* Merge from mainline
[official-gcc.git] / gcc / final.c
blob0cb985fd4d67f576dfc577786cc246e66e974fbc
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
23 /* This is the final pass of the compiler.
24 It looks at the rtl code for a function and outputs assembler code.
26 Call `final_start_function' to output the assembler code for function entry,
27 `final' to output assembler code for some RTL code,
28 `final_end_function' to output assembler code for function exit.
29 If a function is compiled in several pieces, each piece is
30 output separately with `final'.
32 Some optimizations are also done at this level.
33 Move instructions that were made unnecessary by good register allocation
34 are detected and omitted from the output. (Though most of these
35 are removed by the last jump pass.)
37 Instructions to set the condition codes are omitted when it can be
38 seen that the condition codes already had the desired values.
40 In some cases it is sufficient if the inherited condition codes
41 have related values, but this may require the following insn
42 (the one that tests the condition codes) to be modified.
44 The code for the function prologue and epilogue are generated
45 directly in assembler by the target functions function_prologue and
46 function_epilogue. Those instructions never exist as rtl. */
48 #include "config.h"
49 #include "system.h"
50 #include "coretypes.h"
51 #include "tm.h"
53 #include "tree.h"
54 #include "rtl.h"
55 #include "tm_p.h"
56 #include "regs.h"
57 #include "insn-config.h"
58 #include "insn-attr.h"
59 #include "recog.h"
60 #include "conditions.h"
61 #include "flags.h"
62 #include "real.h"
63 #include "hard-reg-set.h"
64 #include "output.h"
65 #include "except.h"
66 #include "function.h"
67 #include "toplev.h"
68 #include "reload.h"
69 #include "intl.h"
70 #include "basic-block.h"
71 #include "target.h"
72 #include "debug.h"
73 #include "expr.h"
74 #include "cfglayout.h"
75 #include "tree-pass.h"
76 #include "timevar.h"
77 #include "cgraph.h"
78 #include "coverage.h"
80 #ifdef XCOFF_DEBUGGING_INFO
81 #include "xcoffout.h" /* Needed for external data
82 declarations for e.g. AIX 4.x. */
83 #endif
85 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
86 #include "dwarf2out.h"
87 #endif
89 #ifdef DBX_DEBUGGING_INFO
90 #include "dbxout.h"
91 #endif
93 #ifdef SDB_DEBUGGING_INFO
94 #include "sdbout.h"
95 #endif
97 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
98 null default for it to save conditionalization later. */
99 #ifndef CC_STATUS_INIT
100 #define CC_STATUS_INIT
101 #endif
103 /* How to start an assembler comment. */
104 #ifndef ASM_COMMENT_START
105 #define ASM_COMMENT_START ";#"
106 #endif
108 /* Is the given character a logical line separator for the assembler? */
109 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
110 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
111 #endif
113 #ifndef JUMP_TABLES_IN_TEXT_SECTION
114 #define JUMP_TABLES_IN_TEXT_SECTION 0
115 #endif
117 /* Bitflags used by final_scan_insn. */
118 #define SEEN_BB 1
119 #define SEEN_NOTE 2
120 #define SEEN_EMITTED 4
122 /* Last insn processed by final_scan_insn. */
123 static rtx debug_insn;
124 rtx current_output_insn;
126 /* Line number of last NOTE. */
127 static int last_linenum;
129 /* Highest line number in current block. */
130 static int high_block_linenum;
132 /* Likewise for function. */
133 static int high_function_linenum;
135 /* Filename of last NOTE. */
136 static const char *last_filename;
138 /* Whether to force emission of a line note before the next insn. */
139 static bool force_source_line = false;
141 extern const int length_unit_log; /* This is defined in insn-attrtab.c. */
143 /* Nonzero while outputting an `asm' with operands.
144 This means that inconsistencies are the user's fault, so don't die.
145 The precise value is the insn being output, to pass to error_for_asm. */
146 rtx this_is_asm_operands;
148 /* Number of operands of this insn, for an `asm' with operands. */
149 static unsigned int insn_noperands;
151 /* Compare optimization flag. */
153 static rtx last_ignored_compare = 0;
155 /* Assign a unique number to each insn that is output.
156 This can be used to generate unique local labels. */
158 static int insn_counter = 0;
160 #ifdef HAVE_cc0
161 /* This variable contains machine-dependent flags (defined in tm.h)
162 set and examined by output routines
163 that describe how to interpret the condition codes properly. */
165 CC_STATUS cc_status;
167 /* During output of an insn, this contains a copy of cc_status
168 from before the insn. */
170 CC_STATUS cc_prev_status;
171 #endif
173 /* Indexed by hardware reg number, is 1 if that register is ever
174 used in the current function.
176 In life_analysis, or in stupid_life_analysis, this is set
177 up to record the hard regs used explicitly. Reload adds
178 in the hard regs used for holding pseudo regs. Final uses
179 it to generate the code in the function prologue and epilogue
180 to save and restore registers as needed. */
182 char regs_ever_live[FIRST_PSEUDO_REGISTER];
184 /* Like regs_ever_live, but 1 if a reg is set or clobbered from an asm.
185 Unlike regs_ever_live, elements of this array corresponding to
186 eliminable regs like the frame pointer are set if an asm sets them. */
188 char regs_asm_clobbered[FIRST_PSEUDO_REGISTER];
190 /* Nonzero means current function must be given a frame pointer.
191 Initialized in function.c to 0. Set only in reload1.c as per
192 the needs of the function. */
194 int frame_pointer_needed;
196 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
198 static int block_depth;
200 /* Nonzero if have enabled APP processing of our assembler output. */
202 static int app_on;
204 /* If we are outputting an insn sequence, this contains the sequence rtx.
205 Zero otherwise. */
207 rtx final_sequence;
209 #ifdef ASSEMBLER_DIALECT
211 /* Number of the assembler dialect to use, starting at 0. */
212 static int dialect_number;
213 #endif
215 #ifdef HAVE_conditional_execution
216 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
217 rtx current_insn_predicate;
218 #endif
220 #ifdef HAVE_ATTR_length
221 static int asm_insn_count (rtx);
222 #endif
223 static void profile_function (FILE *);
224 static void profile_after_prologue (FILE *);
225 static bool notice_source_line (rtx);
226 static rtx walk_alter_subreg (rtx *);
227 static void output_asm_name (void);
228 static void output_alternate_entry_point (FILE *, rtx);
229 static tree get_mem_expr_from_op (rtx, int *);
230 static void output_asm_operand_names (rtx *, int *, int);
231 static void output_operand (rtx, int);
232 #ifdef LEAF_REGISTERS
233 static void leaf_renumber_regs (rtx);
234 #endif
235 #ifdef HAVE_cc0
236 static int alter_cond (rtx);
237 #endif
238 #ifndef ADDR_VEC_ALIGN
239 static int final_addr_vec_align (rtx);
240 #endif
241 #ifdef HAVE_ATTR_length
242 static int align_fuzz (rtx, rtx, int, unsigned);
243 #endif
245 /* Initialize data in final at the beginning of a compilation. */
247 void
248 init_final (const char *filename ATTRIBUTE_UNUSED)
250 app_on = 0;
251 final_sequence = 0;
253 #ifdef ASSEMBLER_DIALECT
254 dialect_number = ASSEMBLER_DIALECT;
255 #endif
258 /* Default target function prologue and epilogue assembler output.
260 If not overridden for epilogue code, then the function body itself
261 contains return instructions wherever needed. */
262 void
263 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED,
264 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
268 /* Default target hook that outputs nothing to a stream. */
269 void
270 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
274 /* Enable APP processing of subsequent output.
275 Used before the output from an `asm' statement. */
277 void
278 app_enable (void)
280 if (! app_on)
282 fputs (ASM_APP_ON, asm_out_file);
283 app_on = 1;
287 /* Disable APP processing of subsequent output.
288 Called from varasm.c before most kinds of output. */
290 void
291 app_disable (void)
293 if (app_on)
295 fputs (ASM_APP_OFF, asm_out_file);
296 app_on = 0;
300 /* Return the number of slots filled in the current
301 delayed branch sequence (we don't count the insn needing the
302 delay slot). Zero if not in a delayed branch sequence. */
304 #ifdef DELAY_SLOTS
306 dbr_sequence_length (void)
308 if (final_sequence != 0)
309 return XVECLEN (final_sequence, 0) - 1;
310 else
311 return 0;
313 #endif
315 /* The next two pages contain routines used to compute the length of an insn
316 and to shorten branches. */
318 /* Arrays for insn lengths, and addresses. The latter is referenced by
319 `insn_current_length'. */
321 static int *insn_lengths;
323 varray_type insn_addresses_;
325 /* Max uid for which the above arrays are valid. */
326 static int insn_lengths_max_uid;
328 /* Address of insn being processed. Used by `insn_current_length'. */
329 int insn_current_address;
331 /* Address of insn being processed in previous iteration. */
332 int insn_last_address;
334 /* known invariant alignment of insn being processed. */
335 int insn_current_align;
337 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
338 gives the next following alignment insn that increases the known
339 alignment, or NULL_RTX if there is no such insn.
340 For any alignment obtained this way, we can again index uid_align with
341 its uid to obtain the next following align that in turn increases the
342 alignment, till we reach NULL_RTX; the sequence obtained this way
343 for each insn we'll call the alignment chain of this insn in the following
344 comments. */
346 struct label_alignment
348 short alignment;
349 short max_skip;
352 static rtx *uid_align;
353 static int *uid_shuid;
354 static struct label_alignment *label_align;
356 /* Indicate that branch shortening hasn't yet been done. */
358 void
359 init_insn_lengths (void)
361 if (uid_shuid)
363 free (uid_shuid);
364 uid_shuid = 0;
366 if (insn_lengths)
368 free (insn_lengths);
369 insn_lengths = 0;
370 insn_lengths_max_uid = 0;
372 #ifdef HAVE_ATTR_length
373 INSN_ADDRESSES_FREE ();
374 #endif
375 if (uid_align)
377 free (uid_align);
378 uid_align = 0;
382 /* Obtain the current length of an insn. If branch shortening has been done,
383 get its actual length. Otherwise, use FALLBACK_FN to calcualte the
384 length. */
385 static inline int
386 get_attr_length_1 (rtx insn ATTRIBUTE_UNUSED,
387 int (*fallback_fn) (rtx) ATTRIBUTE_UNUSED)
389 #ifdef HAVE_ATTR_length
390 rtx body;
391 int i;
392 int length = 0;
394 if (insn_lengths_max_uid > INSN_UID (insn))
395 return insn_lengths[INSN_UID (insn)];
396 else
397 switch (GET_CODE (insn))
399 case NOTE:
400 case BARRIER:
401 case CODE_LABEL:
402 return 0;
404 case CALL_INSN:
405 length = fallback_fn (insn);
406 break;
408 case JUMP_INSN:
409 body = PATTERN (insn);
410 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
412 /* Alignment is machine-dependent and should be handled by
413 ADDR_VEC_ALIGN. */
415 else
416 length = fallback_fn (insn);
417 break;
419 case INSN:
420 body = PATTERN (insn);
421 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
422 return 0;
424 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
425 length = asm_insn_count (body) * fallback_fn (insn);
426 else if (GET_CODE (body) == SEQUENCE)
427 for (i = 0; i < XVECLEN (body, 0); i++)
428 length += get_attr_length (XVECEXP (body, 0, i));
429 else
430 length = fallback_fn (insn);
431 break;
433 default:
434 break;
437 #ifdef ADJUST_INSN_LENGTH
438 ADJUST_INSN_LENGTH (insn, length);
439 #endif
440 return length;
441 #else /* not HAVE_ATTR_length */
442 return 0;
443 #define insn_default_length 0
444 #define insn_min_length 0
445 #endif /* not HAVE_ATTR_length */
448 /* Obtain the current length of an insn. If branch shortening has been done,
449 get its actual length. Otherwise, get its maximum length. */
451 get_attr_length (rtx insn)
453 return get_attr_length_1 (insn, insn_default_length);
456 /* Obtain the current length of an insn. If branch shortening has been done,
457 get its actual length. Otherwise, get its minimum length. */
459 get_attr_min_length (rtx insn)
461 return get_attr_length_1 (insn, insn_min_length);
464 /* Code to handle alignment inside shorten_branches. */
466 /* Here is an explanation how the algorithm in align_fuzz can give
467 proper results:
469 Call a sequence of instructions beginning with alignment point X
470 and continuing until the next alignment point `block X'. When `X'
471 is used in an expression, it means the alignment value of the
472 alignment point.
474 Call the distance between the start of the first insn of block X, and
475 the end of the last insn of block X `IX', for the `inner size of X'.
476 This is clearly the sum of the instruction lengths.
478 Likewise with the next alignment-delimited block following X, which we
479 shall call block Y.
481 Call the distance between the start of the first insn of block X, and
482 the start of the first insn of block Y `OX', for the `outer size of X'.
484 The estimated padding is then OX - IX.
486 OX can be safely estimated as
488 if (X >= Y)
489 OX = round_up(IX, Y)
490 else
491 OX = round_up(IX, X) + Y - X
493 Clearly est(IX) >= real(IX), because that only depends on the
494 instruction lengths, and those being overestimated is a given.
496 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
497 we needn't worry about that when thinking about OX.
499 When X >= Y, the alignment provided by Y adds no uncertainty factor
500 for branch ranges starting before X, so we can just round what we have.
