PLUS here, unless inside a MEM. */
2635 if (mem_mode != 0 && CONST_INT_P (XEXP (x, 1))
2636 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2637 return ep->to_rtx;
2638 else
2639 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2640 plus_constant (Pmode, XEXP (x, 1),
2641 ep->previous_offset));
2644 /* If the register is not eliminable, we are done since the other
2645 operand is a constant. */
2646 return x;
2649 /* If this is part of an address, we want to bring any constant to the
2650 outermost PLUS. We will do this by doing register replacement in
2651 our operands and seeing if a constant shows up in one of them.
2653 Note that there is no risk of modifying the structure of the insn,
2654 since we only get called for its operands, thus we are either
2655 modifying the address inside a MEM, or something like an address
2656 operand of a load-address insn. */
2659 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2660 for_costs);
2661 rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2662 for_costs);
2664 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2666 /* If one side is a PLUS and the other side is a pseudo that
2667 didn't get a hard register but has a reg_equiv_constant,
2668 we must replace the constant here since it may no longer
2669 be in the position of any operand. */
2670 if (GET_CODE (new0) == PLUS && REG_P (new1)
2671 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2672 && reg_renumber[REGNO (new1)] < 0
2673 && reg_equivs
2674 && reg_equiv_constant (REGNO (new1)) != 0)
2675 new1 = reg_equiv_constant (REGNO (new1));
2676 else if (GET_CODE (new1) == PLUS && REG_P (new0)
2677 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2678 && reg_renumber[REGNO (new0)] < 0
2679 && reg_equiv_constant (REGNO (new0)) != 0)
2680 new0 = reg_equiv_constant (REGNO (new0));
2682 new_rtx = form_sum (GET_MODE (x), new0, new1);
2684 /* As above, if we are not inside a MEM we do not want to
2685 turn a PLUS into something else. We might try to do so here
2686 for an addition of 0 if we aren't optimizing. */
2687 if (! mem_mode && GET_CODE (new_rtx) != PLUS)
2688 return gen_rtx_PLUS (GET_MODE (x), new_rtx, const0_rtx);
2689 else
2690 return new_rtx;
2693 return x;
2695 case MULT:
2696 /* If this is the product of an eliminable register and a
2697 constant, apply the distribute law and move the constant out
2698 so that we have (plus (mult ..) ..). This is needed in order
2699 to keep load-address insns valid. This case is pathological.
2700 We ignore the possibility of overflow here. */
2701 if (REG_P (XEXP (x, 0))
2702 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2703 && CONST_INT_P (XEXP (x, 1)))
2704 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2705 ep++)
2706 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2708 if (! mem_mode
2709 /* Refs inside notes or in DEBUG_INSNs don't count for
2710 this purpose. */
2711 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2712 || GET_CODE (insn) == INSN_LIST
2713 || DEBUG_INSN_P (insn))))
2714 ep->ref_outside_mem = 1;
2716 return
2717 plus_constant (Pmode,
2718 gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2719 ep->previous_offset * INTVAL (XEXP (x, 1)));
2722 /* ... fall through ... */
2724 case CALL:
2725 case COMPARE:
2726 /* See comments before PLUS about handling MINUS. */
2727 case MINUS:
2728 case DIV: case UDIV:
2729 case MOD: case UMOD:
2730 case AND: case IOR: case XOR:
2731 case ROTATERT: case ROTATE:
2732 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2733 case NE: case EQ:
2734 case GE: case GT: case GEU: case GTU:
2735 case LE: case LT: case LEU: case LTU:
2737 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2738 for_costs);
2739 rtx new1 = XEXP (x, 1)
2740 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false,
2741 for_costs) : 0;
2743 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2744 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2746 return x;
2748 case EXPR_LIST:
2749 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2750 if (XEXP (x, 0))
2752 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2753 for_costs);
2754 if (new_rtx != XEXP (x, 0))
2756 /* If this is a REG_DEAD note, it is not valid anymore.
2757 Using the eliminated version could result in creating a
2758 REG_DEAD note for the stack or frame pointer. */
2759 if (REG_NOTE_KIND (x) == REG_DEAD)
2760 return (XEXP (x, 1)
2761 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2762 for_costs)
2763 : NULL_RTX);
2765 x = alloc_reg_note (REG_NOTE_KIND (x), new_rtx, XEXP (x, 1));
2769 /* ... fall through ... */
2771 case INSN_LIST:
2772 /* Now do eliminations in the rest of the chain. If this was
2773 an EXPR_LIST, this might result in allocating more memory than is
2774 strictly needed, but it simplifies the code. */
2775 if (XEXP (x, 1))
2777 new_rtx = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2778 for_costs);
2779 if (new_rtx != XEXP (x, 1))
2780 return
2781 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new_rtx);
2783 return x;
2785 case PRE_INC:
2786 case POST_INC:
2787 case PRE_DEC:
2788 case POST_DEC:
2789 /* We do not support elimination of a register that is modified.
2790 elimination_effects has already make sure that this does not
2791 happen. */
2792 return x;
2794 case PRE_MODIFY:
2795 case POST_MODIFY:
2796 /* We do not support elimination of a register that is modified.
2797 elimination_effects has already make sure that this does not
2798 happen. The only remaining case we need to consider here is
2799 that the increment value may be an eliminable register. */
2800 if (GET_CODE (XEXP (x, 1)) == PLUS
2801 && XEXP (XEXP (x, 1), 0) == XEXP (x, 0))
2803 rtx new_rtx = eliminate_regs_1 (XEXP (XEXP (x, 1), 1), mem_mode,
2804 insn, true, for_costs);
2806 if (new_rtx != XEXP (XEXP (x, 1), 1))
2807 return gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (x, 0),
2808 gen_rtx_PLUS (GET_MODE (x),
2809 XEXP (x, 0), new_rtx));
2811 return x;
2813 case STRICT_LOW_PART:
2814 case NEG: case NOT:
2815 case SIGN_EXTEND: case ZERO_EXTEND:
2816 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2817 case FLOAT: case FIX:
2818 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2819 case ABS:
2820 case SQRT:
2821 case FFS:
2822 case CLZ:
2823 case CTZ:
2824 case POPCOUNT:
2825 case PARITY:
2826 case BSWAP:
2827 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2828 for_costs);
2829 if (new_rtx != XEXP (x, 0))
2830 return gen_rtx_fmt_e (code, GET_MODE (x), new_rtx);
2831 return x;
2833 case SUBREG:
2834 /* Similar to above processing, but preserve SUBREG_BYTE.
2835 Convert (subreg (mem)) to (mem) if not paradoxical.
2836 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2837 pseudo didn't get a hard reg, we must replace this with the
2838 eliminated version of the memory location because push_reload
2839 may do the replacement in certain circumstances. */
2840 if (REG_P (SUBREG_REG (x))
2841 && !paradoxical_subreg_p (x)
2842 && reg_equivs
2843 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
2845 new_rtx = SUBREG_REG (x);
2847 else
2848 new_rtx = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false, for_costs);
2850 if (new_rtx != SUBREG_REG (x))
2852 int x_size = GET_MODE_SIZE (GET_MODE (x));
2853 int new_size = GET_MODE_SIZE (GET_MODE (new_rtx));
2855 if (MEM_P (new_rtx)
2856 && ((x_size < new_size
2857 #ifdef WORD_REGISTER_OPERATIONS
2858 /* On these machines, combine can create rtl of the form
2859 (set (subreg:m1 (reg:m2 R) 0) ...)
2860 where m1 < m2, and expects something interesting to
2861 happen to the entire word. Moreover, it will use the
2862 (reg:m2 R) later, expecting all bits to be preserved.
2863 So if the number of words is the same, preserve the
2864 subreg so that push_reload can see it. */
2865 && ! ((x_size - 1) / UNITS_PER_WORD
2866 == (new_size -1 ) / UNITS_PER_WORD)
2867 #endif
2869 || x_size == new_size)
2871 return adjust_address_nv (new_rtx, GET_MODE (x), SUBREG_BYTE (x));
2872 else
2873 return gen_rtx_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2876 return x;
2878 case MEM:
2879 /* Our only special processing is to pass the mode of the MEM to our
2880 recursive call and copy the flags. While we are here, handle this
2881 case more efficiently. */
2883 new_rtx = eliminate_regs_1 (XEXP (x, 0), GET_MODE (x), insn, true,
2884 for_costs);
2885 if (for_costs
2886 && memory_address_p (GET_MODE (x), XEXP (x, 0))
2887 && !memory_address_p (GET_MODE (x), new_rtx))
2888 for_each_rtx (&XEXP (x, 0), note_reg_elim_costly, insn);
2890 return replace_equiv_address_nv (x, new_rtx);
2892 case USE:
2893 /* Handle insn_list USE that a call to a pure function may generate. */
2894 new_rtx = eliminate_regs_1 (XEXP (x, 0), VOIDmode, insn, false,
2895 for_costs);
2896 if (new_rtx != XEXP (x, 0))
2897 return gen_rtx_USE (GET_MODE (x), new_rtx);
2898 return x;
2900 case CLOBBER:
2901 case ASM_OPERANDS:
2902 gcc_assert (insn && DEBUG_INSN_P (insn));
2903 break;
2905 case SET:
2906 gcc_unreachable ();
2908 default:
2909 break;
2912 /* Process each of our operands recursively. If any have changed, make a
2913 copy of the rtx. */
2914 fmt = GET_RTX_FORMAT (code);
2915 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2917 if (*fmt == 'e')
2919 new_rtx = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false,
2920 for_costs);
2921 if (new_rtx != XEXP (x, i) && ! copied)
2923 x = shallow_copy_rtx (x);
2924 copied = 1;
2926 XEXP (x, i) = new_rtx;
2928 else if (*fmt == 'E')
2930 int copied_vec = 0;
2931 for (j = 0; j < XVECLEN (x, i); j++)
2933 new_rtx = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false,
2934 for_costs);
2935 if (new_rtx != XVECEXP (x, i, j) && ! copied_vec)
2937 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2938 XVEC (x, i)->elem);
2939 if (! copied)
2941 x = shallow_copy_rtx (x);
2942 copied = 1;
2944 XVEC (x, i) = new_v;
2945 copied_vec = 1;
2947 XVECEXP (x, i, j) = new_rtx;
2952 return x;
2956 eliminate_regs (rtx x, enum machine_mode mem_mode, rtx insn)
2958 return eliminate_regs_1 (x, mem_mode, insn, false, false);
2961 /* Scan rtx X for modifications of elimination target registers. Update
2962 the table of eliminables to reflect the changed state. MEM_MODE is
2963 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2965 static void
2966 elimination_effects (rtx x, enum machine_mode mem_mode)
2968 enum rtx_code code = GET_CODE (x);
2969 struct elim_table *ep;
2970 int regno;
2971 int i, j;
2972 const char *fmt;
2974 switch (code)
2976 CASE_CONST_ANY:
2977 case CONST:
2978 case SYMBOL_REF:
2979 case CODE_LABEL:
2980 case PC:
2981 case CC0:
2982 case ASM_INPUT:
2983 case ADDR_VEC:
2984 case ADDR_DIFF_VEC:
2985 case RETURN:
2986 return;
2988 case REG:
2989 regno = REGNO (x);
2991 /* First handle the case where we encounter a bare register that
2992 is eliminable. Replace it with a PLUS. */
2993 if (regno < FIRST_PSEUDO_REGISTER)
2995 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2996 ep++)
2997 if (ep->from_rtx == x && ep->can_eliminate)
2999 if (! mem_mode)
3000 ep->ref_outside_mem = 1;
3001 return;
3005 else if (reg_renumber[regno] < 0
3006 && reg_equivs
3007 && reg_equiv_constant (regno)
3008 && ! function_invariant_p (reg_equiv_constant (regno)))
3009 elimination_effects (reg_equiv_constant (regno), mem_mode);
3010 return;
3012 case PRE_INC:
3013 case POST_INC:
3014 case PRE_DEC:
3015 case POST_DEC:
3016 case POST_MODIFY:
3017 case PRE_MODIFY:
3018 /* If we modify the source of an elimination rule, disable it. */
3019 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3020 if (ep->from_rtx == XEXP (x, 0))
3021 ep->can_eliminate = 0;
3023 /* If we modify the target of an elimination rule by adding a constant,
3024 update its offset. If we modify the target in any other way, we'll
3025 have to disable the rule as well. */
3026 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3027 if (ep->to_rtx == XEXP (x, 0))
3029 int size = GET_MODE_SIZE (mem_mode);
3031 /* If more bytes than MEM_MODE are pushed, account for them. */
3032 #ifdef PUSH_ROUNDING
3033 if (ep->to_rtx == stack_pointer_rtx)
3034 size = PUSH_ROUNDING (size);
3035 #endif
3036 if (code == PRE_DEC || code == POST_DEC)
3037 ep->offset += size;
3038 else if (code == PRE_INC || code == POST_INC)
3039 ep->offset -= size;
3040 else if (code == PRE_MODIFY || code == POST_MODIFY)
3042 if (GET_CODE (XEXP (x, 1)) == PLUS
3043 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
3044 && CONST_INT_P (XEXP (XEXP (x, 1), 1)))
3045 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
3046 else
3047 ep->can_eliminate = 0;
3051 /* These two aren't unary operators. */
3052 if (code == POST_MODIFY || code == PRE_MODIFY)
3053 break;
3055 /* Fall through to generic unary operation case. */
3056 case STRICT_LOW_PART:
3057 case NEG: case NOT:
3058 case SIGN_EXTEND: case ZERO_EXTEND:
3059 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3060 case FLOAT: case FIX:
3061 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3062 case ABS:
3063 case SQRT:
3064 case FFS:
3065 case CLZ:
3066 case CTZ:
3067 case POPCOUNT:
3068 case PARITY:
3069 case BSWAP:
3070 elimination_effects (XEXP (x, 0), mem_mode);
3071 return;
3073 case SUBREG:
3074 if (REG_P (SUBREG_REG (x))
3075 && (GET_MODE_SIZE (GET_MODE (x))
3076 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3077 && reg_equivs
3078 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
3079 return;
3081 elimination_effects (SUBREG_REG (x), mem_mode);
3082 return;
3084 case USE:
3085 /* If using a register that is the source of an eliminate we still
3086 think can be performed, note it cannot be performed since we don't
3087 know how this register is used. */
3088 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3089 if (ep->from_rtx == XEXP (x, 0))
3090 ep->can_eliminate = 0;
3092 elimination_effects (XEXP (x, 0), mem_mode);
3093 return;
3095 case CLOBBER:
3096 /* If clobbering a register that is the replacement register for an
3097 elimination we still think can be performed, note that it cannot
3098 be performed. Otherwise, we need not be concerned about it. */
3099 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3100 if (ep->to_rtx == XEXP (x, 0))
3101 ep->can_eliminate = 0;
3103 elimination_effects (XEXP (x, 0), mem_mode);
3104 return;
3106 case SET:
3107 /* Check for setting a register that we know about. */
3108 if (REG_P (SET_DEST (x)))
3110 /* See if this is setting the replacement register for an
3111 elimination.
3113 If DEST is the hard frame pointer, we do nothing because we
3114 assume that all assignments to the frame pointer are for
3115 non-local gotos and are being done at a time when they are valid
3116 and do not disturb anything else. Some machines want to
3117 eliminate a fake argument pointer (or even a fake frame pointer)
3118 with either the real frame or the stack pointer. Assignments to
3119 the hard frame pointer must not prevent this elimination. */
3121 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3122 ep++)
3123 if (ep->to_rtx == SET_DEST (x)
3124 && SET_DEST (x) != hard_frame_pointer_rtx)
3126 /* If it is being incremented, adjust the offset. Otherwise,
3127 this elimination can't be done. */
3128 rtx src = SET_SRC (x);
3130 if (GET_CODE (src) == PLUS
3131 && XEXP (src, 0) == SET_DEST (x)
3132 && CONST_INT_P (XEXP (src, 1)))
3133 ep->offset -= INTVAL (XEXP (src, 1));
3134 else
3135 ep->can_eliminate = 0;
3139 elimination_effects (SET_DEST (x), VOIDmode);
3140 elimination_effects (SET_SRC (x), VOIDmode);
3141 return;
3143 case MEM:
3144 /* Our only special processing is to pass the mode of the MEM to our
3145 recursive call. */
3146 elimination_effects (XEXP (x, 0), GET_MODE (x));
3147 return;
3149 default:
3150 break;
3153 fmt = GET_RTX_FORMAT (code);
3154 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3156 if (*fmt == 'e')
3157 elimination_effects (XEXP (x, i), mem_mode);
3158 else if (*fmt == 'E')
3159 for (j = 0; j < XVECLEN (x, i); j++)
3160 elimination_effects (XVECEXP (x, i, j), mem_mode);
3164 /* Descend through rtx X and verify that no references to eliminable registers
3165 remain. If any do remain, mark the involved register as not
3166 eliminable. */
3168 static void
3169 check_eliminable_occurrences (rtx x)
3171 const char *fmt;
3172 int i;
3173 enum rtx_code code;
3175 if (x == 0)
3176 return;
3178 code = GET_CODE (x);
3180 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
3182 struct elim_table *ep;
3184 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3185 if (ep->from_rtx == x)
3186 ep->can_eliminate = 0;
3187 return;
3190 fmt = GET_RTX_FORMAT (code);
3191 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3193 if (*fmt == 'e')
3194 check_eliminable_occurrences (XEXP (x, i));
3195 else if (*fmt == 'E')
3197 int j;
3198 for (j = 0; j < XVECLEN (x, i); j++)
3199 check_eliminable_occurrences (XVECEXP (x, i, j));
3204 /* Scan INSN and eliminate all eliminable registers in it.
3206 If REPLACE is nonzero, do the replacement destructively. Also
3207 delete the insn as dead it if it is setting an eliminable register.
3209 If REPLACE is zero, do all our allocations in reload_obstack.
3211 If no eliminations were done and this insn doesn't require any elimination
3212 processing (these are not identical conditions: it might be updating sp,
3213 but not referencing fp; this needs to be seen during reload_as_needed so
3214 that the offset between fp and sp can be taken into consideration), zero
3215 is returned. Otherwise, 1 is returned. */
3217 static int
3218 eliminate_regs_in_insn (rtx insn, int replace)
3220 int icode = recog_memoized (insn);
3221 rtx old_body = PATTERN (insn);
3222 int insn_is_asm = asm_noperands (old_body) >= 0;
3223 rtx old_set = single_set (insn);
3224 rtx new_body;
3225 int val = 0;
3226 int i;
3227 rtx substed_operand[MAX_RECOG_OPERANDS];
3228 rtx orig_operand[MAX_RECOG_OPERANDS];
3229 struct elim_table *ep;
3230 rtx plus_src, plus_cst_src;
3232 if (! insn_is_asm && icode < 0)
3234 gcc_assert (GET_CODE (PATTERN (insn)) == USE
3235 || GET_CODE (PATTERN (insn)) == CLOBBER
3236 || GET_CODE (PATTERN (insn)) == ADDR_VEC
3237 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
3238 || GET_CODE (PATTERN (insn)) == ASM_INPUT
3239 || DEBUG_INSN_P (insn));
3240 if (DEBUG_INSN_P (insn))
3241 INSN_VAR_LOCATION_LOC (insn)
3242 = eliminate_regs (INSN_VAR_LOCATION_LOC (insn), VOIDmode, insn);
3243 return 0;
3246 if (old_set != 0 && REG_P (SET_DEST (old_set))
3247 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3249 /* Check for setting an eliminable register. */
3250 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3251 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3253 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
3254 /* If this is setting the frame pointer register to the
3255 hardware frame pointer register and this is an elimination
3256 that will be done (tested above), this insn is really
3257 adjusting the frame pointer downward to compensate for
3258 the adjustment done before a nonlocal goto. */
3259 if (ep->from == FRAME_POINTER_REGNUM
3260 && ep->to == HARD_FRAME_POINTER_REGNUM)
3262 rtx base = SET_SRC (old_set);
3263 rtx base_insn = insn;
3264 HOST_WIDE_INT offset = 0;
3266 while (base != ep->to_rtx)
3268 rtx prev_insn, prev_set;
3270 if (GET_CODE (base) == PLUS
3271 && CONST_INT_P (XEXP (base, 1)))
3273 offset += INTVAL (XEXP (base, 1));
3274 base = XEXP (base, 0);
3276 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
3277 && (prev_set = single_set (prev_insn)) != 0
3278 && rtx_equal_p (SET_DEST (prev_set), base))
3280 base = SET_SRC (prev_set);
3281 base_insn = prev_insn;
3283 else
3284 break;
3287 if (base == ep->to_rtx)
3289 rtx src = plus_constant (Pmode, ep->to_rtx,
3290 offset - ep->offset);
3292 new_body = old_body;
3293 if (! replace)
3295 new_body = copy_insn (old_body);
3296 if (REG_NOTES (insn))
3297 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3299 PATTERN (insn) = new_body;
3300 old_set = single_set (insn);
3302 /* First see if this insn remains valid when we
3303 make the change. If not, keep the INSN_CODE
3304 the same and let reload fit it up. */
3305 validate_change (insn, &SET_SRC (old_set), src, 1);
3306 validate_change (insn, &SET_DEST (old_set),
3307 ep->to_rtx, 1);
3308 if (! apply_change_group ())
3310 SET_SRC (old_set) = src;
3311 SET_DEST (old_set) = ep->to_rtx;
3314 val = 1;
3315 goto done;
3318 #endif
3320 /* In this case this insn isn't serving a useful purpose. We
3321 will delete it in reload_as_needed once we know that this
3322 elimination is, in fact, being done.
3324 If REPLACE isn't set, we can't delete this insn, but needn't
3325 process it since it won't be used unless something changes. */
3326 if (replace)
3328 delete_dead_insn (insn);
3329 return 1;
3331 val = 1;
3332 goto done;
3336 /* We allow one special case which happens to work on all machines we
3337 currently support: a single set with the source or a REG_EQUAL
3338 note being a PLUS of an eliminable register and a constant. */
3339 plus_src = plus_cst_src = 0;
3340 if (old_set && REG_P (SET_DEST (old_set)))
3342 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3343 plus_src = SET_SRC (old_set);
3344 /* First see if the source is of the form (plus (...) CST). */
3345 if (plus_src
3346 && CONST_INT_P (XEXP (plus_src, 1)))
3347 plus_cst_src = plus_src;
3348 else if (REG_P (SET_SRC (old_set))
3349 || plus_src)
3351 /* Otherwise, see if we have a REG_EQUAL note of the form
3352 (plus (...) CST). */
3353 rtx links;
3354 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3356 if ((REG_NOTE_KIND (links) == REG_EQUAL
3357 || REG_NOTE_KIND (links) == REG_EQUIV)
3358 && GET_CODE (XEXP (links, 0)) == PLUS
3359 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3361 plus_cst_src = XEXP (links, 0);
3362 break;
3367 /* Check that the first operand of the PLUS is a hard reg or
3368 the lowpart subreg of one. */
3369 if (plus_cst_src)
3371 rtx reg = XEXP (plus_cst_src, 0);
3372 if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
3373 reg = SUBREG_REG (reg);
3375 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
3376 plus_cst_src = 0;
3379 if (plus_cst_src)
3381 rtx reg = XEXP (plus_cst_src, 0);
3382 HOST_WIDE_INT offset = INTVAL (XEXP (plus_cst_src, 1));
3384 if (GET_CODE (reg) == SUBREG)
3385 reg = SUBREG_REG (reg);
3387 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3388 if (ep->from_rtx == reg && ep->can_eliminate)
3390 rtx to_rtx = ep->to_rtx;
3391 offset += ep->offset;
3392 offset = trunc_int_for_mode (offset, GET_MODE (plus_cst_src));
3394 if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
3395 to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
3396 to_rtx);
3397 /* If we have a nonzero offset, and the source is already
3398 a simple REG, the following transformation would
3399 increase the cost of the insn by replacing a simple REG
3400 with (plus (reg sp) CST). So try only when we already
3401 had a PLUS before. */
3402 if (offset == 0 || plus_src)
3404 rtx new_src = plus_constant (GET_MODE (to_rtx),
3405 to_rtx, offset);
3407 new_body = old_body;
3408 if (! replace)
3410 new_body = copy_insn (old_body);
3411 if (REG_NOTES (insn))
3412 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3414 PATTERN (insn) = new_body;
3415 old_set = single_set (insn);
3417 /* First see if this insn remains valid when we make the
3418 change. If not, try to replace the whole pattern with
3419 a simple set (this may help if the original insn was a
3420 PARALLEL that was only recognized as single_set due to
3421 REG_UNUSED notes). If this isn't valid either, keep
3422 the INSN_CODE the same and let reload fix it up. */
3423 if (!validate_change (insn, &SET_SRC (old_set), new_src, 0))
3425 rtx new_pat = gen_rtx_SET (VOIDmode,
3426 SET_DEST (old_set), new_src);
3428 if (!validate_change (insn, &PATTERN (insn), new_pat, 0))
3429 SET_SRC (old_set) = new_src;
3432 else
3433 break;
3435 val = 1;
3436 /* This can't have an effect on elimination offsets, so skip right
3437 to the end. */
3438 goto done;
3442 /* Determine the effects of this insn on elimination offsets. */
3443 elimination_effects (old_body, VOIDmode);
3445 /* Eliminate all eliminable registers occurring in operands that
3446 can be handled by reload. */
3447 extract_insn (insn);
3448 for (i = 0; i < recog_data.n_operands; i++)
3450 orig_operand[i] = recog_data.operand[i];
3451 substed_operand[i] = recog_data.operand[i];
3453 /* For an asm statement, every operand is eliminable. */
3454 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3456 bool is_set_src, in_plus;
3458 /* Check for setting a register that we know about. */
3459 if (recog_data.operand_type[i] != OP_IN
3460 && REG_P (orig_operand[i]))
3462 /* If we are assigning to a register that can be eliminated, it
3463 must be as part of a PARALLEL, since the code above handles
3464 single SETs. We must indicate that we can no longer
3465 eliminate this reg. */
3466 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3467 ep++)
3468 if (ep->from_rtx == orig_operand[i])
3469 ep->can_eliminate = 0;
3472 /* Companion to the above plus substitution, we can allow
3473 invariants as the source of a plain move. */
3474 is_set_src = false;
3475 if (old_set
3476 && recog_data.operand_loc[i] == &SET_SRC (old_set))
3477 is_set_src = true;
3478 in_plus = false;
3479 if (plus_src
3480 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3481 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3482 in_plus = true;
3484 substed_operand[i]
3485 = eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3486 replace ? insn : NULL_RTX,
3487 is_set_src || in_plus, false);
3488 if (substed_operand[i] != orig_operand[i])
3489 val = 1;
3490 /* Terminate the search in check_eliminable_occurrences at
3491 this point. */
3492 *recog_data.operand_loc[i] = 0;
3494 /* If an output operand changed from a REG to a MEM and INSN is an
3495 insn, write a CLOBBER insn. */
3496 if (recog_data.operand_type[i] != OP_IN
3497 && REG_P (orig_operand[i])
3498 && MEM_P (substed_operand[i])
3499 && replace)
3500 emit_insn_after (gen_clobber (orig_operand[i]), insn);
3504 for (i = 0; i < recog_data.n_dups; i++)
3505 *recog_data.dup_loc[i]
3506 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3508 /* If any eliminable remain, they aren't eliminable anymore. */
3509 check_eliminable_occurrences (old_body);
3511 /* Substitute the operands; the new values are in the substed_operand
3512 array. */
3513 for (i = 0; i < recog_data.n_operands; i++)
3514 *recog_data.operand_loc[i] = substed_operand[i];
3515 for (i = 0; i < recog_data.n_dups; i++)
3516 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3518 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3519 re-recognize the insn. We do this in case we had a simple addition
3520 but now can do this as a load-address. This saves an insn in this
3521 common case.
