libgo: update to Go 1.10.3 release
[official-gcc.git] / libgo / go / crypto / x509 / verify.go
blob60e415b7ec257cd0f03009dbb3dd790f7971ba40
1 // Copyright 2011 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
5 package x509
7 import (
8 "bytes"
9 "encoding/asn1"
10 "errors"
11 "fmt"
12 "net"
13 "net/url"
14 "reflect"
15 "runtime"
16 "strconv"
17 "strings"
18 "time"
19 "unicode/utf8"
22 type InvalidReason int
24 const (
25 // NotAuthorizedToSign results when a certificate is signed by another
26 // which isn't marked as a CA certificate.
27 NotAuthorizedToSign InvalidReason = iota
28 // Expired results when a certificate has expired, based on the time
29 // given in the VerifyOptions.
30 Expired
31 // CANotAuthorizedForThisName results when an intermediate or root
32 // certificate has a name constraint which doesn't permit a DNS or
33 // other name (including IP address) in the leaf certificate.
34 CANotAuthorizedForThisName
35 // TooManyIntermediates results when a path length constraint is
36 // violated.
37 TooManyIntermediates
38 // IncompatibleUsage results when the certificate's key usage indicates
39 // that it may only be used for a different purpose.
40 IncompatibleUsage
41 // NameMismatch results when the subject name of a parent certificate
42 // does not match the issuer name in the child.
43 NameMismatch
44 // NameConstraintsWithoutSANs results when a leaf certificate doesn't
45 // contain a Subject Alternative Name extension, but a CA certificate
46 // contains name constraints.
47 NameConstraintsWithoutSANs
48 // UnconstrainedName results when a CA certificate contains permitted
49 // name constraints, but leaf certificate contains a name of an
50 // unsupported or unconstrained type.
51 UnconstrainedName
52 // TooManyConstraints results when the number of comparision operations
53 // needed to check a certificate exceeds the limit set by
54 // VerifyOptions.MaxConstraintComparisions. This limit exists to
55 // prevent pathological certificates can consuming excessive amounts of
56 // CPU time to verify.
57 TooManyConstraints
58 // CANotAuthorizedForExtKeyUsage results when an intermediate or root
59 // certificate does not permit a requested extended key usage.
60 CANotAuthorizedForExtKeyUsage
63 // CertificateInvalidError results when an odd error occurs. Users of this
64 // library probably want to handle all these errors uniformly.
65 type CertificateInvalidError struct {
66 Cert *Certificate
67 Reason InvalidReason
68 Detail string
71 func (e CertificateInvalidError) Error() string {
72 switch e.Reason {
73 case NotAuthorizedToSign:
74 return "x509: certificate is not authorized to sign other certificates"
75 case Expired:
76 return "x509: certificate has expired or is not yet valid"
77 case CANotAuthorizedForThisName:
78 return "x509: a root or intermediate certificate is not authorized to sign for this name: " + e.Detail
79 case CANotAuthorizedForExtKeyUsage:
80 return "x509: a root or intermediate certificate is not authorized for an extended key usage: " + e.Detail
81 case TooManyIntermediates:
82 return "x509: too many intermediates for path length constraint"
83 case IncompatibleUsage:
84 return "x509: certificate specifies an incompatible key usage"
85 case NameMismatch:
86 return "x509: issuer name does not match subject from issuing certificate"
87 case NameConstraintsWithoutSANs:
88 return "x509: issuer has name constraints but leaf doesn't have a SAN extension"
89 case UnconstrainedName:
90 return "x509: issuer has name constraints but leaf contains unknown or unconstrained name: " + e.Detail
92 return "x509: unknown error"
95 // HostnameError results when the set of authorized names doesn't match the
96 // requested name.