501 But when X < Y, we don't know anything about the, so to speak,
502 `middle bits', so we have to assume the worst when aligning up from an
503 address mod X to one mod Y, which is Y - X. */
505 #ifndef LABEL_ALIGN
506 #define LABEL_ALIGN(LABEL) align_labels_log
507 #endif
509 #ifndef LABEL_ALIGN_MAX_SKIP
510 #define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
511 #endif
513 #ifndef LOOP_ALIGN
514 #define LOOP_ALIGN(LABEL) align_loops_log
515 #endif
517 #ifndef LOOP_ALIGN_MAX_SKIP
518 #define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
519 #endif
521 #ifndef LABEL_ALIGN_AFTER_BARRIER
522 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
523 #endif
525 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
526 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
527 #endif
529 #ifndef JUMP_ALIGN
530 #define JUMP_ALIGN(LABEL) align_jumps_log
531 #endif
533 #ifndef JUMP_ALIGN_MAX_SKIP
534 #define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
535 #endif
537 #ifndef ADDR_VEC_ALIGN
538 static int
539 final_addr_vec_align (rtx addr_vec)
541 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
543 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
544 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
545 return exact_log2 (align);
549 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
550 #endif
552 #ifndef INSN_LENGTH_ALIGNMENT
553 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
554 #endif
556 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
558 static int min_labelno, max_labelno;
560 #define LABEL_TO_ALIGNMENT(LABEL) \
561 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
563 #define LABEL_TO_MAX_SKIP(LABEL) \
564 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
566 /* For the benefit of port specific code do this also as a function. */
569 label_to_alignment (rtx label)
571 return LABEL_TO_ALIGNMENT (label);
574 #ifdef HAVE_ATTR_length
575 /* The differences in addresses
576 between a branch and its target might grow or shrink depending on
577 the alignment the start insn of the range (the branch for a forward
578 branch or the label for a backward branch) starts out on; if these
579 differences are used naively, they can even oscillate infinitely.
580 We therefore want to compute a 'worst case' address difference that
581 is independent of the alignment the start insn of the range end
582 up on, and that is at least as large as the actual difference.
583 The function align_fuzz calculates the amount we have to add to the
584 naively computed difference, by traversing the part of the alignment
585 chain of the start insn of the range that is in front of the end insn
586 of the range, and considering for each alignment the maximum amount
587 that it might contribute to a size increase.
589 For casesi tables, we also want to know worst case minimum amounts of
590 address difference, in case a machine description wants to introduce
591 some common offset that is added to all offsets in a table.
592 For this purpose, align_fuzz with a growth argument of 0 computes the
593 appropriate adjustment. */
595 /* Compute the maximum delta by which the difference of the addresses of
596 START and END might grow / shrink due to a different address for start
597 which changes the size of alignment insns between START and END.
598 KNOWN_ALIGN_LOG is the alignment known for START.
599 GROWTH should be ~0 if the objective is to compute potential code size
600 increase, and 0 if the objective is to compute potential shrink.
601 The return value is undefined for any other value of GROWTH. */
603 static int
604 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
606 int uid = INSN_UID (start);
607 rtx align_label;
608 int known_align = 1 << known_align_log;
609 int end_shuid = INSN_SHUID (end);
610 int fuzz = 0;
612 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
614 int align_addr, new_align;
616 uid = INSN_UID (align_label);
617 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
618 if (uid_shuid[uid] > end_shuid)
619 break;
620 known_align_log = LABEL_TO_ALIGNMENT (align_label);
621 new_align = 1 << known_align_log;
622 if (new_align < known_align)
623 continue;
624 fuzz += (-align_addr ^ growth) & (new_align - known_align);
625 known_align = new_align;
627 return fuzz;
630 /* Compute a worst-case reference address of a branch so that it
631 can be safely used in the presence of aligned labels. Since the
632 size of the branch itself is unknown, the size of the branch is
633 not included in the range. I.e. for a forward branch, the reference
634 address is the end address of the branch as known from the previous
635 branch shortening pass, minus a value to account for possible size
636 increase due to alignment. For a backward branch, it is the start
637 address of the branch as known from the current pass, plus a value
638 to account for possible size increase due to alignment.
639 NB.: Therefore, the maximum offset allowed for backward branches needs
640 to exclude the branch size. */
643 insn_current_reference_address (rtx branch)
645 rtx dest, seq;
646 int seq_uid;
648 if (! INSN_ADDRESSES_SET_P ())
649 return 0;
651 seq = NEXT_INSN (PREV_INSN (branch));
652 seq_uid = INSN_UID (seq);
653 if (!JUMP_P (branch))
654 /* This can happen for example on the PA; the objective is to know the
655 offset to address something in front of the start of the function.
656 Thus, we can treat it like a backward branch.
657 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
658 any alignment we'd encounter, so we skip the call to align_fuzz. */
659 return insn_current_address;
660 dest = JUMP_LABEL (branch);
662 /* BRANCH has no proper alignment chain set, so use SEQ.
663 BRANCH also has no INSN_SHUID. */
664 if (INSN_SHUID (seq) < INSN_SHUID (dest))
666 /* Forward branch. */
667 return (insn_last_address + insn_lengths[seq_uid]
668 - align_fuzz (seq, dest, length_unit_log, ~0));
670 else
672 /* Backward branch. */
673 return (insn_current_address
674 + align_fuzz (dest, seq, length_unit_log, ~0));
677 #endif /* HAVE_ATTR_length */
679 /* Compute branch alignments based on frequency information in the
680 CFG. */
682 static unsigned int
683 compute_alignments (void)
685 int log, max_skip, max_log;
686 basic_block bb;
688 if (label_align)
690 free (label_align);
691 label_align = 0;
694 max_labelno = max_label_num ();
695 min_labelno = get_first_label_num ();
696 label_align = XCNEWVEC (struct label_alignment, max_labelno - min_labelno + 1);
698 /* If not optimizing or optimizing for size, don't assign any alignments. */
699 if (! optimize || optimize_size)
700 return 0;
702 FOR_EACH_BB (bb)
704 rtx label = BB_HEAD (bb);
705 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
706 edge e;
707 edge_iterator ei;
709 if (!LABEL_P (label)
710 || probably_never_executed_bb_p (bb))
711 continue;
712 max_log = LABEL_ALIGN (label);
713 max_skip = LABEL_ALIGN_MAX_SKIP;
715 FOR_EACH_EDGE (e, ei, bb->preds)
717 if (e->flags & EDGE_FALLTHRU)
718 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
719 else
720 branch_frequency += EDGE_FREQUENCY (e);
723 /* There are two purposes to align block with no fallthru incoming edge:
724 1) to avoid fetch stalls when branch destination is near cache boundary
725 2) to improve cache efficiency in case the previous block is not executed
726 (so it does not need to be in the cache).
728 We to catch first case, we align frequently executed blocks.
729 To catch the second, we align blocks that are executed more frequently
730 than the predecessor and the predecessor is likely to not be executed
731 when function is called. */
733 if (!has_fallthru
734 && (branch_frequency > BB_FREQ_MAX / 10
735 || (bb->frequency > bb->prev_bb->frequency * 10
736 && (bb->prev_bb->frequency
737 <= ENTRY_BLOCK_PTR->frequency / 2))))
739 log = JUMP_ALIGN (label);
740 if (max_log < log)
742 max_log = log;
743 max_skip = JUMP_ALIGN_MAX_SKIP;
746 /* In case block is frequent and reached mostly by non-fallthru edge,
747 align it. It is most likely a first block of loop. */
748 if (has_fallthru
749 && maybe_hot_bb_p (bb)
750 && branch_frequency + fallthru_frequency > BB_FREQ_MAX / 10
751 && branch_frequency > fallthru_frequency * 2)
753 log = LOOP_ALIGN (label);
754 if (max_log < log)
756 max_log = log;
757 max_skip = LOOP_ALIGN_MAX_SKIP;
760 LABEL_TO_ALIGNMENT (label) = max_log;
761 LABEL_TO_MAX_SKIP (label) = max_skip;
763 return 0;
766 struct tree_opt_pass pass_compute_alignments =
768 NULL, /* name */
769 NULL, /* gate */
770 compute_alignments, /* execute */
771 NULL, /* sub */
772 NULL, /* next */
773 0, /* static_pass_number */
774 0, /* tv_id */
775 0, /* properties_required */
776 0, /* properties_provided */
777 0, /* properties_destroyed */
778 0, /* todo_flags_start */
779 0, /* todo_flags_finish */
780 0 /* letter */
784 /* Make a pass over all insns and compute their actual lengths by shortening
785 any branches of variable length if possible. */
787 /* shorten_branches might be called multiple times: for example, the SH
788 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
789 In order to do this, it needs proper length information, which it obtains
790 by calling shorten_branches. This cannot be collapsed with
791 shorten_branches itself into a single pass unless we also want to integrate
792 reorg.c, since the branch splitting exposes new instructions with delay
793 slots. */
795 void
796 shorten_branches (rtx first ATTRIBUTE_UNUSED)
798 rtx insn;
799 int max_uid;
800 int i;
801 int max_log;
802 int max_skip;
803 #ifdef HAVE_ATTR_length
804 #define MAX_CODE_ALIGN 16
805 rtx seq;
806 int something_changed = 1;
807 char *varying_length;
808 rtx body;
809 int uid;
810 rtx align_tab[MAX_CODE_ALIGN];
812 #endif
814 /* Compute maximum UID and allocate label_align / uid_shuid. */
815 max_uid = get_max_uid ();
817 /* Free uid_shuid before reallocating it. */
818 free (uid_shuid);
820 uid_shuid = XNEWVEC (int, max_uid);
822 if (max_labelno != max_label_num ())
824 int old = max_labelno;
825 int n_labels;
826 int n_old_labels;
828 max_labelno = max_label_num ();
830 n_labels = max_labelno - min_labelno + 1;
831 n_old_labels = old - min_labelno + 1;
833 label_align = xrealloc (label_align,
834 n_labels * sizeof (struct label_alignment));
836 /* Range of labels grows monotonically in the function. Failing here
837 means that the initialization of array got lost. */
838 gcc_assert (n_old_labels <= n_labels);
840 memset (label_align + n_old_labels, 0,
841 (n_labels - n_old_labels) * sizeof (struct label_alignment));
844 /* Initialize label_align and set up uid_shuid to be strictly
845 monotonically rising with insn order. */
846 /* We use max_log here to keep track of the maximum alignment we want to
847 impose on the next CODE_LABEL (or the current one if we are processing
848 the CODE_LABEL itself). */
850 max_log = 0;
851 max_skip = 0;
853 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
855 int log;
857 INSN_SHUID (insn) = i++;
858 if (INSN_P (insn))
859 continue;
861 if (LABEL_P (insn))
863 rtx next;
865 /* Merge in alignments computed by compute_alignments. */
866 log = LABEL_TO_ALIGNMENT (insn);
867 if (max_log < log)
869 max_log = log;
870 max_skip = LABEL_TO_MAX_SKIP (insn);
873 log = LABEL_ALIGN (insn);
874 if (max_log < log)
876 max_log = log;
877 max_skip = LABEL_ALIGN_MAX_SKIP;
879 next = next_nonnote_insn (insn);
880 /* ADDR_VECs only take room if read-only data goes into the text
881 section. */
882 if (JUMP_TABLES_IN_TEXT_SECTION
883 || readonly_data_section == text_section)
884 if (next && JUMP_P (next))
886 rtx nextbody = PATTERN (next);
887 if (GET_CODE (nextbody) == ADDR_VEC
888 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
890 log = ADDR_VEC_ALIGN (next);
891 if (max_log < log)
893 max_log = log;
894 max_skip = LABEL_ALIGN_MAX_SKIP;
898 LABEL_TO_ALIGNMENT (insn) = max_log;
899 LABEL_TO_MAX_SKIP (insn) = max_skip;
900 max_log = 0;
901 max_skip = 0;
903 else if (BARRIER_P (insn))
905 rtx label;
907 for (label = insn; label && ! INSN_P (label);
908 label = NEXT_INSN (label))
909 if (LABEL_P (label))
911 log = LABEL_ALIGN_AFTER_BARRIER (insn);
912 if (max_log < log)
914 max_log = log;
915 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
917 break;
921 #ifdef HAVE_ATTR_length
923 /* Allocate the rest of the arrays. */
924 insn_lengths = XNEWVEC (int, max_uid);
925 insn_lengths_max_uid = max_uid;
926 /* Syntax errors can lead to labels being outside of the main insn stream.
