1 /* Tree based points-to analysis
2 Copyright (C) 2005-2014 Free Software Foundation, Inc.
3 Contributed by Daniel Berlin <dberlin@dberlin.org>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
34 #include "hard-reg-set.h"
37 #include "dominance.h"
39 #include "basic-block.h"
41 #include "stor-layout.h"
43 #include "hash-table.h"
44 #include "tree-ssa-alias.h"
45 #include "internal-fn.h"
46 #include "gimple-expr.h"
49 #include "gimple-iterator.h"
50 #include "gimple-ssa.h"
52 #include "stringpool.h"
53 #include "tree-ssanames.h"
54 #include "tree-into-ssa.h"
57 #include "tree-inline.h"
58 #include "diagnostic-core.h"
59 #include "tree-pass.h"
60 #include "alloc-pool.h"
61 #include "splay-tree.h"
65 /* The idea behind this analyzer is to generate set constraints from the
66 program, then solve the resulting constraints in order to generate the
69 Set constraints are a way of modeling program analysis problems that
70 involve sets. They consist of an inclusion constraint language,
71 describing the variables (each variable is a set) and operations that
72 are involved on the variables, and a set of rules that derive facts
73 from these operations. To solve a system of set constraints, you derive
74 all possible facts under the rules, which gives you the correct sets
77 See "Efficient Field-sensitive pointer analysis for C" by "David
78 J. Pearce and Paul H. J. Kelly and Chris Hankin, at
79 http://citeseer.ist.psu.edu/pearce04efficient.html
81 Also see "Ultra-fast Aliasing Analysis using CLA: A Million Lines
82 of C Code in a Second" by ""Nevin Heintze and Olivier Tardieu" at
83 http://citeseer.ist.psu.edu/heintze01ultrafast.html
85 There are three types of real constraint expressions, DEREF,
86 ADDRESSOF, and SCALAR. Each constraint expression consists
87 of a constraint type, a variable, and an offset.
89 SCALAR is a constraint expression type used to represent x, whether
90 it appears on the LHS or the RHS of a statement.
91 DEREF is a constraint expression type used to represent *x, whether
92 it appears on the LHS or the RHS of a statement.
93 ADDRESSOF is a constraint expression used to represent &x, whether
94 it appears on the LHS or the RHS of a statement.
96 Each pointer variable in the program is assigned an integer id, and
97 each field of a structure variable is assigned an integer id as well.
99 Structure variables are linked to their list of fields through a "next
100 field" in each variable that points to the next field in offset
102 Each variable for a structure field has
104 1. "size", that tells the size in bits of that field.
105 2. "fullsize, that tells the size in bits of the entire structure.
106 3. "offset", that tells the offset in bits from the beginning of the
107 structure to this field.
119 foo.a -> id 1, size 32, offset 0, fullsize 64, next foo.b
120 foo.b -> id 2, size 32, offset 32, fullsize 64, next NULL
121 bar -> id 3, size 32, offset 0, fullsize 32, next NULL
124 In order to solve the system of set constraints, the following is
127 1. Each constraint variable x has a solution set associated with it,
130 2. Constraints are separated into direct, copy, and complex.
131 Direct constraints are ADDRESSOF constraints that require no extra
132 processing, such as P = &Q
133 Copy constraints are those of the form P = Q.
134 Complex constraints are all the constraints involving dereferences
135 and offsets (including offsetted copies).
137 3. All direct constraints of the form P = &Q are processed, such
138 that Q is added to Sol(P)
140 4. All complex constraints for a given constraint variable are stored in a
141 linked list attached to that variable's node.
143 5. A directed graph is built out of the copy constraints. Each
144 constraint variable is a node in the graph, and an edge from
145 Q to P is added for each copy constraint of the form P = Q
147 6. The graph is then walked, and solution sets are
148 propagated along the copy edges, such that an edge from Q to P
149 causes Sol(P) <- Sol(P) union Sol(Q).
151 7. As we visit each node, all complex constraints associated with
152 that node are processed by adding appropriate copy edges to the graph, or the
153 appropriate variables to the solution set.
155 8. The process of walking the graph is iterated until no solution
158 Prior to walking the graph in steps 6 and 7, We perform static
159 cycle elimination on the constraint graph, as well
160 as off-line variable substitution.
162 TODO: Adding offsets to pointer-to-structures can be handled (IE not punted
163 on and turned into anything), but isn't. You can just see what offset
164 inside the pointed-to struct it's going to access.
166 TODO: Constant bounded arrays can be handled as if they were structs of the
167 same number of elements.
169 TODO: Modeling heap and incoming pointers becomes much better if we
170 add fields to them as we discover them, which we could do.
172 TODO: We could handle unions, but to be honest, it's probably not
173 worth the pain or slowdown. */
175 /* IPA-PTA optimizations possible.
177 When the indirect function called is ANYTHING we can add disambiguation
178 based on the function signatures (or simply the parameter count which
179 is the varinfo size). We also do not need to consider functions that
180 do not have their address taken.
182 The is_global_var bit which marks escape points is overly conservative
183 in IPA mode. Split it to is_escape_point and is_global_var - only
184 externally visible globals are escape points in IPA mode. This is
185 also needed to fix the pt_solution_includes_global predicate
186 (and thus ptr_deref_may_alias_global_p).
188 The way we introduce DECL_PT_UID to avoid fixing up all points-to
189 sets in the translation unit when we copy a DECL during inlining
190 pessimizes precision. The advantage is that the DECL_PT_UID keeps
191 compile-time and memory usage overhead low - the points-to sets
192 do not grow or get unshared as they would during a fixup phase.
193 An alternative solution is to delay IPA PTA until after all
194 inlining transformations have been applied.
196 The way we propagate clobber/use information isn't optimized.
197 It should use a new complex constraint that properly filters
198 out local variables of the callee (though that would make
199 the sets invalid after inlining). OTOH we might as well
200 admit defeat to WHOPR and simply do all the clobber/use analysis
201 and propagation after PTA finished but before we threw away
202 points-to information for memory variables. WHOPR and PTA
203 do not play along well anyway - the whole constraint solving
204 would need to be done in WPA phase and it will be very interesting
205 to apply the results to local SSA names during LTRANS phase.
207 We probably should compute a per-function unit-ESCAPE solution
208 propagating it simply like the clobber / uses solutions. The
209 solution can go alongside the non-IPA espaced solution and be
210 used to query which vars escape the unit through a function.
212 We never put function decls in points-to sets so we do not
213 keep the set of called functions for indirect calls.
215 And probably more. */
217 static bool use_field_sensitive
= true;
218 static int in_ipa_mode
= 0;
220 /* Used for predecessor bitmaps. */
221 static bitmap_obstack predbitmap_obstack
;
223 /* Used for points-to sets. */
224 static bitmap_obstack pta_obstack
;
226 /* Used for oldsolution members of variables. */
227 static bitmap_obstack oldpta_obstack
;
229 /* Used for per-solver-iteration bitmaps. */
230 static bitmap_obstack iteration_obstack
;
232 static unsigned int create_variable_info_for (tree
, const char *);
233 typedef struct constraint_graph
*constraint_graph_t
;
234 static void unify_nodes (constraint_graph_t
, unsigned int, unsigned int, bool);
237 typedef struct constraint
*constraint_t
;
240 #define EXECUTE_IF_IN_NONNULL_BITMAP(a, b, c, d) \
242 EXECUTE_IF_SET_IN_BITMAP (a, b, c, d)
244 static struct constraint_stats
246 unsigned int total_vars
;
247 unsigned int nonpointer_vars
;
248 unsigned int unified_vars_static
;
249 unsigned int unified_vars_dynamic
;
250 unsigned int iterations
;
251 unsigned int num_edges
;
252 unsigned int num_implicit_edges
;
253 unsigned int points_to_sets_created
;
258 /* ID of this variable */
261 /* True if this is a variable created by the constraint analysis, such as
262 heap variables and constraints we had to break up. */
263 unsigned int is_artificial_var
: 1;
265 /* True if this is a special variable whose solution set should not be
267 unsigned int is_special_var
: 1;
269 /* True for variables whose size is not known or variable. */
270 unsigned int is_unknown_size_var
: 1;
272 /* True for (sub-)fields that represent a whole variable. */
273 unsigned int is_full_var
: 1;
275 /* True if this is a heap variable. */
276 unsigned int is_heap_var
: 1;
278 /* True if this field may contain pointers. */
279 unsigned int may_have_pointers
: 1;
281 /* True if this field has only restrict qualified pointers. */
282 unsigned int only_restrict_pointers
: 1;
284 /* True if this represents a global variable. */
285 unsigned int is_global_var
: 1;
287 /* True if this represents a IPA function info. */
288 unsigned int is_fn_info
: 1;
290 /* The ID of the variable for the next field in this structure
291 or zero for the last field in this structure. */
294 /* The ID of the variable for the first field in this structure. */
297 /* Offset of this variable, in bits, from the base variable */
298 unsigned HOST_WIDE_INT offset
;
300 /* Size of the variable, in bits. */
301 unsigned HOST_WIDE_INT size
;
303 /* Full size of the base variable, in bits. */
304 unsigned HOST_WIDE_INT fullsize
;
306 /* Name of this variable */
309 /* Tree that this variable is associated with. */
312 /* Points-to set for this variable. */
315 /* Old points-to set for this variable. */
318 typedef struct variable_info
*varinfo_t
;
320 static varinfo_t
first_vi_for_offset (varinfo_t
, unsigned HOST_WIDE_INT
);
321 static varinfo_t
first_or_preceding_vi_for_offset (varinfo_t
,
322 unsigned HOST_WIDE_INT
);
323 static varinfo_t
lookup_vi_for_tree (tree
);
324 static inline bool type_can_have_subvars (const_tree
);
326 /* Pool of variable info structures. */
327 static alloc_pool variable_info_pool
;
329 /* Map varinfo to final pt_solution. */
330 static hash_map
<varinfo_t
, pt_solution
*> *final_solutions
;
331 struct obstack final_solutions_obstack
;
333 /* Table of variable info structures for constraint variables.
334 Indexed directly by variable info id. */
335 static vec
<varinfo_t
> varmap
;
337 /* Return the varmap element N */
339 static inline varinfo_t
340 get_varinfo (unsigned int n
)
345 /* Return the next variable in the list of sub-variables of VI
346 or NULL if VI is the last sub-variable. */
348 static inline varinfo_t
349 vi_next (varinfo_t vi
)
351 return get_varinfo (vi
->next
);
354 /* Static IDs for the special variables. Variable ID zero is unused
355 and used as terminator for the sub-variable chain. */
356 enum { nothing_id
= 1, anything_id
= 2, string_id
= 3,
357 escaped_id
= 4, nonlocal_id
= 5,
358 storedanything_id
= 6, integer_id
= 7 };
360 /* Return a new variable info structure consisting for a variable
361 named NAME, and using constraint graph node NODE. Append it
362 to the vector of variable info structures. */
365 new_var_info (tree t
, const char *name
)
367 unsigned index
= varmap
.length ();
368 varinfo_t ret
= (varinfo_t
) pool_alloc (variable_info_pool
);
373 /* Vars without decl are artificial and do not have sub-variables. */
374 ret
->is_artificial_var
= (t
== NULL_TREE
);
375 ret
->is_special_var
= false;
376 ret
->is_unknown_size_var
= false;
377 ret
->is_full_var
= (t
== NULL_TREE
);
378 ret
->is_heap_var
= false;
379 ret
->may_have_pointers
= true;
380 ret
->only_restrict_pointers
= false;
381 ret
->is_global_var
= (t
== NULL_TREE
);
382 ret
->is_fn_info
= false;
384 ret
->is_global_var
= (is_global_var (t
)
385 /* We have to treat even local register variables
387 || (TREE_CODE (t
) == VAR_DECL
388 && DECL_HARD_REGISTER (t
)));
389 ret
->solution
= BITMAP_ALLOC (&pta_obstack
);
390 ret
->oldsolution
= NULL
;
396 varmap
.safe_push (ret
);
402 /* A map mapping call statements to per-stmt variables for uses
403 and clobbers specific to the call. */
404 static hash_map
<gimple
, varinfo_t
> *call_stmt_vars
;
406 /* Lookup or create the variable for the call statement CALL. */
409 get_call_vi (gcall
*call
)
414 varinfo_t
*slot_p
= &call_stmt_vars
->get_or_insert (call
, &existed
);
418 vi
= new_var_info (NULL_TREE
, "CALLUSED");
422 vi
->is_full_var
= true;
424 vi2
= new_var_info (NULL_TREE
, "CALLCLOBBERED");
428 vi2
->is_full_var
= true;
436 /* Lookup the variable for the call statement CALL representing
437 the uses. Returns NULL if there is nothing special about this call. */
440 lookup_call_use_vi (gcall
*call
)
442 varinfo_t
*slot_p
= call_stmt_vars
->get (call
);
449 /* Lookup the variable for the call statement CALL representing
450 the clobbers. Returns NULL if there is nothing special about this call. */
453 lookup_call_clobber_vi (gcall
*call
)
455 varinfo_t uses
= lookup_call_use_vi (call
);
459 return vi_next (uses
);
462 /* Lookup or create the variable for the call statement CALL representing
466 get_call_use_vi (gcall
*call
)
468 return get_call_vi (call
);
471 /* Lookup or create the variable for the call statement CALL representing
474 static varinfo_t ATTRIBUTE_UNUSED
475 get_call_clobber_vi (gcall
*call
)
477 return vi_next (get_call_vi (call
));
481 typedef enum {SCALAR
, DEREF
, ADDRESSOF
} constraint_expr_type
;
483 /* An expression that appears in a constraint. */
485 struct constraint_expr
487 /* Constraint type. */
488 constraint_expr_type type
;
490 /* Variable we are referring to in the constraint. */
493 /* Offset, in bits, of this constraint from the beginning of
494 variables it ends up referring to.
496 IOW, in a deref constraint, we would deref, get the result set,
497 then add OFFSET to each member. */
498 HOST_WIDE_INT offset
;
501 /* Use 0x8000... as special unknown offset. */
502 #define UNKNOWN_OFFSET HOST_WIDE_INT_MIN
504 typedef struct constraint_expr ce_s
;
505 static void get_constraint_for_1 (tree
, vec
<ce_s
> *, bool, bool);
506 static void get_constraint_for (tree
, vec
<ce_s
> *);
507 static void get_constraint_for_rhs (tree
, vec
<ce_s
> *);
508 static void do_deref (vec
<ce_s
> *);
510 /* Our set constraints are made up of two constraint expressions, one
513 As described in the introduction, our set constraints each represent an
514 operation between set valued variables.
518 struct constraint_expr lhs
;
519 struct constraint_expr rhs
;
522 /* List of constraints that we use to build the constraint graph from. */
524 static vec
<constraint_t
> constraints
;
525 static alloc_pool constraint_pool
;
527 /* The constraint graph is represented as an array of bitmaps
528 containing successor nodes. */
530 struct constraint_graph
532 /* Size of this graph, which may be different than the number of
533 nodes in the variable map. */
536 /* Explicit successors of each node. */
539 /* Implicit predecessors of each node (Used for variable
541 bitmap
*implicit_preds
;
543 /* Explicit predecessors of each node (Used for variable substitution). */
546 /* Indirect cycle representatives, or -1 if the node has no indirect
548 int *indirect_cycles
;
550 /* Representative node for a node. rep[a] == a unless the node has
554 /* Equivalence class representative for a label. This is used for
555 variable substitution. */
558 /* Pointer equivalence label for a node. All nodes with the same
559 pointer equivalence label can be unified together at some point
560 (either during constraint optimization or after the constraint
564 /* Pointer equivalence representative for a label. This is used to
565 handle nodes that are pointer equivalent but not location
566 equivalent. We can unite these once the addressof constraints
567 are transformed into initial points-to sets. */
570 /* Pointer equivalence label for each node, used during variable
572 unsigned int *pointer_label
;
574 /* Location equivalence label for each node, used during location
575 equivalence finding. */
576 unsigned int *loc_label
;
578 /* Pointed-by set for each node, used during location equivalence
579 finding. This is pointed-by rather than pointed-to, because it
580 is constructed using the predecessor graph. */
583 /* Points to sets for pointer equivalence. This is *not* the actual
584 points-to sets for nodes. */
587 /* Bitmap of nodes where the bit is set if the node is a direct
588 node. Used for variable substitution. */
589 sbitmap direct_nodes
;
591 /* Bitmap of nodes where the bit is set if the node is address
592 taken. Used for variable substitution. */
593 bitmap address_taken
;
595 /* Vector of complex constraints for each graph node. Complex
596 constraints are those involving dereferences or offsets that are
598 vec
<constraint_t
> *complex;
601 static constraint_graph_t graph
;
603 /* During variable substitution and the offline version of indirect
604 cycle finding, we create nodes to represent dereferences and
605 address taken constraints. These represent where these start and
607 #define FIRST_REF_NODE (varmap).length ()
608 #define LAST_REF_NODE (FIRST_REF_NODE + (FIRST_REF_NODE - 1))
610 /* Return the representative node for NODE, if NODE has been unioned
612 This function performs path compression along the way to finding
613 the representative. */
616 find (unsigned int node
)
618 gcc_checking_assert (node
< graph
->size
);
619 if (graph
->rep
[node
] != node
)
620 return graph
->rep
[node
] = find (graph
->rep
[node
]);
624 /* Union the TO and FROM nodes to the TO nodes.
625 Note that at some point in the future, we may want to do
626 union-by-rank, in which case we are going to have to return the
627 node we unified to. */
630 unite (unsigned int to
, unsigned int from
)
632 gcc_checking_assert (to
< graph
->size
&& from
< graph
->size
);
633 if (to
!= from
&& graph
->rep
[from
] != to
)
635 graph
->rep
[from
] = to
;
641 /* Create a new constraint consisting of LHS and RHS expressions. */
644 new_constraint (const struct constraint_expr lhs
,
645 const struct constraint_expr rhs
)
647 constraint_t ret
= (constraint_t
) pool_alloc (constraint_pool
);
653 /* Print out constraint C to FILE. */
656 dump_constraint (FILE *file
, constraint_t c
)
658 if (c
->lhs
.type
== ADDRESSOF
)
660 else if (c
->lhs
.type
== DEREF
)
662 fprintf (file
, "%s", get_varinfo (c
->lhs
.var
)->name
);
663 if (c
->lhs
.offset
== UNKNOWN_OFFSET
)
664 fprintf (file
, " + UNKNOWN");
665 else if (c
->lhs
.offset
!= 0)
666 fprintf (file
, " + " HOST_WIDE_INT_PRINT_DEC
, c
->lhs
.offset
);
667 fprintf (file
, " = ");
668 if (c
->rhs
.type
== ADDRESSOF
)
670 else if (c
->rhs
.type
== DEREF
)
672 fprintf (file
, "%s", get_varinfo (c
->rhs
.var
)->name
);
673 if (c
->rhs
.offset
== UNKNOWN_OFFSET
)
674 fprintf (file
, " + UNKNOWN");
675 else if (c
->rhs
.offset
!= 0)
676 fprintf (file
, " + " HOST_WIDE_INT_PRINT_DEC
, c
->rhs
.offset
);
680 void debug_constraint (constraint_t
);
681 void debug_constraints (void);
682 void debug_constraint_graph (void);
683 void debug_solution_for_var (unsigned int);
684 void debug_sa_points_to_info (void);
686 /* Print out constraint C to stderr. */
689 debug_constraint (constraint_t c
)
691 dump_constraint (stderr
, c
);
692 fprintf (stderr
, "\n");
695 /* Print out all constraints to FILE */
698 dump_constraints (FILE *file
, int from
)
702 for (i
= from
; constraints
.iterate (i
, &c
); i
++)
705 dump_constraint (file
, c
);
706 fprintf (file
, "\n");
710 /* Print out all constraints to stderr. */
713 debug_constraints (void)
715 dump_constraints (stderr
, 0);
718 /* Print the constraint graph in dot format. */
721 dump_constraint_graph (FILE *file
)
725 /* Only print the graph if it has already been initialized: */
729 /* Prints the header of the dot file: */
730 fprintf (file
, "strict digraph {\n");
731 fprintf (file
, " node [\n shape = box\n ]\n");
732 fprintf (file
, " edge [\n fontsize = \"12\"\n ]\n");
733 fprintf (file
, "\n // List of nodes and complex constraints in "
734 "the constraint graph:\n");
736 /* The next lines print the nodes in the graph together with the
737 complex constraints attached to them. */
738 for (i
= 1; i
< graph
->size
; i
++)
740 if (i
== FIRST_REF_NODE
)
744 if (i
< FIRST_REF_NODE
)
745 fprintf (file
, "\"%s\"", get_varinfo (i
)->name
);
747 fprintf (file
, "\"*%s\"", get_varinfo (i
- FIRST_REF_NODE
)->name
);
748 if (graph
->complex[i
].exists ())
752 fprintf (file
, " [label=\"\\N\\n");
753 for (j
= 0; graph
->complex[i
].iterate (j
, &c
); ++j
)
755 dump_constraint (file
, c
);
756 fprintf (file
, "\\l");
758 fprintf (file
, "\"]");
760 fprintf (file
, ";\n");
763 /* Go over the edges. */
764 fprintf (file
, "\n // Edges in the constraint graph:\n");
765 for (i
= 1; i
< graph
->size
; i
++)
771 EXECUTE_IF_IN_NONNULL_BITMAP (graph
->succs
[i
], 0, j
, bi
)
773 unsigned to
= find (j
);
776 if (i
< FIRST_REF_NODE
)
777 fprintf (file
, "\"%s\"", get_varinfo (i
)->name
);
779 fprintf (file
, "\"*%s\"", get_varinfo (i
- FIRST_REF_NODE
)->name
);
780 fprintf (file
, " -> ");
781 if (to
< FIRST_REF_NODE
)
782 fprintf (file
, "\"%s\"", get_varinfo (to
)->name
);
784 fprintf (file
, "\"*%s\"", get_varinfo (to
- FIRST_REF_NODE
)->name
);
785 fprintf (file
, ";\n");
789 /* Prints the tail of the dot file. */
790 fprintf (file
, "}\n");
793 /* Print out the constraint graph to stderr. */
796 debug_constraint_graph (void)
798 dump_constraint_graph (stderr
);
803 The solver is a simple worklist solver, that works on the following
806 sbitmap changed_nodes = all zeroes;
808 For each node that is not already collapsed:
810 set bit in changed nodes
812 while (changed_count > 0)
814 compute topological ordering for constraint graph
816 find and collapse cycles in the constraint graph (updating
817 changed if necessary)
819 for each node (n) in the graph in topological order:
822 Process each complex constraint associated with the node,
823 updating changed if necessary.
825 For each outgoing edge from n, propagate the solution from n to
826 the destination of the edge, updating changed as necessary.
830 /* Return true if two constraint expressions A and B are equal. */
833 constraint_expr_equal (struct constraint_expr a
, struct constraint_expr b
)
835 return a
.type
== b
.type
&& a
.var
== b
.var
&& a
.offset
== b
.offset
;
838 /* Return true if constraint expression A is less than constraint expression
839 B. This is just arbitrary, but consistent, in order to give them an
843 constraint_expr_less (struct constraint_expr a
, struct constraint_expr b
)
845 if (a
.type
== b
.type
)
848 return a
.offset
< b
.offset
;
850 return a
.var
< b
.var
;
853 return a
.type
< b
.type
;
856 /* Return true if constraint A is less than constraint B. This is just
857 arbitrary, but consistent, in order to give them an ordering. */
860 constraint_less (const constraint_t
&a
, const constraint_t
&b
)
862 if (constraint_expr_less (a
->lhs
, b
->lhs
))
864 else if (constraint_expr_less (b
->lhs
, a
->lhs
))
867 return constraint_expr_less (a
->rhs
, b
->rhs
);
870 /* Return true if two constraints A and B are equal. */
873 constraint_equal (struct constraint a
, struct constraint b
)
875 return constraint_expr_equal (a
.lhs
, b
.lhs
)
876 && constraint_expr_equal (a
.rhs
, b
.rhs
);
880 /* Find a constraint LOOKFOR in the sorted constraint vector VEC */
883 constraint_vec_find (vec
<constraint_t
> vec
,
884 struct constraint lookfor
)
892 place
= vec
.lower_bound (&lookfor
, constraint_less
);
893 if (place
>= vec
.length ())
896 if (!constraint_equal (*found
, lookfor
))
901 /* Union two constraint vectors, TO and FROM. Put the result in TO.
902 Returns true of TO set is changed. */
905 constraint_set_union (vec
<constraint_t
> *to
,
906 vec
<constraint_t
> *from
)
910 bool any_change
= false;
912 FOR_EACH_VEC_ELT (*from
, i
, c
)
914 if (constraint_vec_find (*to
, *c
) == NULL
)
916 unsigned int place
= to
->lower_bound (c
, constraint_less
);
917 to
->safe_insert (place
, c
);
924 /* Expands the solution in SET to all sub-fields of variables included. */
927 solution_set_expand (bitmap set
, bitmap
*expanded
)
935 *expanded
= BITMAP_ALLOC (&iteration_obstack
);
937 /* In a first pass expand to the head of the variables we need to
938 add all sub-fields off. This avoids quadratic behavior. */
939 EXECUTE_IF_SET_IN_BITMAP (set
, 0, j
, bi
)
941 varinfo_t v
= get_varinfo (j
);
942 if (v
->is_artificial_var
945 bitmap_set_bit (*expanded
, v
->head
);
948 /* In the second pass now expand all head variables with subfields. */
949 EXECUTE_IF_SET_IN_BITMAP (*expanded
, 0, j
, bi
)
951 varinfo_t v
= get_varinfo (j
);
954 for (v
= vi_next (v
); v
!= NULL
; v
= vi_next (v
))
955 bitmap_set_bit (*expanded
, v
->id
);
958 /* And finally set the rest of the bits from SET. */
959 bitmap_ior_into (*expanded
, set
);
964 /* Union solution sets TO and DELTA, and add INC to each member of DELTA in the
968 set_union_with_increment (bitmap to
, bitmap delta
, HOST_WIDE_INT inc
,
969 bitmap
*expanded_delta
)
971 bool changed
= false;
975 /* If the solution of DELTA contains anything it is good enough to transfer
977 if (bitmap_bit_p (delta
, anything_id
))
978 return bitmap_set_bit (to
, anything_id
);
980 /* If the offset is unknown we have to expand the solution to
982 if (inc
== UNKNOWN_OFFSET
)
984 delta
= solution_set_expand (delta
, expanded_delta
);
985 changed
|= bitmap_ior_into (to
, delta
);
989 /* For non-zero offset union the offsetted solution into the destination. */
990 EXECUTE_IF_SET_IN_BITMAP (delta
, 0, i
, bi
)
992 varinfo_t vi
= get_varinfo (i
);
994 /* If this is a variable with just one field just set its bit
996 if (vi
->is_artificial_var
997 || vi
->is_unknown_size_var
999 changed
|= bitmap_set_bit (to
, i
);
1002 HOST_WIDE_INT fieldoffset
= vi
->offset
+ inc
;
1003 unsigned HOST_WIDE_INT size
= vi
->size
;
1005 /* If the offset makes the pointer point to before the
1006 variable use offset zero for the field lookup. */
1007 if (fieldoffset
< 0)
1008 vi
= get_varinfo (vi
->head
);
1010 vi
= first_or_preceding_vi_for_offset (vi
, fieldoffset
);
1014 changed
|= bitmap_set_bit (to
, vi
->id
);
1019 /* We have to include all fields that overlap the current field
1023 while (vi
->offset
< fieldoffset
+ size
);
1030 /* Insert constraint C into the list of complex constraints for graph
1034 insert_into_complex (constraint_graph_t graph
,
1035 unsigned int var
, constraint_t c
)
1037 vec
<constraint_t
> complex = graph
->complex[var
];
1038 unsigned int place
= complex.lower_bound (c
, constraint_less
);
1040 /* Only insert constraints that do not already exist. */
1041 if (place
>= complex.length ()
1042 || !constraint_equal (*c
, *complex[place
]))
1043 graph
->complex[var
].safe_insert (place
, c
);
1047 /* Condense two variable nodes into a single variable node, by moving
1048 all associated info from FROM to TO. Returns true if TO node's
1049 constraint set changes after the merge. */
1052 merge_node_constraints (constraint_graph_t graph
, unsigned int to
,
1057 bool any_change
= false;
1059 gcc_checking_assert (find (from
) == to
);
1061 /* Move all complex constraints from src node into to node */
1062 FOR_EACH_VEC_ELT (graph
->complex[from
], i
, c
)
1064 /* In complex constraints for node FROM, we may have either
1065 a = *FROM, and *FROM = a, or an offseted constraint which are
1066 always added to the rhs node's constraints. */
1068 if (c
->rhs
.type
== DEREF
)
1070 else if (c
->lhs
.type
== DEREF
)
1076 any_change
= constraint_set_union (&graph
->complex[to
],
1077 &graph
->complex[from
]);
1078 graph
->complex[from
].release ();
1083 /* Remove edges involving NODE from GRAPH. */
1086 clear_edges_for_node (constraint_graph_t graph
, unsigned int node
)
1088 if (graph
->succs
[node
])
1089 BITMAP_FREE (graph
->succs
[node
]);
1092 /* Merge GRAPH nodes FROM and TO into node TO. */
1095 merge_graph_nodes (constraint_graph_t graph
, unsigned int to
,
1098 if (graph
->indirect_cycles
[from
] != -1)
1100 /* If we have indirect cycles with the from node, and we have
1101 none on the to node, the to node has indirect cycles from the
1102 from node now that they are unified.