3522 If re-recognition fails, the old insn code number will still be used,
3523 and some register operands may have changed into PLUS expressions.
3524 These will be handled by find_reloads by loading them into a register
3525 again. */
3527 if (val)
3529 /* If we aren't replacing things permanently and we changed something,
3530 make another copy to ensure that all the RTL is new. Otherwise
3531 things can go wrong if find_reload swaps commutative operands
3532 and one is inside RTL that has been copied while the other is not. */
3533 new_body = old_body;
3534 if (! replace)
3536 new_body = copy_insn (old_body);
3537 if (REG_NOTES (insn))
3538 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3540 PATTERN (insn) = new_body;
3542 /* If we had a move insn but now we don't, rerecognize it. This will
3543 cause spurious re-recognition if the old move had a PARALLEL since
3544 the new one still will, but we can't call single_set without
3545 having put NEW_BODY into the insn and the re-recognition won't
3546 hurt in this rare case. */
3547 /* ??? Why this huge if statement - why don't we just rerecognize the
3548 thing always? */
3549 if (! insn_is_asm
3550 && old_set != 0
3551 && ((REG_P (SET_SRC (old_set))
3552 && (GET_CODE (new_body) != SET
3553 || !REG_P (SET_SRC (new_body))))
3554 /* If this was a load from or store to memory, compare
3555 the MEM in recog_data.operand to the one in the insn.
3556 If they are not equal, then rerecognize the insn. */
3557 || (old_set != 0
3558 && ((MEM_P (SET_SRC (old_set))
3559 && SET_SRC (old_set) != recog_data.operand[1])
3560 || (MEM_P (SET_DEST (old_set))
3561 && SET_DEST (old_set) != recog_data.operand[0])))
3562 /* If this was an add insn before, rerecognize. */
3563 || GET_CODE (SET_SRC (old_set)) == PLUS))
3565 int new_icode = recog (PATTERN (insn), insn, 0);
3566 if (new_icode >= 0)
3567 INSN_CODE (insn) = new_icode;
3571 /* Restore the old body. If there were any changes to it, we made a copy
3572 of it while the changes were still in place, so we'll correctly return
3573 a modified insn below. */
3574 if (! replace)
3576 /* Restore the old body. */
3577 for (i = 0; i < recog_data.n_operands; i++)
3578 /* Restoring a top-level match_parallel would clobber the new_body
3579 we installed in the insn. */
3580 if (recog_data.operand_loc[i] != &PATTERN (insn))
3581 *recog_data.operand_loc[i] = orig_operand[i];
3582 for (i = 0; i < recog_data.n_dups; i++)
3583 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3586 /* Update all elimination pairs to reflect the status after the current
3587 insn. The changes we make were determined by the earlier call to
3588 elimination_effects.
3590 We also detect cases where register elimination cannot be done,
3591 namely, if a register would be both changed and referenced outside a MEM
3592 in the resulting insn since such an insn is often undefined and, even if
3593 not, we cannot know what meaning will be given to it. Note that it is
3594 valid to have a register used in an address in an insn that changes it
3595 (presumably with a pre- or post-increment or decrement).
3597 If anything changes, return nonzero. */
3599 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3601 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3602 ep->can_eliminate = 0;
3604 ep->ref_outside_mem = 0;
3606 if (ep->previous_offset != ep->offset)
3607 val = 1;
3610 done:
3611 /* If we changed something, perform elimination in REG_NOTES. This is
3612 needed even when REPLACE is zero because a REG_DEAD note might refer
3613 to a register that we eliminate and could cause a different number
3614 of spill registers to be needed in the final reload pass than in
3615 the pre-passes. */
3616 if (val && REG_NOTES (insn) != 0)
3617 REG_NOTES (insn)
3618 = eliminate_regs_1 (REG_NOTES (insn), VOIDmode, REG_NOTES (insn), true,
3619 false);
3621 return val;
3624 /* Like eliminate_regs_in_insn, but only estimate costs for the use of the
3625 register allocator. INSN is the instruction we need to examine, we perform
3626 eliminations in its operands and record cases where eliminating a reg with
3627 an invariant equivalence would add extra cost. */
3629 static void
3630 elimination_costs_in_insn (rtx insn)
3632 int icode = recog_memoized (insn);
3633 rtx old_body = PATTERN (insn);
3634 int insn_is_asm = asm_noperands (old_body) >= 0;
3635 rtx old_set = single_set (insn);
3636 int i;
3637 rtx orig_operand[MAX_RECOG_OPERANDS];
3638 rtx orig_dup[MAX_RECOG_OPERANDS];
3639 struct elim_table *ep;
3640 rtx plus_src, plus_cst_src;
3641 bool sets_reg_p;
3643 if (! insn_is_asm && icode < 0)
3645 gcc_assert (GET_CODE (PATTERN (insn)) == USE
3646 || GET_CODE (PATTERN (insn)) == CLOBBER
3647 || GET_CODE (PATTERN (insn)) == ADDR_VEC
3648 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
3649 || GET_CODE (PATTERN (insn)) == ASM_INPUT
3650 || DEBUG_INSN_P (insn));
3651 return;
3654 if (old_set != 0 && REG_P (SET_DEST (old_set))
3655 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3657 /* Check for setting an eliminable register. */
3658 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3659 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3660 return;
3663 /* We allow one special case which happens to work on all machines we
3664 currently support: a single set with the source or a REG_EQUAL
3665 note being a PLUS of an eliminable register and a constant. */
3666 plus_src = plus_cst_src = 0;
3667 sets_reg_p = false;
3668 if (old_set && REG_P (SET_DEST (old_set)))
3670 sets_reg_p = true;
3671 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3672 plus_src = SET_SRC (old_set);
3673 /* First see if the source is of the form (plus (...) CST). */
3674 if (plus_src
3675 && CONST_INT_P (XEXP (plus_src, 1)))
3676 plus_cst_src = plus_src;
3677 else if (REG_P (SET_SRC (old_set))
3678 || plus_src)
3680 /* Otherwise, see if we have a REG_EQUAL note of the form
3681 (plus (...) CST). */
3682 rtx links;
3683 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3685 if ((REG_NOTE_KIND (links) == REG_EQUAL
3686 || REG_NOTE_KIND (links) == REG_EQUIV)
3687 && GET_CODE (XEXP (links, 0)) == PLUS
3688 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3690 plus_cst_src = XEXP (links, 0);
3691 break;
3697 /* Determine the effects of this insn on elimination offsets. */
3698 elimination_effects (old_body, VOIDmode);
3700 /* Eliminate all eliminable registers occurring in operands that
3701 can be handled by reload. */
3702 extract_insn (insn);
3703 for (i = 0; i < recog_data.n_dups; i++)
3704 orig_dup[i] = *recog_data.dup_loc[i];
3706 for (i = 0; i < recog_data.n_operands; i++)
3708 orig_operand[i] = recog_data.operand[i];
3710 /* For an asm statement, every operand is eliminable. */
3711 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3713 bool is_set_src, in_plus;
3715 /* Check for setting a register that we know about. */
3716 if (recog_data.operand_type[i] != OP_IN
3717 && REG_P (orig_operand[i]))
3719 /* If we are assigning to a register that can be eliminated, it
3720 must be as part of a PARALLEL, since the code above handles
3721 single SETs. We must indicate that we can no longer
3722 eliminate this reg. */
3723 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3724 ep++)
3725 if (ep->from_rtx == orig_operand[i])
3726 ep->can_eliminate = 0;
3729 /* Companion to the above plus substitution, we can allow
3730 invariants as the source of a plain move. */
3731 is_set_src = false;
3732 if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
3733 is_set_src = true;
3734 if (is_set_src && !sets_reg_p)
3735 note_reg_elim_costly (&SET_SRC (old_set), insn);
3736 in_plus = false;
3737 if (plus_src && sets_reg_p
3738 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3739 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3740 in_plus = true;
3742 eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3743 NULL_RTX,
3744 is_set_src || in_plus, true);
3745 /* Terminate the search in check_eliminable_occurrences at
3746 this point. */
3747 *recog_data.operand_loc[i] = 0;
3751 for (i = 0; i < recog_data.n_dups; i++)
3752 *recog_data.dup_loc[i]
3753 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3755 /* If any eliminable remain, they aren't eliminable anymore. */
3756 check_eliminable_occurrences (old_body);
3758 /* Restore the old body. */
3759 for (i = 0; i < recog_data.n_operands; i++)
3760 *recog_data.operand_loc[i] = orig_operand[i];
3761 for (i = 0; i < recog_data.n_dups; i++)
3762 *recog_data.dup_loc[i] = orig_dup[i];
3764 /* Update all elimination pairs to reflect the status after the current
3765 insn. The changes we make were determined by the earlier call to
3766 elimination_effects. */
3768 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3770 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3771 ep->can_eliminate = 0;
3773 ep->ref_outside_mem = 0;
3776 return;
3779 /* Loop through all elimination pairs.
3780 Recalculate the number not at initial offset.
3782 Compute the maximum offset (minimum offset if the stack does not
3783 grow downward) for each elimination pair. */
3785 static void
3786 update_eliminable_offsets (void)
3788 struct elim_table *ep;
3790 num_not_at_initial_offset = 0;
3791 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3793 ep->previous_offset = ep->offset;
3794 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3795 num_not_at_initial_offset++;
3799 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3800 replacement we currently believe is valid, mark it as not eliminable if X
3801 modifies DEST in any way other than by adding a constant integer to it.
3803 If DEST is the frame pointer, we do nothing because we assume that
3804 all assignments to the hard frame pointer are nonlocal gotos and are being
3805 done at a time when they are valid and do not disturb anything else.
3806 Some machines want to eliminate a fake argument pointer with either the
3807 frame or stack pointer. Assignments to the hard frame pointer must not
3808 prevent this elimination.
3810 Called via note_stores from reload before starting its passes to scan
3811 the insns of the function. */
3813 static void
3814 mark_not_eliminable (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
3816 unsigned int i;
3818 /* A SUBREG of a hard register here is just changing its mode. We should
3819 not see a SUBREG of an eliminable hard register, but check just in
3820 case. */
3821 if (GET_CODE (dest) == SUBREG)
3822 dest = SUBREG_REG (dest);
3824 if (dest == hard_frame_pointer_rtx)
3825 return;
3827 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3828 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3829 && (GET_CODE (x) != SET
3830 || GET_CODE (SET_SRC (x)) != PLUS
3831 || XEXP (SET_SRC (x), 0) != dest
3832 || !CONST_INT_P (XEXP (SET_SRC (x), 1))))
3834 reg_eliminate[i].can_eliminate_previous
3835 = reg_eliminate[i].can_eliminate = 0;
3836 num_eliminable--;
3840 /* Verify that the initial elimination offsets did not change since the
3841 last call to set_initial_elim_offsets. This is used to catch cases
3842 where something illegal happened during reload_as_needed that could
3843 cause incorrect code to be generated if we did not check for it. */
3845 static bool
3846 verify_initial_elim_offsets (void)
3848 HOST_WIDE_INT t;
3850 if (!num_eliminable)
3851 return true;
3853 #ifdef ELIMINABLE_REGS
3855 struct elim_table *ep;
3857 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3859 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3860 if (t != ep->initial_offset)
3861 return false;
3864 #else
3865 INITIAL_FRAME_POINTER_OFFSET (t);
3866 if (t != reg_eliminate[0].initial_offset)
3867 return false;
3868 #endif
3870 return true;
3873 /* Reset all offsets on eliminable registers to their initial values. */
3875 static void
3876 set_initial_elim_offsets (void)
3878 struct elim_table *ep = reg_eliminate;
3880 #ifdef ELIMINABLE_REGS
3881 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3883 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3884 ep->previous_offset = ep->offset = ep->initial_offset;
3886 #else
3887 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3888 ep->previous_offset = ep->offset = ep->initial_offset;
3889 #endif
3891 num_not_at_initial_offset = 0;
3894 /* Subroutine of set_initial_label_offsets called via for_each_eh_label. */
3896 static void
3897 set_initial_eh_label_offset (rtx label)
3899 set_label_offsets (label, NULL_RTX, 1);
3902 /* Initialize the known label offsets.
3903 Set a known offset for each forced label to be at the initial offset
3904 of each elimination. We do this because we assume that all
3905 computed jumps occur from a location where each elimination is
3906 at its initial offset.
3907 For all other labels, show that we don't know the offsets. */
3909 static void
3910 set_initial_label_offsets (void)
3912 rtx x;
3913 memset (offsets_known_at, 0, num_labels);
3915 for (x = forced_labels; x; x = XEXP (x, 1))
3916 if (XEXP (x, 0))
3917 set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3919 for (x = nonlocal_goto_handler_labels; x; x = XEXP (x, 1))
3920 if (XEXP (x, 0))
3921 set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3923 for_each_eh_label (set_initial_eh_label_offset);
3926 /* Set all elimination offsets to the known values for the code label given
3927 by INSN. */
3929 static void
3930 set_offsets_for_label (rtx insn)
3932 unsigned int i;
3933 int label_nr = CODE_LABEL_NUMBER (insn);
3934 struct elim_table *ep;
3936 num_not_at_initial_offset = 0;
3937 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3939 ep->offset = ep->previous_offset
3940 = offsets_at[label_nr - first_label_num][i];
3941 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3942 num_not_at_initial_offset++;
3946 /* See if anything that happened changes which eliminations are valid.
3947 For example, on the SPARC, whether or not the frame pointer can
3948 be eliminated can depend on what registers have been used. We need
3949 not check some conditions again (such as flag_omit_frame_pointer)
3950 since they can't have changed. */
3952 static void
3953 update_eliminables (HARD_REG_SET *pset)
3955 int previous_frame_pointer_needed = frame_pointer_needed;
3956 struct elim_table *ep;
3958 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3959 if ((ep->from == HARD_FRAME_POINTER_REGNUM
3960 && targetm.frame_pointer_required ())
3961 #ifdef ELIMINABLE_REGS
3962 || ! targetm.can_eliminate (ep->from, ep->to)
3963 #endif
3965 ep->can_eliminate = 0;
3967 /* Look for the case where we have discovered that we can't replace
3968 register A with register B and that means that we will now be
3969 trying to replace register A with register C. This means we can
3970 no longer replace register C with register B and we need to disable
3971 such an elimination, if it exists. This occurs often with A == ap,
3972 B == sp, and C == fp. */
3974 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3976 struct elim_table *op;
3977 int new_to = -1;
3979 if (! ep->can_eliminate && ep->can_eliminate_previous)
3981 /* Find the current elimination for ep->from, if there is a
3982 new one. */
3983 for (op = reg_eliminate;
3984 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3985 if (op->from == ep->from && op->can_eliminate)
3987 new_to = op->to;
3988 break;
3991 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3992 disable it. */
3993 for (op = reg_eliminate;
3994 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3995 if (op->from == new_to && op->to == ep->to)
3996 op->can_eliminate = 0;
4000 /* See if any registers that we thought we could eliminate the previous
4001 time are no longer eliminable. If so, something has changed and we
4002 must spill the register. Also, recompute the number of eliminable
4003 registers and see if the frame pointer is needed; it is if there is
4004 no elimination of the frame pointer that we can perform. */
4006 frame_pointer_needed = 1;
4007 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4009 if (ep->can_eliminate
4010 && ep->from == FRAME_POINTER_REGNUM
4011 && ep->to != HARD_FRAME_POINTER_REGNUM
4012 && (! SUPPORTS_STACK_ALIGNMENT
4013 || ! crtl->stack_realign_needed))
4014 frame_pointer_needed = 0;
4016 if (! ep->can_eliminate && ep->can_eliminate_previous)
4018 ep->can_eliminate_previous = 0;
4019 SET_HARD_REG_BIT (*pset, ep->from);
4020 num_eliminable--;
4024 /* If we didn't need a frame pointer last time, but we do now, spill
4025 the hard frame pointer. */
4026 if (frame_pointer_needed && ! previous_frame_pointer_needed)
4027 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
4030 /* Return true if X is used as the target register of an elimination. */
4032 bool
4033 elimination_target_reg_p (rtx x)
4035 struct elim_table *ep;
4037 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4038 if (ep->to_rtx == x && ep->can_eliminate)
4039 return true;
4041 return false;
4044 /* Initialize the table of registers to eliminate.
4045 Pre-condition: global flag frame_pointer_needed has been set before
4046 calling this function. */
4048 static void
4049 init_elim_table (void)
4051 struct elim_table *ep;
4052 #ifdef ELIMINABLE_REGS
4053 const struct elim_table_1 *ep1;
4054 #endif
4056 if (!reg_eliminate)
4057 reg_eliminate = XCNEWVEC (struct elim_table, NUM_ELIMINABLE_REGS);
4059 num_eliminable = 0;
4061 #ifdef ELIMINABLE_REGS
4062 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
4063 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
4065 ep->from = ep1->from;
4066 ep->to = ep1->to;
4067 ep->can_eliminate = ep->can_eliminate_previous
4068 = (targetm.can_eliminate (ep->from, ep->to)
4069 && ! (ep->to == STACK_POINTER_REGNUM
4070 && frame_pointer_needed
4071 && (! SUPPORTS_STACK_ALIGNMENT
4072 || ! stack_realign_fp)));
4074 #else
4075 reg_eliminate[0].from = reg_eliminate_1[0].from;
4076 reg_eliminate[0].to = reg_eliminate_1[0].to;
4077 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
4078 = ! frame_pointer_needed;
4079 #endif
4081 /* Count the number of eliminable registers and build the FROM and TO
4082 REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
4083 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
4084 We depend on this. */
4085 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4087 num_eliminable += ep->can_eliminate;
4088 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
4089 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
4093 /* Find all the pseudo registers that didn't get hard regs
4094 but do have known equivalent constants or memory slots.
4095 These include parameters (known equivalent to parameter slots)
4096 and cse'd or loop-moved constant memory addresses.
4098 Record constant equivalents in reg_equiv_constant
4099 so they will be substituted by find_reloads.
4100 Record memory equivalents in reg_mem_equiv so they can
4101 be substituted eventually by altering the REG-rtx's. */
4103 static void
4104 init_eliminable_invariants (rtx first, bool do_subregs)
4106 int i;
4107 rtx insn;
4109 grow_reg_equivs ();
4110 if (do_subregs)
4111 reg_max_ref_width = XCNEWVEC (unsigned int, max_regno);
4112 else
4113 reg_max_ref_width = NULL;
4115 num_eliminable_invariants = 0;
4117 first_label_num = get_first_label_num ();
4118 num_labels = max_label_num () - first_label_num;
4120 /* Allocate the tables used to store offset information at labels. */
4121 offsets_known_at = XNEWVEC (char, num_labels);
4122 offsets_at = (HOST_WIDE_INT (*)[NUM_ELIMINABLE_REGS]) xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (HOST_WIDE_INT));
4124 /* Look for REG_EQUIV notes; record what each pseudo is equivalent
4125 to. If DO_SUBREGS is true, also find all paradoxical subregs and
4126 find largest such for each pseudo. FIRST is the head of the insn
4127 list. */
4129 for (insn = first; insn; insn = NEXT_INSN (insn))
4131 rtx set = single_set (insn);
4133 /* We may introduce USEs that we want to remove at the end, so
4134 we'll mark them with QImode. Make sure there are no
4135 previously-marked insns left by say regmove. */
4136 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
4137 && GET_MODE (insn) != VOIDmode)
4138 PUT_MODE (insn, VOIDmode);
4140 if (do_subregs && NONDEBUG_INSN_P (insn))
4141 scan_paradoxical_subregs (PATTERN (insn));
4143 if (set != 0 && REG_P (SET_DEST (set)))
4145 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
4146 rtx x;
4148 if (! note)
4149 continue;
4151 i = REGNO (SET_DEST (set));
4152 x = XEXP (note, 0);
4154 if (i <= LAST_VIRTUAL_REGISTER)
4155 continue;
4157 /* If flag_pic and we have constant, verify it's legitimate. */
4158 if (!CONSTANT_P (x)
4159 || !flag_pic || LEGITIMATE_PIC_OPERAND_P (x))
4161 /* It can happen that a REG_EQUIV note contains a MEM
4162 that is not a legitimate memory operand. As later
4163 stages of reload assume that all addresses found
4164 in the reg_equiv_* arrays were originally legitimate,
4165 we ignore such REG_EQUIV notes. */
4166 if (memory_operand (x, VOIDmode))
4168 /* Always unshare the equivalence, so we can
4169 substitute into this insn without touching the
4170 equivalence. */
4171 reg_equiv_memory_loc (i) = copy_rtx (x);
4173 else if (function_invariant_p (x))
4175 enum machine_mode mode;
4177 mode = GET_MODE (SET_DEST (set));
4178 if (GET_CODE (x) == PLUS)
4180 /* This is PLUS of frame pointer and a constant,
4181 and might be shared. Unshare it. */
4182 reg_equiv_invariant (i) = copy_rtx (x);
4183 num_eliminable_invariants++;
4185 else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
4187 reg_equiv_invariant (i) = x;
4188 num_eliminable_invariants++;
4190 else if (targetm.legitimate_constant_p (mode, x))
4191 reg_equiv_constant (i) = x;
4192 else
4194 reg_equiv_memory_loc (i) = force_const_mem (mode, x);
4195 if (! reg_equiv_memory_loc (i))
4196 reg_equiv_init (i) = NULL_RTX;
4199 else
4201 reg_equiv_init (i) = NULL_RTX;
4202 continue;
4205 else
4206 reg_equiv_init (i) = NULL_RTX;
4210 if (dump_file)
4211 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4212 if (reg_equiv_init (i))
4214 fprintf (dump_file, "init_insns for %u: ", i);
4215 print_inline_rtx (dump_file, reg_equiv_init (i), 20);
4216 fprintf (dump_file, "\n");
4220 /* Indicate that we no longer have known memory locations or constants.
4221 Free all data involved in tracking these. */
4223 static void
4224 free_reg_equiv (void)
4226 int i;
4228 free (offsets_known_at);
4229 free (offsets_at);
4230 offsets_at = 0;
4231 offsets_known_at = 0;
4233 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4234 if (reg_equiv_alt_mem_list (i))
4235 free_EXPR_LIST_list (&reg_equiv_alt_mem_list (i));
4236 vec_free (reg_equivs);
4239 /* Kick all pseudos out of hard register REGNO.
4241 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
4242 because we found we can't eliminate some register. In the case, no pseudos
4243 are allowed to be in the register, even if they are only in a block that
4244 doesn't require spill registers, unlike the case when we are spilling this
4245 hard reg to produce another spill register.
4247 Return nonzero if any pseudos needed to be kicked out. */
4249 static void
4250 spill_hard_reg (unsigned int regno, int cant_eliminate)
4252 int i;
4254 if (cant_eliminate)
4256 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
4257 df_set_regs_ever_live (regno, true);
4260 /* Spill every pseudo reg that was allocated to this reg
4261 or to something that overlaps this reg. */
4263 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4264 if (reg_renumber[i] >= 0
4265 && (unsigned int) reg_renumber[i] <= regno
4266 && end_hard_regno (PSEUDO_REGNO_MODE (i), reg_renumber[i]) > regno)
4267 SET_REGNO_REG_SET (&spilled_pseudos, i);
4270 /* After find_reload_regs has been run for all insn that need reloads,
4271 and/or spill_hard_regs was called, this function is used to actually
4272 spill pseudo registers and try to reallocate them. It also sets up the
4273 spill_regs array for use by choose_reload_regs. */
4275 static int
4276 finish_spills (int global)
4278 struct insn_chain *chain;
4279 int something_changed = 0;
4280 unsigned i;
4281 reg_set_iterator rsi;
4283 /* Build the spill_regs array for the function. */
4284 /* If there are some registers still to eliminate and one of the spill regs
4285 wasn't ever used before, additional stack space may have to be
4286 allocated to store this register. Thus, we may have changed the offset
4287 between the stack and frame pointers, so mark that something has changed.