97 type HostnameError struct {
98 Certificate *Certificate
99 Host string
102 func (h HostnameError) Error() string {
103 c := h.Certificate
105 var valid string
106 if ip := net.ParseIP(h.Host); ip != nil {
107 // Trying to validate an IP
108 if len(c.IPAddresses) == 0 {
109 return "x509: cannot validate certificate for " + h.Host + " because it doesn't contain any IP SANs"
111 for _, san := range c.IPAddresses {
112 if len(valid) > 0 {
113 valid += ", "
115 valid += san.String()
117 } else {
118 if c.hasSANExtension() {
119 valid = strings.Join(c.DNSNames, ", ")
120 } else {
121 valid = c.Subject.CommonName
125 if len(valid) == 0 {
126 return "x509: certificate is not valid for any names, but wanted to match " + h.Host
128 return "x509: certificate is valid for " + valid + ", not " + h.Host
131 // UnknownAuthorityError results when the certificate issuer is unknown
132 type UnknownAuthorityError struct {
133 Cert *Certificate
134 // hintErr contains an error that may be helpful in determining why an
135 // authority wasn't found.
136 hintErr error
137 // hintCert contains a possible authority certificate that was rejected
138 // because of the error in hintErr.
139 hintCert *Certificate
142 func (e UnknownAuthorityError) Error() string {
143 s := "x509: certificate signed by unknown authority"
144 if e.hintErr != nil {
145 certName := e.hintCert.Subject.CommonName
146 if len(certName) == 0 {
147 if len(e.hintCert.Subject.Organization) > 0 {
148 certName = e.hintCert.Subject.Organization[0]
149 } else {
150 certName = "serial:" + e.hintCert.SerialNumber.String()
153 s += fmt.Sprintf(" (possibly because of %q while trying to verify candidate authority certificate %q)", e.hintErr, certName)
155 return s
158 // SystemRootsError results when we fail to load the system root certificates.
159 type SystemRootsError struct {
160 Err error
163 func (se SystemRootsError) Error() string {
164 msg := "x509: failed to load system roots and no roots provided"
165 if se.Err != nil {
166 return msg + "; " + se.Err.Error()
168 return msg
171 // errNotParsed is returned when a certificate without ASN.1 contents is
172 // verified. Platform-specific verification needs the ASN.1 contents.
173 var errNotParsed = errors.New("x509: missing ASN.1 contents; use ParseCertificate")
175 // VerifyOptions contains parameters for Certificate.Verify. It's a structure
176 // because other PKIX verification APIs have ended up needing many options.
177 type VerifyOptions struct {
178 DNSName string
179 Intermediates *CertPool
180 Roots *CertPool // if nil, the system roots are used
181 CurrentTime time.Time // if zero, the current time is used
182 // KeyUsage specifies which Extended Key Usage values are acceptable. A leaf
183 // certificate is accepted if it contains any of the listed values. An empty
184 // list means ExtKeyUsageServerAuth. To accept any key usage, include
185 // ExtKeyUsageAny.
187 // Certificate chains are required to nest these extended key usage values.
188 // (This matches the Windows CryptoAPI behavior, but not the spec.)
189 KeyUsages []ExtKeyUsage
190 // MaxConstraintComparisions is the maximum number of comparisons to
191 // perform when checking a given certificate's name constraints. If
192 // zero, a sensible default is used. This limit prevents pathalogical
193 // certificates from consuming excessive amounts of CPU time when
194 // validating.
195 MaxConstraintComparisions int
198 const (
199 leafCertificate = iota
200 intermediateCertificate
201 rootCertificate
204 // rfc2821Mailbox represents a “mailbox” (which is an email address to most
205 // people) by breaking it into the “local” (i.e. before the '@') and “domain”
206 // parts.
207 type rfc2821Mailbox struct {
208 local, domain string
211 // parseRFC2821Mailbox parses an email address into local and domain parts,
212 // based on the ABNF for a “Mailbox” from RFC 2821. According to
213 // https://tools.ietf.org/html/rfc5280#section-4.2.1.6 that's correct for an
214 // rfc822Name from a certificate: “The format of an rfc822Name is a "Mailbox"
215 // as defined in https://tools.ietf.org/html/rfc2821#section-4.1.2”.
216 func parseRFC2821Mailbox(in string) (mailbox rfc2821Mailbox, ok bool) {
217 if len(in) == 0 {
218 return mailbox, false
221 localPartBytes := make([]byte, 0, len(in)/2)
223 if in[0] == '"' {
224 // Quoted-string = DQUOTE *qcontent DQUOTE
225 // non-whitespace-control = %d1-8 / %d11 / %d12 / %d14-31 / %d127
226 // qcontent = qtext / quoted-pair
227 // qtext = non-whitespace-control /
228 // %d33 / %d35-91 / %d93-126
229 // quoted-pair = ("\" text) / obs-qp
230 // text = %d1-9 / %d11 / %d12 / %d14-127 / obs-text
232 // (Names beginning with “obs-” are the obsolete syntax from
233 // https://tools.ietf.org/html/rfc2822#section-4. Since it has
234 // been 16 years, we no longer accept that.)