1103 If indirect cycles exist on both, unify the nodes that they
1104 are in a cycle with, since we know they are in a cycle with
1106 if (graph
->indirect_cycles
[to
] == -1)
1107 graph
->indirect_cycles
[to
] = graph
->indirect_cycles
[from
];
1110 /* Merge all the successor edges. */
1111 if (graph
->succs
[from
])
1113 if (!graph
->succs
[to
])
1114 graph
->succs
[to
] = BITMAP_ALLOC (&pta_obstack
);
1115 bitmap_ior_into (graph
->succs
[to
],
1116 graph
->succs
[from
]);
1119 clear_edges_for_node (graph
, from
);
1123 /* Add an indirect graph edge to GRAPH, going from TO to FROM if
1124 it doesn't exist in the graph already. */
1127 add_implicit_graph_edge (constraint_graph_t graph
, unsigned int to
,
1133 if (!graph
->implicit_preds
[to
])
1134 graph
->implicit_preds
[to
] = BITMAP_ALLOC (&predbitmap_obstack
);
1136 if (bitmap_set_bit (graph
->implicit_preds
[to
], from
))
1137 stats
.num_implicit_edges
++;
1140 /* Add a predecessor graph edge to GRAPH, going from TO to FROM if
1141 it doesn't exist in the graph already.
1142 Return false if the edge already existed, true otherwise. */
1145 add_pred_graph_edge (constraint_graph_t graph
, unsigned int to
,
1148 if (!graph
->preds
[to
])
1149 graph
->preds
[to
] = BITMAP_ALLOC (&predbitmap_obstack
);
1150 bitmap_set_bit (graph
->preds
[to
], from
);
1153 /* Add a graph edge to GRAPH, going from FROM to TO if
1154 it doesn't exist in the graph already.
1155 Return false if the edge already existed, true otherwise. */
1158 add_graph_edge (constraint_graph_t graph
, unsigned int to
,
1169 if (!graph
->succs
[from
])
1170 graph
->succs
[from
] = BITMAP_ALLOC (&pta_obstack
);
1171 if (bitmap_set_bit (graph
->succs
[from
], to
))
1174 if (to
< FIRST_REF_NODE
&& from
< FIRST_REF_NODE
)
1182 /* Initialize the constraint graph structure to contain SIZE nodes. */
1185 init_graph (unsigned int size
)
1189 graph
= XCNEW (struct constraint_graph
);
1191 graph
->succs
= XCNEWVEC (bitmap
, graph
->size
);
1192 graph
->indirect_cycles
= XNEWVEC (int, graph
->size
);
1193 graph
->rep
= XNEWVEC (unsigned int, graph
->size
);
1194 /* ??? Macros do not support template types with multiple arguments,
1195 so we use a typedef to work around it. */
1196 typedef vec
<constraint_t
> vec_constraint_t_heap
;
1197 graph
->complex = XCNEWVEC (vec_constraint_t_heap
, size
);
1198 graph
->pe
= XCNEWVEC (unsigned int, graph
->size
);
1199 graph
->pe_rep
= XNEWVEC (int, graph
->size
);
1201 for (j
= 0; j
< graph
->size
; j
++)
1204 graph
->pe_rep
[j
] = -1;
1205 graph
->indirect_cycles
[j
] = -1;
1209 /* Build the constraint graph, adding only predecessor edges right now. */
1212 build_pred_graph (void)
1218 graph
->implicit_preds
= XCNEWVEC (bitmap
, graph
->size
);
1219 graph
->preds
= XCNEWVEC (bitmap
, graph
->size
);
1220 graph
->pointer_label
= XCNEWVEC (unsigned int, graph
->size
);
1221 graph
->loc_label
= XCNEWVEC (unsigned int, graph
->size
);
1222 graph
->pointed_by
= XCNEWVEC (bitmap
, graph
->size
);
1223 graph
->points_to
= XCNEWVEC (bitmap
, graph
->size
);
1224 graph
->eq_rep
= XNEWVEC (int, graph
->size
);
1225 graph
->direct_nodes
= sbitmap_alloc (graph
->size
);
1226 graph
->address_taken
= BITMAP_ALLOC (&predbitmap_obstack
);
1227 bitmap_clear (graph
->direct_nodes
);
1229 for (j
= 1; j
< FIRST_REF_NODE
; j
++)
1231 if (!get_varinfo (j
)->is_special_var
)
1232 bitmap_set_bit (graph
->direct_nodes
, j
);
1235 for (j
= 0; j
< graph
->size
; j
++)
1236 graph
->eq_rep
[j
] = -1;
1238 for (j
= 0; j
< varmap
.length (); j
++)
1239 graph
->indirect_cycles
[j
] = -1;
1241 FOR_EACH_VEC_ELT (constraints
, i
, c
)
1243 struct constraint_expr lhs
= c
->lhs
;
1244 struct constraint_expr rhs
= c
->rhs
;
1245 unsigned int lhsvar
= lhs
.var
;
1246 unsigned int rhsvar
= rhs
.var
;
1248 if (lhs
.type
== DEREF
)
1251 if (rhs
.offset
== 0 && lhs
.offset
== 0 && rhs
.type
== SCALAR
)
1252 add_pred_graph_edge (graph
, FIRST_REF_NODE
+ lhsvar
, rhsvar
);
1254 else if (rhs
.type
== DEREF
)
1257 if (rhs
.offset
== 0 && lhs
.offset
== 0 && lhs
.type
== SCALAR
)
1258 add_pred_graph_edge (graph
, lhsvar
, FIRST_REF_NODE
+ rhsvar
);
1260 bitmap_clear_bit (graph
->direct_nodes
, lhsvar
);
1262 else if (rhs
.type
== ADDRESSOF
)
1267 if (graph
->points_to
[lhsvar
] == NULL
)
1268 graph
->points_to
[lhsvar
] = BITMAP_ALLOC (&predbitmap_obstack
);
1269 bitmap_set_bit (graph
->points_to
[lhsvar
], rhsvar
);
1271 if (graph
->pointed_by
[rhsvar
] == NULL
)
1272 graph
->pointed_by
[rhsvar
] = BITMAP_ALLOC (&predbitmap_obstack
);
1273 bitmap_set_bit (graph
->pointed_by
[rhsvar
], lhsvar
);
1275 /* Implicitly, *x = y */
1276 add_implicit_graph_edge (graph
, FIRST_REF_NODE
+ lhsvar
, rhsvar
);
1278 /* All related variables are no longer direct nodes. */
1279 bitmap_clear_bit (graph
->direct_nodes
, rhsvar
);
1280 v
= get_varinfo (rhsvar
);
1281 if (!v
->is_full_var
)
1283 v
= get_varinfo (v
->head
);
1286 bitmap_clear_bit (graph
->direct_nodes
, v
->id
);
1291 bitmap_set_bit (graph
->address_taken
, rhsvar
);
1293 else if (lhsvar
> anything_id
1294 && lhsvar
!= rhsvar
&& lhs
.offset
== 0 && rhs
.offset
== 0)
1297 add_pred_graph_edge (graph
, lhsvar
, rhsvar
);
1298 /* Implicitly, *x = *y */
1299 add_implicit_graph_edge (graph
, FIRST_REF_NODE
+ lhsvar
,
1300 FIRST_REF_NODE
+ rhsvar
);
1302 else if (lhs
.offset
!= 0 || rhs
.offset
!= 0)
1304 if (rhs
.offset
!= 0)
1305 bitmap_clear_bit (graph
->direct_nodes
, lhs
.var
);
1306 else if (lhs
.offset
!= 0)
1307 bitmap_clear_bit (graph
->direct_nodes
, rhs
.var
);
1312 /* Build the constraint graph, adding successor edges. */
1315 build_succ_graph (void)
1320 FOR_EACH_VEC_ELT (constraints
, i
, c
)
1322 struct constraint_expr lhs
;
1323 struct constraint_expr rhs
;
1324 unsigned int lhsvar
;
1325 unsigned int rhsvar
;
1332 lhsvar
= find (lhs
.var
);
1333 rhsvar
= find (rhs
.var
);
1335 if (lhs
.type
== DEREF
)
1337 if (rhs
.offset
== 0 && lhs
.offset
== 0 && rhs
.type
== SCALAR
)
1338 add_graph_edge (graph
, FIRST_REF_NODE
+ lhsvar
, rhsvar
);
1340 else if (rhs
.type
== DEREF
)
1342 if (rhs
.offset
== 0 && lhs
.offset
== 0 && lhs
.type
== SCALAR
)
1343 add_graph_edge (graph
, lhsvar
, FIRST_REF_NODE
+ rhsvar
);
1345 else if (rhs
.type
== ADDRESSOF
)
1348 gcc_checking_assert (find (rhs
.var
) == rhs
.var
);
1349 bitmap_set_bit (get_varinfo (lhsvar
)->solution
, rhsvar
);
1351 else if (lhsvar
> anything_id
1352 && lhsvar
!= rhsvar
&& lhs
.offset
== 0 && rhs
.offset
== 0)
1354 add_graph_edge (graph
, lhsvar
, rhsvar
);
1358 /* Add edges from STOREDANYTHING to all non-direct nodes that can
1359 receive pointers. */
1360 t
= find (storedanything_id
);
1361 for (i
= integer_id
+ 1; i
< FIRST_REF_NODE
; ++i
)
1363 if (!bitmap_bit_p (graph
->direct_nodes
, i
)
1364 && get_varinfo (i
)->may_have_pointers
)
1365 add_graph_edge (graph
, find (i
), t
);
1368 /* Everything stored to ANYTHING also potentially escapes. */
1369 add_graph_edge (graph
, find (escaped_id
), t
);
1373 /* Changed variables on the last iteration. */
1374 static bitmap changed
;
1376 /* Strongly Connected Component visitation info. */
1383 unsigned int *node_mapping
;
1385 vec
<unsigned> scc_stack
;
1389 /* Recursive routine to find strongly connected components in GRAPH.
1390 SI is the SCC info to store the information in, and N is the id of current
1391 graph node we are processing.
1393 This is Tarjan's strongly connected component finding algorithm, as
1394 modified by Nuutila to keep only non-root nodes on the stack.
1395 The algorithm can be found in "On finding the strongly connected
1396 connected components in a directed graph" by Esko Nuutila and Eljas
1397 Soisalon-Soininen, in Information Processing Letters volume 49,
1398 number 1, pages 9-14. */
1401 scc_visit (constraint_graph_t graph
, struct scc_info
*si
, unsigned int n
)
1405 unsigned int my_dfs
;
1407 bitmap_set_bit (si
->visited
, n
);
1408 si
->dfs
[n
] = si
->current_index
++;
1409 my_dfs
= si
->dfs
[n
];
1411 /* Visit all the successors. */
1412 EXECUTE_IF_IN_NONNULL_BITMAP (graph
->succs
[n
], 0, i
, bi
)
1416 if (i
> LAST_REF_NODE
)
1420 if (bitmap_bit_p (si
->deleted
, w
))
1423 if (!bitmap_bit_p (si
->visited
, w
))
1424 scc_visit (graph
, si
, w
);
1426 unsigned int t
= find (w
);
1427 gcc_checking_assert (find (n
) == n
);
1428 if (si
->dfs
[t
] < si
->dfs
[n
])
1429 si
->dfs
[n
] = si
->dfs
[t
];
1432 /* See if any components have been identified. */
1433 if (si
->dfs
[n
] == my_dfs
)
1435 if (si
->scc_stack
.length () > 0
1436 && si
->dfs
[si
->scc_stack
.last ()] >= my_dfs
)
1438 bitmap scc
= BITMAP_ALLOC (NULL
);
1439 unsigned int lowest_node
;
1442 bitmap_set_bit (scc
, n
);
1444 while (si
->scc_stack
.length () != 0
1445 && si
->dfs
[si
->scc_stack
.last ()] >= my_dfs
)
1447 unsigned int w
= si
->scc_stack
.pop ();
1449 bitmap_set_bit (scc
, w
);
1452 lowest_node
= bitmap_first_set_bit (scc
);
1453 gcc_assert (lowest_node
< FIRST_REF_NODE
);
1455 /* Collapse the SCC nodes into a single node, and mark the
1457 EXECUTE_IF_SET_IN_BITMAP (scc
, 0, i
, bi
)
1459 if (i
< FIRST_REF_NODE
)
1461 if (unite (lowest_node
, i
))
1462 unify_nodes (graph
, lowest_node
, i
, false);
1466 unite (lowest_node
, i
);
1467 graph
->indirect_cycles
[i
- FIRST_REF_NODE
] = lowest_node
;
1471 bitmap_set_bit (si
->deleted
, n
);
1474 si
->scc_stack
.safe_push (n
);
1477 /* Unify node FROM into node TO, updating the changed count if
1478 necessary when UPDATE_CHANGED is true. */
1481 unify_nodes (constraint_graph_t graph
, unsigned int to
, unsigned int from
,
1482 bool update_changed
)
1484 gcc_checking_assert (to
!= from
&& find (to
) == to
);
1486 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1487 fprintf (dump_file
, "Unifying %s to %s\n",
1488 get_varinfo (from
)->name
,
1489 get_varinfo (to
)->name
);
1492 stats
.unified_vars_dynamic
++;
1494 stats
.unified_vars_static
++;
1496 merge_graph_nodes (graph
, to
, from
);
1497 if (merge_node_constraints (graph
, to
, from
))
1500 bitmap_set_bit (changed
, to
);
1503 /* Mark TO as changed if FROM was changed. If TO was already marked
1504 as changed, decrease the changed count. */
1507 && bitmap_clear_bit (changed
, from
))
1508 bitmap_set_bit (changed
, to
);
1509 varinfo_t fromvi
= get_varinfo (from
);
1510 if (fromvi
->solution
)
1512 /* If the solution changes because of the merging, we need to mark
1513 the variable as changed. */
1514 varinfo_t tovi
= get_varinfo (to
);
1515 if (bitmap_ior_into (tovi
->solution
, fromvi
->solution
))
1518 bitmap_set_bit (changed
, to
);
1521 BITMAP_FREE (fromvi
->solution
);
1522 if (fromvi
->oldsolution
)
1523 BITMAP_FREE (fromvi
->oldsolution
);
1525 if (stats
.iterations
> 0
1526 && tovi
->oldsolution
)
1527 BITMAP_FREE (tovi
->oldsolution
);
1529 if (graph
->succs
[to
])
1530 bitmap_clear_bit (graph
->succs
[to
], to
);
1533 /* Information needed to compute the topological ordering of a graph. */
1537 /* sbitmap of visited nodes. */
1539 /* Array that stores the topological order of the graph, *in
1541 vec
<unsigned> topo_order
;
1545 /* Initialize and return a topological info structure. */
1547 static struct topo_info
*
1548 init_topo_info (void)
1550 size_t size
= graph
->size
;
1551 struct topo_info
*ti
= XNEW (struct topo_info
);
1552 ti
->visited
= sbitmap_alloc (size
);
1553 bitmap_clear (ti
->visited
);
1554 ti
->topo_order
.create (1);
1559 /* Free the topological sort info pointed to by TI. */
1562 free_topo_info (struct topo_info
*ti
)
1564 sbitmap_free (ti
->visited
);
1565 ti
->topo_order
.release ();
1569 /* Visit the graph in topological order, and store the order in the
1570 topo_info structure. */
1573 topo_visit (constraint_graph_t graph
, struct topo_info
*ti
,
1579 bitmap_set_bit (ti
->visited
, n
);
1581 if (graph
->succs
[n
])
1582 EXECUTE_IF_SET_IN_BITMAP (graph
->succs
[n
], 0, j
, bi
)
1584 if (!bitmap_bit_p (ti
->visited
, j
))
1585 topo_visit (graph
, ti
, j
);
1588 ti
->topo_order
.safe_push (n
);
1591 /* Process a constraint C that represents x = *(y + off), using DELTA as the
1592 starting solution for y. */
1595 do_sd_constraint (constraint_graph_t graph
, constraint_t c
,
1596 bitmap delta
, bitmap
*expanded_delta
)
1598 unsigned int lhs
= c
->lhs
.var
;
1600 bitmap sol
= get_varinfo (lhs
)->solution
;
1603 HOST_WIDE_INT roffset
= c
->rhs
.offset
;
1605 /* Our IL does not allow this. */
1606 gcc_checking_assert (c
->lhs
.offset
== 0);
1608 /* If the solution of Y contains anything it is good enough to transfer
1610 if (bitmap_bit_p (delta
, anything_id
))
1612 flag
|= bitmap_set_bit (sol
, anything_id
);
1616 /* If we do not know at with offset the rhs is dereferenced compute
1617 the reachability set of DELTA, conservatively assuming it is
1618 dereferenced at all valid offsets. */
1619 if (roffset
== UNKNOWN_OFFSET
)
1621 delta
= solution_set_expand (delta
, expanded_delta
);
1622 /* No further offset processing is necessary. */
1626 /* For each variable j in delta (Sol(y)), add
1627 an edge in the graph from j to x, and union Sol(j) into Sol(x). */
1628 EXECUTE_IF_SET_IN_BITMAP (delta
, 0, j
, bi
)
1630 varinfo_t v
= get_varinfo (j
);
1631 HOST_WIDE_INT fieldoffset
= v
->offset
+ roffset
;
1632 unsigned HOST_WIDE_INT size
= v
->size
;
1637 else if (roffset
!= 0)
1639 if (fieldoffset
< 0)
1640 v
= get_varinfo (v
->head
);
1642 v
= first_or_preceding_vi_for_offset (v
, fieldoffset
);
1645 /* We have to include all fields that overlap the current field
1646 shifted by roffset. */
1651 /* Adding edges from the special vars is pointless.
1652 They don't have sets that can change. */
1653 if (get_varinfo (t
)->is_special_var
)
1654 flag
|= bitmap_ior_into (sol
, get_varinfo (t
)->solution
);
1655 /* Merging the solution from ESCAPED needlessly increases
1656 the set. Use ESCAPED as representative instead. */
1657 else if (v
->id
== escaped_id
)
1658 flag
|= bitmap_set_bit (sol
, escaped_id
);
1659 else if (v
->may_have_pointers
1660 && add_graph_edge (graph
, lhs
, t
))
1661 flag
|= bitmap_ior_into (sol
, get_varinfo (t
)->solution
);
1669 while (v
->offset
< fieldoffset
+ size
);
1673 /* If the LHS solution changed, mark the var as changed. */
1676 get_varinfo (lhs
)->solution
= sol
;
1677 bitmap_set_bit (changed
, lhs
);
1681 /* Process a constraint C that represents *(x + off) = y using DELTA
1682 as the starting solution for x. */
1685 do_ds_constraint (constraint_t c
, bitmap delta
, bitmap
*expanded_delta
)
1687 unsigned int rhs
= c
->rhs
.var
;
1688 bitmap sol
= get_varinfo (rhs
)->solution
;
1691 HOST_WIDE_INT loff
= c
->lhs
.offset
;
1692 bool escaped_p
= false;
1694 /* Our IL does not allow this. */
1695 gcc_checking_assert (c
->rhs
.offset
== 0);
1697 /* If the solution of y contains ANYTHING simply use the ANYTHING
1698 solution. This avoids needlessly increasing the points-to sets. */
1699 if (bitmap_bit_p (sol
, anything_id
))
1700 sol
= get_varinfo (find (anything_id
))->solution
;
1702 /* If the solution for x contains ANYTHING we have to merge the
1703 solution of y into all pointer variables which we do via
1705 if (bitmap_bit_p (delta
, anything_id
))
1707 unsigned t
= find (storedanything_id
);
1708 if (add_graph_edge (graph
, t
, rhs
))
1710 if (bitmap_ior_into (get_varinfo (t
)->solution
, sol
))
1711 bitmap_set_bit (changed
, t
);
1716 /* If we do not know at with offset the rhs is dereferenced compute
1717 the reachability set of DELTA, conservatively assuming it is
1718 dereferenced at all valid offsets. */
1719 if (loff
== UNKNOWN_OFFSET
)
1721 delta
= solution_set_expand (delta
, expanded_delta
);
1725 /* For each member j of delta (Sol(x)), add an edge from y to j and
1726 union Sol(y) into Sol(j) */
1727 EXECUTE_IF_SET_IN_BITMAP (delta
, 0, j
, bi
)
1729 varinfo_t v
= get_varinfo (j
);
1731 HOST_WIDE_INT fieldoffset
= v
->offset
+ loff
;
1732 unsigned HOST_WIDE_INT size
= v
->size
;
1738 if (fieldoffset
< 0)
1739 v
= get_varinfo (v
->head
);
1741 v
= first_or_preceding_vi_for_offset (v
, fieldoffset
);
1744 /* We have to include all fields that overlap the current field
1748 if (v
->may_have_pointers
)
1750 /* If v is a global variable then this is an escape point. */
1751 if (v
->is_global_var
1754 t
= find (escaped_id
);
1755 if (add_graph_edge (graph
, t
, rhs
)
1756 && bitmap_ior_into (get_varinfo (t
)->solution
, sol
))
1757 bitmap_set_bit (changed
, t
);
1758 /* Enough to let rhs escape once. */
1762 if (v
->is_special_var
)
1766 if (add_graph_edge (graph
, t
, rhs
)
1767 && bitmap_ior_into (get_varinfo (t
)->solution
, sol
))
1768 bitmap_set_bit (changed
, t
);
1777 while (v
->offset
< fieldoffset
+ size
);
1781 /* Handle a non-simple (simple meaning requires no iteration),
1782 constraint (IE *x = &y, x = *y, *x = y, and x = y with offsets involved). */
1785 do_complex_constraint (constraint_graph_t graph
, constraint_t c
, bitmap delta
,
1786 bitmap
*expanded_delta
)
1788 if (c
->lhs
.type
== DEREF
)
1790 if (c
->rhs
.type
== ADDRESSOF
)
1797 do_ds_constraint (c
, delta
, expanded_delta
);
1800 else if (c
->rhs
.type
== DEREF
)
1803 if (!(get_varinfo (c
->lhs
.var
)->is_special_var
))
1804 do_sd_constraint (graph
, c
, delta
, expanded_delta
);
1811 gcc_checking_assert (c
->rhs
.type
== SCALAR
&& c
->lhs
.type
== SCALAR
1812 && c
->rhs
.offset
!= 0 && c
->lhs
.offset
== 0);
1813 tmp
= get_varinfo (c
->lhs
.var
)->solution
;
1815 flag
= set_union_with_increment (tmp
, delta
, c
->rhs
.offset
,
1819 bitmap_set_bit (changed
, c
->lhs
.var
);
1823 /* Initialize and return a new SCC info structure. */
1825 static struct scc_info
*
1826 init_scc_info (size_t size
)
1828 struct scc_info
*si
= XNEW (struct scc_info
);
1831 si
->current_index
= 0;
1832 si
->visited
= sbitmap_alloc (size
);
1833 bitmap_clear (si
->visited
);
1834 si
->deleted
= sbitmap_alloc (size
);
1835 bitmap_clear (si
->deleted
);
1836 si
->node_mapping
= XNEWVEC (unsigned int, size
);
1837 si
->dfs
= XCNEWVEC (unsigned int, size
);
1839 for (i
= 0; i
< size
; i
++)
1840 si
->node_mapping
[i
] = i
;
1842 si
->scc_stack
.create (1);
1846 /* Free an SCC info structure pointed to by SI */
1849 free_scc_info (struct scc_info
*si
)
1851 sbitmap_free (si
->visited
);
1852 sbitmap_free (si
->deleted
);
1853 free (si
->node_mapping
);
1855 si
->scc_stack
.release ();
1860 /* Find indirect cycles in GRAPH that occur, using strongly connected
1861 components, and note them in the indirect cycles map.
1863 This technique comes from Ben Hardekopf and Calvin Lin,
1864 "It Pays to be Lazy: Fast and Accurate Pointer Analysis for Millions of
1865 Lines of Code", submitted to PLDI 2007. */
1868 find_indirect_cycles (constraint_graph_t graph
)
1871 unsigned int size
= graph
->size
;
1872 struct scc_info
*si
= init_scc_info (size
);
1874 for (i
= 0; i
< MIN (LAST_REF_NODE
, size
); i
++ )
1875 if (!bitmap_bit_p (si
->visited
, i
) && find (i
) == i
)
1876 scc_visit (graph
, si
, i
);
1881 /* Compute a topological ordering for GRAPH, and store the result in the
1882 topo_info structure TI. */
1885 compute_topo_order (constraint_graph_t graph
,
1886 struct topo_info
*ti
)
1889 unsigned int size
= graph
->size
;
1891 for (i
= 0; i
!= size
; ++i
)
1892 if (!bitmap_bit_p (ti
->visited
, i
) && find (i
) == i
)
1893 topo_visit (graph
, ti
, i
);
1896 /* Structure used to for hash value numbering of pointer equivalence
1899 typedef struct equiv_class_label
1902 unsigned int equivalence_class
;
1904 } *equiv_class_label_t
;
1905 typedef const struct equiv_class_label
*const_equiv_class_label_t
;
1907 /* Equiv_class_label hashtable helpers. */
1909 struct equiv_class_hasher
: typed_free_remove
<equiv_class_label
>
1911 typedef equiv_class_label value_type
;
1912 typedef equiv_class_label compare_type
;
1913 static inline hashval_t
hash (const value_type
*);
1914 static inline bool equal (const value_type
*, const compare_type
*);
1917 /* Hash function for a equiv_class_label_t */
1920 equiv_class_hasher::hash (const value_type
*ecl
)
1922 return ecl
->hashcode
;
1925 /* Equality function for two equiv_class_label_t's. */
1928 equiv_class_hasher::equal (const value_type
*eql1
, const compare_type
*eql2
)
1930 return (eql1
->hashcode
== eql2
->hashcode
1931 && bitmap_equal_p (eql1
->labels
, eql2
->labels
));
1934 /* A hashtable for mapping a bitmap of labels->pointer equivalence
1936 static hash_table
<equiv_class_hasher
> *pointer_equiv_class_table
;
1938 /* A hashtable for mapping a bitmap of labels->location equivalence
1940 static hash_table
<equiv_class_hasher
> *location_equiv_class_table
;
1942 /* Lookup a equivalence class in TABLE by the bitmap of LABELS with
1943 hash HAS it contains. Sets *REF_LABELS to the bitmap LABELS
1944 is equivalent to. */
1946 static equiv_class_label
*
1947 equiv_class_lookup_or_add (hash_table
<equiv_class_hasher
> *table
,
1950 equiv_class_label
**slot
;
1951 equiv_class_label ecl
;
1953 ecl
.labels
= labels
;
1954 ecl
.hashcode
= bitmap_hash (labels
);
1955 slot
= table
->find_slot (&ecl
, INSERT
);
1958 *slot
= XNEW (struct equiv_class_label
);
1959 (*slot
)->labels
= labels
;
1960 (*slot
)->hashcode
= ecl
.hashcode
;
1961 (*slot
)->equivalence_class
= 0;
1967 /* Perform offline variable substitution.
1969 This is a worst case quadratic time way of identifying variables
1970 that must have equivalent points-to sets, including those caused by
1971 static cycles, and single entry subgraphs, in the constraint graph.
1973 The technique is described in "Exploiting Pointer and Location
1974 Equivalence to Optimize Pointer Analysis. In the 14th International
1975 Static Analysis Symposium (SAS), August 2007." It is known as the
1976 "HU" algorithm, and is equivalent to value numbering the collapsed
1977 constraint graph including evaluating unions.
1979 The general method of finding equivalence classes is as follows:
1980 Add fake nodes (REF nodes) and edges for *a = b and a = *b constraints.
1981 Initialize all non-REF nodes to be direct nodes.
1982 For each constraint a = a U {b}, we set pts(a) = pts(a) u {fresh
1984 For each constraint containing the dereference, we also do the same
1987 We then compute SCC's in the graph and unify nodes in the same SCC,
1990 For each non-collapsed node x:
1991 Visit all unvisited explicit incoming edges.
1992 Ignoring all non-pointers, set pts(x) = Union of pts(a) for y
1994 Lookup the equivalence class for pts(x).
1995 If we found one, equivalence_class(x) = found class.
1996 Otherwise, equivalence_class(x) = new class, and new_class is
1997 added to the lookup table.
