1 /* Rtl-level induction variable analysis.
2 Copyright (C) 2004-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This is a simple analysis of induction variables of the loop. The major use
21 is for determining the number of iterations of a loop for loop unrolling,
22 doloop optimization and branch prediction. The iv information is computed
25 Induction variables are analyzed by walking the use-def chains. When
26 a basic induction variable (biv) is found, it is cached in the bivs
27 hash table. When register is proved to be a biv, its description
28 is stored to DF_REF_DATA of the def reference.
30 The analysis works always with one loop -- you must call
31 iv_analysis_loop_init (loop) for it. All the other functions then work with
32 this loop. When you need to work with another loop, just call
33 iv_analysis_loop_init for it. When you no longer need iv analysis, call
34 iv_analysis_done () to clean up the memory.
36 The available functions are:
38 iv_analyze (insn, reg, iv): Stores the description of the induction variable
39 corresponding to the use of register REG in INSN to IV. Returns true if
40 REG is an induction variable in INSN. false otherwise.
41 If use of REG is not found in INSN, following insns are scanned (so that
42 we may call this function on insn returned by get_condition).
43 iv_analyze_result (insn, def, iv): Stores to IV the description of the iv
44 corresponding to DEF, which is a register defined in INSN.
45 iv_analyze_expr (insn, rhs, mode, iv): Stores to IV the description of iv
46 corresponding to expression EXPR evaluated at INSN. All registers used bu
47 EXPR must also be used in INSN.
52 #include "coretypes.h"
55 #include "hard-reg-set.h"
57 #include "basic-block.h"
61 #include "diagnostic-core.h"
66 /* Possible return values of iv_get_reaching_def. */
70 /* More than one reaching def, or reaching def that does not
74 /* The use is trivial invariant of the loop, i.e. is not changed
78 /* The use is reached by initial value and a value from the
79 previous iteration. */
82 /* The use has single dominating def. */
86 /* Information about a biv. */
90 unsigned regno
; /* The register of the biv. */
91 struct rtx_iv iv
; /* Value of the biv. */
94 static bool clean_slate
= true;
96 static unsigned int iv_ref_table_size
= 0;
98 /* Table of rtx_ivs indexed by the df_ref uid field. */
99 static struct rtx_iv
** iv_ref_table
;
101 /* Induction variable stored at the reference. */
102 #define DF_REF_IV(REF) iv_ref_table[DF_REF_ID(REF)]
103 #define DF_REF_IV_SET(REF, IV) iv_ref_table[DF_REF_ID(REF)] = (IV)
105 /* The current loop. */
107 static struct loop
*current_loop
;
109 /* Bivs of the current loop. */
113 static bool iv_analyze_op (rtx
, rtx
, struct rtx_iv
*);
115 /* Return the RTX code corresponding to the IV extend code EXTEND. */
116 static inline enum rtx_code
117 iv_extend_to_rtx_code (enum iv_extend_code extend
)
125 case IV_UNKNOWN_EXTEND
:
131 /* Dumps information about IV to FILE. */
133 extern void dump_iv_info (FILE *, struct rtx_iv
*);
135 dump_iv_info (FILE *file
, struct rtx_iv
*iv
)
139 fprintf (file
, "not simple");
143 if (iv
->step
== const0_rtx
144 && !iv
->first_special
)
145 fprintf (file
, "invariant ");
147 print_rtl (file
, iv
->base
);
148 if (iv
->step
!= const0_rtx
)
150 fprintf (file
, " + ");
151 print_rtl (file
, iv
->step
);
152 fprintf (file
, " * iteration");
154 fprintf (file
, " (in %s)", GET_MODE_NAME (iv
->mode
));
156 if (iv
->mode
!= iv
->extend_mode
)
157 fprintf (file
, " %s to %s",
158 rtx_name
[iv_extend_to_rtx_code (iv
->extend
)],
159 GET_MODE_NAME (iv
->extend_mode
));
161 if (iv
->mult
!= const1_rtx
)
163 fprintf (file
, " * ");
164 print_rtl (file
, iv
->mult
);
166 if (iv
->delta
!= const0_rtx
)
168 fprintf (file
, " + ");
169 print_rtl (file
, iv
->delta
);
171 if (iv
->first_special
)
172 fprintf (file
, " (first special)");
175 /* Generates a subreg to get the least significant part of EXPR (in mode
176 INNER_MODE) to OUTER_MODE. */
179 lowpart_subreg (enum machine_mode outer_mode
, rtx expr
,
180 enum machine_mode inner_mode
)
182 return simplify_gen_subreg (outer_mode
, expr
, inner_mode
,
183 subreg_lowpart_offset (outer_mode
, inner_mode
));
187 check_iv_ref_table_size (void)
189 if (iv_ref_table_size
< DF_DEFS_TABLE_SIZE())
191 unsigned int new_size
= DF_DEFS_TABLE_SIZE () + (DF_DEFS_TABLE_SIZE () / 4);
192 iv_ref_table
= XRESIZEVEC (struct rtx_iv
*, iv_ref_table
, new_size
);
193 memset (&iv_ref_table
[iv_ref_table_size
], 0,
194 (new_size
- iv_ref_table_size
) * sizeof (struct rtx_iv
*));
195 iv_ref_table_size
= new_size
;
200 /* Checks whether REG is a well-behaved register. */
203 simple_reg_p (rtx reg
)
207 if (GET_CODE (reg
) == SUBREG
)
209 if (!subreg_lowpart_p (reg
))
211 reg
= SUBREG_REG (reg
);
218 if (HARD_REGISTER_NUM_P (r
))
221 if (GET_MODE_CLASS (GET_MODE (reg
)) != MODE_INT
)
227 /* Clears the information about ivs stored in df. */
232 unsigned i
, n_defs
= DF_DEFS_TABLE_SIZE ();
235 check_iv_ref_table_size ();
236 for (i
= 0; i
< n_defs
; i
++)
238 iv
= iv_ref_table
[i
];
242 iv_ref_table
[i
] = NULL
;
249 /* Returns hash value for biv B. */
252 biv_hash (const void *b
)
254 return ((const struct biv_entry
*) b
)->regno
;
257 /* Compares biv B and register R. */
260 biv_eq (const void *b
, const void *r
)
262 return ((const struct biv_entry
*) b
)->regno
== REGNO ((const_rtx
) r
);
265 /* Prepare the data for an induction variable analysis of a LOOP. */
268 iv_analysis_loop_init (struct loop
*loop
)
270 basic_block
*body
= get_loop_body_in_dom_order (loop
), bb
;
271 bitmap blocks
= BITMAP_ALLOC (NULL
);
276 /* Clear the information from the analysis of the previous loop. */
279 df_set_flags (DF_EQ_NOTES
+ DF_DEFER_INSN_RESCAN
);
280 bivs
= htab_create (10, biv_hash
, biv_eq
, free
);
286 for (i
= 0; i
< loop
->num_nodes
; i
++)
289 bitmap_set_bit (blocks
, bb
->index
);
291 /* Get rid of the ud chains before processing the rescans. Then add
293 df_remove_problem (df_chain
);
294 df_process_deferred_rescans ();
295 df_set_flags (DF_RD_PRUNE_DEAD_DEFS
);
296 df_chain_add_problem (DF_UD_CHAIN
);
297 df_note_add_problem ();
298 df_set_blocks (blocks
);
301 df_dump_region (dump_file
);
303 check_iv_ref_table_size ();
304 BITMAP_FREE (blocks
);
308 /* Finds the definition of REG that dominates loop latch and stores
309 it to DEF. Returns false if there is not a single definition
310 dominating the latch. If REG has no definition in loop, DEF
311 is set to NULL and true is returned. */
314 latch_dominating_def (rtx reg
, df_ref
*def
)
316 df_ref single_rd
= NULL
, adef
;
317 unsigned regno
= REGNO (reg
);
318 struct df_rd_bb_info
*bb_info
= DF_RD_BB_INFO (current_loop
->latch
);
320 for (adef
= DF_REG_DEF_CHAIN (regno
); adef
; adef
= DF_REF_NEXT_REG (adef
))
322 if (!bitmap_bit_p (df
->blocks_to_analyze
, DF_REF_BBNO (adef
))
323 || !bitmap_bit_p (&bb_info
->out
, DF_REF_ID (adef
)))
326 /* More than one reaching definition. */
330 if (!just_once_each_iteration_p (current_loop
, DF_REF_BB (adef
)))
340 /* Gets definition of REG reaching its use in INSN and stores it to DEF. */
342 static enum iv_grd_result
343 iv_get_reaching_def (rtx insn
, rtx reg
, df_ref
*def
)
346 basic_block def_bb
, use_bb
;
351 if (!simple_reg_p (reg
))
353 if (GET_CODE (reg
) == SUBREG
)
354 reg
= SUBREG_REG (reg
);
355 gcc_assert (REG_P (reg
));
357 use
= df_find_use (insn
, reg
);
358 gcc_assert (use
!= NULL
);
360 if (!DF_REF_CHAIN (use
))
361 return GRD_INVARIANT
;
363 /* More than one reaching def. */
364 if (DF_REF_CHAIN (use
)->next
)
367 adef
= DF_REF_CHAIN (use
)->ref
;
369 /* We do not handle setting only part of the register. */
370 if (DF_REF_FLAGS (adef
) & DF_REF_READ_WRITE
)
373 def_insn
= DF_REF_INSN (adef
);
374 def_bb
= DF_REF_BB (adef
);
375 use_bb
= BLOCK_FOR_INSN (insn
);
377 if (use_bb
== def_bb
)
378 dom_p
= (DF_INSN_LUID (def_insn
) < DF_INSN_LUID (insn
));
380 dom_p
= dominated_by_p (CDI_DOMINATORS
