2006-06-06 Paolo Carlini <pcarlini@suse.de>
[official-gcc.git] / gcc / expmed.c
blob56c0d24bd66fee2bef217c9ee512b447659ef9ad
1 /* Medium-level subroutines: convert bit-field store and extract
2 and shifts, multiplies and divides to rtl instructions.
3 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
5 Free Software Foundation, Inc.
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 2, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to the Free
21 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
22 02110-1301, USA. */
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "tm.h"
29 #include "toplev.h"
30 #include "rtl.h"
31 #include "tree.h"
32 #include "tm_p.h"
33 #include "flags.h"
34 #include "insn-config.h"
35 #include "expr.h"
36 #include "optabs.h"
37 #include "real.h"
38 #include "recog.h"
39 #include "langhooks.h"
41 static void store_fixed_bit_field (rtx, unsigned HOST_WIDE_INT,
42 unsigned HOST_WIDE_INT,
43 unsigned HOST_WIDE_INT, rtx);
44 static void store_split_bit_field (rtx, unsigned HOST_WIDE_INT,
45 unsigned HOST_WIDE_INT, rtx);
46 static rtx extract_fixed_bit_field (enum machine_mode, rtx,
47 unsigned HOST_WIDE_INT,
48 unsigned HOST_WIDE_INT,
49 unsigned HOST_WIDE_INT, rtx, int);
50 static rtx mask_rtx (enum machine_mode, int, int, int);
51 static rtx lshift_value (enum machine_mode, rtx, int, int);
52 static rtx extract_split_bit_field (rtx, unsigned HOST_WIDE_INT,
53 unsigned HOST_WIDE_INT, int);
54 static void do_cmp_and_jump (rtx, rtx, enum rtx_code, enum machine_mode, rtx);
55 static rtx expand_smod_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
56 static rtx expand_sdiv_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
58 /* Test whether a value is zero of a power of two. */
59 #define EXACT_POWER_OF_2_OR_ZERO_P(x) (((x) & ((x) - 1)) == 0)
61 /* Nonzero means divides or modulus operations are relatively cheap for
62 powers of two, so don't use branches; emit the operation instead.
63 Usually, this will mean that the MD file will emit non-branch
64 sequences. */
66 static bool sdiv_pow2_cheap[NUM_MACHINE_MODES];
67 static bool smod_pow2_cheap[NUM_MACHINE_MODES];
69 #ifndef SLOW_UNALIGNED_ACCESS
70 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
71 #endif
73 /* For compilers that support multiple targets with different word sizes,
74 MAX_BITS_PER_WORD contains the biggest value of BITS_PER_WORD. An example
75 is the H8/300(H) compiler. */
77 #ifndef MAX_BITS_PER_WORD
78 #define MAX_BITS_PER_WORD BITS_PER_WORD
79 #endif
81 /* Reduce conditional compilation elsewhere. */
82 #ifndef HAVE_insv
83 #define HAVE_insv 0
84 #define CODE_FOR_insv CODE_FOR_nothing
85 #define gen_insv(a,b,c,d) NULL_RTX
86 #endif
87 #ifndef HAVE_extv
88 #define HAVE_extv 0
89 #define CODE_FOR_extv CODE_FOR_nothing
90 #define gen_extv(a,b,c,d) NULL_RTX
91 #endif
92 #ifndef HAVE_extzv
93 #define HAVE_extzv 0
94 #define CODE_FOR_extzv CODE_FOR_nothing
95 #define gen_extzv(a,b,c,d) NULL_RTX
96 #endif
98 /* Cost of various pieces of RTL. Note that some of these are indexed by
99 shift count and some by mode. */
100 static int zero_cost;
101 static int add_cost[NUM_MACHINE_MODES];
102 static int neg_cost[NUM_MACHINE_MODES];
103 static int shift_cost[NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
104 static int shiftadd_cost[NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
105 static int shiftsub_cost[NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
106 static int mul_cost[NUM_MACHINE_MODES];
107 static int sdiv_cost[NUM_MACHINE_MODES];
108 static int udiv_cost[NUM_MACHINE_MODES];
109 static int mul_widen_cost[NUM_MACHINE_MODES];
110 static int mul_highpart_cost[NUM_MACHINE_MODES];
112 void
113 init_expmed (void)
115 struct
117 struct rtx_def reg; rtunion reg_fld[2];
118 struct rtx_def plus; rtunion plus_fld1;
119 struct rtx_def neg;
120 struct rtx_def mult; rtunion mult_fld1;
121 struct rtx_def sdiv; rtunion sdiv_fld1;
122 struct rtx_def udiv; rtunion udiv_fld1;
123 struct rtx_def zext;
124 struct rtx_def sdiv_32; rtunion sdiv_32_fld1;
125 struct rtx_def smod_32; rtunion smod_32_fld1;
126 struct rtx_def wide_mult; rtunion wide_mult_fld1;
127 struct rtx_def wide_lshr; rtunion wide_lshr_fld1;
128 struct rtx_def wide_trunc;
129 struct rtx_def shift; rtunion shift_fld1;
130 struct rtx_def shift_mult; rtunion shift_mult_fld1;
131 struct rtx_def shift_add; rtunion shift_add_fld1;
132 struct rtx_def shift_sub; rtunion shift_sub_fld1;
133 } all;
135 rtx pow2[MAX_BITS_PER_WORD];
136 rtx cint[MAX_BITS_PER_WORD];
137 int m, n;
138 enum machine_mode mode, wider_mode;
140 zero_cost = rtx_cost (const0_rtx, 0);
142 for (m = 1; m < MAX_BITS_PER_WORD; m++)
144 pow2[m] = GEN_INT ((HOST_WIDE_INT) 1 << m);
145 cint[m] = GEN_INT (m);
148 memset (&all, 0, sizeof all);
150 PUT_CODE (&all.reg, REG);
151 /* Avoid using hard regs in ways which may be unsupported. */
152 REGNO (&all.reg) = LAST_VIRTUAL_REGISTER + 1;
154 PUT_CODE (&all.plus, PLUS);
155 XEXP (&all.plus, 0) = &all.reg;
156 XEXP (&all.plus, 1) = &all.reg;
158 PUT_CODE (&all.neg, NEG);
159 XEXP (&all.neg, 0) = &all.reg;
161 PUT_CODE (&all.mult, MULT);
162 XEXP (&all.mult, 0) = &all.reg;
163 XEXP (&all.mult, 1) = &all.reg;
165 PUT_CODE (&all.sdiv, DIV);
166 XEXP (&all.sdiv, 0) = &all.reg;
167 XEXP (&all.sdiv, 1) = &all.reg;
169 PUT_CODE (&all.udiv, UDIV);
170 XEXP (&all.udiv, 0) = &all.reg;
171 XEXP (&all.udiv, 1) = &all.reg;
173 PUT_CODE (&all.sdiv_32, DIV);
174 XEXP (&all.sdiv_32, 0) = &all.reg;
175 XEXP (&all.sdiv_32, 1) = 32 < MAX_BITS_PER_WORD ? cint[32] : GEN_INT (32);
177 PUT_CODE (&all.smod_32, MOD);
178 XEXP (&all.smod_32, 0) = &all.reg;
179 XEXP (&all.smod_32, 1) = XEXP (&all.sdiv_32, 1);
181 PUT_CODE (&all.zext, ZERO_EXTEND);
182 XEXP (&all.zext, 0) = &all.reg;
184 PUT_CODE (&all.wide_mult, MULT);
185 XEXP (&all.wide_mult, 0) = &all.zext;
186 XEXP (&all.wide_mult, 1) = &all.zext;
188 PUT_CODE (&all.wide_lshr, LSHIFTRT);
189 XEXP (&all.wide_lshr, 0) = &all.wide_mult;
191 PUT_CODE (&all.wide_trunc, TRUNCATE);
192 XEXP (&all.wide_trunc, 0) = &all.wide_lshr;
194 PUT_CODE (&all.shift, ASHIFT);
195 XEXP (&all.shift, 0) = &all.reg;
197 PUT_CODE (&all.shift_mult, MULT);
198 XEXP (&all.shift_mult, 0) = &all.reg;
200 PUT_CODE (&all.shift_add, PLUS);
201 XEXP (&all.shift_add, 0) = &all.shift_mult;
202 XEXP (&all.shift_add, 1) = &all.reg;
204 PUT_CODE (&all.shift_sub, MINUS);
205 XEXP (&all.shift_sub, 0) = &all.shift_mult;
206 XEXP (&all.shift_sub, 1) = &all.reg;
208 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
209 mode != VOIDmode;
210 mode = GET_MODE_WIDER_MODE (mode))
212 PUT_MODE (&all.reg, mode);
213 PUT_MODE (&all.plus, mode);
214 PUT_MODE (&all.neg, mode);
215 PUT_MODE (&all.mult, mode);
216 PUT_MODE (&all.sdiv, mode);
217 PUT_MODE (&all.udiv, mode);
218 PUT_MODE (&all.sdiv_32, mode);
219 PUT_MODE (&all.smod_32, mode);
220 PUT_MODE (&all.wide_trunc, mode);
221 PUT_MODE (&all.shift, mode);
222 PUT_MODE (&all.shift_mult, mode);
223 PUT_MODE (&all.shift_add, mode);
224 PUT_MODE (&all.shift_sub, mode);
226 add_cost[mode] = rtx_cost (&all.plus, SET);
227 neg_cost[mode] = rtx_cost (&all.neg, SET);
228 mul_cost[mode] = rtx_cost (&all.mult, SET);
229 sdiv_cost[mode] = rtx_cost (&all.sdiv, SET);
230 udiv_cost[mode] = rtx_cost (&all.udiv, SET);
232 sdiv_pow2_cheap[mode] = (rtx_cost (&all.sdiv_32, SET)
233 <= 2 * add_cost[mode]);
234 smod_pow2_cheap[mode] = (rtx_cost (&all.smod_32, SET)
235 <= 4 * add_cost[mode]);
237 wider_mode = GET_MODE_WIDER_MODE (mode);
238 if (wider_mode != VOIDmode)
240 PUT_MODE (&all.zext, wider_mode);
241 PUT_MODE (&all.wide_mult, wider_mode);
242 PUT_MODE (&all.wide_lshr, wider_mode);
243 XEXP (&all.wide_lshr, 1) = GEN_INT (GET_MODE_BITSIZE (mode));
245 mul_widen_cost[wider_mode] = rtx_cost (&all.wide_mult, SET);
246 mul_highpart_cost[mode] = rtx_cost (&all.wide_trunc, SET);
249 shift_cost[mode][0] = 0;
250 shiftadd_cost[mode][0] = shiftsub_cost[mode][0] = add_cost[mode];
252 n = MIN (MAX_BITS_PER_WORD, GET_MODE_BITSIZE (mode));
253 for (m = 1; m < n; m++)
255 XEXP (&all.shift, 1) = cint[m];
256 XEXP (&all.shift_mult, 1) = pow2[m];
258 shift_cost[mode][m] = rtx_cost (&all.shift, SET);
259 shiftadd_cost[mode][m] = rtx_cost (&all.shift_add, SET);
260 shiftsub_cost[mode][m] = rtx_cost (&all.shift_sub, SET);
265 /* Return an rtx representing minus the value of X.
266 MODE is the intended mode of the result,
267 useful if X is a CONST_INT. */
270 negate_rtx (enum machine_mode mode, rtx x)
272 rtx result = simplify_unary_operation (NEG, mode, x, mode);
274 if (result == 0)
275 result = expand_unop (mode, neg_optab, x, NULL_RTX, 0);
277 return result;
280 /* Report on the availability of insv/extv/extzv and the desired mode
281 of each of their operands. Returns MAX_MACHINE_MODE if HAVE_foo
282 is false; else the mode of the specified operand. If OPNO is -1,
283 all the caller cares about is whether the insn is available. */
284 enum machine_mode
285 mode_for_extraction (enum extraction_pattern pattern, int opno)
287 const struct insn_data *data;
289 switch (pattern)
291 case EP_insv:
292 if (HAVE_insv)
294 data = &insn_data[CODE_FOR_insv];
295 break;
297 return MAX_MACHINE_MODE;
299 case EP_extv:
300 if (HAVE_extv)
302 data = &insn_data[CODE_FOR_extv];
303 break;
305 return MAX_MACHINE_MODE;
307 case EP_extzv:
308 if (HAVE_extzv)
310 data = &insn_data[CODE_FOR_extzv];
311 break;
313 return MAX_MACHINE_MODE;
315 default:
316 gcc_unreachable ();
319 if (opno == -1)
320 return VOIDmode;
322 /* Everyone who uses this function used to follow it with
323 if (result == VOIDmode) result = word_mode; */
324 if (data->operand[opno].mode == VOIDmode)
325 return word_mode;
326 return data->operand[opno].mode;
330 /* Generate code to store value from rtx VALUE
331 into a bit-field within structure STR_RTX
332 containing BITSIZE bits starting at bit BITNUM.
333 FIELDMODE is the machine-mode of the FIELD_DECL node for this field.
334 ALIGN is the alignment that STR_RTX is known to have.
335 TOTAL_SIZE is the size of the structure in bytes, or -1 if varying. */
337 /* ??? Note that there are two different ideas here for how
338 to determine the size to count bits within, for a register.
339 One is BITS_PER_WORD, and the other is the size of operand 3
340 of the insv pattern.
342 If operand 3 of the insv pattern is VOIDmode, then we will use BITS_PER_WORD
343 else, we use the mode of operand 3. */
346 store_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
347 unsigned HOST_WIDE_INT bitnum, enum machine_mode fieldmode,
348 rtx value)
350 unsigned int unit
351 = (MEM_P (str_rtx)) ? BITS_PER_UNIT : BITS_PER_WORD;
352 unsigned HOST_WIDE_INT offset, bitpos;
353 rtx op0 = str_rtx;
354 int byte_offset;
355 rtx orig_value;
357 enum machine_mode op_mode = mode_for_extraction (EP_insv, 3);
359 while (GET_CODE (op0) == SUBREG)
361 /* The following line once was done only if WORDS_BIG_ENDIAN,
362 but I think that is a mistake. WORDS_BIG_ENDIAN is
363 meaningful at a much higher level; when structures are copied
364 between memory and regs, the higher-numbered regs
365 always get higher addresses. */
366 int inner_mode_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)));
367 int outer_mode_size = GET_MODE_SIZE (GET_MODE (op0));
369 byte_offset = 0;
371 /* Paradoxical subregs need special handling on big endian machines. */
372 if (SUBREG_BYTE (op0) == 0 && inner_mode_size < outer_mode_size)
374 int difference = inner_mode_size - outer_mode_size;
376 if (WORDS_BIG_ENDIAN)
377 byte_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
378 if (BYTES_BIG_ENDIAN)
379 byte_offset += difference % UNITS_PER_WORD;
381 else
382 byte_offset = SUBREG_BYTE (op0);
384 bitnum += byte_offset * BITS_PER_UNIT;
385 op0 = SUBREG_REG (op0);
388 /* No action is needed if the target is a register and if the field
389 lies completely outside that register. This can occur if the source
390 code contains an out-of-bounds access to a small array. */
391 if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
392 return value;
394 /* Use vec_set patterns for inserting parts of vectors whenever
395 available. */
396 if (VECTOR_MODE_P (GET_MODE (op0))
397 && !MEM_P (op0)
398 && (vec_set_optab->handlers[GET_MODE (op0)].insn_code
399 != CODE_FOR_nothing)
400 && fieldmode == GET_MODE_INNER (GET_MODE (op0))
401 && bitsize == GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
402 && !(bitnum % GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
404 enum machine_mode outermode = GET_MODE (op0);
405 enum machine_mode innermode = GET_MODE_INNER (outermode);
406 int icode = (int) vec_set_optab->handlers[outermode].insn_code;
407 int pos = bitnum / GET_MODE_BITSIZE (innermode);
408 rtx rtxpos = GEN_INT (pos);
409 rtx src = value;
410 rtx dest = op0;
411 rtx pat, seq;
412 enum machine_mode mode0 = insn_data[icode].operand[0].mode;
413 enum machine_mode mode1 = insn_data[icode].operand[1].mode;
414 enum machine_mode mode2 = insn_data[icode].operand[2].mode;
416 start_sequence ();
418 if (! (*insn_data[icode].operand[1].predicate) (src, mode1))
419 src = copy_to_mode_reg (mode1, src);
421 if (! (*insn_data[icode].operand[2].predicate) (rtxpos, mode2))
422 rtxpos = copy_to_mode_reg (mode1, rtxpos);
424 /* We could handle this, but we should always be called with a pseudo
425 for our targets and all insns should take them as outputs. */
426 gcc_assert ((*insn_data[icode].operand[0].predicate) (dest, mode0)
427 && (*insn_data[icode].operand[1].predicate) (src, mode1)
428 && (*insn_data[icode].operand[2].predicate) (rtxpos, mode2));
429 pat = GEN_FCN (icode) (dest, src, rtxpos);
430 seq = get_insns ();
431 end_sequence ();
432 if (pat)
434 emit_insn (seq);
435 emit_insn (pat);
436 return dest;
440 /* If the target is a register, overwriting the entire object, or storing
441 a full-word or multi-word field can be done with just a SUBREG.
443 If the target is memory, storing any naturally aligned field can be
444 done with a simple store. For targets that support fast unaligned
445 memory, any naturally sized, unit aligned field can be done directly. */
447 offset = bitnum / unit;
448 bitpos = bitnum % unit;
449 byte_offset = (bitnum % BITS_PER_WORD) / BITS_PER_UNIT
450 + (offset * UNITS_PER_WORD);
452 if (bitpos == 0
453 && bitsize == GET_MODE_BITSIZE (fieldmode)
454 && (!MEM_P (op0)
455 ? ((GET_MODE_SIZE (fieldmode) >= UNITS_PER_WORD
456 || GET_MODE_SIZE (GET_MODE (op0)) == GET_MODE_SIZE (fieldmode))
457 && byte_offset % GET_MODE_SIZE (fieldmode) == 0)
458 : (! SLOW_UNALIGNED_ACCESS (fieldmode, MEM_ALIGN (op0))
459 || (offset * BITS_PER_UNIT % bitsize == 0
460 && MEM_ALIGN (op0) % GET_MODE_BITSIZE (fieldmode) == 0))))
462 if (MEM_P (op0))
463 op0 = adjust_address (op0, fieldmode, offset);
464 else if (GET_MODE (op0) != fieldmode)
465 op0 = simplify_gen_subreg (fieldmode, op0, GET_MODE (op0),
466 byte_offset);
467 emit_move_insn (op0, value);
468 return value;
471 /* Make sure we are playing with integral modes. Pun with subregs
472 if we aren't. This must come after the entire register case above,
473 since that case is valid for any mode. The following cases are only
474 valid for integral modes. */
476 enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
477 if (imode != GET_MODE (op0))
479 if (MEM_P (op0))
480 op0 = adjust_address (op0, imode, 0);
481 else
483 gcc_assert (imode != BLKmode);
484 op0 = gen_lowpart (imode, op0);
489 /* We may be accessing data outside the field, which means
490 we can alias adjacent data. */
491 if (MEM_P (op0))
493 op0 = shallow_copy_rtx (op0);
494 set_mem_alias_set (op0, 0);
495 set_mem_expr (op0, 0);
498 /* If OP0 is a register, BITPOS must count within a word.
499 But as we have it, it counts within whatever size OP0 now has.
500 On a bigendian machine, these are not the same, so convert. */
501 if (BYTES_BIG_ENDIAN
502 && !MEM_P (op0)
503 && unit > GET_MODE_BITSIZE (GET_MODE (op0)))
504 bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
506 /* Storing an lsb-aligned field in a register
507 can be done with a movestrict instruction. */
509 if (!MEM_P (op0)
510 && (BYTES_BIG_ENDIAN ? bitpos + bitsize == unit : bitpos == 0)
511 && bitsize == GET_MODE_BITSIZE (fieldmode)
512 && (movstrict_optab->handlers[fieldmode].insn_code
513 != CODE_FOR_nothing))
515 int icode = movstrict_optab->handlers[fieldmode].insn_code;
517 /* Get appropriate low part of the value being stored. */
518 if (GET_CODE (value) == CONST_INT || REG_P (value))
519 value = gen_lowpart (fieldmode, value);
520 else if (!(GET_CODE (value) == SYMBOL_REF
521 || GET_CODE (value) == LABEL_REF
522 || GET_CODE (value) == CONST))
523 value = convert_to_mode (fieldmode, value, 0);
525 if (! (*insn_data[icode].operand[1].predicate) (value, fieldmode))
526 value = copy_to_mode_reg (fieldmode, value);
528 if (GET_CODE (op0) == SUBREG)
530 /* Else we've got some float mode source being extracted into
531 a different float mode destination -- this combination of
532 subregs results in Severe Tire Damage. */
533 gcc_assert (GET_MODE (SUBREG_REG (op0)) == fieldmode
534 || GET_MODE_CLASS (fieldmode) == MODE_INT
535 || GET_MODE_CLASS (fieldmode) == MODE_PARTIAL_INT);
536 op0 = SUBREG_REG (op0);
539 emit_insn (GEN_FCN (icode)
540 (gen_rtx_SUBREG (fieldmode, op0,
541 (bitnum % BITS_PER_WORD) / BITS_PER_UNIT
542 + (offset * UNITS_PER_WORD)),
543 value));
545 return value;
548 /* Handle fields bigger than a word. */
550 if (bitsize > BITS_PER_WORD)
552 /* Here we transfer the words of the field
553 in the order least significant first.
554 This is because the most significant word is the one which may
555 be less than full.
556 However, only do that if the value is not BLKmode. */
558 unsigned int backwards = WORDS_BIG_ENDIAN && fieldmode != BLKmode;
559 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
560 unsigned int i;
562 /* This is the mode we must force value to, so that there will be enough
563 subwords to extract. Note that fieldmode will often (always?) be
564 VOIDmode, because that is what store_field uses to indicate that this
565 is a bit field, but passing VOIDmode to operand_subword_force
566 is not allowed. */
567 fieldmode = GET_MODE (value);
568 if (fieldmode == VOIDmode)
569 fieldmode = smallest_mode_for_size (nwords * BITS_PER_WORD, MODE_INT);
571 for (i = 0; i < nwords; i++)
573 /* If I is 0, use the low-order word in both field and target;
574 if I is 1, use the next to lowest word; and so on. */
575 unsigned int wordnum = (backwards ? nwords - i - 1 : i);
576 unsigned int bit_offset = (backwards
577 ? MAX ((int) bitsize - ((int) i + 1)
578 * BITS_PER_WORD,
580 : (int) i * BITS_PER_WORD);
582 store_bit_field (op0, MIN (BITS_PER_WORD,
583 bitsize - i * BITS_PER_WORD),
584 bitnum + bit_offset, word_mode,
585 operand_subword_force (value, wordnum, fieldmode));
587 return value;
590 /* From here on we can assume that the field to be stored in is
591 a full-word (whatever type that is), since it is shorter than a word. */
593 /* OFFSET is the number of words or bytes (UNIT says which)
594 from STR_RTX to the first word or byte containing part of the field. */
596 if (!MEM_P (op0))
598 if (offset != 0
599 || GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
601 if (!REG_P (op0))
603 /* Since this is a destination (lvalue), we can't copy
604 it to a pseudo. We can remove a SUBREG that does not
605 change the size of the operand. Such a SUBREG may
606 have been added above. */
607 gcc_assert (GET_CODE (op0) == SUBREG
608 && (GET_MODE_SIZE (GET_MODE (op0))
609 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))));
610 op0 = SUBREG_REG (op0);
612 op0 = gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD, MODE_INT, 0),
613 op0, (offset * UNITS_PER_WORD));
615 offset = 0;
618 /* If VALUE has a floating-point or complex mode, access it as an
619 integer of the corresponding size. This can occur on a machine
620 with 64 bit registers that uses SFmode for float. It can also
621 occur for unaligned float or complex fields. */
622 orig_value = value;
623 if (GET_MODE (value) != VOIDmode
624 && GET_MODE_CLASS (GET_MODE (value)) != MODE_INT
625 && GET_MODE_CLASS (GET_MODE (value)) != MODE_PARTIAL_INT)
627 value = gen_reg_rtx (int_mode_for_mode (GET_MODE (value)));
628 emit_move_insn (gen_lowpart (GET_MODE (orig_value), value), orig_value);
631 /* Now OFFSET is nonzero only if OP0 is memory
632 and is therefore always measured in bytes. */
634 if (HAVE_insv
635 && GET_MODE (value) != BLKmode
636 && bitsize > 0
637 && GET_MODE_BITSIZE (op_mode) >= bitsize
638 && ! ((REG_P (op0) || GET_CODE (op0) == SUBREG)
639 && (bitsize + bitpos > GET_MODE_BITSIZE (op_mode)))
640 && insn_data[CODE_FOR_insv].operand[1].predicate (GEN_INT (bitsize),
641 VOIDmode))
643 int xbitpos = bitpos;
644 rtx value1;
645 rtx xop0 = op0;
646 rtx last = get_last_insn ();
647 rtx pat;
648 enum machine_mode maxmode = mode_for_extraction (EP_insv, 3);
649 int save_volatile_ok = volatile_ok;
651 volatile_ok = 1;
653 /* If this machine's insv can only insert into a register, copy OP0
654 into a register and save it back later. */
655 if (MEM_P (op0)
656 && ! ((*insn_data[(int) CODE_FOR_insv].operand[0].predicate)
657 (op0, VOIDmode)))
659 rtx tempreg;
660 enum machine_mode bestmode;
662 /* Get the mode to use for inserting into this field. If OP0 is
663 BLKmode, get the smallest mode consistent with the alignment. If
664 OP0 is a non-BLKmode object that is no wider than MAXMODE, use its
665 mode. Otherwise, use the smallest mode containing the field. */
667 if (GET_MODE (op0) == BLKmode
668 || GET_MODE_SIZE (GET_MODE (op0)) > GET_MODE_SIZE (maxmode))
669 bestmode
670 = get_best_mode (bitsize, bitnum, MEM_ALIGN (op0), maxmode,
671 MEM_VOLATILE_P (op0));
672 else
673 bestmode = GET_MODE (op0);
675 if (bestmode == VOIDmode
676 || GET_MODE_SIZE (bestmode) < GET_MODE_SIZE (fieldmode)
677 || (SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (op0))
678 && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (op0)))
679 goto insv_loses;
681 /* Adjust address to point to the containing unit of that mode.