927 Initialize insn_addresses, so that we get reproducible results. */
928 INSN_ADDRESSES_ALLOC (max_uid);
930 varying_length = XCNEWVEC (char, max_uid);
932 /* Initialize uid_align. We scan instructions
933 from end to start, and keep in align_tab[n] the last seen insn
934 that does an alignment of at least n+1, i.e. the successor
935 in the alignment chain for an insn that does / has a known
936 alignment of n. */
937 uid_align = XCNEWVEC (rtx, max_uid);
939 for (i = MAX_CODE_ALIGN; --i >= 0;)
940 align_tab[i] = NULL_RTX;
941 seq = get_last_insn ();
942 for (; seq; seq = PREV_INSN (seq))
944 int uid = INSN_UID (seq);
945 int log;
946 log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq) : 0);
947 uid_align[uid] = align_tab[0];
948 if (log)
950 /* Found an alignment label. */
951 uid_align[uid] = align_tab[log];
952 for (i = log - 1; i >= 0; i--)
953 align_tab[i] = seq;
956 #ifdef CASE_VECTOR_SHORTEN_MODE
957 if (optimize)
959 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
960 label fields. */
962 int min_shuid = INSN_SHUID (get_insns ()) - 1;
963 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
964 int rel;
966 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
968 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
969 int len, i, min, max, insn_shuid;
970 int min_align;
971 addr_diff_vec_flags flags;
973 if (!JUMP_P (insn)
974 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
975 continue;
976 pat = PATTERN (insn);
977 len = XVECLEN (pat, 1);
978 gcc_assert (len > 0);
979 min_align = MAX_CODE_ALIGN;
980 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
982 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
983 int shuid = INSN_SHUID (lab);
984 if (shuid < min)
986 min = shuid;
987 min_lab = lab;
989 if (shuid > max)
991 max = shuid;
992 max_lab = lab;
994 if (min_align > LABEL_TO_ALIGNMENT (lab))
995 min_align = LABEL_TO_ALIGNMENT (lab);
997 XEXP (pat, 2) = gen_rtx_LABEL_REF (Pmode, min_lab);
998 XEXP (pat, 3) = gen_rtx_LABEL_REF (Pmode, max_lab);
999 insn_shuid = INSN_SHUID (insn);
1000 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1001 memset (&flags, 0, sizeof (flags));
1002 flags.min_align = min_align;
1003 flags.base_after_vec = rel > insn_shuid;
1004 flags.min_after_vec = min > insn_shuid;
1005 flags.max_after_vec = max > insn_shuid;
1006 flags.min_after_base = min > rel;
1007 flags.max_after_base = max > rel;
1008 ADDR_DIFF_VEC_FLAGS (pat) = flags;
1011 #endif /* CASE_VECTOR_SHORTEN_MODE */
1013 /* Compute initial lengths, addresses, and varying flags for each insn. */
1014 for (insn_current_address = 0, insn = first;
1015 insn != 0;
1016 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1018 uid = INSN_UID (insn);
1020 insn_lengths[uid] = 0;
1022 if (LABEL_P (insn))
1024 int log = LABEL_TO_ALIGNMENT (insn);
1025 if (log)
1027 int align = 1 << log;
1028 int new_address = (insn_current_address + align - 1) & -align;
1029 insn_lengths[uid] = new_address - insn_current_address;
1033 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
1035 if (NOTE_P (insn) || BARRIER_P (insn)
1036 || LABEL_P (insn))
1037 continue;
1038 if (INSN_DELETED_P (insn))
1039 continue;
1041 body = PATTERN (insn);
1042 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1044 /* This only takes room if read-only data goes into the text
1045 section. */
1046 if (JUMP_TABLES_IN_TEXT_SECTION
1047 || readonly_data_section == text_section)
1048 insn_lengths[uid] = (XVECLEN (body,
1049 GET_CODE (body) == ADDR_DIFF_VEC)
1050 * GET_MODE_SIZE (GET_MODE (body)));
1051 /* Alignment is handled by ADDR_VEC_ALIGN. */
1053 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1054 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1055 else if (GET_CODE (body) == SEQUENCE)
1057 int i;
1058 int const_delay_slots;
1059 #ifdef DELAY_SLOTS
1060 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1061 #else
1062 const_delay_slots = 0;
1063 #endif
1064 /* Inside a delay slot sequence, we do not do any branch shortening
1065 if the shortening could change the number of delay slots
1066 of the branch. */
1067 for (i = 0; i < XVECLEN (body, 0); i++)
1069 rtx inner_insn = XVECEXP (body, 0, i);
1070 int inner_uid = INSN_UID (inner_insn);
1071 int inner_length;
1073 if (GET_CODE (body) == ASM_INPUT
1074 || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1075 inner_length = (asm_insn_count (PATTERN (inner_insn))
1076 * insn_default_length (inner_insn));
1077 else
1078 inner_length = insn_default_length (inner_insn);
1080 insn_lengths[inner_uid] = inner_length;
1081 if (const_delay_slots)
1083 if ((varying_length[inner_uid]
1084 = insn_variable_length_p (inner_insn)) != 0)
1085 varying_length[uid] = 1;
1086 INSN_ADDRESSES (inner_uid) = (insn_current_address
1087 + insn_lengths[uid]);
1089 else
1090 varying_length[inner_uid] = 0;
1091 insn_lengths[uid] += inner_length;
1094 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1096 insn_lengths[uid] = insn_default_length (insn);
1097 varying_length[uid] = insn_variable_length_p (insn);
1100 /* If needed, do any adjustment. */
1101 #ifdef ADJUST_INSN_LENGTH
1102 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1103 if (insn_lengths[uid] < 0)
1104 fatal_insn ("negative insn length", insn);
1105 #endif
1108 /* Now loop over all the insns finding varying length insns. For each,
1109 get the current insn length. If it has changed, reflect the change.
1110 When nothing changes for a full pass, we are done. */
1112 while (something_changed)
1114 something_changed = 0;
1115 insn_current_align = MAX_CODE_ALIGN - 1;
1116 for (insn_current_address = 0, insn = first;
1117 insn != 0;
1118 insn = NEXT_INSN (insn))
1120 int new_length;
1121 #ifdef ADJUST_INSN_LENGTH
1122 int tmp_length;
1123 #endif
1124 int length_align;
1126 uid = INSN_UID (insn);
1128 if (LABEL_P (insn))
1130 int log = LABEL_TO_ALIGNMENT (insn);
1131 if (log > insn_current_align)
1133 int align = 1 << log;
1134 int new_address= (insn_current_address + align - 1) & -align;
1135 insn_lengths[uid] = new_address - insn_current_address;
1136 insn_current_align = log;
1137 insn_current_address = new_address;
1139 else
1140 insn_lengths[uid] = 0;
1141 INSN_ADDRESSES (uid) = insn_current_address;
1142 continue;
1145 length_align = INSN_LENGTH_ALIGNMENT (insn);
1146 if (length_align < insn_current_align)
1147 insn_current_align = length_align;
1149 insn_last_address = INSN_ADDRESSES (uid);
1150 INSN_ADDRESSES (uid) = insn_current_address;
1152 #ifdef CASE_VECTOR_SHORTEN_MODE
1153 if (optimize && JUMP_P (insn)
1154 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1156 rtx body = PATTERN (insn);
1157 int old_length = insn_lengths[uid];
1158 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1159 rtx min_lab = XEXP (XEXP (body, 2), 0);
1160 rtx max_lab = XEXP (XEXP (body, 3), 0);
1161 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1162 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1163 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1164 rtx prev;
1165 int rel_align = 0;
1166 addr_diff_vec_flags flags;
1168 /* Avoid automatic aggregate initialization. */
1169 flags = ADDR_DIFF_VEC_FLAGS (body);
1171 /* Try to find a known alignment for rel_lab. */
1172 for (prev = rel_lab;
1173 prev
1174 && ! insn_lengths[INSN_UID (prev)]
1175 && ! (varying_length[INSN_UID (prev)] & 1);
1176 prev = PREV_INSN (prev))
1177 if (varying_length[INSN_UID (prev)] & 2)
1179 rel_align = LABEL_TO_ALIGNMENT (prev);
1180 break;
1183 /* See the comment on addr_diff_vec_flags in rtl.h for the
1184 meaning of the flags values. base: REL_LAB vec: INSN */
1185 /* Anything after INSN has still addresses from the last
1186 pass; adjust these so that they reflect our current
1187 estimate for this pass. */
1188 if (flags.base_after_vec)
1189 rel_addr += insn_current_address - insn_last_address;
1190 if (flags.min_after_vec)
1191 min_addr += insn_current_address - insn_last_address;
1192 if (flags.max_after_vec)
1193 max_addr += insn_current_address - insn_last_address;
1194 /* We want to know the worst case, i.e. lowest possible value
1195 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1196 its offset is positive, and we have to be wary of code shrink;
1197 otherwise, it is negative, and we have to be vary of code
1198 size increase. */
1199 if (flags.min_after_base)
1201 /* If INSN is between REL_LAB and MIN_LAB, the size
1202 changes we are about to make can change the alignment
1203 within the observed offset, therefore we have to break
1204 it up into two parts that are independent. */
1205 if (! flags.base_after_vec && flags.min_after_vec)
1207 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1208 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1210 else
1211 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1213 else
1215 if (flags.base_after_vec && ! flags.min_after_vec)
1217 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1218 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1220 else
1221 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1223 /* Likewise, determine the highest lowest possible value
1224 for the offset of MAX_LAB. */
1225 if (flags.max_after_base)
1227 if (! flags.base_after_vec && flags.max_after_vec)
1229 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1230 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1232 else
1233 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1235 else
1237 if (flags.base_after_vec && ! flags.max_after_vec)
1239 max_addr += align_fuzz (max_lab, insn, 0, 0);
1240 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1242 else
1243 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1245 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1246 max_addr - rel_addr,
1247 body));
1248 if (JUMP_TABLES_IN_TEXT_SECTION
1249 || readonly_data_section == text_section)
1251 insn_lengths[uid]
1252 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1253 insn_current_address += insn_lengths[uid];
1254 if (insn_lengths[uid] != old_length)
1255 something_changed = 1;
1258 continue;
1260 #endif /* CASE_VECTOR_SHORTEN_MODE */
1262 if (! (varying_length[uid]))
1264 if (NONJUMP_INSN_P (insn)
1265 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1267 int i;
1269 body = PATTERN (insn);
1270 for (i = 0; i < XVECLEN (body, 0); i++)
1272 rtx inner_insn = XVECEXP (body, 0, i);
1273 int inner_uid = INSN_UID (inner_insn);
1275 INSN_ADDRESSES (inner_uid) = insn_current_address;
1277 insn_current_address += insn_lengths[inner_uid];
1280 else
1281 insn_current_address += insn_lengths[uid];
1283 continue;
1286 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1288 int i;
1290 body = PATTERN (insn);
1291 new_length = 0;
1292 for (i = 0; i < XVECLEN (body, 0); i++)
1294 rtx inner_insn = XVECEXP (body, 0, i);
1295 int inner_uid = INSN_UID (inner_insn);
1296 int inner_length;
1298 INSN_ADDRESSES (inner_uid) = insn_current_address;
1300 /* insn_current_length returns 0 for insns with a
1301 non-varying length. */
1302 if (! varying_length[inner_uid])
1303 inner_length = insn_lengths[inner_uid];
1304 else
1305 inner_length = insn_current_length (inner_insn);
1307 if (inner_length != insn_lengths[inner_uid])
1309 insn_lengths[inner_uid] = inner_length;
1310 something_changed = 1;
1312 insn_current_address += insn_lengths[inner_uid];
1313 new_length += inner_length;
1316 else
1318 new_length = insn_current_length (insn);
1319 insn_current_address += new_length;
1322 #ifdef ADJUST_INSN_LENGTH
1323 /* If needed, do any adjustment. */
1324 tmp_length = new_length;
1325 ADJUST_INSN_LENGTH (insn, new_length);
1326 insn_current_address += (new_length - tmp_length);
1327 #endif
1329 if (new_length != insn_lengths[uid])
1331 insn_lengths[uid] = new_length;
1332 something_changed = 1;
1335 /* For a non-optimizing compile, do only a single pass. */
1336 if (!optimize)
1337 break;
1340 free (varying_length);
1342 #endif /* HAVE_ATTR_length */
1345 #ifdef HAVE_ATTR_length
1346 /* Given the body of an INSN known to be generated by an ASM statement, return
1347 the number of machine instructions likely to be generated for this insn.
1348 This is used to compute its length. */
1350 static int
1351 asm_insn_count (rtx body)
1353 const char *template;
1354 int count = 1;
1356 if (GET_CODE (body) == ASM_INPUT)
1357 template = XSTR (body, 0);
1358 else
1359 template = decode_asm_operands (body, NULL, NULL, NULL, NULL);
1361 for (; *template; template++)
1362 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template) || *template == '\n')
1363 count++;
1365 return count;
1367 #endif
1369 /* Output assembler code for the start of a function,
1370 and initialize some of the variables in this file
1371 for the new function. The label for the function and associated
1372 assembler pseudo-ops have already been output in `assemble_start_function'.
1374 FIRST is the first insn of the rtl for the function being compiled.
1375 FILE is the file to write assembler code to.
1376 OPTIMIZE is nonzero if we should eliminate redundant
1377 test and compare insns. */
1379 void
1380 final_start_function (rtx first ATTRIBUTE_UNUSED, FILE *file,
1381 int optimize ATTRIBUTE_UNUSED)
1383 block_depth = 0;
1385 this_is_asm_operands = 0;
1387 last_filename = locator_file (prologue_locator);
1388 last_linenum = locator_line (prologue_locator);
1390 high_block_linenum = high_function_linenum = last_linenum;
1392 (*debug_hooks->begin_prologue) (last_linenum, last_filename);
1394 #if defined (DWARF2_UNWIND_INFO) || defined (TARGET_UNWIND_INFO)
1395 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1396 dwarf2out_begin_prologue (0, NULL);
1397 #endif
1399 #ifdef LEAF_REG_REMAP
1400 if (current_function_uses_only_leaf_regs)
1401 leaf_renumber_regs (first);
1402 #endif
1404 /* The Sun386i and perhaps other machines don't work right
1405 if the profiling code comes after the prologue. */
1406 #ifdef PROFILE_BEFORE_PROLOGUE
1407 if (current_function_profile)
1408 profile_function (file);
1409 #endif /* PROFILE_BEFORE_PROLOGUE */
1411 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1412 if (dwarf2out_do_frame ())
1413 dwarf2out_frame_debug (NULL_RTX, false);
1414 #endif
1416 /* If debugging, assign block numbers to all of the blocks in this
1417 function. */
1418 if (write_symbols)
1420 reemit_insn_block_notes ();
1421 number_blocks (current_function_decl);
1422 /* We never actually put out begin/end notes for the top-level
1423 block in the function. But, conceptually, that block is
1424 always needed. */
1425 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1428 /* First output the function prologue: code to set up the stack frame. */
1429 targetm.asm_out.function_prologue (file, get_frame_size ());
1431 /* If the machine represents the prologue as RTL, the profiling code must
1432 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1433 #ifdef HAVE_prologue
1434 if (! HAVE_prologue)
1435 #endif
1436 profile_after_prologue (file);
1439 static void
1440 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1442 #ifndef PROFILE_BEFORE_PROLOGUE
1443 if (current_function_profile)
1444 profile_function (file);
1445 #endif /* not PROFILE_BEFORE_PROLOGUE */
1448 static void
1449 profile_function (FILE *file ATTRIBUTE_UNUSED)
1451 #ifndef NO_PROFILE_COUNTERS
1452 # define NO_PROFILE_COUNTERS 0
1453 #endif
1454 #if defined(ASM_OUTPUT_REG_PUSH)
1455 int sval = current_function_returns_struct;
1456 rtx svrtx = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl), 1);
1457 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1458 int cxt = cfun->static_chain_decl != NULL;
1459 #endif
1460 #endif /* ASM_OUTPUT_REG_PUSH */
1462 if (! NO_PROFILE_COUNTERS)
1464 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1465 switch_to_section (data_section);
1466 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1467 targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1468 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1471 switch_to_section (current_function_section ());
1473 #if defined(ASM_OUTPUT_REG_PUSH)
1474 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1475 ASM_OUTPUT_REG_PUSH (file, REGNO (svrtx));
1476 #endif
1478 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1479 if (cxt)
1480 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1481 #else
1482 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1483 if (cxt)
1485 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1487 #endif
1488 #endif
1490 FUNCTION_PROFILER (file, current_function_funcdef_no);
1492 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1493 if (cxt)
1494 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1495 #else
1496 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1497 if (cxt)
1499 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1501 #endif
1502 #endif
1504 #if defined(ASM_OUTPUT_REG_PUSH)
1505 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1506 ASM_OUTPUT_REG_POP (file, REGNO (svrtx));
1507 #endif
1510 /* Output assembler code for the end of a function.