, use_bb
, def_bb
);
385 return GRD_SINGLE_DOM
;
388 /* The definition does not dominate the use. This is still OK if
389 this may be a use of a biv, i.e. if the def_bb dominates loop
391 if (just_once_each_iteration_p (current_loop
, def_bb
))
392 return GRD_MAYBE_BIV
;
397 /* Sets IV to invariant CST in MODE. Always returns true (just for
398 consistency with other iv manipulation functions that may fail). */
401 iv_constant (struct rtx_iv
*iv
, rtx cst
, enum machine_mode mode
)
403 if (mode
== VOIDmode
)
404 mode
= GET_MODE (cst
);
408 iv
->step
= const0_rtx
;
409 iv
->first_special
= false;
410 iv
->extend
= IV_UNKNOWN_EXTEND
;
411 iv
->extend_mode
= iv
->mode
;
412 iv
->delta
= const0_rtx
;
413 iv
->mult
= const1_rtx
;
418 /* Evaluates application of subreg to MODE on IV. */
421 iv_subreg (struct rtx_iv
*iv
, enum machine_mode mode
)
423 /* If iv is invariant, just calculate the new value. */
424 if (iv
->step
== const0_rtx
425 && !iv
->first_special
)
427 rtx val
= get_iv_value (iv
, const0_rtx
);
428 val
= lowpart_subreg (mode
, val
, iv
->extend_mode
);
431 iv
->extend
= IV_UNKNOWN_EXTEND
;
432 iv
->mode
= iv
->extend_mode
= mode
;
433 iv
->delta
= const0_rtx
;
434 iv
->mult
= const1_rtx
;
438 if (iv
->extend_mode
== mode
)
441 if (GET_MODE_BITSIZE (mode
) > GET_MODE_BITSIZE (iv
->mode
))
444 iv
->extend
= IV_UNKNOWN_EXTEND
;
447 iv
->base
= simplify_gen_binary (PLUS
, iv
->extend_mode
, iv
->delta
,
448 simplify_gen_binary (MULT
, iv
->extend_mode
,
449 iv
->base
, iv
->mult
));
450 iv
->step
= simplify_gen_binary (MULT
, iv
->extend_mode
, iv
->step
, iv
->mult
);
451 iv
->mult
= const1_rtx
;
452 iv
->delta
= const0_rtx
;
453 iv
->first_special
= false;
458 /* Evaluates application of EXTEND to MODE on IV. */
461 iv_extend (struct rtx_iv
*iv
, enum iv_extend_code extend
, enum machine_mode mode
)
463 /* If iv is invariant, just calculate the new value. */
464 if (iv
->step
== const0_rtx
465 && !iv
->first_special
)
467 rtx val
= get_iv_value (iv
, const0_rtx
);
468 val
= simplify_gen_unary (iv_extend_to_rtx_code (extend
), mode
,
469 val
, iv
->extend_mode
);
471 iv
->extend
= IV_UNKNOWN_EXTEND
;
472 iv
->mode
= iv
->extend_mode
= mode
;
473 iv
->delta
= const0_rtx
;
474 iv
->mult
= const1_rtx
;
478 if (mode
!= iv
->extend_mode
)
481 if (iv
->extend
!= IV_UNKNOWN_EXTEND
482 && iv
->extend
!= extend
)
490 /* Evaluates negation of IV. */
493 iv_neg (struct rtx_iv
*iv
)
495 if (iv
->extend
== IV_UNKNOWN_EXTEND
)
497 iv
->base
= simplify_gen_unary (NEG
, iv
->extend_mode
,
498 iv
->base
, iv
->extend_mode
);
499 iv
->step
= simplify_gen_unary (NEG
, iv
->extend_mode
,
500 iv
->step
, iv
->extend_mode
);
504 iv
->delta
= simplify_gen_unary (NEG
, iv
->extend_mode
,
505 iv
->delta
, iv
->extend_mode
);
506 iv
->mult
= simplify_gen_unary (NEG
, iv
->extend_mode
,
507 iv
->mult
, iv
->extend_mode
);
513 /* Evaluates addition or subtraction (according to OP) of IV1 to IV0. */
516 iv_add (struct rtx_iv
*iv0
, struct rtx_iv
*iv1
, enum rtx_code op
)
518 enum machine_mode mode
;
521 /* Extend the constant to extend_mode of the other operand if necessary. */
522 if (iv0
->extend
== IV_UNKNOWN_EXTEND
523 && iv0
->mode
== iv0
->extend_mode
524 && iv0
->step
== const0_rtx
525 && GET_MODE_SIZE (iv0
->extend_mode
) < GET_MODE_SIZE (iv1
->extend_mode
))
527 iv0
->extend_mode
= iv1
->extend_mode
;
528 iv0
->base
= simplify_gen_unary (ZERO_EXTEND
, iv0
->extend_mode
,
529 iv0
->base
, iv0
->mode
);
531 if (iv1
->extend
== IV_UNKNOWN_EXTEND
532 && iv1
->mode
== iv1
->extend_mode
533 && iv1
->step
== const0_rtx
534 && GET_MODE_SIZE (iv1
->extend_mode
) < GET_MODE_SIZE (iv0
->extend_mode
))
536 iv1
->extend_mode
= iv0
->extend_mode
;
537 iv1
->base
= simplify_gen_unary (ZERO_EXTEND
, iv1
->extend_mode
,
538 iv1
->base
, iv1
->mode
);
541 mode
= iv0
->extend_mode
;
542 if (mode
!= iv1
->extend_mode
)
545 if (iv0
->extend
== IV_UNKNOWN_EXTEND
546 && iv1
->extend
== IV_UNKNOWN_EXTEND
)
548 if (iv0
->mode
!= iv1
->mode
)
551 iv0
->base
= simplify_gen_binary (op
, mode
, iv0
->base
, iv1
->base
);
552 iv0
->step
= simplify_gen_binary (op
, mode
, iv0
->step
, iv1
->step
);
557 /* Handle addition of constant. */
558 if (iv1
->extend
== IV_UNKNOWN_EXTEND
560 && iv1
->step
== const0_rtx
)
562 iv0
->delta
= simplify_gen_binary (op
, mode
, iv0
->delta
, iv1
->base
);
566 if (iv0
->extend
== IV_UNKNOWN_EXTEND
568 && iv0
->step
== const0_rtx
)
576 iv0
->delta
= simplify_gen_binary (PLUS
, mode
, iv0
->delta
, arg
);
583 /* Evaluates multiplication of IV by constant CST. */
586 iv_mult (struct rtx_iv
*iv
, rtx mby
)
588 enum machine_mode mode
= iv
->extend_mode
;
590 if (GET_MODE (mby
) != VOIDmode
591 && GET_MODE (mby
) != mode
)
594 if (iv
->extend
== IV_UNKNOWN_EXTEND
)
596 iv
->base
= simplify_gen_binary (MULT
, mode
, iv
->base
, mby
);
597 iv
->step
= simplify_gen_binary (MULT
, mode
, iv
->step
, mby
);
601 iv
->delta
= simplify_gen_binary (MULT
, mode
, iv
->delta
, mby
);
602 iv
->mult
= simplify_gen_binary (MULT
, mode
, iv
->mult
, mby
);
608 /* Evaluates shift of IV by constant CST. */
611 iv_shift (struct rtx_iv
*iv
, rtx mby
)
613 enum machine_mode mode
= iv
->extend_mode
;
615 if (GET_MODE (mby
) != VOIDmode
616 && GET_MODE (mby
) != mode
)
619 if (iv
->extend
== IV_UNKNOWN_EXTEND
)
621 iv
->base
= simplify_gen_binary (ASHIFT
, mode
, iv
->base
, mby
);
622 iv
->step
= simplify_gen_binary (ASHIFT
, mode
, iv
->step
, mby
);
626 iv
->delta
= simplify_gen_binary (ASHIFT
, mode
, iv
->delta
, mby
);
627 iv
->mult
= simplify_gen_binary (ASHIFT
, mode
, iv
->mult
, mby
);
633 /* The recursive part of get_biv_step. Gets the value of the single value
634 defined by DEF wrto initial value of REG inside loop, in shape described
638 get_biv_step_1 (df_ref def
, rtx reg
,
639 rtx
*inner_step
, enum machine_mode
*inner_mode
,
640 enum iv_extend_code
*extend
, enum machine_mode outer_mode
,
643 rtx set
, rhs
, op0
= NULL_RTX
, op1
= NULL_RTX
;
644 rtx next
, nextr
, tmp
;
646 rtx insn
= DF_REF_INSN (def
);
648 enum iv_grd_result res
;
650 set
= single_set (insn
);
654 rhs
= find_reg_equal_equiv_note (insn
);
660 code
= GET_CODE (rhs
);
673 if (code
== PLUS
&& CONSTANT_P (op0
))
675 tmp
= op0
; op0
= op1
; op1
= tmp
;
678 if (!simple_reg_p (op0
)
679 || !CONSTANT_P (op1
))
682 if (GET_MODE (rhs
) != outer_mode
)
684 /* ppc64 uses expressions like
686 (set x:SI (plus:SI (subreg:SI y:DI) 1)).
688 this is equivalent to
690 (set x':DI (plus:DI y:DI 1))
691 (set x:SI (subreg:SI (x':DI)). */
692 if (GET_CODE (op0
) != SUBREG
)
694 if (GET_MODE (SUBREG_REG (op0
)) != outer_mode
)
703 if (GET_MODE (rhs
) != outer_mode
)
707 if (!simple_reg_p (op0
))
717 if (GET_CODE (next
) == SUBREG
)
719 if (!subreg_lowpart_p (next
))
722 nextr
= SUBREG_REG (next
);
723 if (GET_MODE (nextr
) != outer_mode
)
729 res
= iv_get_reaching_def (insn
, nextr
, &next_def
);
731 if (res
== GRD_INVALID
|| res
== GRD_INVARIANT
)
734 if (res
== GRD_MAYBE_BIV
)
736 if (!rtx_equal_p (nextr
, reg
))
739 *inner_step
= const0_rtx
;
740 *extend
= IV_UNKNOWN_EXTEND
;
741 *inner_mode
= outer_mode
;
742 *outer_step
= const0_rtx
;
744 else if (!get_biv_step_1 (next_def
, reg
,
745 inner_step
, inner_mode
, extend
, outer_mode
,
749 if (GET_CODE (next
) == SUBREG
)
751 enum machine_mode amode
= GET_MODE (next
);
753 if (GET_MODE_SIZE (amode
) > GET_MODE_SIZE (*inner_mode
))
757 *inner_step
= simplify_gen_binary (PLUS
, outer_mode
,
758 *inner_step
, *outer_step
);
759 *outer_step
= const0_rtx
;
760 *extend
= IV_UNKNOWN_EXTEND
;
771 if (*inner_mode
== outer_mode
772 /* See comment in previous switch. */
773 || GET_MODE (rhs
) != outer_mode
)
774 *inner_step
= simplify_gen_binary (code
, outer_mode
,
777 *outer_step
= simplify_gen_binary (code
, outer_mode
,
783 gcc_assert (GET_MODE (op0
) == *inner_mode
784 && *extend
== IV_UNKNOWN_EXTEND
785 && *outer_step
== const0_rtx
);
787 *extend
= (code
== SIGN_EXTEND
) ? IV_SIGN_EXTEND
: IV_ZERO_EXTEND
;