682 Compute offset as multiple of this unit, counting in bytes. */
683 unit = GET_MODE_BITSIZE (bestmode);
684 offset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
685 bitpos = bitnum % unit;
686 op0 = adjust_address (op0, bestmode, offset);
688 /* Fetch that unit, store the bitfield in it, then store
689 the unit. */
690 tempreg = copy_to_reg (op0);
691 store_bit_field (tempreg, bitsize, bitpos, fieldmode, orig_value);
692 emit_move_insn (op0, tempreg);
693 return value;
695 volatile_ok = save_volatile_ok;
697 /* Add OFFSET into OP0's address. */
698 if (MEM_P (xop0))
699 xop0 = adjust_address (xop0, byte_mode, offset);
701 /* If xop0 is a register, we need it in MAXMODE
702 to make it acceptable to the format of insv. */
703 if (GET_CODE (xop0) == SUBREG)
704 /* We can't just change the mode, because this might clobber op0,
705 and we will need the original value of op0 if insv fails. */
706 xop0 = gen_rtx_SUBREG (maxmode, SUBREG_REG (xop0), SUBREG_BYTE (xop0));
707 if (REG_P (xop0) && GET_MODE (xop0) != maxmode)
708 xop0 = gen_rtx_SUBREG (maxmode, xop0, 0);
710 /* On big-endian machines, we count bits from the most significant.
711 If the bit field insn does not, we must invert. */
713 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
714 xbitpos = unit - bitsize - xbitpos;
716 /* We have been counting XBITPOS within UNIT.
717 Count instead within the size of the register. */
718 if (BITS_BIG_ENDIAN && !MEM_P (xop0))
719 xbitpos += GET_MODE_BITSIZE (maxmode) - unit;
721 unit = GET_MODE_BITSIZE (maxmode);
723 /* Convert VALUE to maxmode (which insv insn wants) in VALUE1. */
724 value1 = value;
725 if (GET_MODE (value) != maxmode)
727 if (GET_MODE_BITSIZE (GET_MODE (value)) >= bitsize)
729 /* Optimization: Don't bother really extending VALUE
730 if it has all the bits we will actually use. However,
731 if we must narrow it, be sure we do it correctly. */
733 if (GET_MODE_SIZE (GET_MODE (value)) < GET_MODE_SIZE (maxmode))
735 rtx tmp;
737 tmp = simplify_subreg (maxmode, value1, GET_MODE (value), 0);
738 if (! tmp)
739 tmp = simplify_gen_subreg (maxmode,
740 force_reg (GET_MODE (value),
741 value1),
742 GET_MODE (value), 0);
743 value1 = tmp;
745 else
746 value1 = gen_lowpart (maxmode, value1);
748 else if (GET_CODE (value) == CONST_INT)
749 value1 = gen_int_mode (INTVAL (value), maxmode);
750 else
751 /* Parse phase is supposed to make VALUE's data type
752 match that of the component reference, which is a type
753 at least as wide as the field; so VALUE should have
754 a mode that corresponds to that type. */
755 gcc_assert (CONSTANT_P (value));
758 /* If this machine's insv insists on a register,
759 get VALUE1 into a register. */
760 if (! ((*insn_data[(int) CODE_FOR_insv].operand[3].predicate)
761 (value1, maxmode)))
762 value1 = force_reg (maxmode, value1);
764 pat = gen_insv (xop0, GEN_INT (bitsize), GEN_INT (xbitpos), value1);
765 if (pat)
766 emit_insn (pat);
767 else
769 delete_insns_since (last);
770 store_fixed_bit_field (op0, offset, bitsize, bitpos, value);
773 else
774 insv_loses:
775 /* Insv is not available; store using shifts and boolean ops. */
776 store_fixed_bit_field (op0, offset, bitsize, bitpos, value);
777 return value;
780 /* Use shifts and boolean operations to store VALUE
781 into a bit field of width BITSIZE
782 in a memory location specified by OP0 except offset by OFFSET bytes.
783 (OFFSET must be 0 if OP0 is a register.)
784 The field starts at position BITPOS within the byte.
785 (If OP0 is a register, it may be a full word or a narrower mode,
786 but BITPOS still counts within a full word,
787 which is significant on bigendian machines.) */
789 static void
790 store_fixed_bit_field (rtx op0, unsigned HOST_WIDE_INT offset,
791 unsigned HOST_WIDE_INT bitsize,
792 unsigned HOST_WIDE_INT bitpos, rtx value)
794 enum machine_mode mode;
795 unsigned int total_bits = BITS_PER_WORD;
796 rtx temp;
797 int all_zero = 0;
798 int all_one = 0;
800 /* There is a case not handled here:
801 a structure with a known alignment of just a halfword
802 and a field split across two aligned halfwords within the structure.
803 Or likewise a structure with a known alignment of just a byte
804 and a field split across two bytes.
805 Such cases are not supposed to be able to occur. */
807 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
809 gcc_assert (!offset);
810 /* Special treatment for a bit field split across two registers. */
811 if (bitsize + bitpos > BITS_PER_WORD)
813 store_split_bit_field (op0, bitsize, bitpos, value);
814 return;
817 else
819 /* Get the proper mode to use for this field. We want a mode that
820 includes the entire field. If such a mode would be larger than
821 a word, we won't be doing the extraction the normal way.
822 We don't want a mode bigger than the destination. */
824 mode = GET_MODE (op0);
825 if (GET_MODE_BITSIZE (mode) == 0
826 || GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (word_mode))
827 mode = word_mode;
828 mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
829 MEM_ALIGN (op0), mode, MEM_VOLATILE_P (op0));
831 if (mode == VOIDmode)
833 /* The only way this should occur is if the field spans word
834 boundaries. */
835 store_split_bit_field (op0, bitsize, bitpos + offset * BITS_PER_UNIT,
836 value);
837 return;
840 total_bits = GET_MODE_BITSIZE (mode);
842 /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
843 be in the range 0 to total_bits-1, and put any excess bytes in
844 OFFSET. */
845 if (bitpos >= total_bits)
847 offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
848 bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
849 * BITS_PER_UNIT);
852 /* Get ref to an aligned byte, halfword, or word containing the field.
853 Adjust BITPOS to be position within a word,
854 and OFFSET to be the offset of that word.
855 Then alter OP0 to refer to that word. */
856 bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
857 offset -= (offset % (total_bits / BITS_PER_UNIT));
858 op0 = adjust_address (op0, mode, offset);
861 mode = GET_MODE (op0);
863 /* Now MODE is either some integral mode for a MEM as OP0,
864 or is a full-word for a REG as OP0. TOTAL_BITS corresponds.
865 The bit field is contained entirely within OP0.
866 BITPOS is the starting bit number within OP0.
867 (OP0's mode may actually be narrower than MODE.) */
869 if (BYTES_BIG_ENDIAN)
870 /* BITPOS is the distance between our msb
871 and that of the containing datum.
872 Convert it to the distance from the lsb. */
873 bitpos = total_bits - bitsize - bitpos;
875 /* Now BITPOS is always the distance between our lsb
876 and that of OP0. */
878 /* Shift VALUE left by BITPOS bits. If VALUE is not constant,
879 we must first convert its mode to MODE. */
881 if (GET_CODE (value) == CONST_INT)
883 HOST_WIDE_INT v = INTVAL (value);
885 if (bitsize < HOST_BITS_PER_WIDE_INT)
886 v &= ((HOST_WIDE_INT) 1 << bitsize) - 1;
888 if (v == 0)
889 all_zero = 1;
890 else if ((bitsize < HOST_BITS_PER_WIDE_INT
891 && v == ((HOST_WIDE_INT) 1 << bitsize) - 1)
892 || (bitsize == HOST_BITS_PER_WIDE_INT && v == -1))
893 all_one = 1;
895 value = lshift_value (mode, value, bitpos, bitsize);
897 else
899 int must_and = (GET_MODE_BITSIZE (GET_MODE (value)) != bitsize
900 && bitpos + bitsize != GET_MODE_BITSIZE (mode));
902 if (GET_MODE (value) != mode)
904 if ((REG_P (value) || GET_CODE (value) == SUBREG)
905 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (value)))
906 value = gen_lowpart (mode, value);
907 else
908 value = convert_to_mode (mode, value, 1);
911 if (must_and)
912 value = expand_binop (mode, and_optab, value,
913 mask_rtx (mode, 0, bitsize, 0),
914 NULL_RTX, 1, OPTAB_LIB_WIDEN);
915 if (bitpos > 0)
916 value = expand_shift (LSHIFT_EXPR, mode, value,
917 build_int_cst (NULL_TREE, bitpos), NULL_RTX, 1);
920 /* Now clear the chosen bits in OP0,
921 except that if VALUE is -1 we need not bother. */
922 /* We keep the intermediates in registers to allow CSE to combine
923 consecutive bitfield assignments. */
925 temp = force_reg (mode, op0);
927 if (! all_one)
929 temp = expand_binop (mode, and_optab, temp,
930 mask_rtx (mode, bitpos, bitsize, 1),
931 NULL_RTX, 1, OPTAB_LIB_WIDEN);
932 temp = force_reg (mode, temp);
935 /* Now logical-or VALUE into OP0, unless it is zero. */
937 if (! all_zero)
939 temp = expand_binop (mode, ior_optab, temp, value,
940 NULL_RTX, 1, OPTAB_LIB_WIDEN);
941 temp = force_reg (mode, temp);
944 if (op0 != temp)
945 emit_move_insn (op0, temp);
948 /* Store a bit field that is split across multiple accessible memory objects.
950 OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
951 BITSIZE is the field width; BITPOS the position of its first bit
952 (within the word).
953 VALUE is the value to store.
955 This does not yet handle fields wider than BITS_PER_WORD. */
957 static void
958 store_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
959 unsigned HOST_WIDE_INT bitpos, rtx value)
961 unsigned int unit;
962 unsigned int bitsdone = 0;
964 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
965 much at a time. */
966 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
967 unit = BITS_PER_WORD;
968 else
969 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
971 /* If VALUE is a constant other than a CONST_INT, get it into a register in
972 WORD_MODE. If we can do this using gen_lowpart_common, do so. Note
973 that VALUE might be a floating-point constant. */
974 if (CONSTANT_P (value) && GET_CODE (value) != CONST_INT)
976 rtx word = gen_lowpart_common (word_mode, value);
978 if (word && (value != word))
979 value = word;
980 else
981 value = gen_lowpart_common (word_mode,
982 force_reg (GET_MODE (value) != VOIDmode
983 ? GET_MODE (value)
984 : word_mode, value));
987 while (bitsdone < bitsize)
989 unsigned HOST_WIDE_INT thissize;
990 rtx part, word;
991 unsigned HOST_WIDE_INT thispos;
992 unsigned HOST_WIDE_INT offset;
994 offset = (bitpos + bitsdone) / unit;
995 thispos = (bitpos + bitsdone) % unit;
997 /* THISSIZE must not overrun a word boundary. Otherwise,
998 store_fixed_bit_field will call us again, and we will mutually
999 recurse forever. */
1000 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
1001 thissize = MIN (thissize, unit - thispos);
1003 if (BYTES_BIG_ENDIAN)
1005 int total_bits;
1007 /* We must do an endian conversion exactly the same way as it is
1008 done in extract_bit_field, so that the two calls to
1009 extract_fixed_bit_field will have comparable arguments. */
1010 if (!MEM_P (value) || GET_MODE (value) == BLKmode)
1011 total_bits = BITS_PER_WORD;
1012 else
1013 total_bits = GET_MODE_BITSIZE (GET_MODE (value));
1015 /* Fetch successively less significant portions. */
1016 if (GET_CODE (value) == CONST_INT)
1017 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1018 >> (bitsize - bitsdone - thissize))
1019 & (((HOST_WIDE_INT) 1 << thissize) - 1));
1020 else
1021 /* The args are chosen so that the last part includes the
1022 lsb. Give extract_bit_field the value it needs (with
1023 endianness compensation) to fetch the piece we want. */
1024 part = extract_fixed_bit_field (word_mode, value, 0, thissize,
1025 total_bits - bitsize + bitsdone,
1026 NULL_RTX, 1);
1028 else
1030 /* Fetch successively more significant portions. */
1031 if (GET_CODE (value) == CONST_INT)
1032 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1033 >> bitsdone)
1034 & (((HOST_WIDE_INT) 1 << thissize) - 1));
1035 else
1036 part = extract_fixed_bit_field (word_mode, value, 0, thissize,
1037 bitsdone, NULL_RTX, 1);
1040 /* If OP0 is a register, then handle OFFSET here.
1042 When handling multiword bitfields, extract_bit_field may pass
1043 down a word_mode SUBREG of a larger REG for a bitfield that actually
1044 crosses a word boundary. Thus, for a SUBREG, we must find
1045 the current word starting from the base register. */
1046 if (GET_CODE (op0) == SUBREG)
1048 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
1049 word = operand_subword_force (SUBREG_REG (op0), word_offset,
1050 GET_MODE (SUBREG_REG (op0)));
1051 offset = 0;
1053 else if (REG_P (op0))
1055 word = operand_subword_force (op0, offset, GET_MODE (op0));
1056 offset = 0;
1058 else
1059 word = op0;
1061 /* OFFSET is in UNITs, and UNIT is in bits.
1062 store_fixed_bit_field wants offset in bytes. */
1063 store_fixed_bit_field (word, offset * unit / BITS_PER_UNIT, thissize,
1064 thispos, part);
1065 bitsdone += thissize;
1069 /* Generate code to extract a byte-field from STR_RTX
1070 containing BITSIZE bits, starting at BITNUM,
1071 and put it in TARGET if possible (if TARGET is nonzero).
1072 Regardless of TARGET, we return the rtx for where the value is placed.
1074 STR_RTX is the structure containing the byte (a REG or MEM).
1075 UNSIGNEDP is nonzero if this is an unsigned bit field.
1076 MODE is the natural mode of the field value once extracted.
1077 TMODE is the mode the caller would like the value to have;
1078 but the value may be returned with type MODE instead.
1080 TOTAL_SIZE is the size in bytes of the containing structure,
1081 or -1 if varying.
1083 If a TARGET is specified and we can store in it at no extra cost,
1084 we do so, and return TARGET.
1085 Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
1086 if they are equally easy. */
1089 extract_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
1090 unsigned HOST_WIDE_INT bitnum, int unsignedp, rtx target,
1091 enum machine_mode mode, enum machine_mode tmode)
1093 unsigned int unit
1094 = (MEM_P (str_rtx)) ? BITS_PER_UNIT : BITS_PER_WORD;
1095 unsigned HOST_WIDE_INT offset, bitpos;
1096 rtx op0 = str_rtx;
1097 rtx spec_target = target;
1098 rtx spec_target_subreg = 0;
1099 enum machine_mode int_mode;
1100 enum machine_mode extv_mode = mode_for_extraction (EP_extv, 0);
1101 enum machine_mode extzv_mode = mode_for_extraction (EP_extzv, 0);
1102 enum machine_mode mode1;
1103 int byte_offset;
1105 if (tmode == VOIDmode)
1106 tmode = mode;
1108 while (GET_CODE (op0) == SUBREG)
1110 bitnum += SUBREG_BYTE (op0) * BITS_PER_UNIT;
1111 op0 = SUBREG_REG (op0);
1114 /* If we have an out-of-bounds access to a register, just return an
1115 uninitialized register of the required mode. This can occur if the
1116 source code contains an out-of-bounds access to a small array. */
1117 if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
1118 return gen_reg_rtx (tmode);
1120 if (REG_P (op0)
1121 && mode == GET_MODE (op0)
1122 && bitnum == 0
1123 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
1125 /* We're trying to extract a full register from itself. */
1126 return op0;
1129 /* Use vec_extract patterns for extracting parts of vectors whenever
1130 available. */
1131 if (VECTOR_MODE_P (GET_MODE (op0))
1132 && !MEM_P (op0)
1133 && (vec_extract_optab->handlers[GET_MODE (op0)].insn_code
1134 != CODE_FOR_nothing)
1135 && ((bitnum + bitsize - 1) / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
1136 == bitnum / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
1138 enum machine_mode outermode = GET_MODE (op0);
1139 enum machine_mode innermode = GET_MODE_INNER (outermode);
1140 int icode = (int) vec_extract_optab->handlers[outermode].insn_code;
1141 unsigned HOST_WIDE_INT pos = bitnum / GET_MODE_BITSIZE (innermode);
1142 rtx rtxpos = GEN_INT (pos);
1143 rtx src = op0;
1144 rtx dest = NULL, pat, seq;
1145 enum machine_mode mode0 = insn_data[icode].operand[0].mode;
1146 enum machine_mode mode1 = insn_data[icode].operand[1].mode;
1147 enum machine_mode mode2 = insn_data[icode].operand[2].mode;
1149 if (innermode == tmode || innermode == mode)
1150 dest = target;
1152 if (!dest)
1153 dest = gen_reg_rtx (innermode);
1155 start_sequence ();
1157 if (! (*insn_data[icode].operand[0].predicate) (dest, mode0))
1158 dest = copy_to_mode_reg (mode0, dest);
1160 if (! (*insn_data[icode].operand[1].predicate) (src, mode1))
1161 src = copy_to_mode_reg (mode1, src);
1163 if (! (*insn_data[icode].operand[2].predicate) (rtxpos, mode2))
1164 rtxpos = copy_to_mode_reg (mode1, rtxpos);
1166 /* We could handle this, but we should always be called with a pseudo
1167 for our targets and all insns should take them as outputs. */
1168 gcc_assert ((*insn_data[icode].operand[0].predicate) (dest, mode0)
1169 && (*insn_data[icode].operand[1].predicate) (src, mode1)
1170 && (*insn_data[icode].operand[2].predicate) (rtxpos, mode2));
1172 pat = GEN_FCN (icode) (dest, src, rtxpos);
1173 seq = get_insns ();
1174 end_sequence ();
1175 if (pat)
1177 emit_insn (seq);
1178 emit_insn (pat);
1179 return dest;
1183 /* Make sure we are playing with integral modes. Pun with subregs
1184 if we aren't. */
1186 enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
1187 if (imode != GET_MODE (op0))
1189 if (MEM_P (op0))
1190 op0 = adjust_address (op0, imode, 0);
1191 else
1193 gcc_assert (imode != BLKmode);
1194 op0 = gen_lowpart (imode, op0);
1196 /* If we got a SUBREG, force it into a register since we
1197 aren't going to be able to do another SUBREG on it. */
1198 if (GET_CODE (op0) == SUBREG)
1199 op0 = force_reg (imode, op0);
1204 /* We may be accessing data outside the field, which means
1205 we can alias adjacent data. */
1206 if (MEM_P (op0))
1208 op0 = shallow_copy_rtx (op0);
1209 set_mem_alias_set (op0, 0);
1210 set_mem_expr (op0, 0);
1213 /* Extraction of a full-word or multi-word value from a structure
1214 in a register or aligned memory can be done with just a SUBREG.
1215 A subword value in the least significant part of a register
1216 can also be extracted with a SUBREG. For this, we need the
1217 byte offset of the value in op0. */
1219 bitpos = bitnum % unit;
1220 offset = bitnum / unit;
1221 byte_offset = bitpos / BITS_PER_UNIT + offset * UNITS_PER_WORD;
1223 /* If OP0 is a register, BITPOS must count within a word.
1224 But as we have it, it counts within whatever size OP0 now has.
1225 On a bigendian machine, these are not the same, so convert. */
1226 if (BYTES_BIG_ENDIAN
1227 && !MEM_P (op0)
1228 && unit > GET_MODE_BITSIZE (GET_MODE (op0)))
1229 bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
1231 /* ??? We currently assume TARGET is at least as big as BITSIZE.
1232 If that's wrong, the solution is to test for it and set TARGET to 0
1233 if needed. */
1235 /* Only scalar integer modes can be converted via subregs. There is an
1236 additional problem for FP modes here in that they can have a precision
1237 which is different from the size. mode_for_size uses precision, but
1238 we want a mode based on the size, so we must avoid calling it for FP
1239 modes. */
1240 mode1 = (SCALAR_INT_MODE_P (tmode)
1241 ? mode_for_size (bitsize, GET_MODE_CLASS (tmode), 0)
1242 : mode);
1244 if (((bitsize >= BITS_PER_WORD && bitsize == GET_MODE_BITSIZE (mode)
1245 && bitpos % BITS_PER_WORD == 0)
1246 || (mode1 != BLKmode
1247 /* ??? The big endian test here is wrong. This is correct
1248 if the value is in a register, and if mode_for_size is not
1249 the same mode as op0. This causes us to get unnecessarily
1250 inefficient code from the Thumb port when -mbig-endian. */
1251 && (BYTES_BIG_ENDIAN
1252 ? bitpos + bitsize == BITS_PER_WORD
1253 : bitpos == 0)))
1254 && ((!MEM_P (op0)
1255 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
1256 GET_MODE_BITSIZE (GET_MODE (op0)))
1257 && GET_MODE_SIZE (mode1) != 0
1258 && byte_offset % GET_MODE_SIZE (mode1) == 0)
1259 || (MEM_P (op0)
1260 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (op0))
1261 || (offset * BITS_PER_UNIT % bitsize == 0
1262 && MEM_ALIGN (op0) % bitsize == 0)))))
1264 if (mode1 != GET_MODE (op0))
1266 if (MEM_P (op0))
1267 op0 = adjust_address (op0, mode1, offset);
1268 else
1270 rtx sub = simplify_gen_subreg (mode1, op0, GET_MODE (op0),
1271 byte_offset);
1272 if (sub == NULL)
1273 goto no_subreg_mode_swap;
1274 op0 = sub;
1277 if (mode1 != mode)
1278 return convert_to_mode (tmode, op0, unsignedp);
1279 return op0;
1281 no_subreg_mode_swap:
1283 /* Handle fields bigger than a word. */
1285 if (bitsize > BITS_PER_WORD)
1287 /* Here we transfer the words of the field
1288 in the order least significant first.
