2000-12-21 Benjamin Kosnik <bkoz@redhat.com>
[official-gcc.git] / gcc / jump.c
blobf4845b8e484140e218bd5b3c65118c9bd5da7561
1 /* Optimize jump instructions, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997
3 1998, 1999, 2000 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 /* This is the jump-optimization pass of the compiler.
23 It is run two or three times: once before cse, sometimes once after cse,
24 and once after reload (before final).
26 jump_optimize deletes unreachable code and labels that are not used.
27 It also deletes jumps that jump to the following insn,
28 and simplifies jumps around unconditional jumps and jumps
29 to unconditional jumps.
31 Each CODE_LABEL has a count of the times it is used
32 stored in the LABEL_NUSES internal field, and each JUMP_INSN
33 has one label that it refers to stored in the
34 JUMP_LABEL internal field. With this we can detect labels that
35 become unused because of the deletion of all the jumps that
36 formerly used them. The JUMP_LABEL info is sometimes looked
37 at by later passes.
39 Optionally, cross-jumping can be done. Currently it is done
40 only the last time (when after reload and before final).
41 In fact, the code for cross-jumping now assumes that register
42 allocation has been done, since it uses `rtx_renumbered_equal_p'.
44 Jump optimization is done after cse when cse's constant-propagation
45 causes jumps to become unconditional or to be deleted.
47 Unreachable loops are not detected here, because the labels
48 have references and the insns appear reachable from the labels.
49 find_basic_blocks in flow.c finds and deletes such loops.
51 The subroutines delete_insn, redirect_jump, and invert_jump are used
52 from other passes as well. */
54 #include "config.h"
55 #include "system.h"
56 #include "rtl.h"
57 #include "tm_p.h"
58 #include "flags.h"
59 #include "hard-reg-set.h"
60 #include "regs.h"
61 #include "insn-config.h"
62 #include "insn-flags.h"
63 #include "insn-attr.h"
64 #include "recog.h"
65 #include "function.h"
66 #include "expr.h"
67 #include "real.h"
68 #include "except.h"
69 #include "toplev.h"
71 /* ??? Eventually must record somehow the labels used by jumps
72 from nested functions. */
73 /* Pre-record the next or previous real insn for each label?
74 No, this pass is very fast anyway. */
75 /* Condense consecutive labels?
76 This would make life analysis faster, maybe. */
77 /* Optimize jump y; x: ... y: jumpif... x?
78 Don't know if it is worth bothering with. */
79 /* Optimize two cases of conditional jump to conditional jump?
80 This can never delete any instruction or make anything dead,
81 or even change what is live at any point.
82 So perhaps let combiner do it. */
84 /* Vector indexed by uid.
85 For each CODE_LABEL, index by its uid to get first unconditional jump
86 that jumps to the label.
87 For each JUMP_INSN, index by its uid to get the next unconditional jump
88 that jumps to the same label.
89 Element 0 is the start of a chain of all return insns.
90 (It is safe to use element 0 because insn uid 0 is not used. */
92 static rtx *jump_chain;
94 /* Maximum index in jump_chain. */
96 static int max_jump_chain;
98 /* Indicates whether death notes are significant in cross jump analysis.
99 Normally they are not significant, because of A and B jump to C,
100 and R dies in A, it must die in B. But this might not be true after
101 stack register conversion, and we must compare death notes in that
102 case. */
104 static int cross_jump_death_matters = 0;
106 static int init_label_info PARAMS ((rtx));
107 static void delete_barrier_successors PARAMS ((rtx));
108 static void mark_all_labels PARAMS ((rtx, int));
109 static rtx delete_unreferenced_labels PARAMS ((rtx));
110 static void delete_noop_moves PARAMS ((rtx));
111 static int duplicate_loop_exit_test PARAMS ((rtx));
112 static void find_cross_jump PARAMS ((rtx, rtx, int, rtx *, rtx *));
113 static void do_cross_jump PARAMS ((rtx, rtx, rtx));
114 static int jump_back_p PARAMS ((rtx, rtx));
115 static int tension_vector_labels PARAMS ((rtx, int));
116 static void mark_jump_label PARAMS ((rtx, rtx, int, int));
117 static void delete_computation PARAMS ((rtx));
118 static void redirect_exp_1 PARAMS ((rtx *, rtx, rtx, rtx));
119 static int redirect_exp PARAMS ((rtx, rtx, rtx));
120 static void invert_exp_1 PARAMS ((rtx));
121 static int invert_exp PARAMS ((rtx));
122 static void delete_from_jump_chain PARAMS ((rtx));
123 static int delete_labelref_insn PARAMS ((rtx, rtx, int));
124 static void mark_modified_reg PARAMS ((rtx, rtx, void *));
125 static void redirect_tablejump PARAMS ((rtx, rtx));
126 static void jump_optimize_1 PARAMS ((rtx, int, int, int, int, int));
127 static int returnjump_p_1 PARAMS ((rtx *, void *));
128 static void delete_prior_computation PARAMS ((rtx, rtx));
130 /* Main external entry point into the jump optimizer. See comments before
131 jump_optimize_1 for descriptions of the arguments. */
132 void
133 jump_optimize (f, cross_jump, noop_moves, after_regscan)
134 rtx f;
135 int cross_jump;
136 int noop_moves;
137 int after_regscan;
139 jump_optimize_1 (f, cross_jump, noop_moves, after_regscan, 0, 0);
142 /* Alternate entry into the jump optimizer. This entry point only rebuilds
143 the JUMP_LABEL field in jumping insns and REG_LABEL notes in non-jumping
144 instructions. */
145 void
146 rebuild_jump_labels (f)
147 rtx f;
149 jump_optimize_1 (f, 0, 0, 0, 1, 0);
152 /* Alternate entry into the jump optimizer. Do only trivial optimizations. */
154 void
155 jump_optimize_minimal (f)
156 rtx f;
158 jump_optimize_1 (f, 0, 0, 0, 0, 1);
161 /* Delete no-op jumps and optimize jumps to jumps
162 and jumps around jumps.
163 Delete unused labels and unreachable code.
165 If CROSS_JUMP is 1, detect matching code
166 before a jump and its destination and unify them.
167 If CROSS_JUMP is 2, do cross-jumping, but pay attention to death notes.
169 If NOOP_MOVES is nonzero, delete no-op move insns.
171 If AFTER_REGSCAN is nonzero, then this jump pass is being run immediately
172 after regscan, and it is safe to use regno_first_uid and regno_last_uid.
174 If MARK_LABELS_ONLY is nonzero, then we only rebuild the jump chain
175 and JUMP_LABEL field for jumping insns.
177 If `optimize' is zero, don't change any code,
178 just determine whether control drops off the end of the function.
179 This case occurs when we have -W and not -O.
180 It works because `delete_insn' checks the value of `optimize'
181 and refrains from actually deleting when that is 0.
183 If MINIMAL is nonzero, then we only perform trivial optimizations:
185 * Removal of unreachable code after BARRIERs.
186 * Removal of unreferenced CODE_LABELs.
187 * Removal of a jump to the next instruction.
188 * Removal of a conditional jump followed by an unconditional jump
189 to the same target as the conditional jump.
190 * Simplify a conditional jump around an unconditional jump.
191 * Simplify a jump to a jump.
192 * Delete extraneous line number notes.
195 static void
196 jump_optimize_1 (f, cross_jump, noop_moves, after_regscan,
197 mark_labels_only, minimal)
198 rtx f;
199 int cross_jump;
200 int noop_moves;
201 int after_regscan;
202 int mark_labels_only;
203 int minimal;
205 register rtx insn, next;
206 int changed;
207 int old_max_reg;
208 int first = 1;
209 int max_uid = 0;
210 rtx last_insn;
212 cross_jump_death_matters = (cross_jump == 2);
213 max_uid = init_label_info (f) + 1;
215 /* If we are performing cross jump optimizations, then initialize
216 tables mapping UIDs to EH regions to avoid incorrect movement
217 of insns from one EH region to another. */
218 if (flag_exceptions && cross_jump)
219 init_insn_eh_region (f, max_uid);
221 if (! mark_labels_only)
222 delete_barrier_successors (f);
224 /* Leave some extra room for labels and duplicate exit test insns
225 we make. */
226 max_jump_chain = max_uid * 14 / 10;
227 jump_chain = (rtx *) xcalloc (max_jump_chain, sizeof (rtx));
229 mark_all_labels (f, cross_jump);
231 /* Keep track of labels used from static data; we don't track them
232 closely enough to delete them here, so make sure their reference
233 count doesn't drop to zero. */
235 for (insn = forced_labels; insn; insn = XEXP (insn, 1))
236 if (GET_CODE (XEXP (insn, 0)) == CODE_LABEL)
237 LABEL_NUSES (XEXP (insn, 0))++;
239 check_exception_handler_labels ();
241 /* Keep track of labels used for marking handlers for exception
242 regions; they cannot usually be deleted. */
244 for (insn = exception_handler_labels; insn; insn = XEXP (insn, 1))
245 if (GET_CODE (XEXP (insn, 0)) == CODE_LABEL)
246 LABEL_NUSES (XEXP (insn, 0))++;
248 /* Quit now if we just wanted to rebuild the JUMP_LABEL and REG_LABEL
249 notes and recompute LABEL_NUSES. */
250 if (mark_labels_only)
251 goto end;
253 if (! minimal)
254 exception_optimize ();
256 last_insn = delete_unreferenced_labels (f);
258 if (noop_moves)
259 delete_noop_moves (f);
261 /* If we haven't yet gotten to reload and we have just run regscan,
262 delete any insn that sets a register that isn't used elsewhere.
263 This helps some of the optimizations below by having less insns
264 being jumped around. */
266 if (optimize && ! reload_completed && after_regscan)
267 for (insn = f; insn; insn = next)
269 rtx set = single_set (insn);
271 next = NEXT_INSN (insn);
273 if (set && GET_CODE (SET_DEST (set)) == REG
274 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
275 && REGNO_FIRST_UID (REGNO (SET_DEST (set))) == INSN_UID (insn)
276 /* We use regno_last_note_uid so as not to delete the setting
277 of a reg that's used in notes. A subsequent optimization
278 might arrange to use that reg for real. */
279 && REGNO_LAST_NOTE_UID (REGNO (SET_DEST (set))) == INSN_UID (insn)
280 && ! side_effects_p (SET_SRC (set))
281 && ! find_reg_note (insn, REG_RETVAL, 0)
282 /* An ADDRESSOF expression can turn into a use of the internal arg
283 pointer, so do not delete the initialization of the internal
284 arg pointer yet. If it is truly dead, flow will delete the
285 initializing insn. */
286 && SET_DEST (set) != current_function_internal_arg_pointer)
287 delete_insn (insn);
290 /* Now iterate optimizing jumps until nothing changes over one pass. */
291 changed = 1;
292 old_max_reg = max_reg_num ();
293 while (changed)
295 changed = 0;
297 for (insn = f; insn; insn = next)
299 rtx reallabelprev;
300 rtx temp, temp1, temp2 = NULL_RTX;
301 rtx temp4 ATTRIBUTE_UNUSED;
302 rtx nlabel;
303 int this_is_any_uncondjump;
304 int this_is_any_condjump;
305 int this_is_onlyjump;
307 next = NEXT_INSN (insn);
309 /* See if this is a NOTE_INSN_LOOP_BEG followed by an unconditional
310 jump. Try to optimize by duplicating the loop exit test if so.
311 This is only safe immediately after regscan, because it uses
312 the values of regno_first_uid and regno_last_uid. */
313 if (after_regscan && GET_CODE (insn) == NOTE
314 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
315 && (temp1 = next_nonnote_insn (insn)) != 0
316 && any_uncondjump_p (temp1)
317 && onlyjump_p (temp1))
319 temp = PREV_INSN (insn);
320 if (duplicate_loop_exit_test (insn))
322 changed = 1;
323 next = NEXT_INSN (temp);
324 continue;
328 if (GET_CODE (insn) != JUMP_INSN)
329 continue;
331 this_is_any_condjump = any_condjump_p (insn);
332 this_is_any_uncondjump = any_uncondjump_p (insn);
333 this_is_onlyjump = onlyjump_p (insn);
335 /* Tension the labels in dispatch tables. */
337 if (GET_CODE (PATTERN (insn)) == ADDR_VEC)
338 changed |= tension_vector_labels (PATTERN (insn), 0);
339 if (GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
340 changed |= tension_vector_labels (PATTERN (insn), 1);
342 /* See if this jump goes to another jump and redirect if so. */
343 nlabel = follow_jumps (JUMP_LABEL (insn));
344 if (nlabel != JUMP_LABEL (insn))
345 changed |= redirect_jump (insn, nlabel, 1);
347 if (! optimize || minimal)
348 continue;
350 /* If a dispatch table always goes to the same place,
351 get rid of it and replace the insn that uses it. */
353 if (GET_CODE (PATTERN (insn)) == ADDR_VEC
354 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
356 int i;
357 rtx pat = PATTERN (insn);
358 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
359 int len = XVECLEN (pat, diff_vec_p);
360 rtx dispatch = prev_real_insn (insn);
361 rtx set;
363 for (i = 0; i < len; i++)
364 if (XEXP (XVECEXP (pat, diff_vec_p, i), 0)
365 != XEXP (XVECEXP (pat, diff_vec_p, 0), 0))
366 break;
368 if (i == len
369 && dispatch != 0
370 && GET_CODE (dispatch) == JUMP_INSN
371 && JUMP_LABEL (dispatch) != 0
372 /* Don't mess with a casesi insn.
373 XXX according to the comment before computed_jump_p(),
374 all casesi insns should be a parallel of the jump
375 and a USE of a LABEL_REF. */
376 && ! ((set = single_set (dispatch)) != NULL
377 && (GET_CODE (SET_SRC (set)) == IF_THEN_ELSE))
378 && next_real_insn (JUMP_LABEL (dispatch)) == insn)
380 redirect_tablejump (dispatch,
381 XEXP (XVECEXP (pat, diff_vec_p, 0), 0));
382 changed = 1;
386 reallabelprev = prev_active_insn (JUMP_LABEL (insn));
388 /* Detect jump to following insn. */
389 if (reallabelprev == insn
390 && (this_is_any_condjump || this_is_any_uncondjump)
391 && this_is_onlyjump)
393 next = next_real_insn (JUMP_LABEL (insn));
394 delete_jump (insn);
396 /* Remove the "inactive" but "real" insns (i.e. uses and
397 clobbers) in between here and there. */
398 temp = insn;
399 while ((temp = next_real_insn (temp)) != next)
400 delete_insn (temp);
402 changed = 1;
403 continue;
406 /* Detect a conditional jump going to the same place
407 as an immediately following unconditional jump. */
408 else if (this_is_any_condjump && this_is_onlyjump
409 && (temp = next_active_insn (insn)) != 0
410 && simplejump_p (temp)
411 && (next_active_insn (JUMP_LABEL (insn))
412 == next_active_insn (JUMP_LABEL (temp))))
414 /* Don't mess up test coverage analysis. */
415 temp2 = temp;
416 if (flag_test_coverage && !reload_completed)
417 for (temp2 = insn; temp2 != temp; temp2 = NEXT_INSN (temp2))
418 if (GET_CODE (temp2) == NOTE && NOTE_LINE_NUMBER (temp2) > 0)
419 break;
421 if (temp2 == temp)
423 delete_jump (insn);
424 changed = 1;
425 continue;
429 /* Detect a conditional jump jumping over an unconditional jump. */
431 else if (this_is_any_condjump
432 && reallabelprev != 0
433 && GET_CODE (reallabelprev) == JUMP_INSN
434 && prev_active_insn (reallabelprev) == insn
435 && no_labels_between_p (insn, reallabelprev)
436 && any_uncondjump_p (reallabelprev)
437 && onlyjump_p (reallabelprev))
439 /* When we invert the unconditional jump, we will be
440 decrementing the usage count of its old label.
441 Make sure that we don't delete it now because that
442 might cause the following code to be deleted. */
443 rtx prev_uses = prev_nonnote_insn (reallabelprev);
444 rtx prev_label = JUMP_LABEL (insn);
446 if (prev_label)
447 ++LABEL_NUSES (prev_label);
449 if (invert_jump (insn, JUMP_LABEL (reallabelprev), 1))
451 /* It is very likely that if there are USE insns before
452 this jump, they hold REG_DEAD notes. These REG_DEAD
453 notes are no longer valid due to this optimization,
454 and will cause the life-analysis that following passes
455 (notably delayed-branch scheduling) to think that
456 these registers are dead when they are not.