797 /* Gets the operation on register REG inside loop, in shape
799 OUTER_STEP + EXTEND_{OUTER_MODE} (SUBREG_{INNER_MODE} (REG + INNER_STEP))
801 If the operation cannot be described in this shape, return false.
802 LAST_DEF is the definition of REG that dominates loop latch. */
805 get_biv_step (df_ref last_def
, rtx reg
, rtx
*inner_step
,
806 enum machine_mode
*inner_mode
, enum iv_extend_code
*extend
,
807 enum machine_mode
*outer_mode
, rtx
*outer_step
)
809 *outer_mode
= GET_MODE (reg
);
811 if (!get_biv_step_1 (last_def
, reg
,
812 inner_step
, inner_mode
, extend
, *outer_mode
,
816 gcc_assert ((*inner_mode
== *outer_mode
) != (*extend
!= IV_UNKNOWN_EXTEND
));
817 gcc_assert (*inner_mode
!= *outer_mode
|| *outer_step
== const0_rtx
);
822 /* Records information that DEF is induction variable IV. */
825 record_iv (df_ref def
, struct rtx_iv
*iv
)
827 struct rtx_iv
*recorded_iv
= XNEW (struct rtx_iv
);
830 check_iv_ref_table_size ();
831 DF_REF_IV_SET (def
, recorded_iv
);
834 /* If DEF was already analyzed for bivness, store the description of the biv to
835 IV and return true. Otherwise return false. */
838 analyzed_for_bivness_p (rtx def
, struct rtx_iv
*iv
)
840 struct biv_entry
*biv
=
841 (struct biv_entry
*) htab_find_with_hash (bivs
, def
, REGNO (def
));
851 record_biv (rtx def
, struct rtx_iv
*iv
)
853 struct biv_entry
*biv
= XNEW (struct biv_entry
);
854 void **slot
= htab_find_slot_with_hash (bivs
, def
, REGNO (def
), INSERT
);
856 biv
->regno
= REGNO (def
);
862 /* Determines whether DEF is a biv and if so, stores its description
866 iv_analyze_biv (rtx def
, struct rtx_iv
*iv
)
868 rtx inner_step
, outer_step
;
869 enum machine_mode inner_mode
, outer_mode
;
870 enum iv_extend_code extend
;
875 fprintf (dump_file
, "Analyzing ");
876 print_rtl (dump_file
, def
);
877 fprintf (dump_file
, " for bivness.\n");
882 if (!CONSTANT_P (def
))
885 return iv_constant (iv
, def
, VOIDmode
);
888 if (!latch_dominating_def (def
, &last_def
))
891 fprintf (dump_file
, " not simple.\n");
896 return iv_constant (iv
, def
, VOIDmode
);
898 if (analyzed_for_bivness_p (def
, iv
))
901 fprintf (dump_file
, " already analysed.\n");
902 return iv
->base
!= NULL_RTX
;
905 if (!get_biv_step (last_def
, def
, &inner_step
, &inner_mode
, &extend
,
906 &outer_mode
, &outer_step
))
912 /* Loop transforms base to es (base + inner_step) + outer_step,
913 where es means extend of subreg between inner_mode and outer_mode.
914 The corresponding induction variable is
916 es ((base - outer_step) + i * (inner_step + outer_step)) + outer_step */
918 iv
->base
= simplify_gen_binary (MINUS
, outer_mode
, def
, outer_step
);
919 iv
->step
= simplify_gen_binary (PLUS
, outer_mode
, inner_step
, outer_step
);
920 iv
->mode
= inner_mode
;
921 iv
->extend_mode
= outer_mode
;
923 iv
->mult
= const1_rtx
;
924 iv
->delta
= outer_step
;
925 iv
->first_special
= inner_mode
!= outer_mode
;
930 fprintf (dump_file
, " ");
931 dump_iv_info (dump_file
, iv
);
932 fprintf (dump_file
, "\n");
935 record_biv (def
, iv
);
936 return iv
->base
!= NULL_RTX
;
939 /* Analyzes expression RHS used at INSN and stores the result to *IV.
940 The mode of the induction variable is MODE. */
943 iv_analyze_expr (rtx insn
, rtx rhs
, enum machine_mode mode
, struct rtx_iv
*iv
)
945 rtx mby
= NULL_RTX
, tmp
;
946 rtx op0
= NULL_RTX
, op1
= NULL_RTX
;
947 struct rtx_iv iv0
, iv1
;
948 enum rtx_code code
= GET_CODE (rhs
);
949 enum machine_mode omode
= mode
;
955 gcc_assert (GET_MODE (rhs
) == mode
|| GET_MODE (rhs
) == VOIDmode
);
961 if (!iv_analyze_op (insn
, rhs
, iv
))
964 if (iv
->mode
== VOIDmode
)
967 iv
->extend_mode
= mode
;
983 omode
= GET_MODE (op0
);
995 if (!CONSTANT_P (mby
))
1001 if (!CONSTANT_P (mby
))
1006 op0
= XEXP (rhs
, 0);
1007 mby
= XEXP (rhs
, 1);
1008 if (!CONSTANT_P (mby
))
1017 && !iv_analyze_expr (insn
, op0
, omode
, &iv0
))
1021 && !iv_analyze_expr (insn
, op1
, omode
, &iv1
))
1027 if (!iv_extend (&iv0
, IV_SIGN_EXTEND
, mode
))
1032 if (!iv_extend (&iv0
, IV_ZERO_EXTEND
, mode
))
1043 if (!iv_add (&iv0
, &iv1
, code
))
1048 if (!iv_mult (&iv0
, mby
))
1053 if (!iv_shift (&iv0
, mby
))
1062 return iv
->base
!= NULL_RTX
;
1065 /* Analyzes iv DEF and stores the result to *IV. */
1068 iv_analyze_def (df_ref def
, struct rtx_iv
*iv
)
1070 rtx insn
= DF_REF_INSN (def
);
1071 rtx reg
= DF_REF_REG (def
);
1076 fprintf (dump_file
, "Analyzing def of ");
1077 print_rtl (dump_file
, reg
);
1078 fprintf (dump_file
, " in insn ");
1079 print_rtl_single (dump_file
, insn
);
1082 check_iv_ref_table_size ();
1083 if (DF_REF_IV (def
))
1086 fprintf (dump_file
, " already analysed.\n");
1087 *iv
= *DF_REF_IV (def
);
1088 return iv
->base
!= NULL_RTX
;
1091 iv
->mode
= VOIDmode
;
1092 iv
->base
= NULL_RTX
;
1093 iv
->step
= NULL_RTX
;
1098 set
= single_set (insn
);
1102 if (!REG_P (SET_DEST (set
)))
1105 gcc_assert (SET_DEST (set
) == reg
);
1106 rhs
= find_reg_equal_equiv_note (insn
);
1108 rhs
= XEXP (rhs
, 0);
1110 rhs
= SET_SRC (set
);
1112 iv_analyze_expr (insn
, rhs
, GET_MODE (reg
), iv
);
1113 record_iv (def
, iv
);
1117 print_rtl (dump_file
, reg
);
1118 fprintf (dump_file
, " in insn ");
1119 print_rtl_single (dump_file
, insn
);
1120 fprintf (dump_file
, " is ");
1121 dump_iv_info (dump_file
, iv
);
1122 fprintf (dump_file
, "\n");
1125 return iv
->base
!= NULL_RTX
;
1128 /* Analyzes operand OP of INSN and stores the result to *IV. */
1131 iv_analyze_op (rtx insn
, rtx op
, struct rtx_iv
*iv
)
1134 enum iv_grd_result res
;
1138 fprintf (dump_file
, "Analyzing operand ");
1139 print_rtl (dump_file
, op
);
1140 fprintf (dump_file
, " of insn ");
1141 print_rtl_single (dump_file
, insn
);
1144 if (function_invariant_p (op
))
1145 res
= GRD_INVARIANT
;
1146 else if (GET_CODE (op
) == SUBREG
)
1148 if (!subreg_lowpart_p (op
))
1151 if (!iv_analyze_op (insn
, SUBREG_REG (op
), iv
))
1154 return iv_subreg (iv
, GET_MODE (op
));
1158 res
= iv_get_reaching_def (insn
, op
, &def
);
1159 if (res
== GRD_INVALID
)
1162 fprintf (dump_file
, " not simple.\n");
1167 if (res
== GRD_INVARIANT
)
1169 iv_constant (iv
, op
, VOIDmode
);
1173 fprintf (dump_file
, " ");
1174 dump_iv_info (dump_file
, iv
);
1175 fprintf (dump_file
, "\n");
1180 if (res
== GRD_MAYBE_BIV
)
1181 return iv_analyze_biv (op
, iv
);
1183 return iv_analyze_def (def
, iv
);
1186 /* Analyzes value VAL at INSN and stores the result to *IV. */
1189 iv_analyze (rtx insn
, rtx val
, struct rtx_iv
*iv
)
1193 /* We must find the insn in that val is used, so that we get to UD chains.
1194 Since the function is sometimes called on result of get_condition,
1195 this does not necessarily have to be directly INSN; scan also the
1197 if (simple_reg_p (val
))
1199 if (GET_CODE (val
) == SUBREG
)
1200 reg
= SUBREG_REG (val
);
1204 while (!df_find_use (insn
, reg
))
1205 insn
= NEXT_INSN (insn
);
1208 return iv_analyze_op (insn
, val
, iv
);
1211 /* Analyzes definition of DEF in INSN and stores the result to IV. */
1214 iv_analyze_result (rtx insn
, rtx def
, struct rtx_iv
*iv
)
1218 adef
= df_find_def (insn
, def
);
1222 return iv_analyze_def (adef
, iv
);
1225 /* Checks whether definition of register REG in INSN is a basic induction
1226 variable. IV analysis must have been initialized (via a call to
1227 iv_analysis_loop_init) for this function to produce a result. */
1230 biv_p (rtx insn
, rtx reg
)
1233 df_ref def
, last_def
;
1235 if (!simple_reg_p (reg
))
1238 def
= df_find_def (insn
, reg
);
1239 gcc_assert (def
!= NULL
);
1240 if (!latch_dominating_def (reg
, &last_def
))
1242 if (last_def
!= def
)
1245 if (!iv_analyze_biv (reg
, &iv
))
1248 return iv
.step
!= const0_rtx
;
1251 /* Calculates value of IV at ITERATION-th iteration. */
1254 get_iv_value (struct rtx_iv
*iv
, rtx iteration
)
1258 /* We would need to generate some if_then_else patterns, and so far
1259 it is not needed anywhere. */
1260 gcc_assert (!iv
->first_special
);
1262 if (iv
->step
!= const0_rtx
&& iteration
!= const0_rtx
)
1263 val
= simplify_gen_binary (PLUS
, iv
->extend_mode
, iv
->base
,
1264 simplify_gen_binary (MULT
, iv
->extend_mode
,
1265 iv
->step
, iteration
));
1269 if (iv
->extend_mode
== iv
->mode
)
1272 val
= lowpart_subreg (iv
->mode
, val
, iv
->extend_mode
);
1274 if (iv
->extend
== IV_UNKNOWN_EXTEND
)
1277 val
= simplify_gen_unary (iv_extend_to_rtx_code (iv
->extend
),
1278 iv
->extend_mode
, val
, iv
->mode
);
1279 val
= simplify_gen_binary (PLUS
, iv
->extend_mode
, iv
->delta
,
1280 simplify_gen_binary (MULT
, iv
->extend_mode
,
1286 /* Free the data for an induction variable analysis. */
1289 iv_analysis_done (void)
1295 df_finish_pass (true);
1297 free (iv_ref_table
);
1298 iv_ref_table
= NULL
;
1299 iv_ref_table_size
= 0;
1304 /* Computes inverse to X modulo (1 << MOD). */
1306 static unsigned HOST_WIDEST_INT
1307 inverse (unsigned HOST_WIDEST_INT x
, int mod
)
1309 unsigned HOST_WIDEST_INT mask
=
1310 ((unsigned HOST_WIDEST_INT
) 1 << (mod
- 1) << 1) - 1;
1311 unsigned HOST_WIDEST_INT rslt
= 1;
1314 for (i
= 0; i
< mod
- 1; i
++)
1316 rslt
= (rslt
* x
) & mask
;
1323 /* Checks whether register *REG is in set ALT. Callback for for_each_rtx. */
1326 altered_reg_used (rtx
*reg
, void *alt
)
1331 return REGNO_REG_SET_P ((bitmap
) alt
, REGNO (*reg
));
1334 /* Marks registers altered by EXPR in set ALT. */
1337 mark_altered (rtx expr
, const_rtx by ATTRIBUTE_UNUSED
, void *alt
)
1339 if (GET_CODE (expr
) == SUBREG
)
1340 expr
= SUBREG_REG (expr
);
1344 SET_REGNO_REG_SET ((bitmap
) alt
, REGNO (expr
));
1347 /* Checks whether RHS is simple enough to process. */
1350 simple_rhs_p (rtx rhs
)
1354 if (function_invariant_p (rhs
)
1355 || (REG_P (rhs
) && !HARD_REGISTER_P (rhs
)))
1358 switch (GET_CODE (rhs
))
1363 op0
= XEXP (rhs
, 0);
1364 op1
= XEXP (rhs
, 1);
1365 /* Allow reg OP const and reg OP reg. */
1366 if (!(REG_P (op0
) && !HARD_REGISTER_P (op0
))
1367 && !function_invariant_p (op0
))
1369 if (!(REG_P (op1
) && !HARD_REGISTER_P (op1
))
1370 && !function_invariant_p (op1
))
1379 op0
= XEXP (rhs
, 0);
1380 op1
= XEXP (rhs
, 1);
1381 /* Allow reg OP const. */
1382 if (!(REG_P (op0
) && !HARD_REGISTER_P (op0
)))
1384 if (!function_invariant_p (op1
))
1394 /* If REG has a single definition, replace it with its known value in EXPR.
