1 /* Define per-register tables for data flow info and register allocation.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
24 #include "hard-reg-set.h"
27 #define REG_BYTES(R) mode_size[(int) GET_MODE (R)]
29 /* When you only have the mode of a pseudo register before it has a hard
30 register chosen for it, this reports the size of each hard register
31 a pseudo in such a mode would get allocated to. A target may
34 #ifndef REGMODE_NATURAL_SIZE
35 #define REGMODE_NATURAL_SIZE(MODE) UNITS_PER_WORD
38 /* Maximum register number used in this function, plus one. */
42 /* REG_N_REFS and REG_N_SETS are initialized by a call to
43 regstat_init_n_sets_and_refs from the current values of
44 DF_REG_DEF_COUNT and DF_REG_USE_COUNT. REG_N_REFS and REG_N_SETS
45 should only be used if a pass need to change these values in some
46 magical way or the pass needs to have accurate values for these
47 and is not using incremental df scanning.
49 At the end of a pass that uses REG_N_REFS and REG_N_SETS, a call
50 should be made to regstat_free_n_sets_and_refs.
52 Local alloc seems to play pretty loose with these values.
53 REG_N_REFS is set to 0 if the register is used in an asm.
54 Furthermore, local_alloc calls regclass to hack both REG_N_REFS and
55 REG_N_SETS for three address insns. Other passes seem to have
56 other special values. */
60 /* Structure to hold values for REG_N_SETS (i) and REG_N_REFS (i). */
62 struct regstat_n_sets_and_refs_t
64 int sets
; /* # of times (REG n) is set */
65 int refs
; /* # of times (REG n) is used or set */
68 extern struct regstat_n_sets_and_refs_t
*regstat_n_sets_and_refs
;
70 /* Indexed by n, gives number of times (REG n) is used or set. */
74 return regstat_n_sets_and_refs
[regno
].refs
;
77 /* Indexed by n, gives number of times (REG n) is used or set. */
78 #define SET_REG_N_REFS(N,V) (regstat_n_sets_and_refs[N].refs = V)
79 #define INC_REG_N_REFS(N,V) (regstat_n_sets_and_refs[N].refs += V)
81 /* Indexed by n, gives number of times (REG n) is set. */
83 REG_N_SETS (int regno
)
85 return regstat_n_sets_and_refs
[regno
].sets
;
88 /* Indexed by n, gives number of times (REG n) is set. */
89 #define SET_REG_N_SETS(N,V) (regstat_n_sets_and_refs[N].sets = V)
90 #define INC_REG_N_SETS(N,V) (regstat_n_sets_and_refs[N].sets += V)
93 /* Functions defined in regstat.c. */
94 extern void regstat_init_n_sets_and_refs (void);
95 extern void regstat_free_n_sets_and_refs (void);
96 extern void regstat_compute_ri (void);
97 extern void regstat_free_ri (void);
98 extern bitmap
regstat_get_setjmp_crosses (void);
99 extern void regstat_compute_calls_crossed (void);
100 extern void regstat_free_calls_crossed (void);
101 extern void dump_reg_info (FILE *);
103 /* Register information indexed by register number. This structure is
104 initialized by calling regstat_compute_ri and is destroyed by
105 calling regstat_free_ri. */
108 int freq
; /* # estimated frequency (REG n) is used or set */
109 int deaths
; /* # of times (REG n) dies */
110 int live_length
; /* # of instructions (REG n) is live */
111 int calls_crossed
; /* # of calls (REG n) is live across */
112 int freq_calls_crossed
; /* # estimated frequency (REG n) crosses call */
113 int throw_calls_crossed
; /* # of calls that may throw (REG n) is live across */
114 int basic_block
; /* # of basic blocks (REG n) is used in */
117 extern struct reg_info_t
*reg_info_p
;
119 /* The number allocated elements of reg_info_p. */
120 extern size_t reg_info_p_size
;
122 /* Estimate frequency of references to register N. */
124 #define REG_FREQ(N) (reg_info_p[N].freq)
126 /* The weights for each insn varies from 0 to REG_FREQ_BASE.
127 This constant does not need to be high, as in infrequently executed
128 regions we want to count instructions equivalently to optimize for
129 size instead of speed. */
130 #define REG_FREQ_MAX 1000
132 /* Compute register frequency from the BB frequency. When optimizing for size,
133 or profile driven feedback is available and the function is never executed,
134 frequency is always equivalent. Otherwise rescale the basic block
136 #define REG_FREQ_FROM_BB(bb) (optimize_size \
137 || (flag_branch_probabilities \
138 && !ENTRY_BLOCK_PTR->count) \
140 : ((bb)->frequency * REG_FREQ_MAX / BB_FREQ_MAX)\
141 ? ((bb)->frequency * REG_FREQ_MAX / BB_FREQ_MAX)\
144 /* Indexed by N, gives number of insns in which register N dies.