1511 For clarity, args are same as those of `final_start_function'
1512 even though not all of them are needed. */
1514 void
1515 final_end_function (void)
1517 app_disable ();
1519 (*debug_hooks->end_function) (high_function_linenum);
1521 /* Finally, output the function epilogue:
1522 code to restore the stack frame and return to the caller. */
1523 targetm.asm_out.function_epilogue (asm_out_file, get_frame_size ());
1525 /* And debug output. */
1526 (*debug_hooks->end_epilogue) (last_linenum, last_filename);
1528 #if defined (DWARF2_UNWIND_INFO)
1529 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG
1530 && dwarf2out_do_frame ())
1531 dwarf2out_end_epilogue (last_linenum, last_filename);
1532 #endif
1535 /* Output assembler code for some insns: all or part of a function.
1536 For description of args, see `final_start_function', above. */
1538 void
1539 final (rtx first, FILE *file, int optimize)
1541 rtx insn;
1542 int max_uid = 0;
1543 int seen = 0;
1545 last_ignored_compare = 0;
1547 #ifdef SDB_DEBUGGING_INFO
1548 /* When producing SDB debugging info, delete troublesome line number
1549 notes from inlined functions in other files as well as duplicate
1550 line number notes. */
1551 if (write_symbols == SDB_DEBUG)
1553 rtx last = 0;
1554 for (insn = first; insn; insn = NEXT_INSN (insn))
1555 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
1557 if (last != 0
1558 #ifdef USE_MAPPED_LOCATION
1559 && NOTE_SOURCE_LOCATION (insn) == NOTE_SOURCE_LOCATION (last)
1560 #else
1561 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last)
1562 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last)
1563 #endif
1566 delete_insn (insn); /* Use delete_note. */
1567 continue;
1569 last = insn;
1572 #endif
1574 for (insn = first; insn; insn = NEXT_INSN (insn))
1576 if (INSN_UID (insn) > max_uid) /* Find largest UID. */
1577 max_uid = INSN_UID (insn);
1578 #ifdef HAVE_cc0
1579 /* If CC tracking across branches is enabled, record the insn which
1580 jumps to each branch only reached from one place. */
1581 if (optimize && JUMP_P (insn))
1583 rtx lab = JUMP_LABEL (insn);
1584 if (lab && LABEL_NUSES (lab) == 1)
1586 LABEL_REFS (lab) = insn;
1589 #endif
1592 init_recog ();
1594 CC_STATUS_INIT;
1596 /* Output the insns. */
1597 for (insn = NEXT_INSN (first); insn;)
1599 #ifdef HAVE_ATTR_length
1600 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
1602 /* This can be triggered by bugs elsewhere in the compiler if
1603 new insns are created after init_insn_lengths is called. */
1604 gcc_assert (NOTE_P (insn));
1605 insn_current_address = -1;
1607 else
1608 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
1609 #endif /* HAVE_ATTR_length */
1611 insn = final_scan_insn (insn, file, optimize, 0, &seen);
1615 const char *
1616 get_insn_template (int code, rtx insn)
1618 switch (insn_data[code].output_format)
1620 case INSN_OUTPUT_FORMAT_SINGLE:
1621 return insn_data[code].output.single;
1622 case INSN_OUTPUT_FORMAT_MULTI:
1623 return insn_data[code].output.multi[which_alternative];
1624 case INSN_OUTPUT_FORMAT_FUNCTION:
1625 gcc_assert (insn);
1626 return (*insn_data[code].output.function) (recog_data.operand, insn);
1628 default:
1629 gcc_unreachable ();
1633 /* Emit the appropriate declaration for an alternate-entry-point
1634 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
1635 LABEL_KIND != LABEL_NORMAL.
1637 The case fall-through in this function is intentional. */
1638 static void
1639 output_alternate_entry_point (FILE *file, rtx insn)
1641 const char *name = LABEL_NAME (insn);
1643 switch (LABEL_KIND (insn))
1645 case LABEL_WEAK_ENTRY:
1646 #ifdef ASM_WEAKEN_LABEL
1647 ASM_WEAKEN_LABEL (file, name);
1648 #endif
1649 case LABEL_GLOBAL_ENTRY:
1650 targetm.asm_out.globalize_label (file, name);
1651 case LABEL_STATIC_ENTRY:
1652 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
1653 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
1654 #endif
1655 ASM_OUTPUT_LABEL (file, name);
1656 break;
1658 case LABEL_NORMAL:
1659 default:
1660 gcc_unreachable ();
1664 /* The final scan for one insn, INSN.
1665 Args are same as in `final', except that INSN
1666 is the insn being scanned.
1667 Value returned is the next insn to be scanned.
1669 NOPEEPHOLES is the flag to disallow peephole processing (currently
1670 used for within delayed branch sequence output).
1672 SEEN is used to track the end of the prologue, for emitting
1673 debug information. We force the emission of a line note after
1674 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG, or
1675 at the beginning of the second basic block, whichever comes
1676 first. */
1679 final_scan_insn (rtx insn, FILE *file, int optimize ATTRIBUTE_UNUSED,
1680 int nopeepholes ATTRIBUTE_UNUSED, int *seen)
1682 #ifdef HAVE_cc0
1683 rtx set;
1684 #endif
1685 rtx next;
1687 insn_counter++;
1689 /* Ignore deleted insns. These can occur when we split insns (due to a
1690 template of "#") while not optimizing. */
1691 if (INSN_DELETED_P (insn))
1692 return NEXT_INSN (insn);
1694 switch (GET_CODE (insn))
1696 case NOTE:
1697 switch (NOTE_LINE_NUMBER (insn))
1699 case NOTE_INSN_DELETED:
1700 case NOTE_INSN_FUNCTION_END:
1701 case NOTE_INSN_REPEATED_LINE_NUMBER:
1702 case NOTE_INSN_EXPECTED_VALUE:
1703 break;
1705 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
1706 in_cold_section_p = !in_cold_section_p;
1707 (*debug_hooks->switch_text_section) ();
1708 switch_to_section (current_function_section ());
1709 break;
1711 case NOTE_INSN_BASIC_BLOCK:
1713 #ifdef TARGET_UNWIND_INFO
1714 targetm.asm_out.unwind_emit (asm_out_file, insn);
1715 #endif
1717 if (flag_debug_asm)
1718 fprintf (asm_out_file, "\t%s basic block %d\n",
1719 ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index);
1721 if ((*seen & (SEEN_EMITTED | SEEN_BB)) == SEEN_BB)
1723 *seen |= SEEN_EMITTED;
1724 force_source_line = true;
1726 else
1727 *seen |= SEEN_BB;
1729 break;
1731 case NOTE_INSN_EH_REGION_BEG:
1732 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
1733 NOTE_EH_HANDLER (insn));
1734 break;
1736 case NOTE_INSN_EH_REGION_END:
1737 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
1738 NOTE_EH_HANDLER (insn));
1739 break;
1741 case NOTE_INSN_PROLOGUE_END:
1742 targetm.asm_out.function_end_prologue (file);
1743 profile_after_prologue (file);
1745 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1747 *seen |= SEEN_EMITTED;
1748 force_source_line = true;
1750 else
1751 *seen |= SEEN_NOTE;
1753 break;
1755 case NOTE_INSN_EPILOGUE_BEG:
1756 targetm.asm_out.function_begin_epilogue (file);
1757 break;
1759 case NOTE_INSN_FUNCTION_BEG:
1760 app_disable ();
1761 (*debug_hooks->end_prologue) (last_linenum, last_filename);
1763 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1765 *seen |= SEEN_EMITTED;
1766 force_source_line = true;
1768 else
1769 *seen |= SEEN_NOTE;
1771 break;
1773 case NOTE_INSN_BLOCK_BEG:
1774 if (debug_info_level == DINFO_LEVEL_NORMAL
1775 || debug_info_level == DINFO_LEVEL_VERBOSE
1776 || write_symbols == DWARF2_DEBUG
1777 || write_symbols == VMS_AND_DWARF2_DEBUG
1778 || write_symbols == VMS_DEBUG)
1780 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1782 app_disable ();
1783 ++block_depth;
1784 high_block_linenum = last_linenum;
1786 /* Output debugging info about the symbol-block beginning. */
1787 (*debug_hooks->begin_block) (last_linenum, n);
1789 /* Mark this block as output. */
1790 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
1792 break;
1794 case NOTE_INSN_BLOCK_END:
1795 if (debug_info_level == DINFO_LEVEL_NORMAL
1796 || debug_info_level == DINFO_LEVEL_VERBOSE
1797 || write_symbols == DWARF2_DEBUG
1798 || write_symbols == VMS_AND_DWARF2_DEBUG
1799 || write_symbols == VMS_DEBUG)
1801 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1803 app_disable ();
1805 /* End of a symbol-block. */
1806 --block_depth;
1807 gcc_assert (block_depth >= 0);
1809 (*debug_hooks->end_block) (high_block_linenum, n);
1811 break;
1813 case NOTE_INSN_DELETED_LABEL:
1814 /* Emit the label. We may have deleted the CODE_LABEL because
1815 the label could be proved to be unreachable, though still
1816 referenced (in the form of having its address taken. */
1817 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
1818 break;
1820 case NOTE_INSN_VAR_LOCATION:
1821 (*debug_hooks->var_location) (insn);
1822 break;
1824 case 0:
1825 break;
1827 default:
1828 gcc_assert (NOTE_LINE_NUMBER (insn) > 0);
1829 break;
1831 break;
1833 case BARRIER:
1834 #if defined (DWARF2_UNWIND_INFO)
1835 if (dwarf2out_do_frame ())
1836 dwarf2out_frame_debug (insn, false);
1837 #endif
1838 break;
1840 case CODE_LABEL:
1841 /* The target port might emit labels in the output function for
1842 some insn, e.g. sh.c output_branchy_insn. */
1843 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
1845 int align = LABEL_TO_ALIGNMENT (insn);
1846 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1847 int max_skip = LABEL_TO_MAX_SKIP (insn);
1848 #endif
1850 if (align && NEXT_INSN (insn))
1852 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1853 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
1854 #else
1855 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
1856 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
1857 #else
1858 ASM_OUTPUT_ALIGN (file, align);
1859 #endif
1860 #endif
1863 #ifdef HAVE_cc0
1864 CC_STATUS_INIT;
1865 /* If this label is reached from only one place, set the condition
1866 codes from the instruction just before the branch. */
1868 /* Disabled because some insns set cc_status in the C output code
1869 and NOTICE_UPDATE_CC alone can set incorrect status. */
1870 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
1872 rtx jump = LABEL_REFS (insn);
1873 rtx barrier = prev_nonnote_insn (insn);
1874 rtx prev;
1875 /* If the LABEL_REFS field of this label has been set to point
1876 at a branch, the predecessor of the branch is a regular
1877 insn, and that branch is the only way to reach this label,
1878 set the condition codes based on the branch and its
1879 predecessor. */
1880 if (barrier && BARRIER_P (barrier)
1881 && jump && JUMP_P (jump)
1882 && (prev = prev_nonnote_insn (jump))
1883 && NONJUMP_INSN_P (prev))
1885 NOTICE_UPDATE_CC (PATTERN (prev), prev);
1886 NOTICE_UPDATE_CC (PATTERN (jump), jump);
1889 #endif
1891 if (LABEL_NAME (insn))
1892 (*debug_hooks->label) (insn);
1894 if (app_on)
1896 fputs (ASM_APP_OFF, file);
1897 app_on = 0;
1900 next = next_nonnote_insn (insn);
1901 if (next != 0 && JUMP_P (next))
1903 rtx nextbody = PATTERN (next);
1905 /* If this label is followed by a jump-table,
1906 make sure we put the label in the read-only section. Also
1907 possibly write the label and jump table together. */
1909 if (GET_CODE (nextbody) == ADDR_VEC
1910 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
1912 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
1913 /* In this case, the case vector is being moved by the
1914 target, so don't output the label at all. Leave that
1915 to the back end macros. */
1916 #else
1917 if (! JUMP_TABLES_IN_TEXT_SECTION)
1919 int log_align;
1921 switch_to_section (targetm.asm_out.function_rodata_section
1922 (current_function_decl));
1924 #ifdef ADDR_VEC_ALIGN
1925 log_align = ADDR_VEC_ALIGN (next);
1926 #else
1927 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
1928 #endif
1929 ASM_OUTPUT_ALIGN (file, log_align);
1931 else
1932 switch_to_section (current_function_section ());
1934 #ifdef ASM_OUTPUT_CASE_LABEL
1935 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
1936 next);
1937 #else
1938 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
1939 #endif
1940 #endif
1941 break;
1944 if (LABEL_ALT_ENTRY_P (insn))
1945 output_alternate_entry_point (file, insn);
1946 else
1947 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
1948 break;
1950 default:
1952 rtx body = PATTERN (insn);
1953 int insn_code_number;
1954 const char *template;
1956 /* An INSN, JUMP_INSN or CALL_INSN.