458 To prevent this trouble, we just remove the USE insns
459 from the insn chain. */
461 while (prev_uses && GET_CODE (prev_uses) == INSN
462 && GET_CODE (PATTERN (prev_uses)) == USE)
464 rtx useless = prev_uses;
465 prev_uses = prev_nonnote_insn (prev_uses);
466 delete_insn (useless);
469 delete_insn (reallabelprev);
470 changed = 1;
473 /* We can now safely delete the label if it is unreferenced
474 since the delete_insn above has deleted the BARRIER. */
475 if (prev_label && --LABEL_NUSES (prev_label) == 0)
476 delete_insn (prev_label);
478 next = NEXT_INSN (insn);
481 /* If we have an unconditional jump preceded by a USE, try to put
482 the USE before the target and jump there. This simplifies many
483 of the optimizations below since we don't have to worry about
484 dealing with these USE insns. We only do this if the label
485 being branch to already has the identical USE or if code
486 never falls through to that label. */
488 else if (this_is_any_uncondjump
489 && (temp = prev_nonnote_insn (insn)) != 0
490 && GET_CODE (temp) == INSN
491 && GET_CODE (PATTERN (temp)) == USE
492 && (temp1 = prev_nonnote_insn (JUMP_LABEL (insn))) != 0
493 && (GET_CODE (temp1) == BARRIER
494 || (GET_CODE (temp1) == INSN
495 && rtx_equal_p (PATTERN (temp), PATTERN (temp1))))
496 /* Don't do this optimization if we have a loop containing
497 only the USE instruction, and the loop start label has
498 a usage count of 1. This is because we will redo this
499 optimization everytime through the outer loop, and jump
500 opt will never exit. */
501 && ! ((temp2 = prev_nonnote_insn (temp)) != 0
502 && temp2 == JUMP_LABEL (insn)
503 && LABEL_NUSES (temp2) == 1))
505 if (GET_CODE (temp1) == BARRIER)
507 emit_insn_after (PATTERN (temp), temp1);
508 temp1 = NEXT_INSN (temp1);
511 delete_insn (temp);
512 redirect_jump (insn, get_label_before (temp1), 1);
513 reallabelprev = prev_real_insn (temp1);
514 changed = 1;
515 next = NEXT_INSN (insn);
518 #ifdef HAVE_trap
519 /* Detect a conditional jump jumping over an unconditional trap. */
520 if (HAVE_trap
521 && this_is_any_condjump && this_is_onlyjump
522 && reallabelprev != 0
523 && GET_CODE (reallabelprev) == INSN
524 && GET_CODE (PATTERN (reallabelprev)) == TRAP_IF
525 && TRAP_CONDITION (PATTERN (reallabelprev)) == const_true_rtx
526 && prev_active_insn (reallabelprev) == insn
527 && no_labels_between_p (insn, reallabelprev)
528 && (temp2 = get_condition (insn, &temp4))
529 && can_reverse_comparison_p (temp2, insn))
531 rtx new = gen_cond_trap (reverse_condition (GET_CODE (temp2)),
532 XEXP (temp2, 0), XEXP (temp2, 1),
533 TRAP_CODE (PATTERN (reallabelprev)));
535 if (new)
537 emit_insn_before (new, temp4);
538 delete_insn (reallabelprev);
539 delete_jump (insn);
540 changed = 1;
541 continue;
544 /* Detect a jump jumping to an unconditional trap. */
545 else if (HAVE_trap && this_is_onlyjump
546 && (temp = next_active_insn (JUMP_LABEL (insn)))
547 && GET_CODE (temp) == INSN
548 && GET_CODE (PATTERN (temp)) == TRAP_IF
549 && (this_is_any_uncondjump
550 || (this_is_any_condjump
551 && (temp2 = get_condition (insn, &temp4)))))
553 rtx tc = TRAP_CONDITION (PATTERN (temp));
555 if (tc == const_true_rtx
556 || (! this_is_any_uncondjump && rtx_equal_p (temp2, tc)))
558 rtx new;
559 /* Replace an unconditional jump to a trap with a trap. */
560 if (this_is_any_uncondjump)
562 emit_barrier_after (emit_insn_before (gen_trap (), insn));
563 delete_jump (insn);
564 changed = 1;
565 continue;
567 new = gen_cond_trap (GET_CODE (temp2), XEXP (temp2, 0),
568 XEXP (temp2, 1),
569 TRAP_CODE (PATTERN (temp)));
570 if (new)
572 emit_insn_before (new, temp4);
573 delete_jump (insn);
574 changed = 1;
575 continue;
578 /* If the trap condition and jump condition are mutually
579 exclusive, redirect the jump to the following insn. */
580 else if (GET_RTX_CLASS (GET_CODE (tc)) == '<'
581 && this_is_any_condjump
582 && swap_condition (GET_CODE (temp2)) == GET_CODE (tc)
583 && rtx_equal_p (XEXP (tc, 0), XEXP (temp2, 0))
584 && rtx_equal_p (XEXP (tc, 1), XEXP (temp2, 1))
585 && redirect_jump (insn, get_label_after (temp), 1))
587 changed = 1;
588 continue;
591 #endif
592 else
594 /* Now that the jump has been tensioned,
595 try cross jumping: check for identical code
596 before the jump and before its target label. */
598 /* First, cross jumping of conditional jumps: */
600 if (cross_jump && condjump_p (insn))
602 rtx newjpos, newlpos;
603 rtx x = prev_real_insn (JUMP_LABEL (insn));
605 /* A conditional jump may be crossjumped
606 only if the place it jumps to follows
607 an opposing jump that comes back here. */
609 if (x != 0 && ! jump_back_p (x, insn))
610 /* We have no opposing jump;
611 cannot cross jump this insn. */
612 x = 0;
614 newjpos = 0;
615 /* TARGET is nonzero if it is ok to cross jump
616 to code before TARGET. If so, see if matches. */
617 if (x != 0)
618 find_cross_jump (insn, x, 2,
619 &newjpos, &newlpos);
621 if (newjpos != 0)
623 do_cross_jump (insn, newjpos, newlpos);
624 /* Make the old conditional jump
625 into an unconditional one. */
626 SET_SRC (PATTERN (insn))
627 = gen_rtx_LABEL_REF (VOIDmode, JUMP_LABEL (insn));
628 INSN_CODE (insn) = -1;
629 emit_barrier_after (insn);
630 /* Add to jump_chain unless this is a new label
631 whose UID is too large. */
632 if (INSN_UID (JUMP_LABEL (insn)) < max_jump_chain)
634 jump_chain[INSN_UID (insn)]
635 = jump_chain[INSN_UID (JUMP_LABEL (insn))];
636 jump_chain[INSN_UID (JUMP_LABEL (insn))] = insn;
638 changed = 1;
639 next = insn;
643 /* Cross jumping of unconditional jumps:
644 a few differences. */
646 if (cross_jump && simplejump_p (insn))
648 rtx newjpos, newlpos;
649 rtx target;
651 newjpos = 0;
653 /* TARGET is nonzero if it is ok to cross jump
654 to code before TARGET. If so, see if matches. */
655 find_cross_jump (insn, JUMP_LABEL (insn), 1,
656 &newjpos, &newlpos);
658 /* If cannot cross jump to code before the label,
659 see if we can cross jump to another jump to
660 the same label. */
661 /* Try each other jump to this label. */
662 if (INSN_UID (JUMP_LABEL (insn)) < max_uid)
663 for (target = jump_chain[INSN_UID (JUMP_LABEL (insn))];
664 target != 0 && newjpos == 0;
665 target = jump_chain[INSN_UID (target)])
666 if (target != insn
667 && JUMP_LABEL (target) == JUMP_LABEL (insn)
668 /* Ignore TARGET if it's deleted. */
669 && ! INSN_DELETED_P (target))
670 find_cross_jump (insn, target, 2,
671 &newjpos, &newlpos);
673 if (newjpos != 0)
675 do_cross_jump (insn, newjpos, newlpos);
676 changed = 1;
677 next = insn;
681 /* This code was dead in the previous jump.c! */
682 if (cross_jump && GET_CODE (PATTERN (insn)) == RETURN)
684 /* Return insns all "jump to the same place"
685 so we can cross-jump between any two of them. */
687 rtx newjpos, newlpos, target;
689 newjpos = 0;
691 /* If cannot cross jump to code before the label,
692 see if we can cross jump to another jump to
693 the same label. */
694 /* Try each other jump to this label. */
695 for (target = jump_chain[0];
696 target != 0 && newjpos == 0;
697 target = jump_chain[INSN_UID (target)])
698 if (target != insn
699 && ! INSN_DELETED_P (target)
700 && GET_CODE (PATTERN (target)) == RETURN)
701 find_cross_jump (insn, target, 2,
702 &newjpos, &newlpos);
704 if (newjpos != 0)
706 do_cross_jump (insn, newjpos, newlpos);
707 changed = 1;
708 next = insn;
714 first = 0;
717 /* Delete extraneous line number notes.
718 Note that two consecutive notes for different lines are not really
719 extraneous. There should be some indication where that line belonged,
720 even if it became empty. */
723 rtx last_note = 0;
725 for (insn = f; insn; insn = NEXT_INSN (insn))
726 if (GET_CODE (insn) == NOTE)
728 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
729 /* Any previous line note was for the prologue; gdb wants a new
730 note after the prologue even if it is for the same line. */
731 last_note = NULL_RTX;
732 else if (NOTE_LINE_NUMBER (insn) >= 0)
734 /* Delete this note if it is identical to previous note. */
735 if (last_note
736 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last_note)
737 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last_note))
739 delete_insn (insn);
740 continue;
743 last_note = insn;
748 end:
749 /* Clean up. */
750 free (jump_chain);
751 jump_chain = 0;
754 /* Initialize LABEL_NUSES and JUMP_LABEL fields. Delete any REG_LABEL
755 notes whose labels don't occur in the insn any more. Returns the
756 largest INSN_UID found. */
757 static int
758 init_label_info (f)
759 rtx f;
761 int largest_uid = 0;
762 rtx insn;
764 for (insn = f; insn; insn = NEXT_INSN (insn))
766 if (GET_CODE (insn) == CODE_LABEL)
767 LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
768 else if (GET_CODE (insn) == JUMP_INSN)
769 JUMP_LABEL (insn) = 0;
770 else if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
772 rtx note, next;
774 for (note = REG_NOTES (insn); note; note = next)
776 next = XEXP (note, 1);
777 if (REG_NOTE_KIND (note) == REG_LABEL
778 && ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
779 remove_note (insn, note);
782 if (INSN_UID (insn) > largest_uid)
783 largest_uid = INSN_UID (insn);
786 return largest_uid;
789 /* Delete insns following barriers, up to next label.
791 Also delete no-op jumps created by gcse. */
793 static void
794 delete_barrier_successors (f)
795 rtx f;
797 rtx insn;
798 rtx set;
800 for (insn = f; insn;)
802 if (GET_CODE (insn) == BARRIER)
804 insn = NEXT_INSN (insn);
806 never_reached_warning (insn);
808 while (insn != 0 && GET_CODE (insn) != CODE_LABEL)
810 if (GET_CODE (insn) == NOTE
811 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_FUNCTION_END)
812 insn = NEXT_INSN (insn);
813 else
814 insn = delete_insn (insn);
816 /* INSN is now the code_label. */
819 /* Also remove (set (pc) (pc)) insns which can be created by
820 gcse. We eliminate such insns now to avoid having them
821 cause problems later. */
822 else if (GET_CODE (insn) == JUMP_INSN
823 && (set = pc_set (insn)) != NULL
824 && SET_SRC (set) == pc_rtx
825 && SET_DEST (set) == pc_rtx
826 && onlyjump_p (insn))
827 insn = delete_insn (insn);
829 else
830 insn = NEXT_INSN (insn);
834 /* Mark the label each jump jumps to.
835 Combine consecutive labels, and count uses of labels.
837 For each label, make a chain (using `jump_chain')
838 of all the *unconditional* jumps that jump to it;
839 also make a chain of all returns.
841 CROSS_JUMP indicates whether we are doing cross jumping
842 and if we are whether we will be paying attention to
843 death notes or not. */
845 static void
846 mark_all_labels (f, cross_jump)
847 rtx f;
848 int cross_jump;
850 rtx insn;
852 for (insn = f; insn; insn = NEXT_INSN (insn))
853 if (INSN_P (insn))
855 if (GET_CODE (insn) == CALL_INSN
856 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
858 mark_all_labels (XEXP (PATTERN (insn), 0), cross_jump);
859 mark_all_labels (XEXP (PATTERN (insn), 1), cross_jump);
860 mark_all_labels (XEXP (PATTERN (insn), 2), cross_jump);
861 continue;
864 mark_jump_label (PATTERN (insn), insn, cross_jump, 0);
865 if (! INSN_DELETED_P (insn) && GET_CODE (insn) == JUMP_INSN)
867 if (JUMP_LABEL (insn) != 0 && simplejump_p (insn))
869 jump_chain[INSN_UID (insn)]
870 = jump_chain[INSN_UID (JUMP_LABEL (insn))];
871 jump_chain[INSN_UID (JUMP_LABEL (insn))] = insn;
873 if (GET_CODE (PATTERN (insn)) == RETURN)
875 jump_chain[INSN_UID (insn)] = jump_chain[0];
876 jump_chain[0] = insn;
882 /* Delete all labels already not referenced.
883 Also find and return the last insn. */
885 static rtx
886 delete_unreferenced_labels (f)
887 rtx f;
889 rtx final = NULL_RTX;
890 rtx insn;
892 for (insn = f; insn;)
894 if (GET_CODE (insn) == CODE_LABEL
895 && LABEL_NUSES (insn) == 0
896 && LABEL_ALTERNATE_NAME (insn) == NULL)
897 insn = delete_insn (insn);
898 else
900 final = insn;
901 insn = NEXT_INSN (insn);
905 return final;
908 /* Delete various simple forms of moves which have no necessary
909 side effect. */
911 static void
912 delete_noop_moves (f)
913 rtx f;
915 rtx insn, next;
917 for (insn = f; insn;)
919 next = NEXT_INSN (insn);
921 if (GET_CODE (insn) == INSN)
923 register rtx body = PATTERN (insn);
925 /* Detect and delete no-op move instructions
926 resulting from not allocating a parameter in a register. */
928 if (GET_CODE (body) == SET
929 && (SET_DEST (body) == SET_SRC (body)
930 || (GET_CODE (SET_DEST (body)) == MEM
931 && GET_CODE (SET_SRC (body)) == MEM
932 && rtx_equal_p (SET_SRC (body), SET_DEST (body))))
933 && ! (GET_CODE (SET_DEST (body)) == MEM
934 && MEM_VOLATILE_P (SET_DEST (body)))
935 && ! (GET_CODE (SET_SRC (body)) == MEM
936 && MEM_VOLATILE_P (SET_SRC (body))))
937 delete_computation (insn);
939 /* Detect and ignore no-op move instructions
940 resulting from smart or fortuitous register allocation. */
942 else if (GET_CODE (body) == SET)
944 int sreg = true_regnum (SET_SRC (body));
945 int dreg = true_regnum (SET_DEST (body));
947 if (sreg == dreg && sreg >= 0)
948 delete_insn (insn);
949 else if (sreg >= 0 && dreg >= 0)
951 rtx trial;
952 rtx tem = find_equiv_reg (NULL_RTX, insn, 0,
953 sreg, NULL_PTR, dreg,
954 GET_MODE (SET_SRC (body)));
956 if (tem != 0
957 && GET_MODE (tem) == GET_MODE (SET_DEST (body)))
959 /* DREG may have been the target of a REG_DEAD note in
960 the insn which makes INSN redundant. If so, reorg
961 would still think it is dead. So search for such a
962 note and delete it if we find it. */
963 if (! find_regno_note (insn, REG_UNUSED, dreg))
964 for (trial = prev_nonnote_insn (insn);
965 trial && GET_CODE (trial) != CODE_LABEL;
966 trial = prev_nonnote_insn (trial))
967 if (find_regno_note (trial, REG_DEAD, dreg))
969 remove_death (dreg, trial);
970 break;
973 /* Deleting insn could lose a death-note for SREG. */
974 if ((trial = find_regno_note (insn, REG_DEAD, sreg)))
976 /* Change this into a USE so that we won't emit
977 code for it, but still can keep the note. */
978 PATTERN (insn)
979 = gen_rtx_USE (VOIDmode, XEXP (trial, 0));
980 INSN_CODE (insn) = -1;
981 /* Remove all reg notes but the REG_DEAD one. */
982 REG_NOTES (insn) = trial;
983 XEXP (trial, 1) = NULL_RTX;
985 else
986 delete_insn (insn);
989 else if (dreg >= 0 && CONSTANT_P (SET_SRC (body))
990 && find_equiv_reg (SET_SRC (body), insn, 0, dreg,
991 NULL_PTR, 0,
992 GET_MODE (SET_DEST (body))))
994 /* This handles the case where we have two consecutive
995 assignments of the same constant to pseudos that didn't
996 get a hard reg. Each SET from the constant will be
997 converted into a SET of the spill register and an
998 output reload will be made following it. This produces
999 two loads of the same constant into the same spill
1000 register. */
1002 rtx in_insn = insn;
1004 /* Look back for a death note for the first reg.