1999 All direct nodes with the same equivalence class can be replaced
2000 with a single representative node.
2001 All unlabeled nodes (label == 0) are not pointers and all edges
2002 involving them can be eliminated.
2003 We perform these optimizations during rewrite_constraints
2005 In addition to pointer equivalence class finding, we also perform
2006 location equivalence class finding. This is the set of variables
2007 that always appear together in points-to sets. We use this to
2008 compress the size of the points-to sets. */
2010 /* Current maximum pointer equivalence class id. */
2011 static int pointer_equiv_class
;
2013 /* Current maximum location equivalence class id. */
2014 static int location_equiv_class
;
2016 /* Recursive routine to find strongly connected components in GRAPH,
2017 and label it's nodes with DFS numbers. */
2020 condense_visit (constraint_graph_t graph
, struct scc_info
*si
, unsigned int n
)
2024 unsigned int my_dfs
;
2026 gcc_checking_assert (si
->node_mapping
[n
] == n
);
2027 bitmap_set_bit (si
->visited
, n
);
2028 si
->dfs
[n
] = si
->current_index
++;
2029 my_dfs
= si
->dfs
[n
];
2031 /* Visit all the successors. */
2032 EXECUTE_IF_IN_NONNULL_BITMAP (graph
->preds
[n
], 0, i
, bi
)
2034 unsigned int w
= si
->node_mapping
[i
];
2036 if (bitmap_bit_p (si
->deleted
, w
))
2039 if (!bitmap_bit_p (si
->visited
, w
))
2040 condense_visit (graph
, si
, w
);
2042 unsigned int t
= si
->node_mapping
[w
];
2043 gcc_checking_assert (si
->node_mapping
[n
] == n
);
2044 if (si
->dfs
[t
] < si
->dfs
[n
])
2045 si
->dfs
[n
] = si
->dfs
[t
];
2048 /* Visit all the implicit predecessors. */
2049 EXECUTE_IF_IN_NONNULL_BITMAP (graph
->implicit_preds
[n
], 0, i
, bi
)
2051 unsigned int w
= si
->node_mapping
[i
];
2053 if (bitmap_bit_p (si
->deleted
, w
))
2056 if (!bitmap_bit_p (si
->visited
, w
))
2057 condense_visit (graph
, si
, w
);
2059 unsigned int t
= si
->node_mapping
[w
];
2060 gcc_assert (si
->node_mapping
[n
] == n
);
2061 if (si
->dfs
[t
] < si
->dfs
[n
])
2062 si
->dfs
[n
] = si
->dfs
[t
];
2065 /* See if any components have been identified. */
2066 if (si
->dfs
[n
] == my_dfs
)
2068 while (si
->scc_stack
.length () != 0
2069 && si
->dfs
[si
->scc_stack
.last ()] >= my_dfs
)
2071 unsigned int w
= si
->scc_stack
.pop ();
2072 si
->node_mapping
[w
] = n
;
2074 if (!bitmap_bit_p (graph
->direct_nodes
, w
))
2075 bitmap_clear_bit (graph
->direct_nodes
, n
);
2077 /* Unify our nodes. */
2078 if (graph
->preds
[w
])
2080 if (!graph
->preds
[n
])
2081 graph
->preds
[n
] = BITMAP_ALLOC (&predbitmap_obstack
);
2082 bitmap_ior_into (graph
->preds
[n
], graph
->preds
[w
]);
2084 if (graph
->implicit_preds
[w
])
2086 if (!graph
->implicit_preds
[n
])
2087 graph
->implicit_preds
[n
] = BITMAP_ALLOC (&predbitmap_obstack
);
2088 bitmap_ior_into (graph
->implicit_preds
[n
],
2089 graph
->implicit_preds
[w
]);
2091 if (graph
->points_to
[w
])
2093 if (!graph
->points_to
[n
])
2094 graph
->points_to
[n
] = BITMAP_ALLOC (&predbitmap_obstack
);
2095 bitmap_ior_into (graph
->points_to
[n
],
2096 graph
->points_to
[w
]);
2099 bitmap_set_bit (si
->deleted
, n
);
2102 si
->scc_stack
.safe_push (n
);
2105 /* Label pointer equivalences.
2107 This performs a value numbering of the constraint graph to
2108 discover which variables will always have the same points-to sets
2109 under the current set of constraints.
2111 The way it value numbers is to store the set of points-to bits
2112 generated by the constraints and graph edges. This is just used as a
2113 hash and equality comparison. The *actual set of points-to bits* is
2114 completely irrelevant, in that we don't care about being able to
2117 The equality values (currently bitmaps) just have to satisfy a few
2118 constraints, the main ones being:
2119 1. The combining operation must be order independent.
2120 2. The end result of a given set of operations must be unique iff the
2121 combination of input values is unique
2125 label_visit (constraint_graph_t graph
, struct scc_info
*si
, unsigned int n
)
2127 unsigned int i
, first_pred
;
2130 bitmap_set_bit (si
->visited
, n
);
2132 /* Label and union our incoming edges's points to sets. */
2134 EXECUTE_IF_IN_NONNULL_BITMAP (graph
->preds
[n
], 0, i
, bi
)
2136 unsigned int w
= si
->node_mapping
[i
];
2137 if (!bitmap_bit_p (si
->visited
, w
))
2138 label_visit (graph
, si
, w
);
2140 /* Skip unused edges */
2141 if (w
== n
|| graph
->pointer_label
[w
] == 0)
2144 if (graph
->points_to
[w
])
2146 if (!graph
->points_to
[n
])
2148 if (first_pred
== -1U)
2152 graph
->points_to
[n
] = BITMAP_ALLOC (&predbitmap_obstack
);
2153 bitmap_ior (graph
->points_to
[n
],
2154 graph
->points_to
[first_pred
],
2155 graph
->points_to
[w
]);
2159 bitmap_ior_into (graph
->points_to
[n
], graph
->points_to
[w
]);
2163 /* Indirect nodes get fresh variables and a new pointer equiv class. */
2164 if (!bitmap_bit_p (graph
->direct_nodes
, n
))
2166 if (!graph
->points_to
[n
])
2168 graph
->points_to
[n
] = BITMAP_ALLOC (&predbitmap_obstack
);
2169 if (first_pred
!= -1U)
2170 bitmap_copy (graph
->points_to
[n
], graph
->points_to
[first_pred
]);
2172 bitmap_set_bit (graph
->points_to
[n
], FIRST_REF_NODE
+ n
);
2173 graph
->pointer_label
[n
] = pointer_equiv_class
++;
2174 equiv_class_label_t ecl
;
2175 ecl
= equiv_class_lookup_or_add (pointer_equiv_class_table
,
2176 graph
->points_to
[n
]);
2177 ecl
->equivalence_class
= graph
->pointer_label
[n
];
2181 /* If there was only a single non-empty predecessor the pointer equiv
2182 class is the same. */
2183 if (!graph
->points_to
[n
])
2185 if (first_pred
!= -1U)
2187 graph
->pointer_label
[n
] = graph
->pointer_label
[first_pred
];
2188 graph
->points_to
[n
] = graph
->points_to
[first_pred
];
2193 if (!bitmap_empty_p (graph
->points_to
[n
]))
2195 equiv_class_label_t ecl
;
2196 ecl
= equiv_class_lookup_or_add (pointer_equiv_class_table
,
2197 graph
->points_to
[n
]);
2198 if (ecl
->equivalence_class
== 0)
2199 ecl
->equivalence_class
= pointer_equiv_class
++;
2202 BITMAP_FREE (graph
->points_to
[n
]);
2203 graph
->points_to
[n
] = ecl
->labels
;
2205 graph
->pointer_label
[n
] = ecl
->equivalence_class
;
2209 /* Print the pred graph in dot format. */
2212 dump_pred_graph (struct scc_info
*si
, FILE *file
)
2216 /* Only print the graph if it has already been initialized: */
2220 /* Prints the header of the dot file: */
2221 fprintf (file
, "strict digraph {\n");
2222 fprintf (file
, " node [\n shape = box\n ]\n");
2223 fprintf (file
, " edge [\n fontsize = \"12\"\n ]\n");
2224 fprintf (file
, "\n // List of nodes and complex constraints in "
2225 "the constraint graph:\n");
2227 /* The next lines print the nodes in the graph together with the
2228 complex constraints attached to them. */
2229 for (i
= 1; i
< graph
->size
; i
++)
2231 if (i
== FIRST_REF_NODE
)
2233 if (si
->node_mapping
[i
] != i
)
2235 if (i
< FIRST_REF_NODE
)
2236 fprintf (file
, "\"%s\"", get_varinfo (i
)->name
);
2238 fprintf (file
, "\"*%s\"", get_varinfo (i
- FIRST_REF_NODE
)->name
);
2239 if (graph
->points_to
[i
]
2240 && !bitmap_empty_p (graph
->points_to
[i
]))
2242 fprintf (file
, "[label=\"%s = {", get_varinfo (i
)->name
);
2245 EXECUTE_IF_SET_IN_BITMAP (graph
->points_to
[i
], 0, j
, bi
)
2246 fprintf (file
, " %d", j
);
2247 fprintf (file
, " }\"]");
2249 fprintf (file
, ";\n");
2252 /* Go over the edges. */
2253 fprintf (file
, "\n // Edges in the constraint graph:\n");
2254 for (i
= 1; i
< graph
->size
; i
++)
2258 if (si
->node_mapping
[i
] != i
)
2260 EXECUTE_IF_IN_NONNULL_BITMAP (graph
->preds
[i
], 0, j
, bi
)
2262 unsigned from
= si
->node_mapping
[j
];
2263 if (from
< FIRST_REF_NODE
)
2264 fprintf (file
, "\"%s\"", get_varinfo (from
)->name
);
2266 fprintf (file
, "\"*%s\"", get_varinfo (from
- FIRST_REF_NODE
)->name
);
2267 fprintf (file
, " -> ");
2268 if (i
< FIRST_REF_NODE
)
2269 fprintf (file
, "\"%s\"", get_varinfo (i
)->name
);
2271 fprintf (file
, "\"*%s\"", get_varinfo (i
- FIRST_REF_NODE
)->name
);
2272 fprintf (file
, ";\n");
2276 /* Prints the tail of the dot file. */
2277 fprintf (file
, "}\n");
2280 /* Perform offline variable substitution, discovering equivalence
2281 classes, and eliminating non-pointer variables. */
2283 static struct scc_info
*
2284 perform_var_substitution (constraint_graph_t graph
)
2287 unsigned int size
= graph
->size
;
2288 struct scc_info
*si
= init_scc_info (size
);
2290 bitmap_obstack_initialize (&iteration_obstack
);
2291 pointer_equiv_class_table
= new hash_table
<equiv_class_hasher
> (511);
2292 location_equiv_class_table
2293 = new hash_table
<equiv_class_hasher
> (511);
2294 pointer_equiv_class
= 1;
2295 location_equiv_class
= 1;
2297 /* Condense the nodes, which means to find SCC's, count incoming
2298 predecessors, and unite nodes in SCC's. */
2299 for (i
= 1; i
< FIRST_REF_NODE
; i
++)
2300 if (!bitmap_bit_p (si
->visited
, si
->node_mapping
[i
]))
2301 condense_visit (graph
, si
, si
->node_mapping
[i
]);
2303 if (dump_file
&& (dump_flags
& TDF_GRAPH
))
2305 fprintf (dump_file
, "\n\n// The constraint graph before var-substitution "
2306 "in dot format:\n");
2307 dump_pred_graph (si
, dump_file
);
2308 fprintf (dump_file
, "\n\n");
2311 bitmap_clear (si
->visited
);
2312 /* Actually the label the nodes for pointer equivalences */
2313 for (i
= 1; i
< FIRST_REF_NODE
; i
++)
2314 if (!bitmap_bit_p (si
->visited
, si
->node_mapping
[i
]))
2315 label_visit (graph
, si
, si
->node_mapping
[i
]);
2317 /* Calculate location equivalence labels. */
2318 for (i
= 1; i
< FIRST_REF_NODE
; i
++)
2324 if (!graph
->pointed_by
[i
])
2326 pointed_by
= BITMAP_ALLOC (&iteration_obstack
);
2328 /* Translate the pointed-by mapping for pointer equivalence
2330 EXECUTE_IF_SET_IN_BITMAP (graph
->pointed_by
[i
], 0, j
, bi
)
2332 bitmap_set_bit (pointed_by
,
2333 graph
->pointer_label
[si
->node_mapping
[j
]]);
2335 /* The original pointed_by is now dead. */
2336 BITMAP_FREE (graph
->pointed_by
[i
]);
2338 /* Look up the location equivalence label if one exists, or make
2340 equiv_class_label_t ecl
;
2341 ecl
= equiv_class_lookup_or_add (location_equiv_class_table
, pointed_by
);
2342 if (ecl
->equivalence_class
== 0)
2343 ecl
->equivalence_class
= location_equiv_class
++;
2346 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2347 fprintf (dump_file
, "Found location equivalence for node %s\n",
2348 get_varinfo (i
)->name
);
2349 BITMAP_FREE (pointed_by
);
2351 graph
->loc_label
[i
] = ecl
->equivalence_class
;
2355 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2356 for (i
= 1; i
< FIRST_REF_NODE
; i
++)
2358 unsigned j
= si
->node_mapping
[i
];
2361 fprintf (dump_file
, "%s node id %d ",
2362 bitmap_bit_p (graph
->direct_nodes
, i
)
2363 ? "Direct" : "Indirect", i
);
2364 if (i
< FIRST_REF_NODE
)
2365 fprintf (dump_file
, "\"%s\"", get_varinfo (i
)->name
);
2367 fprintf (dump_file
, "\"*%s\"",
2368 get_varinfo (i
- FIRST_REF_NODE
)->name
);
2369 fprintf (dump_file
, " mapped to SCC leader node id %d ", j
);
2370 if (j
< FIRST_REF_NODE
)
2371 fprintf (dump_file
, "\"%s\"\n", get_varinfo (j
)->name
);
2373 fprintf (dump_file
, "\"*%s\"\n",
2374 get_varinfo (j
- FIRST_REF_NODE
)->name
);
2379 "Equivalence classes for %s node id %d ",
2380 bitmap_bit_p (graph
->direct_nodes
, i
)
2381 ? "direct" : "indirect", i
);
2382 if (i
< FIRST_REF_NODE
)
2383 fprintf (dump_file
, "\"%s\"", get_varinfo (i
)->name
);
2385 fprintf (dump_file
, "\"*%s\"",
2386 get_varinfo (i
- FIRST_REF_NODE
)->name
);
2388 ": pointer %d, location %d\n",
2389 graph
->pointer_label
[i
], graph
->loc_label
[i
]);
2393 /* Quickly eliminate our non-pointer variables. */
2395 for (i
= 1; i
< FIRST_REF_NODE
; i
++)
2397 unsigned int node
= si
->node_mapping
[i
];
2399 if (graph
->pointer_label
[node
] == 0)
2401 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2403 "%s is a non-pointer variable, eliminating edges.\n",
2404 get_varinfo (node
)->name
);
2405 stats
.nonpointer_vars
++;
2406 clear_edges_for_node (graph
, node
);
2413 /* Free information that was only necessary for variable
2417 free_var_substitution_info (struct scc_info
*si
)
2420 free (graph
->pointer_label
);
2421 free (graph
->loc_label
);
2422 free (graph
->pointed_by
);
2423 free (graph
->points_to
);
2424 free (graph
->eq_rep
);
2425 sbitmap_free (graph
->direct_nodes
);
2426 delete pointer_equiv_class_table
;
2427 pointer_equiv_class_table
= NULL
;
2428 delete location_equiv_class_table
;
2429 location_equiv_class_table
= NULL
;
2430 bitmap_obstack_release (&iteration_obstack
);
2433 /* Return an existing node that is equivalent to NODE, which has
2434 equivalence class LABEL, if one exists. Return NODE otherwise. */
2437 find_equivalent_node (constraint_graph_t graph
,
2438 unsigned int node
, unsigned int label
)
2440 /* If the address version of this variable is unused, we can
2441 substitute it for anything else with the same label.
2442 Otherwise, we know the pointers are equivalent, but not the
2443 locations, and we can unite them later. */
2445 if (!bitmap_bit_p (graph
->address_taken
, node
))
2447 gcc_checking_assert (label
< graph
->size
);
2449 if (graph
->eq_rep
[label
] != -1)
2451 /* Unify the two variables since we know they are equivalent. */
2452 if (unite (graph
->eq_rep
[label
], node
))
2453 unify_nodes (graph
, graph
->eq_rep
[label
], node
, false);
2454 return graph
->eq_rep
[label
];
2458 graph
->eq_rep
[label
] = node
;
2459 graph
->pe_rep
[label
] = node
;
2464 gcc_checking_assert (label
< graph
->size
);
2465 graph
->pe
[node
] = label
;
2466 if (graph
->pe_rep
[label
] == -1)
2467 graph
->pe_rep
[label
] = node
;
2473 /* Unite pointer equivalent but not location equivalent nodes in
2474 GRAPH. This may only be performed once variable substitution is
2478 unite_pointer_equivalences (constraint_graph_t graph
)
2482 /* Go through the pointer equivalences and unite them to their
2483 representative, if they aren't already. */
2484 for (i
= 1; i
< FIRST_REF_NODE
; i
++)
2486 unsigned int label
= graph
->pe
[i
];
2489 int label_rep
= graph
->pe_rep
[label
];
2491 if (label_rep
== -1)
2494 label_rep
= find (label_rep
);
2495 if (label_rep
>= 0 && unite (label_rep
, find (i
)))
2496 unify_nodes (graph
, label_rep
, i
, false);
2501 /* Move complex constraints to the GRAPH nodes they belong to. */
2504 move_complex_constraints (constraint_graph_t graph
)
2509 FOR_EACH_VEC_ELT (constraints
, i
, c
)
2513 struct constraint_expr lhs
= c
->lhs
;
2514 struct constraint_expr rhs
= c
->rhs
;
2516 if (lhs
.type
== DEREF
)
2518 insert_into_complex (graph
, lhs
.var
, c
);
2520 else if (rhs
.type
== DEREF
)
2522 if (!(get_varinfo (lhs
.var
)->is_special_var
))
2523 insert_into_complex (graph
, rhs
.var
, c
);
2525 else if (rhs
.type
!= ADDRESSOF
&& lhs
.var
> anything_id
2526 && (lhs
.offset
!= 0 || rhs
.offset
!= 0))
2528 insert_into_complex (graph
, rhs
.var
, c
);
2535 /* Optimize and rewrite complex constraints while performing
2536 collapsing of equivalent nodes. SI is the SCC_INFO that is the
2537 result of perform_variable_substitution. */
2540 rewrite_constraints (constraint_graph_t graph
,
2541 struct scc_info
*si
)
2546 #ifdef ENABLE_CHECKING
2547 for (unsigned int j
= 0; j
< graph
->size
; j
++)
2548 gcc_assert (find (j
) == j
);
2551 FOR_EACH_VEC_ELT (constraints
, i
, c
)
2553 struct constraint_expr lhs
= c
->lhs
;
2554 struct constraint_expr rhs
= c
->rhs
;
2555 unsigned int lhsvar
= find (lhs
.var
);
2556 unsigned int rhsvar
= find (rhs
.var
);
2557 unsigned int lhsnode
, rhsnode
;
2558 unsigned int lhslabel
, rhslabel
;
2560 lhsnode
= si
->node_mapping
[lhsvar
];
2561 rhsnode
= si
->node_mapping
[rhsvar
];
2562 lhslabel
= graph
->pointer_label
[lhsnode
];
2563 rhslabel
= graph
->pointer_label
[rhsnode
];
2565 /* See if it is really a non-pointer variable, and if so, ignore
2569 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2572 fprintf (dump_file
, "%s is a non-pointer variable,"
2573 "ignoring constraint:",
2574 get_varinfo (lhs
.var
)->name
);
2575 dump_constraint (dump_file
, c
);
2576 fprintf (dump_file
, "\n");
2578 constraints
[i
] = NULL
;
2584 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2587 fprintf (dump_file
, "%s is a non-pointer variable,"
2588 "ignoring constraint:",
2589 get_varinfo (rhs
.var
)->name
);
2590 dump_constraint (dump_file
, c
);
2591 fprintf (dump_file
, "\n");
2593 constraints
[i
] = NULL
;
2597 lhsvar
= find_equivalent_node (graph
, lhsvar
, lhslabel
);
2598 rhsvar
= find_equivalent_node (graph
, rhsvar
, rhslabel
);
2599 c
->lhs
.var
= lhsvar
;
2600 c
->rhs
.var
= rhsvar
;
2604 /* Eliminate indirect cycles involving NODE. Return true if NODE was
2605 part of an SCC, false otherwise. */
2608 eliminate_indirect_cycles (unsigned int node
)
2610 if (graph
->indirect_cycles
[node
] != -1
2611 && !bitmap_empty_p (get_varinfo (node
)->solution
))
2614 auto_vec
<unsigned> queue
;
2616 unsigned int to
= find (graph
->indirect_cycles
[node
]);
2619 /* We can't touch the solution set and call unify_nodes
2620 at the same time, because unify_nodes is going to do
2621 bitmap unions into it. */
2623 EXECUTE_IF_SET_IN_BITMAP (get_varinfo (node
)->solution
, 0, i
, bi
)
2625 if (find (i
) == i
&& i
!= to
)
2628 queue
.safe_push (i
);
2633 queue
.iterate (queuepos
, &i
);
2636 unify_nodes (graph
, to
, i
, true);
2643 /* Solve the constraint graph GRAPH using our worklist solver.
2644 This is based on the PW* family of solvers from the "Efficient Field
2645 Sensitive Pointer Analysis for C" paper.
2646 It works by iterating over all the graph nodes, processing the complex
2647 constraints and propagating the copy constraints, until everything stops
2648 changed. This corresponds to steps 6-8 in the solving list given above. */
2651 solve_graph (constraint_graph_t graph
)
2653 unsigned int size
= graph
->size
;
2657 changed
= BITMAP_ALLOC (NULL
);
2659 /* Mark all initial non-collapsed nodes as changed. */
2660 for (i
= 1; i
< size
; i
++)
2662 varinfo_t ivi
= get_varinfo (i
);
2663 if (find (i
) == i
&& !bitmap_empty_p (ivi
->solution
)
2664 && ((graph
->succs
[i
] && !bitmap_empty_p (graph
->succs
[i
]))
2665 || graph
->complex[i
].length () > 0))
2666 bitmap_set_bit (changed
, i
);
2669 /* Allocate a bitmap to be used to store the changed bits. */
2670 pts
= BITMAP_ALLOC (&pta_obstack
);
2672 while (!bitmap_empty_p (changed
))
2675 struct topo_info
*ti
= init_topo_info ();
2678 bitmap_obstack_initialize (&iteration_obstack
);
2680 compute_topo_order (graph
, ti
);
2682 while (ti
->topo_order
.length () != 0)
2685 i
= ti
->topo_order
.pop ();
2687 /* If this variable is not a representative, skip it. */
2691 /* In certain indirect cycle cases, we may merge this
2692 variable to another. */
2693 if (eliminate_indirect_cycles (i
) && find (i
) != i
)
2696 /* If the node has changed, we need to process the
2697 complex constraints and outgoing edges again. */
2698 if (bitmap_clear_bit (changed
, i
))
2703 vec
<constraint_t
> complex = graph
->complex[i
];
2704 varinfo_t vi
= get_varinfo (i
);
2705 bool solution_empty
;
2707 /* Compute the changed set of solution bits. If anything
2708 is in the solution just propagate that. */
2709 if (bitmap_bit_p (vi
->solution
, anything_id
))
2711 /* If anything is also in the old solution there is
2713 ??? But we shouldn't ended up with "changed" set ... */
2715 && bitmap_bit_p (vi
->oldsolution
, anything_id
))
2717 bitmap_copy (pts
, get_varinfo (find (anything_id
))->solution
);
2719 else if (vi
->oldsolution
)
2720 bitmap_and_compl (pts
, vi
->solution
, vi
->oldsolution
);
2722 bitmap_copy (pts
, vi
->solution
);
2724 if (bitmap_empty_p (pts
))
2727 if (vi
->oldsolution
)
2728 bitmap_ior_into (vi
->oldsolution
, pts
);
2731 vi
->oldsolution
= BITMAP_ALLOC (&oldpta_obstack
);
2732 bitmap_copy (vi
->oldsolution
, pts
);
2735 solution
= vi
->solution
;
2736 solution_empty
= bitmap_empty_p (solution
);
2738 /* Process the complex constraints */
2739 bitmap expanded_pts
= NULL
;
2740 FOR_EACH_VEC_ELT (complex, j
, c
)
2742 /* XXX: This is going to unsort the constraints in
2743 some cases, which will occasionally add duplicate
2744 constraints during unification. This does not
2745 affect correctness. */
2746 c
->lhs
.var
= find (c
->lhs
.var
);
2747 c
->rhs
.var
= find (c
->rhs
.var
);
2749 /* The only complex constraint that can change our
2750 solution to non-empty, given an empty solution,
2751 is a constraint where the lhs side is receiving
2752 some set from elsewhere. */
2753 if (!solution_empty
|| c
->lhs
.type
!= DEREF
)
2754 do_complex_constraint (graph
, c
, pts
, &expanded_pts
);
2756 BITMAP_FREE (expanded_pts
);
2758 solution_empty
= bitmap_empty_p (solution
);
2760 if (!solution_empty
)
2763 unsigned eff_escaped_id
= find (escaped_id
);
2765 /* Propagate solution to all successors. */
2766 EXECUTE_IF_IN_NONNULL_BITMAP (graph
->succs
[i
],
2772 unsigned int to
= find (j
);
2773 tmp
= get_varinfo (to
)->solution
;
2776 /* Don't try to propagate to ourselves. */
2780 /* If we propagate from ESCAPED use ESCAPED as
2782 if (i
== eff_escaped_id
)
2783 flag
= bitmap_set_bit (tmp
, escaped_id
);
2785 flag
= bitmap_ior_into (tmp
, pts
);
2788 bitmap_set_bit (changed
, to
);
2793 free_topo_info (ti
);
2794 bitmap_obstack_release (&iteration_obstack
);
2798 BITMAP_FREE (changed
);
2799 bitmap_obstack_release (&oldpta_obstack
);
2802 /* Map from trees to variable infos. */
2803 static hash_map
<tree
, varinfo_t
> *vi_for_tree
;
2806 /* Insert ID as the variable id for tree T in the vi_for_tree map. */
2809 insert_vi_for_tree (tree t
, varinfo_t vi
)
2812 gcc_assert (!vi_for_tree
->put (t
, vi
));
2815 /* Find the variable info for tree T in VI_FOR_TREE. If T does not
2816 exist in the map, return NULL, otherwise, return the varinfo we found. */
2819 lookup_vi_for_tree (tree t
)
2821 varinfo_t
*slot
= vi_for_tree
->get (t
);
2828 /* Return a printable name for DECL */
2831 alias_get_name (tree decl
)
2833 const char *res
= NULL
;
2835 int num_printed
= 0;
2840 if (TREE_CODE (decl
) == SSA_NAME
)
2842 res
= get_name (decl
);
2844 num_printed
= asprintf (&temp
, "%s_%u", res
, SSA_NAME_VERSION (decl
));
2846 num_printed
= asprintf (&temp
, "_%u", SSA_NAME_VERSION (decl
));
2847 if (num_printed
> 0)
2849 res
= ggc_strdup (temp
);
2853 else if (DECL_P (decl
))
2855 if (DECL_ASSEMBLER_NAME_SET_P (decl
))
2856 res
= IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl
));
2859 res
= get_name (decl
);
2862 num_printed
= asprintf (&temp
, "D.%u", DECL_UID (decl
));
2863 if (num_printed
> 0)
2865 res
= ggc_strdup (temp
);
2877 /* Find the variable id for tree T in the map.
2878 If T doesn't exist in the map, create an entry for it and return it. */
2881 get_vi_for_tree (tree t
)
2883 varinfo_t
*slot
= vi_for_tree
->get (t
);
2885 return get_varinfo (create_variable_info_for (t
, alias_get_name (t
)));
2890 /* Get a scalar constraint expression for a new temporary variable. */
2892 static struct constraint_expr
2893 new_scalar_tmp_constraint_exp (const char *name
)
2895 struct constraint_expr tmp
;
2898 vi
= new_var_info (NULL_TREE
, name
);
2902 vi
->is_full_var
= 1;
2911 /* Get a constraint expression vector from an SSA_VAR_P node.