1957 First check for special kinds that recog doesn't recognize. */
1959 if (GET_CODE (body) == USE /* These are just declarations. */
1960 || GET_CODE (body) == CLOBBER)
1961 break;
1963 #ifdef HAVE_cc0
1965 /* If there is a REG_CC_SETTER note on this insn, it means that
1966 the setting of the condition code was done in the delay slot
1967 of the insn that branched here. So recover the cc status
1968 from the insn that set it. */
1970 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
1971 if (note)
1973 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
1974 cc_prev_status = cc_status;
1977 #endif
1979 /* Detect insns that are really jump-tables
1980 and output them as such. */
1982 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1984 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
1985 int vlen, idx;
1986 #endif
1988 if (! JUMP_TABLES_IN_TEXT_SECTION)
1989 switch_to_section (targetm.asm_out.function_rodata_section
1990 (current_function_decl));
1991 else
1992 switch_to_section (current_function_section ());
1994 if (app_on)
1996 fputs (ASM_APP_OFF, file);
1997 app_on = 0;
2000 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2001 if (GET_CODE (body) == ADDR_VEC)
2003 #ifdef ASM_OUTPUT_ADDR_VEC
2004 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2005 #else
2006 gcc_unreachable ();
2007 #endif
2009 else
2011 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2012 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2013 #else
2014 gcc_unreachable ();
2015 #endif
2017 #else
2018 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2019 for (idx = 0; idx < vlen; idx++)
2021 if (GET_CODE (body) == ADDR_VEC)
2023 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2024 ASM_OUTPUT_ADDR_VEC_ELT
2025 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2026 #else
2027 gcc_unreachable ();
2028 #endif
2030 else
2032 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2033 ASM_OUTPUT_ADDR_DIFF_ELT
2034 (file,
2035 body,
2036 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2037 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2038 #else
2039 gcc_unreachable ();
2040 #endif
2043 #ifdef ASM_OUTPUT_CASE_END
2044 ASM_OUTPUT_CASE_END (file,
2045 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2046 insn);
2047 #endif
2048 #endif
2050 switch_to_section (current_function_section ());
2052 break;
2054 /* Output this line note if it is the first or the last line
2055 note in a row. */
2056 if (notice_source_line (insn))
2058 (*debug_hooks->source_line) (last_linenum, last_filename);
2061 if (GET_CODE (body) == ASM_INPUT)
2063 const char *string = XSTR (body, 0);
2065 /* There's no telling what that did to the condition codes. */
2066 CC_STATUS_INIT;
2068 if (string[0])
2070 if (! app_on)
2072 fputs (ASM_APP_ON, file);
2073 app_on = 1;
2075 fprintf (asm_out_file, "\t%s\n", string);
2077 break;
2080 /* Detect `asm' construct with operands. */
2081 if (asm_noperands (body) >= 0)
2083 unsigned int noperands = asm_noperands (body);
2084 rtx *ops = alloca (noperands * sizeof (rtx));
2085 const char *string;
2087 /* There's no telling what that did to the condition codes. */
2088 CC_STATUS_INIT;
2090 /* Get out the operand values. */
2091 string = decode_asm_operands (body, ops, NULL, NULL, NULL);
2092 /* Inhibit dieing on what would otherwise be compiler bugs. */
2093 insn_noperands = noperands;
2094 this_is_asm_operands = insn;
2096 #ifdef FINAL_PRESCAN_INSN
2097 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2098 #endif
2100 /* Output the insn using them. */
2101 if (string[0])
2103 if (! app_on)
2105 fputs (ASM_APP_ON, file);
2106 app_on = 1;
2108 output_asm_insn (string, ops);
2111 this_is_asm_operands = 0;
2112 break;
2115 if (app_on)
2117 fputs (ASM_APP_OFF, file);
2118 app_on = 0;
2121 if (GET_CODE (body) == SEQUENCE)
2123 /* A delayed-branch sequence */
2124 int i;
2126 final_sequence = body;
2128 /* Record the delay slots' frame information before the branch.
2129 This is needed for delayed calls: see execute_cfa_program(). */
2130 #if defined (DWARF2_UNWIND_INFO)
2131 if (dwarf2out_do_frame ())
2132 for (i = 1; i < XVECLEN (body, 0); i++)
2133 dwarf2out_frame_debug (XVECEXP (body, 0, i), false);
2134 #endif
2136 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2137 force the restoration of a comparison that was previously
2138 thought unnecessary. If that happens, cancel this sequence
2139 and cause that insn to be restored. */
2141 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, 1, seen);
2142 if (next != XVECEXP (body, 0, 1))
2144 final_sequence = 0;
2145 return next;
2148 for (i = 1; i < XVECLEN (body, 0); i++)
2150 rtx insn = XVECEXP (body, 0, i);
2151 rtx next = NEXT_INSN (insn);
2152 /* We loop in case any instruction in a delay slot gets
2153 split. */
2155 insn = final_scan_insn (insn, file, 0, 1, seen);
2156 while (insn != next);
2158 #ifdef DBR_OUTPUT_SEQEND
2159 DBR_OUTPUT_SEQEND (file);
2160 #endif
2161 final_sequence = 0;
2163 /* If the insn requiring the delay slot was a CALL_INSN, the
2164 insns in the delay slot are actually executed before the
2165 called function. Hence we don't preserve any CC-setting
2166 actions in these insns and the CC must be marked as being
2167 clobbered by the function. */
2168 if (CALL_P (XVECEXP (body, 0, 0)))
2170 CC_STATUS_INIT;
2172 break;
2175 /* We have a real machine instruction as rtl. */
2177 body = PATTERN (insn);
2179 #ifdef HAVE_cc0
2180 set = single_set (insn);
2182 /* Check for redundant test and compare instructions
2183 (when the condition codes are already set up as desired).
2184 This is done only when optimizing; if not optimizing,
2185 it should be possible for the user to alter a variable
2186 with the debugger in between statements
2187 and the next statement should reexamine the variable
2188 to compute the condition codes. */
2190 if (optimize)
2192 if (set
2193 && GET_CODE (SET_DEST (set)) == CC0
2194 && insn != last_ignored_compare)
2196 if (GET_CODE (SET_SRC (set)) == SUBREG)
2197 SET_SRC (set) = alter_subreg (&SET_SRC (set));
2198 else if (GET_CODE (SET_SRC (set)) == COMPARE)
2200 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2201 XEXP (SET_SRC (set), 0)
2202 = alter_subreg (&XEXP (SET_SRC (set), 0));
2203 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2204 XEXP (SET_SRC (set), 1)
2205 = alter_subreg (&XEXP (SET_SRC (set), 1));
2207 if ((cc_status.value1 != 0
2208 && rtx_equal_p (SET_SRC (set), cc_status.value1))
2209 || (cc_status.value2 != 0
2210 && rtx_equal_p (SET_SRC (set), cc_status.value2)))
2212 /* Don't delete insn if it has an addressing side-effect. */
2213 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2214 /* or if anything in it is volatile. */
2215 && ! volatile_refs_p (PATTERN (insn)))
2217 /* We don't really delete the insn; just ignore it. */
2218 last_ignored_compare = insn;
2219 break;
2224 #endif
2226 #ifdef HAVE_cc0
2227 /* If this is a conditional branch, maybe modify it
2228 if the cc's are in a nonstandard state
2229 so that it accomplishes the same thing that it would
2230 do straightforwardly if the cc's were set up normally. */
2232 if (cc_status.flags != 0
2233 && JUMP_P (insn)
2234 && GET_CODE (body) == SET
2235 && SET_DEST (body) == pc_rtx
2236 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2237 && COMPARISON_P (XEXP (SET_SRC (body), 0))
2238 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx)
2240 /* This function may alter the contents of its argument
2241 and clear some of the cc_status.flags bits.
2242 It may also return 1 meaning condition now always true
2243 or -1 meaning condition now always false
2244 or 2 meaning condition nontrivial but altered. */
2245 int result = alter_cond (XEXP (SET_SRC (body), 0));
2246 /* If condition now has fixed value, replace the IF_THEN_ELSE
2247 with its then-operand or its else-operand. */
2248 if (result == 1)
2249 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2250 if (result == -1)
2251 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2253 /* The jump is now either unconditional or a no-op.
2254 If it has become a no-op, don't try to output it.
2255 (It would not be recognized.) */
2256 if (SET_SRC (body) == pc_rtx)
2258 delete_insn (insn);
2259 break;
2261 else if (GET_CODE (SET_SRC (body)) == RETURN)
2262 /* Replace (set (pc) (return)) with (return). */
2263 PATTERN (insn) = body = SET_SRC (body);
2265 /* Rerecognize the instruction if it has changed. */
2266 if (result != 0)
2267 INSN_CODE (insn) = -1;
2270 /* Make same adjustments to instructions that examine the
2271 condition codes without jumping and instructions that
2272 handle conditional moves (if this machine has either one). */
2274 if (cc_status.flags != 0
2275 && set != 0)
2277 rtx cond_rtx, then_rtx, else_rtx;
2279 if (!JUMP_P (insn)
2280 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2282 cond_rtx = XEXP (SET_SRC (set), 0);
2283 then_rtx = XEXP (SET_SRC (set), 1);
2284 else_rtx = XEXP (SET_SRC (set), 2);
2286 else
2288 cond_rtx = SET_SRC (set);
2289 then_rtx = const_true_rtx;
2290 else_rtx = const0_rtx;
2293 switch (GET_CODE (cond_rtx))
2295 case GTU:
2296 case GT:
2297 case LTU:
2298 case LT:
2299 case GEU:
2300 case GE:
2301 case LEU:
2302 case LE:
2303 case EQ:
2304 case NE:
2306 int result;
2307 if (XEXP (cond_rtx, 0) != cc0_rtx)
2308 break;
2309 result = alter_cond (cond_rtx);
2310 if (result == 1)
2311 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2312 else if (result == -1)
2313 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2314 else if (result == 2)
2315 INSN_CODE (insn) = -1;
2316 if (SET_DEST (set) == SET_SRC (set))
2317 delete_insn (insn);
2319 break;
2321 default:
2322 break;
2326 #endif
2328 #ifdef HAVE_peephole
2329 /* Do machine-specific peephole optimizations if desired. */
2331 if (optimize && !flag_no_peephole && !nopeepholes)
2333 rtx next = peephole (insn);
2334 /* When peepholing, if there were notes within the peephole,
2335 emit them before the peephole. */
2336 if (next != 0 && next != NEXT_INSN (insn))
2338 rtx note, prev = PREV_INSN (insn);
2340 for (note = NEXT_INSN (insn); note != next;
2341 note = NEXT_INSN (note))
2342 final_scan_insn (note, file, optimize, nopeepholes, seen);
2344 /* Put the notes in the proper position for a later
2345 rescan. For example, the SH target can do this
2346 when generating a far jump in a delayed branch
2347 sequence. */
2348 note = NEXT_INSN (insn);
2349 PREV_INSN (note) = prev;
2350 NEXT_INSN (prev) = note;
2351 NEXT_INSN (PREV_INSN (next)) = insn;
2352 PREV_INSN (insn) = PREV_INSN (next);
2353 NEXT_INSN (insn) = next;
2354 PREV_INSN (next) = insn;
2357 /* PEEPHOLE might have changed this. */
2358 body = PATTERN (insn);
2360 #endif
2362 /* Try to recognize the instruction.
2363 If successful, verify that the operands satisfy the
2364 constraints for the instruction. Crash if they don't,
2365 since `reload' should have changed them so that they do. */
2367 insn_code_number = recog_memoized (insn);
2368 cleanup_subreg_operands (insn);
2370 /* Dump the insn in the assembly for debugging. */
2371 if (flag_dump_rtl_in_asm)
2373 print_rtx_head = ASM_COMMENT_START;
2374 print_rtl_single (asm_out_file, insn);
2375 print_rtx_head = "";
2378 if (! constrain_operands_cached (1))
2379 fatal_insn_not_found (insn);
2381 /* Some target machines need to prescan each insn before
2382 it is output. */
2384 #ifdef FINAL_PRESCAN_INSN
2385 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2386 #endif
2388 #ifdef HAVE_conditional_execution
2389 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
2390 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2391 else
2392 current_insn_predicate = NULL_RTX;
2393 #endif
2395 #ifdef HAVE_cc0
2396 cc_prev_status = cc_status;
2398 /* Update `cc_status' for this instruction.
2399 The instruction's output routine may change it further.
2400 If the output routine for a jump insn needs to depend
2401 on the cc status, it should look at cc_prev_status. */
2403 NOTICE_UPDATE_CC (body, insn);
2404 #endif
2406 current_output_insn = debug_insn = insn;
2408 #if defined (DWARF2_UNWIND_INFO)
2409 if (CALL_P (insn) && dwarf2out_do_frame ())
2410 dwarf2out_frame_debug (insn, false);
2411 #endif
2413 /* Find the proper template for this insn. */
2414 template = get_insn_template (insn_code_number, insn);
2416 /* If the C code returns 0, it means that it is a jump insn
2417 which follows a deleted test insn, and that test insn
2418 needs to be reinserted. */
2419 if (template == 0)
2421 rtx prev;
2423 gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare);
2425 /* We have already processed the notes between the setter and
2426 the user. Make sure we don't process them again, this is
2427 particularly important if one of the notes is a block
2428 scope note or an EH note. */
2429 for (prev = insn;
2430 prev != last_ignored_compare;
2431 prev = PREV_INSN (prev))
2433 if (NOTE_P (prev))
2434 delete_insn (prev); /* Use delete_note. */
2437 return prev;
2440 /* If the template is the string "#", it means that this insn must
2441 be split. */
2442 if (template[0] == '#' && template[1] == '\0')
2444 rtx new = try_split (body, insn, 0);
2446 /* If we didn't split the insn, go away. */
2447 if (new == insn && PATTERN (new) == body)
2448 fatal_insn ("could not split insn", insn);
2450 #ifdef HAVE_ATTR_length
2451 /* This instruction should have been split in shorten_branches,
2452 to ensure that we would have valid length info for the
2453 splitees. */
2454 gcc_unreachable ();
2455 #endif
2457 return new;
2460 #ifdef TARGET_UNWIND_INFO
2461 /* ??? This will put the directives in the wrong place if
2462 get_insn_template outputs assembly directly. However calling it
2463 before get_insn_template breaks if the insns is split. */
2464 targetm.asm_out.unwind_emit (asm_out_file, insn);
2465 #endif
2467 /* Output assembler code from the template. */
2468 output_asm_insn (template, recog_data.operand);
2470 /* If necessary, report the effect that the instruction has on
2471 the unwind info. We've already done this for delay slots
2472 and call instructions. */
2473 #if defined (DWARF2_UNWIND_INFO)
2474 if (final_sequence == 0
2475 #if !defined (HAVE_prologue)
2476 && !ACCUMULATE_OUTGOING_ARGS
2477 #endif
2478 && dwarf2out_do_frame ())
2479 dwarf2out_frame_debug (insn, true);
2480 #endif
2482 current_output_insn = debug_insn = 0;
2485 return NEXT_INSN (insn);
2488 /* Return whether a source line note needs to be emitted before INSN. */
2490 static bool
2491 notice_source_line (rtx insn)
2493 const char *filename = insn_file (insn);
2494 int linenum = insn_line (insn);
2496 if (filename
2497 && (force_source_line
2498 || filename != last_filename
2499 || last_linenum != linenum))
2501 force_source_line = false;
2502 last_filename = filename;
2503 last_linenum = linenum;
2504 high_block_linenum = MAX (last_linenum, high_block_linenum);
2505 high_function_linenum = MAX (last_linenum, high_function_linenum);
2506 return true;
2508 return false;
2511 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
2512 directly to the desired hard register. */
2514 void
2515 cleanup_subreg_operands (rtx insn)
2517 int i;
2518 extract_insn_cached (insn);
2519 for (i = 0; i < recog_data.n_operands; i++)
2521 /* The following test cannot use recog_data.operand when testing
2522 for a SUBREG: the underlying object might have been changed
2523 already if we are inside a match_operator expression that
2524 matches the else clause. Instead we test the underlying
2525 expression directly. */
2526 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2527 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i]);
2528 else if (GET_CODE (recog_data.operand[i]) == PLUS
2529 || GET_CODE (recog_data.operand[i]) == MULT
2530 || MEM_P (recog_data.operand[i]))
2531 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i]);
2534 for (i = 0; i < recog_data.n_dups; i++)
2536 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
2537 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i]);
2538 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
2539 || GET_CODE (*recog_data.dup_loc[i]) == MULT
2540 || MEM_P (*recog_data.dup_loc[i]))
2541 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i]);
2545 /* If X is a SUBREG, replace it with a REG or a MEM,
2546 based on the thing it is a subreg of. */
2549 alter_subreg (rtx *xp)
2551 rtx x = *xp;
2552 rtx y = SUBREG_REG (x);
2554 /* simplify_subreg does not remove subreg from volatile references.