1005 If there is one, it is no longer accurate. */
1006 while (in_insn && GET_CODE (in_insn) != CODE_LABEL)
1008 if ((GET_CODE (in_insn) == INSN
1009 || GET_CODE (in_insn) == JUMP_INSN)
1010 && find_regno_note (in_insn, REG_DEAD, dreg))
1012 remove_death (dreg, in_insn);
1013 break;
1015 in_insn = PREV_INSN (in_insn);
1018 /* Delete the second load of the value. */
1019 delete_insn (insn);
1022 else if (GET_CODE (body) == PARALLEL)
1024 /* If each part is a set between two identical registers or
1025 a USE or CLOBBER, delete the insn. */
1026 int i, sreg, dreg;
1027 rtx tem;
1029 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1031 tem = XVECEXP (body, 0, i);
1032 if (GET_CODE (tem) == USE || GET_CODE (tem) == CLOBBER)
1033 continue;
1035 if (GET_CODE (tem) != SET
1036 || (sreg = true_regnum (SET_SRC (tem))) < 0
1037 || (dreg = true_regnum (SET_DEST (tem))) < 0
1038 || dreg != sreg)
1039 break;
1042 if (i < 0)
1043 delete_insn (insn);
1045 /* Also delete insns to store bit fields if they are no-ops. */
1046 /* Not worth the hair to detect this in the big-endian case. */
1047 else if (! BYTES_BIG_ENDIAN
1048 && GET_CODE (body) == SET
1049 && GET_CODE (SET_DEST (body)) == ZERO_EXTRACT
1050 && XEXP (SET_DEST (body), 2) == const0_rtx
1051 && XEXP (SET_DEST (body), 0) == SET_SRC (body)
1052 && ! (GET_CODE (SET_SRC (body)) == MEM
1053 && MEM_VOLATILE_P (SET_SRC (body))))
1054 delete_insn (insn);
1056 insn = next;
1060 /* LOOP_START is a NOTE_INSN_LOOP_BEG note that is followed by an unconditional
1061 jump. Assume that this unconditional jump is to the exit test code. If
1062 the code is sufficiently simple, make a copy of it before INSN,
1063 followed by a jump to the exit of the loop. Then delete the unconditional
1064 jump after INSN.
1066 Return 1 if we made the change, else 0.
1068 This is only safe immediately after a regscan pass because it uses the
1069 values of regno_first_uid and regno_last_uid. */
1071 static int
1072 duplicate_loop_exit_test (loop_start)
1073 rtx loop_start;
1075 rtx insn, set, reg, p, link;
1076 rtx copy = 0, first_copy = 0;
1077 int num_insns = 0;
1078 rtx exitcode = NEXT_INSN (JUMP_LABEL (next_nonnote_insn (loop_start)));
1079 rtx lastexit;
1080 int max_reg = max_reg_num ();
1081 rtx *reg_map = 0;
1083 /* Scan the exit code. We do not perform this optimization if any insn:
1085 is a CALL_INSN
1086 is a CODE_LABEL
1087 has a REG_RETVAL or REG_LIBCALL note (hard to adjust)
1088 is a NOTE_INSN_LOOP_BEG because this means we have a nested loop
1089 is a NOTE_INSN_BLOCK_{BEG,END} because duplicating these notes
1090 is not valid.
1092 We also do not do this if we find an insn with ASM_OPERANDS. While
1093 this restriction should not be necessary, copying an insn with
1094 ASM_OPERANDS can confuse asm_noperands in some cases.
1096 Also, don't do this if the exit code is more than 20 insns. */
1098 for (insn = exitcode;
1099 insn
1100 && ! (GET_CODE (insn) == NOTE
1101 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END);
1102 insn = NEXT_INSN (insn))
1104 switch (GET_CODE (insn))
1106 case CODE_LABEL:
1107 case CALL_INSN:
1108 return 0;
1109 case NOTE:
1110 /* We could be in front of the wrong NOTE_INSN_LOOP_END if there is
1111 a jump immediately after the loop start that branches outside
1112 the loop but within an outer loop, near the exit test.
1113 If we copied this exit test and created a phony
1114 NOTE_INSN_LOOP_VTOP, this could make instructions immediately
1115 before the exit test look like these could be safely moved
1116 out of the loop even if they actually may be never executed.
1117 This can be avoided by checking here for NOTE_INSN_LOOP_CONT. */
1119 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
1120 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_CONT)
1121 return 0;
1123 if (optimize < 2
1124 && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
1125 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END))
1126 /* If we were to duplicate this code, we would not move
1127 the BLOCK notes, and so debugging the moved code would
1128 be difficult. Thus, we only move the code with -O2 or
1129 higher. */
1130 return 0;
1132 break;
1133 case JUMP_INSN:
1134 case INSN:
1135 /* The code below would grossly mishandle REG_WAS_0 notes,
1136 so get rid of them here. */
1137 while ((p = find_reg_note (insn, REG_WAS_0, NULL_RTX)) != 0)
1138 remove_note (insn, p);
1139 if (++num_insns > 20
1140 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1141 || find_reg_note (insn, REG_LIBCALL, NULL_RTX))
1142 return 0;
1143 break;
1144 default:
1145 break;
1149 /* Unless INSN is zero, we can do the optimization. */
1150 if (insn == 0)
1151 return 0;
1153 lastexit = insn;
1155 /* See if any insn sets a register only used in the loop exit code and
1156 not a user variable. If so, replace it with a new register. */
1157 for (insn = exitcode; insn != lastexit; insn = NEXT_INSN (insn))
1158 if (GET_CODE (insn) == INSN
1159 && (set = single_set (insn)) != 0
1160 && ((reg = SET_DEST (set), GET_CODE (reg) == REG)
1161 || (GET_CODE (reg) == SUBREG
1162 && (reg = SUBREG_REG (reg), GET_CODE (reg) == REG)))
1163 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
1164 && REGNO_FIRST_UID (REGNO (reg)) == INSN_UID (insn))
1166 for (p = NEXT_INSN (insn); p != lastexit; p = NEXT_INSN (p))
1167 if (REGNO_LAST_UID (REGNO (reg)) == INSN_UID (p))
1168 break;
1170 if (p != lastexit)
1172 /* We can do the replacement. Allocate reg_map if this is the
1173 first replacement we found. */
1174 if (reg_map == 0)
1175 reg_map = (rtx *) xcalloc (max_reg, sizeof (rtx));
1177 REG_LOOP_TEST_P (reg) = 1;
1179 reg_map[REGNO (reg)] = gen_reg_rtx (GET_MODE (reg));
1183 /* Now copy each insn. */
1184 for (insn = exitcode; insn != lastexit; insn = NEXT_INSN (insn))
1186 switch (GET_CODE (insn))
1188 case BARRIER:
1189 copy = emit_barrier_before (loop_start);
1190 break;
1191 case NOTE:
1192 /* Only copy line-number notes. */
1193 if (NOTE_LINE_NUMBER (insn) >= 0)
1195 copy = emit_note_before (NOTE_LINE_NUMBER (insn), loop_start);
1196 NOTE_SOURCE_FILE (copy) = NOTE_SOURCE_FILE (insn);
1198 break;
1200 case INSN:
1201 copy = emit_insn_before (copy_insn (PATTERN (insn)), loop_start);
1202 if (reg_map)
1203 replace_regs (PATTERN (copy), reg_map, max_reg, 1);
1205 mark_jump_label (PATTERN (copy), copy, 0, 0);
1207 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
1208 make them. */
1209 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1210 if (REG_NOTE_KIND (link) != REG_LABEL)
1212 if (GET_CODE (link) == EXPR_LIST)
1213 REG_NOTES (copy)
1214 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
1215 XEXP (link, 0),
1216 REG_NOTES (copy)));
1217 else
1218 REG_NOTES (copy)
1219 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
1220 XEXP (link, 0),
1221 REG_NOTES (copy)));
1224 if (reg_map && REG_NOTES (copy))
1225 replace_regs (REG_NOTES (copy), reg_map, max_reg, 1);
1226 break;
1228 case JUMP_INSN:
1229 copy = emit_jump_insn_before (copy_insn (PATTERN (insn)),
1230 loop_start);
1231 if (reg_map)
1232 replace_regs (PATTERN (copy), reg_map, max_reg, 1);
1233 mark_jump_label (PATTERN (copy), copy, 0, 0);
1234 if (REG_NOTES (insn))
1236 REG_NOTES (copy) = copy_insn_1 (REG_NOTES (insn));
1237 if (reg_map)
1238 replace_regs (REG_NOTES (copy), reg_map, max_reg, 1);
1241 /* If this is a simple jump, add it to the jump chain. */
1243 if (INSN_UID (copy) < max_jump_chain && JUMP_LABEL (copy)
1244 && simplejump_p (copy))
1246 jump_chain[INSN_UID (copy)]
1247 = jump_chain[INSN_UID (JUMP_LABEL (copy))];
1248 jump_chain[INSN_UID (JUMP_LABEL (copy))] = copy;
1250 break;
1252 default:
1253 abort ();
1256 /* Record the first insn we copied. We need it so that we can
1257 scan the copied insns for new pseudo registers. */
1258 if (! first_copy)
1259 first_copy = copy;
1262 /* Now clean up by emitting a jump to the end label and deleting the jump
1263 at the start of the loop. */
1264 if (! copy || GET_CODE (copy) != BARRIER)
1266 copy = emit_jump_insn_before (gen_jump (get_label_after (insn)),
1267 loop_start);
1269 /* Record the first insn we copied. We need it so that we can
1270 scan the copied insns for new pseudo registers. This may not
1271 be strictly necessary since we should have copied at least one
1272 insn above. But I am going to be safe. */
1273 if (! first_copy)
1274 first_copy = copy;
1276 mark_jump_label (PATTERN (copy), copy, 0, 0);
1277 if (INSN_UID (copy) < max_jump_chain
1278 && INSN_UID (JUMP_LABEL (copy)) < max_jump_chain)
1280 jump_chain[INSN_UID (copy)]
1281 = jump_chain[INSN_UID (JUMP_LABEL (copy))];
1282 jump_chain[INSN_UID (JUMP_LABEL (copy))] = copy;
1284 emit_barrier_before (loop_start);
1287 /* Now scan from the first insn we copied to the last insn we copied
1288 (copy) for new pseudo registers. Do this after the code to jump to
1289 the end label since that might create a new pseudo too. */
1290 reg_scan_update (first_copy, copy, max_reg);
1292 /* Mark the exit code as the virtual top of the converted loop. */
1293 emit_note_before (NOTE_INSN_LOOP_VTOP, exitcode);
1295 delete_insn (next_nonnote_insn (loop_start));
1297 /* Clean up. */
1298 if (reg_map)
1299 free (reg_map);
1301 return 1;
1304 /* Move all block-beg, block-end, loop-beg, loop-cont, loop-vtop, loop-end,
1305 eh-beg, eh-end notes between START and END out before START. Assume that
1306 END is not such a note. START may be such a note. Returns the value
1307 of the new starting insn, which may be different if the original start
1308 was such a note. */
1311 squeeze_notes (start, end)
1312 rtx start, end;
1314 rtx insn;
1315 rtx next;
1317 for (insn = start; insn != end; insn = next)
1319 next = NEXT_INSN (insn);
1320 if (GET_CODE (insn) == NOTE
1321 && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END
1322 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
1323 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
1324 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END
1325 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_CONT
1326 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_VTOP
1327 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG
1328 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END))
1330 if (insn == start)
1331 start = next;
1332 else
1334 rtx prev = PREV_INSN (insn);
1335 PREV_INSN (insn) = PREV_INSN (start);
1336 NEXT_INSN (insn) = start;
1337 NEXT_INSN (PREV_INSN (insn)) = insn;
1338 PREV_INSN (NEXT_INSN (insn)) = insn;
1339 NEXT_INSN (prev) = next;
1340 PREV_INSN (next) = prev;
1345 return start;
1348 /* Compare the instructions before insn E1 with those before E2
1349 to find an opportunity for cross jumping.
1350 (This means detecting identical sequences of insns followed by
1351 jumps to the same place, or followed by a label and a jump
1352 to that label, and replacing one with a jump to the other.)
1354 Assume E1 is a jump that jumps to label E2
1355 (that is not always true but it might as well be).
1356 Find the longest possible equivalent sequences
1357 and store the first insns of those sequences into *F1 and *F2.
1358 Store zero there if no equivalent preceding instructions are found.
1360 We give up if we find a label in stream 1.
1361 Actually we could transfer that label into stream 2. */
1363 static void
1364 find_cross_jump (e1, e2, minimum, f1, f2)
1365 rtx e1, e2;
1366 int minimum;
1367 rtx *f1, *f2;
1369 register rtx i1 = e1, i2 = e2;
1370 register rtx p1, p2;
1371 int lose = 0;
1373 rtx last1 = 0, last2 = 0;
1374 rtx afterlast1 = 0, afterlast2 = 0;
1376 *f1 = 0;
1377 *f2 = 0;
1379 while (1)
1381 i1 = prev_nonnote_insn (i1);
1383 i2 = PREV_INSN (i2);
1384 while (i2 && (GET_CODE (i2) == NOTE || GET_CODE (i2) == CODE_LABEL))
1385 i2 = PREV_INSN (i2);
1387 if (i1 == 0)
1388 break;
1390 /* Don't allow the range of insns preceding E1 or E2
1391 to include the other (E2 or E1). */
1392 if (i2 == e1 || i1 == e2)
1393 break;
1395 /* If we will get to this code by jumping, those jumps will be
1396 tensioned to go directly to the new label (before I2),
1397 so this cross-jumping won't cost extra. So reduce the minimum. */
1398 if (GET_CODE (i1) == CODE_LABEL)
1400 --minimum;
1401 break;
1404 if (i2 == 0 || GET_CODE (i1) != GET_CODE (i2))
1405 break;
1407 /* Avoid moving insns across EH regions if either of the insns
1408 can throw. */
1409 if (flag_exceptions
1410 && (asynchronous_exceptions || GET_CODE (i1) == CALL_INSN)
1411 && !in_same_eh_region (i1, i2))
1412 break;
1414 p1 = PATTERN (i1);
1415 p2 = PATTERN (i2);
1417 /* If this is a CALL_INSN, compare register usage information.
1418 If we don't check this on stack register machines, the two
1419 CALL_INSNs might be merged leaving reg-stack.c with mismatching
1420 numbers of stack registers in the same basic block.
1421 If we don't check this on machines with delay slots, a delay slot may
1422 be filled that clobbers a parameter expected by the subroutine.