235 in = in[1:]
236 QuotedString:
237 for {
238 if len(in) == 0 {
239 return mailbox, false
241 c := in[0]
242 in = in[1:]
244 switch {
245 case c == '"':
246 break QuotedString
248 case c == '\\':
249 // quoted-pair
250 if len(in) == 0 {
251 return mailbox, false
253 if in[0] == 11 ||
254 in[0] == 12 ||
255 (1 <= in[0] && in[0] <= 9) ||
256 (14 <= in[0] && in[0] <= 127) {
257 localPartBytes = append(localPartBytes, in[0])
258 in = in[1:]
259 } else {
260 return mailbox, false
263 case c == 11 ||
264 c == 12 ||
265 // Space (char 32) is not allowed based on the
266 // BNF, but RFC 3696 gives an example that
267 // assumes that it is. Several “verified”
268 // errata continue to argue about this point.
269 // We choose to accept it.
270 c == 32 ||
271 c == 33 ||
272 c == 127 ||
273 (1 <= c && c <= 8) ||
274 (14 <= c && c <= 31) ||
275 (35 <= c && c <= 91) ||
276 (93 <= c && c <= 126):
277 // qtext
278 localPartBytes = append(localPartBytes, c)
280 default:
281 return mailbox, false
284 } else {
285 // Atom ("." Atom)*
286 NextChar:
287 for len(in) > 0 {
288 // atext from https://tools.ietf.org/html/rfc2822#section-3.2.4
289 c := in[0]
291 switch {
292 case c == '\\':
293 // Examples given in RFC 3696 suggest that
294 // escaped characters can appear outside of a
295 // quoted string. Several “verified” errata
296 // continue to argue the point. We choose to
297 // accept it.
298 in = in[1:]
299 if len(in) == 0 {
300 return mailbox, false
302 fallthrough
304 case ('0' <= c && c <= '9') ||
305 ('a' <= c && c <= 'z') ||
306 ('A' <= c && c <= 'Z') ||
307 c == '!' || c == '#' || c == '$' || c == '%' ||
308 c == '&' || c == '\'' || c == '*' || c == '+' ||
309 c == '-' || c == '/' || c == '=' || c == '?' ||
310 c == '^' || c == '_' || c == '`' || c == '{' ||
311 c == '|' || c == '}' || c == '~' || c == '.':
312 localPartBytes = append(localPartBytes, in[0])
313 in = in[1:]
315 default:
316 break NextChar
320 if len(localPartBytes) == 0 {
321 return mailbox, false
324 // https://tools.ietf.org/html/rfc3696#section-3
325 // “period (".") may also appear, but may not be used to start
326 // or end the local part, nor may two or more consecutive
327 // periods appear.”
328 twoDots := []byte{'.', '.'}
329 if localPartBytes[0] == '.' ||
330 localPartBytes[len(localPartBytes)-1] == '.' ||
331 bytes.Contains(localPartBytes, twoDots) {
332 return mailbox, false
336 if len(in) == 0 || in[0] != '@' {
337 return mailbox, false
339 in = in[1:]
341 // The RFC species a format for domains, but that's known to be
342 // violated in practice so we accept that anything after an '@' is the
343 // domain part.
344 if _, ok := domainToReverseLabels(in); !ok {
345 return mailbox, false
348 mailbox.local = string(localPartBytes)
349 mailbox.domain = in
350 return mailbox, true
353 // domainToReverseLabels converts a textual domain name like foo.example.com to
354 // the list of labels in reverse order, e.g. ["com", "example", "foo"].
355 func domainToReverseLabels(domain string) (reverseLabels []string, ok bool) {
356 for len(domain) > 0 {
357 if i := strings.LastIndexByte(domain, '.'); i == -1 {
358 reverseLabels = append(reverseLabels, domain)
359 domain = ""
360 } else {
361 reverseLabels = append(reverseLabels, domain[i+1:len(domain)])
362 domain = domain[:i]
366 if len(reverseLabels) > 0 && len(reverseLabels[0]) == 0 {
367 // An empty label at the end indicates an absolute value.