4289 One might think that we need only set VAL to 1 if this is a call-used
4290 register. However, the set of registers that must be saved by the
4291 prologue is not identical to the call-used set. For example, the
4292 register used by the call insn for the return PC is a call-used register,
4293 but must be saved by the prologue. */
4295 n_spills = 0;
4296 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4297 if (TEST_HARD_REG_BIT (used_spill_regs, i))
4299 spill_reg_order[i] = n_spills;
4300 spill_regs[n_spills++] = i;
4301 if (num_eliminable && ! df_regs_ever_live_p (i))
4302 something_changed = 1;
4303 df_set_regs_ever_live (i, true);
4305 else
4306 spill_reg_order[i] = -1;
4308 EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
4309 if (! ira_conflicts_p || reg_renumber[i] >= 0)
4311 /* Record the current hard register the pseudo is allocated to
4312 in pseudo_previous_regs so we avoid reallocating it to the
4313 same hard reg in a later pass. */
4314 gcc_assert (reg_renumber[i] >= 0);
4316 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
4317 /* Mark it as no longer having a hard register home. */
4318 reg_renumber[i] = -1;
4319 if (ira_conflicts_p)
4320 /* Inform IRA about the change. */
4321 ira_mark_allocation_change (i);
4322 /* We will need to scan everything again. */
4323 something_changed = 1;
4326 /* Retry global register allocation if possible. */
4327 if (global && ira_conflicts_p)
4329 unsigned int n;
4331 memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
4332 /* For every insn that needs reloads, set the registers used as spill
4333 regs in pseudo_forbidden_regs for every pseudo live across the
4334 insn. */
4335 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
4337 EXECUTE_IF_SET_IN_REG_SET
4338 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
4340 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4341 chain->used_spill_regs);
4343 EXECUTE_IF_SET_IN_REG_SET
4344 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
4346 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4347 chain->used_spill_regs);
4351 /* Retry allocating the pseudos spilled in IRA and the
4352 reload. For each reg, merge the various reg sets that
4353 indicate which hard regs can't be used, and call
4354 ira_reassign_pseudos. */
4355 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < (unsigned) max_regno; i++)
4356 if (reg_old_renumber[i] != reg_renumber[i])
4358 if (reg_renumber[i] < 0)
4359 temp_pseudo_reg_arr[n++] = i;
4360 else
4361 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
4363 if (ira_reassign_pseudos (temp_pseudo_reg_arr, n,
4364 bad_spill_regs_global,
4365 pseudo_forbidden_regs, pseudo_previous_regs,
4366 &spilled_pseudos))
4367 something_changed = 1;
4369 /* Fix up the register information in the insn chain.
4370 This involves deleting those of the spilled pseudos which did not get
4371 a new hard register home from the live_{before,after} sets. */
4372 for (chain = reload_insn_chain; chain; chain = chain->next)
4374 HARD_REG_SET used_by_pseudos;
4375 HARD_REG_SET used_by_pseudos2;
4377 if (! ira_conflicts_p)
4379 /* Don't do it for IRA because IRA and the reload still can
4380 assign hard registers to the spilled pseudos on next
4381 reload iterations. */
4382 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
4383 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
4385 /* Mark any unallocated hard regs as available for spills. That
4386 makes inheritance work somewhat better. */
4387 if (chain->need_reload)
4389 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
4390 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
4391 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
4393 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
4394 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
4395 /* Value of chain->used_spill_regs from previous iteration
4396 may be not included in the value calculated here because
4397 of possible removing caller-saves insns (see function
4398 delete_caller_save_insns. */
4399 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
4400 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
4404 CLEAR_REG_SET (&changed_allocation_pseudos);
4405 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
4406 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
4408 int regno = reg_renumber[i];
4409 if (reg_old_renumber[i] == regno)
4410 continue;
4412 SET_REGNO_REG_SET (&changed_allocation_pseudos, i);
4414 alter_reg (i, reg_old_renumber[i], false);
4415 reg_old_renumber[i] = regno;
4416 if (dump_file)
4418 if (regno == -1)
4419 fprintf (dump_file, " Register %d now on stack.\n\n", i);
4420 else
4421 fprintf (dump_file, " Register %d now in %d.\n\n",
4422 i, reg_renumber[i]);
4426 return something_changed;
4429 /* Find all paradoxical subregs within X and update reg_max_ref_width. */
4431 static void
4432 scan_paradoxical_subregs (rtx x)
4434 int i;
4435 const char *fmt;
4436 enum rtx_code code = GET_CODE (x);
4438 switch (code)
4440 case REG:
4441 case CONST:
4442 case SYMBOL_REF:
4443 case LABEL_REF:
4444 CASE_CONST_ANY:
4445 case CC0:
4446 case PC:
4447 case USE:
4448 case CLOBBER:
4449 return;
4451 case SUBREG:
4452 if (REG_P (SUBREG_REG (x))
4453 && (GET_MODE_SIZE (GET_MODE (x))
4454 > reg_max_ref_width[REGNO (SUBREG_REG (x))]))
4456 reg_max_ref_width[REGNO (SUBREG_REG (x))]
4457 = GET_MODE_SIZE (GET_MODE (x));
4458 mark_home_live_1 (REGNO (SUBREG_REG (x)), GET_MODE (x));
4460 return;
4462 default:
4463 break;
4466 fmt = GET_RTX_FORMAT (code);
4467 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4469 if (fmt[i] == 'e')
4470 scan_paradoxical_subregs (XEXP (x, i));
4471 else if (fmt[i] == 'E')
4473 int j;
4474 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4475 scan_paradoxical_subregs (XVECEXP (x, i, j));
4480 /* *OP_PTR and *OTHER_PTR are two operands to a conceptual reload.
4481 If *OP_PTR is a paradoxical subreg, try to remove that subreg
4482 and apply the corresponding narrowing subreg to *OTHER_PTR.
4483 Return true if the operands were changed, false otherwise. */
4485 static bool
4486 strip_paradoxical_subreg (rtx *op_ptr, rtx *other_ptr)
4488 rtx op, inner, other, tem;
4490 op = *op_ptr;
4491 if (!paradoxical_subreg_p (op))
4492 return false;
4493 inner = SUBREG_REG (op);
4495 other = *other_ptr;
4496 tem = gen_lowpart_common (GET_MODE (inner), other);
4497 if (!tem)
4498 return false;
4500 /* If the lowpart operation turned a hard register into a subreg,
4501 rather than simplifying it to another hard register, then the
4502 mode change cannot be properly represented. For example, OTHER
4503 might be valid in its current mode, but not in the new one. */
4504 if (GET_CODE (tem) == SUBREG
4505 && REG_P (other)
4506 && HARD_REGISTER_P (other))
4507 return false;
4509 *op_ptr = inner;
4510 *other_ptr = tem;
4511 return true;
4514 /* A subroutine of reload_as_needed. If INSN has a REG_EH_REGION note,
4515 examine all of the reload insns between PREV and NEXT exclusive, and
4516 annotate all that may trap. */
4518 static void
4519 fixup_eh_region_note (rtx insn, rtx prev, rtx next)
4521 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
4522 if (note == NULL)
4523 return;
4524 if (!insn_could_throw_p (insn))
4525 remove_note (insn, note);
4526 copy_reg_eh_region_note_forward (note, NEXT_INSN (prev), next);
4529 /* Reload pseudo-registers into hard regs around each insn as needed.
4530 Additional register load insns are output before the insn that needs it
4531 and perhaps store insns after insns that modify the reloaded pseudo reg.
4533 reg_last_reload_reg and reg_reloaded_contents keep track of
4534 which registers are already available in reload registers.
4535 We update these for the reloads that we perform,
4536 as the insns are scanned. */
4538 static void
4539 reload_as_needed (int live_known)
4541 struct insn_chain *chain;
4542 #if defined (AUTO_INC_DEC)
4543 int i;
4544 #endif
4545 rtx x, marker;
4547 memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
4548 memset (spill_reg_store, 0, sizeof spill_reg_store);
4549 reg_last_reload_reg = XCNEWVEC (rtx, max_regno);
4550 INIT_REG_SET (&reg_has_output_reload);
4551 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4552 CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
4554 set_initial_elim_offsets ();
4556 /* Generate a marker insn that we will move around. */
4557 marker = emit_note (NOTE_INSN_DELETED);
4558 unlink_insn_chain (marker, marker);
4560 for (chain = reload_insn_chain; chain; chain = chain->next)
4562 rtx prev = 0;
4563 rtx insn = chain->insn;
4564 rtx old_next = NEXT_INSN (insn);
4565 #ifdef AUTO_INC_DEC
4566 rtx old_prev = PREV_INSN (insn);
4567 #endif
4569 /* If we pass a label, copy the offsets from the label information
4570 into the current offsets of each elimination. */
4571 if (LABEL_P (insn))
4572 set_offsets_for_label (insn);
4574 else if (INSN_P (insn))
4576 regset_head regs_to_forget;
4577 INIT_REG_SET (&regs_to_forget);
4578 note_stores (PATTERN (insn), forget_old_reloads_1, &regs_to_forget);
4580 /* If this is a USE and CLOBBER of a MEM, ensure that any
4581 references to eliminable registers have been removed. */
4583 if ((GET_CODE (PATTERN (insn)) == USE
4584 || GET_CODE (PATTERN (insn)) == CLOBBER)
4585 && MEM_P (XEXP (PATTERN (insn), 0)))
4586 XEXP (XEXP (PATTERN (insn), 0), 0)
4587 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
4588 GET_MODE (XEXP (PATTERN (insn), 0)),
4589 NULL_RTX);
4591 /* If we need to do register elimination processing, do so.
4592 This might delete the insn, in which case we are done. */
4593 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
4595 eliminate_regs_in_insn (insn, 1);
4596 if (NOTE_P (insn))
4598 update_eliminable_offsets ();
4599 CLEAR_REG_SET (&regs_to_forget);
4600 continue;
4604 /* If need_elim is nonzero but need_reload is zero, one might think
4605 that we could simply set n_reloads to 0. However, find_reloads
4606 could have done some manipulation of the insn (such as swapping
4607 commutative operands), and these manipulations are lost during
4608 the first pass for every insn that needs register elimination.
4609 So the actions of find_reloads must be redone here. */
4611 if (! chain->need_elim && ! chain->need_reload
4612 && ! chain->need_operand_change)
4613 n_reloads = 0;
4614 /* First find the pseudo regs that must be reloaded for this insn.
4615 This info is returned in the tables reload_... (see reload.h).
4616 Also modify the body of INSN by substituting RELOAD
4617 rtx's for those pseudo regs. */
4618 else
4620 CLEAR_REG_SET (&reg_has_output_reload);
4621 CLEAR_HARD_REG_SET (reg_is_output_reload);
4623 find_reloads (insn, 1, spill_indirect_levels, live_known,
4624 spill_reg_order);
4627 if (n_reloads > 0)
4629 rtx next = NEXT_INSN (insn);
4630 rtx p;
4632 /* ??? PREV can get deleted by reload inheritance.
4633 Work around this by emitting a marker note. */
4634 prev = PREV_INSN (insn);
4635 reorder_insns_nobb (marker, marker, prev);
4637 /* Now compute which reload regs to reload them into. Perhaps
4638 reusing reload regs from previous insns, or else output
4639 load insns to reload them. Maybe output store insns too.
4640 Record the choices of reload reg in reload_reg_rtx. */
4641 choose_reload_regs (chain);
4643 /* Generate the insns to reload operands into or out of
4644 their reload regs. */
4645 emit_reload_insns (chain);
4647 /* Substitute the chosen reload regs from reload_reg_rtx
4648 into the insn's body (or perhaps into the bodies of other
4649 load and store insn that we just made for reloading
4650 and that we moved the structure into). */
4651 subst_reloads (insn);
4653 prev = PREV_INSN (marker);
4654 unlink_insn_chain (marker, marker);
4656 /* Adjust the exception region notes for loads and stores. */
4657 if (cfun->can_throw_non_call_exceptions && !CALL_P (insn))
4658 fixup_eh_region_note (insn, prev, next);
4660 /* Adjust the location of REG_ARGS_SIZE. */
4661 p = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
4662 if (p)
4664 remove_note (insn, p);
4665 fixup_args_size_notes (prev, PREV_INSN (next),
4666 INTVAL (XEXP (p, 0)));
4669 /* If this was an ASM, make sure that all the reload insns
4670 we have generated are valid. If not, give an error
4671 and delete them. */
4672 if (asm_noperands (PATTERN (insn)) >= 0)
4673 for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
4674 if (p != insn && INSN_P (p)
4675 && GET_CODE (PATTERN (p)) != USE
4676 && (recog_memoized (p) < 0
4677 || (extract_insn (p), ! constrain_operands (1))))
4679 error_for_asm (insn,
4680 "%<asm%> operand requires "
4681 "impossible reload");
4682 delete_insn (p);
4686 if (num_eliminable && chain->need_elim)
4687 update_eliminable_offsets ();
4689 /* Any previously reloaded spilled pseudo reg, stored in this insn,
4690 is no longer validly lying around to save a future reload.
4691 Note that this does not detect pseudos that were reloaded
4692 for this insn in order to be stored in
4693 (obeying register constraints). That is correct; such reload
4694 registers ARE still valid. */
4695 forget_marked_reloads (&regs_to_forget);
4696 CLEAR_REG_SET (&regs_to_forget);
4698 /* There may have been CLOBBER insns placed after INSN. So scan
4699 between INSN and NEXT and use them to forget old reloads. */
4700 for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
4701 if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
4702 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
4704 #ifdef AUTO_INC_DEC
4705 /* Likewise for regs altered by auto-increment in this insn.
4706 REG_INC notes have been changed by reloading:
4707 find_reloads_address_1 records substitutions for them,
4708 which have been performed by subst_reloads above. */
4709 for (i = n_reloads - 1; i >= 0; i--)
4711 rtx in_reg = rld[i].in_reg;
4712 if (in_reg)
4714 enum rtx_code code = GET_CODE (in_reg);
4715 /* PRE_INC / PRE_DEC will have the reload register ending up
4716 with the same value as the stack slot, but that doesn't
4717 hold true for POST_INC / POST_DEC. Either we have to
4718 convert the memory access to a true POST_INC / POST_DEC,
4719 or we can't use the reload register for inheritance. */
4720 if ((code == POST_INC || code == POST_DEC)
4721 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4722 REGNO (rld[i].reg_rtx))
4723 /* Make sure it is the inc/dec pseudo, and not
4724 some other (e.g. output operand) pseudo. */
4725 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4726 == REGNO (XEXP (in_reg, 0))))
4729 rtx reload_reg = rld[i].reg_rtx;
4730 enum machine_mode mode = GET_MODE (reload_reg);
4731 int n = 0;
4732 rtx p;
4734 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4736 /* We really want to ignore REG_INC notes here, so
4737 use PATTERN (p) as argument to reg_set_p . */
4738 if (reg_set_p (reload_reg, PATTERN (p)))
4739 break;
4740 n = count_occurrences (PATTERN (p), reload_reg, 0);
4741 if (! n)
4742 continue;
4743 if (n == 1)
4745 rtx replace_reg
4746 = gen_rtx_fmt_e (code, mode, reload_reg);
4748 validate_replace_rtx_group (reload_reg,
4749 replace_reg, p);
4750 n = verify_changes (0);
4752 /* We must also verify that the constraints
4753 are met after the replacement. Make sure
4754 extract_insn is only called for an insn
4755 where the replacements were found to be
4756 valid so far. */
4757 if (n)
4759 extract_insn (p);
4760 n = constrain_operands (1);
4763 /* If the constraints were not met, then
4764 undo the replacement, else confirm it. */
4765 if (!n)
4766 cancel_changes (0);
4767 else
4768 confirm_change_group ();
4770 break;
4772 if (n == 1)
4774 add_reg_note (p, REG_INC, reload_reg);
4775 /* Mark this as having an output reload so that the
4776 REG_INC processing code below won't invalidate
4777 the reload for inheritance. */
4778 SET_HARD_REG_BIT (reg_is_output_reload,
4779 REGNO (reload_reg));
4780 SET_REGNO_REG_SET (&reg_has_output_reload,
4781 REGNO (XEXP (in_reg, 0)));
4783 else
4784 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4785 NULL);
4787 else if ((code == PRE_INC || code == PRE_DEC)
4788 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4789 REGNO (rld[i].reg_rtx))
4790 /* Make sure it is the inc/dec pseudo, and not
4791 some other (e.g. output operand) pseudo. */
4792 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4793 == REGNO (XEXP (in_reg, 0))))
4795 SET_HARD_REG_BIT (reg_is_output_reload,
4796 REGNO (rld[i].reg_rtx));
4797 SET_REGNO_REG_SET (&reg_has_output_reload,
4798 REGNO (XEXP (in_reg, 0)));
4800 else if (code == PRE_INC || code == PRE_DEC
4801 || code == POST_INC || code == POST_DEC)
4803 int in_regno = REGNO (XEXP (in_reg, 0));
4805 if (reg_last_reload_reg[in_regno] != NULL_RTX)
4807 int in_hard_regno;
4808 bool forget_p = true;
4810 in_hard_regno = REGNO (reg_last_reload_reg[in_regno]);
4811 if (TEST_HARD_REG_BIT (reg_reloaded_valid,
4812 in_hard_regno))
4814 for (x = old_prev ? NEXT_INSN (old_prev) : insn;
4815 x != old_next;
4816 x = NEXT_INSN (x))
4817 if (x == reg_reloaded_insn[in_hard_regno])
4819 forget_p = false;
4820 break;
4823 /* If for some reasons, we didn't set up
4824 reg_last_reload_reg in this insn,
4825 invalidate inheritance from previous
4826 insns for the incremented/decremented
4827 register. Such registers will be not in
4828 reg_has_output_reload. Invalidate it
4829 also if the corresponding element in
4830 reg_reloaded_insn is also
4831 invalidated. */
4832 if (forget_p)
4833 forget_old_reloads_1 (XEXP (in_reg, 0),
4834 NULL_RTX, NULL);
4839 /* If a pseudo that got a hard register is auto-incremented,
4840 we must purge records of copying it into pseudos without
4841 hard registers. */
4842 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
4843 if (REG_NOTE_KIND (x) == REG_INC)
4845 /* See if this pseudo reg was reloaded in this insn.
4846 If so, its last-reload info is still valid
4847 because it is based on this insn's reload. */
4848 for (i = 0; i < n_reloads; i++)
4849 if (rld[i].out == XEXP (x, 0))
4850 break;
4852 if (i == n_reloads)
4853 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4855 #endif
4857 /* A reload reg's contents are unknown after a label. */
4858 if (LABEL_P (insn))
4859 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4861 /* Don't assume a reload reg is still good after a call insn
4862 if it is a call-used reg, or if it contains a value that will
4863 be partially clobbered by the call. */
4864 else if (CALL_P (insn))
4866 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4867 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
4869 /* If this is a call to a setjmp-type function, we must not
4870 reuse any reload reg contents across the call; that will
4871 just be clobbered by other uses of the register in later
4872 code, before the longjmp. */
4873 if (find_reg_note (insn, REG_SETJMP, NULL_RTX))
4874 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4878 /* Clean up. */
4879 free (reg_last_reload_reg);
4880 CLEAR_REG_SET (&reg_has_output_reload);
4883 /* Discard all record of any value reloaded from X,
4884 or reloaded in X from someplace else;
4885 unless X is an output reload reg of the current insn.
4887 X may be a hard reg (the reload reg)
4888 or it may be a pseudo reg that was reloaded from.
4890 When DATA is non-NULL just mark the registers in regset
4891 to be forgotten later. */
4893 static void
4894 forget_old_reloads_1 (rtx x, const_rtx ignored ATTRIBUTE_UNUSED,
4895 void *data)
4897 unsigned int regno;
4898 unsigned int nr;
4899 regset regs = (regset) data;
4901 /* note_stores does give us subregs of hard regs,
4902 subreg_regno_offset requires a hard reg. */
4903 while (GET_CODE (x) == SUBREG)
4905 /* We ignore the subreg offset when calculating the regno,
4906 because we are using the entire underlying hard register
4907 below. */
4908 x = SUBREG_REG (x);
4911 if (!REG_P (x))
4912 return;
4914 regno = REGNO (x);
4916 if (regno >= FIRST_PSEUDO_REGISTER)
4917 nr = 1;
4918 else
4920 unsigned int i;
4922 nr = hard_regno_nregs[regno][GET_MODE (x)];
4923 /* Storing into a spilled-reg invalidates its contents.
4924 This can happen if a block-local pseudo is allocated to that reg
4925 and it wasn't spilled because this block's total need is 0.
4926 Then some insn might have an optional reload and use this reg. */
4927 if (!regs)
4928 for (i = 0; i < nr; i++)
4929 /* But don't do this if the reg actually serves as an output
4930 reload reg in the current instruction. */
4931 if (n_reloads == 0
4932 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4934 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4935 spill_reg_store[regno + i] = 0;
4939 if (regs)
4940 while (nr-- > 0)
4941 SET_REGNO_REG_SET (regs, regno + nr);
4942 else
4944 /* Since value of X has changed,
4945 forget any value previously copied from it. */
4947 while (nr-- > 0)
4948 /* But don't forget a copy if this is the output reload
4949 that establishes the copy's validity. */
4950 if (n_reloads == 0
4951 || !REGNO_REG_SET_P (&reg_has_output_reload, regno + nr))
4952 reg_last_reload_reg[regno + nr] = 0;
4956 /* Forget the reloads marked in regset by previous function. */
4957 static void
4958 forget_marked_reloads (regset regs)
4960 unsigned int reg;
4961 reg_set_iterator rsi;
4962 EXECUTE_IF_SET_IN_REG_SET (regs, 0, reg, rsi)
4964 if (reg < FIRST_PSEUDO_REGISTER
4965 /* But don't do this if the reg actually serves as an output
4966 reload reg in the current instruction. */
4967 && (n_reloads == 0
4968 || ! TEST_HARD_REG_BIT (reg_is_output_reload, reg)))
4970 CLEAR_HARD_REG_BIT (reg_reloaded_valid, reg);
4971 spill_reg_store[reg] = 0;
4973 if (n_reloads == 0
4974 || !REGNO_REG_SET_P (&reg_has_output_reload, reg))
4975 reg_last_reload_reg[reg] = 0;
4979 /* The following HARD_REG_SETs indicate when each hard register is
4980 used for a reload of various parts of the current insn. */
4982 /* If reg is unavailable for all reloads. */
4983 static HARD_REG_SET reload_reg_unavailable;
4984 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4985 static HARD_REG_SET reload_reg_used;
4986 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4987 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4988 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4989 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4990 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4991 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4992 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4993 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
4994 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4995 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4996 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4997 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
4998 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4999 static HARD_REG_SET reload_reg_used_in_op_addr;
5000 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
5001 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
5002 /* If reg is in use for a RELOAD_FOR_INSN reload. */
5003 static HARD_REG_SET reload_reg_used_in_insn;
5004 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
5005 static HARD_REG_SET reload_reg_used_in_other_addr;
5007 /* If reg is in use as a reload reg for any sort of reload. */
5008 static HARD_REG_SET reload_reg_used_at_all;
5010 /* If reg is use as an inherited reload. We just mark the first register
5011 in the group. */
5012 static HARD_REG_SET reload_reg_used_for_inherit;
5014 /* Records which hard regs are used in any way, either as explicit use or
5015 by being allocated to a pseudo during any point of the current insn. */
5016 static HARD_REG_SET reg_used_in_insn;
5018 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
5019 TYPE. MODE is used to indicate how many consecutive regs are
5020 actually used. */
5022 static void
5023 mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
5024 enum machine_mode mode)
5026 switch (type)
5028 case RELOAD_OTHER:
5029 add_to_hard_reg_set (&reload_reg_used, mode, regno);
5030 break;
5032 case RELOAD_FOR_INPUT_ADDRESS:
5033 add_to_hard_reg_set (&reload_reg_used_in_input_addr[opnum], mode, regno);
5034 break;
5036 case RELOAD_FOR_INPADDR_ADDRESS:
5037 add_to_hard_reg_set (&reload_reg_used_in_inpaddr_addr[opnum], mode, regno);
5038 break;
5040 case RELOAD_FOR_OUTPUT_ADDRESS:
5041 add_to_hard_reg_set (&reload_reg_used_in_output_addr[opnum], mode, regno);
5042 break;
5044 case RELOAD_FOR_OUTADDR_ADDRESS:
5045 add_to_hard_reg_set (&reload_reg_used_in_outaddr_addr[opnum], mode, regno);
5046 break;
5048 case RELOAD_FOR_OPERAND_ADDRESS:
5049 add_to_hard_reg_set (&reload_reg_used_in_op_addr, mode, regno);
5050 break;
5052 case RELOAD_FOR_OPADDR_ADDR:
5053 add_to_hard_reg_set (&reload_reg_used_in_op_addr_reload, mode, regno);
5054 break;
5056 case RELOAD_FOR_OTHER_ADDRESS:
5057 add_to_hard_reg_set (&reload_reg_used_in_other_addr, mode, regno);
5058 break;
5060 case RELOAD_FOR_INPUT:
5061 add_to_hard_reg_set (&reload_reg_used_in_input[opnum], mode, regno);
5062 break;
5064 case RELOAD_FOR_OUTPUT:
5065 add_to_hard_reg_set (&reload_reg_used_in_output[opnum], mode, regno);
5066 break;
5068 case RELOAD_FOR_INSN:
5069 add_to_hard_reg_set (&reload_reg_used_in_insn, mode, regno);
5070 break;
5073 add_to_hard_reg_set (&reload_reg_used_at_all, mode, regno);
5076 /* Similarly, but show REGNO is no longer in use for a reload. */
5078 static void
5079 clear_reload_reg_in_use (unsigned int regno, int opnum,
5080 enum reload_type type, enum machine_mode mode)
5082 unsigned int nregs = hard_regno_nregs[regno][mode];
5083 unsigned int start_regno, end_regno, r;
5084 int i;
5085 /* A complication is that for some reload types, inheritance might
5086 allow multiple reloads of the same types to share a reload register.
5087 We set check_opnum if we have to check only reloads with the same
5088 operand number, and check_any if we have to check all reloads. */
5089 int check_opnum = 0;
5090 int check_any = 0;
5091 HARD_REG_SET *used_in_set;
5093 switch (type)
5095 case RELOAD_OTHER:
5096 used_in_set = &reload_reg_used;
5097 break;
5099 case RELOAD_FOR_INPUT_ADDRESS:
5100 used_in_set = &reload_reg_used_in_input_addr[opnum];
5101 break;
5103 case RELOAD_FOR_INPADDR_ADDRESS:
5104 check_opnum = 1;
5105 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
5106 break;
5108 case RELOAD_FOR_OUTPUT_ADDRESS:
5109 used_in_set = &reload_reg_used_in_output_addr[opnum];
5110 break;
5112 case RELOAD_FOR_OUTADDR_ADDRESS:
5113 check_opnum = 1;
5114 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
5115 break;
5117 case RELOAD_FOR_OPERAND_ADDRESS:
5118 used_in_set = &reload_reg_used_in_op_addr;
5119 break;
5121 case RELOAD_FOR_OPADDR_ADDR:
5122 check_any = 1;
5123 used_in_set = &reload_reg_used_in_op_addr_reload;
5124 break;
5126 case RELOAD_FOR_OTHER_ADDRESS:
5127 used_in_set = &reload_reg_used_in_other_addr;
5128 check_any = 1;
5129 break;
5131 case RELOAD_FOR_INPUT:
5132 used_in_set = &reload_reg_used_in_input[opnum];
5133 break;
5135 case RELOAD_FOR_OUTPUT:
5136 used_in_set = &reload_reg_used_in_output[opnum];
5137 break;
5139 case RELOAD_FOR_INSN:
5140 used_in_set = &reload_reg_used_in_insn;
5141 break;
5142 default:
5143 gcc_unreachable ();
5145 /* We resolve conflicts with remaining reloads of the same type by
5146 excluding the intervals of reload registers by them from the
5147 interval of freed reload registers. Since we only keep track of
5148 one set of interval bounds, we might have to exclude somewhat
5149 more than what would be necessary if we used a HARD_REG_SET here.