1395 Callback for for_each_rtx. */
1398 replace_single_def_regs (rtx
*reg
, void *expr1
)
1403 rtx
*expr
= (rtx
*)expr1
;
1408 regno
= REGNO (*reg
);
1412 adef
= DF_REG_DEF_CHAIN (regno
);
1413 if (adef
== NULL
|| DF_REF_NEXT_REG (adef
) != NULL
1414 || DF_REF_IS_ARTIFICIAL (adef
))
1417 set
= single_set (DF_REF_INSN (adef
));
1418 if (set
== NULL
|| !REG_P (SET_DEST (set
))
1419 || REGNO (SET_DEST (set
)) != regno
)
1422 note
= find_reg_equal_equiv_note (DF_REF_INSN (adef
));
1424 if (note
&& function_invariant_p (XEXP (note
, 0)))
1426 src
= XEXP (note
, 0);
1429 src
= SET_SRC (set
);
1433 regno
= REGNO (src
);
1438 if (!function_invariant_p (src
))
1441 *expr
= simplify_replace_rtx (*expr
, *reg
, src
);
1445 /* A subroutine of simplify_using_initial_values, this function examines INSN
1446 to see if it contains a suitable set that we can use to make a replacement.
1447 If it is suitable, return true and set DEST and SRC to the lhs and rhs of
1448 the set; return false otherwise. */
1451 suitable_set_for_replacement (rtx insn
, rtx
*dest
, rtx
*src
)
1453 rtx set
= single_set (insn
);
1454 rtx lhs
= NULL_RTX
, rhs
;
1459 lhs
= SET_DEST (set
);
1463 rhs
= find_reg_equal_equiv_note (insn
);
1465 rhs
= XEXP (rhs
, 0);
1467 rhs
= SET_SRC (set
);
1469 if (!simple_rhs_p (rhs
))
1477 /* Using the data returned by suitable_set_for_replacement, replace DEST
1478 with SRC in *EXPR and return the new expression. Also call
1479 replace_single_def_regs if the replacement changed something. */
1481 replace_in_expr (rtx
*expr
, rtx dest
, rtx src
)
1484 *expr
= simplify_replace_rtx (*expr
, dest
, src
);
1487 while (for_each_rtx (expr
, replace_single_def_regs
, expr
) != 0)
1491 /* Checks whether A implies B. */
1494 implies_p (rtx a
, rtx b
)
1496 rtx op0
, op1
, opb0
, opb1
, r
;
1497 enum machine_mode mode
;
1499 if (GET_CODE (a
) == EQ
)
1506 r
= simplify_replace_rtx (b
, op0
, op1
);
1507 if (r
== const_true_rtx
)
1513 r
= simplify_replace_rtx (b
, op1
, op0
);
1514 if (r
== const_true_rtx
)
1519 if (b
== const_true_rtx
)
1522 if ((GET_RTX_CLASS (GET_CODE (a
)) != RTX_COMM_COMPARE
1523 && GET_RTX_CLASS (GET_CODE (a
)) != RTX_COMPARE
)
1524 || (GET_RTX_CLASS (GET_CODE (b
)) != RTX_COMM_COMPARE
1525 && GET_RTX_CLASS (GET_CODE (b
)) != RTX_COMPARE
))
1533 mode
= GET_MODE (op0
);
1534 if (mode
!= GET_MODE (opb0
))
1536 else if (mode
== VOIDmode
)
1538 mode
= GET_MODE (op1
);
1539 if (mode
!= GET_MODE (opb1
))
1543 /* A < B implies A + 1 <= B. */
1544 if ((GET_CODE (a
) == GT
|| GET_CODE (a
) == LT
)
1545 && (GET_CODE (b
) == GE
|| GET_CODE (b
) == LE
))
1548 if (GET_CODE (a
) == GT
)
1555 if (GET_CODE (b
) == GE
)
1562 if (SCALAR_INT_MODE_P (mode
)
1563 && rtx_equal_p (op1
, opb1
)
1564 && simplify_gen_binary (MINUS
, mode
, opb0
, op0
) == const1_rtx
)
1569 /* A < B or A > B imply A != B. TODO: Likewise
1570 A + n < B implies A != B + n if neither wraps. */
1571 if (GET_CODE (b
) == NE
1572 && (GET_CODE (a
) == GT
|| GET_CODE (a
) == GTU
1573 || GET_CODE (a
) == LT
|| GET_CODE (a
) == LTU
))
1575 if (rtx_equal_p (op0
, opb0
)
1576 && rtx_equal_p (op1
, opb1
))
1580 /* For unsigned comparisons, A != 0 implies A > 0 and A >= 1. */
1581 if (GET_CODE (a
) == NE
1582 && op1
== const0_rtx
)
1584 if ((GET_CODE (b
) == GTU
1585 && opb1
== const0_rtx
)
1586 || (GET_CODE (b
) == GEU
1587 && opb1
== const1_rtx
))
1588 return rtx_equal_p (op0
, opb0
);
1591 /* A != N is equivalent to A - (N + 1) <u -1. */
1592 if (GET_CODE (a
) == NE
1593 && CONST_INT_P (op1
)
1594 && GET_CODE (b
) == LTU
1595 && opb1
== constm1_rtx
1596 && GET_CODE (opb0
) == PLUS
1597 && CONST_INT_P (XEXP (opb0
, 1))
1598 /* Avoid overflows. */
1599 && ((unsigned HOST_WIDE_INT
) INTVAL (XEXP (opb0
, 1))
1600 != ((unsigned HOST_WIDE_INT
)1
1601 << (HOST_BITS_PER_WIDE_INT
- 1)) - 1)
1602 && INTVAL (XEXP (opb0
, 1)) + 1 == -INTVAL (op1
))
1603 return rtx_equal_p (op0
, XEXP (opb0
, 0));
1605 /* Likewise, A != N implies A - N > 0. */
1606 if (GET_CODE (a
) == NE
1607 && CONST_INT_P (op1
))
1609 if (GET_CODE (b
) == GTU
1610 && GET_CODE (opb0
) == PLUS
1611 && opb1
== const0_rtx
1612 && CONST_INT_P (XEXP (opb0
, 1))
1613 /* Avoid overflows. */
1614 && ((unsigned HOST_WIDE_INT
) INTVAL (XEXP (opb0
, 1))
1615 != ((unsigned HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
- 1)))
1616 && rtx_equal_p (XEXP (opb0
, 0), op0
))
1617 return INTVAL (op1
) == -INTVAL (XEXP (opb0
, 1));
1618 if (GET_CODE (b
) == GEU
1619 && GET_CODE (opb0
) == PLUS
1620 && opb1
== const1_rtx
1621 && CONST_INT_P (XEXP (opb0
, 1))
1622 /* Avoid overflows. */
1623 && ((unsigned HOST_WIDE_INT
) INTVAL (XEXP (opb0
, 1))
1624 != ((unsigned HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
- 1)))
1625 && rtx_equal_p (XEXP (opb0
, 0), op0
))
1626 return INTVAL (op1
) == -INTVAL (XEXP (opb0
, 1));
1629 /* A >s X, where X is positive, implies A <u Y, if Y is negative. */
1630 if ((GET_CODE (a
) == GT
|| GET_CODE (a
) == GE
)
1631 && CONST_INT_P (op1
)
1632 && ((GET_CODE (a
) == GT
&& op1
== constm1_rtx
)
1633 || INTVAL (op1
) >= 0)
1634 && GET_CODE (b
) == LTU
1635 && CONST_INT_P (opb1
)
1636 && rtx_equal_p (op0
, opb0
))
1637 return INTVAL (opb1
) < 0;
1642 /* Canonicalizes COND so that
1644 (1) Ensure that operands are ordered according to
1645 swap_commutative_operands_p.