2912 If address_p is true, the result will be taken its address of. */
2915 get_constraint_for_ssa_var (tree t
, vec
<ce_s
> *results
, bool address_p
)
2917 struct constraint_expr cexpr
;
2920 /* We allow FUNCTION_DECLs here even though it doesn't make much sense. */
2921 gcc_assert (TREE_CODE (t
) == SSA_NAME
|| DECL_P (t
));
2923 /* For parameters, get at the points-to set for the actual parm
2925 if (TREE_CODE (t
) == SSA_NAME
2926 && SSA_NAME_IS_DEFAULT_DEF (t
)
2927 && (TREE_CODE (SSA_NAME_VAR (t
)) == PARM_DECL
2928 || TREE_CODE (SSA_NAME_VAR (t
)) == RESULT_DECL
))
2930 get_constraint_for_ssa_var (SSA_NAME_VAR (t
), results
, address_p
);
2934 /* For global variables resort to the alias target. */
2935 if (TREE_CODE (t
) == VAR_DECL
2936 && (TREE_STATIC (t
) || DECL_EXTERNAL (t
)))
2938 varpool_node
*node
= varpool_node::get (t
);
2939 if (node
&& node
->alias
&& node
->analyzed
)
2941 node
= node
->ultimate_alias_target ();
2946 vi
= get_vi_for_tree (t
);
2948 cexpr
.type
= SCALAR
;
2951 /* If we are not taking the address of the constraint expr, add all
2952 sub-fiels of the variable as well. */
2954 && !vi
->is_full_var
)
2956 for (; vi
; vi
= vi_next (vi
))
2959 results
->safe_push (cexpr
);
2964 results
->safe_push (cexpr
);
2967 /* Process constraint T, performing various simplifications and then
2968 adding it to our list of overall constraints. */
2971 process_constraint (constraint_t t
)
2973 struct constraint_expr rhs
= t
->rhs
;
2974 struct constraint_expr lhs
= t
->lhs
;
2976 gcc_assert (rhs
.var
< varmap
.length ());
2977 gcc_assert (lhs
.var
< varmap
.length ());
2979 /* If we didn't get any useful constraint from the lhs we get
2980 &ANYTHING as fallback from get_constraint_for. Deal with
2981 it here by turning it into *ANYTHING. */
2982 if (lhs
.type
== ADDRESSOF
2983 && lhs
.var
== anything_id
)
2986 /* ADDRESSOF on the lhs is invalid. */
2987 gcc_assert (lhs
.type
!= ADDRESSOF
);
2989 /* We shouldn't add constraints from things that cannot have pointers.
2990 It's not completely trivial to avoid in the callers, so do it here. */
2991 if (rhs
.type
!= ADDRESSOF
2992 && !get_varinfo (rhs
.var
)->may_have_pointers
)
2995 /* Likewise adding to the solution of a non-pointer var isn't useful. */
2996 if (!get_varinfo (lhs
.var
)->may_have_pointers
)
2999 /* This can happen in our IR with things like n->a = *p */
3000 if (rhs
.type
== DEREF
&& lhs
.type
== DEREF
&& rhs
.var
!= anything_id
)
3002 /* Split into tmp = *rhs, *lhs = tmp */
3003 struct constraint_expr tmplhs
;
3004 tmplhs
= new_scalar_tmp_constraint_exp ("doubledereftmp");
3005 process_constraint (new_constraint (tmplhs
, rhs
));
3006 process_constraint (new_constraint (lhs
, tmplhs
));
3008 else if (rhs
.type
== ADDRESSOF
&& lhs
.type
== DEREF
)
3010 /* Split into tmp = &rhs, *lhs = tmp */
3011 struct constraint_expr tmplhs
;
3012 tmplhs
= new_scalar_tmp_constraint_exp ("derefaddrtmp");
3013 process_constraint (new_constraint (tmplhs
, rhs
));
3014 process_constraint (new_constraint (lhs
, tmplhs
));
3018 gcc_assert (rhs
.type
!= ADDRESSOF
|| rhs
.offset
== 0);
3019 constraints
.safe_push (t
);
3024 /* Return the position, in bits, of FIELD_DECL from the beginning of its
3027 static HOST_WIDE_INT
3028 bitpos_of_field (const tree fdecl
)
3030 if (!tree_fits_shwi_p (DECL_FIELD_OFFSET (fdecl
))
3031 || !tree_fits_shwi_p (DECL_FIELD_BIT_OFFSET (fdecl
)))
3034 return (tree_to_shwi (DECL_FIELD_OFFSET (fdecl
)) * BITS_PER_UNIT
3035 + tree_to_shwi (DECL_FIELD_BIT_OFFSET (fdecl
)));
3039 /* Get constraint expressions for offsetting PTR by OFFSET. Stores the
3040 resulting constraint expressions in *RESULTS. */
3043 get_constraint_for_ptr_offset (tree ptr
, tree offset
,
3046 struct constraint_expr c
;
3048 HOST_WIDE_INT rhsoffset
;
3050 /* If we do not do field-sensitive PTA adding offsets to pointers
3051 does not change the points-to solution. */
3052 if (!use_field_sensitive
)
3054 get_constraint_for_rhs (ptr
, results
);
3058 /* If the offset is not a non-negative integer constant that fits
3059 in a HOST_WIDE_INT, we have to fall back to a conservative
3060 solution which includes all sub-fields of all pointed-to
3061 variables of ptr. */
3062 if (offset
== NULL_TREE
3063 || TREE_CODE (offset
) != INTEGER_CST
)
3064 rhsoffset
= UNKNOWN_OFFSET
;
3067 /* Sign-extend the offset. */
3068 offset_int soffset
= offset_int::from (offset
, SIGNED
);
3069 if (!wi::fits_shwi_p (soffset
))
3070 rhsoffset
= UNKNOWN_OFFSET
;
3073 /* Make sure the bit-offset also fits. */
3074 HOST_WIDE_INT rhsunitoffset
= soffset
.to_shwi ();
3075 rhsoffset
= rhsunitoffset
* BITS_PER_UNIT
;
3076 if (rhsunitoffset
!= rhsoffset
/ BITS_PER_UNIT
)
3077 rhsoffset
= UNKNOWN_OFFSET
;
3081 get_constraint_for_rhs (ptr
, results
);
3085 /* As we are eventually appending to the solution do not use
3086 vec::iterate here. */
3087 n
= results
->length ();
3088 for (j
= 0; j
< n
; j
++)
3092 curr
= get_varinfo (c
.var
);
3094 if (c
.type
== ADDRESSOF
3095 /* If this varinfo represents a full variable just use it. */
3096 && curr
->is_full_var
)
3098 else if (c
.type
== ADDRESSOF
3099 /* If we do not know the offset add all subfields. */
3100 && rhsoffset
== UNKNOWN_OFFSET
)
3102 varinfo_t temp
= get_varinfo (curr
->head
);
3105 struct constraint_expr c2
;
3107 c2
.type
= ADDRESSOF
;
3109 if (c2
.var
!= c
.var
)
3110 results
->safe_push (c2
);
3111 temp
= vi_next (temp
);
3115 else if (c
.type
== ADDRESSOF
)
3118 unsigned HOST_WIDE_INT offset
= curr
->offset
+ rhsoffset
;
3120 /* If curr->offset + rhsoffset is less than zero adjust it. */
3122 && curr
->offset
< offset
)
3125 /* We have to include all fields that overlap the current
3126 field shifted by rhsoffset. And we include at least
3127 the last or the first field of the variable to represent
3128 reachability of off-bound addresses, in particular &object + 1,
3129 conservatively correct. */
3130 temp
= first_or_preceding_vi_for_offset (curr
, offset
);
3133 temp
= vi_next (temp
);
3135 && temp
->offset
< offset
+ curr
->size
)
3137 struct constraint_expr c2
;
3139 c2
.type
= ADDRESSOF
;
3141 results
->safe_push (c2
);
3142 temp
= vi_next (temp
);
3145 else if (c
.type
== SCALAR
)
3147 gcc_assert (c
.offset
== 0);
3148 c
.offset
= rhsoffset
;
3151 /* We shouldn't get any DEREFs here. */
3159 /* Given a COMPONENT_REF T, return the constraint_expr vector for it.
3160 If address_p is true the result will be taken its address of.
3161 If lhs_p is true then the constraint expression is assumed to be used
3165 get_constraint_for_component_ref (tree t
, vec
<ce_s
> *results
,
3166 bool address_p
, bool lhs_p
)
3169 HOST_WIDE_INT bitsize
= -1;
3170 HOST_WIDE_INT bitmaxsize
= -1;
3171 HOST_WIDE_INT bitpos
;
3174 /* Some people like to do cute things like take the address of
3177 while (handled_component_p (forzero
)
3178 || INDIRECT_REF_P (forzero
)
3179 || TREE_CODE (forzero
) == MEM_REF
)
3180 forzero
= TREE_OPERAND (forzero
, 0);
3182 if (CONSTANT_CLASS_P (forzero
) && integer_zerop (forzero
))
3184 struct constraint_expr temp
;
3187 temp
.var
= integer_id
;
3189 results
->safe_push (temp
);
3193 t
= get_ref_base_and_extent (t
, &bitpos
, &bitsize
, &bitmaxsize
);
3195 /* Pretend to take the address of the base, we'll take care of
3196 adding the required subset of sub-fields below. */
3197 get_constraint_for_1 (t
, results
, true, lhs_p
);
3198 gcc_assert (results
->length () == 1);
3199 struct constraint_expr
&result
= results
->last ();
3201 if (result
.type
== SCALAR
3202 && get_varinfo (result
.var
)->is_full_var
)
3203 /* For single-field vars do not bother about the offset. */
3205 else if (result
.type
== SCALAR
)
3207 /* In languages like C, you can access one past the end of an
3208 array. You aren't allowed to dereference it, so we can
3209 ignore this constraint. When we handle pointer subtraction,
3210 we may have to do something cute here. */
3212 if ((unsigned HOST_WIDE_INT
)bitpos
< get_varinfo (result
.var
)->fullsize
3215 /* It's also not true that the constraint will actually start at the
3216 right offset, it may start in some padding. We only care about
3217 setting the constraint to the first actual field it touches, so
3219 struct constraint_expr cexpr
= result
;
3223 for (curr
= get_varinfo (cexpr
.var
); curr
; curr
= vi_next (curr
))
3225 if (ranges_overlap_p (curr
->offset
, curr
->size
,
3226 bitpos
, bitmaxsize
))
3228 cexpr
.var
= curr
->id
;
3229 results
->safe_push (cexpr
);
3234 /* If we are going to take the address of this field then
3235 to be able to compute reachability correctly add at least
3236 the last field of the variable. */
3237 if (address_p
&& results
->length () == 0)
3239 curr
= get_varinfo (cexpr
.var
);
3240 while (curr
->next
!= 0)
3241 curr
= vi_next (curr
);
3242 cexpr
.var
= curr
->id
;
3243 results
->safe_push (cexpr
);
3245 else if (results
->length () == 0)
3246 /* Assert that we found *some* field there. The user couldn't be
3247 accessing *only* padding. */
3248 /* Still the user could access one past the end of an array
3249 embedded in a struct resulting in accessing *only* padding. */
3250 /* Or accessing only padding via type-punning to a type
3251 that has a filed just in padding space. */
3253 cexpr
.type
= SCALAR
;
3254 cexpr
.var
= anything_id
;
3256 results
->safe_push (cexpr
);
3259 else if (bitmaxsize
== 0)
3261 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3262 fprintf (dump_file
, "Access to zero-sized part of variable,"
3266 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3267 fprintf (dump_file
, "Access to past the end of variable, ignoring\n");
3269 else if (result
.type
== DEREF
)
3271 /* If we do not know exactly where the access goes say so. Note
3272 that only for non-structure accesses we know that we access
3273 at most one subfiled of any variable. */
3275 || bitsize
!= bitmaxsize
3276 || AGGREGATE_TYPE_P (TREE_TYPE (orig_t
))
3277 || result
.offset
== UNKNOWN_OFFSET
)
3278 result
.offset
= UNKNOWN_OFFSET
;
3280 result
.offset
+= bitpos
;
3282 else if (result
.type
== ADDRESSOF
)
3284 /* We can end up here for component references on a
3285 VIEW_CONVERT_EXPR <>(&foobar). */
3286 result
.type
= SCALAR
;
3287 result
.var
= anything_id
;
3295 /* Dereference the constraint expression CONS, and return the result.
3296 DEREF (ADDRESSOF) = SCALAR
3297 DEREF (SCALAR) = DEREF
3298 DEREF (DEREF) = (temp = DEREF1; result = DEREF(temp))
3299 This is needed so that we can handle dereferencing DEREF constraints. */
3302 do_deref (vec
<ce_s
> *constraints
)
3304 struct constraint_expr
*c
;
3307 FOR_EACH_VEC_ELT (*constraints
, i
, c
)
3309 if (c
->type
== SCALAR
)
3311 else if (c
->type
== ADDRESSOF
)
3313 else if (c
->type
== DEREF
)
3315 struct constraint_expr tmplhs
;
3316 tmplhs
= new_scalar_tmp_constraint_exp ("dereftmp");
3317 process_constraint (new_constraint (tmplhs
, *c
));
3318 c
->var
= tmplhs
.var
;
3325 /* Given a tree T, return the constraint expression for taking the
3329 get_constraint_for_address_of (tree t
, vec
<ce_s
> *results
)
3331 struct constraint_expr
*c
;
3334 get_constraint_for_1 (t
, results
, true, true);
3336 FOR_EACH_VEC_ELT (*results
, i
, c
)
3338 if (c
->type
== DEREF
)
3341 c
->type
= ADDRESSOF
;
3345 /* Given a tree T, return the constraint expression for it. */
3348 get_constraint_for_1 (tree t
, vec
<ce_s
> *results
, bool address_p
,
3351 struct constraint_expr temp
;
3353 /* x = integer is all glommed to a single variable, which doesn't
3354 point to anything by itself. That is, of course, unless it is an
3355 integer constant being treated as a pointer, in which case, we
3356 will return that this is really the addressof anything. This
3357 happens below, since it will fall into the default case. The only
3358 case we know something about an integer treated like a pointer is
3359 when it is the NULL pointer, and then we just say it points to
3362 Do not do that if -fno-delete-null-pointer-checks though, because
3363 in that case *NULL does not fail, so it _should_ alias *anything.
3364 It is not worth adding a new option or renaming the existing one,
3365 since this case is relatively obscure. */
3366 if ((TREE_CODE (t
) == INTEGER_CST
3367 && integer_zerop (t
))
3368 /* The only valid CONSTRUCTORs in gimple with pointer typed
3369 elements are zero-initializer. But in IPA mode we also
3370 process global initializers, so verify at least. */
3371 || (TREE_CODE (t
) == CONSTRUCTOR
3372 && CONSTRUCTOR_NELTS (t
) == 0))
3374 if (flag_delete_null_pointer_checks
)
3375 temp
.var
= nothing_id
;
3377 temp
.var
= nonlocal_id
;
3378 temp
.type
= ADDRESSOF
;
3380 results
->safe_push (temp
);
3384 /* String constants are read-only, ideally we'd have a CONST_DECL
3386 if (TREE_CODE (t
) == STRING_CST
)
3388 temp
.var
= string_id
;
3391 results
->safe_push (temp
);
3395 switch (TREE_CODE_CLASS (TREE_CODE (t
)))
3397 case tcc_expression
:
3399 switch (TREE_CODE (t
))
3402 get_constraint_for_address_of (TREE_OPERAND (t
, 0), results
);
3410 switch (TREE_CODE (t
))
3414 struct constraint_expr cs
;
3416 get_constraint_for_ptr_offset (TREE_OPERAND (t
, 0),
3417 TREE_OPERAND (t
, 1), results
);
3420 /* If we are not taking the address then make sure to process
3421 all subvariables we might access. */
3425 cs
= results
->last ();
3426 if (cs
.type
== DEREF
3427 && type_can_have_subvars (TREE_TYPE (t
)))
3429 /* For dereferences this means we have to defer it
3431 results
->last ().offset
= UNKNOWN_OFFSET
;
3434 if (cs
.type
!= SCALAR
)
3437 vi
= get_varinfo (cs
.var
);
3438 curr
= vi_next (vi
);
3439 if (!vi
->is_full_var
3442 unsigned HOST_WIDE_INT size
;
3443 if (tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (t
))))
3444 size
= tree_to_uhwi (TYPE_SIZE (TREE_TYPE (t
)));
3447 for (; curr
; curr
= vi_next (curr
))
3449 if (curr
->offset
- vi
->offset
< size
)
3452 results
->safe_push (cs
);
3461 case ARRAY_RANGE_REF
:
3463 get_constraint_for_component_ref (t
, results
, address_p
, lhs_p
);
3465 case VIEW_CONVERT_EXPR
:
3466 get_constraint_for_1 (TREE_OPERAND (t
, 0), results
, address_p
,
3469 /* We are missing handling for TARGET_MEM_REF here. */
3474 case tcc_exceptional
:
3476 switch (TREE_CODE (t
))
3480 get_constraint_for_ssa_var (t
, results
, address_p
);
3488 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (t
), i
, val
)
3490 struct constraint_expr
*rhsp
;
3492 get_constraint_for_1 (val
, &tmp
, address_p
, lhs_p
);
3493 FOR_EACH_VEC_ELT (tmp
, j
, rhsp
)
3494 results
->safe_push (*rhsp
);
3497 /* We do not know whether the constructor was complete,
3498 so technically we have to add &NOTHING or &ANYTHING
3499 like we do for an empty constructor as well. */
3506 case tcc_declaration
:
3508 get_constraint_for_ssa_var (t
, results
, address_p
);
3513 /* We cannot refer to automatic variables through constants. */
3514 temp
.type
= ADDRESSOF
;
3515 temp
.var
= nonlocal_id
;
3517 results
->safe_push (temp
);
3523 /* The default fallback is a constraint from anything. */
3524 temp
.type
= ADDRESSOF
;
3525 temp
.var
= anything_id
;
3527 results
->safe_push (temp
);
3530 /* Given a gimple tree T, return the constraint expression vector for it. */
3533 get_constraint_for (tree t
, vec
<ce_s
> *results
)
3535 gcc_assert (results
->length () == 0);
3537 get_constraint_for_1 (t
, results
, false, true);
3540 /* Given a gimple tree T, return the constraint expression vector for it
3541 to be used as the rhs of a constraint. */
3544 get_constraint_for_rhs (tree t
, vec
<ce_s
> *results
)
3546 gcc_assert (results
->length () == 0);
3548 get_constraint_for_1 (t
, results
, false, false);
3552 /* Efficiently generates constraints from all entries in *RHSC to all
3553 entries in *LHSC. */
3556 process_all_all_constraints (vec
<ce_s
> lhsc
,
3559 struct constraint_expr
*lhsp
, *rhsp
;
3562 if (lhsc
.length () <= 1 || rhsc
.length () <= 1)
3564 FOR_EACH_VEC_ELT (lhsc
, i
, lhsp
)
3565 FOR_EACH_VEC_ELT (rhsc
, j
, rhsp
)
3566 process_constraint (new_constraint (*lhsp
, *rhsp
));
3570 struct constraint_expr tmp
;
3571 tmp
= new_scalar_tmp_constraint_exp ("allalltmp");
3572 FOR_EACH_VEC_ELT (rhsc
, i
, rhsp
)
3573 process_constraint (new_constraint (tmp
, *rhsp
));
3574 FOR_EACH_VEC_ELT (lhsc
, i
, lhsp
)
3575 process_constraint (new_constraint (*lhsp
, tmp
));
3579 /* Handle aggregate copies by expanding into copies of the respective
3580 fields of the structures. */
3583 do_structure_copy (tree lhsop
, tree rhsop
)
3585 struct constraint_expr
*lhsp
, *rhsp
;
3586 auto_vec
<ce_s
> lhsc
;
3587 auto_vec
<ce_s
> rhsc
;
3590 get_constraint_for (lhsop
, &lhsc
);
3591 get_constraint_for_rhs (rhsop
, &rhsc
);
3594 if (lhsp
->type
== DEREF
3595 || (lhsp
->type
== ADDRESSOF
&& lhsp
->var
== anything_id
)
3596 || rhsp
->type
== DEREF
)
3598 if (lhsp
->type
== DEREF
)
3600 gcc_assert (lhsc
.length () == 1);
3601 lhsp
->offset
= UNKNOWN_OFFSET
;
3603 if (rhsp
->type
== DEREF
)
3605 gcc_assert (rhsc
.length () == 1);
3606 rhsp
->offset
= UNKNOWN_OFFSET
;
3608 process_all_all_constraints (lhsc
, rhsc
);
3610 else if (lhsp
->type
== SCALAR
3611 && (rhsp
->type
== SCALAR
3612 || rhsp
->type
== ADDRESSOF
))
3614 HOST_WIDE_INT lhssize
, lhsmaxsize
, lhsoffset
;
3615 HOST_WIDE_INT rhssize
, rhsmaxsize
, rhsoffset
;
3617 get_ref_base_and_extent (lhsop
, &lhsoffset
, &lhssize
, &lhsmaxsize
);
3618 get_ref_base_and_extent (rhsop
, &rhsoffset
, &rhssize
, &rhsmaxsize
);
3619 for (j
= 0; lhsc
.iterate (j
, &lhsp
);)
3621 varinfo_t lhsv
, rhsv
;
3623 lhsv
= get_varinfo (lhsp
->var
);
3624 rhsv
= get_varinfo (rhsp
->var
);
3625 if (lhsv
->may_have_pointers
3626 && (lhsv
->is_full_var
3627 || rhsv
->is_full_var
3628 || ranges_overlap_p (lhsv
->offset
+ rhsoffset
, lhsv
->size
,
3629 rhsv
->offset
+ lhsoffset
, rhsv
->size
)))
3630 process_constraint (new_constraint (*lhsp
, *rhsp
));
3631 if (!rhsv
->is_full_var
3632 && (lhsv
->is_full_var
3633 || (lhsv
->offset
+ rhsoffset
+ lhsv
->size
3634 > rhsv
->offset
+ lhsoffset
+ rhsv
->size
)))
3637 if (k
>= rhsc
.length ())
3648 /* Create constraints ID = { rhsc }. */
3651 make_constraints_to (unsigned id
, vec
<ce_s
> rhsc
)
3653 struct constraint_expr
*c
;
3654 struct constraint_expr includes
;
3658 includes
.offset
= 0;
3659 includes
.type
= SCALAR
;
3661 FOR_EACH_VEC_ELT (rhsc
, j
, c
)
3662 process_constraint (new_constraint (includes
, *c
));
3665 /* Create a constraint ID = OP. */
3668 make_constraint_to (unsigned id
, tree op
)
3670 auto_vec
<ce_s
> rhsc
;
3671 get_constraint_for_rhs (op
, &rhsc
);
3672 make_constraints_to (id
, rhsc
);
3675 /* Create a constraint ID = &FROM. */
3678 make_constraint_from (varinfo_t vi
, int from
)
3680 struct constraint_expr lhs
, rhs
;
3688 rhs
.type
= ADDRESSOF
;
3689 process_constraint (new_constraint (lhs
, rhs
));
3692 /* Create a constraint ID = FROM. */
3695 make_copy_constraint (varinfo_t vi
, int from
)
3697 struct constraint_expr lhs
, rhs
;
3706 process_constraint (new_constraint (lhs
, rhs
));
3709 /* Make constraints necessary to make OP escape. */
3712 make_escape_constraint (tree op
)
3714 make_constraint_to (escaped_id
, op
);
3717 /* Add constraints to that the solution of VI is transitively closed. */
3720 make_transitive_closure_constraints (varinfo_t vi
)
3722 struct constraint_expr lhs
, rhs
;
3730 rhs
.offset
= UNKNOWN_OFFSET
;
3731 process_constraint (new_constraint (lhs
, rhs
));
3734 /* Temporary storage for fake var decls. */
3735 struct obstack fake_var_decl_obstack
;
3737 /* Build a fake VAR_DECL acting as referrer to a DECL_UID. */
3740 build_fake_var_decl (tree type
)
3742 tree decl
= (tree
) XOBNEW (&fake_var_decl_obstack
, struct tree_var_decl
);
3743 memset (decl
, 0, sizeof (struct tree_var_decl
));
3744 TREE_SET_CODE (decl
, VAR_DECL
);
3745 TREE_TYPE (decl
) = type
;
3746 DECL_UID (decl
) = allocate_decl_uid ();
3747 SET_DECL_PT_UID (decl
, -1);
3748 layout_decl (decl
, 0);
3752 /* Create a new artificial heap variable with NAME.