1289 This is because the most significant word is the one which may
1290 be less than full. */
1292 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
1293 unsigned int i;
1295 if (target == 0 || !REG_P (target))
1296 target = gen_reg_rtx (mode);
1298 /* Indicate for flow that the entire target reg is being set. */
1299 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
1301 for (i = 0; i < nwords; i++)
1303 /* If I is 0, use the low-order word in both field and target;
1304 if I is 1, use the next to lowest word; and so on. */
1305 /* Word number in TARGET to use. */
1306 unsigned int wordnum
1307 = (WORDS_BIG_ENDIAN
1308 ? GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD - i - 1
1309 : i);
1310 /* Offset from start of field in OP0. */
1311 unsigned int bit_offset = (WORDS_BIG_ENDIAN
1312 ? MAX (0, ((int) bitsize - ((int) i + 1)
1313 * (int) BITS_PER_WORD))
1314 : (int) i * BITS_PER_WORD);
1315 rtx target_part = operand_subword (target, wordnum, 1, VOIDmode);
1316 rtx result_part
1317 = extract_bit_field (op0, MIN (BITS_PER_WORD,
1318 bitsize - i * BITS_PER_WORD),
1319 bitnum + bit_offset, 1, target_part, mode,
1320 word_mode);
1322 gcc_assert (target_part);
1324 if (result_part != target_part)
1325 emit_move_insn (target_part, result_part);
1328 if (unsignedp)
1330 /* Unless we've filled TARGET, the upper regs in a multi-reg value
1331 need to be zero'd out. */
1332 if (GET_MODE_SIZE (GET_MODE (target)) > nwords * UNITS_PER_WORD)
1334 unsigned int i, total_words;
1336 total_words = GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD;
1337 for (i = nwords; i < total_words; i++)
1338 emit_move_insn
1339 (operand_subword (target,
1340 WORDS_BIG_ENDIAN ? total_words - i - 1 : i,
1341 1, VOIDmode),
1342 const0_rtx);
1344 return target;
1347 /* Signed bit field: sign-extend with two arithmetic shifts. */
1348 target = expand_shift (LSHIFT_EXPR, mode, target,
1349 build_int_cst (NULL_TREE,
1350 GET_MODE_BITSIZE (mode) - bitsize),
1351 NULL_RTX, 0);
1352 return expand_shift (RSHIFT_EXPR, mode, target,
1353 build_int_cst (NULL_TREE,
1354 GET_MODE_BITSIZE (mode) - bitsize),
1355 NULL_RTX, 0);
1358 /* From here on we know the desired field is smaller than a word. */
1360 /* Check if there is a correspondingly-sized integer field, so we can
1361 safely extract it as one size of integer, if necessary; then
1362 truncate or extend to the size that is wanted; then use SUBREGs or
1363 convert_to_mode to get one of the modes we really wanted. */
1365 int_mode = int_mode_for_mode (tmode);
1366 if (int_mode == BLKmode)
1367 int_mode = int_mode_for_mode (mode);
1368 /* Should probably push op0 out to memory and then do a load. */
1369 gcc_assert (int_mode != BLKmode);
1371 /* OFFSET is the number of words or bytes (UNIT says which)
1372 from STR_RTX to the first word or byte containing part of the field. */
1373 if (!MEM_P (op0))
1375 if (offset != 0
1376 || GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
1378 if (!REG_P (op0))
1379 op0 = copy_to_reg (op0);
1380 op0 = gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD, MODE_INT, 0),
1381 op0, (offset * UNITS_PER_WORD));
1383 offset = 0;
1386 /* Now OFFSET is nonzero only for memory operands. */
1388 if (unsignedp)
1390 if (HAVE_extzv
1391 && bitsize > 0
1392 && GET_MODE_BITSIZE (extzv_mode) >= bitsize
1393 && ! ((REG_P (op0) || GET_CODE (op0) == SUBREG)
1394 && (bitsize + bitpos > GET_MODE_BITSIZE (extzv_mode))))
1396 unsigned HOST_WIDE_INT xbitpos = bitpos, xoffset = offset;
1397 rtx bitsize_rtx, bitpos_rtx;
1398 rtx last = get_last_insn ();
1399 rtx xop0 = op0;
1400 rtx xtarget = target;
1401 rtx xspec_target = spec_target;
1402 rtx xspec_target_subreg = spec_target_subreg;
1403 rtx pat;
1404 enum machine_mode maxmode = mode_for_extraction (EP_extzv, 0);
1406 if (MEM_P (xop0))
1408 int save_volatile_ok = volatile_ok;
1409 volatile_ok = 1;
1411 /* Is the memory operand acceptable? */
1412 if (! ((*insn_data[(int) CODE_FOR_extzv].operand[1].predicate)
1413 (xop0, GET_MODE (xop0))))
1415 /* No, load into a reg and extract from there. */
1416 enum machine_mode bestmode;
1418 /* Get the mode to use for inserting into this field. If
1419 OP0 is BLKmode, get the smallest mode consistent with the
1420 alignment. If OP0 is a non-BLKmode object that is no
1421 wider than MAXMODE, use its mode. Otherwise, use the
1422 smallest mode containing the field. */
1424 if (GET_MODE (xop0) == BLKmode
1425 || (GET_MODE_SIZE (GET_MODE (op0))
1426 > GET_MODE_SIZE (maxmode)))
1427 bestmode = get_best_mode (bitsize, bitnum,
1428 MEM_ALIGN (xop0), maxmode,
1429 MEM_VOLATILE_P (xop0));
1430 else
1431 bestmode = GET_MODE (xop0);
1433 if (bestmode == VOIDmode
1434 || (SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (xop0))
1435 && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (xop0)))
1436 goto extzv_loses;
1438 /* Compute offset as multiple of this unit,
1439 counting in bytes. */
1440 unit = GET_MODE_BITSIZE (bestmode);
1441 xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
1442 xbitpos = bitnum % unit;
1443 xop0 = adjust_address (xop0, bestmode, xoffset);
1445 /* Make sure register is big enough for the whole field. */
1446 if (xoffset * BITS_PER_UNIT + unit
1447 < offset * BITS_PER_UNIT + bitsize)
1448 goto extzv_loses;
1450 /* Fetch it to a register in that size. */
1451 xop0 = force_reg (bestmode, xop0);
1453 /* XBITPOS counts within UNIT, which is what is expected. */
1455 else
1456 /* Get ref to first byte containing part of the field. */
1457 xop0 = adjust_address (xop0, byte_mode, xoffset);
1459 volatile_ok = save_volatile_ok;
1462 /* If op0 is a register, we need it in MAXMODE (which is usually
1463 SImode). to make it acceptable to the format of extzv. */
1464 if (GET_CODE (xop0) == SUBREG && GET_MODE (xop0) != maxmode)
1465 goto extzv_loses;
1466 if (REG_P (xop0) && GET_MODE (xop0) != maxmode)
1467 xop0 = gen_rtx_SUBREG (maxmode, xop0, 0);
1469 /* On big-endian machines, we count bits from the most significant.
1470 If the bit field insn does not, we must invert. */
1471 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
1472 xbitpos = unit - bitsize - xbitpos;
1474 /* Now convert from counting within UNIT to counting in MAXMODE. */
1475 if (BITS_BIG_ENDIAN && !MEM_P (xop0))
1476 xbitpos += GET_MODE_BITSIZE (maxmode) - unit;
1478 unit = GET_MODE_BITSIZE (maxmode);
1480 if (xtarget == 0)
1481 xtarget = xspec_target = gen_reg_rtx (tmode);
1483 if (GET_MODE (xtarget) != maxmode)
1485 if (REG_P (xtarget))
1487 int wider = (GET_MODE_SIZE (maxmode)
1488 > GET_MODE_SIZE (GET_MODE (xtarget)));
1489 xtarget = gen_lowpart (maxmode, xtarget);
1490 if (wider)
1491 xspec_target_subreg = xtarget;
1493 else
1494 xtarget = gen_reg_rtx (maxmode);
1497 /* If this machine's extzv insists on a register target,
1498 make sure we have one. */
1499 if (! ((*insn_data[(int) CODE_FOR_extzv].operand[0].predicate)
1500 (xtarget, maxmode)))
1501 xtarget = gen_reg_rtx (maxmode);
1503 bitsize_rtx = GEN_INT (bitsize);
1504 bitpos_rtx = GEN_INT (xbitpos);
1506 pat = gen_extzv (xtarget, xop0, bitsize_rtx, bitpos_rtx);
1507 if (pat)
1509 emit_insn (pat);
1510 target = xtarget;
1511 spec_target = xspec_target;
1512 spec_target_subreg = xspec_target_subreg;
1514 else
1516 delete_insns_since (last);
1517 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1518 bitpos, target, 1);
1521 else
1522 extzv_loses:
1523 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1524 bitpos, target, 1);
1526 else
1528 if (HAVE_extv
1529 && bitsize > 0
1530 && GET_MODE_BITSIZE (extv_mode) >= bitsize
1531 && ! ((REG_P (op0) || GET_CODE (op0) == SUBREG)
1532 && (bitsize + bitpos > GET_MODE_BITSIZE (extv_mode))))
1534 int xbitpos = bitpos, xoffset = offset;
1535 rtx bitsize_rtx, bitpos_rtx;
1536 rtx last = get_last_insn ();
1537 rtx xop0 = op0, xtarget = target;
1538 rtx xspec_target = spec_target;
1539 rtx xspec_target_subreg = spec_target_subreg;
1540 rtx pat;
1541 enum machine_mode maxmode = mode_for_extraction (EP_extv, 0);
1543 if (MEM_P (xop0))
1545 /* Is the memory operand acceptable? */
1546 if (! ((*insn_data[(int) CODE_FOR_extv].operand[1].predicate)
1547 (xop0, GET_MODE (xop0))))
1549 /* No, load into a reg and extract from there. */
1550 enum machine_mode bestmode;
1552 /* Get the mode to use for inserting into this field. If
1553 OP0 is BLKmode, get the smallest mode consistent with the
1554 alignment. If OP0 is a non-BLKmode object that is no
1555 wider than MAXMODE, use its mode. Otherwise, use the
1556 smallest mode containing the field. */
1558 if (GET_MODE (xop0) == BLKmode
1559 || (GET_MODE_SIZE (GET_MODE (op0))
1560 > GET_MODE_SIZE (maxmode)))
1561 bestmode = get_best_mode (bitsize, bitnum,
1562 MEM_ALIGN (xop0), maxmode,
1563 MEM_VOLATILE_P (xop0));
1564 else
1565 bestmode = GET_MODE (xop0);
1567 if (bestmode == VOIDmode
1568 || (SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (xop0))
1569 && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (xop0)))
1570 goto extv_loses;
1572 /* Compute offset as multiple of this unit,
1573 counting in bytes. */
1574 unit = GET_MODE_BITSIZE (bestmode);
1575 xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
1576 xbitpos = bitnum % unit;
1577 xop0 = adjust_address (xop0, bestmode, xoffset);
1579 /* Make sure register is big enough for the whole field. */
1580 if (xoffset * BITS_PER_UNIT + unit
1581 < offset * BITS_PER_UNIT + bitsize)
1582 goto extv_loses;
1584 /* Fetch it to a register in that size. */
1585 xop0 = force_reg (bestmode, xop0);
1587 /* XBITPOS counts within UNIT, which is what is expected. */
1589 else
1590 /* Get ref to first byte containing part of the field. */
1591 xop0 = adjust_address (xop0, byte_mode, xoffset);
1594 /* If op0 is a register, we need it in MAXMODE (which is usually
1595 SImode) to make it acceptable to the format of extv. */
1596 if (GET_CODE (xop0) == SUBREG && GET_MODE (xop0) != maxmode)
1597 goto extv_loses;
1598 if (REG_P (xop0) && GET_MODE (xop0) != maxmode)
1599 xop0 = gen_rtx_SUBREG (maxmode, xop0, 0);
1601 /* On big-endian machines, we count bits from the most significant.
1602 If the bit field insn does not, we must invert. */
1603 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
1604 xbitpos = unit - bitsize - xbitpos;
1606 /* XBITPOS counts within a size of UNIT.
1607 Adjust to count within a size of MAXMODE. */
1608 if (BITS_BIG_ENDIAN && !MEM_P (xop0))
1609 xbitpos += (GET_MODE_BITSIZE (maxmode) - unit);
1611 unit = GET_MODE_BITSIZE (maxmode);
1613 if (xtarget == 0)
1614 xtarget = xspec_target = gen_reg_rtx (tmode);
1616 if (GET_MODE (xtarget) != maxmode)
1618 if (REG_P (xtarget))
1620 int wider = (GET_MODE_SIZE (maxmode)
1621 > GET_MODE_SIZE (GET_MODE (xtarget)));
1622 xtarget = gen_lowpart (maxmode, xtarget);
1623 if (wider)
1624 xspec_target_subreg = xtarget;
1626 else
1627 xtarget = gen_reg_rtx (maxmode);
1630 /* If this machine's extv insists on a register target,
1631 make sure we have one. */
1632 if (! ((*insn_data[(int) CODE_FOR_extv].operand[0].predicate)
1633 (xtarget, maxmode)))
1634 xtarget = gen_reg_rtx (maxmode);
1636 bitsize_rtx = GEN_INT (bitsize);
1637 bitpos_rtx = GEN_INT (xbitpos);
1639 pat = gen_extv (xtarget, xop0, bitsize_rtx, bitpos_rtx);
1640 if (pat)
1642 emit_insn (pat);
1643 target = xtarget;
1644 spec_target = xspec_target;
1645 spec_target_subreg = xspec_target_subreg;
1647 else
1649 delete_insns_since (last);
1650 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1651 bitpos, target, 0);
1654 else
1655 extv_loses:
1656 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1657 bitpos, target, 0);
1659 if (target == spec_target)
1660 return target;
1661 if (target == spec_target_subreg)
1662 return spec_target;
1663 if (GET_MODE (target) != tmode && GET_MODE (target) != mode)
1665 /* If the target mode is not a scalar integral, first convert to the
1666 integer mode of that size and then access it as a floating-point
1667 value via a SUBREG. */
1668 if (!SCALAR_INT_MODE_P (tmode))
1670 enum machine_mode smode
1671 = mode_for_size (GET_MODE_BITSIZE (tmode), MODE_INT, 0);
1672 target = convert_to_mode (smode, target, unsignedp);
1673 target = force_reg (smode, target);
1674 return gen_lowpart (tmode, target);
1677 return convert_to_mode (tmode, target, unsignedp);
1679 return target;
1682 /* Extract a bit field using shifts and boolean operations
1683 Returns an rtx to represent the value.
1684 OP0 addresses a register (word) or memory (byte).
1685 BITPOS says which bit within the word or byte the bit field starts in.
1686 OFFSET says how many bytes farther the bit field starts;
1687 it is 0 if OP0 is a register.
1688 BITSIZE says how many bits long the bit field is.
1689 (If OP0 is a register, it may be narrower than a full word,
1690 but BITPOS still counts within a full word,
1691 which is significant on bigendian machines.)
1693 UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
1694 If TARGET is nonzero, attempts to store the value there
1695 and return TARGET, but this is not guaranteed.
1696 If TARGET is not used, create a pseudo-reg of mode TMODE for the value. */
1698 static rtx
1699 extract_fixed_bit_field (enum machine_mode tmode, rtx op0,
1700 unsigned HOST_WIDE_INT offset,
1701 unsigned HOST_WIDE_INT bitsize,
1702 unsigned HOST_WIDE_INT bitpos, rtx target,
1703 int unsignedp)
1705 unsigned int total_bits = BITS_PER_WORD;
1706 enum machine_mode mode;
1708 if (GET_CODE (op0) == SUBREG || REG_P (op0))
1710 /* Special treatment for a bit field split across two registers. */
1711 if (bitsize + bitpos > BITS_PER_WORD)
1712 return extract_split_bit_field (op0, bitsize, bitpos, unsignedp);
1714 else
1716 /* Get the proper mode to use for this field. We want a mode that
1717 includes the entire field. If such a mode would be larger than
1718 a word, we won't be doing the extraction the normal way. */
1720 mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
1721 MEM_ALIGN (op0), word_mode, MEM_VOLATILE_P (op0));
1723 if (mode == VOIDmode)
1724 /* The only way this should occur is if the field spans word
1725 boundaries. */
1726 return extract_split_bit_field (op0, bitsize,
1727 bitpos + offset * BITS_PER_UNIT,
1728 unsignedp);
1730 total_bits = GET_MODE_BITSIZE (mode);
1732 /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
1733 be in the range 0 to total_bits-1, and put any excess bytes in
1734 OFFSET. */
1735 if (bitpos >= total_bits)
1737 offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
1738 bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
1739 * BITS_PER_UNIT);
1742 /* Get ref to an aligned byte, halfword, or word containing the field.
1743 Adjust BITPOS to be position within a word,
1744 and OFFSET to be the offset of that word.
1745 Then alter OP0 to refer to that word. */
1746 bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
1747 offset -= (offset % (total_bits / BITS_PER_UNIT));
1748 op0 = adjust_address (op0, mode, offset);
1751 mode = GET_MODE (op0);
1753 if (BYTES_BIG_ENDIAN)
1754 /* BITPOS is the distance between our msb and that of OP0.
1755 Convert it to the distance from the lsb. */
1756 bitpos = total_bits - bitsize - bitpos;
1758 /* Now BITPOS is always the distance between the field's lsb and that of OP0.
1759 We have reduced the big-endian case to the little-endian case. */
1761 if (unsignedp)
1763 if (bitpos)
1765 /* If the field does not already start at the lsb,
1766 shift it so it does. */
1767 tree amount = build_int_cst (NULL_TREE, bitpos);
1768 /* Maybe propagate the target for the shift. */
1769 /* But not if we will return it--could confuse integrate.c. */
1770 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1771 if (tmode != mode) subtarget = 0;
1772 op0 = expand_shift (RSHIFT_EXPR, mode, op0, amount, subtarget, 1);
1774 /* Convert the value to the desired mode. */
1775 if (mode != tmode)
1776 op0 = convert_to_mode (tmode, op0, 1);
1778 /* Unless the msb of the field used to be the msb when we shifted,
1779 mask out the upper bits. */
1781 if (GET_MODE_BITSIZE (mode) != bitpos + bitsize)
1782 return expand_binop (GET_MODE (op0), and_optab, op0,
1783 mask_rtx (GET_MODE (op0), 0, bitsize, 0),
1784 target, 1, OPTAB_LIB_WIDEN);
1785 return op0;
1788 /* To extract a signed bit-field, first shift its msb to the msb of the word,
1789 then arithmetic-shift its lsb to the lsb of the word. */
1790 op0 = force_reg (mode, op0);
1791 if (mode != tmode)
1792 target = 0;
1794 /* Find the narrowest integer mode that contains the field. */
1796 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1797 mode = GET_MODE_WIDER_MODE (mode))
1798 if (GET_MODE_BITSIZE (mode) >= bitsize + bitpos)
1800 op0 = convert_to_mode (mode, op0, 0);
1801 break;
1804 if (GET_MODE_BITSIZE (mode) != (bitsize + bitpos))
1806 tree amount
1807 = build_int_cst (NULL_TREE,
1808 GET_MODE_BITSIZE (mode) - (bitsize + bitpos));
1809 /* Maybe propagate the target for the shift. */
1810 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1811 op0 = expand_shift (LSHIFT_EXPR, mode, op0, amount, subtarget, 1);
1814 return expand_shift (RSHIFT_EXPR, mode, op0,
1815 build_int_cst (NULL_TREE,
1816 GET_MODE_BITSIZE (mode) - bitsize),
1817 target, 0);
1820 /* Return a constant integer (CONST_INT or CONST_DOUBLE) mask value
1821 of mode MODE with BITSIZE ones followed by BITPOS zeros, or the
1822 complement of that if COMPLEMENT. The mask is truncated if
1823 necessary to the width of mode MODE. The mask is zero-extended if
1824 BITSIZE+BITPOS is too small for MODE. */
1826 static rtx
1827 mask_rtx (enum machine_mode mode, int bitpos, int bitsize, int complement)
1829 HOST_WIDE_INT masklow, maskhigh;
1831 if (bitsize == 0)
1832 masklow = 0;
1833 else if (bitpos < HOST_BITS_PER_WIDE_INT)
1834 masklow = (HOST_WIDE_INT) -1 << bitpos;
1835 else
1836 masklow = 0;
1838 if (bitpos + bitsize < HOST_BITS_PER_WIDE_INT)
1839 masklow &= ((unsigned HOST_WIDE_INT) -1
1840 >> (HOST_BITS_PER_WIDE_INT - bitpos - bitsize));
1842 if (bitpos <= HOST_BITS_PER_WIDE_INT)
1843 maskhigh = -1;
1844 else
1845 maskhigh = (HOST_WIDE_INT) -1 << (bitpos - HOST_BITS_PER_WIDE_INT);
1847 if (bitsize == 0)
1848 maskhigh = 0;
1849 else if (bitpos + bitsize > HOST_BITS_PER_WIDE_INT)
1850 maskhigh &= ((unsigned HOST_WIDE_INT) -1
1851 >> (2 * HOST_BITS_PER_WIDE_INT - bitpos - bitsize));
1852 else
1853 maskhigh = 0;
1855 if (complement)
1857 maskhigh = ~maskhigh;
1858 masklow = ~masklow;
1861 return immed_double_const (masklow, maskhigh, mode);
1864 /* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
1865 VALUE truncated to BITSIZE bits and then shifted left BITPOS bits. */
1867 static rtx
1868 lshift_value (enum machine_mode mode, rtx value, int bitpos, int bitsize)
1870 unsigned HOST_WIDE_INT v = INTVAL (value);
1871 HOST_WIDE_INT low, high;
1873 if (bitsize < HOST_BITS_PER_WIDE_INT)
1874 v &= ~((HOST_WIDE_INT) -1 << bitsize);
1876 if (bitpos < HOST_BITS_PER_WIDE_INT)
1878 low = v << bitpos;
1879 high = (bitpos > 0 ? (v >> (HOST_BITS_PER_WIDE_INT - bitpos)) : 0);
1881 else
1883 low = 0;
1884 high = v << (bitpos - HOST_BITS_PER_WIDE_INT);
1887 return immed_double_const (low, high, mode);
1890 /* Extract a bit field from a memory by forcing the alignment of the
1891 memory. This efficient only if the field spans at least 4 boundaries.