1646 (2) (LE x const) will be replaced with (LT x <const+1>) and similarly
1647 for GE, GEU, and LEU. */
1650 canon_condition (rtx cond
)
1655 enum machine_mode mode
;
1657 code
= GET_CODE (cond
);
1658 op0
= XEXP (cond
, 0);
1659 op1
= XEXP (cond
, 1);
1661 if (swap_commutative_operands_p (op0
, op1
))
1663 code
= swap_condition (code
);
1669 mode
= GET_MODE (op0
);
1670 if (mode
== VOIDmode
)
1671 mode
= GET_MODE (op1
);
1672 gcc_assert (mode
!= VOIDmode
);
1674 if (CONST_INT_P (op1
)
1675 && GET_MODE_CLASS (mode
) != MODE_CC
1676 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
1678 HOST_WIDE_INT const_val
= INTVAL (op1
);
1679 unsigned HOST_WIDE_INT uconst_val
= const_val
;
1680 unsigned HOST_WIDE_INT max_val
1681 = (unsigned HOST_WIDE_INT
) GET_MODE_MASK (mode
);
1686 if ((unsigned HOST_WIDE_INT
) const_val
!= max_val
>> 1)
1687 code
= LT
, op1
= gen_int_mode (const_val
+ 1, GET_MODE (op0
));
1690 /* When cross-compiling, const_val might be sign-extended from
1691 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
1693 if ((HOST_WIDE_INT
) (const_val
& max_val
)
1694 != (((HOST_WIDE_INT
) 1
1695 << (GET_MODE_BITSIZE (GET_MODE (op0
)) - 1))))
1696 code
= GT
, op1
= gen_int_mode (const_val
- 1, mode
);
1700 if (uconst_val
< max_val
)
1701 code
= LTU
, op1
= gen_int_mode (uconst_val
+ 1, mode
);
1705 if (uconst_val
!= 0)
1706 code
= GTU
, op1
= gen_int_mode (uconst_val
- 1, mode
);
1714 if (op0
!= XEXP (cond
, 0)
1715 || op1
!= XEXP (cond
, 1)
1716 || code
!= GET_CODE (cond
)
1717 || GET_MODE (cond
) != SImode
)
1718 cond
= gen_rtx_fmt_ee (code
, SImode
, op0
, op1
);
1723 /* Tries to use the fact that COND holds to simplify EXPR. ALTERED is the
1724 set of altered regs. */
1727 simplify_using_condition (rtx cond
, rtx
*expr
, regset altered
)
1729 rtx rev
, reve
, exp
= *expr
;
1731 /* If some register gets altered later, we do not really speak about its
1732 value at the time of comparison. */
1734 && for_each_rtx (&cond
, altered_reg_used
, altered
))
1737 if (GET_CODE (cond
) == EQ
1738 && REG_P (XEXP (cond
, 0)) && CONSTANT_P (XEXP (cond
, 1)))
1740 *expr
= simplify_replace_rtx (*expr
, XEXP (cond
, 0), XEXP (cond
, 1));
1744 if (!COMPARISON_P (exp
))
1747 rev
= reversed_condition (cond
);
1748 reve
= reversed_condition (exp
);
1750 cond
= canon_condition (cond
);
1751 exp
= canon_condition (exp
);
1753 rev
= canon_condition (rev
);
1755 reve
= canon_condition (reve
);
1757 if (rtx_equal_p (exp
, cond
))
1759 *expr
= const_true_rtx
;
1763 if (rev
&& rtx_equal_p (exp
, rev
))
1769 if (implies_p (cond
, exp
))
1771 *expr
= const_true_rtx
;
1775 if (reve
&& implies_p (cond
, reve
))
1781 /* A proof by contradiction. If *EXPR implies (not cond), *EXPR must
1783 if (rev
&& implies_p (exp
, rev
))
1789 /* Similarly, If (not *EXPR) implies (not cond), *EXPR must be true. */
1790 if (rev
&& reve
&& implies_p (reve
, rev
))
1792 *expr
= const_true_rtx
;
1796 /* We would like to have some other tests here. TODO. */
1801 /* Use relationship between A and *B to eventually eliminate *B.
1802 OP is the operation we consider. */
1805 eliminate_implied_condition (enum rtx_code op
, rtx a
, rtx
*b
)
1810 /* If A implies *B, we may replace *B by true. */
1811 if (implies_p (a
, *b
))
1812 *b
= const_true_rtx
;
1816 /* If *B implies A, we may replace *B by false. */
1817 if (implies_p (*b
, a
))
1826 /* Eliminates the conditions in TAIL that are implied by HEAD. OP is the
1827 operation we consider. */
1830 eliminate_implied_conditions (enum rtx_code op
, rtx
*head
, rtx tail
)
1834 for (elt
= tail
; elt
; elt
= XEXP (elt
, 1))
1835 eliminate_implied_condition (op
, *head
, &XEXP (elt
, 0));
1836 for (elt
= tail
; elt
; elt
= XEXP (elt
, 1))
1837 eliminate_implied_condition (op
, XEXP (elt
, 0), head
);
1840 /* Simplifies *EXPR using initial values at the start of the LOOP. If *EXPR
1841 is a list, its elements are assumed to be combined using OP. */
1844 simplify_using_initial_values (struct loop
*loop
, enum rtx_code op
, rtx
*expr
)
1846 bool expression_valid
;
1847 rtx head
, tail
, insn
, cond_list
, last_valid_expr
;
1849 regset altered
, this_altered
;
1855 if (CONSTANT_P (*expr
))
1858 if (GET_CODE (*expr
) == EXPR_LIST
)
1860 head
= XEXP (*expr
, 0);
1861 tail
= XEXP (*expr
, 1);
1863 eliminate_implied_conditions (op
, &head
, tail
);
1868 neutral
= const_true_rtx
;
1873 neutral
= const0_rtx
;
1874 aggr
= const_true_rtx
;
1881 simplify_using_initial_values (loop
, UNKNOWN
, &head
);
1884 XEXP (*expr
, 0) = aggr
;
1885 XEXP (*expr
, 1) = NULL_RTX
;
1888 else if (head
== neutral
)
1891 simplify_using_initial_values (loop
, op
, expr
);
1894 simplify_using_initial_values (loop
, op
, &tail
);
1896 if (tail
&& XEXP (tail
, 0) == aggr
)
1902 XEXP (*expr
, 0) = head
;
1903 XEXP (*expr
, 1) = tail
;
1907 gcc_assert (op
== UNKNOWN
);
1910 if (for_each_rtx (expr
, replace_single_def_regs
, expr
) == 0)
1912 if (CONSTANT_P (*expr
))
1915 e
= loop_preheader_edge (loop
);
1916 if (e
->src
== ENTRY_BLOCK_PTR
)
1919 altered
= ALLOC_REG_SET (®_obstack
);
1920 this_altered
= ALLOC_REG_SET (®_obstack
);
1922 expression_valid
= true;
1923 last_valid_expr
= *expr
;
1924 cond_list
= NULL_RTX
;
1927 insn
= BB_END (e
->src
);
1928 if (any_condjump_p (insn
))
1930 rtx cond
= get_condition (BB_END (e
->src
), NULL
, false, true);
1932 if (cond
&& (e
->flags
& EDGE_FALLTHRU
))
1933 cond
= reversed_condition (cond
);
1937 simplify_using_condition (cond
, expr
, altered
);
1941 if (CONSTANT_P (*expr
))
1943 for (note
= cond_list
; note
; note
= XEXP (note
, 1))
1945 simplify_using_condition (XEXP (note
, 0), expr
, altered
);
1946 if (CONSTANT_P (*expr
))
1950 cond_list
= alloc_EXPR_LIST (0, cond
, cond_list
);
1954 FOR_BB_INSNS_REVERSE (e
->src
, insn
)
1962 CLEAR_REG_SET (this_altered
);
1963 note_stores (PATTERN (insn
), mark_altered
, this_altered
);
1966 /* Kill all call clobbered registers. */
1968 hard_reg_set_iterator hrsi
;
1969 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call
,
1971 SET_REGNO_REG_SET (this_altered
, i
);
1974 if (suitable_set_for_replacement (insn
, &dest
, &src
))
1976 rtx
*pnote
, *pnote_next
;
1978 replace_in_expr (expr
, dest
, src
);
1979 if (CONSTANT_P (*expr
))
1982 for (pnote
= &cond_list
; *pnote
; pnote
= pnote_next
)
1985 rtx old_cond
= XEXP (note
, 0);
1987 pnote_next
= &XEXP (note
, 1);
1988 replace_in_expr (&XEXP (note
, 0), dest
, src
);
1990 /* We can no longer use a condition that has been simplified
1991 to a constant, and simplify_using_condition will abort if
1993 if (CONSTANT_P (XEXP (note
, 0)))
1995 *pnote
= *pnote_next
;
1997 free_EXPR_LIST_node (note
);
1999 /* Retry simplifications with this condition if either the
2000 expression or the condition changed. */
2001 else if (old_cond
!= XEXP (note
, 0) || old
!= *expr
)
2002 simplify_using_condition (XEXP (note
, 0), expr
, altered
);
2007 rtx
*pnote
, *pnote_next
;
2009 /* If we did not use this insn to make a replacement, any overlap
2010 between stores in this insn and our expression will cause the
2011 expression to become invalid. */
2012 if (for_each_rtx (expr
, altered_reg_used
, this_altered
))
2015 /* Likewise for the conditions. */
2016 for (pnote
= &cond_list
; *pnote
; pnote
= pnote_next
)
2019 rtx old_cond
= XEXP (note
, 0);
2021 pnote_next
= &XEXP (note
, 1);
2022 if (for_each_rtx (&old_cond
, altered_reg_used
, this_altered
))
2024 *pnote
= *pnote_next
;
2026 free_EXPR_LIST_node (note
);
2031 if (CONSTANT_P (*expr
))
2034 IOR_REG_SET (altered
, this_altered
);
2036 /* If the expression now contains regs that have been altered, we
2037 can't return it to the caller. However, it is still valid for
2038 further simplification, so keep searching to see if we can
2039 eventually turn it into a constant. */
2040 if (for_each_rtx (expr
, altered_reg_used
, altered
))
2041 expression_valid
= false;
2042 if (expression_valid
)
2043 last_valid_expr
= *expr
;
2046 if (!single_pred_p (e
->src
)
2047 || single_pred (e
->src
) == ENTRY_BLOCK_PTR
)
2049 e
= single_pred_edge (e
->src
);
2053 free_EXPR_LIST_list (&cond_list
);
2054 if (!CONSTANT_P (*expr
))
2055 *expr
= last_valid_expr
;
2056 FREE_REG_SET (altered
);
2057 FREE_REG_SET (this_altered
);
2060 /* Transforms invariant IV into MODE. Adds assumptions based on the fact
2061 that IV occurs as left operands of comparison COND and its signedness
2062 is SIGNED_P to DESC. */
2065 shorten_into_mode (struct rtx_iv
*iv
, enum machine_mode mode
,
2066 enum rtx_code cond
, bool signed_p
, struct niter_desc
*desc
)
2068 rtx mmin
, mmax
, cond_over
, cond_under
;
2070 get_mode_bounds (mode
, signed_p
, iv
->extend_mode
, &mmin
, &mmax
);
2071 cond_under
= simplify_gen_relational (LT
, SImode
, iv
->extend_mode
,
2073 cond_over
= simplify_gen_relational (GT
, SImode
, iv
->extend_mode
,
2082 if (cond_under
!= const0_rtx
)
2084 alloc_EXPR_LIST (0, cond_under
, desc
->infinite
);
2085 if (cond_over
!= const0_rtx
)
2086 desc
->noloop_assumptions
=
2087 alloc_EXPR_LIST (0, cond_over
, desc
->noloop_assumptions
);
2094 if (cond_over
!= const0_rtx
)
2096 alloc_EXPR_LIST (0, cond_over
, desc
->infinite
);
2097 if (cond_under
!= const0_rtx
)
2098 desc
->noloop_assumptions
=
2099 alloc_EXPR_LIST (0, cond_under
, desc
->noloop_assumptions
);
2103 if (cond_over
!= const0_rtx
)
2105 alloc_EXPR_LIST (0, cond_over
, desc
->infinite
);
2106 if (cond_under
!= const0_rtx
)
2108 alloc_EXPR_LIST (0, cond_under
, desc
->infinite
);
2116 iv
->extend
= signed_p
? IV_SIGN_EXTEND
: IV_ZERO_EXTEND
;
2119 /* Transforms IV0 and IV1 compared by COND so that they are both compared as
2120 subregs of the same mode if possible (sometimes it is necessary to add
2121 some assumptions to DESC). */
2124 canonicalize_iv_subregs (struct rtx_iv
*iv0
, struct rtx_iv
*iv1
,
2125 enum rtx_code cond
, struct niter_desc
*desc
)
2127 enum machine_mode comp_mode
;
2130 /* If the ivs behave specially in the first iteration, or are
2131 added/multiplied after extending, we ignore them. */
2132 if (iv0
->first_special
|| iv0
->mult
!= const1_rtx
|| iv0
->delta
!= const0_rtx
)
2134 if (iv1
->first_special
|| iv1
->mult
!= const1_rtx
|| iv1
->delta
!= const0_rtx
)
2137 /* If there is some extend, it must match signedness of the comparison. */
2142 if (iv0
->extend
== IV_ZERO_EXTEND
2143 || iv1
->extend
== IV_ZERO_EXTEND
)
2150 if (iv0
->extend
== IV_SIGN_EXTEND
2151 || iv1
->extend
== IV_SIGN_EXTEND
)
2157 if (iv0
->extend
!= IV_UNKNOWN_EXTEND
2158 && iv1
->extend
!= IV_UNKNOWN_EXTEND
2159 && iv0
->extend
!= iv1
->extend
)
2163 if (iv0
->extend
!= IV_UNKNOWN_EXTEND
)
2164 signed_p
= iv0
->extend
== IV_SIGN_EXTEND
;
2165 if (iv1
->extend
!= IV_UNKNOWN_EXTEND
)
2166 signed_p
= iv1
->extend
== IV_SIGN_EXTEND
;
2173 /* Values of both variables should be computed in the same mode. These
2174 might indeed be different, if we have comparison like
2176 (compare (subreg:SI (iv0)) (subreg:SI (iv1)))
2178 and iv0 and iv1 are both ivs iterating in SI mode, but calculated
2179 in different modes. This does not seem impossible to handle, but
2180 it hardly ever occurs in practice.