3753 Return the created variable. */
3756 make_heapvar (const char *name
)
3761 heapvar
= build_fake_var_decl (ptr_type_node
);
3762 DECL_EXTERNAL (heapvar
) = 1;
3764 vi
= new_var_info (heapvar
, name
);
3765 vi
->is_artificial_var
= true;
3766 vi
->is_heap_var
= true;
3767 vi
->is_unknown_size_var
= true;
3771 vi
->is_full_var
= true;
3772 insert_vi_for_tree (heapvar
, vi
);
3777 /* Create a new artificial heap variable with NAME and make a
3778 constraint from it to LHS. Set flags according to a tag used
3779 for tracking restrict pointers. */
3782 make_constraint_from_restrict (varinfo_t lhs
, const char *name
)
3784 varinfo_t vi
= make_heapvar (name
);
3785 vi
->is_global_var
= 1;
3786 vi
->may_have_pointers
= 1;
3787 make_constraint_from (lhs
, vi
->id
);
3791 /* Create a new artificial heap variable with NAME and make a
3792 constraint from it to LHS. Set flags according to a tag used
3793 for tracking restrict pointers and make the artificial heap
3794 point to global memory. */
3797 make_constraint_from_global_restrict (varinfo_t lhs
, const char *name
)
3799 varinfo_t vi
= make_constraint_from_restrict (lhs
, name
);
3800 make_copy_constraint (vi
, nonlocal_id
);
3804 /* In IPA mode there are varinfos for different aspects of reach
3805 function designator. One for the points-to set of the return
3806 value, one for the variables that are clobbered by the function,
3807 one for its uses and one for each parameter (including a single
3808 glob for remaining variadic arguments). */
3810 enum { fi_clobbers
= 1, fi_uses
= 2,
3811 fi_static_chain
= 3, fi_result
= 4, fi_parm_base
= 5 };
3813 /* Get a constraint for the requested part of a function designator FI
3814 when operating in IPA mode. */
3816 static struct constraint_expr
3817 get_function_part_constraint (varinfo_t fi
, unsigned part
)
3819 struct constraint_expr c
;
3821 gcc_assert (in_ipa_mode
);
3823 if (fi
->id
== anything_id
)
3825 /* ??? We probably should have a ANYFN special variable. */
3826 c
.var
= anything_id
;
3830 else if (TREE_CODE (fi
->decl
) == FUNCTION_DECL
)
3832 varinfo_t ai
= first_vi_for_offset (fi
, part
);
3836 c
.var
= anything_id
;
3850 /* For non-IPA mode, generate constraints necessary for a call on the
3854 handle_rhs_call (gcall
*stmt
, vec
<ce_s
> *results
)
3856 struct constraint_expr rhsc
;
3858 bool returns_uses
= false;
3860 for (i
= 0; i
< gimple_call_num_args (stmt
); ++i
)
3862 tree arg
= gimple_call_arg (stmt
, i
);
3863 int flags
= gimple_call_arg_flags (stmt
, i
);
3865 /* If the argument is not used we can ignore it. */
3866 if (flags
& EAF_UNUSED
)
3869 /* As we compute ESCAPED context-insensitive we do not gain
3870 any precision with just EAF_NOCLOBBER but not EAF_NOESCAPE
3871 set. The argument would still get clobbered through the
3873 if ((flags
& EAF_NOCLOBBER
)
3874 && (flags
& EAF_NOESCAPE
))
3876 varinfo_t uses
= get_call_use_vi (stmt
);
3877 if (!(flags
& EAF_DIRECT
))
3879 varinfo_t tem
= new_var_info (NULL_TREE
, "callarg");
3880 make_constraint_to (tem
->id
, arg
);
3881 make_transitive_closure_constraints (tem
);
3882 make_copy_constraint (uses
, tem
->id
);
3885 make_constraint_to (uses
->id
, arg
);
3886 returns_uses
= true;
3888 else if (flags
& EAF_NOESCAPE
)
3890 struct constraint_expr lhs
, rhs
;
3891 varinfo_t uses
= get_call_use_vi (stmt
);
3892 varinfo_t clobbers
= get_call_clobber_vi (stmt
);
3893 varinfo_t tem
= new_var_info (NULL_TREE
, "callarg");
3894 make_constraint_to (tem
->id
, arg
);
3895 if (!(flags
& EAF_DIRECT
))
3896 make_transitive_closure_constraints (tem
);
3897 make_copy_constraint (uses
, tem
->id
);
3898 make_copy_constraint (clobbers
, tem
->id
);
3899 /* Add *tem = nonlocal, do not add *tem = callused as
3900 EAF_NOESCAPE parameters do not escape to other parameters
3901 and all other uses appear in NONLOCAL as well. */
3906 rhs
.var
= nonlocal_id
;
3908 process_constraint (new_constraint (lhs
, rhs
));
3909 returns_uses
= true;
3912 make_escape_constraint (arg
);
3915 /* If we added to the calls uses solution make sure we account for
3916 pointers to it to be returned. */
3919 rhsc
.var
= get_call_use_vi (stmt
)->id
;
3922 results
->safe_push (rhsc
);
3925 /* The static chain escapes as well. */
3926 if (gimple_call_chain (stmt
))
3927 make_escape_constraint (gimple_call_chain (stmt
));
3929 /* And if we applied NRV the address of the return slot escapes as well. */
3930 if (gimple_call_return_slot_opt_p (stmt
)
3931 && gimple_call_lhs (stmt
) != NULL_TREE
3932 && TREE_ADDRESSABLE (TREE_TYPE (gimple_call_lhs (stmt
))))
3934 auto_vec
<ce_s
> tmpc
;
3935 struct constraint_expr lhsc
, *c
;
3936 get_constraint_for_address_of (gimple_call_lhs (stmt
), &tmpc
);
3937 lhsc
.var
= escaped_id
;
3940 FOR_EACH_VEC_ELT (tmpc
, i
, c
)
3941 process_constraint (new_constraint (lhsc
, *c
));
3944 /* Regular functions return nonlocal memory. */
3945 rhsc
.var
= nonlocal_id
;
3948 results
->safe_push (rhsc
);
3951 /* For non-IPA mode, generate constraints necessary for a call
3952 that returns a pointer and assigns it to LHS. This simply makes
3953 the LHS point to global and escaped variables. */
3956 handle_lhs_call (gcall
*stmt
, tree lhs
, int flags
, vec
<ce_s
> rhsc
,
3959 auto_vec
<ce_s
> lhsc
;
3961 get_constraint_for (lhs
, &lhsc
);
3962 /* If the store is to a global decl make sure to
3963 add proper escape constraints. */
3964 lhs
= get_base_address (lhs
);
3967 && is_global_var (lhs
))
3969 struct constraint_expr tmpc
;
3970 tmpc
.var
= escaped_id
;
3973 lhsc
.safe_push (tmpc
);
3976 /* If the call returns an argument unmodified override the rhs
3978 if (flags
& ERF_RETURNS_ARG
3979 && (flags
& ERF_RETURN_ARG_MASK
) < gimple_call_num_args (stmt
))
3983 arg
= gimple_call_arg (stmt
, flags
& ERF_RETURN_ARG_MASK
);
3984 get_constraint_for (arg
, &rhsc
);
3985 process_all_all_constraints (lhsc
, rhsc
);
3988 else if (flags
& ERF_NOALIAS
)
3991 struct constraint_expr tmpc
;
3993 vi
= make_heapvar ("HEAP");
3994 /* We are marking allocated storage local, we deal with it becoming
3995 global by escaping and setting of vars_contains_escaped_heap. */
3996 DECL_EXTERNAL (vi
->decl
) = 0;
3997 vi
->is_global_var
= 0;
3998 /* If this is not a real malloc call assume the memory was
3999 initialized and thus may point to global memory. All
4000 builtin functions with the malloc attribute behave in a sane way. */
4002 || DECL_BUILT_IN_CLASS (fndecl
) != BUILT_IN_NORMAL
)
4003 make_constraint_from (vi
, nonlocal_id
);
4006 tmpc
.type
= ADDRESSOF
;
4007 rhsc
.safe_push (tmpc
);
4008 process_all_all_constraints (lhsc
, rhsc
);
4012 process_all_all_constraints (lhsc
, rhsc
);
4015 /* For non-IPA mode, generate constraints necessary for a call of a
4016 const function that returns a pointer in the statement STMT. */
4019 handle_const_call (gcall
*stmt
, vec
<ce_s
> *results
)
4021 struct constraint_expr rhsc
;
4024 /* Treat nested const functions the same as pure functions as far
4025 as the static chain is concerned. */
4026 if (gimple_call_chain (stmt
))
4028 varinfo_t uses
= get_call_use_vi (stmt
);
4029 make_transitive_closure_constraints (uses
);
4030 make_constraint_to (uses
->id
, gimple_call_chain (stmt
));
4031 rhsc
.var
= uses
->id
;
4034 results
->safe_push (rhsc
);
4037 /* May return arguments. */
4038 for (k
= 0; k
< gimple_call_num_args (stmt
); ++k
)
4040 tree arg
= gimple_call_arg (stmt
, k
);
4041 auto_vec
<ce_s
> argc
;
4043 struct constraint_expr
*argp
;
4044 get_constraint_for_rhs (arg
, &argc
);
4045 FOR_EACH_VEC_ELT (argc
, i
, argp
)
4046 results
->safe_push (*argp
);
4049 /* May return addresses of globals. */
4050 rhsc
.var
= nonlocal_id
;
4052 rhsc
.type
= ADDRESSOF
;
4053 results
->safe_push (rhsc
);
4056 /* For non-IPA mode, generate constraints necessary for a call to a
4057 pure function in statement STMT. */
4060 handle_pure_call (gcall
*stmt
, vec
<ce_s
> *results
)
4062 struct constraint_expr rhsc
;
4064 varinfo_t uses
= NULL
;
4066 /* Memory reached from pointer arguments is call-used. */
4067 for (i
= 0; i
< gimple_call_num_args (stmt
); ++i
)
4069 tree arg
= gimple_call_arg (stmt
, i
);
4072 uses
= get_call_use_vi (stmt
);
4073 make_transitive_closure_constraints (uses
);
4075 make_constraint_to (uses
->id
, arg
);
4078 /* The static chain is used as well. */
4079 if (gimple_call_chain (stmt
))
4083 uses
= get_call_use_vi (stmt
);
4084 make_transitive_closure_constraints (uses
);
4086 make_constraint_to (uses
->id
, gimple_call_chain (stmt
));
4089 /* Pure functions may return call-used and nonlocal memory. */
4092 rhsc
.var
= uses
->id
;
4095 results
->safe_push (rhsc
);
4097 rhsc
.var
= nonlocal_id
;
4100 results
->safe_push (rhsc
);
4104 /* Return the varinfo for the callee of CALL. */
4107 get_fi_for_callee (gcall
*call
)
4109 tree decl
, fn
= gimple_call_fn (call
);
4111 if (fn
&& TREE_CODE (fn
) == OBJ_TYPE_REF
)
4112 fn
= OBJ_TYPE_REF_EXPR (fn
);
4114 /* If we can directly resolve the function being called, do so.
4115 Otherwise, it must be some sort of indirect expression that
4116 we should still be able to handle. */
4117 decl
= gimple_call_addr_fndecl (fn
);
4119 return get_vi_for_tree (decl
);
4121 /* If the function is anything other than a SSA name pointer we have no
4122 clue and should be getting ANYFN (well, ANYTHING for now). */
4123 if (!fn
|| TREE_CODE (fn
) != SSA_NAME
)
4124 return get_varinfo (anything_id
);
4126 if (SSA_NAME_IS_DEFAULT_DEF (fn
)
4127 && (TREE_CODE (SSA_NAME_VAR (fn
)) == PARM_DECL
4128 || TREE_CODE (SSA_NAME_VAR (fn
)) == RESULT_DECL
))
4129 fn
= SSA_NAME_VAR (fn
);
4131 return get_vi_for_tree (fn
);
4134 /* Create constraints for the builtin call T. Return true if the call
4135 was handled, otherwise false. */
4138 find_func_aliases_for_builtin_call (struct function
*fn
, gcall
*t
)
4140 tree fndecl
= gimple_call_fndecl (t
);
4141 auto_vec
<ce_s
, 2> lhsc
;
4142 auto_vec
<ce_s
, 4> rhsc
;
4145 if (gimple_call_builtin_p (t
, BUILT_IN_NORMAL
))
4146 /* ??? All builtins that are handled here need to be handled
4147 in the alias-oracle query functions explicitly! */
4148 switch (DECL_FUNCTION_CODE (fndecl
))
4150 /* All the following functions return a pointer to the same object
4151 as their first argument points to. The functions do not add
4152 to the ESCAPED solution. The functions make the first argument
4153 pointed to memory point to what the second argument pointed to
4154 memory points to. */
4155 case BUILT_IN_STRCPY
:
4156 case BUILT_IN_STRNCPY
:
4157 case BUILT_IN_BCOPY
:
4158 case BUILT_IN_MEMCPY
:
4159 case BUILT_IN_MEMMOVE
:
4160 case BUILT_IN_MEMPCPY
:
4161 case BUILT_IN_STPCPY
:
4162 case BUILT_IN_STPNCPY
:
4163 case BUILT_IN_STRCAT
:
4164 case BUILT_IN_STRNCAT
:
4165 case BUILT_IN_STRCPY_CHK
:
4166 case BUILT_IN_STRNCPY_CHK
:
4167 case BUILT_IN_MEMCPY_CHK
:
4168 case BUILT_IN_MEMMOVE_CHK
:
4169 case BUILT_IN_MEMPCPY_CHK
:
4170 case BUILT_IN_STPCPY_CHK
:
4171 case BUILT_IN_STPNCPY_CHK
:
4172 case BUILT_IN_STRCAT_CHK
:
4173 case BUILT_IN_STRNCAT_CHK
:
4174 case BUILT_IN_TM_MEMCPY
:
4175 case BUILT_IN_TM_MEMMOVE
:
4177 tree res
= gimple_call_lhs (t
);
4178 tree dest
= gimple_call_arg (t
, (DECL_FUNCTION_CODE (fndecl
)
4179 == BUILT_IN_BCOPY
? 1 : 0));
4180 tree src
= gimple_call_arg (t
, (DECL_FUNCTION_CODE (fndecl
)
4181 == BUILT_IN_BCOPY
? 0 : 1));
4182 if (res
!= NULL_TREE
)
4184 get_constraint_for (res
, &lhsc
);
4185 if (DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_MEMPCPY
4186 || DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_STPCPY
4187 || DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_STPNCPY
4188 || DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_MEMPCPY_CHK
4189 || DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_STPCPY_CHK
4190 || DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_STPNCPY_CHK
)
4191 get_constraint_for_ptr_offset (dest
, NULL_TREE
, &rhsc
);
4193 get_constraint_for (dest
, &rhsc
);
4194 process_all_all_constraints (lhsc
, rhsc
);
4198 get_constraint_for_ptr_offset (dest
, NULL_TREE
, &lhsc
);
4199 get_constraint_for_ptr_offset (src
, NULL_TREE
, &rhsc
);
4202 process_all_all_constraints (lhsc
, rhsc
);
4205 case BUILT_IN_MEMSET
:
4206 case BUILT_IN_MEMSET_CHK
:
4207 case BUILT_IN_TM_MEMSET
:
4209 tree res
= gimple_call_lhs (t
);
4210 tree dest
= gimple_call_arg (t
, 0);
4213 struct constraint_expr ac
;
4214 if (res
!= NULL_TREE
)
4216 get_constraint_for (res
, &lhsc
);
4217 get_constraint_for (dest
, &rhsc
);
4218 process_all_all_constraints (lhsc
, rhsc
);
4221 get_constraint_for_ptr_offset (dest
, NULL_TREE
, &lhsc
);
4223 if (flag_delete_null_pointer_checks
4224 && integer_zerop (gimple_call_arg (t
, 1)))
4226 ac
.type
= ADDRESSOF
;
4227 ac
.var
= nothing_id
;
4232 ac
.var
= integer_id
;
4235 FOR_EACH_VEC_ELT (lhsc
, i
, lhsp
)
4236 process_constraint (new_constraint (*lhsp
, ac
));
4239 case BUILT_IN_POSIX_MEMALIGN
:
4241 tree ptrptr
= gimple_call_arg (t
, 0);
4242 get_constraint_for (ptrptr
, &lhsc
);
4244 varinfo_t vi
= make_heapvar ("HEAP");
4245 /* We are marking allocated storage local, we deal with it becoming
4246 global by escaping and setting of vars_contains_escaped_heap. */
4247 DECL_EXTERNAL (vi
->decl
) = 0;
4248 vi
->is_global_var
= 0;
4249 struct constraint_expr tmpc
;
4252 tmpc
.type
= ADDRESSOF
;
4253 rhsc
.safe_push (tmpc
);
4254 process_all_all_constraints (lhsc
, rhsc
);
4257 case BUILT_IN_ASSUME_ALIGNED
:
4259 tree res
= gimple_call_lhs (t
);
4260 tree dest
= gimple_call_arg (t
, 0);
4261 if (res
!= NULL_TREE
)
4263 get_constraint_for (res
, &lhsc
);
4264 get_constraint_for (dest
, &rhsc
);
4265 process_all_all_constraints (lhsc
, rhsc
);
4269 /* All the following functions do not return pointers, do not
4270 modify the points-to sets of memory reachable from their
4271 arguments and do not add to the ESCAPED solution. */
4272 case BUILT_IN_SINCOS
:
4273 case BUILT_IN_SINCOSF
:
4274 case BUILT_IN_SINCOSL
:
4275 case BUILT_IN_FREXP
:
4276 case BUILT_IN_FREXPF
:
4277 case BUILT_IN_FREXPL
:
4278 case BUILT_IN_GAMMA_R
:
4279 case BUILT_IN_GAMMAF_R
:
4280 case BUILT_IN_GAMMAL_R
:
4281 case BUILT_IN_LGAMMA_R
:
4282 case BUILT_IN_LGAMMAF_R
:
4283 case BUILT_IN_LGAMMAL_R
:
4285 case BUILT_IN_MODFF
:
4286 case BUILT_IN_MODFL
:
4287 case BUILT_IN_REMQUO
:
4288 case BUILT_IN_REMQUOF
:
4289 case BUILT_IN_REMQUOL
:
4292 case BUILT_IN_STRDUP
:
4293 case BUILT_IN_STRNDUP
:
4294 case BUILT_IN_REALLOC
:
4295 if (gimple_call_lhs (t
))
4297 handle_lhs_call (t
, gimple_call_lhs (t
),
4298 gimple_call_return_flags (t
) | ERF_NOALIAS
,
4300 get_constraint_for_ptr_offset (gimple_call_lhs (t
),
4302 get_constraint_for_ptr_offset (gimple_call_arg (t
, 0),
4306 process_all_all_constraints (lhsc
, rhsc
);
4309 /* For realloc the resulting pointer can be equal to the
4310 argument as well. But only doing this wouldn't be
4311 correct because with ptr == 0 realloc behaves like malloc. */
4312 if (DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_REALLOC
)
4314 get_constraint_for (gimple_call_lhs (t
), &lhsc
);
4315 get_constraint_for (gimple_call_arg (t
, 0), &rhsc
);
4316 process_all_all_constraints (lhsc
, rhsc
);
4321 /* String / character search functions return a pointer into the
4322 source string or NULL. */
4323 case BUILT_IN_INDEX
:
4324 case BUILT_IN_STRCHR
:
4325 case BUILT_IN_STRRCHR
:
4326 case BUILT_IN_MEMCHR
:
4327 case BUILT_IN_STRSTR
:
4328 case BUILT_IN_STRPBRK
:
4329 if (gimple_call_lhs (t
))
4331 tree src
= gimple_call_arg (t
, 0);
4332 get_constraint_for_ptr_offset (src
, NULL_TREE
, &rhsc
);
4333 constraint_expr nul
;
4334 nul
.var
= nothing_id
;
4336 nul
.type
= ADDRESSOF
;
4337 rhsc
.safe_push (nul
);
4338 get_constraint_for (gimple_call_lhs (t
), &lhsc
);
4339 process_all_all_constraints (lhsc
, rhsc
);
4342 /* Trampolines are special - they set up passing the static
4344 case BUILT_IN_INIT_TRAMPOLINE
:
4346 tree tramp
= gimple_call_arg (t
, 0);
4347 tree nfunc
= gimple_call_arg (t
, 1);
4348 tree frame
= gimple_call_arg (t
, 2);
4350 struct constraint_expr lhs
, *rhsp
;
4353 varinfo_t nfi
= NULL
;
4354 gcc_assert (TREE_CODE (nfunc
) == ADDR_EXPR
);
4355 nfi
= lookup_vi_for_tree (TREE_OPERAND (nfunc
, 0));
4358 lhs
= get_function_part_constraint (nfi
, fi_static_chain
);
4359 get_constraint_for (frame
, &rhsc
);
4360 FOR_EACH_VEC_ELT (rhsc
, i
, rhsp
)
4361 process_constraint (new_constraint (lhs
, *rhsp
));
4364 /* Make the frame point to the function for
4365 the trampoline adjustment call. */
4366 get_constraint_for (tramp
, &lhsc
);
4368 get_constraint_for (nfunc
, &rhsc
);
4369 process_all_all_constraints (lhsc
, rhsc
);
4374 /* Else fallthru to generic handling which will let
4375 the frame escape. */
4378 case BUILT_IN_ADJUST_TRAMPOLINE
:
4380 tree tramp
= gimple_call_arg (t
, 0);
4381 tree res
= gimple_call_lhs (t
);
4382 if (in_ipa_mode
&& res
)
4384 get_constraint_for (res
, &lhsc
);
4385 get_constraint_for (tramp
, &rhsc
);
4387 process_all_all_constraints (lhsc
, rhsc
);
4391 CASE_BUILT_IN_TM_STORE (1):
4392 CASE_BUILT_IN_TM_STORE (2):
4393 CASE_BUILT_IN_TM_STORE (4):
4394 CASE_BUILT_IN_TM_STORE (8):
4395 CASE_BUILT_IN_TM_STORE (FLOAT
):
4396 CASE_BUILT_IN_TM_STORE (DOUBLE
):
4397 CASE_BUILT_IN_TM_STORE (LDOUBLE
):
4398 CASE_BUILT_IN_TM_STORE (M64
):
4399 CASE_BUILT_IN_TM_STORE (M128
):
4400 CASE_BUILT_IN_TM_STORE (M256
):
4402 tree addr
= gimple_call_arg (t
, 0);
4403 tree src
= gimple_call_arg (t
, 1);
4405 get_constraint_for (addr
, &lhsc
);
4407 get_constraint_for (src
, &rhsc
);
4408 process_all_all_constraints (lhsc
, rhsc
);
4411 CASE_BUILT_IN_TM_LOAD (1):
4412 CASE_BUILT_IN_TM_LOAD (2):
4413 CASE_BUILT_IN_TM_LOAD (4):
4414 CASE_BUILT_IN_TM_LOAD (8):
4415 CASE_BUILT_IN_TM_LOAD (FLOAT
):
4416 CASE_BUILT_IN_TM_LOAD (DOUBLE
):
4417 CASE_BUILT_IN_TM_LOAD (LDOUBLE
):
4418 CASE_BUILT_IN_TM_LOAD (M64
):
4419 CASE_BUILT_IN_TM_LOAD (M128
):
4420 CASE_BUILT_IN_TM_LOAD (M256
):
4422 tree dest
= gimple_call_lhs (t
);
4423 tree addr
= gimple_call_arg (t
, 0);
4425 get_constraint_for (dest
, &lhsc
);
4426 get_constraint_for (addr
, &rhsc
);
4428 process_all_all_constraints (lhsc
, rhsc
);
4431 /* Variadic argument handling needs to be handled in IPA
4433 case BUILT_IN_VA_START
:
4435 tree valist
= gimple_call_arg (t
, 0);
4436 struct constraint_expr rhs
, *lhsp
;
4438 get_constraint_for (valist
, &lhsc
);
4440 /* The va_list gets access to pointers in variadic
4441 arguments. Which we know in the case of IPA analysis
4442 and otherwise are just all nonlocal variables. */
4445 fi
= lookup_vi_for_tree (fn
->decl
);
4446 rhs
= get_function_part_constraint (fi
, ~0);
4447 rhs
.type
= ADDRESSOF
;
4451 rhs
.var
= nonlocal_id
;
4452 rhs
.type
= ADDRESSOF
;
4455 FOR_EACH_VEC_ELT (lhsc
, i
, lhsp
)
4456 process_constraint (new_constraint (*lhsp
, rhs
));
4457 /* va_list is clobbered. */
4458 make_constraint_to (get_call_clobber_vi (t
)->id
, valist
);
4461 /* va_end doesn't have any effect that matters. */
4462 case BUILT_IN_VA_END
:
4464 /* Alternate return. Simply give up for now. */
4465 case BUILT_IN_RETURN
:
4469 || !(fi
= get_vi_for_tree (fn
->decl
)))
4470 make_constraint_from (get_varinfo (escaped_id
), anything_id
);
4471 else if (in_ipa_mode
4474 struct constraint_expr lhs
, rhs
;
4475 lhs
= get_function_part_constraint (fi
, fi_result
);
4476 rhs
.var
= anything_id
;
4479 process_constraint (new_constraint (lhs
, rhs
));
4483 /* printf-style functions may have hooks to set pointers to
4484 point to somewhere into the generated string. Leave them
4485 for a later exercise... */
4487 /* Fallthru to general call handling. */;
4493 /* Create constraints for the call T. */
4496 find_func_aliases_for_call (struct function
*fn
, gcall
*t
)
4498 tree fndecl
= gimple_call_fndecl (t
);
4501 if (fndecl
!= NULL_TREE
4502 && DECL_BUILT_IN (fndecl
)
4503 && find_func_aliases_for_builtin_call (fn
, t
))
4506 fi
= get_fi_for_callee (t
);
4508 || (fndecl
&& !fi
->is_fn_info
))
4510 auto_vec
<ce_s
, 16> rhsc
;
4511 int flags
= gimple_call_flags (t
);
4513 /* Const functions can return their arguments and addresses
4514 of global memory but not of escaped memory. */
4515 if (flags
& (ECF_CONST
|ECF_NOVOPS
))
4517 if (gimple_call_lhs (t
))
4518 handle_const_call (t
, &rhsc
);
4520 /* Pure functions can return addresses in and of memory
4521 reachable from their arguments, but they are not an escape
4522 point for reachable memory of their arguments. */
4523 else if (flags
& (ECF_PURE
|ECF_LOOPING_CONST_OR_PURE
))
4524 handle_pure_call (t
, &rhsc
);
4526 handle_rhs_call (t
, &rhsc
);
4527 if (gimple_call_lhs (t
))
4528 handle_lhs_call (t
, gimple_call_lhs (t
),
4529 gimple_call_return_flags (t
), rhsc
, fndecl
);
4533 auto_vec
<ce_s
, 2> rhsc
;
4537 /* Assign all the passed arguments to the appropriate incoming
4538 parameters of the function. */
4539 for (j
= 0; j
< gimple_call_num_args (t
); j
++)
4541 struct constraint_expr lhs
;
4542 struct constraint_expr
*rhsp
;
4543 tree arg
= gimple_call_arg (t
, j
);
4545 get_constraint_for_rhs (arg
, &rhsc
);
4546 lhs
= get_function_part_constraint (fi
, fi_parm_base
+ j
);
4547 while (rhsc
.length () != 0)
4549 rhsp
= &rhsc
.last ();
4550 process_constraint (new_constraint (lhs
, *rhsp
));
4555 /* If we are returning a value, assign it to the result. */
4556 lhsop
= gimple_call_lhs (t
);
4559 auto_vec
<ce_s
, 2> lhsc
;
4560 struct constraint_expr rhs
;
4561 struct constraint_expr
*lhsp
;
4563 get_constraint_for (lhsop
, &lhsc
);
4564 rhs
= get_function_part_constraint (fi
, fi_result
);
4566 && DECL_RESULT (fndecl
)
4567 && DECL_BY_REFERENCE (DECL_RESULT (fndecl
)))
4569 auto_vec
<ce_s
, 2> tem
;
4570 tem
.quick_push (rhs
);
4572 gcc_checking_assert (tem
.length () == 1);
4575 FOR_EACH_VEC_ELT (lhsc
, j
, lhsp
)
4576 process_constraint (new_constraint (*lhsp
, rhs
));
4579 /* If we pass the result decl by reference, honor that. */
4582 && DECL_RESULT (fndecl
)
4583 && DECL_BY_REFERENCE (DECL_RESULT (fndecl
)))
4585 struct constraint_expr lhs
;
4586 struct constraint_expr
*rhsp
;
4588 get_constraint_for_address_of (lhsop
, &rhsc
);
4589 lhs
= get_function_part_constraint (fi
, fi_result
);
4590 FOR_EACH_VEC_ELT (rhsc
, j
, rhsp
)
4591 process_constraint (new_constraint (lhs
, *rhsp
));
4595 /* If we use a static chain, pass it along. */
4596 if (gimple_call_chain (t
))
4598 struct constraint_expr lhs
;
4599 struct constraint_expr
*rhsp
;
4601 get_constraint_for (gimple_call_chain (t
), &rhsc
);
4602 lhs
= get_function_part_constraint (fi
, fi_static_chain
);
4603 FOR_EACH_VEC_ELT (rhsc
, j
, rhsp
)
4604 process_constraint (new_constraint (lhs
, *rhsp
));
4609 /* Walk statement T setting up aliasing constraints according to the
4610 references found in T. This function is the main part of the
4611 constraint builder. AI points to auxiliary alias information used
4612 when building alias sets and computing alias grouping heuristics. */
4615 find_func_aliases (struct function
*fn
, gimple origt
)
4618 auto_vec
<ce_s
, 16> lhsc
;
4619 auto_vec
<ce_s
, 16> rhsc
;
4620 struct constraint_expr
*c
;
4623 /* Now build constraints expressions. */
4624 if (gimple_code (t
) == GIMPLE_PHI
)
4629 /* For a phi node, assign all the arguments to
4631 get_constraint_for (gimple_phi_result (t
), &lhsc
);
4632 for (i
= 0; i
< gimple_phi_num_args (t
); i
++)
4634 tree strippedrhs
= PHI_ARG_DEF (t
, i
);
4636 STRIP_NOPS (strippedrhs
);
4637 get_constraint_for_rhs (gimple_phi_arg_def (t
, i
), &rhsc
);
4639 FOR_EACH_VEC_ELT (lhsc
, j
, c
)
4641 struct constraint_expr
*c2
;
4642 while (rhsc
.length () > 0)
4645 process_constraint (new_constraint (*c
, *c2
));