1893 OP0 is the MEM.
1894 BITSIZE is the field width; BITPOS is the position of the first bit.
1895 UNSIGNEDP is true if the result should be zero-extended. */
1897 static rtx
1898 extract_force_align_mem_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
1899 unsigned HOST_WIDE_INT bitpos,
1900 int unsignedp)
1902 enum machine_mode mode, dmode;
1903 unsigned int m_bitsize, m_size;
1904 unsigned int sign_shift_up, sign_shift_dn;
1905 rtx base, a1, a2, v1, v2, comb, shift, result, start;
1907 /* Choose a mode that will fit BITSIZE. */
1908 mode = smallest_mode_for_size (bitsize, MODE_INT);
1909 m_size = GET_MODE_SIZE (mode);
1910 m_bitsize = GET_MODE_BITSIZE (mode);
1912 /* Choose a mode twice as wide. Fail if no such mode exists. */
1913 dmode = mode_for_size (m_bitsize * 2, MODE_INT, false);
1914 if (dmode == BLKmode)
1915 return NULL;
1917 do_pending_stack_adjust ();
1918 start = get_last_insn ();
1920 /* At the end, we'll need an additional shift to deal with sign/zero
1921 extension. By default this will be a left+right shift of the
1922 appropriate size. But we may be able to eliminate one of them. */
1923 sign_shift_up = sign_shift_dn = m_bitsize - bitsize;
1925 if (STRICT_ALIGNMENT)
1927 base = plus_constant (XEXP (op0, 0), bitpos / BITS_PER_UNIT);
1928 bitpos %= BITS_PER_UNIT;
1930 /* We load two values to be concatenate. There's an edge condition
1931 that bears notice -- an aligned value at the end of a page can
1932 only load one value lest we segfault. So the two values we load
1933 are at "base & -size" and "(base + size - 1) & -size". If base
1934 is unaligned, the addresses will be aligned and sequential; if
1935 base is aligned, the addresses will both be equal to base. */
1937 a1 = expand_simple_binop (Pmode, AND, force_operand (base, NULL),
1938 GEN_INT (-(HOST_WIDE_INT)m_size),
1939 NULL, true, OPTAB_LIB_WIDEN);
1940 mark_reg_pointer (a1, m_bitsize);
1941 v1 = gen_rtx_MEM (mode, a1);
1942 set_mem_align (v1, m_bitsize);
1943 v1 = force_reg (mode, validize_mem (v1));
1945 a2 = plus_constant (base, GET_MODE_SIZE (mode) - 1);
1946 a2 = expand_simple_binop (Pmode, AND, force_operand (a2, NULL),
1947 GEN_INT (-(HOST_WIDE_INT)m_size),
1948 NULL, true, OPTAB_LIB_WIDEN);
1949 v2 = gen_rtx_MEM (mode, a2);
1950 set_mem_align (v2, m_bitsize);
1951 v2 = force_reg (mode, validize_mem (v2));
1953 /* Combine these two values into a double-word value. */
1954 if (m_bitsize == BITS_PER_WORD)
1956 comb = gen_reg_rtx (dmode);
1957 emit_insn (gen_rtx_CLOBBER (VOIDmode, comb));
1958 emit_move_insn (gen_rtx_SUBREG (mode, comb, 0), v1);
1959 emit_move_insn (gen_rtx_SUBREG (mode, comb, m_size), v2);
1961 else
1963 if (BYTES_BIG_ENDIAN)
1964 comb = v1, v1 = v2, v2 = comb;
1965 v1 = convert_modes (dmode, mode, v1, true);
1966 if (v1 == NULL)
1967 goto fail;
1968 v2 = convert_modes (dmode, mode, v2, true);
1969 v2 = expand_simple_binop (dmode, ASHIFT, v2, GEN_INT (m_bitsize),
1970 NULL, true, OPTAB_LIB_WIDEN);
1971 if (v2 == NULL)
1972 goto fail;
1973 comb = expand_simple_binop (dmode, IOR, v1, v2, NULL,
1974 true, OPTAB_LIB_WIDEN);
1975 if (comb == NULL)
1976 goto fail;
1979 shift = expand_simple_binop (Pmode, AND, base, GEN_INT (m_size - 1),
1980 NULL, true, OPTAB_LIB_WIDEN);
1981 shift = expand_mult (Pmode, shift, GEN_INT (BITS_PER_UNIT), NULL, 1);
1983 if (bitpos != 0)
1985 if (sign_shift_up <= bitpos)
1986 bitpos -= sign_shift_up, sign_shift_up = 0;
1987 shift = expand_simple_binop (Pmode, PLUS, shift, GEN_INT (bitpos),
1988 NULL, true, OPTAB_LIB_WIDEN);
1991 else
1993 unsigned HOST_WIDE_INT offset = bitpos / BITS_PER_UNIT;
1994 bitpos %= BITS_PER_UNIT;
1996 /* When strict alignment is not required, we can just load directly
1997 from memory without masking. If the remaining BITPOS offset is
1998 small enough, we may be able to do all operations in MODE as
1999 opposed to DMODE. */
2000 if (bitpos + bitsize <= m_bitsize)
2001 dmode = mode;
2002 comb = adjust_address (op0, dmode, offset);
2004 if (sign_shift_up <= bitpos)
2005 bitpos -= sign_shift_up, sign_shift_up = 0;
2006 shift = GEN_INT (bitpos);
2009 /* Shift down the double-word such that the requested value is at bit 0. */
2010 if (shift != const0_rtx)
2011 comb = expand_simple_binop (dmode, unsignedp ? LSHIFTRT : ASHIFTRT,
2012 comb, shift, NULL, unsignedp, OPTAB_LIB_WIDEN);
2013 if (comb == NULL)
2014 goto fail;
2016 /* If the field exactly matches MODE, then all we need to do is return the
2017 lowpart. Otherwise, shift to get the sign bits set properly. */
2018 result = force_reg (mode, gen_lowpart (mode, comb));
2020 if (sign_shift_up)
2021 result = expand_simple_binop (mode, ASHIFT, result,
2022 GEN_INT (sign_shift_up),
2023 NULL_RTX, 0, OPTAB_LIB_WIDEN);
2024 if (sign_shift_dn)
2025 result = expand_simple_binop (mode, unsignedp ? LSHIFTRT : ASHIFTRT,
2026 result, GEN_INT (sign_shift_dn),
2027 NULL_RTX, 0, OPTAB_LIB_WIDEN);
2029 return result;
2031 fail:
2032 delete_insns_since (start);
2033 return NULL;
2036 /* Extract a bit field that is split across two words
2037 and return an RTX for the result.
2039 OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
2040 BITSIZE is the field width; BITPOS, position of its first bit, in the word.
2041 UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend. */
2043 static rtx
2044 extract_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
2045 unsigned HOST_WIDE_INT bitpos, int unsignedp)
2047 unsigned int unit;
2048 unsigned int bitsdone = 0;
2049 rtx result = NULL_RTX;
2050 int first = 1;
2052 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
2053 much at a time. */
2054 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
2055 unit = BITS_PER_WORD;
2056 else
2058 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
2059 if (0 && bitsize / unit > 2)
2061 rtx tmp = extract_force_align_mem_bit_field (op0, bitsize, bitpos,
2062 unsignedp);
2063 if (tmp)
2064 return tmp;
2068 while (bitsdone < bitsize)
2070 unsigned HOST_WIDE_INT thissize;
2071 rtx part, word;
2072 unsigned HOST_WIDE_INT thispos;
2073 unsigned HOST_WIDE_INT offset;
2075 offset = (bitpos + bitsdone) / unit;
2076 thispos = (bitpos + bitsdone) % unit;
2078 /* THISSIZE must not overrun a word boundary. Otherwise,
2079 extract_fixed_bit_field will call us again, and we will mutually
2080 recurse forever. */
2081 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
2082 thissize = MIN (thissize, unit - thispos);
2084 /* If OP0 is a register, then handle OFFSET here.
2086 When handling multiword bitfields, extract_bit_field may pass
2087 down a word_mode SUBREG of a larger REG for a bitfield that actually
2088 crosses a word boundary. Thus, for a SUBREG, we must find
2089 the current word starting from the base register. */
2090 if (GET_CODE (op0) == SUBREG)
2092 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
2093 word = operand_subword_force (SUBREG_REG (op0), word_offset,
2094 GET_MODE (SUBREG_REG (op0)));
2095 offset = 0;
2097 else if (REG_P (op0))
2099 word = operand_subword_force (op0, offset, GET_MODE (op0));
2100 offset = 0;
2102 else
2103 word = op0;
2105 /* Extract the parts in bit-counting order,
2106 whose meaning is determined by BYTES_PER_UNIT.
2107 OFFSET is in UNITs, and UNIT is in bits.
2108 extract_fixed_bit_field wants offset in bytes. */
2109 part = extract_fixed_bit_field (word_mode, word,
2110 offset * unit / BITS_PER_UNIT,
2111 thissize, thispos, 0, 1);
2112 bitsdone += thissize;
2114 /* Shift this part into place for the result. */
2115 if (BYTES_BIG_ENDIAN)
2117 if (bitsize != bitsdone)
2118 part = expand_shift (LSHIFT_EXPR, word_mode, part,
2119 build_int_cst (NULL_TREE, bitsize - bitsdone),
2120 0, 1);
2122 else
2124 if (bitsdone != thissize)
2125 part = expand_shift (LSHIFT_EXPR, word_mode, part,
2126 build_int_cst (NULL_TREE,
2127 bitsdone - thissize), 0, 1);
2130 if (first)
2131 result = part;
2132 else
2133 /* Combine the parts with bitwise or. This works
2134 because we extracted each part as an unsigned bit field. */
2135 result = expand_binop (word_mode, ior_optab, part, result, NULL_RTX, 1,
2136 OPTAB_LIB_WIDEN);
2138 first = 0;
2141 /* Unsigned bit field: we are done. */
2142 if (unsignedp)
2143 return result;
2144 /* Signed bit field: sign-extend with two arithmetic shifts. */
2145 result = expand_shift (LSHIFT_EXPR, word_mode, result,
2146 build_int_cst (NULL_TREE, BITS_PER_WORD - bitsize),
2147 NULL_RTX, 0);
2148 return expand_shift (RSHIFT_EXPR, word_mode, result,
2149 build_int_cst (NULL_TREE, BITS_PER_WORD - bitsize),
2150 NULL_RTX, 0);
2153 /* Add INC into TARGET. */
2155 void
2156 expand_inc (rtx target, rtx inc)
2158 rtx value = expand_binop (GET_MODE (target), add_optab,
2159 target, inc,
2160 target, 0, OPTAB_LIB_WIDEN);
2161 if (value != target)
2162 emit_move_insn (target, value);
2165 /* Subtract DEC from TARGET. */
2167 void
2168 expand_dec (rtx target, rtx dec)
2170 rtx value = expand_binop (GET_MODE (target), sub_optab,
2171 target, dec,
2172 target, 0, OPTAB_LIB_WIDEN);
2173 if (value != target)
2174 emit_move_insn (target, value);
2177 /* Output a shift instruction for expression code CODE,
2178 with SHIFTED being the rtx for the value to shift,
2179 and AMOUNT the tree for the amount to shift by.
2180 Store the result in the rtx TARGET, if that is convenient.
2181 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2182 Return the rtx for where the value is. */
2185 expand_shift (enum tree_code code, enum machine_mode mode, rtx shifted,
2186 tree amount, rtx target, int unsignedp)
2188 rtx op1, temp = 0;
2189 int left = (code == LSHIFT_EXPR || code == LROTATE_EXPR);
2190 int rotate = (code == LROTATE_EXPR || code == RROTATE_EXPR);
2191 int try;
2193 /* Previously detected shift-counts computed by NEGATE_EXPR
2194 and shifted in the other direction; but that does not work
2195 on all machines. */
2197 op1 = expand_normal (amount);
2199 if (SHIFT_COUNT_TRUNCATED)
2201 if (GET_CODE (op1) == CONST_INT
2202 && ((unsigned HOST_WIDE_INT) INTVAL (op1) >=
2203 (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode)))
2204 op1 = GEN_INT ((unsigned HOST_WIDE_INT) INTVAL (op1)
2205 % GET_MODE_BITSIZE (mode));
2206 else if (GET_CODE (op1) == SUBREG
2207 && subreg_lowpart_p (op1))
2208 op1 = SUBREG_REG (op1);
2211 if (op1 == const0_rtx)
2212 return shifted;
2214 /* Check whether its cheaper to implement a left shift by a constant
2215 bit count by a sequence of additions. */
2216 if (code == LSHIFT_EXPR
2217 && GET_CODE (op1) == CONST_INT
2218 && INTVAL (op1) > 0
2219 && INTVAL (op1) < GET_MODE_BITSIZE (mode)
2220 && shift_cost[mode][INTVAL (op1)] > INTVAL (op1) * add_cost[mode])
2222 int i;
2223 for (i = 0; i < INTVAL (op1); i++)
2225 temp = force_reg (mode, shifted);
2226 shifted = expand_binop (mode, add_optab, temp, temp, NULL_RTX,
2227 unsignedp, OPTAB_LIB_WIDEN);
2229 return shifted;
2232 for (try = 0; temp == 0 && try < 3; try++)
2234 enum optab_methods methods;
2236 if (try == 0)
2237 methods = OPTAB_DIRECT;
2238 else if (try == 1)
2239 methods = OPTAB_WIDEN;
2240 else
2241 methods = OPTAB_LIB_WIDEN;
2243 if (rotate)
2245 /* Widening does not work for rotation. */
2246 if (methods == OPTAB_WIDEN)
2247 continue;
2248 else if (methods == OPTAB_LIB_WIDEN)
2250 /* If we have been unable to open-code this by a rotation,
2251 do it as the IOR of two shifts. I.e., to rotate A
2252 by N bits, compute (A << N) | ((unsigned) A >> (C - N))
2253 where C is the bitsize of A.
2255 It is theoretically possible that the target machine might
2256 not be able to perform either shift and hence we would
2257 be making two libcalls rather than just the one for the
2258 shift (similarly if IOR could not be done). We will allow
2259 this extremely unlikely lossage to avoid complicating the
2260 code below. */
2262 rtx subtarget = target == shifted ? 0 : target;
2263 rtx temp1;
2264 tree type = TREE_TYPE (amount);
2265 tree new_amount = make_tree (type, op1);
2266 tree other_amount
2267 = fold_build2 (MINUS_EXPR, type,
2268 build_int_cst (type, GET_MODE_BITSIZE (mode)),
2269 amount);
2271 shifted = force_reg (mode, shifted);
2273 temp = expand_shift (left ? LSHIFT_EXPR : RSHIFT_EXPR,
2274 mode, shifted, new_amount, 0, 1);
2275 temp1 = expand_shift (left ? RSHIFT_EXPR : LSHIFT_EXPR,
2276 mode, shifted, other_amount, subtarget, 1);
2277 return expand_binop (mode, ior_optab, temp, temp1, target,
2278 unsignedp, methods);
2281 temp = expand_binop (mode,
2282 left ? rotl_optab : rotr_optab,
2283 shifted, op1, target, unsignedp, methods);
2285 else if (unsignedp)
2286 temp = expand_binop (mode,
2287 left ? ashl_optab : lshr_optab,
2288 shifted, op1, target, unsignedp, methods);
2290 /* Do arithmetic shifts.
2291 Also, if we are going to widen the operand, we can just as well
2292 use an arithmetic right-shift instead of a logical one. */
2293 if (temp == 0 && ! rotate
2294 && (! unsignedp || (! left && methods == OPTAB_WIDEN)))
2296 enum optab_methods methods1 = methods;
2298 /* If trying to widen a log shift to an arithmetic shift,
2299 don't accept an arithmetic shift of the same size. */
2300 if (unsignedp)
2301 methods1 = OPTAB_MUST_WIDEN;
2303 /* Arithmetic shift */
2305 temp = expand_binop (mode,
2306 left ? ashl_optab : ashr_optab,
2307 shifted, op1, target, unsignedp, methods1);
2310 /* We used to try extzv here for logical right shifts, but that was
2311 only useful for one machine, the VAX, and caused poor code
2312 generation there for lshrdi3, so the code was deleted and a
2313 define_expand for lshrsi3 was added to vax.md. */
2316 gcc_assert (temp);
2317 return temp;
2320 enum alg_code {
2321 alg_unknown,
2322 alg_zero,
2323 alg_m, alg_shift,
2324 alg_add_t_m2,
2325 alg_sub_t_m2,
2326 alg_add_factor,
2327 alg_sub_factor,
2328 alg_add_t2_m,
2329 alg_sub_t2_m,
2330 alg_impossible
2333 /* This structure holds the "cost" of a multiply sequence. The
2334 "cost" field holds the total rtx_cost of every operator in the
2335 synthetic multiplication sequence, hence cost(a op b) is defined
2336 as rtx_cost(op) + cost(a) + cost(b), where cost(leaf) is zero.
2337 The "latency" field holds the minimum possible latency of the
2338 synthetic multiply, on a hypothetical infinitely parallel CPU.
2339 This is the critical path, or the maximum height, of the expression
2340 tree which is the sum of rtx_costs on the most expensive path from
2341 any leaf to the root. Hence latency(a op b) is defined as zero for
2342 leaves and rtx_cost(op) + max(latency(a), latency(b)) otherwise. */
2344 struct mult_cost {
2345 short cost; /* Total rtx_cost of the multiplication sequence. */
2346 short latency; /* The latency of the multiplication sequence. */
2349 /* This macro is used to compare a pointer to a mult_cost against an
2350 single integer "rtx_cost" value. This is equivalent to the macro
2351 CHEAPER_MULT_COST(X,Z) where Z = {Y,Y}. */
2352 #define MULT_COST_LESS(X,Y) ((X)->cost < (Y) \
2353 || ((X)->cost == (Y) && (X)->latency < (Y)))
2355 /* This macro is used to compare two pointers to mult_costs against
2356 each other. The macro returns true if X is cheaper than Y.
2357 Currently, the cheaper of two mult_costs is the one with the
2358 lower "cost". If "cost"s are tied, the lower latency is cheaper. */
2359 #define CHEAPER_MULT_COST(X,Y) ((X)->cost < (Y)->cost \
2360 || ((X)->cost == (Y)->cost \
2361 && (X)->latency < (Y)->latency))
2363 /* This structure records a sequence of operations.
2364 `ops' is the number of operations recorded.
2365 `cost' is their total cost.
2366 The operations are stored in `op' and the corresponding
2367 logarithms of the integer coefficients in `log'.
2369 These are the operations:
2370 alg_zero total := 0;
2371 alg_m total := multiplicand;
2372 alg_shift total := total * coeff
2373 alg_add_t_m2 total := total + multiplicand * coeff;
2374 alg_sub_t_m2 total := total - multiplicand * coeff;
2375 alg_add_factor total := total * coeff + total;
2376 alg_sub_factor total := total * coeff - total;
2377 alg_add_t2_m total := total * coeff + multiplicand;
2378 alg_sub_t2_m total := total * coeff - multiplicand;
2380 The first operand must be either alg_zero or alg_m. */
2382 struct algorithm
2384 struct mult_cost cost;
2385 short ops;
2386 /* The size of the OP and LOG fields are not directly related to the
2387 word size, but the worst-case algorithms will be if we have few
2388 consecutive ones or zeros, i.e., a multiplicand like 10101010101...
2389 In that case we will generate shift-by-2, add, shift-by-2, add,...,
2390 in total wordsize operations. */
2391 enum alg_code op[MAX_BITS_PER_WORD];
2392 char log[MAX_BITS_PER_WORD];
2395 /* The entry for our multiplication cache/hash table. */
2396 struct alg_hash_entry {
2397 /* The number we are multiplying by. */
2398 unsigned int t;
2400 /* The mode in which we are multiplying something by T. */
2401 enum machine_mode mode;
2403 /* The best multiplication algorithm for t. */
2404 enum alg_code alg;
2406 /* The cost of multiplication if ALG_CODE is not alg_impossible.
2407 Otherwise, the cost within which multiplication by T is
2408 impossible. */
2409 struct mult_cost cost;
2412 /* The number of cache/hash entries. */
2413 #define NUM_ALG_HASH_ENTRIES 307
2415 /* Each entry of ALG_HASH caches alg_code for some integer. This is
2416 actually a hash table. If we have a collision, that the older
2417 entry is kicked out. */
2418 static struct alg_hash_entry alg_hash[NUM_ALG_HASH_ENTRIES];
2420 /* Indicates the type of fixup needed after a constant multiplication.
2421 BASIC_VARIANT means no fixup is needed, NEGATE_VARIANT means that
2422 the result should be negated, and ADD_VARIANT means that the
2423 multiplicand should be added to the result. */
2424 enum mult_variant {basic_variant, negate_variant, add_variant};
2426 static void synth_mult (struct algorithm *, unsigned HOST_WIDE_INT,
2427 const struct mult_cost *, enum machine_mode mode);
2428 static bool choose_mult_variant (enum machine_mode, HOST_WIDE_INT,
2429 struct algorithm *, enum mult_variant *, int);
2430 static rtx expand_mult_const (enum machine_mode, rtx, HOST_WIDE_INT, rtx,
2431 const struct algorithm *, enum mult_variant);
2432 static unsigned HOST_WIDE_INT choose_multiplier (unsigned HOST_WIDE_INT, int,
2433 int, rtx *, int *, int *);
2434 static unsigned HOST_WIDE_INT invert_mod2n (unsigned HOST_WIDE_INT, int);
2435 static rtx extract_high_half (enum machine_mode, rtx);
2436 static rtx expand_mult_highpart (enum machine_mode, rtx, rtx, rtx, int, int);
2437 static rtx expand_mult_highpart_optab (enum machine_mode, rtx, rtx, rtx,
2438 int, int);
2439 /* Compute and return the best algorithm for multiplying by T.
2440 The algorithm must cost less than cost_limit
2441 If retval.cost >= COST_LIMIT, no algorithm was found and all
2442 other field of the returned struct are undefined.
2443 MODE is the machine mode of the multiplication. */
2445 static void
2446 synth_mult (struct algorithm *alg_out, unsigned HOST_WIDE_INT t,
2447 const struct mult_cost *cost_limit, enum machine_mode mode)
2449 int m;
2450 struct algorithm *alg_in, *best_alg;
2451 struct mult_cost best_cost;
2452 struct mult_cost new_limit;
2453 int op_cost, op_latency;
2454 unsigned HOST_WIDE_INT q;
2455 int maxm = MIN (BITS_PER_WORD, GET_MODE_BITSIZE (mode));
2456 int hash_index;
2457 bool cache_hit = false;
2458 enum alg_code cache_alg = alg_zero;
2460 /* Indicate that no algorithm is yet found. If no algorithm
2461 is found, this value will be returned and indicate failure. */
2462 alg_out->cost.cost = cost_limit->cost + 1;
2463 alg_out->cost.latency = cost_limit->latency + 1;
2465 if (cost_limit->cost < 0
2466 || (cost_limit->cost == 0 && cost_limit->latency <= 0))
2467 return;
2469 /* Restrict the bits of "t" to the multiplication's mode. */
2470 t &= GET_MODE_MASK (mode);
2472 /* t == 1 can be done in zero cost. */
2473 if (t == 1)
2475 alg_out->ops = 1;
2476 alg_out->cost.cost = 0;
2477 alg_out->cost.latency = 0;
2478 alg_out->op[0] = alg_m;
2479 return;
2482 /* t == 0 sometimes has a cost. If it does and it exceeds our limit,
2483 fail now. */
2484 if (t == 0)
2486 if (MULT_COST_LESS (cost_limit, zero_cost))
2487 return;
2488 else
2490 alg_out->ops = 1;
2491 alg_out->cost.cost = zero_cost;
2492 alg_out->cost.latency = zero_cost;
2493 alg_out->op[0] = alg_zero;
2494 return;
2498 /* We'll be needing a couple extra algorithm structures now. */
2500 alg_in = alloca (sizeof (struct algorithm));
2501 best_alg = alloca (sizeof (struct algorithm));
2502 best_cost = *cost_limit;
2504 /* Compute the hash index. */
2505 hash_index = (t ^ (unsigned int) mode) % NUM_ALG_HASH_ENTRIES;
2507 /* See if we already know what to do for T. */
2508 if (alg_hash[hash_index].t == t
2509 && alg_hash[hash_index].mode == mode
2510 && alg_hash[hash_index].alg != alg_unknown)
2512 cache_alg = alg_hash[hash_index].alg;
2514 if (cache_alg == alg_impossible)
2516 /* The cache tells us that it's impossible to synthesize
2517 multiplication by T within alg_hash[hash_index].cost. */
2518 if (!CHEAPER_MULT_COST (&alg_hash[hash_index].cost, cost_limit))
2519 /* COST_LIMIT is at least as restrictive as the one
2520 recorded in the hash table, in which case we have no
2521 hope of synthesizing a multiplication. Just
2522 return. */
2523 return;
2525 /* If we get here, COST_LIMIT is less restrictive than the
2526 one recorded in the hash table, so we may be able to
2527 synthesize a multiplication. Proceed as if we didn't
2528 have the cache entry. */
2530 else
2532 if (CHEAPER_MULT_COST (cost_limit, &alg_hash[hash_index].cost))
2533 /* The cached algorithm shows that this multiplication
2534 requires more cost than COST_LIMIT. Just return. This
2535 way, we don't clobber this cache entry with
2536 alg_impossible but retain useful information. */
2537 return;
2539 cache_hit = true;
2541 switch (cache_alg)
2543 case alg_shift:
2544 goto do_alg_shift;
2546 case alg_add_t_m2:
2547 case alg_sub_t_m2:
2548 goto do_alg_addsub_t_m2;
2550 case alg_add_factor:
2551 case alg_sub_factor:
2552 goto do_alg_addsub_factor;
2554 case alg_add_t2_m:
2555 goto do_alg_add_t2_m;
2557 case alg_sub_t2_m:
2558 goto do_alg_sub_t2_m;
2560 default:
2561 gcc_unreachable ();
2566 /* If we have a group of zero bits at the low-order part of T, try
2567 multiplying by the remaining bits and then doing a shift. */
2569 if ((t & 1) == 0)
2571 do_alg_shift:
2572 m = floor_log2 (t & -t); /* m = number of low zero bits */
2573 if (m < maxm)
2575 q = t >> m;
2576 /* The function expand_shift will choose between a shift and
2577 a sequence of additions, so the observed cost is given as
2578 MIN (m * add_cost[mode], shift_cost[mode][m]). */
2579 op_cost = m * add_cost[mode];
2580 if (shift_cost[mode][m] < op_cost)
2581 op_cost = shift_cost[mode][m];
2582 new_limit.cost = best_cost.cost - op_cost;
2583 new_limit.latency = best_cost.latency - op_cost;
2584 synth_mult (alg_in, q, &new_limit, mode);
2586 alg_in->cost.cost += op_cost;
2587 alg_in->cost.latency += op_cost;
2588 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2590 struct algorithm *x;
2591 best_cost = alg_in->cost;
2592 x = alg_in, alg_in = best_alg, best_alg = x;
2593 best_alg->log[best_alg->ops] = m;
2594 best_alg->op[best_alg->ops] = alg_shift;
2597 if (cache_hit)
2598 goto done;
2601 /* If we have an odd number, add or subtract one. */
2602 if ((t & 1) != 0)
2604 unsigned HOST_WIDE_INT w;
2606 do_alg_addsub_t_m2:
2607 for (w = 1; (w & t) != 0; w <<= 1)
2609 /* If T was -1, then W will be zero after the loop. This is another
2610 case where T ends with ...111. Handling this with (T + 1) and
2611 subtract 1 produces slightly better code and results in algorithm
2612 selection much faster than treating it like the ...0111 case
2613 below. */
2614 if (w == 0
2615 || (w > 2
2616 /* Reject the case where t is 3.