368 return nil, false
371 for _, label := range reverseLabels {
372 if len(label) == 0 {
373 // Empty labels are otherwise invalid.
374 return nil, false
377 for _, c := range label {
378 if c < 33 || c > 126 {
379 // Invalid character.
380 return nil, false
385 return reverseLabels, true
388 func matchEmailConstraint(mailbox rfc2821Mailbox, constraint string) (bool, error) {
389 // If the constraint contains an @, then it specifies an exact mailbox
390 // name.
391 if strings.Contains(constraint, "@") {
392 constraintMailbox, ok := parseRFC2821Mailbox(constraint)
393 if !ok {
394 return false, fmt.Errorf("x509: internal error: cannot parse constraint %q", constraint)
396 return mailbox.local == constraintMailbox.local && strings.EqualFold(mailbox.domain, constraintMailbox.domain), nil
399 // Otherwise the constraint is like a DNS constraint of the domain part
400 // of the mailbox.
401 return matchDomainConstraint(mailbox.domain, constraint)
404 func matchURIConstraint(uri *url.URL, constraint string) (bool, error) {
405 // https://tools.ietf.org/html/rfc5280#section-4.2.1.10
406 // “a uniformResourceIdentifier that does not include an authority
407 // component with a host name specified as a fully qualified domain
408 // name (e.g., if the URI either does not include an authority
409 // component or includes an authority component in which the host name
410 // is specified as an IP address), then the application MUST reject the
411 // certificate.”
413 host := uri.Host
414 if len(host) == 0 {
415 return false, fmt.Errorf("URI with empty host (%q) cannot be matched against constraints", uri.String())
418 if strings.Contains(host, ":") && !strings.HasSuffix(host, "]") {
419 var err error
420 host, _, err = net.SplitHostPort(uri.Host)
421 if err != nil {
422 return false, err
426 if strings.HasPrefix(host, "[") && strings.HasSuffix(host, "]") ||
427 net.ParseIP(host) != nil {
428 return false, fmt.Errorf("URI with IP (%q) cannot be matched against constraints", uri.String())
431 return matchDomainConstraint(host, constraint)
434 func matchIPConstraint(ip net.IP, constraint *net.IPNet) (bool, error) {
435 if len(ip) != len(constraint.IP) {
436 return false, nil
439 for i := range ip {
440 if mask := constraint.Mask[i]; ip[i]&mask != constraint.IP[i]&mask {
441 return false, nil
445 return true, nil
448 func matchDomainConstraint(domain, constraint string) (bool, error) {
449 // The meaning of zero length constraints is not specified, but this
450 // code follows NSS and accepts them as matching everything.
451 if len(constraint) == 0 {
452 return true, nil
455 domainLabels, ok := domainToReverseLabels(domain)
456 if !ok {
457 return false, fmt.Errorf("x509: internal error: cannot parse domain %q", domain)
460 // RFC 5280 says that a leading period in a domain name means that at
461 // least one label must be prepended, but only for URI and email
462 // constraints, not DNS constraints. The code also supports that
463 // behaviour for DNS constraints.
465 mustHaveSubdomains := false
466 if constraint[0] == '.' {
467 mustHaveSubdomains = true
468 constraint = constraint[1:]
471 constraintLabels, ok := domainToReverseLabels(constraint)
472 if !ok {
473 return false, fmt.Errorf("x509: internal error: cannot parse domain %q", constraint)
476 if len(domainLabels) < len(constraintLabels) ||
477 (mustHaveSubdomains && len(domainLabels) == len(constraintLabels)) {
478 return false, nil
481 for i, constraintLabel := range constraintLabels {
482 if !strings.EqualFold(constraintLabel, domainLabels[i]) {
483 return false, nil
487 return true, nil
490 // checkNameConstraints checks that c permits a child certificate to claim the
491 // given name, of type nameType. The argument parsedName contains the parsed
492 // form of name, suitable for passing to the match function. The total number
493 // of comparisons is tracked in the given count and should not exceed the given
494 // limit.