145 Note that if register N is live around loops, it can die
146 in transitions between basic blocks, and that is not counted here.
147 So this is only a reliable indicator of how many regions of life there are
148 for registers that are contained in one basic block. */
150 #define REG_N_DEATHS(N) (reg_info_p[N].deaths)
152 /* Get the number of consecutive words required to hold pseudo-reg N. */
154 #define PSEUDO_REGNO_SIZE(N) \
155 ((GET_MODE_SIZE (PSEUDO_REGNO_MODE (N)) + UNITS_PER_WORD - 1) \
158 /* Get the number of bytes required to hold pseudo-reg N. */
160 #define PSEUDO_REGNO_BYTES(N) \
161 GET_MODE_SIZE (PSEUDO_REGNO_MODE (N))
163 /* Get the machine mode of pseudo-reg N. */
165 #define PSEUDO_REGNO_MODE(N) GET_MODE (regno_reg_rtx[N])
167 /* Indexed by N, gives number of CALL_INSNS across which (REG n) is live. */
169 #define REG_N_CALLS_CROSSED(N) (reg_info_p[N].calls_crossed)
170 #define REG_FREQ_CALLS_CROSSED(N) (reg_info_p[N].freq_calls_crossed)
172 /* Indexed by N, gives number of CALL_INSNS that may throw, across which
175 #define REG_N_THROWING_CALLS_CROSSED(N) (reg_info_p[N].throw_calls_crossed)
177 /* Total number of instructions at which (REG n) is live.
179 This is set in regstat.c whenever register info is requested and
180 remains valid for the rest of the compilation of the function; it is
181 used to control register allocation. The larger this is, the less
182 priority (REG n) gets for allocation in a hard register (in IRA in
183 priority-coloring mode).
185 Negative values are special: -1 is used to mark a pseudo reg that
186 should not be allocated to a hard register, because it crosses a
189 #define REG_LIVE_LENGTH(N) (reg_info_p[N].live_length)
191 /* Indexed by n, gives number of basic block that (REG n) is used in.
192 If the value is REG_BLOCK_GLOBAL (-1),
193 it means (REG n) is used in more than one basic block.
194 REG_BLOCK_UNKNOWN (0) means it hasn't been seen yet so we don't know.
195 This information remains valid for the rest of the compilation
196 of the current function; it is used to control register allocation. */
198 #define REG_BLOCK_UNKNOWN 0
199 #define REG_BLOCK_GLOBAL -1
201 #define REG_BASIC_BLOCK(N) (reg_info_p[N].basic_block)
203 /* Vector of substitutions of register numbers,
204 used to map pseudo regs into hardware regs.
206 This can't be folded into reg_n_info without changing all of the
207 machine dependent directories, since the reload functions
208 in the machine dependent files access it. */
210 extern short *reg_renumber
;
212 /* Flag set by local-alloc or global-alloc if they decide to allocate
213 something in a call-clobbered register. */
215 extern int caller_save_needed
;
217 /* Predicate to decide whether to give a hard reg to a pseudo which
218 is referenced REFS times and would need to be saved and restored
219 around a call CALLS times. */
221 #ifndef CALLER_SAVE_PROFITABLE
222 #define CALLER_SAVE_PROFITABLE(REFS, CALLS) (4 * (CALLS) < (REFS))
225 /* Select a register mode required for caller save of hard regno REGNO. */
226 #ifndef HARD_REGNO_CALLER_SAVE_MODE
227 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
228 choose_hard_reg_mode (REGNO, NREGS, false)
231 /* Registers that get partially clobbered by a call in a given mode.
232 These must not be call used registers. */
233 #ifndef HARD_REGNO_CALL_PART_CLOBBERED
234 #define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) 0
237 /* Target-dependent globals. */
239 /* For each starting hard register, the number of consecutive hard
240 registers that a given machine mode occupies. */
241 unsigned char x_hard_regno_nregs
[FIRST_PSEUDO_REGISTER
][MAX_MACHINE_MODE
];
243 /* For each hard register, the widest mode object that it can contain.