1424 ??? We take the simple route for now and assume that if they're
1425 equal, they were constructed identically. */
1427 if (GET_CODE (i1) == CALL_INSN
1428 && ! rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1),
1429 CALL_INSN_FUNCTION_USAGE (i2)))
1430 lose = 1;
1432 #ifdef STACK_REGS
1433 /* If cross_jump_death_matters is not 0, the insn's mode
1434 indicates whether or not the insn contains any stack-like
1435 regs. */
1437 if (!lose && cross_jump_death_matters && stack_regs_mentioned (i1))
1439 /* If register stack conversion has already been done, then
1440 death notes must also be compared before it is certain that
1441 the two instruction streams match. */
1443 rtx note;
1444 HARD_REG_SET i1_regset, i2_regset;
1446 CLEAR_HARD_REG_SET (i1_regset);
1447 CLEAR_HARD_REG_SET (i2_regset);
1449 for (note = REG_NOTES (i1); note; note = XEXP (note, 1))
1450 if (REG_NOTE_KIND (note) == REG_DEAD
1451 && STACK_REG_P (XEXP (note, 0)))
1452 SET_HARD_REG_BIT (i1_regset, REGNO (XEXP (note, 0)));
1454 for (note = REG_NOTES (i2); note; note = XEXP (note, 1))
1455 if (REG_NOTE_KIND (note) == REG_DEAD
1456 && STACK_REG_P (XEXP (note, 0)))
1457 SET_HARD_REG_BIT (i2_regset, REGNO (XEXP (note, 0)));
1459 GO_IF_HARD_REG_EQUAL (i1_regset, i2_regset, done);
1461 lose = 1;
1463 done:
1466 #endif
1468 /* Don't allow old-style asm or volatile extended asms to be accepted
1469 for cross jumping purposes. It is conceptually correct to allow
1470 them, since cross-jumping preserves the dynamic instruction order
1471 even though it is changing the static instruction order. However,
1472 if an asm is being used to emit an assembler pseudo-op, such as
1473 the MIPS `.set reorder' pseudo-op, then the static instruction order
1474 matters and it must be preserved. */
1475 if (GET_CODE (p1) == ASM_INPUT || GET_CODE (p2) == ASM_INPUT
1476 || (GET_CODE (p1) == ASM_OPERANDS && MEM_VOLATILE_P (p1))
1477 || (GET_CODE (p2) == ASM_OPERANDS && MEM_VOLATILE_P (p2)))
1478 lose = 1;
1480 if (lose || GET_CODE (p1) != GET_CODE (p2)
1481 || ! rtx_renumbered_equal_p (p1, p2))
1483 /* The following code helps take care of G++ cleanups. */
1484 rtx equiv1;
1485 rtx equiv2;
1487 if (!lose && GET_CODE (p1) == GET_CODE (p2)
1488 && ((equiv1 = find_reg_note (i1, REG_EQUAL, NULL_RTX)) != 0
1489 || (equiv1 = find_reg_note (i1, REG_EQUIV, NULL_RTX)) != 0)
1490 && ((equiv2 = find_reg_note (i2, REG_EQUAL, NULL_RTX)) != 0
1491 || (equiv2 = find_reg_note (i2, REG_EQUIV, NULL_RTX)) != 0)
1492 /* If the equivalences are not to a constant, they may
1493 reference pseudos that no longer exist, so we can't
1494 use them. */
1495 && CONSTANT_P (XEXP (equiv1, 0))
1496 && rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))
1498 rtx s1 = single_set (i1);
1499 rtx s2 = single_set (i2);
1500 if (s1 != 0 && s2 != 0
1501 && rtx_renumbered_equal_p (SET_DEST (s1), SET_DEST (s2)))
1503 validate_change (i1, &SET_SRC (s1), XEXP (equiv1, 0), 1);
1504 validate_change (i2, &SET_SRC (s2), XEXP (equiv2, 0), 1);
1505 if (! rtx_renumbered_equal_p (p1, p2))
1506 cancel_changes (0);
1507 else if (apply_change_group ())
1508 goto win;
1512 /* Insns fail to match; cross jumping is limited to the following
1513 insns. */
1515 #ifdef HAVE_cc0
1516 /* Don't allow the insn after a compare to be shared by
1517 cross-jumping unless the compare is also shared.
1518 Here, if either of these non-matching insns is a compare,
1519 exclude the following insn from possible cross-jumping. */
1520 if (sets_cc0_p (p1) || sets_cc0_p (p2))
1521 last1 = afterlast1, last2 = afterlast2, ++minimum;
1522 #endif
1524 /* If cross-jumping here will feed a jump-around-jump
1525 optimization, this jump won't cost extra, so reduce
1526 the minimum. */
1527 if (GET_CODE (i1) == JUMP_INSN
1528 && JUMP_LABEL (i1)
1529 && prev_real_insn (JUMP_LABEL (i1)) == e1)
1530 --minimum;
1531 break;
1534 win:
1535 if (GET_CODE (p1) != USE && GET_CODE (p1) != CLOBBER)
1537 /* Ok, this insn is potentially includable in a cross-jump here. */
1538 afterlast1 = last1, afterlast2 = last2;
1539 last1 = i1, last2 = i2, --minimum;
1543 if (minimum <= 0 && last1 != 0 && last1 != e1)
1544 *f1 = last1, *f2 = last2;
1547 static void
1548 do_cross_jump (insn, newjpos, newlpos)
1549 rtx insn, newjpos, newlpos;
1551 /* Find an existing label at this point
1552 or make a new one if there is none. */
1553 register rtx label = get_label_before (newlpos);
1555 /* Make the same jump insn jump to the new point. */
1556 if (GET_CODE (PATTERN (insn)) == RETURN)
1558 /* Remove from jump chain of returns. */
1559 delete_from_jump_chain (insn);
1560 /* Change the insn. */
1561 PATTERN (insn) = gen_jump (label);
1562 INSN_CODE (insn) = -1;
1563 JUMP_LABEL (insn) = label;
1564 LABEL_NUSES (label)++;
1565 /* Add to new the jump chain. */
1566 if (INSN_UID (label) < max_jump_chain
1567 && INSN_UID (insn) < max_jump_chain)
1569 jump_chain[INSN_UID (insn)] = jump_chain[INSN_UID (label)];
1570 jump_chain[INSN_UID (label)] = insn;
1573 else
1574 redirect_jump (insn, label, 1);
1576 /* Delete the matching insns before the jump. Also, remove any REG_EQUAL
1577 or REG_EQUIV note in the NEWLPOS stream that isn't also present in
1578 the NEWJPOS stream. */
1580 while (newjpos != insn)
1582 rtx lnote;
1584 for (lnote = REG_NOTES (newlpos); lnote; lnote = XEXP (lnote, 1))
1585 if ((REG_NOTE_KIND (lnote) == REG_EQUAL
1586 || REG_NOTE_KIND (lnote) == REG_EQUIV)
1587 && ! find_reg_note (newjpos, REG_EQUAL, XEXP (lnote, 0))
1588 && ! find_reg_note (newjpos, REG_EQUIV, XEXP (lnote, 0)))
1589 remove_note (newlpos, lnote);
1591 delete_insn (newjpos);
1592 newjpos = next_real_insn (newjpos);
1593 newlpos = next_real_insn (newlpos);
1597 /* Return the label before INSN, or put a new label there. */
1600 get_label_before (insn)
1601 rtx insn;
1603 rtx label;
1605 /* Find an existing label at this point
1606 or make a new one if there is none. */
1607 label = prev_nonnote_insn (insn);
1609 if (label == 0 || GET_CODE (label) != CODE_LABEL)
1611 rtx prev = PREV_INSN (insn);
1613 label = gen_label_rtx ();
1614 emit_label_after (label, prev);
1615 LABEL_NUSES (label) = 0;
1617 return label;
1620 /* Return the label after INSN, or put a new label there. */
1623 get_label_after (insn)
1624 rtx insn;
1626 rtx label;
1628 /* Find an existing label at this point
1629 or make a new one if there is none. */
1630 label = next_nonnote_insn (insn);
1632 if (label == 0 || GET_CODE (label) != CODE_LABEL)
1634 label = gen_label_rtx ();
1635 emit_label_after (label, insn);
1636 LABEL_NUSES (label) = 0;
1638 return label;
1641 /* Return 1 if INSN is a jump that jumps to right after TARGET
1642 only on the condition that TARGET itself would drop through.
1643 Assumes that TARGET is a conditional jump. */
1645 static int
1646 jump_back_p (insn, target)
1647 rtx insn, target;
1649 rtx cinsn, ctarget;
1650 enum rtx_code codei, codet;
1651 rtx set, tset;
1653 if (! any_condjump_p (insn)
1654 || any_uncondjump_p (target)
1655 || target != prev_real_insn (JUMP_LABEL (insn)))
1656 return 0;
1657 set = pc_set (insn);
1658 tset = pc_set (target);
1660 cinsn = XEXP (SET_SRC (set), 0);
1661 ctarget = XEXP (SET_SRC (tset), 0);
1663 codei = GET_CODE (cinsn);
1664 codet = GET_CODE (ctarget);
1666 if (XEXP (SET_SRC (set), 1) == pc_rtx)
1668 if (! can_reverse_comparison_p (cinsn, insn))
1669 return 0;
1670 codei = reverse_condition (codei);
1673 if (XEXP (SET_SRC (tset), 2) == pc_rtx)
1675 if (! can_reverse_comparison_p (ctarget, target))
1676 return 0;
1677 codet = reverse_condition (codet);
1680 return (codei == codet
1681 && rtx_renumbered_equal_p (XEXP (cinsn, 0), XEXP (ctarget, 0))
1682 && rtx_renumbered_equal_p (XEXP (cinsn, 1), XEXP (ctarget, 1)));
1685 /* Given a comparison, COMPARISON, inside a conditional jump insn, INSN,
1686 return non-zero if it is safe to reverse this comparison. It is if our
1687 floating-point is not IEEE, if this is an NE or EQ comparison, or if
1688 this is known to be an integer comparison. */
1691 can_reverse_comparison_p (comparison, insn)
1692 rtx comparison;
1693 rtx insn;
1695 rtx arg0;
1697 /* If this is not actually a comparison, we can't reverse it. */
1698 if (GET_RTX_CLASS (GET_CODE (comparison)) != '<')
1699 return 0;
1701 if (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
1702 /* If this is an NE comparison, it is safe to reverse it to an EQ
1703 comparison and vice versa, even for floating point. If no operands
1704 are NaNs, the reversal is valid. If some operand is a NaN, EQ is
1705 always false and NE is always true, so the reversal is also valid. */
1706 || flag_fast_math
1707 || GET_CODE (comparison) == NE
1708 || GET_CODE (comparison) == EQ)
1709 return 1;
1711 arg0 = XEXP (comparison, 0);
1713 /* Make sure ARG0 is one of the actual objects being compared. If we
1714 can't do this, we can't be sure the comparison can be reversed.
1716 Handle cc0 and a MODE_CC register. */
1717 if ((GET_CODE (arg0) == REG && GET_MODE_CLASS (GET_MODE (arg0)) == MODE_CC)
1718 #ifdef HAVE_cc0
1719 || arg0 == cc0_rtx
1720 #endif
1723 rtx prev, set;
1725 /* First see if the condition code mode alone if enough to say we can
1726 reverse the condition. If not, then search backwards for a set of
1727 ARG0. We do not need to check for an insn clobbering it since valid
1728 code will contain set a set with no intervening clobber. But
1729 stop when we reach a label. */
1730 #ifdef REVERSIBLE_CC_MODE
1731 if (GET_MODE_CLASS (GET_MODE (arg0)) == MODE_CC
1732 && REVERSIBLE_CC_MODE (GET_MODE (arg0)))
1733 return 1;
1734 #endif
1736 if (! insn)
1737 return 0;
1739 for (prev = prev_nonnote_insn (insn);
1740 prev != 0 && GET_CODE (prev) != CODE_LABEL;
1741 prev = prev_nonnote_insn (prev))
1742 if ((set = single_set (prev)) != 0
1743 && rtx_equal_p (SET_DEST (set), arg0))
1745 arg0 = SET_SRC (set);
1747 if (GET_CODE (arg0) == COMPARE)
1748 arg0 = XEXP (arg0, 0);
1749 break;
1753 /* We can reverse this if ARG0 is a CONST_INT or if its mode is
1754 not VOIDmode and neither a MODE_CC nor MODE_FLOAT type. */
1755 return (GET_CODE (arg0) == CONST_INT
1756 || (GET_MODE (arg0) != VOIDmode
1757 && GET_MODE_CLASS (GET_MODE (arg0)) != MODE_CC
1758 && GET_MODE_CLASS (GET_MODE (arg0)) != MODE_FLOAT));
1761 /* Given an rtx-code for a comparison, return the code for the negated
1762 comparison. If no such code exists, return UNKNOWN.
1764 WATCH OUT! reverse_condition is not safe to use on a jump that might
1765 be acting on the results of an IEEE floating point comparison, because
1766 of the special treatment of non-signaling nans in comparisons.
1767 Use can_reverse_comparison_p to be sure. */
1769 enum rtx_code
1770 reverse_condition (code)
1771 enum rtx_code code;
1773 switch (code)
1775 case EQ:
1776 return NE;
1777 case NE:
1778 return EQ;
1779 case GT:
1780 return LE;
1781 case GE:
1782 return LT;
1783 case LT:
1784 return GE;
1785 case LE:
1786 return GT;
1787 case GTU:
1788 return LEU;
1789 case GEU:
1790 return LTU;
1791 case LTU:
1792 return GEU;
1793 case LEU:
1794 return GTU;
1795 case UNORDERED:
1796 return ORDERED;
1797 case ORDERED:
1798 return UNORDERED;
1800 case UNLT:
1801 case UNLE:
1802 case UNGT:
1803 case UNGE:
1804 case UNEQ:
1805 case LTGT:
1806 return UNKNOWN;
1808 default:
1809 abort ();
1813 /* Similar, but we're allowed to generate unordered comparisons, which
1814 makes it safe for IEEE floating-point. Of course, we have to recognize
1815 that the target will support them too... */
1817 enum rtx_code
1818 reverse_condition_maybe_unordered (code)
1819 enum rtx_code code;
1821 /* Non-IEEE formats don't have unordered conditions. */
1822 if (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT)
1823 return reverse_condition (code);
1825 switch (code)
1827 case EQ:
1828 return NE;
1829 case NE:
1830 return EQ;
1831 case GT:
1832 return UNLE;
1833 case GE:
1834 return UNLT;
1835 case LT:
1836 return UNGE;
1837 case LE:
1838 return UNGT;
1839 case LTGT:
1840 return UNEQ;
1841 case GTU:
1842 return LEU;
1843 case GEU:
1844 return LTU;
1845 case LTU:
1846 return GEU;
1847 case LEU:
1848 return GTU;
1849 case UNORDERED:
1850 return ORDERED;
1851 case ORDERED:
1852 return UNORDERED;
1853 case UNLT:
1854 return GE;
1855 case UNLE:
1856 return GT;
1857 case UNGT:
1858 return LE;
1859 case UNGE:
1860 return LT;
1861 case UNEQ:
1862 return LTGT;
1864 default:
1865 abort ();
1869 /* Similar, but return the code when two operands of a comparison are swapped.
1870 This IS safe for IEEE floating-point. */
1872 enum rtx_code
1873 swap_condition (code)
1874 enum rtx_code code;
1876 switch (code)
1878 case EQ:
1879 case NE:
1880 case UNORDERED:
1881 case ORDERED:
1882 case UNEQ:
1883 case LTGT:
1884 return code;
1886 case GT:
1887 return LT;
1888 case GE:
1889 return LE;
1890 case LT:
1891 return GT;
1892 case LE:
1893 return GE;
1894 case GTU:
1895 return LTU;
1896 case GEU:
1897 return LEU;
1898 case LTU:
1899 return GTU;
1900 case LEU:
1901 return GEU;
1902 case UNLT:
1903 return UNGT;
1904 case UNLE:
1905 return UNGE;
1906 case UNGT:
1907 return UNLT;
1908 case UNGE:
1909 return UNLE;
1911 default:
1912 abort ();
1916 /* Given a comparison CODE, return the corresponding unsigned comparison.