495 func (c *Certificate) checkNameConstraints(count *int,
496 maxConstraintComparisons int,
497 nameType string,
498 name string,
499 parsedName interface{},
500 match func(parsedName, constraint interface{}) (match bool, err error),
501 permitted, excluded interface{}) error {
503 excludedValue := reflect.ValueOf(excluded)
505 *count += excludedValue.Len()
506 if *count > maxConstraintComparisons {
507 return CertificateInvalidError{c, TooManyConstraints, ""}
510 for i := 0; i < excludedValue.Len(); i++ {
511 constraint := excludedValue.Index(i).Interface()
512 match, err := match(parsedName, constraint)
513 if err != nil {
514 return CertificateInvalidError{c, CANotAuthorizedForThisName, err.Error()}
517 if match {
518 return CertificateInvalidError{c, CANotAuthorizedForThisName, fmt.Sprintf("%s %q is excluded by constraint %q", nameType, name, constraint)}
522 permittedValue := reflect.ValueOf(permitted)
524 *count += permittedValue.Len()
525 if *count > maxConstraintComparisons {
526 return CertificateInvalidError{c, TooManyConstraints, ""}
529 ok := true
530 for i := 0; i < permittedValue.Len(); i++ {
531 constraint := permittedValue.Index(i).Interface()
533 var err error
534 if ok, err = match(parsedName, constraint); err != nil {
535 return CertificateInvalidError{c, CANotAuthorizedForThisName, err.Error()}
538 if ok {
539 break
543 if !ok {
544 return CertificateInvalidError{c, CANotAuthorizedForThisName, fmt.Sprintf("%s %q is not permitted by any constraint", nameType, name)}
547 return nil
550 // isValid performs validity checks on c given that it is a candidate to append
551 // to the chain in currentChain.
552 func (c *Certificate) isValid(certType int, currentChain []*Certificate, opts *VerifyOptions) error {
553 if len(c.UnhandledCriticalExtensions) > 0 {
554 return UnhandledCriticalExtension{}
557 if len(currentChain) > 0 {
558 child := currentChain[len(currentChain)-1]
559 if !bytes.Equal(child.RawIssuer, c.RawSubject) {
560 return CertificateInvalidError{c, NameMismatch, ""}
564 now := opts.CurrentTime
565 if now.IsZero() {
566 now = time.Now()
568 if now.Before(c.NotBefore) || now.After(c.NotAfter) {
569 return CertificateInvalidError{c, Expired, ""}
572 maxConstraintComparisons := opts.MaxConstraintComparisions
573 if maxConstraintComparisons == 0 {
574 maxConstraintComparisons = 250000
576 comparisonCount := 0
578 var leaf *Certificate
579 if certType == intermediateCertificate || certType == rootCertificate {
580 if len(currentChain) == 0 {
581 return errors.New("x509: internal error: empty chain when appending CA cert")
583 leaf = currentChain[0]
586 if (certType == intermediateCertificate || certType == rootCertificate) && c.hasNameConstraints() {
587 sanExtension, ok := leaf.getSANExtension()
588 if !ok {
589 // This is the deprecated, legacy case of depending on
590 // the CN as a hostname. Chains modern enough to be
591 // using name constraints should not be depending on
592 // CNs.