2617 Thus we prefer addition in that case. */
2618 && t != 3))
2620 /* T ends with ...111. Multiply by (T + 1) and subtract 1. */
2622 op_cost = add_cost[mode];
2623 new_limit.cost = best_cost.cost - op_cost;
2624 new_limit.latency = best_cost.latency - op_cost;
2625 synth_mult (alg_in, t + 1, &new_limit, mode);
2627 alg_in->cost.cost += op_cost;
2628 alg_in->cost.latency += op_cost;
2629 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2631 struct algorithm *x;
2632 best_cost = alg_in->cost;
2633 x = alg_in, alg_in = best_alg, best_alg = x;
2634 best_alg->log[best_alg->ops] = 0;
2635 best_alg->op[best_alg->ops] = alg_sub_t_m2;
2638 else
2640 /* T ends with ...01 or ...011. Multiply by (T - 1) and add 1. */
2642 op_cost = add_cost[mode];
2643 new_limit.cost = best_cost.cost - op_cost;
2644 new_limit.latency = best_cost.latency - op_cost;
2645 synth_mult (alg_in, t - 1, &new_limit, mode);
2647 alg_in->cost.cost += op_cost;
2648 alg_in->cost.latency += op_cost;
2649 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2651 struct algorithm *x;
2652 best_cost = alg_in->cost;
2653 x = alg_in, alg_in = best_alg, best_alg = x;
2654 best_alg->log[best_alg->ops] = 0;
2655 best_alg->op[best_alg->ops] = alg_add_t_m2;
2658 if (cache_hit)
2659 goto done;
2662 /* Look for factors of t of the form
2663 t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
2664 If we find such a factor, we can multiply by t using an algorithm that
2665 multiplies by q, shift the result by m and add/subtract it to itself.
2667 We search for large factors first and loop down, even if large factors
2668 are less probable than small; if we find a large factor we will find a
2669 good sequence quickly, and therefore be able to prune (by decreasing
2670 COST_LIMIT) the search. */
2672 do_alg_addsub_factor:
2673 for (m = floor_log2 (t - 1); m >= 2; m--)
2675 unsigned HOST_WIDE_INT d;
2677 d = ((unsigned HOST_WIDE_INT) 1 << m) + 1;
2678 if (t % d == 0 && t > d && m < maxm
2679 && (!cache_hit || cache_alg == alg_add_factor))
2681 /* If the target has a cheap shift-and-add instruction use
2682 that in preference to a shift insn followed by an add insn.
2683 Assume that the shift-and-add is "atomic" with a latency
2684 equal to its cost, otherwise assume that on superscalar
2685 hardware the shift may be executed concurrently with the
2686 earlier steps in the algorithm. */
2687 op_cost = add_cost[mode] + shift_cost[mode][m];
2688 if (shiftadd_cost[mode][m] < op_cost)
2690 op_cost = shiftadd_cost[mode][m];
2691 op_latency = op_cost;
2693 else
2694 op_latency = add_cost[mode];
2696 new_limit.cost = best_cost.cost - op_cost;
2697 new_limit.latency = best_cost.latency - op_latency;
2698 synth_mult (alg_in, t / d, &new_limit, mode);
2700 alg_in->cost.cost += op_cost;
2701 alg_in->cost.latency += op_latency;
2702 if (alg_in->cost.latency < op_cost)
2703 alg_in->cost.latency = op_cost;
2704 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2706 struct algorithm *x;
2707 best_cost = alg_in->cost;
2708 x = alg_in, alg_in = best_alg, best_alg = x;
2709 best_alg->log[best_alg->ops] = m;
2710 best_alg->op[best_alg->ops] = alg_add_factor;
2712 /* Other factors will have been taken care of in the recursion. */
2713 break;
2716 d = ((unsigned HOST_WIDE_INT) 1 << m) - 1;
2717 if (t % d == 0 && t > d && m < maxm
2718 && (!cache_hit || cache_alg == alg_sub_factor))
2720 /* If the target has a cheap shift-and-subtract insn use
2721 that in preference to a shift insn followed by a sub insn.
2722 Assume that the shift-and-sub is "atomic" with a latency
2723 equal to it's cost, otherwise assume that on superscalar
2724 hardware the shift may be executed concurrently with the
2725 earlier steps in the algorithm. */
2726 op_cost = add_cost[mode] + shift_cost[mode][m];
2727 if (shiftsub_cost[mode][m] < op_cost)
2729 op_cost = shiftsub_cost[mode][m];
2730 op_latency = op_cost;
2732 else
2733 op_latency = add_cost[mode];
2735 new_limit.cost = best_cost.cost - op_cost;
2736 new_limit.latency = best_cost.latency - op_latency;
2737 synth_mult (alg_in, t / d, &new_limit, mode);
2739 alg_in->cost.cost += op_cost;
2740 alg_in->cost.latency += op_latency;
2741 if (alg_in->cost.latency < op_cost)
2742 alg_in->cost.latency = op_cost;
2743 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2745 struct algorithm *x;
2746 best_cost = alg_in->cost;
2747 x = alg_in, alg_in = best_alg, best_alg = x;
2748 best_alg->log[best_alg->ops] = m;
2749 best_alg->op[best_alg->ops] = alg_sub_factor;
2751 break;
2754 if (cache_hit)
2755 goto done;
2757 /* Try shift-and-add (load effective address) instructions,
2758 i.e. do a*3, a*5, a*9. */
2759 if ((t & 1) != 0)
2761 do_alg_add_t2_m:
2762 q = t - 1;
2763 q = q & -q;
2764 m = exact_log2 (q);
2765 if (m >= 0 && m < maxm)
2767 op_cost = shiftadd_cost[mode][m];
2768 new_limit.cost = best_cost.cost - op_cost;
2769 new_limit.latency = best_cost.latency - op_cost;
2770 synth_mult (alg_in, (t - 1) >> m, &new_limit, mode);
2772 alg_in->cost.cost += op_cost;
2773 alg_in->cost.latency += op_cost;
2774 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2776 struct algorithm *x;
2777 best_cost = alg_in->cost;
2778 x = alg_in, alg_in = best_alg, best_alg = x;
2779 best_alg->log[best_alg->ops] = m;
2780 best_alg->op[best_alg->ops] = alg_add_t2_m;
2783 if (cache_hit)
2784 goto done;
2786 do_alg_sub_t2_m:
2787 q = t + 1;
2788 q = q & -q;
2789 m = exact_log2 (q);
2790 if (m >= 0 && m < maxm)
2792 op_cost = shiftsub_cost[mode][m];
2793 new_limit.cost = best_cost.cost - op_cost;
2794 new_limit.latency = best_cost.latency - op_cost;
2795 synth_mult (alg_in, (t + 1) >> m, &new_limit, mode);
2797 alg_in->cost.cost += op_cost;
2798 alg_in->cost.latency += op_cost;
2799 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2801 struct algorithm *x;
2802 best_cost = alg_in->cost;
2803 x = alg_in, alg_in = best_alg, best_alg = x;
2804 best_alg->log[best_alg->ops] = m;
2805 best_alg->op[best_alg->ops] = alg_sub_t2_m;
2808 if (cache_hit)
2809 goto done;
2812 done:
2813 /* If best_cost has not decreased, we have not found any algorithm. */
2814 if (!CHEAPER_MULT_COST (&best_cost, cost_limit))
2816 /* We failed to find an algorithm. Record alg_impossible for
2817 this case (that is, <T, MODE, COST_LIMIT>) so that next time
2818 we are asked to find an algorithm for T within the same or
2819 lower COST_LIMIT, we can immediately return to the
2820 caller. */
2821 alg_hash[hash_index].t = t;
2822 alg_hash[hash_index].mode = mode;
2823 alg_hash[hash_index].alg = alg_impossible;
2824 alg_hash[hash_index].cost = *cost_limit;
2825 return;
2828 /* Cache the result. */
2829 if (!cache_hit)
2831 alg_hash[hash_index].t = t;
2832 alg_hash[hash_index].mode = mode;
2833 alg_hash[hash_index].alg = best_alg->op[best_alg->ops];
2834 alg_hash[hash_index].cost.cost = best_cost.cost;
2835 alg_hash[hash_index].cost.latency = best_cost.latency;
2838 /* If we are getting a too long sequence for `struct algorithm'
2839 to record, make this search fail. */
2840 if (best_alg->ops == MAX_BITS_PER_WORD)
2841 return;
2843 /* Copy the algorithm from temporary space to the space at alg_out.
2844 We avoid using structure assignment because the majority of
2845 best_alg is normally undefined, and this is a critical function. */
2846 alg_out->ops = best_alg->ops + 1;
2847 alg_out->cost = best_cost;
2848 memcpy (alg_out->op, best_alg->op,
2849 alg_out->ops * sizeof *alg_out->op);
2850 memcpy (alg_out->log, best_alg->log,
2851 alg_out->ops * sizeof *alg_out->log);
2854 /* Find the cheapest way of multiplying a value of mode MODE by VAL.
2855 Try three variations:
2857 - a shift/add sequence based on VAL itself
2858 - a shift/add sequence based on -VAL, followed by a negation
2859 - a shift/add sequence based on VAL - 1, followed by an addition.
2861 Return true if the cheapest of these cost less than MULT_COST,
2862 describing the algorithm in *ALG and final fixup in *VARIANT. */
2864 static bool
2865 choose_mult_variant (enum machine_mode mode, HOST_WIDE_INT val,
2866 struct algorithm *alg, enum mult_variant *variant,
2867 int mult_cost)
2869 struct algorithm alg2;
2870 struct mult_cost limit;
2871 int op_cost;
2873 /* Fail quickly for impossible bounds. */
2874 if (mult_cost < 0)
2875 return false;
2877 /* Ensure that mult_cost provides a reasonable upper bound.
2878 Any constant multiplication can be performed with less
2879 than 2 * bits additions. */
2880 op_cost = 2 * GET_MODE_BITSIZE (mode) * add_cost[mode];
2881 if (mult_cost > op_cost)
2882 mult_cost = op_cost;
2884 *variant = basic_variant;
2885 limit.cost = mult_cost;
2886 limit.latency = mult_cost;
2887 synth_mult (alg, val, &limit, mode);
2889 /* This works only if the inverted value actually fits in an
2890 `unsigned int' */
2891 if (HOST_BITS_PER_INT >= GET_MODE_BITSIZE (mode))
2893 op_cost = neg_cost[mode];
2894 if (MULT_COST_LESS (&alg->cost, mult_cost))
2896 limit.cost = alg->cost.cost - op_cost;
2897 limit.latency = alg->cost.latency - op_cost;
2899 else
2901 limit.cost = mult_cost - op_cost;
2902 limit.latency = mult_cost - op_cost;
2905 synth_mult (&alg2, -val, &limit, mode);
2906 alg2.cost.cost += op_cost;
2907 alg2.cost.latency += op_cost;
2908 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2909 *alg = alg2, *variant = negate_variant;
2912 /* This proves very useful for division-by-constant. */
2913 op_cost = add_cost[mode];
2914 if (MULT_COST_LESS (&alg->cost, mult_cost))
2916 limit.cost = alg->cost.cost - op_cost;
2917 limit.latency = alg->cost.latency - op_cost;
2919 else
2921 limit.cost = mult_cost - op_cost;
2922 limit.latency = mult_cost - op_cost;
2925 synth_mult (&alg2, val - 1, &limit, mode);
2926 alg2.cost.cost += op_cost;
2927 alg2.cost.latency += op_cost;
2928 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2929 *alg = alg2, *variant = add_variant;
2931 return MULT_COST_LESS (&alg->cost, mult_cost);
2934 /* A subroutine of expand_mult, used for constant multiplications.
2935 Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
2936 convenient. Use the shift/add sequence described by ALG and apply
2937 the final fixup specified by VARIANT. */
2939 static rtx
2940 expand_mult_const (enum machine_mode mode, rtx op0, HOST_WIDE_INT val,
2941 rtx target, const struct algorithm *alg,
2942 enum mult_variant variant)
2944 HOST_WIDE_INT val_so_far;
2945 rtx insn, accum, tem;
2946 int opno;
2947 enum machine_mode nmode;
2949 /* Avoid referencing memory over and over.
2950 For speed, but also for correctness when mem is volatile. */
2951 if (MEM_P (op0))
2952 op0 = force_reg (mode, op0);
2954 /* ACCUM starts out either as OP0 or as a zero, depending on
2955 the first operation. */
2957 if (alg->op[0] == alg_zero)
2959 accum = copy_to_mode_reg (mode, const0_rtx);
2960 val_so_far = 0;
2962 else if (alg->op[0] == alg_m)
2964 accum = copy_to_mode_reg (mode, op0);
2965 val_so_far = 1;
2967 else
2968 gcc_unreachable ();
2970 for (opno = 1; opno < alg->ops; opno++)
2972 int log = alg->log[opno];
2973 rtx shift_subtarget = optimize ? 0 : accum;
2974 rtx add_target
2975 = (opno == alg->ops - 1 && target != 0 && variant != add_variant
2976 && !optimize)
2977 ? target : 0;
2978 rtx accum_target = optimize ? 0 : accum;
2980 switch (alg->op[opno])
2982 case alg_shift:
2983 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2984 build_int_cst (NULL_TREE, log),
2985 NULL_RTX, 0);
2986 val_so_far <<= log;
2987 break;
2989 case alg_add_t_m2:
2990 tem = expand_shift (LSHIFT_EXPR, mode, op0,
2991 build_int_cst (NULL_TREE, log),
2992 NULL_RTX, 0);
2993 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
2994 add_target ? add_target : accum_target);
2995 val_so_far += (HOST_WIDE_INT) 1 << log;
2996 break;
2998 case alg_sub_t_m2:
2999 tem = expand_shift (LSHIFT_EXPR, mode, op0,
3000 build_int_cst (NULL_TREE, log),
3001 NULL_RTX, 0);
3002 accum = force_operand (gen_rtx_MINUS (mode, accum, tem),
3003 add_target ? add_target : accum_target);
3004 val_so_far -= (HOST_WIDE_INT) 1 << log;
3005 break;
3007 case alg_add_t2_m:
3008 accum = expand_shift (LSHIFT_EXPR, mode, accum,
3009 build_int_cst (NULL_TREE, log),
3010 shift_subtarget,
3012 accum = force_operand (gen_rtx_PLUS (mode, accum, op0),
3013 add_target ? add_target : accum_target);
3014 val_so_far = (val_so_far << log) + 1;
3015 break;
3017 case alg_sub_t2_m:
3018 accum = expand_shift (LSHIFT_EXPR, mode, accum,
3019 build_int_cst (NULL_TREE, log),
3020 shift_subtarget, 0);
3021 accum = force_operand (gen_rtx_MINUS (mode, accum, op0),
3022 add_target ? add_target : accum_target);
3023 val_so_far = (val_so_far << log) - 1;
3024 break;
3026 case alg_add_factor:
3027 tem = expand_shift (LSHIFT_EXPR, mode, accum,
3028 build_int_cst (NULL_TREE, log),
3029 NULL_RTX, 0);
3030 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
3031 add_target ? add_target : accum_target);
3032 val_so_far += val_so_far << log;
3033 break;
3035 case alg_sub_factor:
3036 tem = expand_shift (LSHIFT_EXPR, mode, accum,
3037 build_int_cst (NULL_TREE, log),
3038 NULL_RTX, 0);
3039 accum = force_operand (gen_rtx_MINUS (mode, tem, accum),
3040 (add_target
3041 ? add_target : (optimize ? 0 : tem)));
3042 val_so_far = (val_so_far << log) - val_so_far;
3043 break;
3045 default:
3046 gcc_unreachable ();
3049 /* Write a REG_EQUAL note on the last insn so that we can cse
3050 multiplication sequences. Note that if ACCUM is a SUBREG,
3051 we've set the inner register and must properly indicate
3052 that. */
3054 tem = op0, nmode = mode;
3055 if (GET_CODE (accum) == SUBREG)
3057 nmode = GET_MODE (SUBREG_REG (accum));
3058 tem = gen_lowpart (nmode, op0);
3061 insn = get_last_insn ();
3062 set_unique_reg_note (insn, REG_EQUAL,
3063 gen_rtx_MULT (nmode, tem, GEN_INT (val_so_far)));
3066 if (variant == negate_variant)
3068 val_so_far = -val_so_far;
3069 accum = expand_unop (mode, neg_optab, accum, target, 0);
3071 else if (variant == add_variant)
3073 val_so_far = val_so_far + 1;
3074 accum = force_operand (gen_rtx_PLUS (mode, accum, op0), target);
3077 /* Compare only the bits of val and val_so_far that are significant
3078 in the result mode, to avoid sign-/zero-extension confusion. */
3079 val &= GET_MODE_MASK (mode);
3080 val_so_far &= GET_MODE_MASK (mode);
3081 gcc_assert (val == val_so_far);
3083 return accum;
3086 /* Perform a multiplication and return an rtx for the result.
3087 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3088 TARGET is a suggestion for where to store the result (an rtx).
3090 We check specially for a constant integer as OP1.
3091 If you want this check for OP0 as well, then before calling
3092 you should swap the two operands if OP0 would be constant. */
3095 expand_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3096 int unsignedp)
3098 enum mult_variant variant;
3099 struct algorithm algorithm;
3100 int max_cost;
3102 /* Handling const0_rtx here allows us to use zero as a rogue value for
3103 coeff below. */
3104 if (op1 == const0_rtx)
3105 return const0_rtx;
3106 if (op1 == const1_rtx)
3107 return op0;
3108 if (op1 == constm1_rtx)
3109 return expand_unop (mode,
3110 GET_MODE_CLASS (mode) == MODE_INT
3111 && !unsignedp && flag_trapv
3112 ? negv_optab : neg_optab,
3113 op0, target, 0);
3115 /* These are the operations that are potentially turned into a sequence
3116 of shifts and additions. */
3117 if (SCALAR_INT_MODE_P (mode)
3118 && (unsignedp || !flag_trapv))
3120 HOST_WIDE_INT coeff = 0;
3121 rtx fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
3123 /* synth_mult does an `unsigned int' multiply. As long as the mode is
3124 less than or equal in size to `unsigned int' this doesn't matter.
3125 If the mode is larger than `unsigned int', then synth_mult works
3126 only if the constant value exactly fits in an `unsigned int' without
3127 any truncation. This means that multiplying by negative values does
3128 not work; results are off by 2^32 on a 32 bit machine. */
3130 if (GET_CODE (op1) == CONST_INT)
3132 /* Attempt to handle multiplication of DImode values by negative
3133 coefficients, by performing the multiplication by a positive
3134 multiplier and then inverting the result. */
3135 if (INTVAL (op1) < 0
3136 && GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
3138 /* Its safe to use -INTVAL (op1) even for INT_MIN, as the
3139 result is interpreted as an unsigned coefficient.
3140 Exclude cost of op0 from max_cost to match the cost
3141 calculation of the synth_mult. */
3142 max_cost = rtx_cost (gen_rtx_MULT (mode, fake_reg, op1), SET)
3143 - neg_cost[mode];
3144 if (max_cost > 0
3145 && choose_mult_variant (mode, -INTVAL (op1), &algorithm,
3146 &variant, max_cost))
3148 rtx temp = expand_mult_const (mode, op0, -INTVAL (op1),
3149 NULL_RTX, &algorithm,
3150 variant);
3151 return expand_unop (mode, neg_optab, temp, target, 0);
3154 else coeff = INTVAL (op1);
3156 else if (GET_CODE (op1) == CONST_DOUBLE)
3158 /* If we are multiplying in DImode, it may still be a win
3159 to try to work with shifts and adds. */
3160 if (CONST_DOUBLE_HIGH (op1) == 0)
3161 coeff = CONST_DOUBLE_LOW (op1);
3162 else if (CONST_DOUBLE_LOW (op1) == 0
3163 && EXACT_POWER_OF_2_OR_ZERO_P (CONST_DOUBLE_HIGH (op1)))
3165 int shift = floor_log2 (CONST_DOUBLE_HIGH (op1))
3166 + HOST_BITS_PER_WIDE_INT;
3167 return expand_shift (LSHIFT_EXPR, mode, op0,
3168 build_int_cst (NULL_TREE, shift),
3169 target, unsignedp);
3173 /* We used to test optimize here, on the grounds that it's better to
3174 produce a smaller program when -O is not used. But this causes
3175 such a terrible slowdown sometimes that it seems better to always
3176 use synth_mult. */
3177 if (coeff != 0)
3179 /* Special case powers of two. */
3180 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
3181 return expand_shift (LSHIFT_EXPR, mode, op0,
3182 build_int_cst (NULL_TREE, floor_log2 (coeff)),
3183 target, unsignedp);
3185 /* Exclude cost of op0 from max_cost to match the cost
3186 calculation of the synth_mult. */
3187 max_cost = rtx_cost (gen_rtx_MULT (mode, fake_reg, op1), SET);
3188 if (choose_mult_variant (mode, coeff, &algorithm, &variant,
3189 max_cost))
3190 return expand_mult_const (mode, op0, coeff, target,
3191 &algorithm, variant);
3195 if (GET_CODE (op0) == CONST_DOUBLE)
3197 rtx temp = op0;
3198 op0 = op1;
3199 op1 = temp;
3202 /* Expand x*2.0 as x+x. */
3203 if (GET_CODE (op1) == CONST_DOUBLE
3204 && SCALAR_FLOAT_MODE_P (mode))
3206 REAL_VALUE_TYPE d;
3207 REAL_VALUE_FROM_CONST_DOUBLE (d, op1);
3209 if (REAL_VALUES_EQUAL (d, dconst2))
3211 op0 = force_reg (GET_MODE (op0), op0);
3212 return expand_binop (mode, add_optab, op0, op0,
3213 target, unsignedp, OPTAB_LIB_WIDEN);
3217 /* This used to use umul_optab if unsigned, but for non-widening multiply
3218 there is no difference between signed and unsigned. */
3219 op0 = expand_binop (mode,
3220 ! unsignedp
3221 && flag_trapv && (GET_MODE_CLASS(mode) == MODE_INT)
3222 ? smulv_optab : smul_optab,
3223 op0, op1, target, unsignedp, OPTAB_LIB_WIDEN);
3224 gcc_assert (op0);
3225 return op0;
3228 /* Return the smallest n such that 2**n >= X. */
3231 ceil_log2 (unsigned HOST_WIDE_INT x)
3233 return floor_log2 (x - 1) + 1;
3236 /* Choose a minimal N + 1 bit approximation to 1/D that can be used to
3237 replace division by D, and put the least significant N bits of the result
3238 in *MULTIPLIER_PTR and return the most significant bit.
3240 The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
3241 needed precision is in PRECISION (should be <= N).
3243 PRECISION should be as small as possible so this function can choose
3244 multiplier more freely.
3246 The rounded-up logarithm of D is placed in *lgup_ptr. A shift count that
3247 is to be used for a final right shift is placed in *POST_SHIFT_PTR.