5150 But this should only happen very infrequently, so there should
5151 be no reason to worry about it. */
5153 start_regno = regno;
5154 end_regno = regno + nregs;
5155 if (check_opnum || check_any)
5157 for (i = n_reloads - 1; i >= 0; i--)
5159 if (rld[i].when_needed == type
5160 && (check_any || rld[i].opnum == opnum)
5161 && rld[i].reg_rtx)
5163 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
5164 unsigned int conflict_end
5165 = end_hard_regno (rld[i].mode, conflict_start);
5167 /* If there is an overlap with the first to-be-freed register,
5168 adjust the interval start. */
5169 if (conflict_start <= start_regno && conflict_end > start_regno)
5170 start_regno = conflict_end;
5171 /* Otherwise, if there is a conflict with one of the other
5172 to-be-freed registers, adjust the interval end. */
5173 if (conflict_start > start_regno && conflict_start < end_regno)
5174 end_regno = conflict_start;
5179 for (r = start_regno; r < end_regno; r++)
5180 CLEAR_HARD_REG_BIT (*used_in_set, r);
5183 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
5184 specified by OPNUM and TYPE. */
5186 static int
5187 reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
5189 int i;
5191 /* In use for a RELOAD_OTHER means it's not available for anything. */
5192 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
5193 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5194 return 0;
5196 switch (type)
5198 case RELOAD_OTHER:
5199 /* In use for anything means we can't use it for RELOAD_OTHER. */
5200 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
5201 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5202 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5203 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5204 return 0;
5206 for (i = 0; i < reload_n_operands; i++)
5207 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5208 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5209 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5210 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5211 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5212 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5213 return 0;
5215 return 1;
5217 case RELOAD_FOR_INPUT:
5218 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5219 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
5220 return 0;
5222 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5223 return 0;
5225 /* If it is used for some other input, can't use it. */
5226 for (i = 0; i < reload_n_operands; i++)
5227 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5228 return 0;
5230 /* If it is used in a later operand's address, can't use it. */
5231 for (i = opnum + 1; i < reload_n_operands; i++)
5232 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5233 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5234 return 0;
5236 return 1;
5238 case RELOAD_FOR_INPUT_ADDRESS:
5239 /* Can't use a register if it is used for an input address for this
5240 operand or used as an input in an earlier one. */
5241 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
5242 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5243 return 0;
5245 for (i = 0; i < opnum; i++)
5246 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5247 return 0;
5249 return 1;
5251 case RELOAD_FOR_INPADDR_ADDRESS:
5252 /* Can't use a register if it is used for an input address
5253 for this operand or used as an input in an earlier
5254 one. */
5255 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5256 return 0;
5258 for (i = 0; i < opnum; i++)
5259 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5260 return 0;
5262 return 1;
5264 case RELOAD_FOR_OUTPUT_ADDRESS:
5265 /* Can't use a register if it is used for an output address for this
5266 operand or used as an output in this or a later operand. Note
5267 that multiple output operands are emitted in reverse order, so
5268 the conflicting ones are those with lower indices. */
5269 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
5270 return 0;
5272 for (i = 0; i <= opnum; i++)
5273 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5274 return 0;
5276 return 1;
5278 case RELOAD_FOR_OUTADDR_ADDRESS:
5279 /* Can't use a register if it is used for an output address
5280 for this operand or used as an output in this or a
5281 later operand. Note that multiple output operands are
5282 emitted in reverse order, so the conflicting ones are
5283 those with lower indices. */
5284 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5285 return 0;
5287 for (i = 0; i <= opnum; i++)
5288 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5289 return 0;
5291 return 1;
5293 case RELOAD_FOR_OPERAND_ADDRESS:
5294 for (i = 0; i < reload_n_operands; i++)
5295 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5296 return 0;
5298 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5299 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5301 case RELOAD_FOR_OPADDR_ADDR:
5302 for (i = 0; i < reload_n_operands; i++)
5303 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5304 return 0;
5306 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
5308 case RELOAD_FOR_OUTPUT:
5309 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
5310 outputs, or an operand address for this or an earlier output.
5311 Note that multiple output operands are emitted in reverse order,
5312 so the conflicting ones are those with higher indices. */
5313 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5314 return 0;
5316 for (i = 0; i < reload_n_operands; i++)
5317 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5318 return 0;
5320 for (i = opnum; i < reload_n_operands; i++)
5321 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5322 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5323 return 0;
5325 return 1;
5327 case RELOAD_FOR_INSN:
5328 for (i = 0; i < reload_n_operands; i++)
5329 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5330 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5331 return 0;
5333 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5334 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5336 case RELOAD_FOR_OTHER_ADDRESS:
5337 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
5339 default:
5340 gcc_unreachable ();
5344 /* Return 1 if the value in reload reg REGNO, as used by the reload with
5345 the number RELOADNUM, is still available in REGNO at the end of the insn.
5347 We can assume that the reload reg was already tested for availability
5348 at the time it is needed, and we should not check this again,
5349 in case the reg has already been marked in use. */
5351 static int
5352 reload_reg_reaches_end_p (unsigned int regno, int reloadnum)
5354 int opnum = rld[reloadnum].opnum;
5355 enum reload_type type = rld[reloadnum].when_needed;
5356 int i;
5358 /* See if there is a reload with the same type for this operand, using
5359 the same register. This case is not handled by the code below. */
5360 for (i = reloadnum + 1; i < n_reloads; i++)
5362 rtx reg;
5363 int nregs;
5365 if (rld[i].opnum != opnum || rld[i].when_needed != type)
5366 continue;
5367 reg = rld[i].reg_rtx;
5368 if (reg == NULL_RTX)
5369 continue;
5370 nregs = hard_regno_nregs[REGNO (reg)][GET_MODE (reg)];
5371 if (regno >= REGNO (reg) && regno < REGNO (reg) + nregs)
5372 return 0;
5375 switch (type)
5377 case RELOAD_OTHER:
5378 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
5379 its value must reach the end. */
5380 return 1;
5382 /* If this use is for part of the insn,
5383 its value reaches if no subsequent part uses the same register.
5384 Just like the above function, don't try to do this with lots
5385 of fallthroughs. */
5387 case RELOAD_FOR_OTHER_ADDRESS:
5388 /* Here we check for everything else, since these don't conflict
5389 with anything else and everything comes later. */
5391 for (i = 0; i < reload_n_operands; i++)
5392 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5393 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5394 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
5395 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5396 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5397 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5398 return 0;
5400 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5401 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5402 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5403 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
5405 case RELOAD_FOR_INPUT_ADDRESS:
5406 case RELOAD_FOR_INPADDR_ADDRESS:
5407 /* Similar, except that we check only for this and subsequent inputs
5408 and the address of only subsequent inputs and we do not need
5409 to check for RELOAD_OTHER objects since they are known not to
5410 conflict. */
5412 for (i = opnum; i < reload_n_operands; i++)
5413 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5414 return 0;
5416 /* Reload register of reload with type RELOAD_FOR_INPADDR_ADDRESS
5417 could be killed if the register is also used by reload with type
5418 RELOAD_FOR_INPUT_ADDRESS, so check it. */
5419 if (type == RELOAD_FOR_INPADDR_ADDRESS
5420 && TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno))
5421 return 0;
5423 for (i = opnum + 1; i < reload_n_operands; i++)
5424 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5425 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5426 return 0;
5428 for (i = 0; i < reload_n_operands; i++)
5429 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5430 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5431 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5432 return 0;
5434 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5435 return 0;
5437 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5438 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5439 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5441 case RELOAD_FOR_INPUT:
5442 /* Similar to input address, except we start at the next operand for
5443 both input and input address and we do not check for
5444 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
5445 would conflict. */
5447 for (i = opnum + 1; i < reload_n_operands; i++)
5448 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5449 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5450 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5451 return 0;
5453 /* ... fall through ... */
5455 case RELOAD_FOR_OPERAND_ADDRESS:
5456 /* Check outputs and their addresses. */
5458 for (i = 0; i < reload_n_operands; i++)
5459 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5460 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5461 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5462 return 0;
5464 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
5466 case RELOAD_FOR_OPADDR_ADDR:
5467 for (i = 0; i < reload_n_operands; i++)
5468 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5469 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5470 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5471 return 0;
5473 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5474 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5475 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5477 case RELOAD_FOR_INSN:
5478 /* These conflict with other outputs with RELOAD_OTHER. So
5479 we need only check for output addresses. */
5481 opnum = reload_n_operands;
5483 /* ... fall through ... */
5485 case RELOAD_FOR_OUTPUT:
5486 case RELOAD_FOR_OUTPUT_ADDRESS:
5487 case RELOAD_FOR_OUTADDR_ADDRESS:
5488 /* We already know these can't conflict with a later output. So the
5489 only thing to check are later output addresses.
5490 Note that multiple output operands are emitted in reverse order,
5491 so the conflicting ones are those with lower indices. */
5492 for (i = 0; i < opnum; i++)
5493 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5494 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5495 return 0;
5497 /* Reload register of reload with type RELOAD_FOR_OUTADDR_ADDRESS
5498 could be killed if the register is also used by reload with type
5499 RELOAD_FOR_OUTPUT_ADDRESS, so check it. */
5500 if (type == RELOAD_FOR_OUTADDR_ADDRESS
5501 && TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5502 return 0;
5504 return 1;
5506 default:
5507 gcc_unreachable ();
5511 /* Like reload_reg_reaches_end_p, but check that the condition holds for
5512 every register in REG. */
5514 static bool
5515 reload_reg_rtx_reaches_end_p (rtx reg, int reloadnum)
5517 unsigned int i;
5519 for (i = REGNO (reg); i < END_REGNO (reg); i++)
5520 if (!reload_reg_reaches_end_p (i, reloadnum))
5521 return false;
5522 return true;
5526 /* Returns whether R1 and R2 are uniquely chained: the value of one
5527 is used by the other, and that value is not used by any other
5528 reload for this insn. This is used to partially undo the decision
5529 made in find_reloads when in the case of multiple
5530 RELOAD_FOR_OPERAND_ADDRESS reloads it converts all
5531 RELOAD_FOR_OPADDR_ADDR reloads into RELOAD_FOR_OPERAND_ADDRESS
5532 reloads. This code tries to avoid the conflict created by that
5533 change. It might be cleaner to explicitly keep track of which
5534 RELOAD_FOR_OPADDR_ADDR reload is associated with which
5535 RELOAD_FOR_OPERAND_ADDRESS reload, rather than to try to detect
5536 this after the fact. */
5537 static bool
5538 reloads_unique_chain_p (int r1, int r2)
5540 int i;
5542 /* We only check input reloads. */
5543 if (! rld[r1].in || ! rld[r2].in)
5544 return false;
5546 /* Avoid anything with output reloads. */
5547 if (rld[r1].out || rld[r2].out)
5548 return false;
5550 /* "chained" means one reload is a component of the other reload,
5551 not the same as the other reload. */
5552 if (rld[r1].opnum != rld[r2].opnum
5553 || rtx_equal_p (rld[r1].in, rld[r2].in)
5554 || rld[r1].optional || rld[r2].optional
5555 || ! (reg_mentioned_p (rld[r1].in, rld[r2].in)
5556 || reg_mentioned_p (rld[r2].in, rld[r1].in)))
5557 return false;
5559 for (i = 0; i < n_reloads; i ++)
5560 /* Look for input reloads that aren't our two */
5561 if (i != r1 && i != r2 && rld[i].in)
5563 /* If our reload is mentioned at all, it isn't a simple chain. */
5564 if (reg_mentioned_p (rld[r1].in, rld[i].in))
5565 return false;
5567 return true;
5570 /* The recursive function change all occurrences of WHAT in *WHERE
5571 to REPL. */
5572 static void
5573 substitute (rtx *where, const_rtx what, rtx repl)
5575 const char *fmt;
5576 int i;
5577 enum rtx_code code;
5579 if (*where == 0)
5580 return;
5582 if (*where == what || rtx_equal_p (*where, what))
5584 /* Record the location of the changed rtx. */
5585 substitute_stack.safe_push (where);
5586 *where = repl;
5587 return;
5590 code = GET_CODE (*where);
5591 fmt = GET_RTX_FORMAT (code);
5592 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5594 if (fmt[i] == 'E')
5596 int j;
5598 for (j = XVECLEN (*where, i) - 1; j >= 0; j--)
5599 substitute (&XVECEXP (*where, i, j), what, repl);
5601 else if (fmt[i] == 'e')
5602 substitute (&XEXP (*where, i), what, repl);
5606 /* The function returns TRUE if chain of reload R1 and R2 (in any
5607 order) can be evaluated without usage of intermediate register for
5608 the reload containing another reload. It is important to see
5609 gen_reload to understand what the function is trying to do. As an
5610 example, let us have reload chain
5612 r2: const
5613 r1: <something> + const
5615 and reload R2 got reload reg HR. The function returns true if
5616 there is a correct insn HR = HR + <something>. Otherwise,
5617 gen_reload will use intermediate register (and this is the reload
5618 reg for R1) to reload <something>.
5620 We need this function to find a conflict for chain reloads. In our
5621 example, if HR = HR + <something> is incorrect insn, then we cannot
5622 use HR as a reload register for R2. If we do use it then we get a
5623 wrong code:
5625 HR = const
5626 HR = <something>
5627 HR = HR + HR
5630 static bool
5631 gen_reload_chain_without_interm_reg_p (int r1, int r2)
5633 /* Assume other cases in gen_reload are not possible for
5634 chain reloads or do need an intermediate hard registers. */
5635 bool result = true;
5636 int regno, n, code;
5637 rtx out, in, insn;
5638 rtx last = get_last_insn ();
5640 /* Make r2 a component of r1. */
5641 if (reg_mentioned_p (rld[r1].in, rld[r2].in))
5643 n = r1;
5644 r1 = r2;
5645 r2 = n;
5647 gcc_assert (reg_mentioned_p (rld[r2].in, rld[r1].in));
5648 regno = rld[r1].regno >= 0 ? rld[r1].regno : rld[r2].regno;
5649 gcc_assert (regno >= 0);
5650 out = gen_rtx_REG (rld[r1].mode, regno);
5651 in = rld[r1].in;
5652 substitute (&in, rld[r2].in, gen_rtx_REG (rld[r2].mode, regno));
5654 /* If IN is a paradoxical SUBREG, remove it and try to put the
5655 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
5656 strip_paradoxical_subreg (&in, &out);
5658 if (GET_CODE (in) == PLUS
5659 && (REG_P (XEXP (in, 0))
5660 || GET_CODE (XEXP (in, 0)) == SUBREG
5661 || MEM_P (XEXP (in, 0)))
5662 && (REG_P (XEXP (in, 1))
5663 || GET_CODE (XEXP (in, 1)) == SUBREG
5664 || CONSTANT_P (XEXP (in, 1))
5665 || MEM_P (XEXP (in, 1))))
5667 insn = emit_insn (gen_rtx_SET (VOIDmode, out, in));
5668 code = recog_memoized (insn);
5669 result = false;
5671 if (code >= 0)
5673 extract_insn (insn);
5674 /* We want constrain operands to treat this insn strictly in
5675 its validity determination, i.e., the way it would after
5676 reload has completed. */
5677 result = constrain_operands (1);
5680 delete_insns_since (last);
5683 /* Restore the original value at each changed address within R1. */
5684 while (!substitute_stack.is_empty ())
5686 rtx *where = substitute_stack.pop ();
5687 *where = rld[r2].in;
5690 return result;
5693 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
5694 Return 0 otherwise.
5696 This function uses the same algorithm as reload_reg_free_p above. */
5698 static int
5699 reloads_conflict (int r1, int r2)
5701 enum reload_type r1_type = rld[r1].when_needed;
5702 enum reload_type r2_type = rld[r2].when_needed;
5703 int r1_opnum = rld[r1].opnum;
5704 int r2_opnum = rld[r2].opnum;
5706 /* RELOAD_OTHER conflicts with everything. */
5707 if (r2_type == RELOAD_OTHER)
5708 return 1;
5710 /* Otherwise, check conflicts differently for each type. */
5712 switch (r1_type)
5714 case RELOAD_FOR_INPUT:
5715 return (r2_type == RELOAD_FOR_INSN
5716 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
5717 || r2_type == RELOAD_FOR_OPADDR_ADDR
5718 || r2_type == RELOAD_FOR_INPUT
5719 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
5720 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
5721 && r2_opnum > r1_opnum));
5723 case RELOAD_FOR_INPUT_ADDRESS:
5724 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
5725 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5727 case RELOAD_FOR_INPADDR_ADDRESS:
5728 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
5729 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5731 case RELOAD_FOR_OUTPUT_ADDRESS:
5732 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
5733 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5735 case RELOAD_FOR_OUTADDR_ADDRESS:
5736 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
5737 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5739 case RELOAD_FOR_OPERAND_ADDRESS:
5740 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
5741 || (r2_type == RELOAD_FOR_OPERAND_ADDRESS
5742 && (!reloads_unique_chain_p (r1, r2)
5743 || !gen_reload_chain_without_interm_reg_p (r1, r2))));
5745 case RELOAD_FOR_OPADDR_ADDR:
5746 return (r2_type == RELOAD_FOR_INPUT
5747 || r2_type == RELOAD_FOR_OPADDR_ADDR);
5749 case RELOAD_FOR_OUTPUT:
5750 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
5751 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
5752 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
5753 && r2_opnum >= r1_opnum));
5755 case RELOAD_FOR_INSN:
5756 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
5757 || r2_type == RELOAD_FOR_INSN
5758 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
5760 case RELOAD_FOR_OTHER_ADDRESS:
5761 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
5763 case RELOAD_OTHER:
5764 return 1;
5766 default:
5767 gcc_unreachable ();
5771 /* Indexed by reload number, 1 if incoming value
5772 inherited from previous insns. */
5773 static char reload_inherited[MAX_RELOADS];
5775 /* For an inherited reload, this is the insn the reload was inherited from,
5776 if we know it. Otherwise, this is 0. */
5777 static rtx reload_inheritance_insn[MAX_RELOADS];
5779 /* If nonzero, this is a place to get the value of the reload,
5780 rather than using reload_in. */
5781 static rtx reload_override_in[MAX_RELOADS];
5783 /* For each reload, the hard register number of the register used,
5784 or -1 if we did not need a register for this reload. */
5785 static int reload_spill_index[MAX_RELOADS];
5787 /* Index X is the value of rld[X].reg_rtx, adjusted for the input mode. */
5788 static rtx reload_reg_rtx_for_input[MAX_RELOADS];
5790 /* Index X is the value of rld[X].reg_rtx, adjusted for the output mode. */
5791 static rtx reload_reg_rtx_for_output[MAX_RELOADS];
5793 /* Subroutine of free_for_value_p, used to check a single register.
5794 START_REGNO is the starting regno of the full reload register
5795 (possibly comprising multiple hard registers) that we are considering. */
5797 static int
5798 reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
5799 enum reload_type type, rtx value, rtx out,
5800 int reloadnum, int ignore_address_reloads)
5802 int time1;
5803 /* Set if we see an input reload that must not share its reload register
5804 with any new earlyclobber, but might otherwise share the reload
5805 register with an output or input-output reload. */
5806 int check_earlyclobber = 0;
5807 int i;
5808 int copy = 0;
5810 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5811 return 0;
5813 if (out == const0_rtx)
5815 copy = 1;
5816 out = NULL_RTX;
5819 /* We use some pseudo 'time' value to check if the lifetimes of the
5820 new register use would overlap with the one of a previous reload
5821 that is not read-only or uses a different value.
5822 The 'time' used doesn't have to be linear in any shape or form, just
5823 monotonic.
5824 Some reload types use different 'buckets' for each operand.
5825 So there are MAX_RECOG_OPERANDS different time values for each
5826 such reload type.
5827 We compute TIME1 as the time when the register for the prospective
5828 new reload ceases to be live, and TIME2 for each existing
5829 reload as the time when that the reload register of that reload
5830 becomes live.
5831 Where there is little to be gained by exact lifetime calculations,
5832 we just make conservative assumptions, i.e. a longer lifetime;
5833 this is done in the 'default:' cases. */
5834 switch (type)
5836 case RELOAD_FOR_OTHER_ADDRESS:
5837 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
5838 time1 = copy ? 0 : 1;
5839 break;
5840 case RELOAD_OTHER:
5841 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
5842 break;
5843 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
5844 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
5845 respectively, to the time values for these, we get distinct time
5846 values. To get distinct time values for each operand, we have to
5847 multiply opnum by at least three. We round that up to four because
5848 multiply by four is often cheaper. */
5849 case RELOAD_FOR_INPADDR_ADDRESS:
5850 time1 = opnum * 4 + 2;
5851 break;
5852 case RELOAD_FOR_INPUT_ADDRESS:
5853 time1 = opnum * 4 + 3;
5854 break;
5855 case RELOAD_FOR_INPUT:
5856 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
5857 executes (inclusive). */
5858 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
5859 break;
5860 case RELOAD_FOR_OPADDR_ADDR:
5861 /* opnum * 4 + 4
5862 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
5863 time1 = MAX_RECOG_OPERANDS * 4 + 1;
5864 break;
5865 case RELOAD_FOR_OPERAND_ADDRESS:
5866 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
5867 is executed. */
5868 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
5869 break;
5870 case RELOAD_FOR_OUTADDR_ADDRESS:
5871 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
5872 break;
5873 case RELOAD_FOR_OUTPUT_ADDRESS:
5874 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
5875 break;
5876 default:
5877 time1 = MAX_RECOG_OPERANDS * 5 + 5;
5880 for (i = 0; i < n_reloads; i++)
5882 rtx reg = rld[i].reg_rtx;
5883 if (reg && REG_P (reg)
5884 && ((unsigned) regno - true_regnum (reg)
5885 <= hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] - (unsigned) 1)
5886 && i != reloadnum)
5888 rtx other_input = rld[i].in;
5890 /* If the other reload loads the same input value, that
5891 will not cause a conflict only if it's loading it into
5892 the same register. */
5893 if (true_regnum (reg) != start_regno)
5894 other_input = NULL_RTX;
5895 if (! other_input || ! rtx_equal_p (other_input, value)
5896 || rld[i].out || out)
5898 int time2;
5899 switch (rld[i].when_needed)
5901 case RELOAD_FOR_OTHER_ADDRESS:
5902 time2 = 0;
5903 break;
5904 case RELOAD_FOR_INPADDR_ADDRESS:
5905 /* find_reloads makes sure that a
5906 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
5907 by at most one - the first -
5908 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
5909 address reload is inherited, the address address reload
5910 goes away, so we can ignore this conflict. */
5911 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
5912 && ignore_address_reloads
5913 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
5914 Then the address address is still needed to store
5915 back the new address. */
5916 && ! rld[reloadnum].out)
5917 continue;
5918 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
5919 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
5920 reloads go away. */
5921 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5922 && ignore_address_reloads
5923 /* Unless we are reloading an auto_inc expression. */
5924 && ! rld[reloadnum].out)
5925 continue;
5926 time2 = rld[i].opnum * 4 + 2;
5927 break;
5928 case RELOAD_FOR_INPUT_ADDRESS:
5929 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5930 && ignore_address_reloads
5931 && ! rld[reloadnum].out)
5932 continue;
5933 time2 = rld[i].opnum * 4 + 3;
5934 break;
5935 case RELOAD_FOR_INPUT:
5936 time2 = rld[i].opnum * 4 + 4;
5937 check_earlyclobber = 1;
5938 break;
5939 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
5940 == MAX_RECOG_OPERAND * 4 */
5941 case RELOAD_FOR_OPADDR_ADDR:
5942 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
5943 && ignore_address_reloads
5944 && ! rld[reloadnum].out)
5945 continue;
5946 time2 = MAX_RECOG_OPERANDS * 4 + 1;
5947 break;
5948 case RELOAD_FOR_OPERAND_ADDRESS:
5949 time2 = MAX_RECOG_OPERANDS * 4 + 2;
5950 check_earlyclobber = 1;
5951 break;
5952 case RELOAD_FOR_INSN:
5953 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5954 break;
5955 case RELOAD_FOR_OUTPUT:
5956 /* All RELOAD_FOR_OUTPUT reloads become live just after the
5957 instruction is executed. */
5958 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5959 break;
5960 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
5961 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
5962 value. */
5963 case RELOAD_FOR_OUTADDR_ADDRESS:
5964 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
5965 && ignore_address_reloads
5966 && ! rld[reloadnum].out)
5967 continue;
5968 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
5969 break;
5970 case RELOAD_FOR_OUTPUT_ADDRESS:
5971 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
5972 break;
5973 case RELOAD_OTHER:
5974 /* If there is no conflict in the input part, handle this
5975 like an output reload. */
5976 if (! rld[i].in || rtx_equal_p (other_input, value))
5978 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5979 /* Earlyclobbered outputs must conflict with inputs. */
5980 if (earlyclobber_operand_p (rld[i].out))
5981 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5983 break;
5985 time2 = 1;
5986 /* RELOAD_OTHER might be live beyond instruction execution,
5987 but this is not obvious when we set time2 = 1. So check
5988 here if there might be a problem with the new reload
5989 clobbering the register used by the RELOAD_OTHER. */
5990 if (out)
5991 return 0;
5992 break;
5993 default:
5994 return 0;
5996 if ((time1 >= time2
5997 && (! rld[i].in || rld[i].out
5998 || ! rtx_equal_p (other_input, value)))
5999 || (out && rld[reloadnum].out_reg
6000 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
6001 return 0;
6006 /* Earlyclobbered outputs must conflict with inputs. */
6007 if (check_earlyclobber && out && earlyclobber_operand_p (out))
6008 return 0;
6010 return 1;
6013 /* Return 1 if the value in reload reg REGNO, as used by a reload
6014 needed for the part of the insn specified by OPNUM and TYPE,
6015 may be used to load VALUE into it.