2182 The only exception is the case when one of operands is invariant.
2183 For example pentium 3 generates comparisons like
2184 (lt (subreg:HI (reg:SI)) 100). Here we assign HImode to 100, but we
2185 definitely do not want this prevent the optimization. */
2186 comp_mode
= iv0
->extend_mode
;
2187 if (GET_MODE_BITSIZE (comp_mode
) < GET_MODE_BITSIZE (iv1
->extend_mode
))
2188 comp_mode
= iv1
->extend_mode
;
2190 if (iv0
->extend_mode
!= comp_mode
)
2192 if (iv0
->mode
!= iv0
->extend_mode
2193 || iv0
->step
!= const0_rtx
)
2196 iv0
->base
= simplify_gen_unary (signed_p
? SIGN_EXTEND
: ZERO_EXTEND
,
2197 comp_mode
, iv0
->base
, iv0
->mode
);
2198 iv0
->extend_mode
= comp_mode
;
2201 if (iv1
->extend_mode
!= comp_mode
)
2203 if (iv1
->mode
!= iv1
->extend_mode
2204 || iv1
->step
!= const0_rtx
)
2207 iv1
->base
= simplify_gen_unary (signed_p
? SIGN_EXTEND
: ZERO_EXTEND
,
2208 comp_mode
, iv1
->base
, iv1
->mode
);
2209 iv1
->extend_mode
= comp_mode
;
2212 /* Check that both ivs belong to a range of a single mode. If one of the
2213 operands is an invariant, we may need to shorten it into the common
2215 if (iv0
->mode
== iv0
->extend_mode
2216 && iv0
->step
== const0_rtx
2217 && iv0
->mode
!= iv1
->mode
)
2218 shorten_into_mode (iv0
, iv1
->mode
, cond
, signed_p
, desc
);
2220 if (iv1
->mode
== iv1
->extend_mode
2221 && iv1
->step
== const0_rtx
2222 && iv0
->mode
!= iv1
->mode
)
2223 shorten_into_mode (iv1
, iv0
->mode
, swap_condition (cond
), signed_p
, desc
);
2225 if (iv0
->mode
!= iv1
->mode
)
2228 desc
->mode
= iv0
->mode
;
2229 desc
->signed_p
= signed_p
;
2234 /* Tries to estimate the maximum number of iterations in LOOP, and return the
2235 result. This function is called from iv_number_of_iterations with
2236 a number of fields in DESC already filled in. OLD_NITER is the original
2237 expression for the number of iterations, before we tried to simplify it. */
2239 static unsigned HOST_WIDEST_INT
2240 determine_max_iter (struct loop
*loop
, struct niter_desc
*desc
, rtx old_niter
)
2242 rtx niter
= desc
->niter_expr
;
2243 rtx mmin
, mmax
, cmp
;
2244 unsigned HOST_WIDEST_INT nmax
, inc
;
2245 unsigned HOST_WIDEST_INT andmax
= 0;
2247 /* We used to look for constant operand 0 of AND,
2248 but canonicalization should always make this impossible. */
2249 gcc_checking_assert (GET_CODE (niter
) != AND
2250 || !CONST_INT_P (XEXP (niter
, 0)));
2252 if (GET_CODE (niter
) == AND
2253 && CONST_INT_P (XEXP (niter
, 1)))
2255 andmax
= UINTVAL (XEXP (niter
, 1));
2256 niter
= XEXP (niter
, 0);
2259 get_mode_bounds (desc
->mode
, desc
->signed_p
, desc
->mode
, &mmin
, &mmax
);
2260 nmax
= INTVAL (mmax
) - INTVAL (mmin
);
2262 if (GET_CODE (niter
) == UDIV
)
2264 if (!CONST_INT_P (XEXP (niter
, 1)))
2266 inc
= INTVAL (XEXP (niter
, 1));
2267 niter
= XEXP (niter
, 0);
2272 /* We could use a binary search here, but for now improving the upper
2273 bound by just one eliminates one important corner case. */
2274 cmp
= simplify_gen_relational (desc
->signed_p
? LT
: LTU
, VOIDmode
,
2275 desc
->mode
, old_niter
, mmax
);
2276 simplify_using_initial_values (loop
, UNKNOWN
, &cmp
);
2277 if (cmp
== const_true_rtx
)
2282 fprintf (dump_file
, ";; improved upper bound by one.\n");
2286 nmax
= MIN (nmax
, andmax
);
2288 fprintf (dump_file
, ";; Determined upper bound "HOST_WIDEST_INT_PRINT_DEC
".\n",
2293 /* Computes number of iterations of the CONDITION in INSN in LOOP and stores
2294 the result into DESC. Very similar to determine_number_of_iterations
2295 (basically its rtl version), complicated by things like subregs. */
2298 iv_number_of_iterations (struct loop
*loop
, rtx insn
, rtx condition
,
2299 struct niter_desc
*desc
)
2301 rtx op0
, op1
, delta
, step
, bound
, may_xform
, tmp
, tmp0
, tmp1
;
2302 struct rtx_iv iv0
, iv1
, tmp_iv
;
2303 rtx assumption
, may_not_xform
;
2305 enum machine_mode mode
, comp_mode
;
2306 rtx mmin
, mmax
, mode_mmin
, mode_mmax
;
2307 unsigned HOST_WIDEST_INT s
, size
, d
, inv
, max
;
2308 HOST_WIDEST_INT up
, down
, inc
, step_val
;
2309 int was_sharp
= false;
2313 /* The meaning of these assumptions is this:
2315 then the rest of information does not have to be valid
2316 if noloop_assumptions then the loop does not roll
2317 if infinite then this exit is never used */
2319 desc
->assumptions
= NULL_RTX
;
2320 desc
->noloop_assumptions
= NULL_RTX
;
2321 desc
->infinite
= NULL_RTX
;
2322 desc
->simple_p
= true;
2324 desc
->const_iter
= false;
2325 desc
->niter_expr
= NULL_RTX
;
2327 cond
= GET_CODE (condition
);
2328 gcc_assert (COMPARISON_P (condition
));
2330 mode
= GET_MODE (XEXP (condition
, 0));
2331 if (mode
== VOIDmode
)
2332 mode
= GET_MODE (XEXP (condition
, 1));
2333 /* The constant comparisons should be folded. */
2334 gcc_assert (mode
!= VOIDmode
);
2336 /* We only handle integers or pointers. */
2337 if (GET_MODE_CLASS (mode
) != MODE_INT
2338 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
2341 op0
= XEXP (condition
, 0);
2342 if (!iv_analyze (insn
, op0
, &iv0
))
2344 if (iv0
.extend_mode
== VOIDmode
)
2345 iv0
.mode
= iv0
.extend_mode
= mode
;
2347 op1
= XEXP (condition
, 1);
2348 if (!iv_analyze (insn
, op1
, &iv1
))
2350 if (iv1
.extend_mode
== VOIDmode
)
2351 iv1
.mode
= iv1
.extend_mode
= mode
;
2353 if (GET_MODE_BITSIZE (iv0
.extend_mode
) > HOST_BITS_PER_WIDE_INT
2354 || GET_MODE_BITSIZE (iv1
.extend_mode
) > HOST_BITS_PER_WIDE_INT
)
2357 /* Check condition and normalize it. */
2365 tmp_iv
= iv0
; iv0
= iv1
; iv1
= tmp_iv
;
2366 cond
= swap_condition (cond
);
2378 /* Handle extends. This is relatively nontrivial, so we only try in some
2379 easy cases, when we can canonicalize the ivs (possibly by adding some
2380 assumptions) to shape subreg (base + i * step). This function also fills
2381 in desc->mode and desc->signed_p. */
2383 if (!canonicalize_iv_subregs (&iv0
, &iv1
, cond
, desc
))
2386 comp_mode
= iv0
.extend_mode
;
2388 size
= GET_MODE_BITSIZE (mode
);
2389 get_mode_bounds (mode
, (cond
== LE
|| cond
== LT
), comp_mode
, &mmin
, &mmax
);
2390 mode_mmin
= lowpart_subreg (mode
, mmin
, comp_mode
);
2391 mode_mmax
= lowpart_subreg (mode
, mmax
, comp_mode
);
2393 if (!CONST_INT_P (iv0
.step
) || !CONST_INT_P (iv1
.step
))
2396 /* We can take care of the case of two induction variables chasing each other
2397 if the test is NE. I have never seen a loop using it, but still it is
2399 if (iv0
.step
!= const0_rtx
&& iv1
.step
!= const0_rtx
)
2404 iv0
.step
= simplify_gen_binary (MINUS
, comp_mode
, iv0
.step
, iv1
.step
);
2405 iv1
.step
= const0_rtx
;
2408 iv0
.step
= lowpart_subreg (mode
, iv0
.step
, comp_mode
);
2409 iv1
.step
= lowpart_subreg (mode
, iv1
.step
, comp_mode
);
2411 /* This is either infinite loop or the one that ends immediately, depending
2412 on initial values. Unswitching should remove this kind of conditions. */
2413 if (iv0
.step
== const0_rtx
&& iv1
.step
== const0_rtx
)
2418 if (iv0
.step
== const0_rtx
)
2419 step_val
= -INTVAL (iv1
.step
);
2421 step_val
= INTVAL (iv0
.step
);
2423 /* Ignore loops of while (i-- < 10) type. */
2427 step_is_pow2
= !(step_val
& (step_val
- 1));
2431 /* We do not care about whether the step is power of two in this
2433 step_is_pow2
= false;
2437 /* Some more condition normalization. We must record some assumptions
2438 due to overflows. */
2443 /* We want to take care only of non-sharp relationals; this is easy,
2444 as in cases the overflow would make the transformation unsafe
2445 the loop does not roll. Seemingly it would make more sense to want
2446 to take care of sharp relationals instead, as NE is more similar to
2447 them, but the problem is that here the transformation would be more
2448 difficult due to possibly infinite loops. */
2449 if (iv0
.step
== const0_rtx
)
2451 tmp
= lowpart_subreg (mode
, iv0
.base
, comp_mode
);
2452 assumption
= simplify_gen_relational (EQ
, SImode
, mode
, tmp
,
2454 if (assumption
== const_true_rtx
)
2455 goto zero_iter_simplify
;
2456 iv0
.base
= simplify_gen_binary (PLUS
, comp_mode
,
2457 iv0
.base
, const1_rtx
);
2461 tmp
= lowpart_subreg (mode
, iv1
.base
, comp_mode
);
2462 assumption
= simplify_gen_relational (EQ
, SImode
, mode
, tmp
,
2464 if (assumption
== const_true_rtx
)
2465 goto zero_iter_simplify
;
2466 iv1
.base
= simplify_gen_binary (PLUS