1917 If CODE is an equality comparison or already an unsigned comparison,
1918 CODE is returned. */
1920 enum rtx_code
1921 unsigned_condition (code)
1922 enum rtx_code code;
1924 switch (code)
1926 case EQ:
1927 case NE:
1928 case GTU:
1929 case GEU:
1930 case LTU:
1931 case LEU:
1932 return code;
1934 case GT:
1935 return GTU;
1936 case GE:
1937 return GEU;
1938 case LT:
1939 return LTU;
1940 case LE:
1941 return LEU;
1943 default:
1944 abort ();
1948 /* Similarly, return the signed version of a comparison. */
1950 enum rtx_code
1951 signed_condition (code)
1952 enum rtx_code code;
1954 switch (code)
1956 case EQ:
1957 case NE:
1958 case GT:
1959 case GE:
1960 case LT:
1961 case LE:
1962 return code;
1964 case GTU:
1965 return GT;
1966 case GEU:
1967 return GE;
1968 case LTU:
1969 return LT;
1970 case LEU:
1971 return LE;
1973 default:
1974 abort ();
1978 /* Return non-zero if CODE1 is more strict than CODE2, i.e., if the
1979 truth of CODE1 implies the truth of CODE2. */
1982 comparison_dominates_p (code1, code2)
1983 enum rtx_code code1, code2;
1985 if (code1 == code2)
1986 return 1;
1988 switch (code1)
1990 case EQ:
1991 if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU
1992 || code2 == ORDERED)
1993 return 1;
1994 break;
1996 case LT:
1997 if (code2 == LE || code2 == NE || code2 == ORDERED)
1998 return 1;
1999 break;
2001 case GT:
2002 if (code2 == GE || code2 == NE || code2 == ORDERED)
2003 return 1;
2004 break;
2006 case GE:
2007 case LE:
2008 if (code2 == ORDERED)
2009 return 1;
2010 break;
2012 case LTGT:
2013 if (code2 == NE || code2 == ORDERED)
2014 return 1;
2015 break;
2017 case LTU:
2018 if (code2 == LEU || code2 == NE)
2019 return 1;
2020 break;
2022 case GTU:
2023 if (code2 == GEU || code2 == NE)
2024 return 1;
2025 break;
2027 case UNORDERED:
2028 if (code2 == NE)
2029 return 1;
2030 break;
2032 default:
2033 break;
2036 return 0;
2039 /* Return 1 if INSN is an unconditional jump and nothing else. */
2042 simplejump_p (insn)
2043 rtx insn;
2045 return (GET_CODE (insn) == JUMP_INSN
2046 && GET_CODE (PATTERN (insn)) == SET
2047 && GET_CODE (SET_DEST (PATTERN (insn))) == PC
2048 && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
2051 /* Return nonzero if INSN is a (possibly) conditional jump
2052 and nothing more.
2054 Use this function is deprecated, since we need to support combined
2055 branch and compare insns. Use any_condjump_p instead whenever possible. */
2058 condjump_p (insn)
2059 rtx insn;
2061 register rtx x = PATTERN (insn);
2063 if (GET_CODE (x) != SET
2064 || GET_CODE (SET_DEST (x)) != PC)
2065 return 0;
2067 x = SET_SRC (x);
2068 if (GET_CODE (x) == LABEL_REF)
2069 return 1;
2070 else
2071 return (GET_CODE (x) == IF_THEN_ELSE
2072 && ((GET_CODE (XEXP (x, 2)) == PC
2073 && (GET_CODE (XEXP (x, 1)) == LABEL_REF
2074 || GET_CODE (XEXP (x, 1)) == RETURN))
2075 || (GET_CODE (XEXP (x, 1)) == PC
2076 && (GET_CODE (XEXP (x, 2)) == LABEL_REF
2077 || GET_CODE (XEXP (x, 2)) == RETURN))));
2079 return 0;
2082 /* Return nonzero if INSN is a (possibly) conditional jump inside a
2083 PARALLEL.
2085 Use this function is deprecated, since we need to support combined
2086 branch and compare insns. Use any_condjump_p instead whenever possible. */
2089 condjump_in_parallel_p (insn)
2090 rtx insn;
2092 register rtx x = PATTERN (insn);
2094 if (GET_CODE (x) != PARALLEL)
2095 return 0;
2096 else
2097 x = XVECEXP (x, 0, 0);
2099 if (GET_CODE (x) != SET)
2100 return 0;
2101 if (GET_CODE (SET_DEST (x)) != PC)
2102 return 0;
2103 if (GET_CODE (SET_SRC (x)) == LABEL_REF)
2104 return 1;
2105 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
2106 return 0;
2107 if (XEXP (SET_SRC (x), 2) == pc_rtx
2108 && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
2109 || GET_CODE (XEXP (SET_SRC (x), 1)) == RETURN))
2110 return 1;
2111 if (XEXP (SET_SRC (x), 1) == pc_rtx
2112 && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
2113 || GET_CODE (XEXP (SET_SRC (x), 2)) == RETURN))
2114 return 1;
2115 return 0;
2118 /* Return set of PC, otherwise NULL. */
2121 pc_set (insn)
2122 rtx insn;
2124 rtx pat;
2125 if (GET_CODE (insn) != JUMP_INSN)
2126 return NULL_RTX;
2127 pat = PATTERN (insn);
2129 /* The set is allowed to appear either as the insn pattern or
2130 the first set in a PARALLEL. */
2131 if (GET_CODE (pat) == PARALLEL)
2132 pat = XVECEXP (pat, 0, 0);
2133 if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == PC)
2134 return pat;
2136 return NULL_RTX;
2139 /* Return true when insn is an unconditional direct jump,
2140 possibly bundled inside a PARALLEL. */
2143 any_uncondjump_p (insn)
2144 rtx insn;
2146 rtx x = pc_set (insn);
2147 if (!x)
2148 return 0;
2149 if (GET_CODE (SET_SRC (x)) != LABEL_REF)
2150 return 0;
2151 return 1;
2154 /* Return true when insn is a conditional jump. This function works for
2155 instructions containing PC sets in PARALLELs. The instruction may have
2156 various other effects so before removing the jump you must verify
2157 onlyjump_p.
2159 Note that unlike condjump_p it returns false for unconditional jumps. */
2162 any_condjump_p (insn)
2163 rtx insn;
2165 rtx x = pc_set (insn);
2166 enum rtx_code a, b;
2168 if (!x)
2169 return 0;
2170 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
2171 return 0;
2173 a = GET_CODE (XEXP (SET_SRC (x), 1));
2174 b = GET_CODE (XEXP (SET_SRC (x), 2));
2176 return ((b == PC && (a == LABEL_REF || a == RETURN))
2177 || (a == PC && (b == LABEL_REF || b == RETURN)));
2180 /* Return the label of a conditional jump. */
2183 condjump_label (insn)
2184 rtx insn;
2186 rtx x = pc_set (insn);
2188 if (!x)
2189 return NULL_RTX;
2190 x = SET_SRC (x);
2191 if (GET_CODE (x) == LABEL_REF)
2192 return x;
2193 if (GET_CODE (x) != IF_THEN_ELSE)
2194 return NULL_RTX;
2195 if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF)
2196 return XEXP (x, 1);
2197 if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF)
2198 return XEXP (x, 2);
2199 return NULL_RTX;
2202 /* Return true if INSN is a (possibly conditional) return insn. */
2204 static int
2205 returnjump_p_1 (loc, data)
2206 rtx *loc;
2207 void *data ATTRIBUTE_UNUSED;
2209 rtx x = *loc;
2210 return x && GET_CODE (x) == RETURN;
2214 returnjump_p (insn)
2215 rtx insn;
2217 if (GET_CODE (insn) != JUMP_INSN)
2218 return 0;
2219 return for_each_rtx (&PATTERN (insn), returnjump_p_1, NULL);
2222 /* Return true if INSN is a jump that only transfers control and
2223 nothing more. */
2226 onlyjump_p (insn)
2227 rtx insn;
2229 rtx set;
2231 if (GET_CODE (insn) != JUMP_INSN)
2232 return 0;
2234 set = single_set (insn);
2235 if (set == NULL)
2236 return 0;
2237 if (GET_CODE (SET_DEST (set)) != PC)
2238 return 0;
2239 if (side_effects_p (SET_SRC (set)))
2240 return 0;
2242 return 1;
2245 #ifdef HAVE_cc0
2247 /* Return 1 if X is an RTX that does nothing but set the condition codes
2248 and CLOBBER or USE registers.
2249 Return -1 if X does explicitly set the condition codes,
2250 but also does other things. */
2253 sets_cc0_p (x)
2254 rtx x ATTRIBUTE_UNUSED;
2256 if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
2257 return 1;
2258 if (GET_CODE (x) == PARALLEL)
2260 int i;
2261 int sets_cc0 = 0;
2262 int other_things = 0;
2263 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
2265 if (GET_CODE (XVECEXP (x, 0, i)) == SET
2266 && SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
2267 sets_cc0 = 1;
2268 else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
2269 other_things = 1;
2271 return ! sets_cc0 ? 0 : other_things ? -1 : 1;
2273 return 0;
2275 #endif
2277 /* Follow any unconditional jump at LABEL;
2278 return the ultimate label reached by any such chain of jumps.
2279 If LABEL is not followed by a jump, return LABEL.
2280 If the chain loops or we can't find end, return LABEL,
2281 since that tells caller to avoid changing the insn.
2283 If RELOAD_COMPLETED is 0, we do not chain across a NOTE_INSN_LOOP_BEG or
2284 a USE or CLOBBER. */
2287 follow_jumps (label)
2288 rtx label;
2290 register rtx insn;
2291 register rtx next;
2292 register rtx value = label;
2293 register int depth;
2295 for (depth = 0;
2296 (depth < 10
2297 && (insn = next_active_insn (value)) != 0
2298 && GET_CODE (insn) == JUMP_INSN
2299 && ((JUMP_LABEL (insn) != 0 && any_uncondjump_p (insn)
2300 && onlyjump_p (insn))
2301 || GET_CODE (PATTERN (insn)) == RETURN)
2302 && (next = NEXT_INSN (insn))
2303 && GET_CODE (next) == BARRIER);
2304 depth++)
2306 /* Don't chain through the insn that jumps into a loop
2307 from outside the loop,
2308 since that would create multiple loop entry jumps
2309 and prevent loop optimization. */
2310 rtx tem;
2311 if (!reload_completed)
2312 for (tem = value; tem != insn; tem = NEXT_INSN (tem))
2313 if (GET_CODE (tem) == NOTE
2314 && (NOTE_LINE_NUMBER (tem) == NOTE_INSN_LOOP_BEG
2315 /* ??? Optional. Disables some optimizations, but makes
2316 gcov output more accurate with -O. */
2317 || (flag_test_coverage && NOTE_LINE_NUMBER (tem) > 0)))
2318 return value;
2320 /* If we have found a cycle, make the insn jump to itself. */
2321 if (JUMP_LABEL (insn) == label)
2322 return label;
2324 tem = next_active_insn (JUMP_LABEL (insn));
2325 if (tem && (GET_CODE (PATTERN (tem)) == ADDR_VEC
2326 || GET_CODE (PATTERN (tem)) == ADDR_DIFF_VEC))
2327 break;
2329 value = JUMP_LABEL (insn);
2331 if (depth == 10)
2332 return label;
2333 return value;
2336 /* Assuming that field IDX of X is a vector of label_refs,
2337 replace each of them by the ultimate label reached by it.
2338 Return nonzero if a change is made.
2339 If IGNORE_LOOPS is 0, we do not chain across a NOTE_INSN_LOOP_BEG. */
2341 static int
2342 tension_vector_labels (x, idx)
2343 register rtx x;
2344 register int idx;
2346 int changed = 0;
2347 register int i;
2348 for (i = XVECLEN (x, idx) - 1; i >= 0; i--)
2350 register rtx olabel = XEXP (XVECEXP (x, idx, i), 0);
2351 register rtx nlabel = follow_jumps (olabel);
2352 if (nlabel && nlabel != olabel)
2354 XEXP (XVECEXP (x, idx, i), 0) = nlabel;
2355 ++LABEL_NUSES (nlabel);
2356 if (--LABEL_NUSES (olabel) == 0)
2357 delete_insn (olabel);
2358 changed = 1;
2361 return changed;
2364 /* Find all CODE_LABELs referred to in X, and increment their use counts.
2365 If INSN is a JUMP_INSN and there is at least one CODE_LABEL referenced
2366 in INSN, then store one of them in JUMP_LABEL (INSN).
2367 If INSN is an INSN or a CALL_INSN and there is at least one CODE_LABEL
2368 referenced in INSN, add a REG_LABEL note containing that label to INSN.
2369 Also, when there are consecutive labels, canonicalize on the last of them.
2371 Note that two labels separated by a loop-beginning note
2372 must be kept distinct if we have not yet done loop-optimization,
2373 because the gap between them is where loop-optimize
2374 will want to move invariant code to. CROSS_JUMP tells us
2375 that loop-optimization is done with.
2377 Once reload has completed (CROSS_JUMP non-zero), we need not consider
2378 two labels distinct if they are separated by only USE or CLOBBER insns. */
2380 static void
2381 mark_jump_label (x, insn, cross_jump, in_mem)
2382 register rtx x;
2383 rtx insn;
2384 int cross_jump;
2385 int in_mem;
2387 register RTX_CODE code = GET_CODE (x);
2388 register int i;
2389 register const char *fmt;
2391 switch (code)
2393 case PC:
2394 case CC0:
2395 case REG:
2396 case SUBREG:
2397 case CONST_INT:
2398 case CONST_DOUBLE:
2399 case CLOBBER:
2400 case CALL:
2401 return;
2403 case MEM:
2404 in_mem = 1;
2405 break;
2407 case SYMBOL_REF:
2408 if (!in_mem)
2409 return;
2411 /* If this is a constant-pool reference, see if it is a label. */
2412 if (CONSTANT_POOL_ADDRESS_P (x))
2413 mark_jump_label (get_pool_constant (x), insn, cross_jump, in_mem);
2414 break;
2416 case LABEL_REF:
2418 rtx label = XEXP (x, 0);
2419 rtx olabel = label;
2420 rtx note;
2421 rtx next;
2423 /* Ignore remaining references to unreachable labels that
2424 have been deleted. */
2425 if (GET_CODE (label) == NOTE
2426 && NOTE_LINE_NUMBER (label) == NOTE_INSN_DELETED_LABEL)
2427 break;
2429 if (GET_CODE (label) != CODE_LABEL)
2430 abort ();
2432 /* Ignore references to labels of containing functions. */
2433 if (LABEL_REF_NONLOCAL_P (x))
2434 break;
2436 /* If there are other labels following this one,
2437 replace it with the last of the consecutive labels. */
2438 for (next = NEXT_INSN (label); next; next = NEXT_INSN (next))
2440 if (GET_CODE (next) == CODE_LABEL)
2441 label = next;
2442 else if (cross_jump && GET_CODE (next) == INSN
2443 && (GET_CODE (PATTERN (next)) == USE
2444 || GET_CODE (PATTERN (next)) == CLOBBER))
2445 continue;
2446 else if (GET_CODE (next) != NOTE)
2447 break;
2448 else if (! cross_jump
2449 && (NOTE_LINE_NUMBER (next) == NOTE_INSN_LOOP_BEG
2450 || NOTE_LINE_NUMBER (next) == NOTE_INSN_FUNCTION_END
2451 /* ??? Optional. Disables some optimizations, but
2452 makes gcov output more accurate with -O. */
2453 || (flag_test_coverage
2454 && NOTE_LINE_NUMBER (next) > 0)))
2455 break;
2458 XEXP (x, 0) = label;
2459 if (! insn || ! INSN_DELETED_P (insn))
2460 ++LABEL_NUSES (label);
2462 if (insn)
2464 if (GET_CODE (insn) == JUMP_INSN)
2465 JUMP_LABEL (insn) = label;
2467 /* If we've changed OLABEL and we had a REG_LABEL note
2468 for it, update it as well. */
2469 else if (label != olabel
2470 && (note = find_reg_note (insn, REG_LABEL, olabel)) != 0)
2471 XEXP (note, 0) = label;
2473 /* Otherwise, add a REG_LABEL note for LABEL unless there already
2474 is one. */
2475 else if (! find_reg_note (insn, REG_LABEL, label))
2477 /* This code used to ignore labels which refered to dispatch
2478 tables to avoid flow.c generating worse code.
2480 However, in the presense of global optimizations like
2481 gcse which call find_basic_blocks without calling
2482 life_analysis, not recording such labels will lead
2483 to compiler aborts because of inconsistencies in the
2484 flow graph. So we go ahead and record the label.