6017 MODE is the mode in which the register is used, this is needed to
6018 determine how many hard regs to test.
6020 Other read-only reloads with the same value do not conflict
6021 unless OUT is nonzero and these other reloads have to live while
6022 output reloads live.
6023 If OUT is CONST0_RTX, this is a special case: it means that the
6024 test should not be for using register REGNO as reload register, but
6025 for copying from register REGNO into the reload register.
6027 RELOADNUM is the number of the reload we want to load this value for;
6028 a reload does not conflict with itself.
6030 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
6031 reloads that load an address for the very reload we are considering.
6033 The caller has to make sure that there is no conflict with the return
6034 register. */
6036 static int
6037 free_for_value_p (int regno, enum machine_mode mode, int opnum,
6038 enum reload_type type, rtx value, rtx out, int reloadnum,
6039 int ignore_address_reloads)
6041 int nregs = hard_regno_nregs[regno][mode];
6042 while (nregs-- > 0)
6043 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
6044 value, out, reloadnum,
6045 ignore_address_reloads))
6046 return 0;
6047 return 1;
6050 /* Return nonzero if the rtx X is invariant over the current function. */
6051 /* ??? Actually, the places where we use this expect exactly what is
6052 tested here, and not everything that is function invariant. In
6053 particular, the frame pointer and arg pointer are special cased;
6054 pic_offset_table_rtx is not, and we must not spill these things to
6055 memory. */
6058 function_invariant_p (const_rtx x)
6060 if (CONSTANT_P (x))
6061 return 1;
6062 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
6063 return 1;
6064 if (GET_CODE (x) == PLUS
6065 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
6066 && GET_CODE (XEXP (x, 1)) == CONST_INT)
6067 return 1;
6068 return 0;
6071 /* Determine whether the reload reg X overlaps any rtx'es used for
6072 overriding inheritance. Return nonzero if so. */
6074 static int
6075 conflicts_with_override (rtx x)
6077 int i;
6078 for (i = 0; i < n_reloads; i++)
6079 if (reload_override_in[i]
6080 && reg_overlap_mentioned_p (x, reload_override_in[i]))
6081 return 1;
6082 return 0;
6085 /* Give an error message saying we failed to find a reload for INSN,
6086 and clear out reload R. */
6087 static void
6088 failed_reload (rtx insn, int r)
6090 if (asm_noperands (PATTERN (insn)) < 0)
6091 /* It's the compiler's fault. */
6092 fatal_insn ("could not find a spill register", insn);
6094 /* It's the user's fault; the operand's mode and constraint
6095 don't match. Disable this reload so we don't crash in final. */
6096 error_for_asm (insn,
6097 "%<asm%> operand constraint incompatible with operand size");
6098 rld[r].in = 0;
6099 rld[r].out = 0;
6100 rld[r].reg_rtx = 0;
6101 rld[r].optional = 1;
6102 rld[r].secondary_p = 1;
6105 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
6106 for reload R. If it's valid, get an rtx for it. Return nonzero if
6107 successful. */
6108 static int
6109 set_reload_reg (int i, int r)
6111 /* regno is 'set but not used' if HARD_REGNO_MODE_OK doesn't use its first
6112 parameter. */
6113 int regno ATTRIBUTE_UNUSED;
6114 rtx reg = spill_reg_rtx[i];
6116 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
6117 spill_reg_rtx[i] = reg
6118 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
6120 regno = true_regnum (reg);
6122 /* Detect when the reload reg can't hold the reload mode.
6123 This used to be one `if', but Sequent compiler can't handle that. */
6124 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
6126 enum machine_mode test_mode = VOIDmode;
6127 if (rld[r].in)
6128 test_mode = GET_MODE (rld[r].in);
6129 /* If rld[r].in has VOIDmode, it means we will load it
6130 in whatever mode the reload reg has: to wit, rld[r].mode.
6131 We have already tested that for validity. */
6132 /* Aside from that, we need to test that the expressions
6133 to reload from or into have modes which are valid for this
6134 reload register. Otherwise the reload insns would be invalid. */
6135 if (! (rld[r].in != 0 && test_mode != VOIDmode
6136 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
6137 if (! (rld[r].out != 0
6138 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
6140 /* The reg is OK. */
6141 last_spill_reg = i;
6143 /* Mark as in use for this insn the reload regs we use
6144 for this. */
6145 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
6146 rld[r].when_needed, rld[r].mode);
6148 rld[r].reg_rtx = reg;
6149 reload_spill_index[r] = spill_regs[i];
6150 return 1;
6153 return 0;
6156 /* Find a spill register to use as a reload register for reload R.
6157 LAST_RELOAD is nonzero if this is the last reload for the insn being
6158 processed.
6160 Set rld[R].reg_rtx to the register allocated.
6162 We return 1 if successful, or 0 if we couldn't find a spill reg and
6163 we didn't change anything. */
6165 static int
6166 allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
6167 int last_reload)
6169 int i, pass, count;
6171 /* If we put this reload ahead, thinking it is a group,
6172 then insist on finding a group. Otherwise we can grab a
6173 reg that some other reload needs.
6174 (That can happen when we have a 68000 DATA_OR_FP_REG
6175 which is a group of data regs or one fp reg.)
6176 We need not be so restrictive if there are no more reloads
6177 for this insn.
6179 ??? Really it would be nicer to have smarter handling
6180 for that kind of reg class, where a problem like this is normal.
6181 Perhaps those classes should be avoided for reloading
6182 by use of more alternatives. */
6184 int force_group = rld[r].nregs > 1 && ! last_reload;
6186 /* If we want a single register and haven't yet found one,
6187 take any reg in the right class and not in use.
6188 If we want a consecutive group, here is where we look for it.
6190 We use three passes so we can first look for reload regs to
6191 reuse, which are already in use for other reloads in this insn,
6192 and only then use additional registers which are not "bad", then
6193 finally any register.
6195 I think that maximizing reuse is needed to make sure we don't
6196 run out of reload regs. Suppose we have three reloads, and
6197 reloads A and B can share regs. These need two regs.
6198 Suppose A and B are given different regs.
6199 That leaves none for C. */
6200 for (pass = 0; pass < 3; pass++)
6202 /* I is the index in spill_regs.
6203 We advance it round-robin between insns to use all spill regs
6204 equally, so that inherited reloads have a chance
6205 of leapfrogging each other. */
6207 i = last_spill_reg;
6209 for (count = 0; count < n_spills; count++)
6211 int rclass = (int) rld[r].rclass;
6212 int regnum;
6214 i++;
6215 if (i >= n_spills)
6216 i -= n_spills;
6217 regnum = spill_regs[i];
6219 if ((reload_reg_free_p (regnum, rld[r].opnum,
6220 rld[r].when_needed)
6221 || (rld[r].in
6222 /* We check reload_reg_used to make sure we
6223 don't clobber the return register. */
6224 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
6225 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
6226 rld[r].when_needed, rld[r].in,
6227 rld[r].out, r, 1)))
6228 && TEST_HARD_REG_BIT (reg_class_contents[rclass], regnum)
6229 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
6230 /* Look first for regs to share, then for unshared. But
6231 don't share regs used for inherited reloads; they are
6232 the ones we want to preserve. */
6233 && (pass
6234 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
6235 regnum)
6236 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
6237 regnum))))
6239 int nr = hard_regno_nregs[regnum][rld[r].mode];
6241 /* During the second pass we want to avoid reload registers
6242 which are "bad" for this reload. */
6243 if (pass == 1
6244 && ira_bad_reload_regno (regnum, rld[r].in, rld[r].out))
6245 continue;
6247 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
6248 (on 68000) got us two FP regs. If NR is 1,
6249 we would reject both of them. */
6250 if (force_group)
6251 nr = rld[r].nregs;
6252 /* If we need only one reg, we have already won. */
6253 if (nr == 1)
6255 /* But reject a single reg if we demand a group. */
6256 if (force_group)
6257 continue;
6258 break;
6260 /* Otherwise check that as many consecutive regs as we need
6261 are available here. */
6262 while (nr > 1)
6264 int regno = regnum + nr - 1;
6265 if (!(TEST_HARD_REG_BIT (reg_class_contents[rclass], regno)
6266 && spill_reg_order[regno] >= 0
6267 && reload_reg_free_p (regno, rld[r].opnum,
6268 rld[r].when_needed)))
6269 break;
6270 nr--;
6272 if (nr == 1)
6273 break;
6277 /* If we found something on the current pass, omit later passes. */
6278 if (count < n_spills)
6279 break;
6282 /* We should have found a spill register by now. */
6283 if (count >= n_spills)
6284 return 0;
6286 /* I is the index in SPILL_REG_RTX of the reload register we are to
6287 allocate. Get an rtx for it and find its register number. */
6289 return set_reload_reg (i, r);
6292 /* Initialize all the tables needed to allocate reload registers.
6293 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
6294 is the array we use to restore the reg_rtx field for every reload. */
6296 static void
6297 choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
6299 int i;
6301 for (i = 0; i < n_reloads; i++)
6302 rld[i].reg_rtx = save_reload_reg_rtx[i];
6304 memset (reload_inherited, 0, MAX_RELOADS);
6305 memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
6306 memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
6308 CLEAR_HARD_REG_SET (reload_reg_used);
6309 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
6310 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
6311 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
6312 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
6313 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
6315 CLEAR_HARD_REG_SET (reg_used_in_insn);
6317 HARD_REG_SET tmp;
6318 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
6319 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6320 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
6321 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6322 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
6323 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
6326 for (i = 0; i < reload_n_operands; i++)
6328 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
6329 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
6330 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
6331 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
6332 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
6333 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
6336 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
6338 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
6340 for (i = 0; i < n_reloads; i++)
6341 /* If we have already decided to use a certain register,
6342 don't use it in another way. */
6343 if (rld[i].reg_rtx)
6344 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
6345 rld[i].when_needed, rld[i].mode);
6348 #ifdef SECONDARY_MEMORY_NEEDED
6349 /* If X is not a subreg, return it unmodified. If it is a subreg,
6350 look up whether we made a replacement for the SUBREG_REG. Return
6351 either the replacement or the SUBREG_REG. */
6353 static rtx
6354 replaced_subreg (rtx x)
6356 if (GET_CODE (x) == SUBREG)
6357 return find_replacement (&SUBREG_REG (x));
6358 return x;
6360 #endif
6362 /* Assign hard reg targets for the pseudo-registers we must reload
6363 into hard regs for this insn.
6364 Also output the instructions to copy them in and out of the hard regs.
6366 For machines with register classes, we are responsible for
6367 finding a reload reg in the proper class. */
6369 static void
6370 choose_reload_regs (struct insn_chain *chain)
6372 rtx insn = chain->insn;
6373 int i, j;
6374 unsigned int max_group_size = 1;
6375 enum reg_class group_class = NO_REGS;
6376 int pass, win, inheritance;
6378 rtx save_reload_reg_rtx[MAX_RELOADS];
6380 /* In order to be certain of getting the registers we need,
6381 we must sort the reloads into order of increasing register class.
6382 Then our grabbing of reload registers will parallel the process
6383 that provided the reload registers.
6385 Also note whether any of the reloads wants a consecutive group of regs.
6386 If so, record the maximum size of the group desired and what
6387 register class contains all the groups needed by this insn. */
6389 for (j = 0; j < n_reloads; j++)
6391 reload_order[j] = j;
6392 if (rld[j].reg_rtx != NULL_RTX)
6394 gcc_assert (REG_P (rld[j].reg_rtx)
6395 && HARD_REGISTER_P (rld[j].reg_rtx));
6396 reload_spill_index[j] = REGNO (rld[j].reg_rtx);
6398 else
6399 reload_spill_index[j] = -1;
6401 if (rld[j].nregs > 1)
6403 max_group_size = MAX (rld[j].nregs, max_group_size);
6404 group_class
6405 = reg_class_superunion[(int) rld[j].rclass][(int) group_class];
6408 save_reload_reg_rtx[j] = rld[j].reg_rtx;
6411 if (n_reloads > 1)
6412 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
6414 /* If -O, try first with inheritance, then turning it off.
6415 If not -O, don't do inheritance.
6416 Using inheritance when not optimizing leads to paradoxes
6417 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
6418 because one side of the comparison might be inherited. */
6419 win = 0;
6420 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
6422 choose_reload_regs_init (chain, save_reload_reg_rtx);
6424 /* Process the reloads in order of preference just found.
6425 Beyond this point, subregs can be found in reload_reg_rtx.
6427 This used to look for an existing reloaded home for all of the
6428 reloads, and only then perform any new reloads. But that could lose
6429 if the reloads were done out of reg-class order because a later
6430 reload with a looser constraint might have an old home in a register
6431 needed by an earlier reload with a tighter constraint.
6433 To solve this, we make two passes over the reloads, in the order
6434 described above. In the first pass we try to inherit a reload
6435 from a previous insn. If there is a later reload that needs a
6436 class that is a proper subset of the class being processed, we must
6437 also allocate a spill register during the first pass.
6439 Then make a second pass over the reloads to allocate any reloads
6440 that haven't been given registers yet. */
6442 for (j = 0; j < n_reloads; j++)
6444 int r = reload_order[j];
6445 rtx search_equiv = NULL_RTX;
6447 /* Ignore reloads that got marked inoperative. */
6448 if (rld[r].out == 0 && rld[r].in == 0
6449 && ! rld[r].secondary_p)
6450 continue;
6452 /* If find_reloads chose to use reload_in or reload_out as a reload
6453 register, we don't need to chose one. Otherwise, try even if it
6454 found one since we might save an insn if we find the value lying
6455 around.
6456 Try also when reload_in is a pseudo without a hard reg. */
6457 if (rld[r].in != 0 && rld[r].reg_rtx != 0
6458 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
6459 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
6460 && !MEM_P (rld[r].in)
6461 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
6462 continue;
6464 #if 0 /* No longer needed for correct operation.
6465 It might give better code, or might not; worth an experiment? */
6466 /* If this is an optional reload, we can't inherit from earlier insns
6467 until we are sure that any non-optional reloads have been allocated.
6468 The following code takes advantage of the fact that optional reloads
6469 are at the end of reload_order. */
6470 if (rld[r].optional != 0)
6471 for (i = 0; i < j; i++)
6472 if ((rld[reload_order[i]].out != 0
6473 || rld[reload_order[i]].in != 0
6474 || rld[reload_order[i]].secondary_p)
6475 && ! rld[reload_order[i]].optional
6476 && rld[reload_order[i]].reg_rtx == 0)
6477 allocate_reload_reg (chain, reload_order[i], 0);
6478 #endif
6480 /* First see if this pseudo is already available as reloaded
6481 for a previous insn. We cannot try to inherit for reloads
6482 that are smaller than the maximum number of registers needed
6483 for groups unless the register we would allocate cannot be used
6484 for the groups.
6486 We could check here to see if this is a secondary reload for
6487 an object that is already in a register of the desired class.
6488 This would avoid the need for the secondary reload register.
6489 But this is complex because we can't easily determine what
6490 objects might want to be loaded via this reload. So let a
6491 register be allocated here. In `emit_reload_insns' we suppress
6492 one of the loads in the case described above. */
6494 if (inheritance)
6496 int byte = 0;
6497 int regno = -1;
6498 enum machine_mode mode = VOIDmode;
6500 if (rld[r].in == 0)
6502 else if (REG_P (rld[r].in))
6504 regno = REGNO (rld[r].in);
6505 mode = GET_MODE (rld[r].in);
6507 else if (REG_P (rld[r].in_reg))
6509 regno = REGNO (rld[r].in_reg);
6510 mode = GET_MODE (rld[r].in_reg);
6512 else if (GET_CODE (rld[r].in_reg) == SUBREG
6513 && REG_P (SUBREG_REG (rld[r].in_reg)))
6515 regno = REGNO (SUBREG_REG (rld[r].in_reg));
6516 if (regno < FIRST_PSEUDO_REGISTER)
6517 regno = subreg_regno (rld[r].in_reg);
6518 else
6519 byte = SUBREG_BYTE (rld[r].in_reg);
6520 mode = GET_MODE (rld[r].in_reg);
6522 #ifdef AUTO_INC_DEC
6523 else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC
6524 && REG_P (XEXP (rld[r].in_reg, 0)))
6526 regno = REGNO (XEXP (rld[r].in_reg, 0));
6527 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
6528 rld[r].out = rld[r].in;
6530 #endif
6531 #if 0
6532 /* This won't work, since REGNO can be a pseudo reg number.
6533 Also, it takes much more hair to keep track of all the things
6534 that can invalidate an inherited reload of part of a pseudoreg. */
6535 else if (GET_CODE (rld[r].in) == SUBREG
6536 && REG_P (SUBREG_REG (rld[r].in)))
6537 regno = subreg_regno (rld[r].in);
6538 #endif
6540 if (regno >= 0
6541 && reg_last_reload_reg[regno] != 0
6542 && (GET_MODE_SIZE (GET_MODE (reg_last_reload_reg[regno]))
6543 >= GET_MODE_SIZE (mode) + byte)
6544 #ifdef CANNOT_CHANGE_MODE_CLASS
6545 /* Verify that the register it's in can be used in
6546 mode MODE. */
6547 && !REG_CANNOT_CHANGE_MODE_P (REGNO (reg_last_reload_reg[regno]),
6548 GET_MODE (reg_last_reload_reg[regno]),
6549 mode)
6550 #endif
6553 enum reg_class rclass = rld[r].rclass, last_class;
6554 rtx last_reg = reg_last_reload_reg[regno];
6556 i = REGNO (last_reg);
6557 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
6558 last_class = REGNO_REG_CLASS (i);
6560 if (reg_reloaded_contents[i] == regno
6561 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
6562 && HARD_REGNO_MODE_OK (i, rld[r].mode)
6563 && (TEST_HARD_REG_BIT (reg_class_contents[(int) rclass], i)
6564 /* Even if we can't use this register as a reload
6565 register, we might use it for reload_override_in,
6566 if copying it to the desired class is cheap
6567 enough. */
6568 || ((register_move_cost (mode, last_class, rclass)
6569 < memory_move_cost (mode, rclass, true))
6570 && (secondary_reload_class (1, rclass, mode,
6571 last_reg)
6572 == NO_REGS)
6573 #ifdef SECONDARY_MEMORY_NEEDED
6574 && ! SECONDARY_MEMORY_NEEDED (last_class, rclass,
6575 mode)
6576 #endif
6579 && (rld[r].nregs == max_group_size
6580 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
6582 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
6583 rld[r].when_needed, rld[r].in,
6584 const0_rtx, r, 1))
6586 /* If a group is needed, verify that all the subsequent
6587 registers still have their values intact. */
6588 int nr = hard_regno_nregs[i][rld[r].mode];
6589 int k;
6591 for (k = 1; k < nr; k++)
6592 if (reg_reloaded_contents[i + k] != regno
6593 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
6594 break;
6596 if (k == nr)
6598 int i1;
6599 int bad_for_class;
6601 last_reg = (GET_MODE (last_reg) == mode
6602 ? last_reg : gen_rtx_REG (mode, i));
6604 bad_for_class = 0;
6605 for (k = 0; k < nr; k++)
6606 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6607 i+k);
6609 /* We found a register that contains the
6610 value we need. If this register is the
6611 same as an `earlyclobber' operand of the
6612 current insn, just mark it as a place to
6613 reload from since we can't use it as the
6614 reload register itself. */
6616 for (i1 = 0; i1 < n_earlyclobbers; i1++)
6617 if (reg_overlap_mentioned_for_reload_p
6618 (reg_last_reload_reg[regno],
6619 reload_earlyclobbers[i1]))
6620 break;
6622 if (i1 != n_earlyclobbers
6623 || ! (free_for_value_p (i, rld[r].mode,
6624 rld[r].opnum,
6625 rld[r].when_needed, rld[r].in,
6626 rld[r].out, r, 1))
6627 /* Don't use it if we'd clobber a pseudo reg. */
6628 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
6629 && rld[r].out
6630 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
6631 /* Don't clobber the frame pointer. */
6632 || (i == HARD_FRAME_POINTER_REGNUM
6633 && frame_pointer_needed
6634 && rld[r].out)
6635 /* Don't really use the inherited spill reg
6636 if we need it wider than we've got it. */
6637 || (GET_MODE_SIZE (rld[r].mode)
6638 > GET_MODE_SIZE (mode))
6639 || bad_for_class
6641 /* If find_reloads chose reload_out as reload
6642 register, stay with it - that leaves the
6643 inherited register for subsequent reloads. */
6644 || (rld[r].out && rld[r].reg_rtx
6645 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
6647 if (! rld[r].optional)
6649 reload_override_in[r] = last_reg;
6650 reload_inheritance_insn[r]
6651 = reg_reloaded_insn[i];
6654 else
6656 int k;
6657 /* We can use this as a reload reg. */
6658 /* Mark the register as in use for this part of
6659 the insn. */
6660 mark_reload_reg_in_use (i,
6661 rld[r].opnum,
6662 rld[r].when_needed,
6663 rld[r].mode);
6664 rld[r].reg_rtx = last_reg;
6665 reload_inherited[r] = 1;
6666 reload_inheritance_insn[r]
6667 = reg_reloaded_insn[i];
6668 reload_spill_index[r] = i;
6669 for (k = 0; k < nr; k++)
6670 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6671 i + k);
6678 /* Here's another way to see if the value is already lying around. */
6679 if (inheritance
6680 && rld[r].in != 0
6681 && ! reload_inherited[r]
6682 && rld[r].out == 0
6683 && (CONSTANT_P (rld[r].in)
6684 || GET_CODE (rld[r].in) == PLUS
6685 || REG_P (rld[r].in)
6686 || MEM_P (rld[r].in))
6687 && (rld[r].nregs == max_group_size
6688 || ! reg_classes_intersect_p (rld[r].rclass, group_class)))
6689 search_equiv = rld[r].in;
6691 if (search_equiv)
6693 rtx equiv
6694 = find_equiv_reg (search_equiv, insn, rld[r].rclass,
6695 -1, NULL, 0, rld[r].mode);
6696 int regno = 0;
6698 if (equiv != 0)
6700 if (REG_P (equiv))
6701 regno = REGNO (equiv);
6702 else
6704 /* This must be a SUBREG of a hard register.
6705 Make a new REG since this might be used in an
6706 address and not all machines support SUBREGs
6707 there. */
6708 gcc_assert (GET_CODE (equiv) == SUBREG);
6709 regno = subreg_regno (equiv);
6710 equiv = gen_rtx_REG (rld[r].mode, regno);
6711 /* If we choose EQUIV as the reload register, but the
6712 loop below decides to cancel the inheritance, we'll
6713 end up reloading EQUIV in rld[r].mode, not the mode
6714 it had originally. That isn't safe when EQUIV isn't
6715 available as a spill register since its value might
6716 still be live at this point. */
6717 for (i = regno; i < regno + (int) rld[r].nregs; i++)
6718 if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
6719 equiv = 0;
6723 /* If we found a spill reg, reject it unless it is free
6724 and of the desired class. */
6725 if (equiv != 0)
6727 int regs_used = 0;
6728 int bad_for_class = 0;
6729 int max_regno = regno + rld[r].nregs;
6731 for (i = regno; i < max_regno; i++)
6733 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
6735 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6739 if ((regs_used
6740 && ! free_for_value_p (regno, rld[r].mode,
6741 rld[r].opnum, rld[r].when_needed,
6742 rld[r].in, rld[r].out, r, 1))
6743 || bad_for_class)
6744 equiv = 0;
6747 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
6748 equiv = 0;
6750 /* We found a register that contains the value we need.
6751 If this register is the same as an `earlyclobber' operand
6752 of the current insn, just mark it as a place to reload from
6753 since we can't use it as the reload register itself. */
6755 if (equiv != 0)
6756 for (i = 0; i < n_earlyclobbers; i++)
6757 if (reg_overlap_mentioned_for_reload_p (equiv,
6758 reload_earlyclobbers[i]))
6760 if (! rld[r].optional)
6761 reload_override_in[r] = equiv;
6762 equiv = 0;
6763 break;
6766 /* If the equiv register we have found is explicitly clobbered
6767 in the current insn, it depends on the reload type if we
6768 can use it, use it for reload_override_in, or not at all.
6769 In particular, we then can't use EQUIV for a
6770 RELOAD_FOR_OUTPUT_ADDRESS reload. */
6772 if (equiv != 0)
6774 if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
6775 switch (rld[r].when_needed)
6777 case RELOAD_FOR_OTHER_ADDRESS:
6778 case RELOAD_FOR_INPADDR_ADDRESS:
6779 case RELOAD_FOR_INPUT_ADDRESS:
6780 case RELOAD_FOR_OPADDR_ADDR:
6781 break;
6782 case RELOAD_OTHER:
6783 case RELOAD_FOR_INPUT:
6784 case RELOAD_FOR_OPERAND_ADDRESS:
6785 if (! rld[r].optional)
6786 reload_override_in[r] = equiv;
6787 /* Fall through. */
6788 default:
6789 equiv = 0;
6790 break;
6792 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
6793 switch (rld[r].when_needed)
6795 case RELOAD_FOR_OTHER_ADDRESS:
6796 case RELOAD_FOR_INPADDR_ADDRESS:
6797 case RELOAD_FOR_INPUT_ADDRESS:
6798 case RELOAD_FOR_OPADDR_ADDR:
6799 case RELOAD_FOR_OPERAND_ADDRESS:
6800 case RELOAD_FOR_INPUT:
6801 break;
6802 case RELOAD_OTHER:
6803 if (! rld[r].optional)
6804 reload_override_in[r] = equiv;
6805 /* Fall through. */
6806 default:
6807 equiv = 0;
6808 break;
6812 /* If we found an equivalent reg, say no code need be generated
6813 to load it, and use it as our reload reg. */
6814 if (equiv != 0
6815 && (regno != HARD_FRAME_POINTER_REGNUM
6816 || !frame_pointer_needed))
6818 int nr = hard_regno_nregs[regno][rld[r].mode];
6819 int k;
6820 rld[r].reg_rtx = equiv;
6821 reload_spill_index[r] = regno;
6822 reload_inherited[r] = 1;
6824 /* If reg_reloaded_valid is not set for this register,
6825 there might be a stale spill_reg_store lying around.