2555 We are required to. */
2556 if (MEM_P (y))
2558 int offset = SUBREG_BYTE (x);
2560 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
2561 contains 0 instead of the proper offset. See simplify_subreg. */
2562 if (offset == 0
2563 && GET_MODE_SIZE (GET_MODE (y)) < GET_MODE_SIZE (GET_MODE (x)))
2565 int difference = GET_MODE_SIZE (GET_MODE (y))
2566 - GET_MODE_SIZE (GET_MODE (x));
2567 if (WORDS_BIG_ENDIAN)
2568 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
2569 if (BYTES_BIG_ENDIAN)
2570 offset += difference % UNITS_PER_WORD;
2573 *xp = adjust_address (y, GET_MODE (x), offset);
2575 else
2577 rtx new = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
2578 SUBREG_BYTE (x));
2580 if (new != 0)
2581 *xp = new;
2582 else if (REG_P (y))
2584 /* Simplify_subreg can't handle some REG cases, but we have to. */
2585 unsigned int regno = subreg_regno (x);
2586 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, SUBREG_BYTE (x));
2590 return *xp;
2593 /* Do alter_subreg on all the SUBREGs contained in X. */
2595 static rtx
2596 walk_alter_subreg (rtx *xp)
2598 rtx x = *xp;
2599 switch (GET_CODE (x))
2601 case PLUS:
2602 case MULT:
2603 case AND:
2604 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2605 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1));
2606 break;
2608 case MEM:
2609 case ZERO_EXTEND:
2610 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2611 break;
2613 case SUBREG:
2614 return alter_subreg (xp);
2616 default:
2617 break;
2620 return *xp;
2623 #ifdef HAVE_cc0
2625 /* Given BODY, the body of a jump instruction, alter the jump condition
2626 as required by the bits that are set in cc_status.flags.
2627 Not all of the bits there can be handled at this level in all cases.
2629 The value is normally 0.
2630 1 means that the condition has become always true.
2631 -1 means that the condition has become always false.
2632 2 means that COND has been altered. */
2634 static int
2635 alter_cond (rtx cond)
2637 int value = 0;
2639 if (cc_status.flags & CC_REVERSED)
2641 value = 2;
2642 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
2645 if (cc_status.flags & CC_INVERTED)
2647 value = 2;
2648 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
2651 if (cc_status.flags & CC_NOT_POSITIVE)
2652 switch (GET_CODE (cond))
2654 case LE:
2655 case LEU:
2656 case GEU:
2657 /* Jump becomes unconditional. */
2658 return 1;
2660 case GT:
2661 case GTU:
2662 case LTU:
2663 /* Jump becomes no-op. */
2664 return -1;
2666 case GE:
2667 PUT_CODE (cond, EQ);
2668 value = 2;
2669 break;
2671 case LT:
2672 PUT_CODE (cond, NE);
2673 value = 2;
2674 break;
2676 default:
2677 break;
2680 if (cc_status.flags & CC_NOT_NEGATIVE)
2681 switch (GET_CODE (cond))
2683 case GE:
2684 case GEU:
2685 /* Jump becomes unconditional. */
2686 return 1;
2688 case LT:
2689 case LTU:
2690 /* Jump becomes no-op. */
2691 return -1;
2693 case LE:
2694 case LEU:
2695 PUT_CODE (cond, EQ);
2696 value = 2;
2697 break;
2699 case GT:
2700 case GTU:
2701 PUT_CODE (cond, NE);
2702 value = 2;
2703 break;
2705 default:
2706 break;
2709 if (cc_status.flags & CC_NO_OVERFLOW)
2710 switch (GET_CODE (cond))
2712 case GEU:
2713 /* Jump becomes unconditional. */
2714 return 1;
2716 case LEU:
2717 PUT_CODE (cond, EQ);
2718 value = 2;
2719 break;
2721 case GTU:
2722 PUT_CODE (cond, NE);
2723 value = 2;
2724 break;
2726 case LTU:
2727 /* Jump becomes no-op. */
2728 return -1;
2730 default:
2731 break;
2734 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
2735 switch (GET_CODE (cond))
2737 default:
2738 gcc_unreachable ();
2740 case NE:
2741 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
2742 value = 2;
2743 break;
2745 case EQ:
2746 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
2747 value = 2;
2748 break;
2751 if (cc_status.flags & CC_NOT_SIGNED)
2752 /* The flags are valid if signed condition operators are converted
2753 to unsigned. */
2754 switch (GET_CODE (cond))
2756 case LE:
2757 PUT_CODE (cond, LEU);
2758 value = 2;
2759 break;
2761 case LT:
2762 PUT_CODE (cond, LTU);
2763 value = 2;
2764 break;
2766 case GT:
2767 PUT_CODE (cond, GTU);
2768 value = 2;
2769 break;
2771 case GE:
2772 PUT_CODE (cond, GEU);
2773 value = 2;
2774 break;
2776 default:
2777 break;
2780 return value;
2782 #endif
2784 /* Report inconsistency between the assembler template and the operands.
2785 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
2787 void
2788 output_operand_lossage (const char *cmsgid, ...)
2790 char *fmt_string;
2791 char *new_message;
2792 const char *pfx_str;
2793 va_list ap;
2795 va_start (ap, cmsgid);
2797 pfx_str = this_is_asm_operands ? _("invalid 'asm': ") : "output_operand: ";
2798 asprintf (&fmt_string, "%s%s", pfx_str, _(cmsgid));
2799 vasprintf (&new_message, fmt_string, ap);
2801 if (this_is_asm_operands)
2802 error_for_asm (this_is_asm_operands, "%s", new_message);
2803 else
2804 internal_error ("%s", new_message);
2806 free (fmt_string);
2807 free (new_message);
2808 va_end (ap);
2811 /* Output of assembler code from a template, and its subroutines. */
2813 /* Annotate the assembly with a comment describing the pattern and
2814 alternative used. */
2816 static void
2817 output_asm_name (void)
2819 if (debug_insn)
2821 int num = INSN_CODE (debug_insn);
2822 fprintf (asm_out_file, "\t%s %d\t%s",
2823 ASM_COMMENT_START, INSN_UID (debug_insn),
2824 insn_data[num].name);
2825 if (insn_data[num].n_alternatives > 1)
2826 fprintf (asm_out_file, "/%d", which_alternative + 1);
2827 #ifdef HAVE_ATTR_length
2828 fprintf (asm_out_file, "\t[length = %d]",
2829 get_attr_length (debug_insn));
2830 #endif
2831 /* Clear this so only the first assembler insn
2832 of any rtl insn will get the special comment for -dp. */
2833 debug_insn = 0;
2837 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
2838 or its address, return that expr . Set *PADDRESSP to 1 if the expr
2839 corresponds to the address of the object and 0 if to the object. */
2841 static tree
2842 get_mem_expr_from_op (rtx op, int *paddressp)
2844 tree expr;
2845 int inner_addressp;
2847 *paddressp = 0;
2849 if (REG_P (op))
2850 return REG_EXPR (op);
2851 else if (!MEM_P (op))
2852 return 0;
2854 if (MEM_EXPR (op) != 0)
2855 return MEM_EXPR (op);
2857 /* Otherwise we have an address, so indicate it and look at the address. */
2858 *paddressp = 1;
2859 op = XEXP (op, 0);
2861 /* First check if we have a decl for the address, then look at the right side
2862 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
2863 But don't allow the address to itself be indirect. */
2864 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
2865 return expr;
2866 else if (GET_CODE (op) == PLUS
2867 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
2868 return expr;
2870 while (GET_RTX_CLASS (GET_CODE (op)) == RTX_UNARY
2871 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
2872 op = XEXP (op, 0);
2874 expr = get_mem_expr_from_op (op, &inner_addressp);
2875 return inner_addressp ? 0 : expr;
2878 /* Output operand names for assembler instructions. OPERANDS is the
2879 operand vector, OPORDER is the order to write the operands, and NOPS
2880 is the number of operands to write. */
2882 static void
2883 output_asm_operand_names (rtx *operands, int *oporder, int nops)
2885 int wrote = 0;
2886 int i;
2888 for (i = 0; i < nops; i++)
2890 int addressp;
2891 rtx op = operands[oporder[i]];
2892 tree expr = get_mem_expr_from_op (op, &addressp);
2894 fprintf (asm_out_file, "%c%s",
2895 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
2896 wrote = 1;
2897 if (expr)
2899 fprintf (asm_out_file, "%s",
2900 addressp ? "*" : "");
2901 print_mem_expr (asm_out_file, expr);
2902 wrote = 1;
2904 else if (REG_P (op) && ORIGINAL_REGNO (op)
2905 && ORIGINAL_REGNO (op) != REGNO (op))
2906 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
2910 /* Output text from TEMPLATE to the assembler output file,
2911 obeying %-directions to substitute operands taken from
2912 the vector OPERANDS.
2914 %N (for N a digit) means print operand N in usual manner.
2915 %lN means require operand N to be a CODE_LABEL or LABEL_REF
2916 and print the label name with no punctuation.
2917 %cN means require operand N to be a constant
2918 and print the constant expression with no punctuation.
2919 %aN means expect operand N to be a memory address
2920 (not a memory reference!) and print a reference
2921 to that address.
2922 %nN means expect operand N to be a constant
2923 and print a constant expression for minus the value
2924 of the operand, with no other punctuation. */
2926 void
2927 output_asm_insn (const char *template, rtx *operands)
2929 const char *p;
2930 int c;
2931 #ifdef ASSEMBLER_DIALECT
2932 int dialect = 0;
2933 #endif
2934 int oporder[MAX_RECOG_OPERANDS];
2935 char opoutput[MAX_RECOG_OPERANDS];
2936 int ops = 0;
2938 /* An insn may return a null string template
2939 in a case where no assembler code is needed. */
2940 if (*template == 0)
2941 return;
2943 memset (opoutput, 0, sizeof opoutput);
2944 p = template;
2945 putc ('\t', asm_out_file);
2947 #ifdef ASM_OUTPUT_OPCODE
2948 ASM_OUTPUT_OPCODE (asm_out_file, p);
2949 #endif
2951 while ((c = *p++))
2952 switch (c)
2954 case '\n':
2955 if (flag_verbose_asm)
2956 output_asm_operand_names (operands, oporder, ops);
2957 if (flag_print_asm_name)
2958 output_asm_name ();
2960 ops = 0;
2961 memset (opoutput, 0, sizeof opoutput);
2963 putc (c, asm_out_file);
2964 #ifdef ASM_OUTPUT_OPCODE
2965 while ((c = *p) == '\t')
2967 putc (c, asm_out_file);
2968 p++;
2970 ASM_OUTPUT_OPCODE (asm_out_file, p);
2971 #endif
2972 break;
2974 #ifdef ASSEMBLER_DIALECT
2975 case '{':
2977 int i;
2979 if (dialect)
2980 output_operand_lossage ("nested assembly dialect alternatives");
2981 else
2982 dialect = 1;
2984 /* If we want the first dialect, do nothing. Otherwise, skip
2985 DIALECT_NUMBER of strings ending with '|'. */
2986 for (i = 0; i < dialect_number; i++)
2988 while (*p && *p != '}' && *p++ != '|')
2990 if (*p == '}')
2991 break;
2992 if (*p == '|')
2993 p++;
2996 if (*p == '\0')
2997 output_operand_lossage ("unterminated assembly dialect alternative");
2999 break;
3001 case '|':
3002 if (dialect)
3004 /* Skip to close brace. */
3007 if (*p == '\0')
3009 output_operand_lossage ("unterminated assembly dialect alternative");
3010 break;
3013 while (*p++ != '}');
3014 dialect = 0;
3016 else
3017 putc (c, asm_out_file);
3018 break;
3020 case '}':
3021 if (! dialect)
3022 putc (c, asm_out_file);
3023 dialect = 0;
3024 break;
3025 #endif
3027 case '%':
3028 /* %% outputs a single %. */
3029 if (*p == '%')
3031 p++;
3032 putc (c, asm_out_file);
3034 /* %= outputs a number which is unique to each insn in the entire
3035 compilation. This is useful for making local labels that are
3036 referred to more than once in a given insn. */
3037 else if (*p == '=')
3039 p++;
3040 fprintf (asm_out_file, "%d", insn_counter);
3042 /* % followed by a letter and some digits
3043 outputs an operand in a special way depending on the letter.