2486 It may also be the case that the optimization argument
2487 is no longer valid because of the more accurate cfg
2488 we build in find_basic_blocks -- it no longer pessimizes
2489 code when it finds a REG_LABEL note. */
2490 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL, label,
2491 REG_NOTES (insn));
2494 return;
2497 /* Do walk the labels in a vector, but not the first operand of an
2498 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
2499 case ADDR_VEC:
2500 case ADDR_DIFF_VEC:
2501 if (! INSN_DELETED_P (insn))
2503 int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
2505 for (i = 0; i < XVECLEN (x, eltnum); i++)
2506 mark_jump_label (XVECEXP (x, eltnum, i), NULL_RTX,
2507 cross_jump, in_mem);
2509 return;
2511 default:
2512 break;
2515 fmt = GET_RTX_FORMAT (code);
2516 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2518 if (fmt[i] == 'e')
2519 mark_jump_label (XEXP (x, i), insn, cross_jump, in_mem);
2520 else if (fmt[i] == 'E')
2522 register int j;
2523 for (j = 0; j < XVECLEN (x, i); j++)
2524 mark_jump_label (XVECEXP (x, i, j), insn, cross_jump, in_mem);
2529 /* If all INSN does is set the pc, delete it,
2530 and delete the insn that set the condition codes for it
2531 if that's what the previous thing was. */
2533 void
2534 delete_jump (insn)
2535 rtx insn;
2537 register rtx set = single_set (insn);
2539 if (set && GET_CODE (SET_DEST (set)) == PC)
2540 delete_computation (insn);
2543 /* Verify INSN is a BARRIER and delete it. */
2545 void
2546 delete_barrier (insn)
2547 rtx insn;
2549 if (GET_CODE (insn) != BARRIER)
2550 abort ();
2552 delete_insn (insn);
2555 /* Recursively delete prior insns that compute the value (used only by INSN
2556 which the caller is deleting) stored in the register mentioned by NOTE
2557 which is a REG_DEAD note associated with INSN. */
2559 static void
2560 delete_prior_computation (note, insn)
2561 rtx note;
2562 rtx insn;
2564 rtx our_prev;
2565 rtx reg = XEXP (note, 0);
2567 for (our_prev = prev_nonnote_insn (insn);
2568 our_prev && (GET_CODE (our_prev) == INSN
2569 || GET_CODE (our_prev) == CALL_INSN);
2570 our_prev = prev_nonnote_insn (our_prev))
2572 rtx pat = PATTERN (our_prev);
2574 /* If we reach a CALL which is not calling a const function
2575 or the callee pops the arguments, then give up. */
2576 if (GET_CODE (our_prev) == CALL_INSN
2577 && (! CONST_CALL_P (our_prev)
2578 || GET_CODE (pat) != SET || GET_CODE (SET_SRC (pat)) != CALL))
2579 break;
2581 /* If we reach a SEQUENCE, it is too complex to try to
2582 do anything with it, so give up. */
2583 if (GET_CODE (pat) == SEQUENCE)
2584 break;
2586 if (GET_CODE (pat) == USE
2587 && GET_CODE (XEXP (pat, 0)) == INSN)
2588 /* reorg creates USEs that look like this. We leave them
2589 alone because reorg needs them for its own purposes. */
2590 break;
2592 if (reg_set_p (reg, pat))
2594 if (side_effects_p (pat) && GET_CODE (our_prev) != CALL_INSN)
2595 break;
2597 if (GET_CODE (pat) == PARALLEL)
2599 /* If we find a SET of something else, we can't
2600 delete the insn. */
2602 int i;
2604 for (i = 0; i < XVECLEN (pat, 0); i++)
2606 rtx part = XVECEXP (pat, 0, i);
2608 if (GET_CODE (part) == SET
2609 && SET_DEST (part) != reg)
2610 break;
2613 if (i == XVECLEN (pat, 0))
2614 delete_computation (our_prev);
2616 else if (GET_CODE (pat) == SET
2617 && GET_CODE (SET_DEST (pat)) == REG)
2619 int dest_regno = REGNO (SET_DEST (pat));
2620 int dest_endregno
2621 = (dest_regno
2622 + (dest_regno < FIRST_PSEUDO_REGISTER
2623 ? HARD_REGNO_NREGS (dest_regno,
2624 GET_MODE (SET_DEST (pat))) : 1));
2625 int regno = REGNO (reg);
2626 int endregno
2627 = (regno
2628 + (regno < FIRST_PSEUDO_REGISTER
2629 ? HARD_REGNO_NREGS (regno, GET_MODE (reg)) : 1));
2631 if (dest_regno >= regno
2632 && dest_endregno <= endregno)
2633 delete_computation (our_prev);
2635 /* We may have a multi-word hard register and some, but not
2636 all, of the words of the register are needed in subsequent
2637 insns. Write REG_UNUSED notes for those parts that were not
2638 needed. */
2639 else if (dest_regno <= regno
2640 && dest_endregno >= endregno)
2642 int i;
2644 REG_NOTES (our_prev)
2645 = gen_rtx_EXPR_LIST (REG_UNUSED, reg,
2646 REG_NOTES (our_prev));
2648 for (i = dest_regno; i < dest_endregno; i++)
2649 if (! find_regno_note (our_prev, REG_UNUSED, i))
2650 break;
2652 if (i == dest_endregno)
2653 delete_computation (our_prev);
2657 break;
2660 /* If PAT references the register that dies here, it is an
2661 additional use. Hence any prior SET isn't dead. However, this
2662 insn becomes the new place for the REG_DEAD note. */
2663 if (reg_overlap_mentioned_p (reg, pat))
2665 XEXP (note, 1) = REG_NOTES (our_prev);
2666 REG_NOTES (our_prev) = note;
2667 break;
2672 /* Delete INSN and recursively delete insns that compute values used only
2673 by INSN. This uses the REG_DEAD notes computed during flow analysis.
2674 If we are running before flow.c, we need do nothing since flow.c will
2675 delete dead code. We also can't know if the registers being used are
2676 dead or not at this point.
2678 Otherwise, look at all our REG_DEAD notes. If a previous insn does
2679 nothing other than set a register that dies in this insn, we can delete
2680 that insn as well.
2682 On machines with CC0, if CC0 is used in this insn, we may be able to
2683 delete the insn that set it. */
2685 static void
2686 delete_computation (insn)
2687 rtx insn;
2689 rtx note, next;
2691 #ifdef HAVE_cc0
2692 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2694 rtx prev = prev_nonnote_insn (insn);
2695 /* We assume that at this stage
2696 CC's are always set explicitly
2697 and always immediately before the jump that
2698 will use them. So if the previous insn
2699 exists to set the CC's, delete it
2700 (unless it performs auto-increments, etc.). */
2701 if (prev && GET_CODE (prev) == INSN
2702 && sets_cc0_p (PATTERN (prev)))
2704 if (sets_cc0_p (PATTERN (prev)) > 0
2705 && ! side_effects_p (PATTERN (prev)))
2706 delete_computation (prev);
2707 else
2708 /* Otherwise, show that cc0 won't be used. */
2709 REG_NOTES (prev) = gen_rtx_EXPR_LIST (REG_UNUSED,
2710 cc0_rtx, REG_NOTES (prev));
2713 #endif
2715 for (note = REG_NOTES (insn); note; note = next)
2717 next = XEXP (note, 1);
2719 if (REG_NOTE_KIND (note) != REG_DEAD
2720 /* Verify that the REG_NOTE is legitimate. */
2721 || GET_CODE (XEXP (note, 0)) != REG)
2722 continue;
2724 delete_prior_computation (note, insn);
2727 delete_insn (insn);
2730 /* Delete insn INSN from the chain of insns and update label ref counts.
2731 May delete some following insns as a consequence; may even delete
2732 a label elsewhere and insns that follow it.
2734 Returns the first insn after INSN that was not deleted. */
2737 delete_insn (insn)
2738 register rtx insn;
2740 register rtx next = NEXT_INSN (insn);
2741 register rtx prev = PREV_INSN (insn);
2742 register int was_code_label = (GET_CODE (insn) == CODE_LABEL);
2743 register int dont_really_delete = 0;
2744 rtx note;
2746 while (next && INSN_DELETED_P (next))
2747 next = NEXT_INSN (next);
2749 /* This insn is already deleted => return first following nondeleted. */
2750 if (INSN_DELETED_P (insn))
2751 return next;
2753 if (was_code_label)
2754 remove_node_from_expr_list (insn, &nonlocal_goto_handler_labels);
2756 /* Don't delete user-declared labels. When optimizing, convert them
2757 to special NOTEs instead. When not optimizing, leave them alone. */
2758 if (was_code_label && LABEL_NAME (insn) != 0)
2760 if (! optimize)
2761 dont_really_delete = 1;
2762 else if (! dont_really_delete)
2764 const char *name = LABEL_NAME (insn);
2765 PUT_CODE (insn, NOTE);
2766 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED_LABEL;
2767 NOTE_SOURCE_FILE (insn) = name;
2768 dont_really_delete = 1;
2771 else
2772 /* Mark this insn as deleted. */
2773 INSN_DELETED_P (insn) = 1;
2775 /* If this is an unconditional jump, delete it from the jump chain. */
2776 if (simplejump_p (insn))
2777 delete_from_jump_chain (insn);
2779 /* If instruction is followed by a barrier,
2780 delete the barrier too. */
2782 if (next != 0 && GET_CODE (next) == BARRIER)
2784 INSN_DELETED_P (next) = 1;
2785 next = NEXT_INSN (next);
2788 /* Patch out INSN (and the barrier if any) */
2790 if (! dont_really_delete)
2792 if (prev)
2794 NEXT_INSN (prev) = next;
2795 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
2796 NEXT_INSN (XVECEXP (PATTERN (prev), 0,
2797 XVECLEN (PATTERN (prev), 0) - 1)) = next;
2800 if (next)
2802 PREV_INSN (next) = prev;
2803 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
2804 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
2807 if (prev && NEXT_INSN (prev) == 0)
2808 set_last_insn (prev);
2811 /* If deleting a jump, decrement the count of the label,
2812 and delete the label if it is now unused. */
2814 if (GET_CODE (insn) == JUMP_INSN && JUMP_LABEL (insn))
2816 rtx lab = JUMP_LABEL (insn), lab_next;
2818 if (--LABEL_NUSES (lab) == 0)
2820 /* This can delete NEXT or PREV,
2821 either directly if NEXT is JUMP_LABEL (INSN),
2822 or indirectly through more levels of jumps. */
2823 delete_insn (lab);
2825 /* I feel a little doubtful about this loop,
2826 but I see no clean and sure alternative way
2827 to find the first insn after INSN that is not now deleted.
2828 I hope this works. */
2829 while (next && INSN_DELETED_P (next))
2830 next = NEXT_INSN (next);
2831 return next;
2833 else if ((lab_next = next_nonnote_insn (lab)) != NULL
2834 && GET_CODE (lab_next) == JUMP_INSN
2835 && (GET_CODE (PATTERN (lab_next)) == ADDR_VEC
2836 || GET_CODE (PATTERN (lab_next)) == ADDR_DIFF_VEC))
2838 /* If we're deleting the tablejump, delete the dispatch table.
2839 We may not be able to kill the label immediately preceeding
2840 just yet, as it might be referenced in code leading up to
2841 the tablejump. */
2842 delete_insn (lab_next);
2846 /* Likewise if we're deleting a dispatch table. */
2848 if (GET_CODE (insn) == JUMP_INSN
2849 && (GET_CODE (PATTERN (insn)) == ADDR_VEC
2850 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC))
2852 rtx pat = PATTERN (insn);
2853 int i, diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
2854 int len = XVECLEN (pat, diff_vec_p);
2856 for (i = 0; i < len; i++)
2857 if (--LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0)) == 0)
2858 delete_insn (XEXP (XVECEXP (pat, diff_vec_p, i), 0));
2859 while (next && INSN_DELETED_P (next))
2860 next = NEXT_INSN (next);
2861 return next;
2864 /* Likewise for an ordinary INSN / CALL_INSN with a REG_LABEL note. */
2865 if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
2866 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2867 if (REG_NOTE_KIND (note) == REG_LABEL
2868 /* This could also be a NOTE_INSN_DELETED_LABEL note. */
2869 && GET_CODE (XEXP (note, 0)) == CODE_LABEL)
2870 if (--LABEL_NUSES (XEXP (note, 0)) == 0)
2871 delete_insn (XEXP (note, 0));
2873 while (prev && (INSN_DELETED_P (prev) || GET_CODE (prev) == NOTE))
2874 prev = PREV_INSN (prev);
2876 /* If INSN was a label and a dispatch table follows it,
2877 delete the dispatch table. The tablejump must have gone already.
2878 It isn't useful to fall through into a table. */
2880 if (was_code_label
2881 && NEXT_INSN (insn) != 0
2882 && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN
2883 && (GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_VEC
2884 || GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_DIFF_VEC))
2885 next = delete_insn (NEXT_INSN (insn));
2887 /* If INSN was a label, delete insns following it if now unreachable. */
2889 if (was_code_label && prev && GET_CODE (prev) == BARRIER)
2891 register RTX_CODE code;
2892 while (next != 0
2893 && (GET_RTX_CLASS (code = GET_CODE (next)) == 'i'
2894 || code == NOTE || code == BARRIER
2895 || (code == CODE_LABEL && INSN_DELETED_P (next))))
2897 if (code == NOTE
2898 && NOTE_LINE_NUMBER (next) != NOTE_INSN_FUNCTION_END)
2899 next = NEXT_INSN (next);
2900 /* Keep going past other deleted labels to delete what follows. */
2901 else if (code == CODE_LABEL && INSN_DELETED_P (next))
2902 next = NEXT_INSN (next);
2903 else
2904 /* Note: if this deletes a jump, it can cause more
2905 deletion of unreachable code, after a different label.
2906 As long as the value from this recursive call is correct,
2907 this invocation functions correctly. */
2908 next = delete_insn (next);
2912 return next;
2915 /* Advance from INSN till reaching something not deleted
2916 then return that. May return INSN itself. */
2919 next_nondeleted_insn (insn)
2920 rtx insn;
2922 while (INSN_DELETED_P (insn))
2923 insn = NEXT_INSN (insn);
2924 return insn;
2927 /* Delete a range of insns from FROM to TO, inclusive.
2928 This is for the sake of peephole optimization, so assume
2929 that whatever these insns do will still be done by a new
2930 peephole insn that will replace them. */
2932 void
2933 delete_for_peephole (from, to)
2934 register rtx from, to;
2936 register rtx insn = from;
2938 while (1)
2940 register rtx next = NEXT_INSN (insn);
2941 register rtx prev = PREV_INSN (insn);
2943 if (GET_CODE (insn) != NOTE)
2945 INSN_DELETED_P (insn) = 1;
2947 /* Patch this insn out of the chain. */
2948 /* We don't do this all at once, because we
2949 must preserve all NOTEs. */
2950 if (prev)
2951 NEXT_INSN (prev) = next;
2953 if (next)
2954 PREV_INSN (next) = prev;
2957 if (insn == to)
2958 break;
2959 insn = next;
2962 /* Note that if TO is an unconditional jump
2963 we *do not* delete the BARRIER that follows,
2964 since the peephole that replaces this sequence
2965 is also an unconditional jump in that case. */
2968 /* We have determined that INSN is never reached, and are about to
2969 delete it. Print a warning if the user asked for one.