593 return CertificateInvalidError{c, NameConstraintsWithoutSANs, ""}
596 err := forEachSAN(sanExtension, func(tag int, data []byte) error {
597 switch tag {
598 case nameTypeEmail:
599 name := string(data)
600 mailbox, ok := parseRFC2821Mailbox(name)
601 if !ok {
602 return fmt.Errorf("x509: cannot parse rfc822Name %q", mailbox)
605 if err := c.checkNameConstraints(&comparisonCount, maxConstraintComparisons, "email address", name, mailbox,
606 func(parsedName, constraint interface{}) (bool, error) {
607 return matchEmailConstraint(parsedName.(rfc2821Mailbox), constraint.(string))
608 }, c.PermittedEmailAddresses, c.ExcludedEmailAddresses); err != nil {
609 return err
612 case nameTypeDNS:
613 name := string(data)
614 if _, ok := domainToReverseLabels(name); !ok {
615 return fmt.Errorf("x509: cannot parse dnsName %q", name)
618 if err := c.checkNameConstraints(&comparisonCount, maxConstraintComparisons, "DNS name", name, name,
619 func(parsedName, constraint interface{}) (bool, error) {
620 return matchDomainConstraint(parsedName.(string), constraint.(string))
621 }, c.PermittedDNSDomains, c.ExcludedDNSDomains); err != nil {
622 return err
625 case nameTypeURI:
626 name := string(data)
627 uri, err := url.Parse(name)
628 if err != nil {
629 return fmt.Errorf("x509: internal error: URI SAN %q failed to parse", name)
632 if err := c.checkNameConstraints(&comparisonCount, maxConstraintComparisons, "URI", name, uri,
633 func(parsedName, constraint interface{}) (bool, error) {
634 return matchURIConstraint(parsedName.(*url.URL), constraint.(string))
635 }, c.PermittedURIDomains, c.ExcludedURIDomains); err != nil {
636 return err
639 case nameTypeIP:
640 ip := net.IP(data)
641 if l := len(ip); l != net.IPv4len && l != net.IPv6len {
642 return fmt.Errorf("x509: internal error: IP SAN %x failed to parse", data)
645 if err := c.checkNameConstraints(&comparisonCount, maxConstraintComparisons, "IP address", ip.String(), ip,
646 func(parsedName, constraint interface{}) (bool, error) {
647 return matchIPConstraint(parsedName.(net.IP), constraint.(*net.IPNet))
648 }, c.PermittedIPRanges, c.ExcludedIPRanges); err != nil {
649 return err
652 default:
653 // Unknown SAN types are ignored.
656 return nil
659 if err != nil {
660 return err
664 // KeyUsage status flags are ignored. From Engineering Security, Peter
665 // Gutmann: A European government CA marked its signing certificates as
666 // being valid for encryption only, but no-one noticed. Another
667 // European CA marked its signature keys as not being valid for
668 // signatures. A different CA marked its own trusted root certificate
669 // as being invalid for certificate signing. Another national CA
670 // distributed a certificate to be used to encrypt data for the
671 // country’s tax authority that was marked as only being usable for
672 // digital signatures but not for encryption. Yet another CA reversed
673 // the order of the bit flags in the keyUsage due to confusion over
674 // encoding endianness, essentially setting a random keyUsage in
675 // certificates that it issued. Another CA created a self-invalidating
676 // certificate by adding a certificate policy statement stipulating
677 // that the certificate had to be used strictly as specified in the
678 // keyUsage, and a keyUsage containing a flag indicating that the RSA
679 // encryption key could only be used for Diffie-Hellman key agreement.
681 if certType == intermediateCertificate && (!c.BasicConstraintsValid || !c.IsCA) {
682 return CertificateInvalidError{c, NotAuthorizedToSign, ""}
685 if c.BasicConstraintsValid && c.MaxPathLen >= 0 {
686 numIntermediates := len(currentChain) - 1
687 if numIntermediates > c.MaxPathLen {
688 return CertificateInvalidError{c, TooManyIntermediates, ""}
692 return nil
695 // formatOID formats an ASN.1 OBJECT IDENTIFER in the common, dotted style.
696 func formatOID(oid asn1.ObjectIdentifier) string {
697 ret := ""
698 for i, v := range oid {
699 if i > 0 {
700 ret += "."
702 ret += strconv.Itoa(v)
704 return ret
707 // Verify attempts to verify c by building one or more chains from c to a
708 // certificate in opts.Roots, using certificates in opts.Intermediates if
709 // needed. If successful, it returns one or more chains where the first
710 // element of the chain is c and the last element is from opts.Roots.
712 // If opts.Roots is nil and system roots are unavailable the returned error
713 // will be of type SystemRootsError.
715 // Name constraints in the intermediates will be applied to all names claimed
716 // in the chain, not just opts.DNSName. Thus it is invalid for a leaf to claim
717 // example.com if an intermediate doesn't permit it, even if example.com is not
718 // the name being validated. Note that DirectoryName constraints are not
719 // supported.
721 // Extended Key Usage values are enforced down a chain, so an intermediate or
722 // root that enumerates EKUs prevents a leaf from asserting an EKU not in that
723 // list.
725 // WARNING: this function doesn't do any revocation checking.