4651 /* In IPA mode, we need to generate constraints to pass call
4652 arguments through their calls. There are two cases,
4653 either a GIMPLE_CALL returning a value, or just a plain
4654 GIMPLE_CALL when we are not.
4656 In non-ipa mode, we need to generate constraints for each
4657 pointer passed by address. */
4658 else if (is_gimple_call (t
))
4659 find_func_aliases_for_call (fn
, as_a
<gcall
*> (t
));
4661 /* Otherwise, just a regular assignment statement. Only care about
4662 operations with pointer result, others are dealt with as escape
4663 points if they have pointer operands. */
4664 else if (is_gimple_assign (t
))
4666 /* Otherwise, just a regular assignment statement. */
4667 tree lhsop
= gimple_assign_lhs (t
);
4668 tree rhsop
= (gimple_num_ops (t
) == 2) ? gimple_assign_rhs1 (t
) : NULL
;
4670 if (rhsop
&& TREE_CLOBBER_P (rhsop
))
4671 /* Ignore clobbers, they don't actually store anything into
4674 else if (rhsop
&& AGGREGATE_TYPE_P (TREE_TYPE (lhsop
)))
4675 do_structure_copy (lhsop
, rhsop
);
4678 enum tree_code code
= gimple_assign_rhs_code (t
);
4680 get_constraint_for (lhsop
, &lhsc
);
4682 if (FLOAT_TYPE_P (TREE_TYPE (lhsop
)))
4683 /* If the operation produces a floating point result then
4684 assume the value is not produced to transfer a pointer. */
4686 else if (code
== POINTER_PLUS_EXPR
)
4687 get_constraint_for_ptr_offset (gimple_assign_rhs1 (t
),
4688 gimple_assign_rhs2 (t
), &rhsc
);
4689 else if (code
== BIT_AND_EXPR
4690 && TREE_CODE (gimple_assign_rhs2 (t
)) == INTEGER_CST
)
4692 /* Aligning a pointer via a BIT_AND_EXPR is offsetting
4693 the pointer. Handle it by offsetting it by UNKNOWN. */
4694 get_constraint_for_ptr_offset (gimple_assign_rhs1 (t
),
4697 else if ((CONVERT_EXPR_CODE_P (code
)
4698 && !(POINTER_TYPE_P (gimple_expr_type (t
))
4699 && !POINTER_TYPE_P (TREE_TYPE (rhsop
))))
4700 || gimple_assign_single_p (t
))
4701 get_constraint_for_rhs (rhsop
, &rhsc
);
4702 else if (code
== COND_EXPR
)
4704 /* The result is a merge of both COND_EXPR arms. */
4705 auto_vec
<ce_s
, 2> tmp
;
4706 struct constraint_expr
*rhsp
;
4708 get_constraint_for_rhs (gimple_assign_rhs2 (t
), &rhsc
);
4709 get_constraint_for_rhs (gimple_assign_rhs3 (t
), &tmp
);
4710 FOR_EACH_VEC_ELT (tmp
, i
, rhsp
)
4711 rhsc
.safe_push (*rhsp
);
4713 else if (truth_value_p (code
))
4714 /* Truth value results are not pointer (parts). Or at least
4715 very very unreasonable obfuscation of a part. */
4719 /* All other operations are merges. */
4720 auto_vec
<ce_s
, 4> tmp
;
4721 struct constraint_expr
*rhsp
;
4723 get_constraint_for_rhs (gimple_assign_rhs1 (t
), &rhsc
);
4724 for (i
= 2; i
< gimple_num_ops (t
); ++i
)
4726 get_constraint_for_rhs (gimple_op (t
, i
), &tmp
);
4727 FOR_EACH_VEC_ELT (tmp
, j
, rhsp
)
4728 rhsc
.safe_push (*rhsp
);
4732 process_all_all_constraints (lhsc
, rhsc
);
4734 /* If there is a store to a global variable the rhs escapes. */
4735 if ((lhsop
= get_base_address (lhsop
)) != NULL_TREE
4737 && is_global_var (lhsop
)
4739 || DECL_EXTERNAL (lhsop
) || TREE_PUBLIC (lhsop
)))
4740 make_escape_constraint (rhsop
);
4742 /* Handle escapes through return. */
4743 else if (gimple_code (t
) == GIMPLE_RETURN
4744 && gimple_return_retval (as_a
<greturn
*> (t
)) != NULL_TREE
)
4746 greturn
*return_stmt
= as_a
<greturn
*> (t
);
4749 || !(fi
= get_vi_for_tree (fn
->decl
)))
4750 make_escape_constraint (gimple_return_retval (return_stmt
));
4751 else if (in_ipa_mode
4754 struct constraint_expr lhs
;
4755 struct constraint_expr
*rhsp
;
4758 lhs
= get_function_part_constraint (fi
, fi_result
);
4759 get_constraint_for_rhs (gimple_return_retval (return_stmt
), &rhsc
);
4760 FOR_EACH_VEC_ELT (rhsc
, i
, rhsp
)
4761 process_constraint (new_constraint (lhs
, *rhsp
));
4764 /* Handle asms conservatively by adding escape constraints to everything. */
4765 else if (gasm
*asm_stmt
= dyn_cast
<gasm
*> (t
))
4767 unsigned i
, noutputs
;
4768 const char **oconstraints
;
4769 const char *constraint
;
4770 bool allows_mem
, allows_reg
, is_inout
;
4772 noutputs
= gimple_asm_noutputs (asm_stmt
);
4773 oconstraints
= XALLOCAVEC (const char *, noutputs
);
4775 for (i
= 0; i
< noutputs
; ++i
)
4777 tree link
= gimple_asm_output_op (asm_stmt
, i
);
4778 tree op
= TREE_VALUE (link
);
4780 constraint
= TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link
)));
4781 oconstraints
[i
] = constraint
;
4782 parse_output_constraint (&constraint
, i
, 0, 0, &allows_mem
,
4783 &allows_reg
, &is_inout
);
4785 /* A memory constraint makes the address of the operand escape. */
4786 if (!allows_reg
&& allows_mem
)
4787 make_escape_constraint (build_fold_addr_expr (op
));
4789 /* The asm may read global memory, so outputs may point to
4790 any global memory. */
4793 auto_vec
<ce_s
, 2> lhsc
;
4794 struct constraint_expr rhsc
, *lhsp
;
4796 get_constraint_for (op
, &lhsc
);
4797 rhsc
.var
= nonlocal_id
;
4800 FOR_EACH_VEC_ELT (lhsc
, j
, lhsp
)
4801 process_constraint (new_constraint (*lhsp
, rhsc
));
4804 for (i
= 0; i
< gimple_asm_ninputs (asm_stmt
); ++i
)
4806 tree link
= gimple_asm_input_op (asm_stmt
, i
);
4807 tree op
= TREE_VALUE (link
);
4809 constraint
= TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link
)));
4811 parse_input_constraint (&constraint
, 0, 0, noutputs
, 0, oconstraints
,
4812 &allows_mem
, &allows_reg
);
4814 /* A memory constraint makes the address of the operand escape. */
4815 if (!allows_reg
&& allows_mem
)
4816 make_escape_constraint (build_fold_addr_expr (op
));
4817 /* Strictly we'd only need the constraint to ESCAPED if
4818 the asm clobbers memory, otherwise using something
4819 along the lines of per-call clobbers/uses would be enough. */
4821 make_escape_constraint (op
);
4827 /* Create a constraint adding to the clobber set of FI the memory
4828 pointed to by PTR. */
4831 process_ipa_clobber (varinfo_t fi
, tree ptr
)
4833 vec
<ce_s
> ptrc
= vNULL
;
4834 struct constraint_expr
*c
, lhs
;
4836 get_constraint_for_rhs (ptr
, &ptrc
);
4837 lhs
= get_function_part_constraint (fi
, fi_clobbers
);
4838 FOR_EACH_VEC_ELT (ptrc
, i
, c
)
4839 process_constraint (new_constraint (lhs
, *c
));
4843 /* Walk statement T setting up clobber and use constraints according to the
4844 references found in T. This function is a main part of the
4845 IPA constraint builder. */
4848 find_func_clobbers (struct function
*fn
, gimple origt
)
4851 auto_vec
<ce_s
, 16> lhsc
;
4852 auto_vec
<ce_s
, 16> rhsc
;
4855 /* Add constraints for clobbered/used in IPA mode.
4856 We are not interested in what automatic variables are clobbered
4857 or used as we only use the information in the caller to which
4858 they do not escape. */
4859 gcc_assert (in_ipa_mode
);
4861 /* If the stmt refers to memory in any way it better had a VUSE. */
4862 if (gimple_vuse (t
) == NULL_TREE
)
4865 /* We'd better have function information for the current function. */
4866 fi
= lookup_vi_for_tree (fn
->decl
);
4867 gcc_assert (fi
!= NULL
);
4869 /* Account for stores in assignments and calls. */
4870 if (gimple_vdef (t
) != NULL_TREE
4871 && gimple_has_lhs (t
))
4873 tree lhs
= gimple_get_lhs (t
);
4875 while (handled_component_p (tem
))
4876 tem
= TREE_OPERAND (tem
, 0);
4878 && !auto_var_in_fn_p (tem
, fn
->decl
))
4879 || INDIRECT_REF_P (tem
)
4880 || (TREE_CODE (tem
) == MEM_REF
4881 && !(TREE_CODE (TREE_OPERAND (tem
, 0)) == ADDR_EXPR
4883 (TREE_OPERAND (TREE_OPERAND (tem
, 0), 0), fn
->decl
))))
4885 struct constraint_expr lhsc
, *rhsp
;
4887 lhsc
= get_function_part_constraint (fi
, fi_clobbers
);
4888 get_constraint_for_address_of (lhs
, &rhsc
);
4889 FOR_EACH_VEC_ELT (rhsc
, i
, rhsp
)
4890 process_constraint (new_constraint (lhsc
, *rhsp
));
4895 /* Account for uses in assigments and returns. */
4896 if (gimple_assign_single_p (t
)
4897 || (gimple_code (t
) == GIMPLE_RETURN
4898 && gimple_return_retval (as_a
<greturn
*> (t
)) != NULL_TREE
))
4900 tree rhs
= (gimple_assign_single_p (t
)
4901 ? gimple_assign_rhs1 (t
)
4902 : gimple_return_retval (as_a
<greturn
*> (t
)));
4904 while (handled_component_p (tem
))
4905 tem
= TREE_OPERAND (tem
, 0);
4907 && !auto_var_in_fn_p (tem
, fn
->decl
))
4908 || INDIRECT_REF_P (tem
)
4909 || (TREE_CODE (tem
) == MEM_REF
4910 && !(TREE_CODE (TREE_OPERAND (tem
, 0)) == ADDR_EXPR
4912 (TREE_OPERAND (TREE_OPERAND (tem
, 0), 0), fn
->decl
))))
4914 struct constraint_expr lhs
, *rhsp
;
4916 lhs
= get_function_part_constraint (fi
, fi_uses
);
4917 get_constraint_for_address_of (rhs
, &rhsc
);
4918 FOR_EACH_VEC_ELT (rhsc
, i
, rhsp
)
4919 process_constraint (new_constraint (lhs
, *rhsp
));
4924 if (gcall
*call_stmt
= dyn_cast
<gcall
*> (t
))
4926 varinfo_t cfi
= NULL
;
4927 tree decl
= gimple_call_fndecl (t
);
4928 struct constraint_expr lhs
, rhs
;
4931 /* For builtins we do not have separate function info. For those
4932 we do not generate escapes for we have to generate clobbers/uses. */
4933 if (gimple_call_builtin_p (t
, BUILT_IN_NORMAL
))
4934 switch (DECL_FUNCTION_CODE (decl
))
4936 /* The following functions use and clobber memory pointed to
4937 by their arguments. */
4938 case BUILT_IN_STRCPY
:
4939 case BUILT_IN_STRNCPY
:
4940 case BUILT_IN_BCOPY
:
4941 case BUILT_IN_MEMCPY
:
4942 case BUILT_IN_MEMMOVE
:
4943 case BUILT_IN_MEMPCPY
:
4944 case BUILT_IN_STPCPY
:
4945 case BUILT_IN_STPNCPY
:
4946 case BUILT_IN_STRCAT
:
4947 case BUILT_IN_STRNCAT
:
4948 case BUILT_IN_STRCPY_CHK
:
4949 case BUILT_IN_STRNCPY_CHK
:
4950 case BUILT_IN_MEMCPY_CHK
:
4951 case BUILT_IN_MEMMOVE_CHK
:
4952 case BUILT_IN_MEMPCPY_CHK
:
4953 case BUILT_IN_STPCPY_CHK
:
4954 case BUILT_IN_STPNCPY_CHK
:
4955 case BUILT_IN_STRCAT_CHK
:
4956 case BUILT_IN_STRNCAT_CHK
:
4958 tree dest
= gimple_call_arg (t
, (DECL_FUNCTION_CODE (decl
)
4959 == BUILT_IN_BCOPY
? 1 : 0));
4960 tree src
= gimple_call_arg (t
, (DECL_FUNCTION_CODE (decl
)
4961 == BUILT_IN_BCOPY
? 0 : 1));
4963 struct constraint_expr
*rhsp
, *lhsp
;
4964 get_constraint_for_ptr_offset (dest
, NULL_TREE
, &lhsc
);
4965 lhs
= get_function_part_constraint (fi
, fi_clobbers
);
4966 FOR_EACH_VEC_ELT (lhsc
, i
, lhsp
)
4967 process_constraint (new_constraint (lhs
, *lhsp
));
4968 get_constraint_for_ptr_offset (src
, NULL_TREE
, &rhsc
);
4969 lhs
= get_function_part_constraint (fi
, fi_uses
);
4970 FOR_EACH_VEC_ELT (rhsc
, i
, rhsp
)
4971 process_constraint (new_constraint (lhs
, *rhsp
));
4974 /* The following function clobbers memory pointed to by
4976 case BUILT_IN_MEMSET
:
4977 case BUILT_IN_MEMSET_CHK
:
4978 case BUILT_IN_POSIX_MEMALIGN
:
4980 tree dest
= gimple_call_arg (t
, 0);
4983 get_constraint_for_ptr_offset (dest
, NULL_TREE
, &lhsc
);
4984 lhs
= get_function_part_constraint (fi
, fi_clobbers
);
4985 FOR_EACH_VEC_ELT (lhsc
, i
, lhsp
)
4986 process_constraint (new_constraint (lhs
, *lhsp
));
4989 /* The following functions clobber their second and third
4991 case BUILT_IN_SINCOS
:
4992 case BUILT_IN_SINCOSF
:
4993 case BUILT_IN_SINCOSL
:
4995 process_ipa_clobber (fi
, gimple_call_arg (t
, 1));
4996 process_ipa_clobber (fi
, gimple_call_arg (t
, 2));
4999 /* The following functions clobber their second argument. */
5000 case BUILT_IN_FREXP
:
5001 case BUILT_IN_FREXPF
:
5002 case BUILT_IN_FREXPL
:
5003 case BUILT_IN_LGAMMA_R
:
5004 case BUILT_IN_LGAMMAF_R
:
5005 case BUILT_IN_LGAMMAL_R
:
5006 case BUILT_IN_GAMMA_R
:
5007 case BUILT_IN_GAMMAF_R
:
5008 case BUILT_IN_GAMMAL_R
:
5010 case BUILT_IN_MODFF
:
5011 case BUILT_IN_MODFL
:
5013 process_ipa_clobber (fi
, gimple_call_arg (t
, 1));
5016 /* The following functions clobber their third argument. */
5017 case BUILT_IN_REMQUO
:
5018 case BUILT_IN_REMQUOF
:
5019 case BUILT_IN_REMQUOL
:
5021 process_ipa_clobber (fi
, gimple_call_arg (t
, 2));
5024 /* The following functions neither read nor clobber memory. */
5025 case BUILT_IN_ASSUME_ALIGNED
:
5028 /* Trampolines are of no interest to us. */
5029 case BUILT_IN_INIT_TRAMPOLINE
:
5030 case BUILT_IN_ADJUST_TRAMPOLINE
:
5032 case BUILT_IN_VA_START
:
5033 case BUILT_IN_VA_END
:
5035 /* printf-style functions may have hooks to set pointers to
5036 point to somewhere into the generated string. Leave them
5037 for a later exercise... */
5039 /* Fallthru to general call handling. */;
5042 /* Parameters passed by value are used. */
5043 lhs
= get_function_part_constraint (fi
, fi_uses
);
5044 for (i
= 0; i
< gimple_call_num_args (t
); i
++)
5046 struct constraint_expr
*rhsp
;
5047 tree arg
= gimple_call_arg (t
, i
);
5049 if (TREE_CODE (arg
) == SSA_NAME
5050 || is_gimple_min_invariant (arg
))
5053 get_constraint_for_address_of (arg
, &rhsc
);
5054 FOR_EACH_VEC_ELT (rhsc
, j
, rhsp
)
5055 process_constraint (new_constraint (lhs
, *rhsp
));
5059 /* Build constraints for propagating clobbers/uses along the
5061 cfi
= get_fi_for_callee (call_stmt
);
5062 if (cfi
->id
== anything_id
)
5064 if (gimple_vdef (t
))
5065 make_constraint_from (first_vi_for_offset (fi
, fi_clobbers
),
5067 make_constraint_from (first_vi_for_offset (fi
, fi_uses
),
5072 /* For callees without function info (that's external functions),
5073 ESCAPED is clobbered and used. */
5074 if (gimple_call_fndecl (t
)
5075 && !cfi
->is_fn_info
)
5079 if (gimple_vdef (t
))
5080 make_copy_constraint (first_vi_for_offset (fi
, fi_clobbers
),
5082 make_copy_constraint (first_vi_for_offset (fi
, fi_uses
), escaped_id
);
5084 /* Also honor the call statement use/clobber info. */
5085 if ((vi
= lookup_call_clobber_vi (call_stmt
)) != NULL
)
5086 make_copy_constraint (first_vi_for_offset (fi
, fi_clobbers
),
5088 if ((vi
= lookup_call_use_vi (call_stmt
)) != NULL
)
5089 make_copy_constraint (first_vi_for_offset (fi
, fi_uses
),
5094 /* Otherwise the caller clobbers and uses what the callee does.
5095 ??? This should use a new complex constraint that filters
5096 local variables of the callee. */
5097 if (gimple_vdef (t
))
5099 lhs
= get_function_part_constraint (fi
, fi_clobbers
);
5100 rhs
= get_function_part_constraint (cfi
, fi_clobbers
);
5101 process_constraint (new_constraint (lhs
, rhs
));
5103 lhs
= get_function_part_constraint (fi
, fi_uses
);
5104 rhs
= get_function_part_constraint (cfi
, fi_uses
);
5105 process_constraint (new_constraint (lhs
, rhs
));
5107 else if (gimple_code (t
) == GIMPLE_ASM
)
5109 /* ??? Ick. We can do better. */
5110 if (gimple_vdef (t
))
5111 make_constraint_from (first_vi_for_offset (fi
, fi_clobbers
),
5113 make_constraint_from (first_vi_for_offset (fi
, fi_uses
),
5119 /* Find the first varinfo in the same variable as START that overlaps with
5120 OFFSET. Return NULL if we can't find one. */
5123 first_vi_for_offset (varinfo_t start
, unsigned HOST_WIDE_INT offset
)
5125 /* If the offset is outside of the variable, bail out. */
5126 if (offset
>= start
->fullsize
)
5129 /* If we cannot reach offset from start, lookup the first field
5130 and start from there. */
5131 if (start
->offset
> offset
)
5132 start
= get_varinfo (start
->head
);
5136 /* We may not find a variable in the field list with the actual
5137 offset when when we have glommed a structure to a variable.
5138 In that case, however, offset should still be within the size
5140 if (offset
>= start
->offset
5141 && (offset
- start
->offset
) < start
->size
)
5144 start
= vi_next (start
);
5150 /* Find the first varinfo in the same variable as START that overlaps with
5151 OFFSET. If there is no such varinfo the varinfo directly preceding
5152 OFFSET is returned. */
5155 first_or_preceding_vi_for_offset (varinfo_t start
,
5156 unsigned HOST_WIDE_INT offset
)
5158 /* If we cannot reach offset from start, lookup the first field
5159 and start from there. */
5160 if (start
->offset
> offset
)
5161 start
= get_varinfo (start
->head
);
5163 /* We may not find a variable in the field list with the actual
5164 offset when when we have glommed a structure to a variable.
5165 In that case, however, offset should still be within the size
5167 If we got beyond the offset we look for return the field
5168 directly preceding offset which may be the last field. */
5170 && offset
>= start
->offset
5171 && !((offset
- start
->offset
) < start
->size
))
5172 start
= vi_next (start
);
5178 /* This structure is used during pushing fields onto the fieldstack
5179 to track the offset of the field, since bitpos_of_field gives it
5180 relative to its immediate containing type, and we want it relative
5181 to the ultimate containing object. */
5185 /* Offset from the base of the base containing object to this field. */
5186 HOST_WIDE_INT offset
;
5188 /* Size, in bits, of the field. */
5189 unsigned HOST_WIDE_INT size
;
5191 unsigned has_unknown_size
: 1;
5193 unsigned must_have_pointers
: 1;
5195 unsigned may_have_pointers
: 1;
5197 unsigned only_restrict_pointers
: 1;
5199 typedef struct fieldoff fieldoff_s
;
5202 /* qsort comparison function for two fieldoff's PA and PB */
5205 fieldoff_compare (const void *pa
, const void *pb
)
5207 const fieldoff_s
*foa
= (const fieldoff_s
*)pa
;
5208 const fieldoff_s
*fob
= (const fieldoff_s
*)pb
;
5209 unsigned HOST_WIDE_INT foasize
, fobsize
;
5211 if (foa
->offset
< fob
->offset
)
5213 else if (foa
->offset
> fob
->offset
)
5216 foasize
= foa
->size
;
5217 fobsize
= fob
->size
;
5218 if (foasize
< fobsize
)
5220 else if (foasize
> fobsize
)
5225 /* Sort a fieldstack according to the field offset and sizes. */
5227 sort_fieldstack (vec
<fieldoff_s
> fieldstack
)
5229 fieldstack
.qsort (fieldoff_compare
);
5232 /* Return true if T is a type that can have subvars. */
5235 type_can_have_subvars (const_tree t
)
5237 /* Aggregates without overlapping fields can have subvars. */
5238 return TREE_CODE (t
) == RECORD_TYPE
;
5241 /* Return true if V is a tree that we can have subvars for.
5242 Normally, this is any aggregate type. Also complex
5243 types which are not gimple registers can have subvars. */
5246 var_can_have_subvars (const_tree v
)
5248 /* Volatile variables should never have subvars. */
5249 if (TREE_THIS_VOLATILE (v
))
5252 /* Non decls or memory tags can never have subvars. */
5256 return type_can_have_subvars (TREE_TYPE (v
));
5259 /* Return true if T is a type that does contain pointers. */
5262 type_must_have_pointers (tree type
)
5264 if (POINTER_TYPE_P (type
))
5267 if (TREE_CODE (type
) == ARRAY_TYPE
)
5268 return type_must_have_pointers (TREE_TYPE (type
));
5270 /* A function or method can have pointers as arguments, so track
5271 those separately. */
5272 if (TREE_CODE (type
) == FUNCTION_TYPE
5273 || TREE_CODE (type
) == METHOD_TYPE
)
5280 field_must_have_pointers (tree t
)
5282 return type_must_have_pointers (TREE_TYPE (t
));
5285 /* Given a TYPE, and a vector of field offsets FIELDSTACK, push all
5286 the fields of TYPE onto fieldstack, recording their offsets along
5289 OFFSET is used to keep track of the offset in this entire
5290 structure, rather than just the immediately containing structure.
5291 Returns false if the caller is supposed to handle the field we
5295 push_fields_onto_fieldstack (tree type
, vec
<fieldoff_s
> *fieldstack
,
5296 HOST_WIDE_INT offset
)
5299 bool empty_p
= true;
5301 if (TREE_CODE (type
) != RECORD_TYPE
)
5304 /* If the vector of fields is growing too big, bail out early.
5305 Callers check for vec::length <= MAX_FIELDS_FOR_FIELD_SENSITIVE, make
5307 if (fieldstack
->length () > MAX_FIELDS_FOR_FIELD_SENSITIVE
)
5310 for (field
= TYPE_FIELDS (type
); field
; field
= DECL_CHAIN (field
))
5311 if (TREE_CODE (field
) == FIELD_DECL
)
5314 HOST_WIDE_INT foff
= bitpos_of_field (field
);
5316 if (!var_can_have_subvars (field
)
5317 || TREE_CODE (TREE_TYPE (field
)) == QUAL_UNION_TYPE
5318 || TREE_CODE (TREE_TYPE (field
)) == UNION_TYPE
)
5320 else if (!push_fields_onto_fieldstack
5321 (TREE_TYPE (field
), fieldstack
, offset
+ foff
)
5322 && (DECL_SIZE (field
)
5323 && !integer_zerop (DECL_SIZE (field
))))
5324 /* Empty structures may have actual size, like in C++. So
5325 see if we didn't push any subfields and the size is
5326 nonzero, push the field onto the stack. */
5331 fieldoff_s
*pair
= NULL
;
5332 bool has_unknown_size
= false;
5333 bool must_have_pointers_p
;
5335 if (!fieldstack
->is_empty ())
5336 pair
= &fieldstack
->last ();
5338 /* If there isn't anything at offset zero, create sth. */
5340 && offset
+ foff
!= 0)
5342 fieldoff_s e
= {0, offset
+ foff
, false, false, false, false};
5343 pair
= fieldstack
->safe_push (e
);
5346 if (!DECL_SIZE (field
)
5347 || !tree_fits_uhwi_p (DECL_SIZE (field
)))
5348 has_unknown_size
= true;
5350 /* If adjacent fields do not contain pointers merge them. */
5351 must_have_pointers_p
= field_must_have_pointers (field
);
5353 && !has_unknown_size
5354 && !must_have_pointers_p
5355 && !pair
->must_have_pointers
5356 && !pair
->has_unknown_size
5357 && pair
->offset
+ (HOST_WIDE_INT
)pair
->size
== offset
+ foff
)
5359 pair
->size
+= tree_to_uhwi (DECL_SIZE (field
));
5364 e
.offset
= offset
+ foff
;
5365 e
.has_unknown_size
= has_unknown_size
;
5366 if (!has_unknown_size
)
5367 e
.size
= tree_to_uhwi (DECL_SIZE (field
));
5370 e
.must_have_pointers
= must_have_pointers_p
;
5371 e
.may_have_pointers
= true;
5372 e
.only_restrict_pointers
5373 = (!has_unknown_size
5374 && POINTER_TYPE_P (TREE_TYPE (field
))
5375 && TYPE_RESTRICT (TREE_TYPE (field
)));
5376 fieldstack
->safe_push (e
);
5386 /* Count the number of arguments DECL has, and set IS_VARARGS to true
5387 if it is a varargs function. */
5390 count_num_arguments (tree decl
, bool *is_varargs
)
5392 unsigned int num
= 0;
5395 /* Capture named arguments for K&R functions. They do not
5396 have a prototype and thus no TYPE_ARG_TYPES. */
5397 for (t
= DECL_ARGUMENTS (decl
); t
; t
= DECL_CHAIN (t
))
5400 /* Check if the function has variadic arguments. */
5401 for (t
= TYPE_ARG_TYPES (TREE_TYPE (decl
)); t
; t
= TREE_CHAIN (t
))
5402 if (TREE_VALUE (t
) == void_type_node
)
5410 /* Creation function node for DECL, using NAME, and return the index
5411 of the variable we've created for the function. */
5414 create_function_info_for (tree decl
, const char *name
)
5416 struct function
*fn
= DECL_STRUCT_FUNCTION (decl
);
5417 varinfo_t vi
, prev_vi
;
5420 bool is_varargs
= false;
5421 unsigned int num_args
= count_num_arguments (decl
, &is_varargs
);
5423 /* Create the variable info. */
5425 vi
= new_var_info (decl
, name
);
5428 vi
->fullsize
= fi_parm_base
+ num_args
;
5430 vi
->may_have_pointers
= false;
5433 insert_vi_for_tree (vi
->decl
, vi
);
5437 /* Create a variable for things the function clobbers and one for
5438 things the function uses. */
5440 varinfo_t clobbervi
, usevi
;
5441 const char *newname
;
5444 asprintf (&tempname
, "%s.clobber", name
);
5445 newname
= ggc_strdup (tempname
);
5448 clobbervi
= new_var_info (NULL
, newname
);
5449 clobbervi
->offset
= fi_clobbers
;
5450 clobbervi
->size
= 1;
5451 clobbervi
->fullsize
= vi
->fullsize
;
5452 clobbervi
->is_full_var
= true;
5453 clobbervi
->is_global_var
= false;
5454 gcc_assert (prev_vi
->offset
< clobbervi
->offset
);
5455 prev_vi
->next
= clobbervi
->id
;
5456 prev_vi
= clobbervi
;
5458 asprintf (&tempname
, "%s.use", name
);
5459 newname
= ggc_strdup (tempname
);
5462 usevi
= new_var_info (NULL
, newname
);
5463 usevi
->offset
= fi_uses
;
5465 usevi
->fullsize
= vi
->fullsize
;
5466 usevi
->is_full_var
= true;
5467 usevi
->is_global_var
= false;
5468 gcc_assert (prev_vi
->offset
< usevi
->offset
);
5469 prev_vi
->next
= usevi
->id
;
5473 /* And one for the static chain. */
5474 if (fn
->static_chain_decl
!= NULL_TREE
)
5477 const char *newname
;
5480 asprintf (&tempname
, "%s.chain", name
);
5481 newname
= ggc_strdup (tempname
);
5484 chainvi
= new_var_info (fn
->static_chain_decl
, newname
);
5485 chainvi
->offset
= fi_static_chain
;
5487 chainvi
->fullsize
= vi
->fullsize
;
5488 chainvi
->is_full_var
= true;
5489 chainvi
->is_global_var
= false;
5490 gcc_assert (prev_vi
->offset
< chainvi
->offset
);
5491 prev_vi
->next
= chainvi
->id
;
5493 insert_vi_for_tree (fn
->static_chain_decl
, chainvi
);
5496 /* Create a variable for the return var. */
5497 if (DECL_RESULT (decl
) != NULL
5498 || !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (decl
))))
5501 const char *newname
;
5503 tree resultdecl
= decl
;
5505 if (DECL_RESULT (decl
))
5506 resultdecl
= DECL_RESULT (decl
);
5508 asprintf (&tempname
, "%s.result", name
);
5509 newname
= ggc_strdup (tempname
);
5512 resultvi
= new_var_info (resultdecl
, newname
);
5513 resultvi
->offset
= fi_result
;
5515 resultvi
->fullsize
= vi
->fullsize
;
5516 resultvi
->is_full_var
= true;
5517 if (DECL_RESULT (decl
))
5518 resultvi
->may_have_pointers
= true;
5519 gcc_assert (prev_vi
->offset
< resultvi
->offset
);
5520 prev_vi
->next
= resultvi
->id
;
5522 if (DECL_RESULT (decl
))
5523 insert_vi_for_tree (DECL_RESULT (decl
), resultvi
);
5526 /* Set up variables for each argument. */
5527 arg
= DECL_ARGUMENTS (decl
);
5528 for (i
= 0; i
< num_args
; i
++)
5531 const char *newname
;
5533 tree argdecl
= decl
;
5538 asprintf (&tempname
, "%s.arg%d", name
, i
);
5539 newname
= ggc_strdup (tempname
);
5542 argvi
= new_var_info (argdecl
, newname
);
5543 argvi
->offset
= fi_parm_base
+ i
;
5545 argvi
->is_full_var
= true;
5546 argvi
->fullsize
= vi
->fullsize
;
5548 argvi
->may_have_pointers
= true;
5549 gcc_assert (prev_vi
->offset
< argvi
->offset
);
5550 prev_vi
->next
= argvi
->id
;
5554 insert_vi_for_tree (arg
, argvi
);
5555 arg
= DECL_CHAIN (arg
);
5559 /* Add one representative for all further args. */
5563 const char *newname
;
5567 asprintf (&tempname
, "%s.varargs", name
);
5568 newname
= ggc_strdup (tempname
);
5571 /* We need sth that can be pointed to for va_start. */
5572 decl
= build_fake_var_decl (ptr_type_node
);
5574 argvi
= new_var_info (decl
, newname
);
5575 argvi
->offset
= fi_parm_base
+ num_args
;
5577 argvi
->is_full_var
= true;
5578 argvi
->is_heap_var
= true;
5579 argvi
->fullsize
= vi
->fullsize
;
5580 gcc_assert (prev_vi
->offset
< argvi
->offset
);
5581 prev_vi
->next
= argvi
->id
;
5589 /* Return true if FIELDSTACK contains fields that overlap.