, comp_mode
,
2467 iv1
.base
, constm1_rtx
);
2470 if (assumption
!= const0_rtx
)
2471 desc
->noloop_assumptions
=
2472 alloc_EXPR_LIST (0, assumption
, desc
->noloop_assumptions
);
2473 cond
= (cond
== LT
) ? LE
: LEU
;
2475 /* It will be useful to be able to tell the difference once more in
2476 LE -> NE reduction. */
2482 /* Take care of trivially infinite loops. */
2485 if (iv0
.step
== const0_rtx
)
2487 tmp
= lowpart_subreg (mode
, iv0
.base
, comp_mode
);
2488 if (rtx_equal_p (tmp
, mode_mmin
))
2491 alloc_EXPR_LIST (0, const_true_rtx
, NULL_RTX
);
2492 /* Fill in the remaining fields somehow. */
2493 goto zero_iter_simplify
;
2498 tmp
= lowpart_subreg (mode
, iv1
.base
, comp_mode
);
2499 if (rtx_equal_p (tmp
, mode_mmax
))
2502 alloc_EXPR_LIST (0, const_true_rtx
, NULL_RTX
);
2503 /* Fill in the remaining fields somehow. */
2504 goto zero_iter_simplify
;
2509 /* If we can we want to take care of NE conditions instead of size
2510 comparisons, as they are much more friendly (most importantly
2511 this takes care of special handling of loops with step 1). We can
2512 do it if we first check that upper bound is greater or equal to
2513 lower bound, their difference is constant c modulo step and that
2514 there is not an overflow. */
2517 if (iv0
.step
== const0_rtx
)
2518 step
= simplify_gen_unary (NEG
, comp_mode
, iv1
.step
, comp_mode
);
2521 step
= lowpart_subreg (mode
, step
, comp_mode
);
2522 delta
= simplify_gen_binary (MINUS
, comp_mode
, iv1
.base
, iv0
.base
);
2523 delta
= lowpart_subreg (mode
, delta
, comp_mode
);
2524 delta
= simplify_gen_binary (UMOD
, mode
, delta
, step
);
2525 may_xform
= const0_rtx
;
2526 may_not_xform
= const_true_rtx
;
2528 if (CONST_INT_P (delta
))
2530 if (was_sharp
&& INTVAL (delta
) == INTVAL (step
) - 1)
2532 /* A special case. We have transformed condition of type
2533 for (i = 0; i < 4; i += 4)
2535 for (i = 0; i <= 3; i += 4)
2536 obviously if the test for overflow during that transformation
2537 passed, we cannot overflow here. Most importantly any
2538 loop with sharp end condition and step 1 falls into this
2539 category, so handling this case specially is definitely
2540 worth the troubles. */
2541 may_xform
= const_true_rtx
;
2543 else if (iv0
.step
== const0_rtx
)
2545 bound
= simplify_gen_binary (PLUS
, comp_mode
, mmin
, step
);
2546 bound
= simplify_gen_binary (MINUS
, comp_mode
, bound
, delta
);
2547 bound
= lowpart_subreg (mode
, bound
, comp_mode
);
2548 tmp
= lowpart_subreg (mode
, iv0
.base
, comp_mode
);
2549 may_xform
= simplify_gen_relational (cond
, SImode
, mode
,
2551 may_not_xform
= simplify_gen_relational (reverse_condition (cond
),
2557 bound
= simplify_gen_binary (MINUS
, comp_mode
, mmax
, step
);
2558 bound
= simplify_gen_binary (PLUS
, comp_mode
, bound
, delta
);
2559 bound
= lowpart_subreg (mode
, bound
, comp_mode
);
2560 tmp
= lowpart_subreg (mode
, iv1
.base
, comp_mode
);
2561 may_xform
= simplify_gen_relational (cond
, SImode
, mode
,
2563 may_not_xform
= simplify_gen_relational (reverse_condition (cond
),
2569 if (may_xform
!= const0_rtx
)
2571 /* We perform the transformation always provided that it is not
2572 completely senseless. This is OK, as we would need this assumption
2573 to determine the number of iterations anyway. */
2574 if (may_xform
!= const_true_rtx
)
2576 /* If the step is a power of two and the final value we have
2577 computed overflows, the cycle is infinite. Otherwise it
2578 is nontrivial to compute the number of iterations. */
2580 desc
->infinite
= alloc_EXPR_LIST (0, may_not_xform
,
2583 desc
->assumptions
= alloc_EXPR_LIST (0, may_xform
,
2587 /* We are going to lose some information about upper bound on
2588 number of iterations in this step, so record the information
2590 inc
= INTVAL (iv0
.step
) - INTVAL (iv1
.step
);
2591 if (CONST_INT_P (iv1
.base
))
2592 up
= INTVAL (iv1
.base
);
2594 up
= INTVAL (mode_mmax
) - inc
;
2595 down
= INTVAL (CONST_INT_P (iv0
.base
)
2598 max
= (up
- down
) / inc
+ 1;
2600 && !desc
->assumptions
)
2601 record_niter_bound (loop
, double_int::from_uhwi (max
),
2604 if (iv0
.step
== const0_rtx
)
2606 iv0
.base
= simplify_gen_binary (PLUS
, comp_mode
, iv0
.base
, delta
);
2607 iv0
.base
= simplify_gen_binary (MINUS
, comp_mode
, iv0
.base
, step
);
2611 iv1
.base
= simplify_gen_binary (MINUS
, comp_mode
, iv1
.base
, delta
);
2612 iv1
.base
= simplify_gen_binary (PLUS
, comp_mode
, iv1
.base
, step
);
2615 tmp0
= lowpart_subreg (mode
, iv0
.base
, comp_mode
);
2616 tmp1
= lowpart_subreg (mode
, iv1
.base
, comp_mode
);
2617 assumption
= simplify_gen_relational (reverse_condition (cond
),
2618 SImode
, mode
, tmp0
, tmp1
);
2619 if (assumption
== const_true_rtx
)
2620 goto zero_iter_simplify
;
2621 else if (assumption
!= const0_rtx
)
2622 desc
->noloop_assumptions
=
2623 alloc_EXPR_LIST (0, assumption
, desc
->noloop_assumptions
);
2628 /* Count the number of iterations. */
2631 /* Everything we do here is just arithmetics modulo size of mode. This
2632 makes us able to do more involved computations of number of iterations
2633 than in other cases. First transform the condition into shape
2634 s * i <> c, with s positive. */
2635 iv1
.base
= simplify_gen_binary (MINUS
, comp_mode
, iv1
.base
, iv0
.base
);
2636 iv0
.base
= const0_rtx
;
2637 iv0
.step
= simplify_gen_binary (MINUS
, comp_mode
, iv0
.step
, iv1
.step
);
2638 iv1
.step
= const0_rtx
;
2639 if (INTVAL (iv0
.step
) < 0)
2641 iv0
.step
= simplify_gen_unary (NEG
, comp_mode
, iv0
.step
, mode
);
2642 iv1
.base
= simplify_gen_unary (NEG
, comp_mode
, iv1
.base
, mode
);
2644 iv0
.step
= lowpart_subreg (mode
, iv0
.step
, comp_mode
);
2646 /* Let nsd (s, size of mode) = d. If d does not divide c, the loop
2647 is infinite. Otherwise, the number of iterations is
2648 (inverse(s/d) * (c/d)) mod (size of mode/d). */
2649 s
= INTVAL (iv0
.step
); d
= 1;
2656 bound
= GEN_INT (((unsigned HOST_WIDEST_INT
) 1 << (size
- 1 ) << 1) - 1);
2658 tmp1
= lowpart_subreg (mode
, iv1
.base
, comp_mode
);
2659 tmp
= simplify_gen_binary (UMOD
, mode
, tmp1
, GEN_INT (d
));
2660 assumption
= simplify_gen_relational (NE
, SImode
, mode
, tmp
, const0_rtx
);
2661 desc
->infinite
= alloc_EXPR_LIST (0, assumption
, desc
->infinite
);
2663 tmp
= simplify_gen_binary (UDIV
, mode
, tmp1
, GEN_INT (d
));
2664 inv
= inverse (s
, size
);
2665 tmp
= simplify_gen_binary (MULT
, mode
, tmp
, gen_int_mode (inv
, mode
));
2666 desc
->niter_expr
= simplify_gen_binary (AND
, mode
, tmp
, bound
);
2670 if (iv1
.step
== const0_rtx
)
2671 /* Condition in shape a + s * i <= b
2672 We must know that b + s does not overflow and a <= b + s and then we
2673 can compute number of iterations as (b + s - a) / s. (It might
2674 seem that we in fact could be more clever about testing the b + s
2675 overflow condition using some information about b - a mod s,
2676 but it was already taken into account during LE -> NE transform). */
2679 tmp0
= lowpart_subreg (mode
, iv0
.base
, comp_mode
);
2680 tmp1
= lowpart_subreg (mode
, iv1
.base
, comp_mode
);
2682 bound
= simplify_gen_binary (MINUS
, mode
, mode_mmax
,
2683 lowpart_subreg (mode
, step
,
2689 /* If s is power of 2, we know that the loop is infinite if
2690 a % s <= b % s and b + s overflows. */
2691 assumption
= simplify_gen_relational (reverse_condition (cond
),
2695 t0
= simplify_gen_binary (UMOD
, mode
, copy_rtx (tmp0
), step
);
2696 t1
= simplify_gen_binary (UMOD
, mode
, copy_rtx (tmp1
), step
);
2697 tmp
= simplify_gen_relational (cond
, SImode
, mode
, t0
, t1
);
2698 assumption
= simplify_gen_binary (AND
, SImode
, assumption
, tmp
);
2700 alloc_EXPR_LIST (0, assumption
, desc
->infinite
);
2704 assumption
= simplify_gen_relational (cond
, SImode
, mode
,
2707 alloc_EXPR_LIST (0, assumption
, desc
->assumptions
);
2710 tmp
= simplify_gen_binary (PLUS
, comp_mode
, iv1
.base
, iv0
.step
);
2711 tmp
= lowpart_subreg (mode
, tmp
, comp_mode
);
2712 assumption
= simplify_gen_relational (reverse_condition (cond
),
2713 SImode
, mode
, tmp0
, tmp
);
2715 delta
= simplify_gen_binary (PLUS
, mode
, tmp1
, step
);
2716 delta
= simplify_gen_binary (MINUS
, mode
, delta
, tmp0
);
2720 /* Condition in shape a <= b - s * i
2721 We must know that a - s does not overflow and a - s <= b and then