3044 Letters `acln' are implemented directly.
3045 Other letters are passed to `output_operand' so that
3046 the PRINT_OPERAND macro can define them. */
3047 else if (ISALPHA (*p))
3049 int letter = *p++;
3050 unsigned long opnum;
3051 char *endptr;
3053 opnum = strtoul (p, &endptr, 10);
3055 if (endptr == p)
3056 output_operand_lossage ("operand number missing "
3057 "after %%-letter");
3058 else if (this_is_asm_operands && opnum >= insn_noperands)
3059 output_operand_lossage ("operand number out of range");
3060 else if (letter == 'l')
3061 output_asm_label (operands[opnum]);
3062 else if (letter == 'a')
3063 output_address (operands[opnum]);
3064 else if (letter == 'c')
3066 if (CONSTANT_ADDRESS_P (operands[opnum]))
3067 output_addr_const (asm_out_file, operands[opnum]);
3068 else
3069 output_operand (operands[opnum], 'c');
3071 else if (letter == 'n')
3073 if (GET_CODE (operands[opnum]) == CONST_INT)
3074 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3075 - INTVAL (operands[opnum]));
3076 else
3078 putc ('-', asm_out_file);
3079 output_addr_const (asm_out_file, operands[opnum]);
3082 else
3083 output_operand (operands[opnum], letter);
3085 if (!opoutput[opnum])
3086 oporder[ops++] = opnum;
3087 opoutput[opnum] = 1;
3089 p = endptr;
3090 c = *p;
3092 /* % followed by a digit outputs an operand the default way. */
3093 else if (ISDIGIT (*p))
3095 unsigned long opnum;
3096 char *endptr;
3098 opnum = strtoul (p, &endptr, 10);
3099 if (this_is_asm_operands && opnum >= insn_noperands)
3100 output_operand_lossage ("operand number out of range");
3101 else
3102 output_operand (operands[opnum], 0);
3104 if (!opoutput[opnum])
3105 oporder[ops++] = opnum;
3106 opoutput[opnum] = 1;
3108 p = endptr;
3109 c = *p;
3111 /* % followed by punctuation: output something for that
3112 punctuation character alone, with no operand.
3113 The PRINT_OPERAND macro decides what is actually done. */
3114 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3115 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p))
3116 output_operand (NULL_RTX, *p++);
3117 #endif
3118 else
3119 output_operand_lossage ("invalid %%-code");
3120 break;
3122 default:
3123 putc (c, asm_out_file);
3126 /* Write out the variable names for operands, if we know them. */
3127 if (flag_verbose_asm)
3128 output_asm_operand_names (operands, oporder, ops);
3129 if (flag_print_asm_name)
3130 output_asm_name ();
3132 putc ('\n', asm_out_file);
3135 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3137 void
3138 output_asm_label (rtx x)
3140 char buf[256];
3142 if (GET_CODE (x) == LABEL_REF)
3143 x = XEXP (x, 0);
3144 if (LABEL_P (x)
3145 || (NOTE_P (x)
3146 && NOTE_LINE_NUMBER (x) == NOTE_INSN_DELETED_LABEL))
3147 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3148 else
3149 output_operand_lossage ("'%%l' operand isn't a label");
3151 assemble_name (asm_out_file, buf);
3154 /* Print operand X using machine-dependent assembler syntax.
3155 The macro PRINT_OPERAND is defined just to control this function.
3156 CODE is a non-digit that preceded the operand-number in the % spec,
3157 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3158 between the % and the digits.
3159 When CODE is a non-letter, X is 0.
3161 The meanings of the letters are machine-dependent and controlled
3162 by PRINT_OPERAND. */
3164 static void
3165 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3167 if (x && GET_CODE (x) == SUBREG)
3168 x = alter_subreg (&x);
3170 /* X must not be a pseudo reg. */
3171 gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER);
3173 PRINT_OPERAND (asm_out_file, x, code);
3176 /* Print a memory reference operand for address X
3177 using machine-dependent assembler syntax.
3178 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3180 void
3181 output_address (rtx x)
3183 walk_alter_subreg (&x);
3184 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3187 /* Print an integer constant expression in assembler syntax.
3188 Addition and subtraction are the only arithmetic
3189 that may appear in these expressions. */
3191 void
3192 output_addr_const (FILE *file, rtx x)
3194 char buf[256];
3196 restart:
3197 switch (GET_CODE (x))
3199 case PC:
3200 putc ('.', file);
3201 break;
3203 case SYMBOL_REF:
3204 if (SYMBOL_REF_DECL (x))
3205 mark_decl_referenced (SYMBOL_REF_DECL (x));
3206 #ifdef ASM_OUTPUT_SYMBOL_REF
3207 ASM_OUTPUT_SYMBOL_REF (file, x);
3208 #else
3209 assemble_name (file, XSTR (x, 0));
3210 #endif
3211 break;
3213 case LABEL_REF:
3214 x = XEXP (x, 0);
3215 /* Fall through. */
3216 case CODE_LABEL:
3217 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3218 #ifdef ASM_OUTPUT_LABEL_REF
3219 ASM_OUTPUT_LABEL_REF (file, buf);
3220 #else
3221 assemble_name (file, buf);
3222 #endif
3223 break;
3225 case CONST_INT:
3226 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3227 break;
3229 case CONST:
3230 /* This used to output parentheses around the expression,
3231 but that does not work on the 386 (either ATT or BSD assembler). */
3232 output_addr_const (file, XEXP (x, 0));
3233 break;
3235 case CONST_DOUBLE:
3236 if (GET_MODE (x) == VOIDmode)
3238 /* We can use %d if the number is one word and positive. */
3239 if (CONST_DOUBLE_HIGH (x))
3240 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3241 CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
3242 else if (CONST_DOUBLE_LOW (x) < 0)
3243 fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
3244 else
3245 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3247 else
3248 /* We can't handle floating point constants;
3249 PRINT_OPERAND must handle them. */
3250 output_operand_lossage ("floating constant misused");
3251 break;
3253 case PLUS:
3254 /* Some assemblers need integer constants to appear last (eg masm). */
3255 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3257 output_addr_const (file, XEXP (x, 1));
3258 if (INTVAL (XEXP (x, 0)) >= 0)
3259 fprintf (file, "+");
3260 output_addr_const (file, XEXP (x, 0));
3262 else
3264 output_addr_const (file, XEXP (x, 0));
3265 if (GET_CODE (XEXP (x, 1)) != CONST_INT
3266 || INTVAL (XEXP (x, 1)) >= 0)
3267 fprintf (file, "+");
3268 output_addr_const (file, XEXP (x, 1));
3270 break;
3272 case MINUS:
3273 /* Avoid outputting things like x-x or x+5-x,
3274 since some assemblers can't handle that. */
3275 x = simplify_subtraction (x);
3276 if (GET_CODE (x) != MINUS)
3277 goto restart;
3279 output_addr_const (file, XEXP (x, 0));
3280 fprintf (file, "-");
3281 if ((GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0)
3282 || GET_CODE (XEXP (x, 1)) == PC
3283 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3284 output_addr_const (file, XEXP (x, 1));
3285 else
3287 fputs (targetm.asm_out.open_paren, file);
3288 output_addr_const (file, XEXP (x, 1));
3289 fputs (targetm.asm_out.close_paren, file);
3291 break;
3293 case ZERO_EXTEND:
3294 case SIGN_EXTEND:
3295 case SUBREG:
3296 output_addr_const (file, XEXP (x, 0));
3297 break;
3299 default:
3300 #ifdef OUTPUT_ADDR_CONST_EXTRA
3301 OUTPUT_ADDR_CONST_EXTRA (file, x, fail);
3302 break;
3304 fail:
3305 #endif
3306 output_operand_lossage ("invalid expression as operand");
3310 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3311 %R prints the value of REGISTER_PREFIX.
3312 %L prints the value of LOCAL_LABEL_PREFIX.
3313 %U prints the value of USER_LABEL_PREFIX.
3314 %I prints the value of IMMEDIATE_PREFIX.
3315 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3316 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
3318 We handle alternate assembler dialects here, just like output_asm_insn. */
3320 void
3321 asm_fprintf (FILE *file, const char *p, ...)
3323 char buf[10];
3324 char *q, c;
3325 va_list argptr;
3327 va_start (argptr, p);
3329 buf[0] = '%';
3331 while ((c = *p++))
3332 switch (c)
3334 #ifdef ASSEMBLER_DIALECT
3335 case '{':
3337 int i;
3339 /* If we want the first dialect, do nothing. Otherwise, skip
3340 DIALECT_NUMBER of strings ending with '|'. */
3341 for (i = 0; i < dialect_number; i++)
3343 while (*p && *p++ != '|')
3346 if (*p == '|')
3347 p++;
3350 break;
3352 case '|':
3353 /* Skip to close brace. */
3354 while (*p && *p++ != '}')
3356 break;
3358 case '}':
3359 break;
3360 #endif
3362 case '%':
3363 c = *p++;
3364 q = &buf[1];
3365 while (strchr ("-+ #0", c))
3367 *q++ = c;
3368 c = *p++;
3370 while (ISDIGIT (c) || c == '.')
3372 *q++ = c;
3373 c = *p++;
3375 switch (c)
3377 case '%':
3378 putc ('%', file);
3379 break;
3381 case 'd': case 'i': case 'u':
3382 case 'x': case 'X': case 'o':
3383 case 'c':
3384 *q++ = c;
3385 *q = 0;
3386 fprintf (file, buf, va_arg (argptr, int));
3387 break;
3389 case 'w':
3390 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
3391 'o' cases, but we do not check for those cases. It
3392 means that the value is a HOST_WIDE_INT, which may be
3393 either `long' or `long long'. */
3394 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
3395 q += strlen (HOST_WIDE_INT_PRINT);
3396 *q++ = *p++;
3397 *q = 0;
3398 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3399 break;
3401 case 'l':
3402 *q++ = c;
3403 #ifdef HAVE_LONG_LONG
3404 if (*p == 'l')
3406 *q++ = *p++;
3407 *q++ = *p++;
3408 *q = 0;
3409 fprintf (file, buf, va_arg (argptr, long long));
3411 else
3412 #endif
3414 *q++ = *p++;
3415 *q = 0;
3416 fprintf (file, buf, va_arg (argptr, long));
3419 break;
3421 case 's':
3422 *q++ = c;
3423 *q = 0;
3424 fprintf (file, buf, va_arg (argptr, char *));
3425 break;
3427 case 'O':
3428 #ifdef ASM_OUTPUT_OPCODE
3429 ASM_OUTPUT_OPCODE (asm_out_file, p);
3430 #endif
3431 break;
3433 case 'R':
3434 #ifdef REGISTER_PREFIX
3435 fprintf (file, "%s", REGISTER_PREFIX);
3436 #endif
3437 break;
3439 case 'I':
3440 #ifdef IMMEDIATE_PREFIX
3441 fprintf (file, "%s", IMMEDIATE_PREFIX);
3442 #endif
3443 break;
3445 case 'L':
3446 #ifdef LOCAL_LABEL_PREFIX
3447 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3448 #endif
3449 break;
3451 case 'U':
3452 fputs (user_label_prefix, file);
3453 break;
3455 #ifdef ASM_FPRINTF_EXTENSIONS
3456 /* Uppercase letters are reserved for general use by asm_fprintf
3457 and so are not available to target specific code. In order to
3458 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3459 they are defined here. As they get turned into real extensions
3460 to asm_fprintf they should be removed from this list. */
3461 case 'A': case 'B': case 'C': case 'D': case 'E':
3462 case 'F': case 'G': case 'H': case 'J': case 'K':
3463 case 'M': case 'N': case 'P': case 'Q': case 'S':
3464 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3465 break;
3467 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3468 #endif
3469 default:
3470 gcc_unreachable ();
3472 break;
3474 default:
3475 putc (c, file);
3477 va_end (argptr);
3480 /* Split up a CONST_DOUBLE or integer constant rtx
3481 into two rtx's for single words,
3482 storing in *FIRST the word that comes first in memory in the target
3483 and in *SECOND the other. */
3485 void
3486 split_double (rtx value, rtx *first, rtx *second)
3488 if (GET_CODE (value) == CONST_INT)
3490 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
3492 /* In this case the CONST_INT holds both target words.
3493 Extract the bits from it into two word-sized pieces.
3494 Sign extend each half to HOST_WIDE_INT. */
3495 unsigned HOST_WIDE_INT low, high;
3496 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
3498 /* Set sign_bit to the most significant bit of a word. */
3499 sign_bit = 1;
3500 sign_bit <<= BITS_PER_WORD - 1;
3502 /* Set mask so that all bits of the word are set. We could
3503 have used 1 << BITS_PER_WORD instead of basing the
3504 calculation on sign_bit. However, on machines where
3505 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3506 compiler warning, even though the code would never be
3507 executed. */
3508 mask = sign_bit << 1;
3509 mask--;
3511 /* Set sign_extend as any remaining bits. */
3512 sign_extend = ~mask;
3514 /* Pick the lower word and sign-extend it. */
3515 low = INTVAL (value);
3516 low &= mask;
3517 if (low & sign_bit)
3518 low |= sign_extend;
3520 /* Pick the higher word, shifted to the least significant
3521 bits, and sign-extend it. */
3522 high = INTVAL (value);
3523 high >>= BITS_PER_WORD - 1;
3524 high >>= 1;
3525 high &= mask;
3526 if (high & sign_bit)
3527 high |= sign_extend;
3529 /* Store the words in the target machine order. */
3530 if (WORDS_BIG_ENDIAN)
3532 *first = GEN_INT (high);
3533 *second = GEN_INT (low);
3535 else
3537 *first = GEN_INT (low);
3538 *second = GEN_INT (high);
3541 else
3543 /* The rule for using CONST_INT for a wider mode
3544 is that we regard the value as signed.
3545 So sign-extend it. */
3546 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
3547 if (WORDS_BIG_ENDIAN)
3549 *first = high;
3550 *second = value;
3552 else
3554 *first = value;
3555 *second = high;
3559 else if (GET_CODE (value) != CONST_DOUBLE)
3561 if (WORDS_BIG_ENDIAN)
3563 *first = const0_rtx;
3564 *second = value;
3566 else
3568 *first = value;
3569 *second = const0_rtx;
3572 else if (GET_MODE (value) == VOIDmode
3573 /* This is the old way we did CONST_DOUBLE integers. */
3574 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
3576 /* In an integer, the words are defined as most and least significant.