3249 Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
3250 where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier. */
3252 static
3253 unsigned HOST_WIDE_INT
3254 choose_multiplier (unsigned HOST_WIDE_INT d, int n, int precision,
3255 rtx *multiplier_ptr, int *post_shift_ptr, int *lgup_ptr)
3257 HOST_WIDE_INT mhigh_hi, mlow_hi;
3258 unsigned HOST_WIDE_INT mhigh_lo, mlow_lo;
3259 int lgup, post_shift;
3260 int pow, pow2;
3261 unsigned HOST_WIDE_INT nl, dummy1;
3262 HOST_WIDE_INT nh, dummy2;
3264 /* lgup = ceil(log2(divisor)); */
3265 lgup = ceil_log2 (d);
3267 gcc_assert (lgup <= n);
3269 pow = n + lgup;
3270 pow2 = n + lgup - precision;
3272 /* We could handle this with some effort, but this case is much
3273 better handled directly with a scc insn, so rely on caller using
3274 that. */
3275 gcc_assert (pow != 2 * HOST_BITS_PER_WIDE_INT);
3277 /* mlow = 2^(N + lgup)/d */
3278 if (pow >= HOST_BITS_PER_WIDE_INT)
3280 nh = (HOST_WIDE_INT) 1 << (pow - HOST_BITS_PER_WIDE_INT);
3281 nl = 0;
3283 else
3285 nh = 0;
3286 nl = (unsigned HOST_WIDE_INT) 1 << pow;
3288 div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
3289 &mlow_lo, &mlow_hi, &dummy1, &dummy2);
3291 /* mhigh = (2^(N + lgup) + 2^N + lgup - precision)/d */
3292 if (pow2 >= HOST_BITS_PER_WIDE_INT)
3293 nh |= (HOST_WIDE_INT) 1 << (pow2 - HOST_BITS_PER_WIDE_INT);
3294 else
3295 nl |= (unsigned HOST_WIDE_INT) 1 << pow2;
3296 div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
3297 &mhigh_lo, &mhigh_hi, &dummy1, &dummy2);
3299 gcc_assert (!mhigh_hi || nh - d < d);
3300 gcc_assert (mhigh_hi <= 1 && mlow_hi <= 1);
3301 /* Assert that mlow < mhigh. */
3302 gcc_assert (mlow_hi < mhigh_hi
3303 || (mlow_hi == mhigh_hi && mlow_lo < mhigh_lo));
3305 /* If precision == N, then mlow, mhigh exceed 2^N
3306 (but they do not exceed 2^(N+1)). */
3308 /* Reduce to lowest terms. */
3309 for (post_shift = lgup; post_shift > 0; post_shift--)
3311 unsigned HOST_WIDE_INT ml_lo = (mlow_hi << (HOST_BITS_PER_WIDE_INT - 1)) | (mlow_lo >> 1);
3312 unsigned HOST_WIDE_INT mh_lo = (mhigh_hi << (HOST_BITS_PER_WIDE_INT - 1)) | (mhigh_lo >> 1);
3313 if (ml_lo >= mh_lo)
3314 break;
3316 mlow_hi = 0;
3317 mlow_lo = ml_lo;
3318 mhigh_hi = 0;
3319 mhigh_lo = mh_lo;
3322 *post_shift_ptr = post_shift;
3323 *lgup_ptr = lgup;
3324 if (n < HOST_BITS_PER_WIDE_INT)
3326 unsigned HOST_WIDE_INT mask = ((unsigned HOST_WIDE_INT) 1 << n) - 1;
3327 *multiplier_ptr = GEN_INT (mhigh_lo & mask);
3328 return mhigh_lo >= mask;
3330 else
3332 *multiplier_ptr = GEN_INT (mhigh_lo);
3333 return mhigh_hi;
3337 /* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
3338 congruent to 1 (mod 2**N). */
3340 static unsigned HOST_WIDE_INT
3341 invert_mod2n (unsigned HOST_WIDE_INT x, int n)
3343 /* Solve x*y == 1 (mod 2^n), where x is odd. Return y. */
3345 /* The algorithm notes that the choice y = x satisfies
3346 x*y == 1 mod 2^3, since x is assumed odd.
3347 Each iteration doubles the number of bits of significance in y. */
3349 unsigned HOST_WIDE_INT mask;
3350 unsigned HOST_WIDE_INT y = x;
3351 int nbit = 3;
3353 mask = (n == HOST_BITS_PER_WIDE_INT
3354 ? ~(unsigned HOST_WIDE_INT) 0
3355 : ((unsigned HOST_WIDE_INT) 1 << n) - 1);
3357 while (nbit < n)
3359 y = y * (2 - x*y) & mask; /* Modulo 2^N */
3360 nbit *= 2;
3362 return y;
3365 /* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
3366 flavor of OP0 and OP1. ADJ_OPERAND is already the high half of the
3367 product OP0 x OP1. If UNSIGNEDP is nonzero, adjust the signed product
3368 to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
3369 become signed.
3371 The result is put in TARGET if that is convenient.
3373 MODE is the mode of operation. */
3376 expand_mult_highpart_adjust (enum machine_mode mode, rtx adj_operand, rtx op0,
3377 rtx op1, rtx target, int unsignedp)
3379 rtx tem;
3380 enum rtx_code adj_code = unsignedp ? PLUS : MINUS;
3382 tem = expand_shift (RSHIFT_EXPR, mode, op0,
3383 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode) - 1),
3384 NULL_RTX, 0);
3385 tem = expand_and (mode, tem, op1, NULL_RTX);
3386 adj_operand
3387 = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3388 adj_operand);
3390 tem = expand_shift (RSHIFT_EXPR, mode, op1,
3391 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode) - 1),
3392 NULL_RTX, 0);
3393 tem = expand_and (mode, tem, op0, NULL_RTX);
3394 target = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3395 target);
3397 return target;
3400 /* Subroutine of expand_mult_highpart. Return the MODE high part of OP. */
3402 static rtx
3403 extract_high_half (enum machine_mode mode, rtx op)
3405 enum machine_mode wider_mode;
3407 if (mode == word_mode)
3408 return gen_highpart (mode, op);
3410 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3412 wider_mode = GET_MODE_WIDER_MODE (mode);
3413 op = expand_shift (RSHIFT_EXPR, wider_mode, op,
3414 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode)), 0, 1);
3415 return convert_modes (mode, wider_mode, op, 0);
3418 /* Like expand_mult_highpart, but only consider using a multiplication
3419 optab. OP1 is an rtx for the constant operand. */
3421 static rtx
3422 expand_mult_highpart_optab (enum machine_mode mode, rtx op0, rtx op1,
3423 rtx target, int unsignedp, int max_cost)
3425 rtx narrow_op1 = gen_int_mode (INTVAL (op1), mode);
3426 enum machine_mode wider_mode;
3427 optab moptab;
3428 rtx tem;
3429 int size;
3431 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3433 wider_mode = GET_MODE_WIDER_MODE (mode);
3434 size = GET_MODE_BITSIZE (mode);
3436 /* Firstly, try using a multiplication insn that only generates the needed
3437 high part of the product, and in the sign flavor of unsignedp. */
3438 if (mul_highpart_cost[mode] < max_cost)
3440 moptab = unsignedp ? umul_highpart_optab : smul_highpart_optab;
3441 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3442 unsignedp, OPTAB_DIRECT);
3443 if (tem)
3444 return tem;
3447 /* Secondly, same as above, but use sign flavor opposite of unsignedp.
3448 Need to adjust the result after the multiplication. */
3449 if (size - 1 < BITS_PER_WORD
3450 && (mul_highpart_cost[mode] + 2 * shift_cost[mode][size-1]
3451 + 4 * add_cost[mode] < max_cost))
3453 moptab = unsignedp ? smul_highpart_optab : umul_highpart_optab;
3454 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3455 unsignedp, OPTAB_DIRECT);
3456 if (tem)
3457 /* We used the wrong signedness. Adjust the result. */
3458 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3459 tem, unsignedp);
3462 /* Try widening multiplication. */
3463 moptab = unsignedp ? umul_widen_optab : smul_widen_optab;
3464 if (moptab->handlers[wider_mode].insn_code != CODE_FOR_nothing
3465 && mul_widen_cost[wider_mode] < max_cost)
3467 tem = expand_binop (wider_mode, moptab, op0, narrow_op1, 0,
3468 unsignedp, OPTAB_WIDEN);
3469 if (tem)
3470 return extract_high_half (mode, tem);
3473 /* Try widening the mode and perform a non-widening multiplication. */
3474 if (smul_optab->handlers[wider_mode].insn_code != CODE_FOR_nothing
3475 && size - 1 < BITS_PER_WORD
3476 && mul_cost[wider_mode] + shift_cost[mode][size-1] < max_cost)
3478 rtx insns, wop0, wop1;
3480 /* We need to widen the operands, for example to ensure the
3481 constant multiplier is correctly sign or zero extended.
3482 Use a sequence to clean-up any instructions emitted by
3483 the conversions if things don't work out. */
3484 start_sequence ();
3485 wop0 = convert_modes (wider_mode, mode, op0, unsignedp);
3486 wop1 = convert_modes (wider_mode, mode, op1, unsignedp);
3487 tem = expand_binop (wider_mode, smul_optab, wop0, wop1, 0,
3488 unsignedp, OPTAB_WIDEN);
3489 insns = get_insns ();
3490 end_sequence ();
3492 if (tem)
3494 emit_insn (insns);
3495 return extract_high_half (mode, tem);
3499 /* Try widening multiplication of opposite signedness, and adjust. */
3500 moptab = unsignedp ? smul_widen_optab : umul_widen_optab;
3501 if (moptab->handlers[wider_mode].insn_code != CODE_FOR_nothing
3502 && size - 1 < BITS_PER_WORD
3503 && (mul_widen_cost[wider_mode] + 2 * shift_cost[mode][size-1]
3504 + 4 * add_cost[mode] < max_cost))
3506 tem = expand_binop (wider_mode, moptab, op0, narrow_op1,
3507 NULL_RTX, ! unsignedp, OPTAB_WIDEN);
3508 if (tem != 0)
3510 tem = extract_high_half (mode, tem);
3511 /* We used the wrong signedness. Adjust the result. */
3512 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3513 target, unsignedp);
3517 return 0;
3520 /* Emit code to multiply OP0 and OP1 (where OP1 is an integer constant),
3521 putting the high half of the result in TARGET if that is convenient,
3522 and return where the result is. If the operation can not be performed,
3523 0 is returned.
3525 MODE is the mode of operation and result.
3527 UNSIGNEDP nonzero means unsigned multiply.
3529 MAX_COST is the total allowed cost for the expanded RTL. */
3531 static rtx
3532 expand_mult_highpart (enum machine_mode mode, rtx op0, rtx op1,
3533 rtx target, int unsignedp, int max_cost)
3535 enum machine_mode wider_mode = GET_MODE_WIDER_MODE (mode);
3536 unsigned HOST_WIDE_INT cnst1;
3537 int extra_cost;
3538 bool sign_adjust = false;
3539 enum mult_variant variant;
3540 struct algorithm alg;
3541 rtx tem;
3543 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3544 /* We can't support modes wider than HOST_BITS_PER_INT. */
3545 gcc_assert (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT);
3547 cnst1 = INTVAL (op1) & GET_MODE_MASK (mode);
3549 /* We can't optimize modes wider than BITS_PER_WORD.
3550 ??? We might be able to perform double-word arithmetic if
3551 mode == word_mode, however all the cost calculations in
3552 synth_mult etc. assume single-word operations. */
3553 if (GET_MODE_BITSIZE (wider_mode) > BITS_PER_WORD)
3554 return expand_mult_highpart_optab (mode, op0, op1, target,
3555 unsignedp, max_cost);
3557 extra_cost = shift_cost[mode][GET_MODE_BITSIZE (mode) - 1];
3559 /* Check whether we try to multiply by a negative constant. */
3560 if (!unsignedp && ((cnst1 >> (GET_MODE_BITSIZE (mode) - 1)) & 1))
3562 sign_adjust = true;
3563 extra_cost += add_cost[mode];
3566 /* See whether shift/add multiplication is cheap enough. */
3567 if (choose_mult_variant (wider_mode, cnst1, &alg, &variant,
3568 max_cost - extra_cost))
3570 /* See whether the specialized multiplication optabs are
3571 cheaper than the shift/add version. */
3572 tem = expand_mult_highpart_optab (mode, op0, op1, target, unsignedp,
3573 alg.cost.cost + extra_cost);
3574 if (tem)
3575 return tem;
3577 tem = convert_to_mode (wider_mode, op0, unsignedp);
3578 tem = expand_mult_const (wider_mode, tem, cnst1, 0, &alg, variant);
3579 tem = extract_high_half (mode, tem);
3581 /* Adjust result for signedness. */
3582 if (sign_adjust)
3583 tem = force_operand (gen_rtx_MINUS (mode, tem, op0), tem);
3585 return tem;
3587 return expand_mult_highpart_optab (mode, op0, op1, target,
3588 unsignedp, max_cost);
3592 /* Expand signed modulus of OP0 by a power of two D in mode MODE. */
3594 static rtx
3595 expand_smod_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
3597 unsigned HOST_WIDE_INT masklow, maskhigh;
3598 rtx result, temp, shift, label;
3599 int logd;
3601 logd = floor_log2 (d);
3602 result = gen_reg_rtx (mode);
3604 /* Avoid conditional branches when they're expensive. */
3605 if (BRANCH_COST >= 2
3606 && !optimize_size)
3608 rtx signmask = emit_store_flag (result, LT, op0, const0_rtx,
3609 mode, 0, -1);
3610 if (signmask)
3612 signmask = force_reg (mode, signmask);
3613 masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
3614 shift = GEN_INT (GET_MODE_BITSIZE (mode) - logd);
3616 /* Use the rtx_cost of a LSHIFTRT instruction to determine
3617 which instruction sequence to use. If logical right shifts
3618 are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
3619 use a LSHIFTRT, 1 ADD, 1 SUB and an AND. */
3621 temp = gen_rtx_LSHIFTRT (mode, result, shift);
3622 if (lshr_optab->handlers[mode].insn_code == CODE_FOR_nothing
3623 || rtx_cost (temp, SET) > COSTS_N_INSNS (2))
3625 temp = expand_binop (mode, xor_optab, op0, signmask,
3626 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3627 temp = expand_binop (mode, sub_optab, temp, signmask,
3628 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3629 temp = expand_binop (mode, and_optab, temp, GEN_INT (masklow),
3630 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3631 temp = expand_binop (mode, xor_optab, temp, signmask,
3632 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3633 temp = expand_binop (mode, sub_optab, temp, signmask,
3634 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3636 else
3638 signmask = expand_binop (mode, lshr_optab, signmask, shift,
3639 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3640 signmask = force_reg (mode, signmask);
3642 temp = expand_binop (mode, add_optab, op0, signmask,
3643 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3644 temp = expand_binop (mode, and_optab, temp, GEN_INT (masklow),
3645 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3646 temp = expand_binop (mode, sub_optab, temp, signmask,
3647 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3649 return temp;
3653 /* Mask contains the mode's signbit and the significant bits of the
3654 modulus. By including the signbit in the operation, many targets
3655 can avoid an explicit compare operation in the following comparison
3656 against zero. */
3658 masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
3659 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3661 masklow |= (HOST_WIDE_INT) -1 << (GET_MODE_BITSIZE (mode) - 1);
3662 maskhigh = -1;
3664 else
3665 maskhigh = (HOST_WIDE_INT) -1
3666 << (GET_MODE_BITSIZE (mode) - HOST_BITS_PER_WIDE_INT - 1);
3668 temp = expand_binop (mode, and_optab, op0,
3669 immed_double_const (masklow, maskhigh, mode),
3670 result, 1, OPTAB_LIB_WIDEN);
3671 if (temp != result)
3672 emit_move_insn (result, temp);
3674 label = gen_label_rtx ();
3675 do_cmp_and_jump (result, const0_rtx, GE, mode, label);
3677 temp = expand_binop (mode, sub_optab, result, const1_rtx, result,
3678 0, OPTAB_LIB_WIDEN);
3679 masklow = (HOST_WIDE_INT) -1 << logd;
3680 maskhigh = -1;
3681 temp = expand_binop (mode, ior_optab, temp,
3682 immed_double_const (masklow, maskhigh, mode),
3683 result, 1, OPTAB_LIB_WIDEN);
3684 temp = expand_binop (mode, add_optab, temp, const1_rtx, result,
3685 0, OPTAB_LIB_WIDEN);
3686 if (temp != result)
3687 emit_move_insn (result, temp);
3688 emit_label (label);
3689 return result;
3692 /* Expand signed division of OP0 by a power of two D in mode MODE.
3693 This routine is only called for positive values of D. */
3695 static rtx
3696 expand_sdiv_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
3698 rtx temp, label;
3699 tree shift;
3700 int logd;
3702 logd = floor_log2 (d);
3703 shift = build_int_cst (NULL_TREE, logd);
3705 if (d == 2 && BRANCH_COST >= 1)
3707 temp = gen_reg_rtx (mode);
3708 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, 1);
3709 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3710 0, OPTAB_LIB_WIDEN);
3711 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3714 #ifdef HAVE_conditional_move
3715 if (BRANCH_COST >= 2)
3717 rtx temp2;
3719 /* ??? emit_conditional_move forces a stack adjustment via
3720 compare_from_rtx so, if the sequence is discarded, it will
3721 be lost. Do it now instead. */
3722 do_pending_stack_adjust ();
3724 start_sequence ();
3725 temp2 = copy_to_mode_reg (mode, op0);
3726 temp = expand_binop (mode, add_optab, temp2, GEN_INT (d-1),
3727 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3728 temp = force_reg (mode, temp);
3730 /* Construct "temp2 = (temp2 < 0) ? temp : temp2". */
3731 temp2 = emit_conditional_move (temp2, LT, temp2, const0_rtx,
3732 mode, temp, temp2, mode, 0);
3733 if (temp2)
3735 rtx seq = get_insns ();
3736 end_sequence ();
3737 emit_insn (seq);
3738 return expand_shift (RSHIFT_EXPR, mode, temp2, shift, NULL_RTX, 0);
3740 end_sequence ();
3742 #endif
3744 if (BRANCH_COST >= 2)
3746 int ushift = GET_MODE_BITSIZE (mode) - logd;
3748 temp = gen_reg_rtx (mode);
3749 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, -1);
3750 if (shift_cost[mode][ushift] > COSTS_N_INSNS (1))
3751 temp = expand_binop (mode, and_optab, temp, GEN_INT (d - 1),
3752 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3753 else
3754 temp = expand_shift (RSHIFT_EXPR, mode, temp,
3755 build_int_cst (NULL_TREE, ushift),
3756 NULL_RTX, 1);
3757 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3758 0, OPTAB_LIB_WIDEN);
3759 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3762 label = gen_label_rtx ();
3763 temp = copy_to_mode_reg (mode, op0);
3764 do_cmp_and_jump (temp, const0_rtx, GE, mode, label);
3765 expand_inc (temp, GEN_INT (d - 1));
3766 emit_label (label);
3767 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3770 /* Emit the code to divide OP0 by OP1, putting the result in TARGET
3771 if that is convenient, and returning where the result is.
3772 You may request either the quotient or the remainder as the result;
3773 specify REM_FLAG nonzero to get the remainder.
3775 CODE is the expression code for which kind of division this is;
3776 it controls how rounding is done. MODE is the machine mode to use.
3777 UNSIGNEDP nonzero means do unsigned division. */
3779 /* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
3780 and then correct it by or'ing in missing high bits
3781 if result of ANDI is nonzero.
3782 For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
3783 This could optimize to a bfexts instruction.
3784 But C doesn't use these operations, so their optimizations are
3785 left for later. */
3786 /* ??? For modulo, we don't actually need the highpart of the first product,
3787 the low part will do nicely. And for small divisors, the second multiply
3788 can also be a low-part only multiply or even be completely left out.
3789 E.g. to calculate the remainder of a division by 3 with a 32 bit
3790 multiply, multiply with 0x55555556 and extract the upper two bits;
3791 the result is exact for inputs up to 0x1fffffff.
3792 The input range can be reduced by using cross-sum rules.
3793 For odd divisors >= 3, the following table gives right shift counts
3794 so that if a number is shifted by an integer multiple of the given
3795 amount, the remainder stays the same:
3796 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
3797 14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
3798 0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
3799 20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
3800 0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12
3802 Cross-sum rules for even numbers can be derived by leaving as many bits
3803 to the right alone as the divisor has zeros to the right.
3804 E.g. if x is an unsigned 32 bit number:
3805 (x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
3809 expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
3810 rtx op0, rtx op1, rtx target, int unsignedp)
3812 enum machine_mode compute_mode;
3813 rtx tquotient;
3814 rtx quotient = 0, remainder = 0;
3815 rtx last;
3816 int size;
3817 rtx insn, set;
3818 optab optab1, optab2;
3819 int op1_is_constant, op1_is_pow2 = 0;
3820 int max_cost, extra_cost;
3821 static HOST_WIDE_INT last_div_const = 0;
3822 static HOST_WIDE_INT ext_op1;
3824 op1_is_constant = GET_CODE (op1) == CONST_INT;
3825 if (op1_is_constant)
3827 ext_op1 = INTVAL (op1);
3828 if (unsignedp)
3829 ext_op1 &= GET_MODE_MASK (mode);
3830 op1_is_pow2 = ((EXACT_POWER_OF_2_OR_ZERO_P (ext_op1)
3831 || (! unsignedp && EXACT_POWER_OF_2_OR_ZERO_P (-ext_op1))));
3835 This is the structure of expand_divmod:
3837 First comes code to fix up the operands so we can perform the operations
3838 correctly and efficiently.
3840 Second comes a switch statement with code specific for each rounding mode.
3841 For some special operands this code emits all RTL for the desired
3842 operation, for other cases, it generates only a quotient and stores it in
3843 QUOTIENT. The case for trunc division/remainder might leave quotient = 0,
3844 to indicate that it has not done anything.
3846 Last comes code that finishes the operation. If QUOTIENT is set and
3847 REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1. If
3848 QUOTIENT is not set, it is computed using trunc rounding.
3850 We try to generate special code for division and remainder when OP1 is a
3851 constant. If |OP1| = 2**n we can use shifts and some other fast
3852 operations. For other values of OP1, we compute a carefully selected
3853 fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
3854 by m.
3856 In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
3857 half of the product. Different strategies for generating the product are
3858 implemented in expand_mult_highpart.
3860 If what we actually want is the remainder, we generate that by another
3861 by-constant multiplication and a subtraction. */
3863 /* We shouldn't be called with OP1 == const1_rtx, but some of the
3864 code below will malfunction if we are, so check here and handle
3865 the special case if so. */
3866 if (op1 == const1_rtx)
3867 return rem_flag ? const0_rtx : op0;
3869 /* When dividing by -1, we could get an overflow.
3870 negv_optab can handle overflows. */
3871 if (! unsignedp && op1 == constm1_rtx)
3873 if (rem_flag)
3874 return const0_rtx;
3875 return expand_unop (mode, flag_trapv && GET_MODE_CLASS(mode) == MODE_INT
3876 ? negv_optab : neg_optab, op0, target, 0);
3879 if (target
3880 /* Don't use the function value register as a target
3881 since we have to read it as well as write it,
3882 and function-inlining gets confused by this. */
3883 && ((REG_P (target) && REG_FUNCTION_VALUE_P (target))
3884 /* Don't clobber an operand while doing a multi-step calculation. */
3885 || ((rem_flag || op1_is_constant)
3886 && (reg_mentioned_p (target, op0)
3887 || (MEM_P (op0) && MEM_P (target))))
3888 || reg_mentioned_p (target, op1)
3889 || (MEM_P (op1) && MEM_P (target))))
3890 target = 0;
3892 /* Get the mode in which to perform this computation. Normally it will
3893 be MODE, but sometimes we can't do the desired operation in MODE.
3894 If so, pick a wider mode in which we can do the operation. Convert
3895 to that mode at the start to avoid repeated conversions.
3897 First see what operations we need. These depend on the expression
3898 we are evaluating. (We assume that divxx3 insns exist under the
3899 same conditions that modxx3 insns and that these insns don't normally
3900 fail. If these assumptions are not correct, we may generate less
3901 efficient code in some cases.)