5590 FIELDSTACK is assumed to be sorted by offset. */
5593 check_for_overlaps (vec
<fieldoff_s
> fieldstack
)
5595 fieldoff_s
*fo
= NULL
;
5597 HOST_WIDE_INT lastoffset
= -1;
5599 FOR_EACH_VEC_ELT (fieldstack
, i
, fo
)
5601 if (fo
->offset
== lastoffset
)
5603 lastoffset
= fo
->offset
;
5608 /* Create a varinfo structure for NAME and DECL, and add it to VARMAP.
5609 This will also create any varinfo structures necessary for fields
5613 create_variable_info_for_1 (tree decl
, const char *name
)
5615 varinfo_t vi
, newvi
;
5616 tree decl_type
= TREE_TYPE (decl
);
5617 tree declsize
= DECL_P (decl
) ? DECL_SIZE (decl
) : TYPE_SIZE (decl_type
);
5618 auto_vec
<fieldoff_s
> fieldstack
;
5621 varpool_node
*vnode
;
5624 || !tree_fits_uhwi_p (declsize
))
5626 vi
= new_var_info (decl
, name
);
5630 vi
->is_unknown_size_var
= true;
5631 vi
->is_full_var
= true;
5632 vi
->may_have_pointers
= true;
5636 /* Collect field information. */
5637 if (use_field_sensitive
5638 && var_can_have_subvars (decl
)
5639 /* ??? Force us to not use subfields for global initializers
5640 in IPA mode. Else we'd have to parse arbitrary initializers. */
5642 && is_global_var (decl
)
5643 && (vnode
= varpool_node::get (decl
))
5644 && vnode
->get_constructor ()))
5646 fieldoff_s
*fo
= NULL
;
5647 bool notokay
= false;
5650 push_fields_onto_fieldstack (decl_type
, &fieldstack
, 0);
5652 for (i
= 0; !notokay
&& fieldstack
.iterate (i
, &fo
); i
++)
5653 if (fo
->has_unknown_size
5660 /* We can't sort them if we have a field with a variable sized type,
5661 which will make notokay = true. In that case, we are going to return
5662 without creating varinfos for the fields anyway, so sorting them is a
5666 sort_fieldstack (fieldstack
);
5667 /* Due to some C++ FE issues, like PR 22488, we might end up
5668 what appear to be overlapping fields even though they,
5669 in reality, do not overlap. Until the C++ FE is fixed,
5670 we will simply disable field-sensitivity for these cases. */
5671 notokay
= check_for_overlaps (fieldstack
);
5675 fieldstack
.release ();
5678 /* If we didn't end up collecting sub-variables create a full
5679 variable for the decl. */
5680 if (fieldstack
.length () <= 1
5681 || fieldstack
.length () > MAX_FIELDS_FOR_FIELD_SENSITIVE
)
5683 vi
= new_var_info (decl
, name
);
5685 vi
->may_have_pointers
= true;
5686 vi
->fullsize
= tree_to_uhwi (declsize
);
5687 vi
->size
= vi
->fullsize
;
5688 vi
->is_full_var
= true;
5689 fieldstack
.release ();
5693 vi
= new_var_info (decl
, name
);
5694 vi
->fullsize
= tree_to_uhwi (declsize
);
5695 for (i
= 0, newvi
= vi
;
5696 fieldstack
.iterate (i
, &fo
);
5697 ++i
, newvi
= vi_next (newvi
))
5699 const char *newname
= "NULL";
5704 asprintf (&tempname
, "%s." HOST_WIDE_INT_PRINT_DEC
5705 "+" HOST_WIDE_INT_PRINT_DEC
, name
, fo
->offset
, fo
->size
);
5706 newname
= ggc_strdup (tempname
);
5709 newvi
->name
= newname
;
5710 newvi
->offset
= fo
->offset
;
5711 newvi
->size
= fo
->size
;
5712 newvi
->fullsize
= vi
->fullsize
;
5713 newvi
->may_have_pointers
= fo
->may_have_pointers
;
5714 newvi
->only_restrict_pointers
= fo
->only_restrict_pointers
;
5715 if (i
+ 1 < fieldstack
.length ())
5717 varinfo_t tem
= new_var_info (decl
, name
);
5718 newvi
->next
= tem
->id
;
5727 create_variable_info_for (tree decl
, const char *name
)
5729 varinfo_t vi
= create_variable_info_for_1 (decl
, name
);
5730 unsigned int id
= vi
->id
;
5732 insert_vi_for_tree (decl
, vi
);
5734 if (TREE_CODE (decl
) != VAR_DECL
)
5737 /* Create initial constraints for globals. */
5738 for (; vi
; vi
= vi_next (vi
))
5740 if (!vi
->may_have_pointers
5741 || !vi
->is_global_var
)
5744 /* Mark global restrict qualified pointers. */
5745 if ((POINTER_TYPE_P (TREE_TYPE (decl
))
5746 && TYPE_RESTRICT (TREE_TYPE (decl
)))
5747 || vi
->only_restrict_pointers
)
5749 make_constraint_from_global_restrict (vi
, "GLOBAL_RESTRICT");
5753 /* In non-IPA mode the initializer from nonlocal is all we need. */
5755 || DECL_HARD_REGISTER (decl
))
5756 make_copy_constraint (vi
, nonlocal_id
);
5758 /* In IPA mode parse the initializer and generate proper constraints
5762 varpool_node
*vnode
= varpool_node::get (decl
);
5764 /* For escaped variables initialize them from nonlocal. */
5765 if (!vnode
->all_refs_explicit_p ())
5766 make_copy_constraint (vi
, nonlocal_id
);
5768 /* If this is a global variable with an initializer and we are in
5769 IPA mode generate constraints for it. */
5770 if (vnode
->get_constructor ()
5771 && vnode
->definition
)
5773 auto_vec
<ce_s
> rhsc
;
5774 struct constraint_expr lhs
, *rhsp
;
5776 get_constraint_for_rhs (vnode
->get_constructor (), &rhsc
);
5780 FOR_EACH_VEC_ELT (rhsc
, i
, rhsp
)
5781 process_constraint (new_constraint (lhs
, *rhsp
));
5782 /* If this is a variable that escapes from the unit
5783 the initializer escapes as well. */
5784 if (!vnode
->all_refs_explicit_p ())
5786 lhs
.var
= escaped_id
;
5789 FOR_EACH_VEC_ELT (rhsc
, i
, rhsp
)
5790 process_constraint (new_constraint (lhs
, *rhsp
));
5799 /* Print out the points-to solution for VAR to FILE. */
5802 dump_solution_for_var (FILE *file
, unsigned int var
)
5804 varinfo_t vi
= get_varinfo (var
);
5808 /* Dump the solution for unified vars anyway, this avoids difficulties
5809 in scanning dumps in the testsuite. */
5810 fprintf (file
, "%s = { ", vi
->name
);
5811 vi
= get_varinfo (find (var
));
5812 EXECUTE_IF_SET_IN_BITMAP (vi
->solution
, 0, i
, bi
)
5813 fprintf (file
, "%s ", get_varinfo (i
)->name
);
5814 fprintf (file
, "}");
5816 /* But note when the variable was unified. */
5818 fprintf (file
, " same as %s", vi
->name
);
5820 fprintf (file
, "\n");
5823 /* Print the points-to solution for VAR to stderr. */
5826 debug_solution_for_var (unsigned int var
)
5828 dump_solution_for_var (stderr
, var
);
5831 /* Create varinfo structures for all of the variables in the
5832 function for intraprocedural mode. */
5835 intra_create_variable_infos (struct function
*fn
)
5839 /* For each incoming pointer argument arg, create the constraint ARG
5840 = NONLOCAL or a dummy variable if it is a restrict qualified
5841 passed-by-reference argument. */
5842 for (t
= DECL_ARGUMENTS (fn
->decl
); t
; t
= DECL_CHAIN (t
))
5844 varinfo_t p
= get_vi_for_tree (t
);
5846 /* For restrict qualified pointers to objects passed by
5847 reference build a real representative for the pointed-to object.
5848 Treat restrict qualified references the same. */
5849 if (TYPE_RESTRICT (TREE_TYPE (t
))
5850 && ((DECL_BY_REFERENCE (t
) && POINTER_TYPE_P (TREE_TYPE (t
)))
5851 || TREE_CODE (TREE_TYPE (t
)) == REFERENCE_TYPE
)
5852 && !type_contains_placeholder_p (TREE_TYPE (TREE_TYPE (t
))))
5854 struct constraint_expr lhsc
, rhsc
;
5856 tree heapvar
= build_fake_var_decl (TREE_TYPE (TREE_TYPE (t
)));
5857 DECL_EXTERNAL (heapvar
) = 1;
5858 vi
= create_variable_info_for_1 (heapvar
, "PARM_NOALIAS");
5859 insert_vi_for_tree (heapvar
, vi
);
5864 rhsc
.type
= ADDRESSOF
;
5866 process_constraint (new_constraint (lhsc
, rhsc
));
5867 for (; vi
; vi
= vi_next (vi
))
5868 if (vi
->may_have_pointers
)
5870 if (vi
->only_restrict_pointers
)
5871 make_constraint_from_global_restrict (vi
, "GLOBAL_RESTRICT");
5873 make_copy_constraint (vi
, nonlocal_id
);
5878 if (POINTER_TYPE_P (TREE_TYPE (t
))
5879 && TYPE_RESTRICT (TREE_TYPE (t
)))
5880 make_constraint_from_global_restrict (p
, "PARM_RESTRICT");
5883 for (; p
; p
= vi_next (p
))
5885 if (p
->only_restrict_pointers
)
5886 make_constraint_from_global_restrict (p
, "PARM_RESTRICT");
5887 else if (p
->may_have_pointers
)
5888 make_constraint_from (p
, nonlocal_id
);
5893 /* Add a constraint for a result decl that is passed by reference. */
5894 if (DECL_RESULT (fn
->decl
)
5895 && DECL_BY_REFERENCE (DECL_RESULT (fn
->decl
)))
5897 varinfo_t p
, result_vi
= get_vi_for_tree (DECL_RESULT (fn
->decl
));
5899 for (p
= result_vi
; p
; p
= vi_next (p
))
5900 make_constraint_from (p
, nonlocal_id
);
5903 /* Add a constraint for the incoming static chain parameter. */
5904 if (fn
->static_chain_decl
!= NULL_TREE
)
5906 varinfo_t p
, chain_vi
= get_vi_for_tree (fn
->static_chain_decl
);
5908 for (p
= chain_vi
; p
; p
= vi_next (p
))
5909 make_constraint_from (p
, nonlocal_id
);
5913 /* Structure used to put solution bitmaps in a hashtable so they can
5914 be shared among variables with the same points-to set. */
5916 typedef struct shared_bitmap_info
5920 } *shared_bitmap_info_t
;
5921 typedef const struct shared_bitmap_info
*const_shared_bitmap_info_t
;
5923 /* Shared_bitmap hashtable helpers. */
5925 struct shared_bitmap_hasher
: typed_free_remove
<shared_bitmap_info
>
5927 typedef shared_bitmap_info value_type
;
5928 typedef shared_bitmap_info compare_type
;
5929 static inline hashval_t
hash (const value_type
*);
5930 static inline bool equal (const value_type
*, const compare_type
*);
5933 /* Hash function for a shared_bitmap_info_t */
5936 shared_bitmap_hasher::hash (const value_type
*bi
)
5938 return bi
->hashcode
;
5941 /* Equality function for two shared_bitmap_info_t's. */
5944 shared_bitmap_hasher::equal (const value_type
*sbi1
, const compare_type
*sbi2
)
5946 return bitmap_equal_p (sbi1
->pt_vars
, sbi2
->pt_vars
);
5949 /* Shared_bitmap hashtable. */
5951 static hash_table
<shared_bitmap_hasher
> *shared_bitmap_table
;
5953 /* Lookup a bitmap in the shared bitmap hashtable, and return an already
5954 existing instance if there is one, NULL otherwise. */
5957 shared_bitmap_lookup (bitmap pt_vars
)
5959 shared_bitmap_info
**slot
;
5960 struct shared_bitmap_info sbi
;
5962 sbi
.pt_vars
= pt_vars
;
5963 sbi
.hashcode
= bitmap_hash (pt_vars
);
5965 slot
= shared_bitmap_table
->find_slot (&sbi
, NO_INSERT
);
5969 return (*slot
)->pt_vars
;
5973 /* Add a bitmap to the shared bitmap hashtable. */
5976 shared_bitmap_add (bitmap pt_vars
)
5978 shared_bitmap_info
**slot
;
5979 shared_bitmap_info_t sbi
= XNEW (struct shared_bitmap_info
);
5981 sbi
->pt_vars
= pt_vars
;
5982 sbi
->hashcode
= bitmap_hash (pt_vars
);
5984 slot
= shared_bitmap_table
->find_slot (sbi
, INSERT
);
5985 gcc_assert (!*slot
);
5990 /* Set bits in INTO corresponding to the variable uids in solution set FROM. */
5993 set_uids_in_ptset (bitmap into
, bitmap from
, struct pt_solution
*pt
)
5997 varinfo_t escaped_vi
= get_varinfo (find (escaped_id
));
5998 bool everything_escaped
5999 = escaped_vi
->solution
&& bitmap_bit_p (escaped_vi
->solution
, anything_id
);
6001 EXECUTE_IF_SET_IN_BITMAP (from
, 0, i
, bi
)
6003 varinfo_t vi
= get_varinfo (i
);
6005 /* The only artificial variables that are allowed in a may-alias
6006 set are heap variables. */
6007 if (vi
->is_artificial_var
&& !vi
->is_heap_var
)
6010 if (everything_escaped
6011 || (escaped_vi
->solution
6012 && bitmap_bit_p (escaped_vi
->solution
, i
)))
6014 pt
->vars_contains_escaped
= true;
6015 pt
->vars_contains_escaped_heap
= vi
->is_heap_var
;
6018 if (TREE_CODE (vi
->decl
) == VAR_DECL
6019 || TREE_CODE (vi
->decl
) == PARM_DECL
6020 || TREE_CODE (vi
->decl
) == RESULT_DECL
)
6022 /* If we are in IPA mode we will not recompute points-to
6023 sets after inlining so make sure they stay valid. */
6025 && !DECL_PT_UID_SET_P (vi
->decl
))
6026 SET_DECL_PT_UID (vi
->decl
, DECL_UID (vi
->decl
));
6028 /* Add the decl to the points-to set. Note that the points-to
6029 set contains global variables. */
6030 bitmap_set_bit (into
, DECL_PT_UID (vi
->decl
));
6031 if (vi
->is_global_var
)
6032 pt
->vars_contains_nonlocal
= true;
6038 /* Compute the points-to solution *PT for the variable VI. */
6040 static struct pt_solution
6041 find_what_var_points_to (varinfo_t orig_vi
)
6045 bitmap finished_solution
;
6048 struct pt_solution
*pt
;
6050 /* This variable may have been collapsed, let's get the real
6052 vi
= get_varinfo (find (orig_vi
->id
));
6054 /* See if we have already computed the solution and return it. */
6055 pt_solution
**slot
= &final_solutions
->get_or_insert (vi
);
6059 *slot
= pt
= XOBNEW (&final_solutions_obstack
, struct pt_solution
);
6060 memset (pt
, 0, sizeof (struct pt_solution
));
6062 /* Translate artificial variables into SSA_NAME_PTR_INFO
6064 EXECUTE_IF_SET_IN_BITMAP (vi
->solution
, 0, i
, bi
)
6066 varinfo_t vi
= get_varinfo (i
);
6068 if (vi
->is_artificial_var
)
6070 if (vi
->id
== nothing_id
)
6072 else if (vi
->id
== escaped_id
)
6075 pt
->ipa_escaped
= 1;
6078 /* Expand some special vars of ESCAPED in-place here. */
6079 varinfo_t evi
= get_varinfo (find (escaped_id
));
6080 if (bitmap_bit_p (evi
->solution
, nonlocal_id
))
6083 else if (vi
->id
== nonlocal_id
)
6085 else if (vi
->is_heap_var
)
6086 /* We represent heapvars in the points-to set properly. */
6088 else if (vi
->id
== string_id
)
6089 /* Nobody cares - STRING_CSTs are read-only entities. */
6091 else if (vi
->id
== anything_id
6092 || vi
->id
== integer_id
)
6097 /* Instead of doing extra work, simply do not create
6098 elaborate points-to information for pt_anything pointers. */
6102 /* Share the final set of variables when possible. */
6103 finished_solution
= BITMAP_GGC_ALLOC ();
6104 stats
.points_to_sets_created
++;
6106 set_uids_in_ptset (finished_solution
, vi
->solution
, pt
);
6107 result
= shared_bitmap_lookup (finished_solution
);
6110 shared_bitmap_add (finished_solution
);
6111 pt
->vars
= finished_solution
;
6116 bitmap_clear (finished_solution
);
6122 /* Given a pointer variable P, fill in its points-to set. */
6125 find_what_p_points_to (tree p
)
6127 struct ptr_info_def
*pi
;
6131 /* For parameters, get at the points-to set for the actual parm
6133 if (TREE_CODE (p
) == SSA_NAME
6134 && SSA_NAME_IS_DEFAULT_DEF (p
)
6135 && (TREE_CODE (SSA_NAME_VAR (p
)) == PARM_DECL
6136 || TREE_CODE (SSA_NAME_VAR (p
)) == RESULT_DECL
))
6137 lookup_p
= SSA_NAME_VAR (p
);
6139 vi
= lookup_vi_for_tree (lookup_p
);
6143 pi
= get_ptr_info (p
);
6144 pi
->pt
= find_what_var_points_to (vi
);
6148 /* Query statistics for points-to solutions. */
6151 unsigned HOST_WIDE_INT pt_solution_includes_may_alias
;
6152 unsigned HOST_WIDE_INT pt_solution_includes_no_alias
;
6153 unsigned HOST_WIDE_INT pt_solutions_intersect_may_alias
;
6154 unsigned HOST_WIDE_INT pt_solutions_intersect_no_alias
;
6158 dump_pta_stats (FILE *s
)
6160 fprintf (s
, "\nPTA query stats:\n");
6161 fprintf (s
, " pt_solution_includes: "
6162 HOST_WIDE_INT_PRINT_DEC
" disambiguations, "
6163 HOST_WIDE_INT_PRINT_DEC
" queries\n",
6164 pta_stats
.pt_solution_includes_no_alias
,
6165 pta_stats
.pt_solution_includes_no_alias
6166 + pta_stats
.pt_solution_includes_may_alias
);
6167 fprintf (s
, " pt_solutions_intersect: "
6168 HOST_WIDE_INT_PRINT_DEC
" disambiguations, "
6169 HOST_WIDE_INT_PRINT_DEC
" queries\n",
6170 pta_stats
.pt_solutions_intersect_no_alias
,
6171 pta_stats
.pt_solutions_intersect_no_alias
6172 + pta_stats
.pt_solutions_intersect_may_alias
);
6176 /* Reset the points-to solution *PT to a conservative default
6177 (point to anything). */
6180 pt_solution_reset (struct pt_solution
*pt
)
6182 memset (pt
, 0, sizeof (struct pt_solution
));
6183 pt
->anything
= true;
6186 /* Set the points-to solution *PT to point only to the variables
6187 in VARS. VARS_CONTAINS_GLOBAL specifies whether that contains
6188 global variables and VARS_CONTAINS_RESTRICT specifies whether
6189 it contains restrict tag variables. */
6192 pt_solution_set (struct pt_solution
*pt
, bitmap vars
,
6193 bool vars_contains_nonlocal
)
6195 memset (pt
, 0, sizeof (struct pt_solution
));
6197 pt
->vars_contains_nonlocal
= vars_contains_nonlocal
;
6198 pt
->vars_contains_escaped
6199 = (cfun
->gimple_df
->escaped
.anything
6200 || bitmap_intersect_p (cfun
->gimple_df
->escaped
.vars
, vars
));
6203 /* Set the points-to solution *PT to point only to the variable VAR. */
6206 pt_solution_set_var (struct pt_solution
*pt
, tree var
)
6208 memset (pt
, 0, sizeof (struct pt_solution
));
6209 pt
->vars
= BITMAP_GGC_ALLOC ();
6210 bitmap_set_bit (pt
->vars
, DECL_PT_UID (var
));
6211 pt
->vars_contains_nonlocal
= is_global_var (var
);
6212 pt
->vars_contains_escaped
6213 = (cfun
->gimple_df
->escaped
.anything
6214 || bitmap_bit_p (cfun
->gimple_df
->escaped
.vars
, DECL_PT_UID (var
)));
6217 /* Computes the union of the points-to solutions *DEST and *SRC and
6218 stores the result in *DEST. This changes the points-to bitmap
6219 of *DEST and thus may not be used if that might be shared.
6220 The points-to bitmap of *SRC and *DEST will not be shared after
6221 this function if they were not before. */
6224 pt_solution_ior_into (struct pt_solution
*dest
, struct pt_solution
*src
)
6226 dest
->anything
|= src
->anything
;
6229 pt_solution_reset (dest
);
6233 dest
->nonlocal
|= src
->nonlocal
;
6234 dest
->escaped
|= src
->escaped
;
6235 dest
->ipa_escaped
|= src
->ipa_escaped
;
6236 dest
->null
|= src
->null
;
6237 dest
->vars_contains_nonlocal
|= src
->vars_contains_nonlocal
;
6238 dest
->vars_contains_escaped
|= src
->vars_contains_escaped
;
6239 dest
->vars_contains_escaped_heap
|= src
->vars_contains_escaped_heap
;
6244 dest
->vars
= BITMAP_GGC_ALLOC ();
6245 bitmap_ior_into (dest
->vars
, src
->vars
);
6248 /* Return true if the points-to solution *PT is empty. */
6251 pt_solution_empty_p (struct pt_solution
*pt
)
6258 && !bitmap_empty_p (pt
->vars
))
6261 /* If the solution includes ESCAPED, check if that is empty. */
6263 && !pt_solution_empty_p (&cfun
->gimple_df
->escaped
))
6266 /* If the solution includes ESCAPED, check if that is empty. */
6268 && !pt_solution_empty_p (&ipa_escaped_pt
))
6274 /* Return true if the points-to solution *PT only point to a single var, and
6275 return the var uid in *UID. */
6278 pt_solution_singleton_p (struct pt_solution
*pt
, unsigned *uid
)
6280 if (pt
->anything
|| pt
->nonlocal
|| pt
->escaped
|| pt
->ipa_escaped
6281 || pt
->null
|| pt
->vars
== NULL
6282 || !bitmap_single_bit_set_p (pt
->vars
))
6285 *uid
= bitmap_first_set_bit (pt
->vars
);
6289 /* Return true if the points-to solution *PT includes global memory. */
6292 pt_solution_includes_global (struct pt_solution
*pt
)
6296 || pt
->vars_contains_nonlocal
6297 /* The following is a hack to make the malloc escape hack work.
6298 In reality we'd need different sets for escaped-through-return
6299 and escaped-to-callees and passes would need to be updated. */
6300 || pt
->vars_contains_escaped_heap
)
6303 /* 'escaped' is also a placeholder so we have to look into it. */
6305 return pt_solution_includes_global (&cfun
->gimple_df
->escaped
);
6307 if (pt
->ipa_escaped
)
6308 return pt_solution_includes_global (&ipa_escaped_pt
);
6310 /* ??? This predicate is not correct for the IPA-PTA solution
6311 as we do not properly distinguish between unit escape points
6312 and global variables. */
6313 if (cfun
->gimple_df
->ipa_pta
)
6319 /* Return true if the points-to solution *PT includes the variable
6320 declaration DECL. */
6323 pt_solution_includes_1 (struct pt_solution
*pt
, const_tree decl
)
6329 && is_global_var (decl
))
6333 && bitmap_bit_p (pt
->vars
, DECL_PT_UID (decl
)))
6336 /* If the solution includes ESCAPED, check it. */
6338 && pt_solution_includes_1 (&cfun
->gimple_df
->escaped
, decl
))
6341 /* If the solution includes ESCAPED, check it. */
6343 && pt_solution_includes_1 (&ipa_escaped_pt
, decl
))
6350 pt_solution_includes (struct pt_solution
*pt
, const_tree decl
)
6352 bool res
= pt_solution_includes_1 (pt
, decl
);
6354 ++pta_stats
.pt_solution_includes_may_alias
;
6356 ++pta_stats
.pt_solution_includes_no_alias
;
6360 /* Return true if both points-to solutions PT1 and PT2 have a non-empty
6364 pt_solutions_intersect_1 (struct pt_solution
*pt1
, struct pt_solution
*pt2
)
6366 if (pt1
->anything
|| pt2
->anything
)
6369 /* If either points to unknown global memory and the other points to
6370 any global memory they alias. */
6373 || pt2
->vars_contains_nonlocal
))
6375 && pt1
->vars_contains_nonlocal
))
6378 /* If either points to all escaped memory and the other points to
6379 any escaped memory they alias. */
6382 || pt2
->vars_contains_escaped
))
6384 && pt1
->vars_contains_escaped
))
6387 /* Check the escaped solution if required.