2971 To try to make this warning more useful, this should only be called
2972 once per basic block not reached, and it only warns when the basic
2973 block contains more than one line from the current function, and
2974 contains at least one operation. CSE and inlining can duplicate insns,
2975 so it's possible to get spurious warnings from this. */
2977 void
2978 never_reached_warning (avoided_insn)
2979 rtx avoided_insn;
2981 rtx insn;
2982 rtx a_line_note = NULL;
2983 int two_avoided_lines = 0;
2984 int contains_insn = 0;
2986 if (! warn_notreached)
2987 return;
2989 /* Scan forwards, looking at LINE_NUMBER notes, until
2990 we hit a LABEL or we run out of insns. */
2992 for (insn = avoided_insn; insn != NULL; insn = NEXT_INSN (insn))
2994 if (GET_CODE (insn) == CODE_LABEL)
2995 break;
2996 else if (GET_CODE (insn) == NOTE /* A line number note? */
2997 && NOTE_LINE_NUMBER (insn) >= 0)
2999 if (a_line_note == NULL)
3000 a_line_note = insn;
3001 else
3002 two_avoided_lines |= (NOTE_LINE_NUMBER (a_line_note)
3003 != NOTE_LINE_NUMBER (insn));
3005 else if (INSN_P (insn))
3006 contains_insn = 1;
3008 if (two_avoided_lines && contains_insn)
3009 warning_with_file_and_line (NOTE_SOURCE_FILE (a_line_note),
3010 NOTE_LINE_NUMBER (a_line_note),
3011 "will never be executed");
3014 /* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
3015 NLABEL as a return. Accrue modifications into the change group. */
3017 static void
3018 redirect_exp_1 (loc, olabel, nlabel, insn)
3019 rtx *loc;
3020 rtx olabel, nlabel;
3021 rtx insn;
3023 register rtx x = *loc;
3024 register RTX_CODE code = GET_CODE (x);
3025 register int i;
3026 register const char *fmt;
3028 if (code == LABEL_REF)
3030 if (XEXP (x, 0) == olabel)
3032 rtx n;
3033 if (nlabel)
3034 n = gen_rtx_LABEL_REF (VOIDmode, nlabel);
3035 else
3036 n = gen_rtx_RETURN (VOIDmode);
3038 validate_change (insn, loc, n, 1);
3039 return;
3042 else if (code == RETURN && olabel == 0)
3044 x = gen_rtx_LABEL_REF (VOIDmode, nlabel);
3045 if (loc == &PATTERN (insn))
3046 x = gen_rtx_SET (VOIDmode, pc_rtx, x);
3047 validate_change (insn, loc, x, 1);
3048 return;
3051 if (code == SET && nlabel == 0 && SET_DEST (x) == pc_rtx
3052 && GET_CODE (SET_SRC (x)) == LABEL_REF
3053 && XEXP (SET_SRC (x), 0) == olabel)
3055 validate_change (insn, loc, gen_rtx_RETURN (VOIDmode), 1);
3056 return;
3059 fmt = GET_RTX_FORMAT (code);
3060 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3062 if (fmt[i] == 'e')
3063 redirect_exp_1 (&XEXP (x, i), olabel, nlabel, insn);
3064 else if (fmt[i] == 'E')
3066 register int j;
3067 for (j = 0; j < XVECLEN (x, i); j++)
3068 redirect_exp_1 (&XVECEXP (x, i, j), olabel, nlabel, insn);
3073 /* Similar, but apply the change group and report success or failure. */
3075 static int
3076 redirect_exp (olabel, nlabel, insn)
3077 rtx olabel, nlabel;
3078 rtx insn;
3080 rtx *loc;
3082 if (GET_CODE (PATTERN (insn)) == PARALLEL)
3083 loc = &XVECEXP (PATTERN (insn), 0, 0);
3084 else
3085 loc = &PATTERN (insn);
3087 redirect_exp_1 (loc, olabel, nlabel, insn);
3088 if (num_validated_changes () == 0)
3089 return 0;
3091 return apply_change_group ();
3094 /* Make JUMP go to NLABEL instead of where it jumps now. Accrue
3095 the modifications into the change group. Return false if we did
3096 not see how to do that. */
3099 redirect_jump_1 (jump, nlabel)
3100 rtx jump, nlabel;
3102 int ochanges = num_validated_changes ();
3103 rtx *loc;
3105 if (GET_CODE (PATTERN (jump)) == PARALLEL)
3106 loc = &XVECEXP (PATTERN (jump), 0, 0);
3107 else
3108 loc = &PATTERN (jump);
3110 redirect_exp_1 (loc, JUMP_LABEL (jump), nlabel, jump);
3111 return num_validated_changes () > ochanges;
3114 /* Make JUMP go to NLABEL instead of where it jumps now. If the old
3115 jump target label is unused as a result, it and the code following
3116 it may be deleted.
3118 If NLABEL is zero, we are to turn the jump into a (possibly conditional)
3119 RETURN insn.
3121 The return value will be 1 if the change was made, 0 if it wasn't
3122 (this can only occur for NLABEL == 0). */
3125 redirect_jump (jump, nlabel, delete_unused)
3126 rtx jump, nlabel;
3127 int delete_unused;
3129 register rtx olabel = JUMP_LABEL (jump);
3131 if (nlabel == olabel)
3132 return 1;
3134 if (! redirect_exp (olabel, nlabel, jump))
3135 return 0;
3137 /* If this is an unconditional branch, delete it from the jump_chain of
3138 OLABEL and add it to the jump_chain of NLABEL (assuming both labels
3139 have UID's in range and JUMP_CHAIN is valid). */
3140 if (jump_chain && (simplejump_p (jump)
3141 || GET_CODE (PATTERN (jump)) == RETURN))
3143 int label_index = nlabel ? INSN_UID (nlabel) : 0;
3145 delete_from_jump_chain (jump);
3146 if (label_index < max_jump_chain
3147 && INSN_UID (jump) < max_jump_chain)
3149 jump_chain[INSN_UID (jump)] = jump_chain[label_index];
3150 jump_chain[label_index] = jump;
3154 JUMP_LABEL (jump) = nlabel;
3155 if (nlabel)
3156 ++LABEL_NUSES (nlabel);
3158 /* If we're eliding the jump over exception cleanups at the end of a
3159 function, move the function end note so that -Wreturn-type works. */
3160 if (olabel && nlabel
3161 && NEXT_INSN (olabel)
3162 && GET_CODE (NEXT_INSN (olabel)) == NOTE
3163 && NOTE_LINE_NUMBER (NEXT_INSN (olabel)) == NOTE_INSN_FUNCTION_END)
3164 emit_note_after (NOTE_INSN_FUNCTION_END, nlabel);
3166 if (olabel && --LABEL_NUSES (olabel) == 0 && delete_unused)
3167 delete_insn (olabel);
3169 return 1;
3172 /* Invert the jump condition of rtx X contained in jump insn, INSN.
3173 Accrue the modifications into the change group. */
3175 static void
3176 invert_exp_1 (insn)
3177 rtx insn;
3179 register RTX_CODE code;
3180 rtx x = pc_set (insn);
3182 if (!x)
3183 abort ();
3184 x = SET_SRC (x);
3186 code = GET_CODE (x);
3188 if (code == IF_THEN_ELSE)
3190 register rtx comp = XEXP (x, 0);
3191 register rtx tem;
3193 /* We can do this in two ways: The preferable way, which can only
3194 be done if this is not an integer comparison, is to reverse
3195 the comparison code. Otherwise, swap the THEN-part and ELSE-part
3196 of the IF_THEN_ELSE. If we can't do either, fail. */
3198 if (can_reverse_comparison_p (comp, insn))
3200 validate_change (insn, &XEXP (x, 0),
3201 gen_rtx_fmt_ee (reverse_condition (GET_CODE (comp)),
3202 GET_MODE (comp), XEXP (comp, 0),
3203 XEXP (comp, 1)),
3205 return;
3208 tem = XEXP (x, 1);
3209 validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
3210 validate_change (insn, &XEXP (x, 2), tem, 1);
3212 else
3213 abort ();
3216 /* Invert the jump condition of conditional jump insn, INSN.
3218 Return 1 if we can do so, 0 if we cannot find a way to do so that
3219 matches a pattern. */
3221 static int
3222 invert_exp (insn)
3223 rtx insn;
3225 invert_exp_1 (insn);
3226 if (num_validated_changes () == 0)
3227 return 0;
3229 return apply_change_group ();
3232 /* Invert the condition of the jump JUMP, and make it jump to label
3233 NLABEL instead of where it jumps now. Accrue changes into the
3234 change group. Return false if we didn't see how to perform the
3235 inversion and redirection. */
3238 invert_jump_1 (jump, nlabel)
3239 rtx jump, nlabel;
3241 int ochanges;
3243 ochanges = num_validated_changes ();
3244 invert_exp_1 (jump);
3245 if (num_validated_changes () == ochanges)
3246 return 0;
3248 return redirect_jump_1 (jump, nlabel);
3251 /* Invert the condition of the jump JUMP, and make it jump to label
3252 NLABEL instead of where it jumps now. Return true if successful. */
3255 invert_jump (jump, nlabel, delete_unused)
3256 rtx jump, nlabel;
3257 int delete_unused;
3259 /* We have to either invert the condition and change the label or
3260 do neither. Either operation could fail. We first try to invert
3261 the jump. If that succeeds, we try changing the label. If that fails,
3262 we invert the jump back to what it was. */
3264 if (! invert_exp (jump))
3265 return 0;
3267 if (redirect_jump (jump, nlabel, delete_unused))
3269 /* An inverted jump means that a probability taken becomes a
3270 probability not taken. Subtract the branch probability from the
3271 probability base to convert it back to a taken probability. */
3273 rtx note = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
3274 if (note)
3275 XEXP (note, 0) = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (note, 0)));
3277 return 1;
3280 if (! invert_exp (jump))
3281 /* This should just be putting it back the way it was. */
3282 abort ();
3284 return 0;
3287 /* Delete the instruction JUMP from any jump chain it might be on. */
3289 static void
3290 delete_from_jump_chain (jump)
3291 rtx jump;
3293 int index;
3294 rtx olabel = JUMP_LABEL (jump);
3296 /* Handle unconditional jumps. */
3297 if (jump_chain && olabel != 0
3298 && INSN_UID (olabel) < max_jump_chain
3299 && simplejump_p (jump))
3300 index = INSN_UID (olabel);
3301 /* Handle return insns. */
3302 else if (jump_chain && GET_CODE (PATTERN (jump)) == RETURN)
3303 index = 0;
3304 else
3305 return;
3307 if (jump_chain[index] == jump)
3308 jump_chain[index] = jump_chain[INSN_UID (jump)];
3309 else
3311 rtx insn;
3313 for (insn = jump_chain[index];
3314 insn != 0;
3315 insn = jump_chain[INSN_UID (insn)])
3316 if (jump_chain[INSN_UID (insn)] == jump)
3318 jump_chain[INSN_UID (insn)] = jump_chain[INSN_UID (jump)];
3319 break;
3324 /* Make jump JUMP jump to label NLABEL, assuming it used to be a tablejump.
3326 If the old jump target label (before the dispatch table) becomes unused,
3327 it and the dispatch table may be deleted. In that case, find the insn
3328 before the jump references that label and delete it and logical successors
3329 too. */
3331 static void
3332 redirect_tablejump (jump, nlabel)
3333 rtx jump, nlabel;
3335 register rtx olabel = JUMP_LABEL (jump);
3336 rtx *notep, note, next;
3338 /* Add this jump to the jump_chain of NLABEL. */
3339 if (jump_chain && INSN_UID (nlabel) < max_jump_chain
3340 && INSN_UID (jump) < max_jump_chain)
3342 jump_chain[INSN_UID (jump)] = jump_chain[INSN_UID (nlabel)];
3343 jump_chain[INSN_UID (nlabel)] = jump;
3346 for (notep = &REG_NOTES (jump), note = *notep; note; note = next)
3348 next = XEXP (note, 1);
3350 if (REG_NOTE_KIND (note) != REG_DEAD
3351 /* Verify that the REG_NOTE is legitimate. */
3352 || GET_CODE (XEXP (note, 0)) != REG
3353 || ! reg_mentioned_p (XEXP (note, 0), PATTERN (jump)))
3354 notep = &XEXP (note, 1);
3355 else
3357 delete_prior_computation (note, jump);
3358 *notep = next;
3362 PATTERN (jump) = gen_jump (nlabel);
3363 JUMP_LABEL (jump) = nlabel;
3364 ++LABEL_NUSES (nlabel);
3365 INSN_CODE (jump) = -1;
3367 if (--LABEL_NUSES (olabel) == 0)
3369 delete_labelref_insn (jump, olabel, 0);
3370 delete_insn (olabel);
3374 /* Find the insn referencing LABEL that is a logical predecessor of INSN.
3375 If we found one, delete it and then delete this insn if DELETE_THIS is
3376 non-zero. Return non-zero if INSN or a predecessor references LABEL. */
3378 static int
3379 delete_labelref_insn (insn, label, delete_this)
3380 rtx insn, label;
3381 int delete_this;
3383 int deleted = 0;
3384 rtx link;
3386 if (GET_CODE (insn) != NOTE
3387 && reg_mentioned_p (label, PATTERN (insn)))
3389 if (delete_this)
3391 delete_insn (insn);
3392 deleted = 1;
3394 else
3395 return 1;
3398 for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
3399 if (delete_labelref_insn (XEXP (link, 0), label, 1))
3401 if (delete_this)
3403 delete_insn (insn);
3404 deleted = 1;
3406 else
3407 return 1;
3410 return deleted;
3413 /* Like rtx_equal_p except that it considers two REGs as equal
3414 if they renumber to the same value and considers two commutative
3415 operations to be the same if the order of the operands has been
3416 reversed.
3418 ??? Addition is not commutative on the PA due to the weird implicit
3419 space register selection rules for memory addresses. Therefore, we
3420 don't consider a + b == b + a.
3422 We could/should make this test a little tighter. Possibly only
3423 disabling it on the PA via some backend macro or only disabling this
3424 case when the PLUS is inside a MEM. */
3427 rtx_renumbered_equal_p (x, y)
3428 rtx x, y;
3430 register int i;
3431 register RTX_CODE code = GET_CODE (x);
3432 register const char *fmt;
3434 if (x == y)
3435 return 1;
3437 if ((code == REG || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
3438 && (GET_CODE (y) == REG || (GET_CODE (y) == SUBREG
3439 && GET_CODE (SUBREG_REG (y)) == REG)))
3441 int reg_x = -1, reg_y = -1;
3442 int word_x = 0, word_y = 0;
3444 if (GET_MODE (x) != GET_MODE (y))
3445 return 0;
3447 /* If we haven't done any renumbering, don't
3448 make any assumptions. */
3449 if (reg_renumber == 0)
3450 return rtx_equal_p (x, y);
3452 if (code == SUBREG)
3454 reg_x = REGNO (SUBREG_REG (x));
3455 word_x = SUBREG_WORD (x);
3457 if (reg_renumber[reg_x] >= 0)
3459 reg_x = reg_renumber[reg_x] + word_x;
3460 word_x = 0;
3464 else
3466 reg_x = REGNO (x);
3467 if (reg_renumber[reg_x] >= 0)
3468 reg_x = reg_renumber[reg_x];
3471 if (GET_CODE (y) == SUBREG)
3473 reg_y = REGNO (SUBREG_REG (y));
3474 word_y = SUBREG_WORD (y);
3476 if (reg_renumber[reg_y] >= 0)
3478 reg_y = reg_renumber[reg_y];
3479 word_y = 0;
3483 else
3485 reg_y = REGNO (y);
3486 if (reg_renumber[reg_y] >= 0)
3487 reg_y = reg_renumber[reg_y];
3490 return reg_x >= 0 && reg_x == reg_y && word_x == word_y;
3493 /* Now we have disposed of all the cases
3494 in which different rtx codes can match. */
3495 if (code != GET_CODE (y))
3496 return 0;
3498 switch (code)
3500 case PC:
3501 case CC0:
3502 case ADDR_VEC:
3503 case ADDR_DIFF_VEC:
3504 return 0;
3506 case CONST_INT:
3507 return INTVAL (x) == INTVAL (y);
3509 case LABEL_REF:
3510 /* We can't assume nonlocal labels have their following insns yet. */
3511 if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
3512 return XEXP (x, 0) == XEXP (y, 0);
3514 /* Two label-refs are equivalent if they point at labels
3515 in the same position in the instruction stream. */
3516 return (next_real_insn (XEXP (x, 0))
3517 == next_real_insn (XEXP (y, 0)));
3519 case SYMBOL_REF:
3520 return XSTR (x, 0) == XSTR (y, 0);
3522 case CODE_LABEL:
3523 /* If we didn't match EQ equality above, they aren't the same. */
3524 return 0;
3526 default:
3527 break;
3530 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
3532 if (GET_MODE (x) != GET_MODE (y))
3533 return 0;
3535 /* For commutative operations, the RTX match if the operand match in any
3536 order. Also handle the simple binary and unary cases without a loop.