3903 Then see if we find a mode in which we can open-code that operation
3904 (either a division, modulus, or shift). Finally, check for the smallest
3905 mode for which we can do the operation with a library call. */
3907 /* We might want to refine this now that we have division-by-constant
3908 optimization. Since expand_mult_highpart tries so many variants, it is
3909 not straightforward to generalize this. Maybe we should make an array
3910 of possible modes in init_expmed? Save this for GCC 2.7. */
3912 optab1 = ((op1_is_pow2 && op1 != const0_rtx)
3913 ? (unsignedp ? lshr_optab : ashr_optab)
3914 : (unsignedp ? udiv_optab : sdiv_optab));
3915 optab2 = ((op1_is_pow2 && op1 != const0_rtx)
3916 ? optab1
3917 : (unsignedp ? udivmod_optab : sdivmod_optab));
3919 for (compute_mode = mode; compute_mode != VOIDmode;
3920 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
3921 if (optab1->handlers[compute_mode].insn_code != CODE_FOR_nothing
3922 || optab2->handlers[compute_mode].insn_code != CODE_FOR_nothing)
3923 break;
3925 if (compute_mode == VOIDmode)
3926 for (compute_mode = mode; compute_mode != VOIDmode;
3927 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
3928 if (optab1->handlers[compute_mode].libfunc
3929 || optab2->handlers[compute_mode].libfunc)
3930 break;
3932 /* If we still couldn't find a mode, use MODE, but expand_binop will
3933 probably die. */
3934 if (compute_mode == VOIDmode)
3935 compute_mode = mode;
3937 if (target && GET_MODE (target) == compute_mode)
3938 tquotient = target;
3939 else
3940 tquotient = gen_reg_rtx (compute_mode);
3942 size = GET_MODE_BITSIZE (compute_mode);
3943 #if 0
3944 /* It should be possible to restrict the precision to GET_MODE_BITSIZE
3945 (mode), and thereby get better code when OP1 is a constant. Do that
3946 later. It will require going over all usages of SIZE below. */
3947 size = GET_MODE_BITSIZE (mode);
3948 #endif
3950 /* Only deduct something for a REM if the last divide done was
3951 for a different constant. Then set the constant of the last
3952 divide. */
3953 max_cost = unsignedp ? udiv_cost[compute_mode] : sdiv_cost[compute_mode];
3954 if (rem_flag && ! (last_div_const != 0 && op1_is_constant
3955 && INTVAL (op1) == last_div_const))
3956 max_cost -= mul_cost[compute_mode] + add_cost[compute_mode];
3958 last_div_const = ! rem_flag && op1_is_constant ? INTVAL (op1) : 0;
3960 /* Now convert to the best mode to use. */
3961 if (compute_mode != mode)
3963 op0 = convert_modes (compute_mode, mode, op0, unsignedp);
3964 op1 = convert_modes (compute_mode, mode, op1, unsignedp);
3966 /* convert_modes may have placed op1 into a register, so we
3967 must recompute the following. */
3968 op1_is_constant = GET_CODE (op1) == CONST_INT;
3969 op1_is_pow2 = (op1_is_constant
3970 && ((EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
3971 || (! unsignedp
3972 && EXACT_POWER_OF_2_OR_ZERO_P (-INTVAL (op1)))))) ;
3975 /* If one of the operands is a volatile MEM, copy it into a register. */
3977 if (MEM_P (op0) && MEM_VOLATILE_P (op0))
3978 op0 = force_reg (compute_mode, op0);
3979 if (MEM_P (op1) && MEM_VOLATILE_P (op1))
3980 op1 = force_reg (compute_mode, op1);
3982 /* If we need the remainder or if OP1 is constant, we need to
3983 put OP0 in a register in case it has any queued subexpressions. */
3984 if (rem_flag || op1_is_constant)
3985 op0 = force_reg (compute_mode, op0);
3987 last = get_last_insn ();
3989 /* Promote floor rounding to trunc rounding for unsigned operations. */
3990 if (unsignedp)
3992 if (code == FLOOR_DIV_EXPR)
3993 code = TRUNC_DIV_EXPR;
3994 if (code == FLOOR_MOD_EXPR)
3995 code = TRUNC_MOD_EXPR;
3996 if (code == EXACT_DIV_EXPR && op1_is_pow2)
3997 code = TRUNC_DIV_EXPR;
4000 if (op1 != const0_rtx)
4001 switch (code)
4003 case TRUNC_MOD_EXPR:
4004 case TRUNC_DIV_EXPR:
4005 if (op1_is_constant)
4007 if (unsignedp)
4009 unsigned HOST_WIDE_INT mh;
4010 int pre_shift, post_shift;
4011 int dummy;
4012 rtx ml;
4013 unsigned HOST_WIDE_INT d = (INTVAL (op1)
4014 & GET_MODE_MASK (compute_mode));
4016 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
4018 pre_shift = floor_log2 (d);
4019 if (rem_flag)
4021 remainder
4022 = expand_binop (compute_mode, and_optab, op0,
4023 GEN_INT (((HOST_WIDE_INT) 1 << pre_shift) - 1),
4024 remainder, 1,
4025 OPTAB_LIB_WIDEN);
4026 if (remainder)
4027 return gen_lowpart (mode, remainder);
4029 quotient = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4030 build_int_cst (NULL_TREE,
4031 pre_shift),
4032 tquotient, 1);
4034 else if (size <= HOST_BITS_PER_WIDE_INT)
4036 if (d >= ((unsigned HOST_WIDE_INT) 1 << (size - 1)))
4038 /* Most significant bit of divisor is set; emit an scc
4039 insn. */
4040 quotient = emit_store_flag (tquotient, GEU, op0, op1,
4041 compute_mode, 1, 1);
4042 if (quotient == 0)
4043 goto fail1;
4045 else
4047 /* Find a suitable multiplier and right shift count
4048 instead of multiplying with D. */
4050 mh = choose_multiplier (d, size, size,
4051 &ml, &post_shift, &dummy);
4053 /* If the suggested multiplier is more than SIZE bits,
4054 we can do better for even divisors, using an
4055 initial right shift. */
4056 if (mh != 0 && (d & 1) == 0)
4058 pre_shift = floor_log2 (d & -d);
4059 mh = choose_multiplier (d >> pre_shift, size,
4060 size - pre_shift,
4061 &ml, &post_shift, &dummy);
4062 gcc_assert (!mh);
4064 else
4065 pre_shift = 0;
4067 if (mh != 0)
4069 rtx t1, t2, t3, t4;
4071 if (post_shift - 1 >= BITS_PER_WORD)
4072 goto fail1;
4074 extra_cost
4075 = (shift_cost[compute_mode][post_shift - 1]
4076 + shift_cost[compute_mode][1]
4077 + 2 * add_cost[compute_mode]);
4078 t1 = expand_mult_highpart (compute_mode, op0, ml,
4079 NULL_RTX, 1,
4080 max_cost - extra_cost);
4081 if (t1 == 0)
4082 goto fail1;
4083 t2 = force_operand (gen_rtx_MINUS (compute_mode,
4084 op0, t1),
4085 NULL_RTX);
4086 t3 = expand_shift
4087 (RSHIFT_EXPR, compute_mode, t2,
4088 build_int_cst (NULL_TREE, 1),
4089 NULL_RTX,1);
4090 t4 = force_operand (gen_rtx_PLUS (compute_mode,
4091 t1, t3),
4092 NULL_RTX);
4093 quotient = expand_shift
4094 (RSHIFT_EXPR, compute_mode, t4,
4095 build_int_cst (NULL_TREE, post_shift - 1),
4096 tquotient, 1);
4098 else
4100 rtx t1, t2;
4102 if (pre_shift >= BITS_PER_WORD
4103 || post_shift >= BITS_PER_WORD)
4104 goto fail1;
4106 t1 = expand_shift
4107 (RSHIFT_EXPR, compute_mode, op0,
4108 build_int_cst (NULL_TREE, pre_shift),
4109 NULL_RTX, 1);
4110 extra_cost
4111 = (shift_cost[compute_mode][pre_shift]
4112 + shift_cost[compute_mode][post_shift]);
4113 t2 = expand_mult_highpart (compute_mode, t1, ml,
4114 NULL_RTX, 1,
4115 max_cost - extra_cost);
4116 if (t2 == 0)
4117 goto fail1;
4118 quotient = expand_shift
4119 (RSHIFT_EXPR, compute_mode, t2,
4120 build_int_cst (NULL_TREE, post_shift),
4121 tquotient, 1);
4125 else /* Too wide mode to use tricky code */
4126 break;
4128 insn = get_last_insn ();
4129 if (insn != last
4130 && (set = single_set (insn)) != 0
4131 && SET_DEST (set) == quotient)
4132 set_unique_reg_note (insn,
4133 REG_EQUAL,
4134 gen_rtx_UDIV (compute_mode, op0, op1));
4136 else /* TRUNC_DIV, signed */
4138 unsigned HOST_WIDE_INT ml;
4139 int lgup, post_shift;
4140 rtx mlr;
4141 HOST_WIDE_INT d = INTVAL (op1);
4142 unsigned HOST_WIDE_INT abs_d = d >= 0 ? d : -d;
4144 /* n rem d = n rem -d */
4145 if (rem_flag && d < 0)
4147 d = abs_d;
4148 op1 = gen_int_mode (abs_d, compute_mode);
4151 if (d == 1)
4152 quotient = op0;
4153 else if (d == -1)
4154 quotient = expand_unop (compute_mode, neg_optab, op0,
4155 tquotient, 0);
4156 else if (abs_d == (unsigned HOST_WIDE_INT) 1 << (size - 1))
4158 /* This case is not handled correctly below. */
4159 quotient = emit_store_flag (tquotient, EQ, op0, op1,
4160 compute_mode, 1, 1);
4161 if (quotient == 0)
4162 goto fail1;
4164 else if (EXACT_POWER_OF_2_OR_ZERO_P (d)
4165 && (rem_flag ? smod_pow2_cheap[compute_mode]
4166 : sdiv_pow2_cheap[compute_mode])
4167 /* We assume that cheap metric is true if the
4168 optab has an expander for this mode. */
4169 && (((rem_flag ? smod_optab : sdiv_optab)
4170 ->handlers[compute_mode].insn_code
4171 != CODE_FOR_nothing)
4172 || (sdivmod_optab->handlers[compute_mode]
4173 .insn_code != CODE_FOR_nothing)))
4175 else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d))
4177 if (rem_flag)
4179 remainder = expand_smod_pow2 (compute_mode, op0, d);
4180 if (remainder)
4181 return gen_lowpart (mode, remainder);
4184 if (sdiv_pow2_cheap[compute_mode]
4185 && ((sdiv_optab->handlers[compute_mode].insn_code
4186 != CODE_FOR_nothing)
4187 || (sdivmod_optab->handlers[compute_mode].insn_code
4188 != CODE_FOR_nothing)))
4189 quotient = expand_divmod (0, TRUNC_DIV_EXPR,
4190 compute_mode, op0,
4191 gen_int_mode (abs_d,
4192 compute_mode),
4193 NULL_RTX, 0);
4194 else
4195 quotient = expand_sdiv_pow2 (compute_mode, op0, abs_d);
4197 /* We have computed OP0 / abs(OP1). If OP1 is negative,
4198 negate the quotient. */
4199 if (d < 0)
4201 insn = get_last_insn ();
4202 if (insn != last
4203 && (set = single_set (insn)) != 0
4204 && SET_DEST (set) == quotient
4205 && abs_d < ((unsigned HOST_WIDE_INT) 1
4206 << (HOST_BITS_PER_WIDE_INT - 1)))
4207 set_unique_reg_note (insn,
4208 REG_EQUAL,
4209 gen_rtx_DIV (compute_mode,
4210 op0,
4211 GEN_INT
4212 (trunc_int_for_mode
4213 (abs_d,
4214 compute_mode))));
4216 quotient = expand_unop (compute_mode, neg_optab,
4217 quotient, quotient, 0);
4220 else if (size <= HOST_BITS_PER_WIDE_INT)
4222 choose_multiplier (abs_d, size, size - 1,
4223 &mlr, &post_shift, &lgup);
4224 ml = (unsigned HOST_WIDE_INT) INTVAL (mlr);
4225 if (ml < (unsigned HOST_WIDE_INT) 1 << (size - 1))
4227 rtx t1, t2, t3;
4229 if (post_shift >= BITS_PER_WORD
4230 || size - 1 >= BITS_PER_WORD)
4231 goto fail1;
4233 extra_cost = (shift_cost[compute_mode][post_shift]
4234 + shift_cost[compute_mode][size - 1]
4235 + add_cost[compute_mode]);
4236 t1 = expand_mult_highpart (compute_mode, op0, mlr,
4237 NULL_RTX, 0,
4238 max_cost - extra_cost);
4239 if (t1 == 0)
4240 goto fail1;
4241 t2 = expand_shift
4242 (RSHIFT_EXPR, compute_mode, t1,
4243 build_int_cst (NULL_TREE, post_shift),
4244 NULL_RTX, 0);
4245 t3 = expand_shift
4246 (RSHIFT_EXPR, compute_mode, op0,
4247 build_int_cst (NULL_TREE, size - 1),
4248 NULL_RTX, 0);
4249 if (d < 0)
4250 quotient
4251 = force_operand (gen_rtx_MINUS (compute_mode,
4252 t3, t2),
4253 tquotient);
4254 else
4255 quotient
4256 = force_operand (gen_rtx_MINUS (compute_mode,
4257 t2, t3),
4258 tquotient);
4260 else
4262 rtx t1, t2, t3, t4;
4264 if (post_shift >= BITS_PER_WORD
4265 || size - 1 >= BITS_PER_WORD)
4266 goto fail1;
4268 ml |= (~(unsigned HOST_WIDE_INT) 0) << (size - 1);
4269 mlr = gen_int_mode (ml, compute_mode);
4270 extra_cost = (shift_cost[compute_mode][post_shift]
4271 + shift_cost[compute_mode][size - 1]
4272 + 2 * add_cost[compute_mode]);
4273 t1 = expand_mult_highpart (compute_mode, op0, mlr,
4274 NULL_RTX, 0,
4275 max_cost - extra_cost);
4276 if (t1 == 0)
4277 goto fail1;
4278 t2 = force_operand (gen_rtx_PLUS (compute_mode,
4279 t1, op0),
4280 NULL_RTX);
4281 t3 = expand_shift
4282 (RSHIFT_EXPR, compute_mode, t2,
4283 build_int_cst (NULL_TREE, post_shift),
4284 NULL_RTX, 0);
4285 t4 = expand_shift
4286 (RSHIFT_EXPR, compute_mode, op0,
4287 build_int_cst (NULL_TREE, size - 1),
4288 NULL_RTX, 0);
4289 if (d < 0)
4290 quotient
4291 = force_operand (gen_rtx_MINUS (compute_mode,
4292 t4, t3),
4293 tquotient);
4294 else
4295 quotient
4296 = force_operand (gen_rtx_MINUS (compute_mode,
4297 t3, t4),
4298 tquotient);
4301 else /* Too wide mode to use tricky code */
4302 break;
4304 insn = get_last_insn ();
4305 if (insn != last
4306 && (set = single_set (insn)) != 0
4307 && SET_DEST (set) == quotient)
4308 set_unique_reg_note (insn,
4309 REG_EQUAL,
4310 gen_rtx_DIV (compute_mode, op0, op1));
4312 break;
4314 fail1:
4315 delete_insns_since (last);
4316 break;
4318 case FLOOR_DIV_EXPR:
4319 case FLOOR_MOD_EXPR:
4320 /* We will come here only for signed operations. */
4321 if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4323 unsigned HOST_WIDE_INT mh;
4324 int pre_shift, lgup, post_shift;
4325 HOST_WIDE_INT d = INTVAL (op1);
4326 rtx ml;
4328 if (d > 0)
4330 /* We could just as easily deal with negative constants here,
4331 but it does not seem worth the trouble for GCC 2.6. */
4332 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
4334 pre_shift = floor_log2 (d);
4335 if (rem_flag)
4337 remainder = expand_binop (compute_mode, and_optab, op0,
4338 GEN_INT (((HOST_WIDE_INT) 1 << pre_shift) - 1),
4339 remainder, 0, OPTAB_LIB_WIDEN);
4340 if (remainder)
4341 return gen_lowpart (mode, remainder);
4343 quotient = expand_shift
4344 (RSHIFT_EXPR, compute_mode, op0,
4345 build_int_cst (NULL_TREE, pre_shift),
4346 tquotient, 0);
4348 else
4350 rtx t1, t2, t3, t4;
4352 mh = choose_multiplier (d, size, size - 1,
4353 &ml, &post_shift, &lgup);
4354 gcc_assert (!mh);
4356 if (post_shift < BITS_PER_WORD
4357 && size - 1 < BITS_PER_WORD)
4359 t1 = expand_shift
4360 (RSHIFT_EXPR, compute_mode, op0,
4361 build_int_cst (NULL_TREE, size - 1),
4362 NULL_RTX, 0);
4363 t2 = expand_binop (compute_mode, xor_optab, op0, t1,
4364 NULL_RTX, 0, OPTAB_WIDEN);
4365 extra_cost = (shift_cost[compute_mode][post_shift]
4366 + shift_cost[compute_mode][size - 1]
4367 + 2 * add_cost[compute_mode]);
4368 t3 = expand_mult_highpart (compute_mode, t2, ml,
4369 NULL_RTX, 1,
4370 max_cost - extra_cost);
4371 if (t3 != 0)
4373 t4 = expand_shift
4374 (RSHIFT_EXPR, compute_mode, t3,
4375 build_int_cst (NULL_TREE, post_shift),
4376 NULL_RTX, 1);
4377 quotient = expand_binop (compute_mode, xor_optab,
4378 t4, t1, tquotient, 0,
4379 OPTAB_WIDEN);
4384 else
4386 rtx nsign, t1, t2, t3, t4;
4387 t1 = force_operand (gen_rtx_PLUS (compute_mode,
4388 op0, constm1_rtx), NULL_RTX);
4389 t2 = expand_binop (compute_mode, ior_optab, op0, t1, NULL_RTX,
4390 0, OPTAB_WIDEN);
4391 nsign = expand_shift
4392 (RSHIFT_EXPR, compute_mode, t2,
4393 build_int_cst (NULL_TREE, size - 1),
4394 NULL_RTX, 0);
4395 t3 = force_operand (gen_rtx_MINUS (compute_mode, t1, nsign),
4396 NULL_RTX);
4397 t4 = expand_divmod (0, TRUNC_DIV_EXPR, compute_mode, t3, op1,
4398 NULL_RTX, 0);
4399 if (t4)
4401 rtx t5;
4402 t5 = expand_unop (compute_mode, one_cmpl_optab, nsign,
4403 NULL_RTX, 0);
4404 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4405 t4, t5),
4406 tquotient);
4411 if (quotient != 0)
4412 break;
4413 delete_insns_since (last);
4415 /* Try using an instruction that produces both the quotient and
4416 remainder, using truncation. We can easily compensate the quotient
4417 or remainder to get floor rounding, once we have the remainder.
4418 Notice that we compute also the final remainder value here,
4419 and return the result right away. */
4420 if (target == 0 || GET_MODE (target) != compute_mode)
4421 target = gen_reg_rtx (compute_mode);
4423 if (rem_flag)
4425 remainder
4426 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4427 quotient = gen_reg_rtx (compute_mode);
4429 else
4431 quotient
4432 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4433 remainder = gen_reg_rtx (compute_mode);
4436 if (expand_twoval_binop (sdivmod_optab, op0, op1,
4437 quotient, remainder, 0))
4439 /* This could be computed with a branch-less sequence.
4440 Save that for later. */
4441 rtx tem;
4442 rtx label = gen_label_rtx ();
4443 do_cmp_and_jump (remainder, const0_rtx, EQ, compute_mode, label);
4444 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4445 NULL_RTX, 0, OPTAB_WIDEN);
4446 do_cmp_and_jump (tem, const0_rtx, GE, compute_mode, label);
4447 expand_dec (quotient, const1_rtx);
4448 expand_inc (remainder, op1);
4449 emit_label (label);
4450 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4453 /* No luck with division elimination or divmod. Have to do it
4454 by conditionally adjusting op0 *and* the result. */
4456 rtx label1, label2, label3, label4, label5;
4457 rtx adjusted_op0;
4458 rtx tem;
4460 quotient = gen_reg_rtx (compute_mode);
4461 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4462 label1 = gen_label_rtx ();
4463 label2 = gen_label_rtx ();
4464 label3 = gen_label_rtx ();
4465 label4 = gen_label_rtx ();
4466 label5 = gen_label_rtx ();
4467 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4468 do_cmp_and_jump (adjusted_op0, const0_rtx, LT, compute_mode, label1);
4469 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4470 quotient, 0, OPTAB_LIB_WIDEN);
4471 if (tem != quotient)
4472 emit_move_insn (quotient, tem);
4473 emit_jump_insn (gen_jump (label5));
4474 emit_barrier ();
4475 emit_label (label1);
4476 expand_inc (adjusted_op0, const1_rtx);
4477 emit_jump_insn (gen_jump (label4));
4478 emit_barrier ();
4479 emit_label (label2);
4480 do_cmp_and_jump (adjusted_op0, const0_rtx, GT, compute_mode, label3);
4481 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4482 quotient, 0, OPTAB_LIB_WIDEN);
4483 if (tem != quotient)
4484 emit_move_insn (quotient, tem);
4485 emit_jump_insn (gen_jump (label5));
4486 emit_barrier ();
4487 emit_label (label3);
4488 expand_dec (adjusted_op0, const1_rtx);
4489 emit_label (label4);
4490 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4491 quotient, 0, OPTAB_LIB_WIDEN);
4492 if (tem != quotient)
4493 emit_move_insn (quotient, tem);
4494 expand_dec (quotient, const1_rtx);
4495 emit_label (label5);
4497 break;
4499 case CEIL_DIV_EXPR:
4500 case CEIL_MOD_EXPR:
4501 if (unsignedp)
4503 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1)))
4505 rtx t1, t2, t3;
4506 unsigned HOST_WIDE_INT d = INTVAL (op1);
4507 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4508 build_int_cst (NULL_TREE, floor_log2 (d)),
4509 tquotient, 1);
4510 t2 = expand_binop (compute_mode, and_optab, op0,
4511 GEN_INT (d - 1),
4512 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4513 t3 = gen_reg_rtx (compute_mode);
4514 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4515 compute_mode, 1, 1);
4516 if (t3 == 0)
4518 rtx lab;
4519 lab = gen_label_rtx ();
4520 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4521 expand_inc (t1, const1_rtx);
4522 emit_label (lab);
4523 quotient = t1;
4525 else
4526 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4527 t1, t3),
4528 tquotient);
4529 break;
4532 /* Try using an instruction that produces both the quotient and
4533 remainder, using truncation. We can easily compensate the
4534 quotient or remainder to get ceiling rounding, once we have the
4535 remainder. Notice that we compute also the final remainder
4536 value here, and return the result right away. */
4537 if (target == 0 || GET_MODE (target) != compute_mode)
4538 target = gen_reg_rtx (compute_mode);
4540 if (rem_flag)
4542 remainder = (REG_P (target)
4543 ? target : gen_reg_rtx (compute_mode));
4544 quotient = gen_reg_rtx (compute_mode);
4546 else
4548 quotient = (REG_P (target)
4549 ? target : gen_reg_rtx (compute_mode));
4550 remainder = gen_reg_rtx (compute_mode);
4553 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient,
4554 remainder, 1))
4556 /* This could be computed with a branch-less sequence.
4557 Save that for later. */
4558 rtx label = gen_label_rtx ();
4559 do_cmp_and_jump (remainder, const0_rtx, EQ,
4560 compute_mode, label);
4561 expand_inc (quotient, const1_rtx);
4562 expand_dec (remainder, op1);
4563 emit_label (label);
4564 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4567 /* No luck with division elimination or divmod. Have to do it
4568 by conditionally adjusting op0 *and* the result. */
4570 rtx label1, label2;
4571 rtx adjusted_op0, tem;
4573 quotient = gen_reg_rtx (compute_mode);
4574 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4575 label1 = gen_label_rtx ();
4576 label2 = gen_label_rtx ();
4577 do_cmp_and_jump (adjusted_op0, const0_rtx, NE,
4578 compute_mode, label1);
4579 emit_move_insn (quotient, const0_rtx);
4580 emit_jump_insn (gen_jump (label2));
4581 emit_barrier ();
4582 emit_label (label1);
4583 expand_dec (adjusted_op0, const1_rtx);
4584 tem = expand_binop (compute_mode, udiv_optab, adjusted_op0, op1,
4585 quotient, 1, OPTAB_LIB_WIDEN);
4586 if (tem != quotient)
4587 emit_move_insn (quotient, tem);
4588 expand_inc (quotient, const1_rtx);
4589 emit_label (label2);
4592 else /* signed */
4594 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
4595 && INTVAL (op1) >= 0)
4597 /* This is extremely similar to the code for the unsigned case
4598 above. For 2.7 we should merge these variants, but for
4599 2.6.1 I don't want to touch the code for unsigned since that
4600 get used in C. The signed case will only be used by other
4601 languages (Ada). */
4603 rtx t1, t2, t3;
4604 unsigned HOST_WIDE_INT d = INTVAL (op1);
4605 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4606 build_int_cst (NULL_TREE, floor_log2 (d)),
4607 tquotient, 0);
4608 t2 = expand_binop (compute_mode, and_optab, op0,
4609 GEN_INT (d - 1),
4610 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4611 t3 = gen_reg_rtx (compute_mode);
4612 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4613 compute_mode, 1, 1);
4614 if (t3 == 0)
4616 rtx lab;
4617 lab = gen_label_rtx ();
4618 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4619 expand_inc (t1, const1_rtx);
4620 emit_label (lab);
4621 quotient = t1;
4623 else
4624 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4625 t1, t3),
4626 tquotient);
4627 break;
4630 /* Try using an instruction that produces both the quotient and
4631 remainder, using truncation. We can easily compensate the
4632 quotient or remainder to get ceiling rounding, once we have the
4633 remainder. Notice that we compute also the final remainder
4634 value here, and return the result right away. */
4635 if (target == 0 || GET_MODE (target) != compute_mode)
4636 target = gen_reg_rtx (compute_mode);
4637 if (rem_flag)
4639 remainder= (REG_P (target)
4640 ? target : gen_reg_rtx (compute_mode));
4641 quotient = gen_reg_rtx (compute_mode);
4643 else
4645 quotient = (REG_P (target)
4646 ? target : gen_reg_rtx (compute_mode));
4647 remainder = gen_reg_rtx (compute_mode);
4650 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient,
4651 remainder, 0))
4653 /* This could be computed with a branch-less sequence.