726 func (c *Certificate) Verify(opts VerifyOptions) (chains [][]*Certificate, err error) {
727 // Platform-specific verification needs the ASN.1 contents so
728 // this makes the behavior consistent across platforms.
729 if len(c.Raw) == 0 {
730 return nil, errNotParsed
732 if opts.Intermediates != nil {
733 for _, intermediate := range opts.Intermediates.certs {
734 if len(intermediate.Raw) == 0 {
735 return nil, errNotParsed
740 // Use Windows's own verification and chain building.
741 if opts.Roots == nil && runtime.GOOS == "windows" {
742 return c.systemVerify(&opts)
745 if opts.Roots == nil {
746 opts.Roots = systemRootsPool()
747 if opts.Roots == nil {
748 return nil, SystemRootsError{systemRootsErr}
752 err = c.isValid(leafCertificate, nil, &opts)
753 if err != nil {
754 return
757 if len(opts.DNSName) > 0 {
758 err = c.VerifyHostname(opts.DNSName)
759 if err != nil {
760 return
764 var candidateChains [][]*Certificate
765 if opts.Roots.contains(c) {
766 candidateChains = append(candidateChains, []*Certificate{c})
767 } else {
768 if candidateChains, err = c.buildChains(make(map[int][][]*Certificate), []*Certificate{c}, &opts); err != nil {
769 return nil, err
773 keyUsages := opts.KeyUsages
774 if len(keyUsages) == 0 {
775 keyUsages = []ExtKeyUsage{ExtKeyUsageServerAuth}
778 // If any key usage is acceptable then we're done.
779 for _, usage := range keyUsages {
780 if usage == ExtKeyUsageAny {
781 return candidateChains, nil
785 for _, candidate := range candidateChains {
786 if checkChainForKeyUsage(candidate, keyUsages) {
787 chains = append(chains, candidate)
791 if len(chains) == 0 {
792 return nil, CertificateInvalidError{c, IncompatibleUsage, ""}
795 return chains, nil
798 func appendToFreshChain(chain []*Certificate, cert *Certificate) []*Certificate {
799 n := make([]*Certificate, len(chain)+1)
800 copy(n, chain)
801 n[len(chain)] = cert
802 return n
805 func (c *Certificate) buildChains(cache map[int][][]*Certificate, currentChain []*Certificate, opts *VerifyOptions) (chains [][]*Certificate, err error) {
806 possibleRoots, failedRoot, rootErr := opts.Roots.findVerifiedParents(c)
807 nextRoot:
808 for _, rootNum := range possibleRoots {
809 root := opts.Roots.certs[rootNum]
811 for _, cert := range currentChain {
812 if cert.Equal(root) {
813 continue nextRoot
817 err = root.isValid(rootCertificate, currentChain, opts)
818 if err != nil {
819 continue
821 chains = append(chains, appendToFreshChain(currentChain, root))
824 possibleIntermediates, failedIntermediate, intermediateErr := opts.Intermediates.findVerifiedParents(c)
825 nextIntermediate:
826 for _, intermediateNum := range possibleIntermediates {
827 intermediate := opts.Intermediates.certs[intermediateNum]
828 for _, cert := range currentChain {
829 if cert.Equal(intermediate) {
830 continue nextIntermediate
833 err = intermediate.isValid(intermediateCertificate, currentChain, opts)
834 if err != nil {
835 continue
837 var childChains [][]*Certificate
838 childChains, ok := cache[intermediateNum]
839 if !ok {
840 childChains, err = intermediate.buildChains(cache, appendToFreshChain(currentChain, intermediate), opts)
841 cache[intermediateNum] = childChains
843 chains = append(chains, childChains...)
846 if len(chains) > 0 {
847 err = nil
850 if len(chains) == 0 && err == nil {
851 hintErr := rootErr
852 hintCert := failedRoot
853 if hintErr == nil {
854 hintErr = intermediateErr
855 hintCert = failedIntermediate
857 err = UnknownAuthorityError{c, hintErr, hintCert}
860 return
863 func matchHostnames(pattern, host string) bool {
864 host = strings.TrimSuffix(host, ".")
865 pattern = strings.TrimSuffix(pattern, ".")
867 if len(pattern) == 0 || len(host) == 0 {
868 return false
871 patternParts := strings.Split(pattern, ".")