3538 ??? Don't consider PLUS a commutative operator; see comments above. */
3539 if ((code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
3540 && code != PLUS)
3541 return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
3542 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)))
3543 || (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1))
3544 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0))));
3545 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == '2')
3546 return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
3547 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)));
3548 else if (GET_RTX_CLASS (code) == '1')
3549 return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0));
3551 /* Compare the elements. If any pair of corresponding elements
3552 fail to match, return 0 for the whole things. */
3554 fmt = GET_RTX_FORMAT (code);
3555 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3557 register int j;
3558 switch (fmt[i])
3560 case 'w':
3561 if (XWINT (x, i) != XWINT (y, i))
3562 return 0;
3563 break;
3565 case 'i':
3566 if (XINT (x, i) != XINT (y, i))
3567 return 0;
3568 break;
3570 case 's':
3571 if (strcmp (XSTR (x, i), XSTR (y, i)))
3572 return 0;
3573 break;
3575 case 'e':
3576 if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
3577 return 0;
3578 break;
3580 case 'u':
3581 if (XEXP (x, i) != XEXP (y, i))
3582 return 0;
3583 /* fall through. */
3584 case '0':
3585 break;
3587 case 'E':
3588 if (XVECLEN (x, i) != XVECLEN (y, i))
3589 return 0;
3590 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3591 if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
3592 return 0;
3593 break;
3595 default:
3596 abort ();
3599 return 1;
3602 /* If X is a hard register or equivalent to one or a subregister of one,
3603 return the hard register number. If X is a pseudo register that was not
3604 assigned a hard register, return the pseudo register number. Otherwise,
3605 return -1. Any rtx is valid for X. */
3608 true_regnum (x)
3609 rtx x;
3611 if (GET_CODE (x) == REG)
3613 if (REGNO (x) >= FIRST_PSEUDO_REGISTER && reg_renumber[REGNO (x)] >= 0)
3614 return reg_renumber[REGNO (x)];
3615 return REGNO (x);
3617 if (GET_CODE (x) == SUBREG)
3619 int base = true_regnum (SUBREG_REG (x));
3620 if (base >= 0 && base < FIRST_PSEUDO_REGISTER)
3621 return SUBREG_WORD (x) + base;
3623 return -1;
3626 /* Optimize code of the form:
3628 for (x = a[i]; x; ...)
3630 for (x = a[i]; x; ...)
3632 foo:
3634 Loop optimize will change the above code into
3636 if (x = a[i])
3637 for (;;)
3638 { ...; if (! (x = ...)) break; }
3639 if (x = a[i])
3640 for (;;)
3641 { ...; if (! (x = ...)) break; }
3642 foo:
3644 In general, if the first test fails, the program can branch
3645 directly to `foo' and skip the second try which is doomed to fail.
3646 We run this after loop optimization and before flow analysis. */
3648 /* When comparing the insn patterns, we track the fact that different
3649 pseudo-register numbers may have been used in each computation.
3650 The following array stores an equivalence -- same_regs[I] == J means
3651 that pseudo register I was used in the first set of tests in a context
3652 where J was used in the second set. We also count the number of such
3653 pending equivalences. If nonzero, the expressions really aren't the
3654 same. */
3656 static int *same_regs;
3658 static int num_same_regs;
3660 /* Track any registers modified between the target of the first jump and
3661 the second jump. They never compare equal. */
3663 static char *modified_regs;
3665 /* Record if memory was modified. */
3667 static int modified_mem;
3669 /* Called via note_stores on each insn between the target of the first
3670 branch and the second branch. It marks any changed registers. */
3672 static void
3673 mark_modified_reg (dest, x, data)
3674 rtx dest;
3675 rtx x ATTRIBUTE_UNUSED;
3676 void *data ATTRIBUTE_UNUSED;
3678 int regno;
3679 unsigned int i;
3681 if (GET_CODE (dest) == SUBREG)
3682 dest = SUBREG_REG (dest);
3684 if (GET_CODE (dest) == MEM)
3685 modified_mem = 1;
3687 if (GET_CODE (dest) != REG)
3688 return;
3690 regno = REGNO (dest);
3691 if (regno >= FIRST_PSEUDO_REGISTER)
3692 modified_regs[regno] = 1;
3693 else
3694 for (i = 0; i < HARD_REGNO_NREGS (regno, GET_MODE (dest)); i++)
3695 modified_regs[regno + i] = 1;
3698 /* F is the first insn in the chain of insns. */
3700 void
3701 thread_jumps (f, max_reg, flag_before_loop)
3702 rtx f;
3703 int max_reg;
3704 int flag_before_loop;
3706 /* Basic algorithm is to find a conditional branch,
3707 the label it may branch to, and the branch after
3708 that label. If the two branches test the same condition,
3709 walk back from both branch paths until the insn patterns
3710 differ, or code labels are hit. If we make it back to
3711 the target of the first branch, then we know that the first branch
3712 will either always succeed or always fail depending on the relative
3713 senses of the two branches. So adjust the first branch accordingly
3714 in this case. */
3716 rtx label, b1, b2, t1, t2;
3717 enum rtx_code code1, code2;
3718 rtx b1op0, b1op1, b2op0, b2op1;
3719 int changed = 1;
3720 int i;
3721 int *all_reset;
3723 /* Allocate register tables and quick-reset table. */
3724 modified_regs = (char *) xmalloc (max_reg * sizeof (char));
3725 same_regs = (int *) xmalloc (max_reg * sizeof (int));
3726 all_reset = (int *) xmalloc (max_reg * sizeof (int));
3727 for (i = 0; i < max_reg; i++)
3728 all_reset[i] = -1;
3730 while (changed)
3732 changed = 0;
3734 for (b1 = f; b1; b1 = NEXT_INSN (b1))
3736 rtx set;
3737 rtx set2;
3739 /* Get to a candidate branch insn. */
3740 if (GET_CODE (b1) != JUMP_INSN
3741 || ! any_condjump_p (b1) || JUMP_LABEL (b1) == 0)
3742 continue;
3744 memset (modified_regs, 0, max_reg * sizeof (char));
3745 modified_mem = 0;
3747 memcpy (same_regs, all_reset, max_reg * sizeof (int));
3748 num_same_regs = 0;
3750 label = JUMP_LABEL (b1);
3752 /* Look for a branch after the target. Record any registers and
3753 memory modified between the target and the branch. Stop when we
3754 get to a label since we can't know what was changed there. */
3755 for (b2 = NEXT_INSN (label); b2; b2 = NEXT_INSN (b2))
3757 if (GET_CODE (b2) == CODE_LABEL)
3758 break;
3760 else if (GET_CODE (b2) == JUMP_INSN)
3762 /* If this is an unconditional jump and is the only use of
3763 its target label, we can follow it. */
3764 if (any_uncondjump_p (b2)
3765 && onlyjump_p (b2)
3766 && JUMP_LABEL (b2) != 0
3767 && LABEL_NUSES (JUMP_LABEL (b2)) == 1)
3769 b2 = JUMP_LABEL (b2);
3770 continue;
3772 else
3773 break;
3776 if (GET_CODE (b2) != CALL_INSN && GET_CODE (b2) != INSN)
3777 continue;
3779 if (GET_CODE (b2) == CALL_INSN)
3781 modified_mem = 1;
3782 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3783 if (call_used_regs[i] && ! fixed_regs[i]
3784 && i != STACK_POINTER_REGNUM
3785 && i != FRAME_POINTER_REGNUM
3786 && i != HARD_FRAME_POINTER_REGNUM
3787 && i != ARG_POINTER_REGNUM)
3788 modified_regs[i] = 1;
3791 note_stores (PATTERN (b2), mark_modified_reg, NULL);
3794 /* Check the next candidate branch insn from the label
3795 of the first. */
3796 if (b2 == 0
3797 || GET_CODE (b2) != JUMP_INSN
3798 || b2 == b1
3799 || !any_condjump_p (b2)
3800 || !onlyjump_p (b2))
3801 continue;
3802 set = pc_set (b1);
3803 set2 = pc_set (b2);
3805 /* Get the comparison codes and operands, reversing the
3806 codes if appropriate. If we don't have comparison codes,
3807 we can't do anything. */
3808 b1op0 = XEXP (XEXP (SET_SRC (set), 0), 0);
3809 b1op1 = XEXP (XEXP (SET_SRC (set), 0), 1);
3810 code1 = GET_CODE (XEXP (SET_SRC (set), 0));
3811 if (XEXP (SET_SRC (set), 1) == pc_rtx)
3812 code1 = reverse_condition (code1);
3814 b2op0 = XEXP (XEXP (SET_SRC (set2), 0), 0);
3815 b2op1 = XEXP (XEXP (SET_SRC (set2), 0), 1);
3816 code2 = GET_CODE (XEXP (SET_SRC (set2), 0));
3817 if (XEXP (SET_SRC (set2), 1) == pc_rtx)
3818 code2 = reverse_condition (code2);
3820 /* If they test the same things and knowing that B1 branches
3821 tells us whether or not B2 branches, check if we
3822 can thread the branch. */
3823 if (rtx_equal_for_thread_p (b1op0, b2op0, b2)
3824 && rtx_equal_for_thread_p (b1op1, b2op1, b2)
3825 && (comparison_dominates_p (code1, code2)
3826 || (can_reverse_comparison_p (XEXP (SET_SRC (set), 0), b1)
3827 && comparison_dominates_p (code1,
3828 reverse_condition (code2)))))
3831 t1 = prev_nonnote_insn (b1);
3832 t2 = prev_nonnote_insn (b2);
3834 while (t1 != 0 && t2 != 0)
3836 if (t2 == label)
3838 /* We have reached the target of the first branch.
3839 If there are no pending register equivalents,
3840 we know that this branch will either always
3841 succeed (if the senses of the two branches are
3842 the same) or always fail (if not). */
3843 rtx new_label;
3845 if (num_same_regs != 0)
3846 break;
3848 if (comparison_dominates_p (code1, code2))
3849 new_label = JUMP_LABEL (b2);
3850 else
3851 new_label = get_label_after (b2);
3853 if (JUMP_LABEL (b1) != new_label)
3855 rtx prev = PREV_INSN (new_label);
3857 if (flag_before_loop
3858 && GET_CODE (prev) == NOTE
3859 && NOTE_LINE_NUMBER (prev) == NOTE_INSN_LOOP_BEG)
3861 /* Don't thread to the loop label. If a loop
3862 label is reused, loop optimization will
3863 be disabled for that loop. */
3864 new_label = gen_label_rtx ();
3865 emit_label_after (new_label, PREV_INSN (prev));
3867 changed |= redirect_jump (b1, new_label, 1);
3869 break;
3872 /* If either of these is not a normal insn (it might be
3873 a JUMP_INSN, CALL_INSN, or CODE_LABEL) we fail. (NOTEs
3874 have already been skipped above.) Similarly, fail
3875 if the insns are different. */
3876 if (GET_CODE (t1) != INSN || GET_CODE (t2) != INSN
3877 || recog_memoized (t1) != recog_memoized (t2)
3878 || ! rtx_equal_for_thread_p (PATTERN (t1),
3879 PATTERN (t2), t2))
3880 break;
3882 t1 = prev_nonnote_insn (t1);
3883 t2 = prev_nonnote_insn (t2);
3889 /* Clean up. */
3890 free (modified_regs);
3891 free (same_regs);
3892 free (all_reset);
3895 /* This is like RTX_EQUAL_P except that it knows about our handling of
3896 possibly equivalent registers and knows to consider volatile and
3897 modified objects as not equal.
3899 YINSN is the insn containing Y. */
3902 rtx_equal_for_thread_p (x, y, yinsn)
3903 rtx x, y;
3904 rtx yinsn;
3906 register int i;
3907 register int j;
3908 register enum rtx_code code;
3909 register const char *fmt;
3911 code = GET_CODE (x);
3912 /* Rtx's of different codes cannot be equal. */
3913 if (code != GET_CODE (y))
3914 return 0;
3916 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
3917 (REG:SI x) and (REG:HI x) are NOT equivalent. */
3919 if (GET_MODE (x) != GET_MODE (y))
3920 return 0;
3922 /* For floating-point, consider everything unequal. This is a bit
3923 pessimistic, but this pass would only rarely do anything for FP
3924 anyway. */
3925 if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
3926 && FLOAT_MODE_P (GET_MODE (x)) && ! flag_fast_math)
3927 return 0;
3929 /* For commutative operations, the RTX match if the operand match in any
3930 order. Also handle the simple binary and unary cases without a loop. */
3931 if (code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
3932 return ((rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 0), yinsn)
3933 && rtx_equal_for_thread_p (XEXP (x, 1), XEXP (y, 1), yinsn))
3934 || (rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 1), yinsn)
3935 && rtx_equal_for_thread_p (XEXP (x, 1), XEXP (y, 0), yinsn)));
3936 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == '2')
3937 return (rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 0), yinsn)
3938 && rtx_equal_for_thread_p (XEXP (x, 1), XEXP (y, 1), yinsn));
3939 else if (GET_RTX_CLASS (code) == '1')
3940 return rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 0), yinsn);
3942 /* Handle special-cases first. */
3943 switch (code)
3945 case REG:
3946 if (REGNO (x) == REGNO (y) && ! modified_regs[REGNO (x)])
3947 return 1;
3949 /* If neither is user variable or hard register, check for possible
3950 equivalence. */
3951 if (REG_USERVAR_P (x) || REG_USERVAR_P (y)
3952 || REGNO (x) < FIRST_PSEUDO_REGISTER
3953 || REGNO (y) < FIRST_PSEUDO_REGISTER)
3954 return 0;
3956 if (same_regs[REGNO (x)] == -1)
3958 same_regs[REGNO (x)] = REGNO (y);
3959 num_same_regs++;
3961 /* If this is the first time we are seeing a register on the `Y'
3962 side, see if it is the last use. If not, we can't thread the
3963 jump, so mark it as not equivalent. */
3964 if (REGNO_LAST_UID (REGNO (y)) != INSN_UID (yinsn))
3965 return 0;
3967 return 1;
3969 else
3970 return (same_regs[REGNO (x)] == (int) REGNO (y));
3972 break;
3974 case MEM:
3975 /* If memory modified or either volatile, not equivalent.
3976 Else, check address. */
3977 if (modified_mem || MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
3978 return 0;
3980 return rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 0), yinsn);
3982 case ASM_INPUT:
3983 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
3984 return 0;
3986 break;
3988 case SET:
3989 /* Cancel a pending `same_regs' if setting equivalenced registers.
3990 Then process source. */
3991 if (GET_CODE (SET_DEST (x)) == REG
3992 && GET_CODE (SET_DEST (y)) == REG)
3994 if (same_regs[REGNO (SET_DEST (x))] == (int) REGNO (SET_DEST (y)))
3996 same_regs[REGNO (SET_DEST (x))] = -1;
3997 num_same_regs--;
3999 else if (REGNO (SET_DEST (x)) != REGNO (SET_DEST (y)))
4000 return 0;
4002 else
4004 if (rtx_equal_for_thread_p (SET_DEST (x), SET_DEST (y), yinsn) == 0)
4005 return 0;
4008 return rtx_equal_for_thread_p (SET_SRC (x), SET_SRC (y), yinsn);
4010 case LABEL_REF:
4011 return XEXP (x, 0) == XEXP (y, 0);
4013 case SYMBOL_REF:
4014 return XSTR (x, 0) == XSTR (y, 0);
4016 default:
4017 break;
4020 if (x == y)
4021 return 1;
4023 fmt = GET_RTX_FORMAT (code);
4024 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4026 switch (fmt[i])
4028 case 'w':
4029 if (XWINT (x, i) != XWINT (y, i))
4030 return 0;
4031 break;
4033 case 'n':
4034 case 'i':
4035 if (XINT (x, i) != XINT (y, i))
4036 return 0;
4037 break;
4039 case 'V':
4040 case 'E':
4041 /* Two vectors must have the same length. */
4042 if (XVECLEN (x, i) != XVECLEN (y, i))
4043 return 0;
4045 /* And the corresponding elements must match. */
4046 for (j = 0; j < XVECLEN (x, i); j++)
4047 if (rtx_equal_for_thread_p (XVECEXP (x, i, j),
4048 XVECEXP (y, i, j), yinsn) == 0)
4049 return 0;
4050 break;
4052 case 'e':
4053 if (rtx_equal_for_thread_p (XEXP (x, i), XEXP (y, i), yinsn) == 0)
4054 return 0;
4055 break;
4057 case 'S':
4058 case 's':
4059 if (strcmp (XSTR (x, i), XSTR (y, i)))
4060 return 0;
4061 break;
4063 case 'u':
4064 /* These are just backpointers, so they don't matter. */
4065 break;
4067 case '0':
4068 case 't':
4069 break;
4071 /* It is believed that rtx's at this level will never
4072 contain anything but integers and other rtx's,
4073 except for within LABEL_REFs and SYMBOL_REFs. */
4074 default:
4075 abort ();
4078 return 1;