2722 we can again compute number of iterations as (b - (a - s)) / s. */
2723 step
= simplify_gen_unary (NEG
, mode
, iv1
.step
, mode
);
2724 tmp0
= lowpart_subreg (mode
, iv0
.base
, comp_mode
);
2725 tmp1
= lowpart_subreg (mode
, iv1
.base
, comp_mode
);
2727 bound
= simplify_gen_binary (PLUS
, mode
, mode_mmin
,
2728 lowpart_subreg (mode
, step
, comp_mode
));
2733 /* If s is power of 2, we know that the loop is infinite if
2734 a % s <= b % s and a - s overflows. */
2735 assumption
= simplify_gen_relational (reverse_condition (cond
),
2739 t0
= simplify_gen_binary (UMOD
, mode
, copy_rtx (tmp0
), step
);
2740 t1
= simplify_gen_binary (UMOD
, mode
, copy_rtx (tmp1
), step
);
2741 tmp
= simplify_gen_relational (cond
, SImode
, mode
, t0
, t1
);
2742 assumption
= simplify_gen_binary (AND
, SImode
, assumption
, tmp
);
2744 alloc_EXPR_LIST (0, assumption
, desc
->infinite
);
2748 assumption
= simplify_gen_relational (cond
, SImode
, mode
,
2751 alloc_EXPR_LIST (0, assumption
, desc
->assumptions
);
2754 tmp
= simplify_gen_binary (PLUS
, comp_mode
, iv0
.base
, iv1
.step
);
2755 tmp
= lowpart_subreg (mode
, tmp
, comp_mode
);
2756 assumption
= simplify_gen_relational (reverse_condition (cond
),
2759 delta
= simplify_gen_binary (MINUS
, mode
, tmp0
, step
);
2760 delta
= simplify_gen_binary (MINUS
, mode
, tmp1
, delta
);
2762 if (assumption
== const_true_rtx
)
2763 goto zero_iter_simplify
;
2764 else if (assumption
!= const0_rtx
)
2765 desc
->noloop_assumptions
=
2766 alloc_EXPR_LIST (0, assumption
, desc
->noloop_assumptions
);
2767 delta
= simplify_gen_binary (UDIV
, mode
, delta
, step
);
2768 desc
->niter_expr
= delta
;
2771 old_niter
= desc
->niter_expr
;
2773 simplify_using_initial_values (loop
, AND
, &desc
->assumptions
);
2774 if (desc
->assumptions
2775 && XEXP (desc
->assumptions
, 0) == const0_rtx
)
2777 simplify_using_initial_values (loop
, IOR
, &desc
->noloop_assumptions
);
2778 simplify_using_initial_values (loop
, IOR
, &desc
->infinite
);
2779 simplify_using_initial_values (loop
, UNKNOWN
, &desc
->niter_expr
);
2781 /* Rerun the simplification. Consider code (created by copying loop headers)
2793 The first pass determines that i = 0, the second pass uses it to eliminate
2794 noloop assumption. */
2796 simplify_using_initial_values (loop
, AND
, &desc
->assumptions
);
2797 if (desc
->assumptions
2798 && XEXP (desc
->assumptions
, 0) == const0_rtx
)
2800 simplify_using_initial_values (loop
, IOR
, &desc
->noloop_assumptions
);
2801 simplify_using_initial_values (loop
, IOR
, &desc
->infinite
);
2802 simplify_using_initial_values (loop
, UNKNOWN
, &desc
->niter_expr
);
2804 if (desc
->noloop_assumptions
2805 && XEXP (desc
->noloop_assumptions
, 0) == const_true_rtx
)
2808 if (CONST_INT_P (desc
->niter_expr
))
2810 unsigned HOST_WIDEST_INT val
= INTVAL (desc
->niter_expr
);
2812 desc
->const_iter
= true;
2813 desc
->niter
= val
& GET_MODE_MASK (desc
->mode
);
2815 && !desc
->assumptions
)
2816 record_niter_bound (loop
, double_int::from_uhwi (desc
->niter
),
2821 max
= determine_max_iter (loop
, desc
, old_niter
);
2824 && !desc
->assumptions
)
2825 record_niter_bound (loop
, double_int::from_uhwi (max
),
2828 /* simplify_using_initial_values does a copy propagation on the registers
2829 in the expression for the number of iterations. This prolongs life
2830 ranges of registers and increases register pressure, and usually
2831 brings no gain (and if it happens to do, the cse pass will take care
2832 of it anyway). So prevent this behavior, unless it enabled us to
2833 derive that the number of iterations is a constant. */
2834 desc
->niter_expr
= old_niter
;
2840 /* Simplify the assumptions. */
2841 simplify_using_initial_values (loop
, AND
, &desc
->assumptions
);
2842 if (desc
->assumptions
2843 && XEXP (desc
->assumptions
, 0) == const0_rtx
)
2845 simplify_using_initial_values (loop
, IOR
, &desc
->infinite
);
2849 desc
->const_iter
= true;
2851 record_niter_bound (loop
, double_int_zero
,
2853 desc
->noloop_assumptions
= NULL_RTX
;
2854 desc
->niter_expr
= const0_rtx
;
2858 desc
->simple_p
= false;
2862 /* Checks whether E is a simple exit from LOOP and stores its description
2866 check_simple_exit (struct loop
*loop
, edge e
, struct niter_desc
*desc
)
2868 basic_block exit_bb
;
2873 desc
->simple_p
= false;
2875 /* It must belong directly to the loop. */
2876 if (exit_bb
->loop_father
!= loop
)
2879 /* It must be tested (at least) once during any iteration. */
2880 if (!dominated_by_p (CDI_DOMINATORS
, loop
->latch
, exit_bb
))
2883 /* It must end in a simple conditional jump. */
2884 if (!any_condjump_p (BB_END (exit_bb
)))
2887 ein
= EDGE_SUCC (exit_bb
, 0);
2889 ein
= EDGE_SUCC (exit_bb
, 1);
2892 desc
->in_edge
= ein
;
2894 /* Test whether the condition is suitable. */
2895 if (!(condition
= get_condition (BB_END (ein
->src
), &at
, false, false)))
2898 if (ein
->flags
& EDGE_FALLTHRU
)
2900 condition
= reversed_condition (condition
);
2905 /* Check that we are able to determine number of iterations and fill
2906 in information about it. */
2907 iv_number_of_iterations (loop
, at
, condition
, desc
);
2910 /* Finds a simple exit of LOOP and stores its description into DESC. */
2913 find_simple_exit (struct loop
*loop
, struct niter_desc
*desc
)
2918 struct niter_desc act
;
2922 desc
->simple_p
= false;
2923 body
= get_loop_body (loop
);
2925 for (i
= 0; i
< loop
->num_nodes
; i
++)
2927 FOR_EACH_EDGE (e
, ei
, body
[i
]->succs
)
2929 if (flow_bb_inside_loop_p (loop
, e
->dest
))
2932 check_simple_exit (loop
, e
, &act
);
2940 /* Prefer constant iterations; the less the better. */
2942 || (desc
->const_iter
&& act
.niter
>= desc
->niter
))
2945 /* Also if the actual exit may be infinite, while the old one
2946 not, prefer the old one. */
2947 if (act
.infinite
&& !desc
->infinite
)
2959 fprintf (dump_file
, "Loop %d is simple:\n", loop
->num
);
2960 fprintf (dump_file
, " simple exit %d -> %d\n",
2961 desc
->out_edge
->src
->index
,
2962 desc
->out_edge
->dest
->index
);
2963 if (desc
->assumptions
)
2965 fprintf (dump_file
, " assumptions: ");
2966 print_rtl (dump_file
, desc
->assumptions
);
2967 fprintf (dump_file
, "\n");
2969 if (desc
->noloop_assumptions
)
2971 fprintf (dump_file
, " does not roll if: ");
2972 print_rtl (dump_file
, desc
->noloop_assumptions
);
2973 fprintf (dump_file
, "\n");
2977 fprintf (dump_file
, " infinite if: ");
2978 print_rtl (dump_file
, desc
->infinite
);
2979 fprintf (dump_file
, "\n");
2982 fprintf (dump_file
, " number of iterations: ");
2983 print_rtl (dump_file
, desc
->niter_expr
);
2984 fprintf (dump_file
, "\n");
2986 fprintf (dump_file
, " upper bound: %li\n",
2987 (long)max_loop_iterations_int (loop
));
2988 fprintf (dump_file
, " realistic bound: %li\n",
2989 (long)estimated_loop_iterations_int (loop
));
2992 fprintf (dump_file
, "Loop %d is not simple.\n", loop
->num
);
2998 /* Creates a simple loop description of LOOP if it was not computed
3002 get_simple_loop_desc (struct loop
*loop
)
3004 struct niter_desc
*desc
= simple_loop_desc (loop
);
3009 /* At least desc->infinite is not always initialized by
3010 find_simple_loop_exit. */
3011 desc
= XCNEW (struct niter_desc
);
3012 iv_analysis_loop_init (loop
);
3013 find_simple_exit (loop
, desc
);
3016 if (desc
->simple_p
&& (desc
->assumptions
|| desc
->infinite
))
3018 const char *wording
;
3020 /* Assume that no overflow happens and that the loop is finite.
3021 We already warned at the tree level if we ran optimizations there. */
3022 if (!flag_tree_loop_optimize
&& warn_unsafe_loop_optimizations
)
3027 flag_unsafe_loop_optimizations
3028 ? N_("assuming that the loop is not infinite")
3029 : N_("cannot optimize possibly infinite loops");
3030 warning (OPT_Wunsafe_loop_optimizations
, "%s",
3033 if (desc
->assumptions
)
3036 flag_unsafe_loop_optimizations
3037 ? N_("assuming that the loop counter does not overflow")
3038 : N_("cannot optimize loop, the loop counter may overflow");
3039 warning (OPT_Wunsafe_loop_optimizations
, "%s",
3044 if (flag_unsafe_loop_optimizations
)
3046 desc
->assumptions
= NULL_RTX
;
3047 desc
->infinite
= NULL_RTX
;
3054 /* Releases simple loop description for LOOP. */
3057 free_simple_loop_desc (struct loop
*loop
)
3059 struct niter_desc
*desc
= simple_loop_desc (loop
);