3577 So order them by the target's convention. */
3578 if (WORDS_BIG_ENDIAN)
3580 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3581 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3583 else
3585 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3586 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3589 else
3591 REAL_VALUE_TYPE r;
3592 long l[2];
3593 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
3595 /* Note, this converts the REAL_VALUE_TYPE to the target's
3596 format, splits up the floating point double and outputs
3597 exactly 32 bits of it into each of l[0] and l[1] --
3598 not necessarily BITS_PER_WORD bits. */
3599 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
3601 /* If 32 bits is an entire word for the target, but not for the host,
3602 then sign-extend on the host so that the number will look the same
3603 way on the host that it would on the target. See for instance
3604 simplify_unary_operation. The #if is needed to avoid compiler
3605 warnings. */
3607 #if HOST_BITS_PER_LONG > 32
3608 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
3610 if (l[0] & ((long) 1 << 31))
3611 l[0] |= ((long) (-1) << 32);
3612 if (l[1] & ((long) 1 << 31))
3613 l[1] |= ((long) (-1) << 32);
3615 #endif
3617 *first = GEN_INT (l[0]);
3618 *second = GEN_INT (l[1]);
3622 /* Return nonzero if this function has no function calls. */
3625 leaf_function_p (void)
3627 rtx insn;
3628 rtx link;
3630 if (current_function_profile || profile_arc_flag)
3631 return 0;
3633 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3635 if (CALL_P (insn)
3636 && ! SIBLING_CALL_P (insn))
3637 return 0;
3638 if (NONJUMP_INSN_P (insn)
3639 && GET_CODE (PATTERN (insn)) == SEQUENCE
3640 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
3641 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3642 return 0;
3644 for (link = current_function_epilogue_delay_list;
3645 link;
3646 link = XEXP (link, 1))
3648 insn = XEXP (link, 0);
3650 if (CALL_P (insn)
3651 && ! SIBLING_CALL_P (insn))
3652 return 0;
3653 if (NONJUMP_INSN_P (insn)
3654 && GET_CODE (PATTERN (insn)) == SEQUENCE
3655 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
3656 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3657 return 0;
3660 return 1;
3663 /* Return 1 if branch is a forward branch.
3664 Uses insn_shuid array, so it works only in the final pass. May be used by
3665 output templates to customary add branch prediction hints.
3668 final_forward_branch_p (rtx insn)
3670 int insn_id, label_id;
3672 gcc_assert (uid_shuid);
3673 insn_id = INSN_SHUID (insn);
3674 label_id = INSN_SHUID (JUMP_LABEL (insn));
3675 /* We've hit some insns that does not have id information available. */
3676 gcc_assert (insn_id && label_id);
3677 return insn_id < label_id;
3680 /* On some machines, a function with no call insns
3681 can run faster if it doesn't create its own register window.
3682 When output, the leaf function should use only the "output"
3683 registers. Ordinarily, the function would be compiled to use
3684 the "input" registers to find its arguments; it is a candidate
3685 for leaf treatment if it uses only the "input" registers.
3686 Leaf function treatment means renumbering so the function
3687 uses the "output" registers instead. */
3689 #ifdef LEAF_REGISTERS
3691 /* Return 1 if this function uses only the registers that can be
3692 safely renumbered. */
3695 only_leaf_regs_used (void)
3697 int i;
3698 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
3700 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3701 if ((regs_ever_live[i] || global_regs[i])
3702 && ! permitted_reg_in_leaf_functions[i])
3703 return 0;
3705 if (current_function_uses_pic_offset_table
3706 && pic_offset_table_rtx != 0
3707 && REG_P (pic_offset_table_rtx)
3708 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
3709 return 0;
3711 return 1;
3714 /* Scan all instructions and renumber all registers into those
3715 available in leaf functions. */
3717 static void
3718 leaf_renumber_regs (rtx first)
3720 rtx insn;
3722 /* Renumber only the actual patterns.
3723 The reg-notes can contain frame pointer refs,
3724 and renumbering them could crash, and should not be needed. */
3725 for (insn = first; insn; insn = NEXT_INSN (insn))
3726 if (INSN_P (insn))
3727 leaf_renumber_regs_insn (PATTERN (insn));
3728 for (insn = current_function_epilogue_delay_list;
3729 insn;
3730 insn = XEXP (insn, 1))
3731 if (INSN_P (XEXP (insn, 0)))
3732 leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
3735 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
3736 available in leaf functions. */
3738 void
3739 leaf_renumber_regs_insn (rtx in_rtx)
3741 int i, j;
3742 const char *format_ptr;
3744 if (in_rtx == 0)
3745 return;
3747 /* Renumber all input-registers into output-registers.
3748 renumbered_regs would be 1 for an output-register;
3749 they */
3751 if (REG_P (in_rtx))
3753 int newreg;
3755 /* Don't renumber the same reg twice. */
3756 if (in_rtx->used)
3757 return;
3759 newreg = REGNO (in_rtx);
3760 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
3761 to reach here as part of a REG_NOTE. */
3762 if (newreg >= FIRST_PSEUDO_REGISTER)
3764 in_rtx->used = 1;
3765 return;
3767 newreg = LEAF_REG_REMAP (newreg);
3768 gcc_assert (newreg >= 0);
3769 regs_ever_live[REGNO (in_rtx)] = 0;
3770 regs_ever_live[newreg] = 1;
3771 REGNO (in_rtx) = newreg;
3772 in_rtx->used = 1;
3775 if (INSN_P (in_rtx))
3777 /* Inside a SEQUENCE, we find insns.
3778 Renumber just the patterns of these insns,
3779 just as we do for the top-level insns. */
3780 leaf_renumber_regs_insn (PATTERN (in_rtx));
3781 return;
3784 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
3786 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
3787 switch (*format_ptr++)
3789 case 'e':
3790 leaf_renumber_regs_insn (XEXP (in_rtx, i));
3791 break;
3793 case 'E':
3794 if (NULL != XVEC (in_rtx, i))
3796 for (j = 0; j < XVECLEN (in_rtx, i); j++)
3797 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
3799 break;
3801 case 'S':
3802 case 's':
3803 case '0':
3804 case 'i':
3805 case 'w':
3806 case 'n':
3807 case 'u':
3808 break;
3810 default:
3811 gcc_unreachable ();
3814 #endif
3817 /* When -gused is used, emit debug info for only used symbols. But in
3818 addition to the standard intercepted debug_hooks there are some direct
3819 calls into this file, i.e., dbxout_symbol, dbxout_parms, and dbxout_reg_params.
3820 Those routines may also be called from a higher level intercepted routine. So
3821 to prevent recording data for an inner call to one of these for an intercept,
3822 we maintain an intercept nesting counter (debug_nesting). We only save the
3823 intercepted arguments if the nesting is 1. */
3824 int debug_nesting = 0;
3826 static tree *symbol_queue;
3827 int symbol_queue_index = 0;
3828 static int symbol_queue_size = 0;
3830 /* Generate the symbols for any queued up type symbols we encountered
3831 while generating the type info for some originally used symbol.
3832 This might generate additional entries in the queue. Only when
3833 the nesting depth goes to 0 is this routine called. */
3835 void
3836 debug_flush_symbol_queue (void)
3838 int i;
3840 /* Make sure that additionally queued items are not flushed
3841 prematurely. */
3843 ++debug_nesting;
3845 for (i = 0; i < symbol_queue_index; ++i)
3847 /* If we pushed queued symbols then such symbols are must be
3848 output no matter what anyone else says. Specifically,
3849 we need to make sure dbxout_symbol() thinks the symbol was
3850 used and also we need to override TYPE_DECL_SUPPRESS_DEBUG
3851 which may be set for outside reasons. */
3852 int saved_tree_used = TREE_USED (symbol_queue[i]);
3853 int saved_suppress_debug = TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]);
3854 TREE_USED (symbol_queue[i]) = 1;
3855 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = 0;
3857 #ifdef DBX_DEBUGGING_INFO
3858 dbxout_symbol (symbol_queue[i], 0);
3859 #endif
3861 TREE_USED (symbol_queue[i]) = saved_tree_used;
3862 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = saved_suppress_debug;
3865 symbol_queue_index = 0;
3866 --debug_nesting;
3869 /* Queue a type symbol needed as part of the definition of a decl
3870 symbol. These symbols are generated when debug_flush_symbol_queue()
3871 is called. */
3873 void
3874 debug_queue_symbol (tree decl)
3876 if (symbol_queue_index >= symbol_queue_size)
3878 symbol_queue_size += 10;
3879 symbol_queue = xrealloc (symbol_queue,
3880 symbol_queue_size * sizeof (tree));
3883 symbol_queue[symbol_queue_index++] = decl;
3886 /* Free symbol queue. */
3887 void
3888 debug_free_queue (void)
3890 if (symbol_queue)
3892 free (symbol_queue);
3893 symbol_queue = NULL;
3894 symbol_queue_size = 0;
3898 /* Turn the RTL into assembly. */
3899 static unsigned int
3900 rest_of_handle_final (void)
3902 rtx x;
3903 const char *fnname;
3905 /* Get the function's name, as described by its RTL. This may be
3906 different from the DECL_NAME name used in the source file. */
3908 x = DECL_RTL (current_function_decl);
3909 gcc_assert (MEM_P (x));
3910 x = XEXP (x, 0);
3911 gcc_assert (GET_CODE (x) == SYMBOL_REF);
3912 fnname = XSTR (x, 0);
3914 assemble_start_function (current_function_decl, fnname);
3915 final_start_function (get_insns (), asm_out_file, optimize);
3916 final (get_insns (), asm_out_file, optimize);
3917 final_end_function ();
3919 #ifdef TARGET_UNWIND_INFO
3920 /* ??? The IA-64 ".handlerdata" directive must be issued before
3921 the ".endp" directive that closes the procedure descriptor. */
3922 output_function_exception_table ();
3923 #endif
3925 assemble_end_function (current_function_decl, fnname);
3927 #ifndef TARGET_UNWIND_INFO
3928 /* Otherwise, it feels unclean to switch sections in the middle. */
3929 output_function_exception_table ();
3930 #endif
3932 user_defined_section_attribute = false;
3934 if (! quiet_flag)
3935 fflush (asm_out_file);
3937 /* Release all memory allocated by flow. */
3938 free_basic_block_vars ();
3940 /* Write DBX symbols if requested. */
3942 /* Note that for those inline functions where we don't initially
3943 know for certain that we will be generating an out-of-line copy,
3944 the first invocation of this routine (rest_of_compilation) will
3945 skip over this code by doing a `goto exit_rest_of_compilation;'.
3946 Later on, wrapup_global_declarations will (indirectly) call
3947 rest_of_compilation again for those inline functions that need
3948 to have out-of-line copies generated. During that call, we
3949 *will* be routed past here. */
3951 timevar_push (TV_SYMOUT);
3952 (*debug_hooks->function_decl) (current_function_decl);
3953 timevar_pop (TV_SYMOUT);
3954 return 0;
3957 struct tree_opt_pass pass_final =
3959 NULL, /* name */
3960 NULL, /* gate */
3961 rest_of_handle_final, /* execute */
3962 NULL, /* sub */
3963 NULL, /* next */
3964 0, /* static_pass_number */
3965 TV_FINAL, /* tv_id */
3966 0, /* properties_required */
3967 0, /* properties_provided */
3968 0, /* properties_destroyed */
3969 0, /* todo_flags_start */
3970 TODO_ggc_collect, /* todo_flags_finish */
3971 0 /* letter */
3975 static unsigned int
3976 rest_of_handle_shorten_branches (void)
3978 /* Shorten branches. */
3979 shorten_branches (get_insns ());
3980 return 0;
3983 struct tree_opt_pass pass_shorten_branches =
3985 "shorten", /* name */
3986 NULL, /* gate */
3987 rest_of_handle_shorten_branches, /* execute */
3988 NULL, /* sub */
3989 NULL, /* next */
3990 0, /* static_pass_number */
3991 TV_FINAL, /* tv_id */
3992 0, /* properties_required */
3993 0, /* properties_provided */
3994 0, /* properties_destroyed */
3995 0, /* todo_flags_start */
3996 TODO_dump_func, /* todo_flags_finish */
3997 0 /* letter */
4001 static unsigned int
4002 rest_of_clean_state (void)
4004 rtx insn, next;
4006 /* It is very important to decompose the RTL instruction chain here:
4007 debug information keeps pointing into CODE_LABEL insns inside the function
4008 body. If these remain pointing to the other insns, we end up preserving
4009 whole RTL chain and attached detailed debug info in memory. */
4010 for (insn = get_insns (); insn; insn = next)
4012 next = NEXT_INSN (insn);
4013 NEXT_INSN (insn) = NULL;
4014 PREV_INSN (insn) = NULL;
4017 /* In case the function was not output,
4018 don't leave any temporary anonymous types
4019 queued up for sdb output. */
4020 #ifdef SDB_DEBUGGING_INFO
4021 if (write_symbols == SDB_DEBUG)
4022 sdbout_types (NULL_TREE);
4023 #endif
4025 reload_completed = 0;
4026 epilogue_completed = 0;
4027 flow2_completed = 0;
4028 no_new_pseudos = 0;
4030 /* Clear out the insn_length contents now that they are no
4031 longer valid. */
4032 init_insn_lengths ();
4034 /* Show no temporary slots allocated. */
4035 init_temp_slots ();
4037 free_basic_block_vars ();
4038 free_bb_for_insn ();
4041 if (targetm.binds_local_p (current_function_decl))
4043 int pref = cfun->preferred_stack_boundary;
4044 if (cfun->stack_alignment_needed > cfun->preferred_stack_boundary)
4045 pref = cfun->stack_alignment_needed;
4046 cgraph_rtl_info (current_function_decl)->preferred_incoming_stack_boundary
4047 = pref;
4050 /* Make sure volatile mem refs aren't considered valid operands for
4051 arithmetic insns. We must call this here if this is a nested inline
4052 function, since the above code leaves us in the init_recog state,
4053 and the function context push/pop code does not save/restore volatile_ok.
4055 ??? Maybe it isn't necessary for expand_start_function to call this
4056 anymore if we do it here? */
4058 init_recog_no_volatile ();
4060 /* We're done with this function. Free up memory if we can. */
4061 free_after_parsing (cfun);
4062 free_after_compilation (cfun);
4063 return 0;
4066 struct tree_opt_pass pass_clean_state =
4068 NULL, /* name */
4069 NULL, /* gate */
4070 rest_of_clean_state, /* execute */
4071 NULL, /* sub */
4072 NULL, /* next */
4073 0, /* static_pass_number */
4074 TV_FINAL, /* tv_id */
4075 0, /* properties_required */
4076 0, /* properties_provided */
4077 PROP_rtl, /* properties_destroyed */
4078 0, /* todo_flags_start */
4079 0, /* todo_flags_finish */
4080 0 /* letter */