244 This will be a MODE_INT mode if the register can hold integers. Otherwise
245 it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
247 enum machine_mode x_reg_raw_mode
[FIRST_PSEUDO_REGISTER
];
249 /* Vector indexed by machine mode saying whether there are regs of
251 bool x_have_regs_of_mode
[MAX_MACHINE_MODE
];
253 /* 1 if the corresponding class contains a register of the given mode. */
254 char x_contains_reg_of_mode
[N_REG_CLASSES
][MAX_MACHINE_MODE
];
256 /* Record for each mode whether we can move a register directly to or
257 from an object of that mode in memory. If we can't, we won't try
258 to use that mode directly when accessing a field of that mode. */
259 char x_direct_load
[NUM_MACHINE_MODES
];
260 char x_direct_store
[NUM_MACHINE_MODES
];
262 /* Record for each mode whether we can float-extend from memory. */
263 bool x_float_extend_from_mem
[NUM_MACHINE_MODES
][NUM_MACHINE_MODES
];
266 extern struct target_regs default_target_regs
;
267 #if SWITCHABLE_TARGET
268 extern struct target_regs
*this_target_regs
;
270 #define this_target_regs (&default_target_regs)
273 #define hard_regno_nregs \
274 (this_target_regs->x_hard_regno_nregs)
275 #define reg_raw_mode \
276 (this_target_regs->x_reg_raw_mode)
277 #define have_regs_of_mode \
278 (this_target_regs->x_have_regs_of_mode)
279 #define contains_reg_of_mode \
280 (this_target_regs->x_contains_reg_of_mode)
281 #define direct_load \
282 (this_target_regs->x_direct_load)
283 #define direct_store \
284 (this_target_regs->x_direct_store)
285 #define float_extend_from_mem \
286 (this_target_regs->x_float_extend_from_mem)
288 /* Return an exclusive upper bound on the registers occupied by hard
289 register (reg:MODE REGNO). */
291 static inline unsigned int
292 end_hard_regno (enum machine_mode mode
, unsigned int regno
)
294 return regno
+ hard_regno_nregs
[regno
][(int) mode
];
297 /* Likewise for hard register X. */
299 #define END_HARD_REGNO(X) end_hard_regno (GET_MODE (X), REGNO (X))
301 /* Likewise for hard or pseudo register X. */
303 #define END_REGNO(X) (HARD_REGISTER_P (X) ? END_HARD_REGNO (X) : REGNO (X) + 1)
305 /* Add to REGS all the registers required to store a value of mode MODE
306 in register REGNO. */
309 add_to_hard_reg_set (HARD_REG_SET
*regs
, enum machine_mode mode
,
312 unsigned int end_regno
;
314 end_regno
= end_hard_regno (mode
, regno
);
316 SET_HARD_REG_BIT (*regs
, regno
);
317 while (++regno
< end_regno
);
320 /* Likewise, but remove the registers. */
323 remove_from_hard_reg_set (HARD_REG_SET
*regs
, enum machine_mode mode
,
326 unsigned int end_regno
;
328 end_regno
= end_hard_regno (mode
, regno
);
330 CLEAR_HARD_REG_BIT (*regs
, regno
);
331 while (++regno
< end_regno
);
334 /* Return true if REGS contains the whole of (reg:MODE REGNO). */
337 in_hard_reg_set_p (const HARD_REG_SET regs
, enum machine_mode mode
,
340 unsigned int end_regno
;
342 gcc_assert (HARD_REGISTER_NUM_P (regno
));
344 if (!TEST_HARD_REG_BIT (regs
, regno
))
347 end_regno
= end_hard_regno (mode
, regno
);
349 if (!HARD_REGISTER_NUM_P (end_regno
- 1))
352 while (++regno
< end_regno
)
353 if (!TEST_HARD_REG_BIT (regs
, regno
))
359 /* Return true if (reg:MODE REGNO) includes an element of REGS. */
362 overlaps_hard_reg_set_p (const HARD_REG_SET regs
, enum machine_mode mode
,
365 unsigned int end_regno
;
367 if (TEST_HARD_REG_BIT (regs
, regno
))
370 end_regno
= end_hard_regno (mode
, regno
);
371 while (++regno
< end_regno
)
372 if (TEST_HARD_REG_BIT (regs
, regno
))
378 /* Like add_to_hard_reg_set, but use a REGNO/NREGS range instead of
382 add_range_to_hard_reg_set (HARD_REG_SET
*regs
, unsigned int regno
,
386 SET_HARD_REG_BIT (*regs
, regno
+ nregs
);
389 /* Likewise, but remove the registers. */
392 remove_range_from_hard_reg_set (HARD_REG_SET
*regs
, unsigned int regno
,
396 CLEAR_HARD_REG_BIT (*regs
, regno
+ nregs
);
399 /* Like overlaps_hard_reg_set_p, but use a REGNO/NREGS range instead of
402 range_overlaps_hard_reg_set_p (const HARD_REG_SET set
, unsigned regno
,
406 if (TEST_HARD_REG_BIT (set
, regno
+ nregs
))
411 /* Like in_hard_reg_set_p, but use a REGNO/NREGS range instead of
414 range_in_hard_reg_set_p (const HARD_REG_SET set
, unsigned regno
, int nregs
)
417 if (!TEST_HARD_REG_BIT (set
, regno
+ nregs
))
422 #endif /* GCC_REGS_H */