872 hostParts := strings.Split(host, ".")
874 if len(patternParts) != len(hostParts) {
875 return false
878 for i, patternPart := range patternParts {
879 if i == 0 && patternPart == "*" {
880 continue
882 if patternPart != hostParts[i] {
883 return false
887 return true
890 // toLowerCaseASCII returns a lower-case version of in. See RFC 6125 6.4.1. We use
891 // an explicitly ASCII function to avoid any sharp corners resulting from
892 // performing Unicode operations on DNS labels.
893 func toLowerCaseASCII(in string) string {
894 // If the string is already lower-case then there's nothing to do.
895 isAlreadyLowerCase := true
896 for _, c := range in {
897 if c == utf8.RuneError {
898 // If we get a UTF-8 error then there might be
899 // upper-case ASCII bytes in the invalid sequence.
900 isAlreadyLowerCase = false
901 break
903 if 'A' <= c && c <= 'Z' {
904 isAlreadyLowerCase = false
905 break
909 if isAlreadyLowerCase {
910 return in
913 out := []byte(in)
914 for i, c := range out {
915 if 'A' <= c && c <= 'Z' {
916 out[i] += 'a' - 'A'
919 return string(out)
922 // VerifyHostname returns nil if c is a valid certificate for the named host.
923 // Otherwise it returns an error describing the mismatch.
924 func (c *Certificate) VerifyHostname(h string) error {
925 // IP addresses may be written in [ ].
926 candidateIP := h
927 if len(h) >= 3 && h[0] == '[' && h[len(h)-1] == ']' {
928 candidateIP = h[1 : len(h)-1]
930 if ip := net.ParseIP(candidateIP); ip != nil {
931 // We only match IP addresses against IP SANs.
932 // https://tools.ietf.org/html/rfc6125#appendix-B.2
933 for _, candidate := range c.IPAddresses {
934 if ip.Equal(candidate) {
935 return nil
938 return HostnameError{c, candidateIP}
941 lowered := toLowerCaseASCII(h)
943 if c.hasSANExtension() {
944 for _, match := range c.DNSNames {
945 if matchHostnames(toLowerCaseASCII(match), lowered) {
946 return nil
949 // If Subject Alt Name is given, we ignore the common name.
950 } else if matchHostnames(toLowerCaseASCII(c.Subject.CommonName), lowered) {
951 return nil
954 return HostnameError{c, h}
957 func checkChainForKeyUsage(chain []*Certificate, keyUsages []ExtKeyUsage) bool {
958 usages := make([]ExtKeyUsage, len(keyUsages))
959 copy(usages, keyUsages)
961 if len(chain) == 0 {
962 return false
965 usagesRemaining := len(usages)
967 // We walk down the list and cross out any usages that aren't supported
968 // by each certificate. If we cross out all the usages, then the chain
969 // is unacceptable.
971 NextCert:
972 for i := len(chain) - 1; i >= 0; i-- {
973 cert := chain[i]
974 if len(cert.ExtKeyUsage) == 0 && len(cert.UnknownExtKeyUsage) == 0 {
975 // The certificate doesn't have any extended key usage specified.
976 continue
979 for _, usage := range cert.ExtKeyUsage {
980 if usage == ExtKeyUsageAny {
981 // The certificate is explicitly good for any usage.
982 continue NextCert
986 const invalidUsage ExtKeyUsage = -1
988 NextRequestedUsage:
989 for i, requestedUsage := range usages {
990 if requestedUsage == invalidUsage {
991 continue
994 for _, usage := range cert.ExtKeyUsage {
995 if requestedUsage == usage {
996 continue NextRequestedUsage
997 } else if requestedUsage == ExtKeyUsageServerAuth &&
998 (usage == ExtKeyUsageNetscapeServerGatedCrypto ||
999 usage == ExtKeyUsageMicrosoftServerGatedCrypto) {
1000 // In order to support COMODO
1001 // certificate chains, we have to
1002 // accept Netscape or Microsoft SGC
1003 // usages as equal to ServerAuth.
1004 continue NextRequestedUsage
1008 usages[i] = invalidUsage
1009 usagesRemaining--
1010 if usagesRemaining == 0 {
1011 return false
1016 return true