6826 We must clear it, since otherwise emit_reload_insns
6827 might delete the store. */
6828 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
6829 spill_reg_store[regno] = NULL_RTX;
6830 /* If any of the hard registers in EQUIV are spill
6831 registers, mark them as in use for this insn. */
6832 for (k = 0; k < nr; k++)
6834 i = spill_reg_order[regno + k];
6835 if (i >= 0)
6837 mark_reload_reg_in_use (regno, rld[r].opnum,
6838 rld[r].when_needed,
6839 rld[r].mode);
6840 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6841 regno + k);
6847 /* If we found a register to use already, or if this is an optional
6848 reload, we are done. */
6849 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
6850 continue;
6852 #if 0
6853 /* No longer needed for correct operation. Might or might
6854 not give better code on the average. Want to experiment? */
6856 /* See if there is a later reload that has a class different from our
6857 class that intersects our class or that requires less register
6858 than our reload. If so, we must allocate a register to this
6859 reload now, since that reload might inherit a previous reload
6860 and take the only available register in our class. Don't do this
6861 for optional reloads since they will force all previous reloads
6862 to be allocated. Also don't do this for reloads that have been
6863 turned off. */
6865 for (i = j + 1; i < n_reloads; i++)
6867 int s = reload_order[i];
6869 if ((rld[s].in == 0 && rld[s].out == 0
6870 && ! rld[s].secondary_p)
6871 || rld[s].optional)
6872 continue;
6874 if ((rld[s].rclass != rld[r].rclass
6875 && reg_classes_intersect_p (rld[r].rclass,
6876 rld[s].rclass))
6877 || rld[s].nregs < rld[r].nregs)
6878 break;
6881 if (i == n_reloads)
6882 continue;
6884 allocate_reload_reg (chain, r, j == n_reloads - 1);
6885 #endif
6888 /* Now allocate reload registers for anything non-optional that
6889 didn't get one yet. */
6890 for (j = 0; j < n_reloads; j++)
6892 int r = reload_order[j];
6894 /* Ignore reloads that got marked inoperative. */
6895 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
6896 continue;
6898 /* Skip reloads that already have a register allocated or are
6899 optional. */
6900 if (rld[r].reg_rtx != 0 || rld[r].optional)
6901 continue;
6903 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
6904 break;
6907 /* If that loop got all the way, we have won. */
6908 if (j == n_reloads)
6910 win = 1;
6911 break;
6914 /* Loop around and try without any inheritance. */
6917 if (! win)
6919 /* First undo everything done by the failed attempt
6920 to allocate with inheritance. */
6921 choose_reload_regs_init (chain, save_reload_reg_rtx);
6923 /* Some sanity tests to verify that the reloads found in the first
6924 pass are identical to the ones we have now. */
6925 gcc_assert (chain->n_reloads == n_reloads);
6927 for (i = 0; i < n_reloads; i++)
6929 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
6930 continue;
6931 gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
6932 for (j = 0; j < n_spills; j++)
6933 if (spill_regs[j] == chain->rld[i].regno)
6934 if (! set_reload_reg (j, i))
6935 failed_reload (chain->insn, i);
6939 /* If we thought we could inherit a reload, because it seemed that
6940 nothing else wanted the same reload register earlier in the insn,
6941 verify that assumption, now that all reloads have been assigned.
6942 Likewise for reloads where reload_override_in has been set. */
6944 /* If doing expensive optimizations, do one preliminary pass that doesn't
6945 cancel any inheritance, but removes reloads that have been needed only
6946 for reloads that we know can be inherited. */
6947 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
6949 for (j = 0; j < n_reloads; j++)
6951 int r = reload_order[j];
6952 rtx check_reg;
6953 #ifdef SECONDARY_MEMORY_NEEDED
6954 rtx tem;
6955 #endif
6956 if (reload_inherited[r] && rld[r].reg_rtx)
6957 check_reg = rld[r].reg_rtx;
6958 else if (reload_override_in[r]
6959 && (REG_P (reload_override_in[r])
6960 || GET_CODE (reload_override_in[r]) == SUBREG))
6961 check_reg = reload_override_in[r];
6962 else
6963 continue;
6964 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
6965 rld[r].opnum, rld[r].when_needed, rld[r].in,
6966 (reload_inherited[r]
6967 ? rld[r].out : const0_rtx),
6968 r, 1))
6970 if (pass)
6971 continue;
6972 reload_inherited[r] = 0;
6973 reload_override_in[r] = 0;
6975 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
6976 reload_override_in, then we do not need its related
6977 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
6978 likewise for other reload types.
6979 We handle this by removing a reload when its only replacement
6980 is mentioned in reload_in of the reload we are going to inherit.
6981 A special case are auto_inc expressions; even if the input is
6982 inherited, we still need the address for the output. We can
6983 recognize them because they have RELOAD_OUT set to RELOAD_IN.
6984 If we succeeded removing some reload and we are doing a preliminary
6985 pass just to remove such reloads, make another pass, since the
6986 removal of one reload might allow us to inherit another one. */
6987 else if (rld[r].in
6988 && rld[r].out != rld[r].in
6989 && remove_address_replacements (rld[r].in))
6991 if (pass)
6992 pass = 2;
6994 #ifdef SECONDARY_MEMORY_NEEDED
6995 /* If we needed a memory location for the reload, we also have to
6996 remove its related reloads. */
6997 else if (rld[r].in
6998 && rld[r].out != rld[r].in
6999 && (tem = replaced_subreg (rld[r].in), REG_P (tem))
7000 && REGNO (tem) < FIRST_PSEUDO_REGISTER
7001 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (tem)),
7002 rld[r].rclass, rld[r].inmode)
7003 && remove_address_replacements
7004 (get_secondary_mem (tem, rld[r].inmode, rld[r].opnum,
7005 rld[r].when_needed)))
7007 if (pass)
7008 pass = 2;
7010 #endif
7014 /* Now that reload_override_in is known valid,
7015 actually override reload_in. */
7016 for (j = 0; j < n_reloads; j++)
7017 if (reload_override_in[j])
7018 rld[j].in = reload_override_in[j];
7020 /* If this reload won't be done because it has been canceled or is
7021 optional and not inherited, clear reload_reg_rtx so other
7022 routines (such as subst_reloads) don't get confused. */
7023 for (j = 0; j < n_reloads; j++)
7024 if (rld[j].reg_rtx != 0
7025 && ((rld[j].optional && ! reload_inherited[j])
7026 || (rld[j].in == 0 && rld[j].out == 0
7027 && ! rld[j].secondary_p)))
7029 int regno = true_regnum (rld[j].reg_rtx);
7031 if (spill_reg_order[regno] >= 0)
7032 clear_reload_reg_in_use (regno, rld[j].opnum,
7033 rld[j].when_needed, rld[j].mode);
7034 rld[j].reg_rtx = 0;
7035 reload_spill_index[j] = -1;
7038 /* Record which pseudos and which spill regs have output reloads. */
7039 for (j = 0; j < n_reloads; j++)
7041 int r = reload_order[j];
7043 i = reload_spill_index[r];
7045 /* I is nonneg if this reload uses a register.
7046 If rld[r].reg_rtx is 0, this is an optional reload
7047 that we opted to ignore. */
7048 if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
7049 && rld[r].reg_rtx != 0)
7051 int nregno = REGNO (rld[r].out_reg);
7052 int nr = 1;
7054 if (nregno < FIRST_PSEUDO_REGISTER)
7055 nr = hard_regno_nregs[nregno][rld[r].mode];
7057 while (--nr >= 0)
7058 SET_REGNO_REG_SET (&reg_has_output_reload,
7059 nregno + nr);
7061 if (i >= 0)
7062 add_to_hard_reg_set (&reg_is_output_reload, rld[r].mode, i);
7064 gcc_assert (rld[r].when_needed == RELOAD_OTHER
7065 || rld[r].when_needed == RELOAD_FOR_OUTPUT
7066 || rld[r].when_needed == RELOAD_FOR_INSN);
7071 /* Deallocate the reload register for reload R. This is called from
7072 remove_address_replacements. */
7074 void
7075 deallocate_reload_reg (int r)
7077 int regno;
7079 if (! rld[r].reg_rtx)
7080 return;
7081 regno = true_regnum (rld[r].reg_rtx);
7082 rld[r].reg_rtx = 0;
7083 if (spill_reg_order[regno] >= 0)
7084 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
7085 rld[r].mode);
7086 reload_spill_index[r] = -1;
7089 /* These arrays are filled by emit_reload_insns and its subroutines. */
7090 static rtx input_reload_insns[MAX_RECOG_OPERANDS];
7091 static rtx other_input_address_reload_insns = 0;
7092 static rtx other_input_reload_insns = 0;
7093 static rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
7094 static rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7095 static rtx output_reload_insns[MAX_RECOG_OPERANDS];
7096 static rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
7097 static rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7098 static rtx operand_reload_insns = 0;
7099 static rtx other_operand_reload_insns = 0;
7100 static rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
7102 /* Values to be put in spill_reg_store are put here first. Instructions
7103 must only be placed here if the associated reload register reaches
7104 the end of the instruction's reload sequence. */
7105 static rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
7106 static HARD_REG_SET reg_reloaded_died;
7108 /* Check if *RELOAD_REG is suitable as an intermediate or scratch register
7109 of class NEW_CLASS with mode NEW_MODE. Or alternatively, if alt_reload_reg
7110 is nonzero, if that is suitable. On success, change *RELOAD_REG to the
7111 adjusted register, and return true. Otherwise, return false. */
7112 static bool
7113 reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg,
7114 enum reg_class new_class,
7115 enum machine_mode new_mode)
7118 rtx reg;
7120 for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0)
7122 unsigned regno = REGNO (reg);
7124 if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno))
7125 continue;
7126 if (GET_MODE (reg) != new_mode)
7128 if (!HARD_REGNO_MODE_OK (regno, new_mode))
7129 continue;
7130 if (hard_regno_nregs[regno][new_mode]
7131 > hard_regno_nregs[regno][GET_MODE (reg)])
7132 continue;
7133 reg = reload_adjust_reg_for_mode (reg, new_mode);
7135 *reload_reg = reg;
7136 return true;
7138 return false;
7141 /* Check if *RELOAD_REG is suitable as a scratch register for the reload
7142 pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
7143 nonzero, if that is suitable. On success, change *RELOAD_REG to the
7144 adjusted register, and return true. Otherwise, return false. */
7145 static bool
7146 reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg,
7147 enum insn_code icode)
7150 enum reg_class new_class = scratch_reload_class (icode);
7151 enum machine_mode new_mode = insn_data[(int) icode].operand[2].mode;
7153 return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg,
7154 new_class, new_mode);
7157 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
7158 has the number J. OLD contains the value to be used as input. */
7160 static void
7161 emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
7162 rtx old, int j)
7164 rtx insn = chain->insn;
7165 rtx reloadreg;
7166 rtx oldequiv_reg = 0;
7167 rtx oldequiv = 0;
7168 int special = 0;
7169 enum machine_mode mode;
7170 rtx *where;
7172 /* delete_output_reload is only invoked properly if old contains
7173 the original pseudo register. Since this is replaced with a
7174 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
7175 find the pseudo in RELOAD_IN_REG. */
7176 if (reload_override_in[j]
7177 && REG_P (rl->in_reg))
7179 oldequiv = old;
7180 old = rl->in_reg;
7182 if (oldequiv == 0)
7183 oldequiv = old;
7184 else if (REG_P (oldequiv))
7185 oldequiv_reg = oldequiv;
7186 else if (GET_CODE (oldequiv) == SUBREG)
7187 oldequiv_reg = SUBREG_REG (oldequiv);
7189 reloadreg = reload_reg_rtx_for_input[j];
7190 mode = GET_MODE (reloadreg);
7192 /* If we are reloading from a register that was recently stored in
7193 with an output-reload, see if we can prove there was
7194 actually no need to store the old value in it. */
7196 if (optimize && REG_P (oldequiv)
7197 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
7198 && spill_reg_store[REGNO (oldequiv)]
7199 && REG_P (old)
7200 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
7201 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
7202 rl->out_reg)))
7203 delete_output_reload (insn, j, REGNO (oldequiv), reloadreg);
7205 /* Encapsulate OLDEQUIV into the reload mode, then load RELOADREG from
7206 OLDEQUIV. */
7208 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
7209 oldequiv = SUBREG_REG (oldequiv);
7210 if (GET_MODE (oldequiv) != VOIDmode
7211 && mode != GET_MODE (oldequiv))
7212 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
7214 /* Switch to the right place to emit the reload insns. */
7215 switch (rl->when_needed)
7217 case RELOAD_OTHER:
7218 where = &other_input_reload_insns;
7219 break;
7220 case RELOAD_FOR_INPUT:
7221 where = &input_reload_insns[rl->opnum];
7222 break;
7223 case RELOAD_FOR_INPUT_ADDRESS:
7224 where = &input_address_reload_insns[rl->opnum];
7225 break;
7226 case RELOAD_FOR_INPADDR_ADDRESS:
7227 where = &inpaddr_address_reload_insns[rl->opnum];
7228 break;
7229 case RELOAD_FOR_OUTPUT_ADDRESS:
7230 where = &output_address_reload_insns[rl->opnum];
7231 break;
7232 case RELOAD_FOR_OUTADDR_ADDRESS:
7233 where = &outaddr_address_reload_insns[rl->opnum];
7234 break;
7235 case RELOAD_FOR_OPERAND_ADDRESS:
7236 where = &operand_reload_insns;
7237 break;
7238 case RELOAD_FOR_OPADDR_ADDR:
7239 where = &other_operand_reload_insns;
7240 break;
7241 case RELOAD_FOR_OTHER_ADDRESS:
7242 where = &other_input_address_reload_insns;
7243 break;
7244 default:
7245 gcc_unreachable ();
7248 push_to_sequence (*where);
7250 /* Auto-increment addresses must be reloaded in a special way. */
7251 if (rl->out && ! rl->out_reg)
7253 /* We are not going to bother supporting the case where a
7254 incremented register can't be copied directly from
7255 OLDEQUIV since this seems highly unlikely. */
7256 gcc_assert (rl->secondary_in_reload < 0);
7258 if (reload_inherited[j])
7259 oldequiv = reloadreg;
7261 old = XEXP (rl->in_reg, 0);
7263 /* Prevent normal processing of this reload. */
7264 special = 1;
7265 /* Output a special code sequence for this case. */
7266 inc_for_reload (reloadreg, oldequiv, rl->out, rl->inc);
7269 /* If we are reloading a pseudo-register that was set by the previous
7270 insn, see if we can get rid of that pseudo-register entirely
7271 by redirecting the previous insn into our reload register. */
7273 else if (optimize && REG_P (old)
7274 && REGNO (old) >= FIRST_PSEUDO_REGISTER
7275 && dead_or_set_p (insn, old)
7276 /* This is unsafe if some other reload
7277 uses the same reg first. */
7278 && ! conflicts_with_override (reloadreg)
7279 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
7280 rl->when_needed, old, rl->out, j, 0))
7282 rtx temp = PREV_INSN (insn);
7283 while (temp && (NOTE_P (temp) || DEBUG_INSN_P (temp)))
7284 temp = PREV_INSN (temp);
7285 if (temp
7286 && NONJUMP_INSN_P (temp)
7287 && GET_CODE (PATTERN (temp)) == SET
7288 && SET_DEST (PATTERN (temp)) == old
7289 /* Make sure we can access insn_operand_constraint. */
7290 && asm_noperands (PATTERN (temp)) < 0
7291 /* This is unsafe if operand occurs more than once in current
7292 insn. Perhaps some occurrences aren't reloaded. */
7293 && count_occurrences (PATTERN (insn), old, 0) == 1)
7295 rtx old = SET_DEST (PATTERN (temp));
7296 /* Store into the reload register instead of the pseudo. */
7297 SET_DEST (PATTERN (temp)) = reloadreg;
7299 /* Verify that resulting insn is valid. */
7300 extract_insn (temp);
7301 if (constrain_operands (1))
7303 /* If the previous insn is an output reload, the source is
7304 a reload register, and its spill_reg_store entry will
7305 contain the previous destination. This is now
7306 invalid. */
7307 if (REG_P (SET_SRC (PATTERN (temp)))
7308 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
7310 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7311 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7314 /* If these are the only uses of the pseudo reg,
7315 pretend for GDB it lives in the reload reg we used. */
7316 if (REG_N_DEATHS (REGNO (old)) == 1
7317 && REG_N_SETS (REGNO (old)) == 1)
7319 reg_renumber[REGNO (old)] = REGNO (reloadreg);
7320 if (ira_conflicts_p)
7321 /* Inform IRA about the change. */
7322 ira_mark_allocation_change (REGNO (old));
7323 alter_reg (REGNO (old), -1, false);
7325 special = 1;
7327 /* Adjust any debug insns between temp and insn. */
7328 while ((temp = NEXT_INSN (temp)) != insn)
7329 if (DEBUG_INSN_P (temp))
7330 replace_rtx (PATTERN (temp), old, reloadreg);
7331 else
7332 gcc_assert (NOTE_P (temp));
7334 else
7336 SET_DEST (PATTERN (temp)) = old;
7341 /* We can't do that, so output an insn to load RELOADREG. */
7343 /* If we have a secondary reload, pick up the secondary register
7344 and icode, if any. If OLDEQUIV and OLD are different or
7345 if this is an in-out reload, recompute whether or not we
7346 still need a secondary register and what the icode should
7347 be. If we still need a secondary register and the class or
7348 icode is different, go back to reloading from OLD if using
7349 OLDEQUIV means that we got the wrong type of register. We
7350 cannot have different class or icode due to an in-out reload
7351 because we don't make such reloads when both the input and
7352 output need secondary reload registers. */
7354 if (! special && rl->secondary_in_reload >= 0)
7356 rtx second_reload_reg = 0;
7357 rtx third_reload_reg = 0;
7358 int secondary_reload = rl->secondary_in_reload;
7359 rtx real_oldequiv = oldequiv;
7360 rtx real_old = old;
7361 rtx tmp;
7362 enum insn_code icode;
7363 enum insn_code tertiary_icode = CODE_FOR_nothing;
7365 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
7366 and similarly for OLD.
7367 See comments in get_secondary_reload in reload.c. */
7368 /* If it is a pseudo that cannot be replaced with its
7369 equivalent MEM, we must fall back to reload_in, which
7370 will have all the necessary substitutions registered.
7371 Likewise for a pseudo that can't be replaced with its
7372 equivalent constant.
7374 Take extra care for subregs of such pseudos. Note that
7375 we cannot use reg_equiv_mem in this case because it is
7376 not in the right mode. */
7378 tmp = oldequiv;
7379 if (GET_CODE (tmp) == SUBREG)
7380 tmp = SUBREG_REG (tmp);
7381 if (REG_P (tmp)
7382 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7383 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7384 || reg_equiv_constant (REGNO (tmp)) != 0))
7386 if (! reg_equiv_mem (REGNO (tmp))
7387 || num_not_at_initial_offset
7388 || GET_CODE (oldequiv) == SUBREG)
7389 real_oldequiv = rl->in;
7390 else
7391 real_oldequiv = reg_equiv_mem (REGNO (tmp));
7394 tmp = old;
7395 if (GET_CODE (tmp) == SUBREG)
7396 tmp = SUBREG_REG (tmp);
7397 if (REG_P (tmp)
7398 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7399 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7400 || reg_equiv_constant (REGNO (tmp)) != 0))
7402 if (! reg_equiv_mem (REGNO (tmp))
7403 || num_not_at_initial_offset
7404 || GET_CODE (old) == SUBREG)
7405 real_old = rl->in;
7406 else
7407 real_old = reg_equiv_mem (REGNO (tmp));
7410 second_reload_reg = rld[secondary_reload].reg_rtx;
7411 if (rld[secondary_reload].secondary_in_reload >= 0)
7413 int tertiary_reload = rld[secondary_reload].secondary_in_reload;
7415 third_reload_reg = rld[tertiary_reload].reg_rtx;
7416 tertiary_icode = rld[secondary_reload].secondary_in_icode;
7417 /* We'd have to add more code for quartary reloads. */
7418 gcc_assert (rld[tertiary_reload].secondary_in_reload < 0);
7420 icode = rl->secondary_in_icode;
7422 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
7423 || (rl->in != 0 && rl->out != 0))
7425 secondary_reload_info sri, sri2;
7426 enum reg_class new_class, new_t_class;
7428 sri.icode = CODE_FOR_nothing;
7429 sri.prev_sri = NULL;
7430 new_class
7431 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7432 rl->rclass, mode,
7433 &sri);
7435 if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing)
7436 second_reload_reg = 0;
7437 else if (new_class == NO_REGS)
7439 if (reload_adjust_reg_for_icode (&second_reload_reg,
7440 third_reload_reg,
7441 (enum insn_code) sri.icode))
7443 icode = (enum insn_code) sri.icode;
7444 third_reload_reg = 0;
7446 else
7448 oldequiv = old;
7449 real_oldequiv = real_old;
7452 else if (sri.icode != CODE_FOR_nothing)
7453 /* We currently lack a way to express this in reloads. */
7454 gcc_unreachable ();
7455 else
7457 sri2.icode = CODE_FOR_nothing;
7458 sri2.prev_sri = &sri;
7459 new_t_class
7460 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7461 new_class, mode,
7462 &sri);
7463 if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing)
7465 if (reload_adjust_reg_for_temp (&second_reload_reg,
7466 third_reload_reg,
7467 new_class, mode))
7469 third_reload_reg = 0;
7470 tertiary_icode = (enum insn_code) sri2.icode;
7472 else
7474 oldequiv = old;
7475 real_oldequiv = real_old;
7478 else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing)
7480 rtx intermediate = second_reload_reg;
7482 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7483 new_class, mode)
7484 && reload_adjust_reg_for_icode (&third_reload_reg, NULL,
7485 ((enum insn_code)
7486 sri2.icode)))
7488 second_reload_reg = intermediate;
7489 tertiary_icode = (enum insn_code) sri2.icode;
7491 else
7493 oldequiv = old;
7494 real_oldequiv = real_old;
7497 else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing)
7499 rtx intermediate = second_reload_reg;
7501 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7502 new_class, mode)
7503 && reload_adjust_reg_for_temp (&third_reload_reg, NULL,
7504 new_t_class, mode))
7506 second_reload_reg = intermediate;
7507 tertiary_icode = (enum insn_code) sri2.icode;
7509 else
7511 oldequiv = old;
7512 real_oldequiv = real_old;
7515 else
7517 /* This could be handled more intelligently too. */
7518 oldequiv = old;
7519 real_oldequiv = real_old;
7524 /* If we still need a secondary reload register, check
7525 to see if it is being used as a scratch or intermediate
7526 register and generate code appropriately. If we need
7527 a scratch register, use REAL_OLDEQUIV since the form of
7528 the insn may depend on the actual address if it is
7529 a MEM. */
7531 if (second_reload_reg)
7533 if (icode != CODE_FOR_nothing)
7535 /* We'd have to add extra code to handle this case. */
7536 gcc_assert (!third_reload_reg);
7538 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
7539 second_reload_reg));
7540 special = 1;
7542 else
7544 /* See if we need a scratch register to load the
7545 intermediate register (a tertiary reload). */
7546 if (tertiary_icode != CODE_FOR_nothing)
7548 emit_insn ((GEN_FCN (tertiary_icode)
7549 (second_reload_reg, real_oldequiv,
7550 third_reload_reg)));
7552 else if (third_reload_reg)
7554 gen_reload (third_reload_reg, real_oldequiv,
7555 rl->opnum,
7556 rl->when_needed);
7557 gen_reload (second_reload_reg, third_reload_reg,
7558 rl->opnum,
7559 rl->when_needed);
7561 else
7562 gen_reload (second_reload_reg, real_oldequiv,
7563 rl->opnum,
7564 rl->when_needed);
7566 oldequiv = second_reload_reg;
7571 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
7573 rtx real_oldequiv = oldequiv;
7575 if ((REG_P (oldequiv)
7576 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
7577 && (reg_equiv_memory_loc (REGNO (oldequiv)) != 0
7578 || reg_equiv_constant (REGNO (oldequiv)) != 0))
7579 || (GET_CODE (oldequiv) == SUBREG
7580 && REG_P (SUBREG_REG (oldequiv))
7581 && (REGNO (SUBREG_REG (oldequiv))
7582 >= FIRST_PSEUDO_REGISTER)
7583 && ((reg_equiv_memory_loc (REGNO (SUBREG_REG (oldequiv))) != 0)
7584 || (reg_equiv_constant (REGNO (SUBREG_REG (oldequiv))) != 0)))
7585 || (CONSTANT_P (oldequiv)
7586 && (targetm.preferred_reload_class (oldequiv,
7587 REGNO_REG_CLASS (REGNO (reloadreg)))
7588 == NO_REGS)))
7589 real_oldequiv = rl->in;
7590 gen_reload (reloadreg, real_oldequiv, rl->opnum,
7591 rl->when_needed);
7594 if (cfun->can_throw_non_call_exceptions)
7595 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7597 /* End this sequence. */
7598 *where = get_insns ();
7599 end_sequence ();
7601 /* Update reload_override_in so that delete_address_reloads_1
7602 can see the actual register usage. */
7603 if (oldequiv_reg)
7604 reload_override_in[j] = oldequiv;
7607 /* Generate insns to for the output reload RL, which is for the insn described
7608 by CHAIN and has the number J. */
7609 static void
7610 emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
7611 int j)
7613 rtx reloadreg;
7614 rtx insn = chain->insn;
7615 int special = 0;
7616 rtx old = rl->out;
7617 enum machine_mode mode;
7618 rtx p;
7619 rtx rl_reg_rtx;
7621 if (rl->when_needed == RELOAD_OTHER)
7622 start_sequence ();
7623 else
7624 push_to_sequence (output_reload_insns[rl->opnum]);
7626 rl_reg_rtx = reload_reg_rtx_for_output[j];
7627 mode = GET_MODE (rl_reg_rtx);
7629 reloadreg = rl_reg_rtx;
7631 /* If we need two reload regs, set RELOADREG to the intermediate
7632 one, since it will be stored into OLD. We might need a secondary
7633 register only for an input reload, so check again here. */
7635 if (rl->secondary_out_reload >= 0)
7637 rtx real_old = old;
7638 int secondary_reload = rl->secondary_out_reload;
7639 int tertiary_reload = rld[secondary_reload].secondary_out_reload;
7641 if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
7642 && reg_equiv_mem (REGNO (old)) != 0)
7643 real_old = reg_equiv_mem (REGNO (old));
7645 if (secondary_reload_class (0, rl->rclass, mode, real_old) != NO_REGS)
7647 rtx second_reloadreg = reloadreg;
7648 reloadreg = rld[secondary_reload].reg_rtx;
7650 /* See if RELOADREG is to be used as a scratch register
7651 or as an intermediate register. */
7652 if (rl->secondary_out_icode != CODE_FOR_nothing)
7654 /* We'd have to add extra code to handle this case. */
7655 gcc_assert (tertiary_reload < 0);
7657 emit_insn ((GEN_FCN (rl->secondary_out_icode)
7658 (real_old, second_reloadreg, reloadreg)));
7659 special = 1;
7661 else
7663 /* See if we need both a scratch and intermediate reload
7664 register. */
7666 enum insn_code tertiary_icode
7667 = rld[secondary_reload].secondary_out_icode;
7669 /* We'd have to add more code for quartary reloads. */
7670 gcc_assert (tertiary_reload < 0
7671 || rld[tertiary_reload].secondary_out_reload < 0);
7673 if (GET_MODE (reloadreg) != mode)
7674 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
7676 if (tertiary_icode != CODE_FOR_nothing)
7678 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7680 /* Copy primary reload reg to secondary reload reg.