6388 ??? Do we need to check the local against the IPA escaped sets? */
6389 if ((pt1
->ipa_escaped
|| pt2
->ipa_escaped
)
6390 && !pt_solution_empty_p (&ipa_escaped_pt
))
6392 /* If both point to escaped memory and that solution
6393 is not empty they alias. */
6394 if (pt1
->ipa_escaped
&& pt2
->ipa_escaped
)
6397 /* If either points to escaped memory see if the escaped solution
6398 intersects with the other. */
6399 if ((pt1
->ipa_escaped
6400 && pt_solutions_intersect_1 (&ipa_escaped_pt
, pt2
))
6401 || (pt2
->ipa_escaped
6402 && pt_solutions_intersect_1 (&ipa_escaped_pt
, pt1
)))
6406 /* Now both pointers alias if their points-to solution intersects. */
6409 && bitmap_intersect_p (pt1
->vars
, pt2
->vars
));
6413 pt_solutions_intersect (struct pt_solution
*pt1
, struct pt_solution
*pt2
)
6415 bool res
= pt_solutions_intersect_1 (pt1
, pt2
);
6417 ++pta_stats
.pt_solutions_intersect_may_alias
;
6419 ++pta_stats
.pt_solutions_intersect_no_alias
;
6424 /* Dump points-to information to OUTFILE. */
6427 dump_sa_points_to_info (FILE *outfile
)
6431 fprintf (outfile
, "\nPoints-to sets\n\n");
6433 if (dump_flags
& TDF_STATS
)
6435 fprintf (outfile
, "Stats:\n");
6436 fprintf (outfile
, "Total vars: %d\n", stats
.total_vars
);
6437 fprintf (outfile
, "Non-pointer vars: %d\n",
6438 stats
.nonpointer_vars
);
6439 fprintf (outfile
, "Statically unified vars: %d\n",
6440 stats
.unified_vars_static
);
6441 fprintf (outfile
, "Dynamically unified vars: %d\n",
6442 stats
.unified_vars_dynamic
);
6443 fprintf (outfile
, "Iterations: %d\n", stats
.iterations
);
6444 fprintf (outfile
, "Number of edges: %d\n", stats
.num_edges
);
6445 fprintf (outfile
, "Number of implicit edges: %d\n",
6446 stats
.num_implicit_edges
);
6449 for (i
= 1; i
< varmap
.length (); i
++)
6451 varinfo_t vi
= get_varinfo (i
);
6452 if (!vi
->may_have_pointers
)
6454 dump_solution_for_var (outfile
, i
);
6459 /* Debug points-to information to stderr. */
6462 debug_sa_points_to_info (void)
6464 dump_sa_points_to_info (stderr
);
6468 /* Initialize the always-existing constraint variables for NULL
6469 ANYTHING, READONLY, and INTEGER */
6472 init_base_vars (void)
6474 struct constraint_expr lhs
, rhs
;
6475 varinfo_t var_anything
;
6476 varinfo_t var_nothing
;
6477 varinfo_t var_string
;
6478 varinfo_t var_escaped
;
6479 varinfo_t var_nonlocal
;
6480 varinfo_t var_storedanything
;
6481 varinfo_t var_integer
;
6483 /* Variable ID zero is reserved and should be NULL. */
6484 varmap
.safe_push (NULL
);
6486 /* Create the NULL variable, used to represent that a variable points
6488 var_nothing
= new_var_info (NULL_TREE
, "NULL");
6489 gcc_assert (var_nothing
->id
== nothing_id
);
6490 var_nothing
->is_artificial_var
= 1;
6491 var_nothing
->offset
= 0;
6492 var_nothing
->size
= ~0;
6493 var_nothing
->fullsize
= ~0;
6494 var_nothing
->is_special_var
= 1;
6495 var_nothing
->may_have_pointers
= 0;
6496 var_nothing
->is_global_var
= 0;
6498 /* Create the ANYTHING variable, used to represent that a variable
6499 points to some unknown piece of memory. */
6500 var_anything
= new_var_info (NULL_TREE
, "ANYTHING");
6501 gcc_assert (var_anything
->id
== anything_id
);
6502 var_anything
->is_artificial_var
= 1;
6503 var_anything
->size
= ~0;
6504 var_anything
->offset
= 0;
6505 var_anything
->fullsize
= ~0;
6506 var_anything
->is_special_var
= 1;
6508 /* Anything points to anything. This makes deref constraints just
6509 work in the presence of linked list and other p = *p type loops,
6510 by saying that *ANYTHING = ANYTHING. */
6512 lhs
.var
= anything_id
;
6514 rhs
.type
= ADDRESSOF
;
6515 rhs
.var
= anything_id
;
6518 /* This specifically does not use process_constraint because
6519 process_constraint ignores all anything = anything constraints, since all
6520 but this one are redundant. */
6521 constraints
.safe_push (new_constraint (lhs
, rhs
));
6523 /* Create the STRING variable, used to represent that a variable
6524 points to a string literal. String literals don't contain
6525 pointers so STRING doesn't point to anything. */
6526 var_string
= new_var_info (NULL_TREE
, "STRING");
6527 gcc_assert (var_string
->id
== string_id
);
6528 var_string
->is_artificial_var
= 1;
6529 var_string
->offset
= 0;
6530 var_string
->size
= ~0;
6531 var_string
->fullsize
= ~0;
6532 var_string
->is_special_var
= 1;
6533 var_string
->may_have_pointers
= 0;
6535 /* Create the ESCAPED variable, used to represent the set of escaped
6537 var_escaped
= new_var_info (NULL_TREE
, "ESCAPED");
6538 gcc_assert (var_escaped
->id
== escaped_id
);
6539 var_escaped
->is_artificial_var
= 1;
6540 var_escaped
->offset
= 0;
6541 var_escaped
->size
= ~0;
6542 var_escaped
->fullsize
= ~0;
6543 var_escaped
->is_special_var
= 0;
6545 /* Create the NONLOCAL variable, used to represent the set of nonlocal
6547 var_nonlocal
= new_var_info (NULL_TREE
, "NONLOCAL");
6548 gcc_assert (var_nonlocal
->id
== nonlocal_id
);
6549 var_nonlocal
->is_artificial_var
= 1;
6550 var_nonlocal
->offset
= 0;
6551 var_nonlocal
->size
= ~0;
6552 var_nonlocal
->fullsize
= ~0;
6553 var_nonlocal
->is_special_var
= 1;
6555 /* ESCAPED = *ESCAPED, because escaped is may-deref'd at calls, etc. */
6557 lhs
.var
= escaped_id
;
6560 rhs
.var
= escaped_id
;
6562 process_constraint (new_constraint (lhs
, rhs
));
6564 /* ESCAPED = ESCAPED + UNKNOWN_OFFSET, because if a sub-field escapes the
6565 whole variable escapes. */
6567 lhs
.var
= escaped_id
;
6570 rhs
.var
= escaped_id
;
6571 rhs
.offset
= UNKNOWN_OFFSET
;
6572 process_constraint (new_constraint (lhs
, rhs
));
6574 /* *ESCAPED = NONLOCAL. This is true because we have to assume
6575 everything pointed to by escaped points to what global memory can
6578 lhs
.var
= escaped_id
;
6581 rhs
.var
= nonlocal_id
;
6583 process_constraint (new_constraint (lhs
, rhs
));
6585 /* NONLOCAL = &NONLOCAL, NONLOCAL = &ESCAPED. This is true because
6586 global memory may point to global memory and escaped memory. */
6588 lhs
.var
= nonlocal_id
;
6590 rhs
.type
= ADDRESSOF
;
6591 rhs
.var
= nonlocal_id
;
6593 process_constraint (new_constraint (lhs
, rhs
));
6594 rhs
.type
= ADDRESSOF
;
6595 rhs
.var
= escaped_id
;
6597 process_constraint (new_constraint (lhs
, rhs
));
6599 /* Create the STOREDANYTHING variable, used to represent the set of
6600 variables stored to *ANYTHING. */
6601 var_storedanything
= new_var_info (NULL_TREE
, "STOREDANYTHING");
6602 gcc_assert (var_storedanything
->id
== storedanything_id
);
6603 var_storedanything
->is_artificial_var
= 1;
6604 var_storedanything
->offset
= 0;
6605 var_storedanything
->size
= ~0;
6606 var_storedanything
->fullsize
= ~0;
6607 var_storedanything
->is_special_var
= 0;
6609 /* Create the INTEGER variable, used to represent that a variable points
6610 to what an INTEGER "points to". */
6611 var_integer
= new_var_info (NULL_TREE
, "INTEGER");
6612 gcc_assert (var_integer
->id
== integer_id
);
6613 var_integer
->is_artificial_var
= 1;
6614 var_integer
->size
= ~0;
6615 var_integer
->fullsize
= ~0;
6616 var_integer
->offset
= 0;
6617 var_integer
->is_special_var
= 1;
6619 /* INTEGER = ANYTHING, because we don't know where a dereference of
6620 a random integer will point to. */
6622 lhs
.var
= integer_id
;
6624 rhs
.type
= ADDRESSOF
;
6625 rhs
.var
= anything_id
;
6627 process_constraint (new_constraint (lhs
, rhs
));
6630 /* Initialize things necessary to perform PTA */
6633 init_alias_vars (void)
6635 use_field_sensitive
= (MAX_FIELDS_FOR_FIELD_SENSITIVE
> 1);
6637 bitmap_obstack_initialize (&pta_obstack
);
6638 bitmap_obstack_initialize (&oldpta_obstack
);
6639 bitmap_obstack_initialize (&predbitmap_obstack
);
6641 constraint_pool
= create_alloc_pool ("Constraint pool",
6642 sizeof (struct constraint
), 30);
6643 variable_info_pool
= create_alloc_pool ("Variable info pool",
6644 sizeof (struct variable_info
), 30);
6645 constraints
.create (8);
6647 vi_for_tree
= new hash_map
<tree
, varinfo_t
>;
6648 call_stmt_vars
= new hash_map
<gimple
, varinfo_t
>;
6650 memset (&stats
, 0, sizeof (stats
));
6651 shared_bitmap_table
= new hash_table
<shared_bitmap_hasher
> (511);
6654 gcc_obstack_init (&fake_var_decl_obstack
);
6656 final_solutions
= new hash_map
<varinfo_t
, pt_solution
*>;
6657 gcc_obstack_init (&final_solutions_obstack
);
6660 /* Remove the REF and ADDRESS edges from GRAPH, as well as all the
6661 predecessor edges. */
6664 remove_preds_and_fake_succs (constraint_graph_t graph
)
6668 /* Clear the implicit ref and address nodes from the successor
6670 for (i
= 1; i
< FIRST_REF_NODE
; i
++)
6672 if (graph
->succs
[i
])
6673 bitmap_clear_range (graph
->succs
[i
], FIRST_REF_NODE
,
6674 FIRST_REF_NODE
* 2);
6677 /* Free the successor list for the non-ref nodes. */
6678 for (i
= FIRST_REF_NODE
+ 1; i
< graph
->size
; i
++)
6680 if (graph
->succs
[i
])
6681 BITMAP_FREE (graph
->succs
[i
]);
6684 /* Now reallocate the size of the successor list as, and blow away
6685 the predecessor bitmaps. */
6686 graph
->size
= varmap
.length ();
6687 graph
->succs
= XRESIZEVEC (bitmap
, graph
->succs
, graph
->size
);
6689 free (graph
->implicit_preds
);
6690 graph
->implicit_preds
= NULL
;
6691 free (graph
->preds
);
6692 graph
->preds
= NULL
;
6693 bitmap_obstack_release (&predbitmap_obstack
);
6696 /* Solve the constraint set. */
6699 solve_constraints (void)
6701 struct scc_info
*si
;
6705 "\nCollapsing static cycles and doing variable "
6708 init_graph (varmap
.length () * 2);
6711 fprintf (dump_file
, "Building predecessor graph\n");
6712 build_pred_graph ();
6715 fprintf (dump_file
, "Detecting pointer and location "
6717 si
= perform_var_substitution (graph
);
6720 fprintf (dump_file
, "Rewriting constraints and unifying "
6722 rewrite_constraints (graph
, si
);
6724 build_succ_graph ();
6726 free_var_substitution_info (si
);
6728 /* Attach complex constraints to graph nodes. */
6729 move_complex_constraints (graph
);
6732 fprintf (dump_file
, "Uniting pointer but not location equivalent "
6734 unite_pointer_equivalences (graph
);
6737 fprintf (dump_file
, "Finding indirect cycles\n");
6738 find_indirect_cycles (graph
);
6740 /* Implicit nodes and predecessors are no longer necessary at this
6742 remove_preds_and_fake_succs (graph
);
6744 if (dump_file
&& (dump_flags
& TDF_GRAPH
))
6746 fprintf (dump_file
, "\n\n// The constraint graph before solve-graph "
6747 "in dot format:\n");
6748 dump_constraint_graph (dump_file
);
6749 fprintf (dump_file
, "\n\n");
6753 fprintf (dump_file
, "Solving graph\n");
6755 solve_graph (graph
);
6757 if (dump_file
&& (dump_flags
& TDF_GRAPH
))
6759 fprintf (dump_file
, "\n\n// The constraint graph after solve-graph "
6760 "in dot format:\n");
6761 dump_constraint_graph (dump_file
);
6762 fprintf (dump_file
, "\n\n");
6766 dump_sa_points_to_info (dump_file
);
6769 /* Create points-to sets for the current function. See the comments
6770 at the start of the file for an algorithmic overview. */
6773 compute_points_to_sets (void)
6779 timevar_push (TV_TREE_PTA
);
6783 intra_create_variable_infos (cfun
);
6785 /* Now walk all statements and build the constraint set. */
6786 FOR_EACH_BB_FN (bb
, cfun
)
6788 for (gphi_iterator gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
);
6791 gphi
*phi
= gsi
.phi ();
6793 if (! virtual_operand_p (gimple_phi_result (phi
)))
6794 find_func_aliases (cfun
, phi
);
6797 for (gimple_stmt_iterator gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
);
6800 gimple stmt
= gsi_stmt (gsi
);
6802 find_func_aliases (cfun
, stmt
);
6808 fprintf (dump_file
, "Points-to analysis\n\nConstraints:\n\n");
6809 dump_constraints (dump_file
, 0);
6812 /* From the constraints compute the points-to sets. */
6813 solve_constraints ();
6815 /* Compute the points-to set for ESCAPED used for call-clobber analysis. */
6816 cfun
->gimple_df
->escaped
= find_what_var_points_to (get_varinfo (escaped_id
));
6818 /* Make sure the ESCAPED solution (which is used as placeholder in
6819 other solutions) does not reference itself. This simplifies
6820 points-to solution queries. */
6821 cfun
->gimple_df
->escaped
.escaped
= 0;
6823 /* Compute the points-to sets for pointer SSA_NAMEs. */
6824 for (i
= 0; i
< num_ssa_names
; ++i
)
6826 tree ptr
= ssa_name (i
);
6828 && POINTER_TYPE_P (TREE_TYPE (ptr
)))
6829 find_what_p_points_to (ptr
);
6832 /* Compute the call-used/clobbered sets. */
6833 FOR_EACH_BB_FN (bb
, cfun
)
6835 gimple_stmt_iterator gsi
;
6837 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
6840 struct pt_solution
*pt
;
6842 stmt
= dyn_cast
<gcall
*> (gsi_stmt (gsi
));
6846 pt
= gimple_call_use_set (stmt
);
6847 if (gimple_call_flags (stmt
) & ECF_CONST
)
6848 memset (pt
, 0, sizeof (struct pt_solution
));
6849 else if ((vi
= lookup_call_use_vi (stmt
)) != NULL
)
6851 *pt
= find_what_var_points_to (vi
);
6852 /* Escaped (and thus nonlocal) variables are always
6853 implicitly used by calls. */
6854 /* ??? ESCAPED can be empty even though NONLOCAL
6861 /* If there is nothing special about this call then
6862 we have made everything that is used also escape. */
6863 *pt
= cfun
->gimple_df
->escaped
;
6867 pt
= gimple_call_clobber_set (stmt
);
6868 if (gimple_call_flags (stmt
) & (ECF_CONST
|ECF_PURE
|ECF_NOVOPS
))
6869 memset (pt
, 0, sizeof (struct pt_solution
));
6870 else if ((vi
= lookup_call_clobber_vi (stmt
)) != NULL
)
6872 *pt
= find_what_var_points_to (vi
);
6873 /* Escaped (and thus nonlocal) variables are always
6874 implicitly clobbered by calls. */
6875 /* ??? ESCAPED can be empty even though NONLOCAL
6882 /* If there is nothing special about this call then
6883 we have made everything that is used also escape. */
6884 *pt
= cfun
->gimple_df
->escaped
;
6890 timevar_pop (TV_TREE_PTA
);
6894 /* Delete created points-to sets. */
6897 delete_points_to_sets (void)
6901 delete shared_bitmap_table
;
6902 shared_bitmap_table
= NULL
;
6903 if (dump_file
&& (dump_flags
& TDF_STATS
))
6904 fprintf (dump_file
, "Points to sets created:%d\n",
6905 stats
.points_to_sets_created
);
6908 delete call_stmt_vars
;
6909 bitmap_obstack_release (&pta_obstack
);
6910 constraints
.release ();
6912 for (i
= 0; i
< graph
->size
; i
++)
6913 graph
->complex[i
].release ();
6914 free (graph
->complex);
6917 free (graph
->succs
);
6919 free (graph
->pe_rep
);
6920 free (graph
->indirect_cycles
);
6924 free_alloc_pool (variable_info_pool
);
6925 free_alloc_pool (constraint_pool
);
6927 obstack_free (&fake_var_decl_obstack
, NULL
);
6929 delete final_solutions
;
6930 obstack_free (&final_solutions_obstack
, NULL
);
6934 /* Compute points-to information for every SSA_NAME pointer in the
6935 current function and compute the transitive closure of escaped
6936 variables to re-initialize the call-clobber states of local variables. */
6939 compute_may_aliases (void)
6941 if (cfun
->gimple_df
->ipa_pta
)
6945 fprintf (dump_file
, "\nNot re-computing points-to information "
6946 "because IPA points-to information is available.\n\n");
6948 /* But still dump what we have remaining it. */
6949 dump_alias_info (dump_file
);
6955 /* For each pointer P_i, determine the sets of variables that P_i may
6956 point-to. Compute the reachability set of escaped and call-used
6958 compute_points_to_sets ();
6960 /* Debugging dumps. */
6962 dump_alias_info (dump_file
);
6964 /* Deallocate memory used by aliasing data structures and the internal
6965 points-to solution. */
6966 delete_points_to_sets ();
6968 gcc_assert (!need_ssa_update_p (cfun
));
6973 /* A dummy pass to cause points-to information to be computed via
6974 TODO_rebuild_alias. */
6978 const pass_data pass_data_build_alias
=
6980 GIMPLE_PASS
, /* type */
6982 OPTGROUP_NONE
, /* optinfo_flags */
6983 TV_NONE
, /* tv_id */
6984 ( PROP_cfg
| PROP_ssa
), /* properties_required */
6985 0, /* properties_provided */
6986 0, /* properties_destroyed */
6987 0, /* todo_flags_start */
6988 TODO_rebuild_alias
, /* todo_flags_finish */
6991 class pass_build_alias
: public gimple_opt_pass
6994 pass_build_alias (gcc::context
*ctxt
)
6995 : gimple_opt_pass (pass_data_build_alias
, ctxt
)
6998 /* opt_pass methods: */
6999 virtual bool gate (function
*) { return flag_tree_pta
; }
7001 }; // class pass_build_alias
7006 make_pass_build_alias (gcc::context
*ctxt
)
7008 return new pass_build_alias (ctxt
);
7011 /* A dummy pass to cause points-to information to be computed via
7012 TODO_rebuild_alias. */
7016 const pass_data pass_data_build_ealias
=
7018 GIMPLE_PASS
, /* type */
7019 "ealias", /* name */
7020 OPTGROUP_NONE
, /* optinfo_flags */
7021 TV_NONE
, /* tv_id */
7022 ( PROP_cfg
| PROP_ssa
), /* properties_required */
7023 0, /* properties_provided */
7024 0, /* properties_destroyed */
7025 0, /* todo_flags_start */
7026 TODO_rebuild_alias
, /* todo_flags_finish */
7029 class pass_build_ealias
: public gimple_opt_pass
7032 pass_build_ealias (gcc::context
*ctxt
)
7033 : gimple_opt_pass (pass_data_build_ealias
, ctxt
)
7036 /* opt_pass methods: */
7037 virtual bool gate (function
*) { return flag_tree_pta
; }
7039 }; // class pass_build_ealias
7044 make_pass_build_ealias (gcc::context
*ctxt
)
7046 return new pass_build_ealias (ctxt
);
7050 /* IPA PTA solutions for ESCAPED. */
7051 struct pt_solution ipa_escaped_pt
7052 = { true, false, false, false, false, false, false, false, NULL
};
7054 /* Associate node with varinfo DATA. Worker for
7055 cgraph_for_node_and_aliases. */
7057 associate_varinfo_to_alias (struct cgraph_node
*node
, void *data
)
7059 if ((node
->alias
|| node
->thunk
.thunk_p
)
7061 insert_vi_for_tree (node
->decl
, (varinfo_t
)data
);
7065 /* Execute the driver for IPA PTA. */
7067 ipa_pta_execute (void)
7069 struct cgraph_node
*node
;
7077 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7079 symtab_node::dump_table (dump_file
);
7080 fprintf (dump_file
, "\n");
7083 /* Build the constraints. */
7084 FOR_EACH_DEFINED_FUNCTION (node
)
7087 /* Nodes without a body are not interesting. Especially do not
7088 visit clones at this point for now - we get duplicate decls
7089 there for inline clones at least. */
7090 if (!node
->has_gimple_body_p () || node
->clone_of
)
7094 gcc_assert (!node
->clone_of
);
7096 vi
= create_function_info_for (node
->decl
,
7097 alias_get_name (node
->decl
));
7098 node
->call_for_symbol_thunks_and_aliases
7099 (associate_varinfo_to_alias
, vi
, true);
7102 /* Create constraints for global variables and their initializers. */
7103 FOR_EACH_VARIABLE (var
)
7105 if (var
->alias
&& var
->analyzed
)
7108 get_vi_for_tree (var
->decl
);
7114 "Generating constraints for global initializers\n\n");
7115 dump_constraints (dump_file
, 0);
7116 fprintf (dump_file
, "\n");
7118 from
= constraints
.length ();
7120 FOR_EACH_DEFINED_FUNCTION (node
)
7122 struct function
*func
;
7125 /* Nodes without a body are not interesting. */
7126 if (!node
->has_gimple_body_p () || node
->clone_of
)
7132 "Generating constraints for %s", node
->name ());
7133 if (DECL_ASSEMBLER_NAME_SET_P (node
->decl
))
7134 fprintf (dump_file
, " (%s)",
7136 (DECL_ASSEMBLER_NAME (node
->decl
)));
7137 fprintf (dump_file
, "\n");
7140 func
= DECL_STRUCT_FUNCTION (node
->decl
);
7141 gcc_assert (cfun
== NULL
);
7143 /* For externally visible or attribute used annotated functions use
7144 local constraints for their arguments.
7145 For local functions we see all callers and thus do not need initial
7146 constraints for parameters. */
7147 if (node
->used_from_other_partition
7148 || node
->externally_visible
7149 || node
->force_output
)
7151 intra_create_variable_infos (func
);
7153 /* We also need to make function return values escape. Nothing
7154 escapes by returning from main though. */
7155 if (!MAIN_NAME_P (DECL_NAME (node
->decl
)))
7158 fi
= lookup_vi_for_tree (node
->decl
);
7159 rvi
= first_vi_for_offset (fi
, fi_result
);
7160 if (rvi
&& rvi
->offset
== fi_result
)
7162 struct constraint_expr includes
;
7163 struct constraint_expr var
;
7164 includes
.var
= escaped_id
;
7165 includes
.offset
= 0;
7166 includes
.type
= SCALAR
;
7170 process_constraint (new_constraint (includes
, var
));
7175 /* Build constriants for the function body. */
7176 FOR_EACH_BB_FN (bb
, func
)
7178 for (gphi_iterator gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
);
7181 gphi
*phi
= gsi
.phi ();
7183 if (! virtual_operand_p (gimple_phi_result (phi
)))
7184 find_func_aliases (func
, phi
);
7187 for (gimple_stmt_iterator gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
);
7190 gimple stmt
= gsi_stmt (gsi
);
7192 find_func_aliases (func
, stmt
);
7193 find_func_clobbers (func
, stmt
);
7199 fprintf (dump_file
, "\n");
7200 dump_constraints (dump_file
, from
);
7201 fprintf (dump_file
, "\n");
7203 from
= constraints
.length ();
7206 /* From the constraints compute the points-to sets. */
7207 solve_constraints ();
7209 /* Compute the global points-to sets for ESCAPED.
7210 ??? Note that the computed escape set is not correct
7211 for the whole unit as we fail to consider graph edges to
7212 externally visible functions. */
7213 ipa_escaped_pt
= find_what_var_points_to (get_varinfo (escaped_id
));
7215 /* Make sure the ESCAPED solution (which is used as placeholder in
7216 other solutions) does not reference itself. This simplifies
7217 points-to solution queries. */
7218 ipa_escaped_pt
.ipa_escaped
= 0;
7220 /* Assign the points-to sets to the SSA names in the unit. */
7221 FOR_EACH_DEFINED_FUNCTION (node
)
7224 struct function
*fn
;
7228 /* Nodes without a body are not interesting. */
7229 if (!node
->has_gimple_body_p () || node
->clone_of
)
7232 fn
= DECL_STRUCT_FUNCTION (node
->decl
);
7234 /* Compute the points-to sets for pointer SSA_NAMEs. */
7235 FOR_EACH_VEC_ELT (*fn
->gimple_df
->ssa_names
, i
, ptr
)
7238 && POINTER_TYPE_P (TREE_TYPE (ptr
)))
7239 find_what_p_points_to (ptr
);
7242 /* Compute the call-use and call-clobber sets for indirect calls
7243 and calls to external functions. */
7244 FOR_EACH_BB_FN (bb
, fn
)
7246 gimple_stmt_iterator gsi
;
7248 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
7251 struct pt_solution
*pt
;
7255 stmt
= dyn_cast
<gcall
*> (gsi_stmt (gsi
));
7259 /* Handle direct calls to functions with body. */
7260 decl
= gimple_call_fndecl (stmt
);
7262 && (fi
= lookup_vi_for_tree (decl
))
7265 *gimple_call_clobber_set (stmt
)
7266 = find_what_var_points_to
7267 (first_vi_for_offset (fi
, fi_clobbers
));
7268 *gimple_call_use_set (stmt
)
7269 = find_what_var_points_to
7270 (first_vi_for_offset (fi
, fi_uses
));
7272 /* Handle direct calls to external functions. */
7275 pt
= gimple_call_use_set (stmt
);
7276 if (gimple_call_flags (stmt
) & ECF_CONST
)
7277 memset (pt
, 0, sizeof (struct pt_solution
));
7278 else if ((vi
= lookup_call_use_vi (stmt
)) != NULL
)
7280 *pt
= find_what_var_points_to (vi
);
7281 /* Escaped (and thus nonlocal) variables are always
7282 implicitly used by calls. */
7283 /* ??? ESCAPED can be empty even though NONLOCAL
7286 pt
->ipa_escaped
= 1;
7290 /* If there is nothing special about this call then
7291 we have made everything that is used also escape. */
7292 *pt
= ipa_escaped_pt
;
7296 pt
= gimple_call_clobber_set (stmt
);
7297 if (gimple_call_flags (stmt
) & (ECF_CONST
|ECF_PURE
|ECF_NOVOPS
))
7298 memset (pt
, 0, sizeof (struct pt_solution
));
7299 else if ((vi
= lookup_call_clobber_vi (stmt
)) != NULL
)
7301 *pt
= find_what_var_points_to (vi
);
7302 /* Escaped (and thus nonlocal) variables are always
7303 implicitly clobbered by calls. */
7304 /* ??? ESCAPED can be empty even though NONLOCAL
7307 pt
->ipa_escaped
= 1;
7311 /* If there is nothing special about this call then
7312 we have made everything that is used also escape. */
7313 *pt
= ipa_escaped_pt
;
7317 /* Handle indirect calls. */
7319 && (fi
= get_fi_for_callee (stmt
)))
7321 /* We need to accumulate all clobbers/uses of all possible
7323 fi
= get_varinfo (find (fi
->id
));
7324 /* If we cannot constrain the set of functions we'll end up
7325 calling we end up using/clobbering everything. */
7326 if (bitmap_bit_p (fi
->solution
, anything_id
)
7327 || bitmap_bit_p (fi
->solution
, nonlocal_id
)
7328 || bitmap_bit_p (fi
->solution
, escaped_id
))
7330 pt_solution_reset (gimple_call_clobber_set (stmt
));
7331 pt_solution_reset (gimple_call_use_set (stmt
));
7337 struct pt_solution
*uses
, *clobbers
;
7339 uses
= gimple_call_use_set (stmt
);
7340 clobbers
= gimple_call_clobber_set (stmt
);
7341 memset (uses
, 0, sizeof (struct pt_solution
));
7342 memset (clobbers
, 0, sizeof (struct pt_solution
));
7343 EXECUTE_IF_SET_IN_BITMAP (fi
->solution
, 0, i
, bi
)
7345 struct pt_solution sol
;
7347 vi
= get_varinfo (i
);
7348 if (!vi
->is_fn_info
)
7350 /* ??? We could be more precise here? */
7352 uses
->ipa_escaped
= 1;
7353 clobbers
->nonlocal
= 1;
7354 clobbers
->ipa_escaped
= 1;
7358 if (!uses
->anything
)
7360 sol
= find_what_var_points_to
7361 (first_vi_for_offset (vi
, fi_uses
));
7362 pt_solution_ior_into (uses
, &sol
);
7364 if (!clobbers
->anything
)
7366 sol
= find_what_var_points_to
7367 (first_vi_for_offset (vi
, fi_clobbers
));
7368 pt_solution_ior_into (clobbers
, &sol
);
7376 fn
->gimple_df
->ipa_pta
= true;
7379 delete_points_to_sets ();
7388 const pass_data pass_data_ipa_pta
=
7390 SIMPLE_IPA_PASS
, /* type */
7392 OPTGROUP_NONE
, /* optinfo_flags */
7393 TV_IPA_PTA
, /* tv_id */
7394 0, /* properties_required */
7395 0, /* properties_provided */
7396 0, /* properties_destroyed */
7397 0, /* todo_flags_start */
7398 0, /* todo_flags_finish */
7401 class pass_ipa_pta
: public simple_ipa_opt_pass
7404 pass_ipa_pta (gcc::context
*ctxt
)
7405 : simple_ipa_opt_pass (pass_data_ipa_pta
, ctxt
)
7408 /* opt_pass methods: */
7409 virtual bool gate (function
*)
7413 /* Don't bother doing anything if the program has errors. */
7417 virtual unsigned int execute (function
*) { return ipa_pta_execute (); }
7419 }; // class pass_ipa_pta
7423 simple_ipa_opt_pass
*
7424 make_pass_ipa_pta (gcc::context
*ctxt
)
7426 return new pass_ipa_pta (ctxt
);