7681 (Note that these have been swapped above, then
7682 secondary reload reg to OLD using our insn.) */
7684 /* If REAL_OLD is a paradoxical SUBREG, remove it
7685 and try to put the opposite SUBREG on
7686 RELOADREG. */
7687 strip_paradoxical_subreg (&real_old, &reloadreg);
7689 gen_reload (reloadreg, second_reloadreg,
7690 rl->opnum, rl->when_needed);
7691 emit_insn ((GEN_FCN (tertiary_icode)
7692 (real_old, reloadreg, third_reloadreg)));
7693 special = 1;
7696 else
7698 /* Copy between the reload regs here and then to
7699 OUT later. */
7701 gen_reload (reloadreg, second_reloadreg,
7702 rl->opnum, rl->when_needed);
7703 if (tertiary_reload >= 0)
7705 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7707 gen_reload (third_reloadreg, reloadreg,
7708 rl->opnum, rl->when_needed);
7709 reloadreg = third_reloadreg;
7716 /* Output the last reload insn. */
7717 if (! special)
7719 rtx set;
7721 /* Don't output the last reload if OLD is not the dest of
7722 INSN and is in the src and is clobbered by INSN. */
7723 if (! flag_expensive_optimizations
7724 || !REG_P (old)
7725 || !(set = single_set (insn))
7726 || rtx_equal_p (old, SET_DEST (set))
7727 || !reg_mentioned_p (old, SET_SRC (set))
7728 || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
7729 && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
7730 gen_reload (old, reloadreg, rl->opnum,
7731 rl->when_needed);
7734 /* Look at all insns we emitted, just to be safe. */
7735 for (p = get_insns (); p; p = NEXT_INSN (p))
7736 if (INSN_P (p))
7738 rtx pat = PATTERN (p);
7740 /* If this output reload doesn't come from a spill reg,
7741 clear any memory of reloaded copies of the pseudo reg.
7742 If this output reload comes from a spill reg,
7743 reg_has_output_reload will make this do nothing. */
7744 note_stores (pat, forget_old_reloads_1, NULL);
7746 if (reg_mentioned_p (rl_reg_rtx, pat))
7748 rtx set = single_set (insn);
7749 if (reload_spill_index[j] < 0
7750 && set
7751 && SET_SRC (set) == rl_reg_rtx)
7753 int src = REGNO (SET_SRC (set));
7755 reload_spill_index[j] = src;
7756 SET_HARD_REG_BIT (reg_is_output_reload, src);
7757 if (find_regno_note (insn, REG_DEAD, src))
7758 SET_HARD_REG_BIT (reg_reloaded_died, src);
7760 if (HARD_REGISTER_P (rl_reg_rtx))
7762 int s = rl->secondary_out_reload;
7763 set = single_set (p);
7764 /* If this reload copies only to the secondary reload
7765 register, the secondary reload does the actual
7766 store. */
7767 if (s >= 0 && set == NULL_RTX)
7768 /* We can't tell what function the secondary reload
7769 has and where the actual store to the pseudo is
7770 made; leave new_spill_reg_store alone. */
7772 else if (s >= 0
7773 && SET_SRC (set) == rl_reg_rtx
7774 && SET_DEST (set) == rld[s].reg_rtx)
7776 /* Usually the next instruction will be the
7777 secondary reload insn; if we can confirm
7778 that it is, setting new_spill_reg_store to
7779 that insn will allow an extra optimization. */
7780 rtx s_reg = rld[s].reg_rtx;
7781 rtx next = NEXT_INSN (p);
7782 rld[s].out = rl->out;
7783 rld[s].out_reg = rl->out_reg;
7784 set = single_set (next);
7785 if (set && SET_SRC (set) == s_reg
7786 && reload_reg_rtx_reaches_end_p (s_reg, s))
7788 SET_HARD_REG_BIT (reg_is_output_reload,
7789 REGNO (s_reg));
7790 new_spill_reg_store[REGNO (s_reg)] = next;
7793 else if (reload_reg_rtx_reaches_end_p (rl_reg_rtx, j))
7794 new_spill_reg_store[REGNO (rl_reg_rtx)] = p;
7799 if (rl->when_needed == RELOAD_OTHER)
7801 emit_insn (other_output_reload_insns[rl->opnum]);
7802 other_output_reload_insns[rl->opnum] = get_insns ();
7804 else
7805 output_reload_insns[rl->opnum] = get_insns ();
7807 if (cfun->can_throw_non_call_exceptions)
7808 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7810 end_sequence ();
7813 /* Do input reloading for reload RL, which is for the insn described by CHAIN
7814 and has the number J. */
7815 static void
7816 do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
7818 rtx insn = chain->insn;
7819 rtx old = (rl->in && MEM_P (rl->in)
7820 ? rl->in_reg : rl->in);
7821 rtx reg_rtx = rl->reg_rtx;
7823 if (old && reg_rtx)
7825 enum machine_mode mode;
7827 /* Determine the mode to reload in.
7828 This is very tricky because we have three to choose from.
7829 There is the mode the insn operand wants (rl->inmode).
7830 There is the mode of the reload register RELOADREG.
7831 There is the intrinsic mode of the operand, which we could find
7832 by stripping some SUBREGs.
7833 It turns out that RELOADREG's mode is irrelevant:
7834 we can change that arbitrarily.
7836 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
7837 then the reload reg may not support QImode moves, so use SImode.
7838 If foo is in memory due to spilling a pseudo reg, this is safe,
7839 because the QImode value is in the least significant part of a
7840 slot big enough for a SImode. If foo is some other sort of
7841 memory reference, then it is impossible to reload this case,
7842 so previous passes had better make sure this never happens.
7844 Then consider a one-word union which has SImode and one of its
7845 members is a float, being fetched as (SUBREG:SF union:SI).
7846 We must fetch that as SFmode because we could be loading into
7847 a float-only register. In this case OLD's mode is correct.
7849 Consider an immediate integer: it has VOIDmode. Here we need
7850 to get a mode from something else.
7852 In some cases, there is a fourth mode, the operand's
7853 containing mode. If the insn specifies a containing mode for
7854 this operand, it overrides all others.
7856 I am not sure whether the algorithm here is always right,
7857 but it does the right things in those cases. */
7859 mode = GET_MODE (old);
7860 if (mode == VOIDmode)
7861 mode = rl->inmode;
7863 /* We cannot use gen_lowpart_common since it can do the wrong thing
7864 when REG_RTX has a multi-word mode. Note that REG_RTX must
7865 always be a REG here. */
7866 if (GET_MODE (reg_rtx) != mode)
7867 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7869 reload_reg_rtx_for_input[j] = reg_rtx;
7871 if (old != 0
7872 /* AUTO_INC reloads need to be handled even if inherited. We got an
7873 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
7874 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
7875 && ! rtx_equal_p (reg_rtx, old)
7876 && reg_rtx != 0)
7877 emit_input_reload_insns (chain, rld + j, old, j);
7879 /* When inheriting a wider reload, we have a MEM in rl->in,
7880 e.g. inheriting a SImode output reload for
7881 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
7882 if (optimize && reload_inherited[j] && rl->in
7883 && MEM_P (rl->in)
7884 && MEM_P (rl->in_reg)
7885 && reload_spill_index[j] >= 0
7886 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
7887 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
7889 /* If we are reloading a register that was recently stored in with an
7890 output-reload, see if we can prove there was
7891 actually no need to store the old value in it. */
7893 if (optimize
7894 && (reload_inherited[j] || reload_override_in[j])
7895 && reg_rtx
7896 && REG_P (reg_rtx)
7897 && spill_reg_store[REGNO (reg_rtx)] != 0
7898 #if 0
7899 /* There doesn't seem to be any reason to restrict this to pseudos
7900 and doing so loses in the case where we are copying from a
7901 register of the wrong class. */
7902 && !HARD_REGISTER_P (spill_reg_stored_to[REGNO (reg_rtx)])
7903 #endif
7904 /* The insn might have already some references to stackslots
7905 replaced by MEMs, while reload_out_reg still names the
7906 original pseudo. */
7907 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (reg_rtx)])
7908 || rtx_equal_p (spill_reg_stored_to[REGNO (reg_rtx)], rl->out_reg)))
7909 delete_output_reload (insn, j, REGNO (reg_rtx), reg_rtx);
7912 /* Do output reloading for reload RL, which is for the insn described by
7913 CHAIN and has the number J.
7914 ??? At some point we need to support handling output reloads of
7915 JUMP_INSNs or insns that set cc0. */
7916 static void
7917 do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
7919 rtx note, old;
7920 rtx insn = chain->insn;
7921 /* If this is an output reload that stores something that is
7922 not loaded in this same reload, see if we can eliminate a previous
7923 store. */
7924 rtx pseudo = rl->out_reg;
7925 rtx reg_rtx = rl->reg_rtx;
7927 if (rl->out && reg_rtx)
7929 enum machine_mode mode;
7931 /* Determine the mode to reload in.
7932 See comments above (for input reloading). */
7933 mode = GET_MODE (rl->out);
7934 if (mode == VOIDmode)
7936 /* VOIDmode should never happen for an output. */
7937 if (asm_noperands (PATTERN (insn)) < 0)
7938 /* It's the compiler's fault. */
7939 fatal_insn ("VOIDmode on an output", insn);
7940 error_for_asm (insn, "output operand is constant in %<asm%>");
7941 /* Prevent crash--use something we know is valid. */
7942 mode = word_mode;
7943 rl->out = gen_rtx_REG (mode, REGNO (reg_rtx));
7945 if (GET_MODE (reg_rtx) != mode)
7946 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7948 reload_reg_rtx_for_output[j] = reg_rtx;
7950 if (pseudo
7951 && optimize
7952 && REG_P (pseudo)
7953 && ! rtx_equal_p (rl->in_reg, pseudo)
7954 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
7955 && reg_last_reload_reg[REGNO (pseudo)])
7957 int pseudo_no = REGNO (pseudo);
7958 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
7960 /* We don't need to test full validity of last_regno for
7961 inherit here; we only want to know if the store actually
7962 matches the pseudo. */
7963 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
7964 && reg_reloaded_contents[last_regno] == pseudo_no
7965 && spill_reg_store[last_regno]
7966 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
7967 delete_output_reload (insn, j, last_regno, reg_rtx);
7970 old = rl->out_reg;
7971 if (old == 0
7972 || reg_rtx == 0
7973 || rtx_equal_p (old, reg_rtx))
7974 return;
7976 /* An output operand that dies right away does need a reload,
7977 but need not be copied from it. Show the new location in the
7978 REG_UNUSED note. */
7979 if ((REG_P (old) || GET_CODE (old) == SCRATCH)
7980 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
7982 XEXP (note, 0) = reg_rtx;
7983 return;
7985 /* Likewise for a SUBREG of an operand that dies. */
7986 else if (GET_CODE (old) == SUBREG
7987 && REG_P (SUBREG_REG (old))
7988 && 0 != (note = find_reg_note (insn, REG_UNUSED,
7989 SUBREG_REG (old))))
7991 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old), reg_rtx);
7992 return;
7994 else if (GET_CODE (old) == SCRATCH)
7995 /* If we aren't optimizing, there won't be a REG_UNUSED note,
7996 but we don't want to make an output reload. */
7997 return;
7999 /* If is a JUMP_INSN, we can't support output reloads yet. */
8000 gcc_assert (NONJUMP_INSN_P (insn));
8002 emit_output_reload_insns (chain, rld + j, j);
8005 /* A reload copies values of MODE from register SRC to register DEST.
8006 Return true if it can be treated for inheritance purposes like a
8007 group of reloads, each one reloading a single hard register. The
8008 caller has already checked that (reg:MODE SRC) and (reg:MODE DEST)
8009 occupy the same number of hard registers. */
8011 static bool
8012 inherit_piecemeal_p (int dest ATTRIBUTE_UNUSED,
8013 int src ATTRIBUTE_UNUSED,
8014 enum machine_mode mode ATTRIBUTE_UNUSED)
8016 #ifdef CANNOT_CHANGE_MODE_CLASS
8017 return (!REG_CANNOT_CHANGE_MODE_P (dest, mode, reg_raw_mode[dest])
8018 && !REG_CANNOT_CHANGE_MODE_P (src, mode, reg_raw_mode[src]));
8019 #else
8020 return true;
8021 #endif
8024 /* Output insns to reload values in and out of the chosen reload regs. */
8026 static void
8027 emit_reload_insns (struct insn_chain *chain)
8029 rtx insn = chain->insn;
8031 int j;
8033 CLEAR_HARD_REG_SET (reg_reloaded_died);
8035 for (j = 0; j < reload_n_operands; j++)
8036 input_reload_insns[j] = input_address_reload_insns[j]
8037 = inpaddr_address_reload_insns[j]
8038 = output_reload_insns[j] = output_address_reload_insns[j]
8039 = outaddr_address_reload_insns[j]
8040 = other_output_reload_insns[j] = 0;
8041 other_input_address_reload_insns = 0;
8042 other_input_reload_insns = 0;
8043 operand_reload_insns = 0;
8044 other_operand_reload_insns = 0;
8046 /* Dump reloads into the dump file. */
8047 if (dump_file)
8049 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
8050 debug_reload_to_stream (dump_file);
8053 for (j = 0; j < n_reloads; j++)
8054 if (rld[j].reg_rtx && HARD_REGISTER_P (rld[j].reg_rtx))
8056 unsigned int i;
8058 for (i = REGNO (rld[j].reg_rtx); i < END_REGNO (rld[j].reg_rtx); i++)
8059 new_spill_reg_store[i] = 0;
8062 /* Now output the instructions to copy the data into and out of the
8063 reload registers. Do these in the order that the reloads were reported,
8064 since reloads of base and index registers precede reloads of operands
8065 and the operands may need the base and index registers reloaded. */
8067 for (j = 0; j < n_reloads; j++)
8069 do_input_reload (chain, rld + j, j);
8070 do_output_reload (chain, rld + j, j);
8073 /* Now write all the insns we made for reloads in the order expected by
8074 the allocation functions. Prior to the insn being reloaded, we write
8075 the following reloads:
8077 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
8079 RELOAD_OTHER reloads.
8081 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
8082 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
8083 RELOAD_FOR_INPUT reload for the operand.
8085 RELOAD_FOR_OPADDR_ADDRS reloads.
8087 RELOAD_FOR_OPERAND_ADDRESS reloads.
8089 After the insn being reloaded, we write the following:
8091 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
8092 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
8093 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
8094 reloads for the operand. The RELOAD_OTHER output reloads are
8095 output in descending order by reload number. */
8097 emit_insn_before (other_input_address_reload_insns, insn);
8098 emit_insn_before (other_input_reload_insns, insn);
8100 for (j = 0; j < reload_n_operands; j++)
8102 emit_insn_before (inpaddr_address_reload_insns[j], insn);
8103 emit_insn_before (input_address_reload_insns[j], insn);
8104 emit_insn_before (input_reload_insns[j], insn);
8107 emit_insn_before (other_operand_reload_insns, insn);
8108 emit_insn_before (operand_reload_insns, insn);
8110 for (j = 0; j < reload_n_operands; j++)
8112 rtx x = emit_insn_after (outaddr_address_reload_insns[j], insn);
8113 x = emit_insn_after (output_address_reload_insns[j], x);
8114 x = emit_insn_after (output_reload_insns[j], x);
8115 emit_insn_after (other_output_reload_insns[j], x);
8118 /* For all the spill regs newly reloaded in this instruction,
8119 record what they were reloaded from, so subsequent instructions
8120 can inherit the reloads.
8122 Update spill_reg_store for the reloads of this insn.
8123 Copy the elements that were updated in the loop above. */
8125 for (j = 0; j < n_reloads; j++)
8127 int r = reload_order[j];
8128 int i = reload_spill_index[r];
8130 /* If this is a non-inherited input reload from a pseudo, we must
8131 clear any memory of a previous store to the same pseudo. Only do
8132 something if there will not be an output reload for the pseudo
8133 being reloaded. */
8134 if (rld[r].in_reg != 0
8135 && ! (reload_inherited[r] || reload_override_in[r]))
8137 rtx reg = rld[r].in_reg;
8139 if (GET_CODE (reg) == SUBREG)
8140 reg = SUBREG_REG (reg);
8142 if (REG_P (reg)
8143 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
8144 && !REGNO_REG_SET_P (&reg_has_output_reload, REGNO (reg)))
8146 int nregno = REGNO (reg);
8148 if (reg_last_reload_reg[nregno])
8150 int last_regno = REGNO (reg_last_reload_reg[nregno]);
8152 if (reg_reloaded_contents[last_regno] == nregno)
8153 spill_reg_store[last_regno] = 0;
8158 /* I is nonneg if this reload used a register.
8159 If rld[r].reg_rtx is 0, this is an optional reload
8160 that we opted to ignore. */
8162 if (i >= 0 && rld[r].reg_rtx != 0)
8164 int nr = hard_regno_nregs[i][GET_MODE (rld[r].reg_rtx)];
8165 int k;
8167 /* For a multi register reload, we need to check if all or part
8168 of the value lives to the end. */
8169 for (k = 0; k < nr; k++)
8170 if (reload_reg_reaches_end_p (i + k, r))
8171 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
8173 /* Maybe the spill reg contains a copy of reload_out. */
8174 if (rld[r].out != 0
8175 && (REG_P (rld[r].out)
8176 || (rld[r].out_reg
8177 ? REG_P (rld[r].out_reg)
8178 /* The reload value is an auto-modification of
8179 some kind. For PRE_INC, POST_INC, PRE_DEC
8180 and POST_DEC, we record an equivalence
8181 between the reload register and the operand
8182 on the optimistic assumption that we can make
8183 the equivalence hold. reload_as_needed must
8184 then either make it hold or invalidate the
8185 equivalence.
8187 PRE_MODIFY and POST_MODIFY addresses are reloaded
8188 somewhat differently, and allowing them here leads
8189 to problems. */
8190 : (GET_CODE (rld[r].out) != POST_MODIFY
8191 && GET_CODE (rld[r].out) != PRE_MODIFY))))
8193 rtx reg;
8195 reg = reload_reg_rtx_for_output[r];
8196 if (reload_reg_rtx_reaches_end_p (reg, r))
8198 enum machine_mode mode = GET_MODE (reg);
8199 int regno = REGNO (reg);
8200 int nregs = hard_regno_nregs[regno][mode];
8201 rtx out = (REG_P (rld[r].out)
8202 ? rld[r].out
8203 : rld[r].out_reg
8204 ? rld[r].out_reg
8205 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
8206 int out_regno = REGNO (out);
8207 int out_nregs = (!HARD_REGISTER_NUM_P (out_regno) ? 1
8208 : hard_regno_nregs[out_regno][mode]);
8209 bool piecemeal;
8211 spill_reg_store[regno] = new_spill_reg_store[regno];
8212 spill_reg_stored_to[regno] = out;
8213 reg_last_reload_reg[out_regno] = reg;
8215 piecemeal = (HARD_REGISTER_NUM_P (out_regno)
8216 && nregs == out_nregs
8217 && inherit_piecemeal_p (out_regno, regno, mode));
8219 /* If OUT_REGNO is a hard register, it may occupy more than
8220 one register. If it does, say what is in the
8221 rest of the registers assuming that both registers
8222 agree on how many words the object takes. If not,
8223 invalidate the subsequent registers. */
8225 if (HARD_REGISTER_NUM_P (out_regno))
8226 for (k = 1; k < out_nregs; k++)
8227 reg_last_reload_reg[out_regno + k]
8228 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8230 /* Now do the inverse operation. */
8231 for (k = 0; k < nregs; k++)
8233 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8234 reg_reloaded_contents[regno + k]
8235 = (!HARD_REGISTER_NUM_P (out_regno) || !piecemeal
8236 ? out_regno
8237 : out_regno + k);
8238 reg_reloaded_insn[regno + k] = insn;
8239 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8240 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
8241 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8242 regno + k);
8243 else
8244 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8245 regno + k);
8249 /* Maybe the spill reg contains a copy of reload_in. Only do
8250 something if there will not be an output reload for
8251 the register being reloaded. */
8252 else if (rld[r].out_reg == 0
8253 && rld[r].in != 0
8254 && ((REG_P (rld[r].in)
8255 && !HARD_REGISTER_P (rld[r].in)
8256 && !REGNO_REG_SET_P (&reg_has_output_reload,
8257 REGNO (rld[r].in)))
8258 || (REG_P (rld[r].in_reg)
8259 && !REGNO_REG_SET_P (&reg_has_output_reload,
8260 REGNO (rld[r].in_reg))))
8261 && !reg_set_p (reload_reg_rtx_for_input[r], PATTERN (insn)))
8263 rtx reg;
8265 reg = reload_reg_rtx_for_input[r];
8266 if (reload_reg_rtx_reaches_end_p (reg, r))
8268 enum machine_mode mode;
8269 int regno;
8270 int nregs;
8271 int in_regno;
8272 int in_nregs;
8273 rtx in;
8274 bool piecemeal;
8276 mode = GET_MODE (reg);
8277 regno = REGNO (reg);
8278 nregs = hard_regno_nregs[regno][mode];
8279 if (REG_P (rld[r].in)
8280 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
8281 in = rld[r].in;
8282 else if (REG_P (rld[r].in_reg))
8283 in = rld[r].in_reg;
8284 else
8285 in = XEXP (rld[r].in_reg, 0);
8286 in_regno = REGNO (in);
8288 in_nregs = (!HARD_REGISTER_NUM_P (in_regno) ? 1
8289 : hard_regno_nregs[in_regno][mode]);
8291 reg_last_reload_reg[in_regno] = reg;
8293 piecemeal = (HARD_REGISTER_NUM_P (in_regno)
8294 && nregs == in_nregs
8295 && inherit_piecemeal_p (regno, in_regno, mode));
8297 if (HARD_REGISTER_NUM_P (in_regno))
8298 for (k = 1; k < in_nregs; k++)
8299 reg_last_reload_reg[in_regno + k]
8300 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8302 /* Unless we inherited this reload, show we haven't
8303 recently done a store.
8304 Previous stores of inherited auto_inc expressions
8305 also have to be discarded. */
8306 if (! reload_inherited[r]
8307 || (rld[r].out && ! rld[r].out_reg))
8308 spill_reg_store[regno] = 0;
8310 for (k = 0; k < nregs; k++)
8312 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8313 reg_reloaded_contents[regno + k]
8314 = (!HARD_REGISTER_NUM_P (in_regno) || !piecemeal
8315 ? in_regno
8316 : in_regno + k);
8317 reg_reloaded_insn[regno + k] = insn;
8318 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8319 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
8320 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8321 regno + k);
8322 else
8323 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8324 regno + k);
8330 /* The following if-statement was #if 0'd in 1.34 (or before...).
8331 It's reenabled in 1.35 because supposedly nothing else
8332 deals with this problem. */
8334 /* If a register gets output-reloaded from a non-spill register,
8335 that invalidates any previous reloaded copy of it.
8336 But forget_old_reloads_1 won't get to see it, because
8337 it thinks only about the original insn. So invalidate it here.
8338 Also do the same thing for RELOAD_OTHER constraints where the
8339 output is discarded. */
8340 if (i < 0
8341 && ((rld[r].out != 0
8342 && (REG_P (rld[r].out)
8343 || (MEM_P (rld[r].out)
8344 && REG_P (rld[r].out_reg))))
8345 || (rld[r].out == 0 && rld[r].out_reg
8346 && REG_P (rld[r].out_reg))))
8348 rtx out = ((rld[r].out && REG_P (rld[r].out))
8349 ? rld[r].out : rld[r].out_reg);
8350 int out_regno = REGNO (out);
8351 enum machine_mode mode = GET_MODE (out);
8353 /* REG_RTX is now set or clobbered by the main instruction.
8354 As the comment above explains, forget_old_reloads_1 only
8355 sees the original instruction, and there is no guarantee
8356 that the original instruction also clobbered REG_RTX.
8357 For example, if find_reloads sees that the input side of
8358 a matched operand pair dies in this instruction, it may
8359 use the input register as the reload register.
8361 Calling forget_old_reloads_1 is a waste of effort if
8362 REG_RTX is also the output register.
8364 If we know that REG_RTX holds the value of a pseudo
8365 register, the code after the call will record that fact. */
8366 if (rld[r].reg_rtx && rld[r].reg_rtx != out)
8367 forget_old_reloads_1 (rld[r].reg_rtx, NULL_RTX, NULL);
8369 if (!HARD_REGISTER_NUM_P (out_regno))
8371 rtx src_reg, store_insn = NULL_RTX;
8373 reg_last_reload_reg[out_regno] = 0;
8375 /* If we can find a hard register that is stored, record
8376 the storing insn so that we may delete this insn with
8377 delete_output_reload. */
8378 src_reg = reload_reg_rtx_for_output[r];
8380 if (src_reg)
8382 if (reload_reg_rtx_reaches_end_p (src_reg, r))
8383 store_insn = new_spill_reg_store[REGNO (src_reg)];
8384 else
8385 src_reg = NULL_RTX;
8387 else
8389 /* If this is an optional reload, try to find the
8390 source reg from an input reload. */
8391 rtx set = single_set (insn);
8392 if (set && SET_DEST (set) == rld[r].out)
8394 int k;
8396 src_reg = SET_SRC (set);
8397 store_insn = insn;
8398 for (k = 0; k < n_reloads; k++)
8400 if (rld[k].in == src_reg)
8402 src_reg = reload_reg_rtx_for_input[k];
8403 break;
8408 if (src_reg && REG_P (src_reg)
8409 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
8411 int src_regno, src_nregs, k;
8412 rtx note;
8414 gcc_assert (GET_MODE (src_reg) == mode);
8415 src_regno = REGNO (src_reg);
8416 src_nregs = hard_regno_nregs[src_regno][mode];
8417 /* The place where to find a death note varies with
8418 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
8419 necessarily checked exactly in the code that moves
8420 notes, so just check both locations. */
8421 note = find_regno_note (insn, REG_DEAD, src_regno);
8422 if (! note && store_insn)
8423 note = find_regno_note (store_insn, REG_DEAD, src_regno);
8424 for (k = 0; k < src_nregs; k++)
8426 spill_reg_store[src_regno + k] = store_insn;
8427 spill_reg_stored_to[src_regno + k] = out;
8428 reg_reloaded_contents[src_regno + k] = out_regno;
8429 reg_reloaded_insn[src_regno + k] = store_insn;
8430 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + k);
8431 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + k);
8432 if (HARD_REGNO_CALL_PART_CLOBBERED (src_regno + k,
8433 mode))
8434 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8435 src_regno + k);
8436 else
8437 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8438 src_regno + k);
8439 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + k);
8440 if (note)
8441 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
8442 else
8443 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
8445 reg_last_reload_reg[out_regno] = src_reg;
8446 /* We have to set reg_has_output_reload here, or else
8447 forget_old_reloads_1 will clear reg_last_reload_reg
8448 right away. */
8449 SET_REGNO_REG_SET (&reg_has_output_reload,
8450 out_regno);
8453 else
8455 int k, out_nregs = hard_regno_nregs[out_regno][mode];
8457 for (k = 0; k < out_nregs; k++)
8458 reg_last_reload_reg[out_regno + k] = 0;
8462 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
8465 /* Go through the motions to emit INSN and test if it is strictly valid.
8466 Return the emitted insn if valid, else return NULL. */
8468 static rtx
8469 emit_insn_if_valid_for_reload (rtx insn)
8471 rtx last = get_last_insn ();
8472 int code;
8474 insn = emit_insn (insn);
8475 code = recog_memoized (insn);
8477 if (code >= 0)
8479 extract_insn (insn);
8480 /* We want constrain operands to treat this insn strictly in its
8481 validity determination, i.e., the way it would after reload has
8482 completed. */
8483 if (constrain_operands (1))
8484 return insn;
8487 delete_insns_since (last);
8488 return NULL;
8491 /* Emit code to perform a reload from IN (which may be a reload register) to
8492 OUT (which may also be a reload register). IN or OUT is from operand
8493 OPNUM with reload type TYPE.
8495 Returns first insn emitted. */
8497 static rtx
8498 gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
8500 rtx last = get_last_insn ();
8501 rtx tem;
8502 #ifdef SECONDARY_MEMORY_NEEDED
8503 rtx tem1, tem2;
8504 #endif
8506 /* If IN is a paradoxical SUBREG, remove it and try to put the
8507 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
8508 if (!strip_paradoxical_subreg (&in, &out))
8509 strip_paradoxical_subreg (&out, &in);
8511 /* How to do this reload can get quite tricky. Normally, we are being
8512 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
8513 register that didn't get a hard register. In that case we can just
8514 call emit_move_insn.
8516 We can also be asked to reload a PLUS that adds a register or a MEM to
8517 another register, constant or MEM. This can occur during frame pointer
8518 elimination and while reloading addresses. This case is handled by
8519 trying to emit a single insn to perform the add. If it is not valid,
8520 we use a two insn sequence.
8522 Or we can be asked to reload an unary operand that was a fragment of
8523 an addressing mode, into a register. If it isn't recognized as-is,
8524 we try making the unop operand and the reload-register the same:
8525 (set reg:X (unop:X expr:Y))
8526 -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
8528 Finally, we could be called to handle an 'o' constraint by putting
8529 an address into a register. In that case, we first try to do this
8530 with a named pattern of "reload_load_address". If no such pattern
8531 exists, we just emit a SET insn and hope for the best (it will normally
8532 be valid on machines that use 'o').
8534 This entire process is made complex because reload will never
8535 process the insns we generate here and so we must ensure that
8536 they will fit their constraints and also by the fact that parts of
8537 IN might be being reloaded separately and replaced with spill registers.
8538 Because of this, we are, in some sense, just guessing the right approach
8539 here. The one listed above seems to work.
8541 ??? At some point, this whole thing needs to be rethought. */
8543 if (GET_CODE (in) == PLUS
8544 && (REG_P (XEXP (in, 0))
8545 || GET_CODE (XEXP (in, 0)) == SUBREG
8546 || MEM_P (XEXP (in, 0)))
8547 && (REG_P (XEXP (in, 1))
8548 || GET_CODE (XEXP (in, 1)) == SUBREG
8549 || CONSTANT_P (XEXP (in, 1))
8550 || MEM_P (XEXP (in, 1))))
8552 /* We need to compute the sum of a register or a MEM and another
8553 register, constant, or MEM, and put it into the reload
8554 register. The best possible way of doing this is if the machine
8555 has a three-operand ADD insn that accepts the required operands.
8557 The simplest approach is to try to generate such an insn and see if it
8558 is recognized and matches its constraints. If so, it can be used.
8560 It might be better not to actually emit the insn unless it is valid,
8561 but we need to pass the insn as an operand to `recog' and
8562 `extract_insn' and it is simpler to emit and then delete the insn if
8563 not valid than to dummy things up. */
8565 rtx op0, op1, tem, insn;
8566 enum insn_code code;
8568 op0 = find_replacement (&XEXP (in, 0));
8569 op1 = find_replacement (&XEXP (in, 1));
8571 /* Since constraint checking is strict, commutativity won't be
8572 checked, so we need to do that here to avoid spurious failure
8573 if the add instruction is two-address and the second operand
8574 of the add is the same as the reload reg, which is frequently
8575 the case. If the insn would be A = B + A, rearrange it so
8576 it will be A = A + B as constrain_operands expects. */
8578 if (REG_P (XEXP (in, 1))
8579 && REGNO (out) == REGNO (XEXP (in, 1)))
8580 tem = op0, op0 = op1, op1 = tem;
8582 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
8583 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
8585 insn = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
8586 if (insn)
8587 return insn;
8589 /* If that failed, we must use a conservative two-insn sequence.
8591 Use a move to copy one operand into the reload register. Prefer
8592 to reload a constant, MEM or pseudo since the move patterns can
8593 handle an arbitrary operand. If OP1 is not a constant, MEM or
8594 pseudo and OP1 is not a valid operand for an add instruction, then
8595 reload OP1.
8597 After reloading one of the operands into the reload register, add
8598 the reload register to the output register.
8600 If there is another way to do this for a specific machine, a
8601 DEFINE_PEEPHOLE should be specified that recognizes the sequence
8602 we emit below. */
8604 code = optab_handler (add_optab, GET_MODE (out));
8606 if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
8607 || (REG_P (op1)
8608 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
8609 || (code != CODE_FOR_nothing
8610 && !insn_operand_matches (code, 2, op1)))
8611 tem = op0, op0 = op1, op1 = tem;
8613 gen_reload (out, op0, opnum, type);
8615 /* If OP0 and OP1 are the same, we can use OUT for OP1.
8616 This fixes a problem on the 32K where the stack pointer cannot
8617 be used as an operand of an add insn. */
8619 if (rtx_equal_p (op0, op1))
8620 op1 = out;
8622 insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
8623 if (insn)
8625 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
8626 set_dst_reg_note (insn, REG_EQUIV, in, out);
8627 return insn;
8630 /* If that failed, copy the address register to the reload register.
8631 Then add the constant to the reload register. */
8633 gcc_assert (!reg_overlap_mentioned_p (out, op0));
8634 gen_reload (out, op1, opnum, type);
8635 insn = emit_insn (gen_add2_insn (out, op0));
8636 set_dst_reg_note (insn, REG_EQUIV, in, out);
8639 #ifdef SECONDARY_MEMORY_NEEDED
8640 /* If we need a memory location to do the move, do it that way. */
8641 else if ((tem1 = replaced_subreg (in), tem2 = replaced_subreg (out),
8642 (REG_P (tem1) && REG_P (tem2)))
8643 && REGNO (tem1) < FIRST_PSEUDO_REGISTER
8644 && REGNO (tem2) < FIRST_PSEUDO_REGISTER
8645 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (tem1)),
8646 REGNO_REG_CLASS (REGNO (tem2)),
8647 GET_MODE (out)))
8649 /* Get the memory to use and rewrite both registers to its mode. */
8650 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
8652 if (GET_MODE (loc) != GET_MODE (out))
8653 out = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (out));
8655 if (GET_MODE (loc) != GET_MODE (in))
8656 in = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (in));
8658 gen_reload (loc, in, opnum, type);
8659 gen_reload (out, loc, opnum, type);
8661 #endif
8662 else if (REG_P (out) && UNARY_P (in))
8664 rtx insn;
8665 rtx op1;
8666 rtx out_moded;
8667 rtx set;
8669 op1 = find_replacement (&XEXP (in, 0));
8670 if (op1 != XEXP (in, 0))
8671 in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
8673 /* First, try a plain SET. */
8674 set = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
8675 if (set)
8676 return set;
8678 /* If that failed, move the inner operand to the reload
8679 register, and try the same unop with the inner expression
8680 replaced with the reload register. */
8682 if (GET_MODE (op1) != GET_MODE (out))
8683 out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
8684 else
8685 out_moded = out;
8687 gen_reload (out_moded, op1, opnum, type);
8689 insn
8690 = gen_rtx_SET (VOIDmode, out,
8691 gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
8692 out_moded));
8693 insn = emit_insn_if_valid_for_reload (insn);
8694 if (insn)
8696 set_unique_reg_note (insn, REG_EQUIV, in);
8697 return insn;
8700 fatal_insn ("failure trying to reload:", set);
8702 /* If IN is a simple operand, use gen_move_insn. */
8703 else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
8705 tem = emit_insn (gen_move_insn (out, in));
8706 /* IN may contain a LABEL_REF, if so add a REG_LABEL_OPERAND note. */
8707 mark_jump_label (in, tem, 0);
8710 #ifdef HAVE_reload_load_address
8711 else if (HAVE_reload_load_address)
8712 emit_insn (gen_reload_load_address (out, in));
8713 #endif
8715 /* Otherwise, just write (set OUT IN) and hope for the best. */
8716 else
8717 emit_insn (gen_rtx_SET (VOIDmode, out, in));
8719 /* Return the first insn emitted.
8720 We can not just return get_last_insn, because there may have
8721 been multiple instructions emitted. Also note that gen_move_insn may
8722 emit more than one insn itself, so we can not assume that there is one
8723 insn emitted per emit_insn_before call. */
8725 return last ? NEXT_INSN (last) : get_insns ();
8728 /* Delete a previously made output-reload whose result we now believe
8729 is not needed. First we double-check.
8731 INSN is the insn now being processed.
8732 LAST_RELOAD_REG is the hard register number for which we want to delete
8733 the last output reload.
8734 J is the reload-number that originally used REG. The caller has made
8735 certain that reload J doesn't use REG any longer for input.
8736 NEW_RELOAD_REG is reload register that reload J is using for REG. */
8738 static void
8739 delete_output_reload (rtx insn, int j, int last_reload_reg, rtx new_reload_reg)
8741 rtx output_reload_insn = spill_reg_store[last_reload_reg];
8742 rtx reg = spill_reg_stored_to[last_reload_reg];
8743 int k;
8744 int n_occurrences;
8745 int n_inherited = 0;
8746 rtx i1;
8747 rtx substed;
8748 unsigned regno;
8749 int nregs;
8751 /* It is possible that this reload has been only used to set another reload
8752 we eliminated earlier and thus deleted this instruction too. */
8753 if (INSN_DELETED_P (output_reload_insn))
8754 return;
8756 /* Get the raw pseudo-register referred to. */
8758 while (GET_CODE (reg) == SUBREG)
8759 reg = SUBREG_REG (reg);
8760 substed = reg_equiv_memory_loc (REGNO (reg));
8762 /* This is unsafe if the operand occurs more often in the current
8763 insn than it is inherited. */
8764 for (k = n_reloads - 1; k >= 0; k--)
8766 rtx reg2 = rld[k].in;
8767 if (! reg2)
8768 continue;
8769 if (MEM_P (reg2) || reload_override_in[k])
8770 reg2 = rld[k].in_reg;
8771 #ifdef AUTO_INC_DEC
8772 if (rld[k].out && ! rld[k].out_reg)
8773 reg2 = XEXP (rld[k].in_reg, 0);
8774 #endif
8775 while (GET_CODE (reg2) == SUBREG)
8776 reg2 = SUBREG_REG (reg2);
8777 if (rtx_equal_p (reg2, reg))
8779 if (reload_inherited[k] || reload_override_in[k] || k == j)
8780 n_inherited++;
8781 else
8782 return;
8785 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
8786 if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
8787 n_occurrences += count_occurrences (CALL_INSN_FUNCTION_USAGE (insn),
8788 reg, 0);
8789 if (substed)
8790 n_occurrences += count_occurrences (PATTERN (insn),
8791 eliminate_regs (substed, VOIDmode,
8792 NULL_RTX), 0);
8793 for (i1 = reg_equiv_alt_mem_list (REGNO (reg)); i1; i1 = XEXP (i1, 1))
8795 gcc_assert (!rtx_equal_p (XEXP (i1, 0), substed));
8796 n_occurrences += count_occurrences (PATTERN (insn), XEXP (i1, 0), 0);
8798 if (n_occurrences > n_inherited)
8799 return;
8801 regno = REGNO (reg);
8802 if (regno >= FIRST_PSEUDO_REGISTER)
8803 nregs = 1;
8804 else
8805 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
8807 /* If the pseudo-reg we are reloading is no longer referenced
8808 anywhere between the store into it and here,
8809 and we're within the same basic block, then the value can only
8810 pass through the reload reg and end up here.
8811 Otherwise, give up--return. */
8812 for (i1 = NEXT_INSN (output_reload_insn);
8813 i1 != insn; i1 = NEXT_INSN (i1))
8815 if (NOTE_INSN_BASIC_BLOCK_P (i1))
8816 return;
8817 if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
8818 && refers_to_regno_p (regno, regno + nregs, PATTERN (i1), NULL))
8820 /* If this is USE in front of INSN, we only have to check that
8821 there are no more references than accounted for by inheritance. */
8822 while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
8824 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
8825 i1 = NEXT_INSN (i1);
8827 if (n_occurrences <= n_inherited && i1 == insn)
8828 break;
8829 return;
8833 /* We will be deleting the insn. Remove the spill reg information. */
8834 for (k = hard_regno_nregs[last_reload_reg][GET_MODE (reg)]; k-- > 0; )
8836 spill_reg_store[last_reload_reg + k] = 0;
8837 spill_reg_stored_to[last_reload_reg + k] = 0;
8840 /* The caller has already checked that REG dies or is set in INSN.
8841 It has also checked that we are optimizing, and thus some
8842 inaccuracies in the debugging information are acceptable.
8843 So we could just delete output_reload_insn. But in some cases
8844 we can improve the debugging information without sacrificing
8845 optimization - maybe even improving the code: See if the pseudo
8846 reg has been completely replaced with reload regs. If so, delete
8847 the store insn and forget we had a stack slot for the pseudo. */
8848 if (rld[j].out != rld[j].in
8849 && REG_N_DEATHS (REGNO (reg)) == 1
8850 && REG_N_SETS (REGNO (reg)) == 1
8851 && REG_BASIC_BLOCK (REGNO (reg)) >= NUM_FIXED_BLOCKS
8852 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
8854 rtx i2;
8856 /* We know that it was used only between here and the beginning of
8857 the current basic block. (We also know that the last use before
8858 INSN was the output reload we are thinking of deleting, but never
8859 mind that.) Search that range; see if any ref remains. */
8860 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8862 rtx set = single_set (i2);
8864 /* Uses which just store in the pseudo don't count,
8865 since if they are the only uses, they are dead. */
8866 if (set != 0 && SET_DEST (set) == reg)
8867 continue;
8868 if (LABEL_P (i2)
8869 || JUMP_P (i2))
8870 break;
8871 if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
8872 && reg_mentioned_p (reg, PATTERN (i2)))
8874 /* Some other ref remains; just delete the output reload we
8875 know to be dead. */
8876 delete_address_reloads (output_reload_insn, insn);
8877 delete_insn (output_reload_insn);
8878 return;
8882 /* Delete the now-dead stores into this pseudo. Note that this
8883 loop also takes care of deleting output_reload_insn. */
8884 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8886 rtx set = single_set (i2);
8888 if (set != 0 && SET_DEST (set) == reg)
8890 delete_address_reloads (i2, insn);
8891 delete_insn (i2);
8893 if (LABEL_P (i2)
8894 || JUMP_P (i2))
8895 break;
8898 /* For the debugging info, say the pseudo lives in this reload reg. */
8899 reg_renumber[REGNO (reg)] = REGNO (new_reload_reg);
8900 if (ira_conflicts_p)
8901 /* Inform IRA about the change. */
8902 ira_mark_allocation_change (REGNO (reg));
8903 alter_reg (REGNO (reg), -1, false);
8905 else
8907 delete_address_reloads (output_reload_insn, insn);
8908 delete_insn (output_reload_insn);
8912 /* We are going to delete DEAD_INSN. Recursively delete loads of
8913 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
8914 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
8915 static void
8916 delete_address_reloads (rtx dead_insn, rtx current_insn)
8918 rtx set = single_set (dead_insn);
8919 rtx set2, dst, prev, next;
8920 if (set)
8922 rtx dst = SET_DEST (set);
8923 if (MEM_P (dst))
8924 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
8926 /* If we deleted the store from a reloaded post_{in,de}c expression,
8927 we can delete the matching adds. */
8928 prev = PREV_INSN (dead_insn);
8929 next = NEXT_INSN (dead_insn);
8930 if (! prev || ! next)
8931 return;
8932 set = single_set (next);
8933 set2 = single_set (prev);
8934 if (! set || ! set2
8935 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
8936 || !CONST_INT_P (XEXP (SET_SRC (set), 1))
8937 || !CONST_INT_P (XEXP (SET_SRC (set2), 1)))
8938 return;
8939 dst = SET_DEST (set);
8940 if (! rtx_equal_p (dst, SET_DEST (set2))
8941 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
8942 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
8943 || (INTVAL (XEXP (SET_SRC (set), 1))
8944 != -INTVAL (XEXP (SET_SRC (set2), 1))))
8945 return;
8946 delete_related_insns (prev);
8947 delete_related_insns (next);
8950 /* Subfunction of delete_address_reloads: process registers found in X. */
8951 static void
8952 delete_address_reloads_1 (rtx dead_insn, rtx x, rtx current_insn)
8954 rtx prev, set, dst, i2;
8955 int i, j;
8956 enum rtx_code code = GET_CODE (x);
8958 if (code != REG)
8960 const char *fmt = GET_RTX_FORMAT (code);
8961 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8963 if (fmt[i] == 'e')
8964 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
8965 else if (fmt[i] == 'E')
8967 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8968 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
8969 current_insn);
8972 return;
8975 if (spill_reg_order[REGNO (x)] < 0)
8976 return;
8978 /* Scan backwards for the insn that sets x. This might be a way back due
8979 to inheritance. */
8980 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
8982 code = GET_CODE (prev);
8983 if (code == CODE_LABEL || code == JUMP_INSN)
8984 return;
8985 if (!INSN_P (prev))
8986 continue;
8987 if (reg_set_p (x, PATTERN (prev)))
8988 break;
8989 if (reg_referenced_p (x, PATTERN (prev)))
8990 return;
8992 if (! prev || INSN_UID (prev) < reload_first_uid)
8993 return;
8994 /* Check that PREV only sets the reload register. */
8995 set = single_set (prev);
8996 if (! set)
8997 return;
8998 dst = SET_DEST (set);
8999 if (!REG_P (dst)
9000 || ! rtx_equal_p (dst, x))
9001 return;
9002 if (! reg_set_p (dst, PATTERN (dead_insn)))
9004 /* Check if DST was used in a later insn -
9005 it might have been inherited. */
9006 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
9008 if (LABEL_P (i2))
9009 break;
9010 if (! INSN_P (i2))
9011 continue;
9012 if (reg_referenced_p (dst, PATTERN (i2)))
9014 /* If there is a reference to the register in the current insn,
9015 it might be loaded in a non-inherited reload. If no other
9016 reload uses it, that means the register is set before
9017 referenced. */
9018 if (i2 == current_insn)
9020 for (j = n_reloads - 1; j >= 0; j--)
9021 if ((rld[j].reg_rtx == dst && reload_inherited[j])
9022 || reload_override_in[j] == dst)
9023 return;
9024 for (j = n_reloads - 1; j >= 0; j--)
9025 if (rld[j].in && rld[j].reg_rtx == dst)
9026 break;
9027 if (j >= 0)
9028 break;
9030 return;
9032 if (JUMP_P (i2))
9033 break;
9034 /* If DST is still live at CURRENT_INSN, check if it is used for
9035 any reload. Note that even if CURRENT_INSN sets DST, we still
9036 have to check the reloads. */
9037 if (i2 == current_insn)
9039 for (j = n_reloads - 1; j >= 0; j--)
9040 if ((rld[j].reg_rtx == dst && reload_inherited[j])
9041 || reload_override_in[j] == dst)
9042 return;
9043 /* ??? We can't finish the loop here, because dst might be
9044 allocated to a pseudo in this block if no reload in this
9045 block needs any of the classes containing DST - see
9046 spill_hard_reg. There is no easy way to tell this, so we
9047 have to scan till the end of the basic block. */
9049 if (reg_set_p (dst, PATTERN (i2)))
9050 break;
9053 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
9054 reg_reloaded_contents[REGNO (dst)] = -1;
9055 delete_insn (prev);
9058 /* Output reload-insns to reload VALUE into RELOADREG.
9059 VALUE is an autoincrement or autodecrement RTX whose operand
9060 is a register or memory location;
9061 so reloading involves incrementing that location.
9062 IN is either identical to VALUE, or some cheaper place to reload from.
9064 INC_AMOUNT is the number to increment or decrement by (always positive).
9065 This cannot be deduced from VALUE. */
9067 static void
9068 inc_for_reload (rtx reloadreg, rtx in, rtx value, int inc_amount)
9070 /* REG or MEM to be copied and incremented. */
9071 rtx incloc = find_replacement (&XEXP (value, 0));
9072 /* Nonzero if increment after copying. */
9073 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
9074 || GET_CODE (value) == POST_MODIFY);
9075 rtx last;
9076 rtx inc;
9077 rtx add_insn;
9078 int code;
9079 rtx real_in = in == value ? incloc : in;
9081 /* No hard register is equivalent to this register after
9082 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
9083 we could inc/dec that register as well (maybe even using it for
9084 the source), but I'm not sure it's worth worrying about. */
9085 if (REG_P (incloc))
9086 reg_last_reload_reg[REGNO (incloc)] = 0;
9088 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
9090 gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS);
9091 inc = find_replacement (&XEXP (XEXP (value, 1), 1));
9093 else
9095 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
9096 inc_amount = -inc_amount;
9098 inc = GEN_INT (inc_amount);
9101 /* If this is post-increment, first copy the location to the reload reg. */
9102 if (post && real_in != reloadreg)
9103 emit_insn (gen_move_insn (reloadreg, real_in));
9105 if (in == value)
9107 /* See if we can directly increment INCLOC. Use a method similar to
9108 that in gen_reload. */
9110 last = get_last_insn ();
9111 add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
9112 gen_rtx_PLUS (GET_MODE (incloc),
9113 incloc, inc)));
9115 code = recog_memoized (add_insn);
9116 if (code >= 0)
9118 extract_insn (add_insn);
9119 if (constrain_operands (1))
9121 /* If this is a pre-increment and we have incremented the value
9122 where it lives, copy the incremented value to RELOADREG to
9123 be used as an address. */
9125 if (! post)
9126 emit_insn (gen_move_insn (reloadreg, incloc));
9127 return;
9130 delete_insns_since (last);
9133 /* If couldn't do the increment directly, must increment in RELOADREG.
9134 The way we do this depends on whether this is pre- or post-increment.
9135 For pre-increment, copy INCLOC to the reload register, increment it
9136 there, then save back. */
9138 if (! post)
9140 if (in != reloadreg)
9141 emit_insn (gen_move_insn (reloadreg, real_in));
9142 emit_insn (gen_add2_insn (reloadreg, inc));
9143 emit_insn (gen_move_insn (incloc, reloadreg));
9145 else
9147 /* Postincrement.
9148 Because this might be a jump insn or a compare, and because RELOADREG
9149 may not be available after the insn in an input reload, we must do
9150 the incrementation before the insn being reloaded for.
9152 We have already copied IN to RELOADREG. Increment the copy in
9153 RELOADREG, save that back, then decrement RELOADREG so it has
9154 the original value. */
9156 emit_insn (gen_add2_insn (reloadreg, inc));
9157 emit_insn (gen_move_insn (incloc, reloadreg));
9158 if (CONST_INT_P (inc))
9159 emit_insn (gen_add2_insn (reloadreg, GEN_INT (-INTVAL (inc))));
9160 else
9161 emit_insn (gen_sub2_insn (reloadreg, inc));
9165 #ifdef AUTO_INC_DEC
9166 static void
9167 add_auto_inc_notes (rtx insn, rtx x)
9169 enum rtx_code code = GET_CODE (x);
9170 const char *fmt;
9171 int i, j;
9173 if (code == MEM && auto_inc_p (XEXP (x, 0)))
9175 add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
9176 return;
9179 /* Scan all the operand sub-expressions. */
9180 fmt = GET_RTX_FORMAT (code);
9181 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9183 if (fmt[i] == 'e')
9184 add_auto_inc_notes (insn, XEXP (x, i));
9185 else if (fmt[i] == 'E')
9186 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9187 add_auto_inc_notes (insn, XVECEXP (x, i, j));
9190 #endif