4654 Save that for later. */
4655 rtx tem;
4656 rtx label = gen_label_rtx ();
4657 do_cmp_and_jump (remainder, const0_rtx, EQ,
4658 compute_mode, label);
4659 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4660 NULL_RTX, 0, OPTAB_WIDEN);
4661 do_cmp_and_jump (tem, const0_rtx, LT, compute_mode, label);
4662 expand_inc (quotient, const1_rtx);
4663 expand_dec (remainder, op1);
4664 emit_label (label);
4665 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4668 /* No luck with division elimination or divmod. Have to do it
4669 by conditionally adjusting op0 *and* the result. */
4671 rtx label1, label2, label3, label4, label5;
4672 rtx adjusted_op0;
4673 rtx tem;
4675 quotient = gen_reg_rtx (compute_mode);
4676 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4677 label1 = gen_label_rtx ();
4678 label2 = gen_label_rtx ();
4679 label3 = gen_label_rtx ();
4680 label4 = gen_label_rtx ();
4681 label5 = gen_label_rtx ();
4682 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4683 do_cmp_and_jump (adjusted_op0, const0_rtx, GT,
4684 compute_mode, label1);
4685 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4686 quotient, 0, OPTAB_LIB_WIDEN);
4687 if (tem != quotient)
4688 emit_move_insn (quotient, tem);
4689 emit_jump_insn (gen_jump (label5));
4690 emit_barrier ();
4691 emit_label (label1);
4692 expand_dec (adjusted_op0, const1_rtx);
4693 emit_jump_insn (gen_jump (label4));
4694 emit_barrier ();
4695 emit_label (label2);
4696 do_cmp_and_jump (adjusted_op0, const0_rtx, LT,
4697 compute_mode, label3);
4698 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4699 quotient, 0, OPTAB_LIB_WIDEN);
4700 if (tem != quotient)
4701 emit_move_insn (quotient, tem);
4702 emit_jump_insn (gen_jump (label5));
4703 emit_barrier ();
4704 emit_label (label3);
4705 expand_inc (adjusted_op0, const1_rtx);
4706 emit_label (label4);
4707 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4708 quotient, 0, OPTAB_LIB_WIDEN);
4709 if (tem != quotient)
4710 emit_move_insn (quotient, tem);
4711 expand_inc (quotient, const1_rtx);
4712 emit_label (label5);
4715 break;
4717 case EXACT_DIV_EXPR:
4718 if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4720 HOST_WIDE_INT d = INTVAL (op1);
4721 unsigned HOST_WIDE_INT ml;
4722 int pre_shift;
4723 rtx t1;
4725 pre_shift = floor_log2 (d & -d);
4726 ml = invert_mod2n (d >> pre_shift, size);
4727 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4728 build_int_cst (NULL_TREE, pre_shift),
4729 NULL_RTX, unsignedp);
4730 quotient = expand_mult (compute_mode, t1,
4731 gen_int_mode (ml, compute_mode),
4732 NULL_RTX, 1);
4734 insn = get_last_insn ();
4735 set_unique_reg_note (insn,
4736 REG_EQUAL,
4737 gen_rtx_fmt_ee (unsignedp ? UDIV : DIV,
4738 compute_mode,
4739 op0, op1));
4741 break;
4743 case ROUND_DIV_EXPR:
4744 case ROUND_MOD_EXPR:
4745 if (unsignedp)
4747 rtx tem;
4748 rtx label;
4749 label = gen_label_rtx ();
4750 quotient = gen_reg_rtx (compute_mode);
4751 remainder = gen_reg_rtx (compute_mode);
4752 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient, remainder, 1) == 0)
4754 rtx tem;
4755 quotient = expand_binop (compute_mode, udiv_optab, op0, op1,
4756 quotient, 1, OPTAB_LIB_WIDEN);
4757 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 1);
4758 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4759 remainder, 1, OPTAB_LIB_WIDEN);
4761 tem = plus_constant (op1, -1);
4762 tem = expand_shift (RSHIFT_EXPR, compute_mode, tem,
4763 build_int_cst (NULL_TREE, 1),
4764 NULL_RTX, 1);
4765 do_cmp_and_jump (remainder, tem, LEU, compute_mode, label);
4766 expand_inc (quotient, const1_rtx);
4767 expand_dec (remainder, op1);
4768 emit_label (label);
4770 else
4772 rtx abs_rem, abs_op1, tem, mask;
4773 rtx label;
4774 label = gen_label_rtx ();
4775 quotient = gen_reg_rtx (compute_mode);
4776 remainder = gen_reg_rtx (compute_mode);
4777 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient, remainder, 0) == 0)
4779 rtx tem;
4780 quotient = expand_binop (compute_mode, sdiv_optab, op0, op1,
4781 quotient, 0, OPTAB_LIB_WIDEN);
4782 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 0);
4783 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4784 remainder, 0, OPTAB_LIB_WIDEN);
4786 abs_rem = expand_abs (compute_mode, remainder, NULL_RTX, 1, 0);
4787 abs_op1 = expand_abs (compute_mode, op1, NULL_RTX, 1, 0);
4788 tem = expand_shift (LSHIFT_EXPR, compute_mode, abs_rem,
4789 build_int_cst (NULL_TREE, 1),
4790 NULL_RTX, 1);
4791 do_cmp_and_jump (tem, abs_op1, LTU, compute_mode, label);
4792 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4793 NULL_RTX, 0, OPTAB_WIDEN);
4794 mask = expand_shift (RSHIFT_EXPR, compute_mode, tem,
4795 build_int_cst (NULL_TREE, size - 1),
4796 NULL_RTX, 0);
4797 tem = expand_binop (compute_mode, xor_optab, mask, const1_rtx,
4798 NULL_RTX, 0, OPTAB_WIDEN);
4799 tem = expand_binop (compute_mode, sub_optab, tem, mask,
4800 NULL_RTX, 0, OPTAB_WIDEN);
4801 expand_inc (quotient, tem);
4802 tem = expand_binop (compute_mode, xor_optab, mask, op1,
4803 NULL_RTX, 0, OPTAB_WIDEN);
4804 tem = expand_binop (compute_mode, sub_optab, tem, mask,
4805 NULL_RTX, 0, OPTAB_WIDEN);
4806 expand_dec (remainder, tem);
4807 emit_label (label);
4809 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4811 default:
4812 gcc_unreachable ();
4815 if (quotient == 0)
4817 if (target && GET_MODE (target) != compute_mode)
4818 target = 0;
4820 if (rem_flag)
4822 /* Try to produce the remainder without producing the quotient.
4823 If we seem to have a divmod pattern that does not require widening,
4824 don't try widening here. We should really have a WIDEN argument
4825 to expand_twoval_binop, since what we'd really like to do here is
4826 1) try a mod insn in compute_mode
4827 2) try a divmod insn in compute_mode
4828 3) try a div insn in compute_mode and multiply-subtract to get
4829 remainder
4830 4) try the same things with widening allowed. */
4831 remainder
4832 = sign_expand_binop (compute_mode, umod_optab, smod_optab,
4833 op0, op1, target,
4834 unsignedp,
4835 ((optab2->handlers[compute_mode].insn_code
4836 != CODE_FOR_nothing)
4837 ? OPTAB_DIRECT : OPTAB_WIDEN));
4838 if (remainder == 0)
4840 /* No luck there. Can we do remainder and divide at once
4841 without a library call? */
4842 remainder = gen_reg_rtx (compute_mode);
4843 if (! expand_twoval_binop ((unsignedp
4844 ? udivmod_optab
4845 : sdivmod_optab),
4846 op0, op1,
4847 NULL_RTX, remainder, unsignedp))
4848 remainder = 0;
4851 if (remainder)
4852 return gen_lowpart (mode, remainder);
4855 /* Produce the quotient. Try a quotient insn, but not a library call.
4856 If we have a divmod in this mode, use it in preference to widening
4857 the div (for this test we assume it will not fail). Note that optab2
4858 is set to the one of the two optabs that the call below will use. */
4859 quotient
4860 = sign_expand_binop (compute_mode, udiv_optab, sdiv_optab,
4861 op0, op1, rem_flag ? NULL_RTX : target,
4862 unsignedp,
4863 ((optab2->handlers[compute_mode].insn_code
4864 != CODE_FOR_nothing)
4865 ? OPTAB_DIRECT : OPTAB_WIDEN));
4867 if (quotient == 0)
4869 /* No luck there. Try a quotient-and-remainder insn,
4870 keeping the quotient alone. */
4871 quotient = gen_reg_rtx (compute_mode);
4872 if (! expand_twoval_binop (unsignedp ? udivmod_optab : sdivmod_optab,
4873 op0, op1,
4874 quotient, NULL_RTX, unsignedp))
4876 quotient = 0;
4877 if (! rem_flag)
4878 /* Still no luck. If we are not computing the remainder,
4879 use a library call for the quotient. */
4880 quotient = sign_expand_binop (compute_mode,
4881 udiv_optab, sdiv_optab,
4882 op0, op1, target,
4883 unsignedp, OPTAB_LIB_WIDEN);
4888 if (rem_flag)
4890 if (target && GET_MODE (target) != compute_mode)
4891 target = 0;
4893 if (quotient == 0)
4895 /* No divide instruction either. Use library for remainder. */
4896 remainder = sign_expand_binop (compute_mode, umod_optab, smod_optab,
4897 op0, op1, target,
4898 unsignedp, OPTAB_LIB_WIDEN);
4899 /* No remainder function. Try a quotient-and-remainder
4900 function, keeping the remainder. */
4901 if (!remainder)
4903 remainder = gen_reg_rtx (compute_mode);
4904 if (!expand_twoval_binop_libfunc
4905 (unsignedp ? udivmod_optab : sdivmod_optab,
4906 op0, op1,
4907 NULL_RTX, remainder,
4908 unsignedp ? UMOD : MOD))
4909 remainder = NULL_RTX;
4912 else
4914 /* We divided. Now finish doing X - Y * (X / Y). */
4915 remainder = expand_mult (compute_mode, quotient, op1,
4916 NULL_RTX, unsignedp);
4917 remainder = expand_binop (compute_mode, sub_optab, op0,
4918 remainder, target, unsignedp,
4919 OPTAB_LIB_WIDEN);
4923 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4926 /* Return a tree node with data type TYPE, describing the value of X.
4927 Usually this is an VAR_DECL, if there is no obvious better choice.
4928 X may be an expression, however we only support those expressions
4929 generated by loop.c. */
4931 tree
4932 make_tree (tree type, rtx x)
4934 tree t;
4936 switch (GET_CODE (x))
4938 case CONST_INT:
4940 HOST_WIDE_INT hi = 0;
4942 if (INTVAL (x) < 0
4943 && !(TYPE_UNSIGNED (type)
4944 && (GET_MODE_BITSIZE (TYPE_MODE (type))
4945 < HOST_BITS_PER_WIDE_INT)))
4946 hi = -1;
4948 t = build_int_cst_wide (type, INTVAL (x), hi);
4950 return t;
4953 case CONST_DOUBLE:
4954 if (GET_MODE (x) == VOIDmode)
4955 t = build_int_cst_wide (type,
4956 CONST_DOUBLE_LOW (x), CONST_DOUBLE_HIGH (x));
4957 else
4959 REAL_VALUE_TYPE d;
4961 REAL_VALUE_FROM_CONST_DOUBLE (d, x);
4962 t = build_real (type, d);
4965 return t;
4967 case CONST_VECTOR:
4969 int i, units;
4970 rtx elt;
4971 tree t = NULL_TREE;
4973 units = CONST_VECTOR_NUNITS (x);
4975 /* Build a tree with vector elements. */
4976 for (i = units - 1; i >= 0; --i)
4978 elt = CONST_VECTOR_ELT (x, i);
4979 t = tree_cons (NULL_TREE, make_tree (type, elt), t);
4982 return build_vector (type, t);
4985 case PLUS:
4986 return fold_build2 (PLUS_EXPR, type, make_tree (type, XEXP (x, 0)),
4987 make_tree (type, XEXP (x, 1)));
4989 case MINUS:
4990 return fold_build2 (MINUS_EXPR, type, make_tree (type, XEXP (x, 0)),
4991 make_tree (type, XEXP (x, 1)));
4993 case NEG:
4994 return fold_build1 (NEGATE_EXPR, type, make_tree (type, XEXP (x, 0)));
4996 case MULT:
4997 return fold_build2 (MULT_EXPR, type, make_tree (type, XEXP (x, 0)),
4998 make_tree (type, XEXP (x, 1)));
5000 case ASHIFT:
5001 return fold_build2 (LSHIFT_EXPR, type, make_tree (type, XEXP (x, 0)),
5002 make_tree (type, XEXP (x, 1)));
5004 case LSHIFTRT:
5005 t = lang_hooks.types.unsigned_type (type);
5006 return fold_convert (type, build2 (RSHIFT_EXPR, t,
5007 make_tree (t, XEXP (x, 0)),
5008 make_tree (type, XEXP (x, 1))));
5010 case ASHIFTRT:
5011 t = lang_hooks.types.signed_type (type);
5012 return fold_convert (type, build2 (RSHIFT_EXPR, t,
5013 make_tree (t, XEXP (x, 0)),
5014 make_tree (type, XEXP (x, 1))));
5016 case DIV:
5017 if (TREE_CODE (type) != REAL_TYPE)
5018 t = lang_hooks.types.signed_type (type);
5019 else
5020 t = type;
5022 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
5023 make_tree (t, XEXP (x, 0)),
5024 make_tree (t, XEXP (x, 1))));
5025 case UDIV:
5026 t = lang_hooks.types.unsigned_type (type);
5027 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
5028 make_tree (t, XEXP (x, 0)),
5029 make_tree (t, XEXP (x, 1))));
5031 case SIGN_EXTEND:
5032 case ZERO_EXTEND:
5033 t = lang_hooks.types.type_for_mode (GET_MODE (XEXP (x, 0)),
5034 GET_CODE (x) == ZERO_EXTEND);
5035 return fold_convert (type, make_tree (t, XEXP (x, 0)));
5037 default:
5038 t = build_decl (VAR_DECL, NULL_TREE, type);
5040 /* If TYPE is a POINTER_TYPE, X might be Pmode with TYPE_MODE being
5041 ptr_mode. So convert. */
5042 if (POINTER_TYPE_P (type))
5043 x = convert_memory_address (TYPE_MODE (type), x);
5045 /* Note that we do *not* use SET_DECL_RTL here, because we do not
5046 want set_decl_rtl to go adjusting REG_ATTRS for this temporary. */
5047 t->decl_with_rtl.rtl = x;
5049 return t;
5053 /* Compute the logical-and of OP0 and OP1, storing it in TARGET
5054 and returning TARGET.
5056 If TARGET is 0, a pseudo-register or constant is returned. */
5059 expand_and (enum machine_mode mode, rtx op0, rtx op1, rtx target)
5061 rtx tem = 0;
5063 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
5064 tem = simplify_binary_operation (AND, mode, op0, op1);
5065 if (tem == 0)
5066 tem = expand_binop (mode, and_optab, op0, op1, target, 0, OPTAB_LIB_WIDEN);
5068 if (target == 0)
5069 target = tem;
5070 else if (tem != target)
5071 emit_move_insn (target, tem);
5072 return target;
5075 /* Emit a store-flags instruction for comparison CODE on OP0 and OP1
5076 and storing in TARGET. Normally return TARGET.
5077 Return 0 if that cannot be done.
5079 MODE is the mode to use for OP0 and OP1 should they be CONST_INTs. If
5080 it is VOIDmode, they cannot both be CONST_INT.
5082 UNSIGNEDP is for the case where we have to widen the operands
5083 to perform the operation. It says to use zero-extension.
5085 NORMALIZEP is 1 if we should convert the result to be either zero
5086 or one. Normalize is -1 if we should convert the result to be
5087 either zero or -1. If NORMALIZEP is zero, the result will be left
5088 "raw" out of the scc insn. */
5091 emit_store_flag (rtx target, enum rtx_code code, rtx op0, rtx op1,
5092 enum machine_mode mode, int unsignedp, int normalizep)
5094 rtx subtarget;
5095 enum insn_code icode;
5096 enum machine_mode compare_mode;
5097 enum machine_mode target_mode = GET_MODE (target);
5098 rtx tem;
5099 rtx last = get_last_insn ();
5100 rtx pattern, comparison;
5102 if (unsignedp)
5103 code = unsigned_condition (code);
5105 /* If one operand is constant, make it the second one. Only do this
5106 if the other operand is not constant as well. */
5108 if (swap_commutative_operands_p (op0, op1))
5110 tem = op0;
5111 op0 = op1;
5112 op1 = tem;
5113 code = swap_condition (code);
5116 if (mode == VOIDmode)
5117 mode = GET_MODE (op0);
5119 /* For some comparisons with 1 and -1, we can convert this to
5120 comparisons with zero. This will often produce more opportunities for
5121 store-flag insns. */
5123 switch (code)
5125 case LT:
5126 if (op1 == const1_rtx)
5127 op1 = const0_rtx, code = LE;
5128 break;
5129 case LE:
5130 if (op1 == constm1_rtx)
5131 op1 = const0_rtx, code = LT;
5132 break;
5133 case GE:
5134 if (op1 == const1_rtx)
5135 op1 = const0_rtx, code = GT;
5136 break;
5137 case GT:
5138 if (op1 == constm1_rtx)
5139 op1 = const0_rtx, code = GE;
5140 break;
5141 case GEU:
5142 if (op1 == const1_rtx)
5143 op1 = const0_rtx, code = NE;
5144 break;
5145 case LTU:
5146 if (op1 == const1_rtx)
5147 op1 = const0_rtx, code = EQ;
5148 break;
5149 default:
5150 break;
5153 /* If we are comparing a double-word integer with zero or -1, we can
5154 convert the comparison into one involving a single word. */
5155 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD * 2
5156 && GET_MODE_CLASS (mode) == MODE_INT
5157 && (!MEM_P (op0) || ! MEM_VOLATILE_P (op0)))
5159 if ((code == EQ || code == NE)
5160 && (op1 == const0_rtx || op1 == constm1_rtx))
5162 rtx op00, op01, op0both;
5164 /* Do a logical OR or AND of the two words and compare the result. */
5165 op00 = simplify_gen_subreg (word_mode, op0, mode, 0);
5166 op01 = simplify_gen_subreg (word_mode, op0, mode, UNITS_PER_WORD);
5167 op0both = expand_binop (word_mode,
5168 op1 == const0_rtx ? ior_optab : and_optab,
5169 op00, op01, NULL_RTX, unsignedp, OPTAB_DIRECT);
5171 if (op0both != 0)
5172 return emit_store_flag (target, code, op0both, op1, word_mode,
5173 unsignedp, normalizep);
5175 else if ((code == LT || code == GE) && op1 == const0_rtx)
5177 rtx op0h;
5179 /* If testing the sign bit, can just test on high word. */
5180 op0h = simplify_gen_subreg (word_mode, op0, mode,
5181 subreg_highpart_offset (word_mode, mode));
5182 return emit_store_flag (target, code, op0h, op1, word_mode,
5183 unsignedp, normalizep);
5187 /* From now on, we won't change CODE, so set ICODE now. */
5188 icode = setcc_gen_code[(int) code];
5190 /* If this is A < 0 or A >= 0, we can do this by taking the ones
5191 complement of A (for GE) and shifting the sign bit to the low bit. */
5192 if (op1 == const0_rtx && (code == LT || code == GE)
5193 && GET_MODE_CLASS (mode) == MODE_INT
5194 && (normalizep || STORE_FLAG_VALUE == 1
5195 || (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5196 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5197 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1)))))
5199 subtarget = target;
5201 /* If the result is to be wider than OP0, it is best to convert it
5202 first. If it is to be narrower, it is *incorrect* to convert it
5203 first. */
5204 if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (mode))
5206 op0 = convert_modes (target_mode, mode, op0, 0);
5207 mode = target_mode;
5210 if (target_mode != mode)
5211 subtarget = 0;
5213 if (code == GE)
5214 op0 = expand_unop (mode, one_cmpl_optab, op0,
5215 ((STORE_FLAG_VALUE == 1 || normalizep)
5216 ? 0 : subtarget), 0);
5218 if (STORE_FLAG_VALUE == 1 || normalizep)
5219 /* If we are supposed to produce a 0/1 value, we want to do
5220 a logical shift from the sign bit to the low-order bit; for
5221 a -1/0 value, we do an arithmetic shift. */
5222 op0 = expand_shift (RSHIFT_EXPR, mode, op0,
5223 size_int (GET_MODE_BITSIZE (mode) - 1),
5224 subtarget, normalizep != -1);
5226 if (mode != target_mode)
5227 op0 = convert_modes (target_mode, mode, op0, 0);
5229 return op0;
5232 if (icode != CODE_FOR_nothing)
5234 insn_operand_predicate_fn pred;
5236 /* We think we may be able to do this with a scc insn. Emit the
5237 comparison and then the scc insn. */
5239 do_pending_stack_adjust ();
5240 last = get_last_insn ();
5242 comparison
5243 = compare_from_rtx (op0, op1, code, unsignedp, mode, NULL_RTX);
5244 if (CONSTANT_P (comparison))
5246 switch (GET_CODE (comparison))
5248 case CONST_INT:
5249 if (comparison == const0_rtx)
5250 return const0_rtx;
5251 break;
5253 #ifdef FLOAT_STORE_FLAG_VALUE
5254 case CONST_DOUBLE:
5255 if (comparison == CONST0_RTX (GET_MODE (comparison)))
5256 return const0_rtx;
5257 break;
5258 #endif
5259 default:
5260 gcc_unreachable ();
5263 if (normalizep == 1)
5264 return const1_rtx;
5265 if (normalizep == -1)
5266 return constm1_rtx;
5267 return const_true_rtx;
5270 /* The code of COMPARISON may not match CODE if compare_from_rtx
5271 decided to swap its operands and reverse the original code.
5273 We know that compare_from_rtx returns either a CONST_INT or
5274 a new comparison code, so it is safe to just extract the
5275 code from COMPARISON. */
5276 code = GET_CODE (comparison);
5278 /* Get a reference to the target in the proper mode for this insn. */
5279 compare_mode = insn_data[(int) icode].operand[0].mode;
5280 subtarget = target;
5281 pred = insn_data[(int) icode].operand[0].predicate;
5282 if (optimize || ! (*pred) (subtarget, compare_mode))
5283 subtarget = gen_reg_rtx (compare_mode);
5285 pattern = GEN_FCN (icode) (subtarget);
5286 if (pattern)
5288 emit_insn (pattern);
5290 /* If we are converting to a wider mode, first convert to
5291 TARGET_MODE, then normalize. This produces better combining
5292 opportunities on machines that have a SIGN_EXTRACT when we are
5293 testing a single bit. This mostly benefits the 68k.
5295 If STORE_FLAG_VALUE does not have the sign bit set when
5296 interpreted in COMPARE_MODE, we can do this conversion as
5297 unsigned, which is usually more efficient. */
5298 if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (compare_mode))
5300 convert_move (target, subtarget,
5301 (GET_MODE_BITSIZE (compare_mode)
5302 <= HOST_BITS_PER_WIDE_INT)
5303 && 0 == (STORE_FLAG_VALUE
5304 & ((HOST_WIDE_INT) 1
5305 << (GET_MODE_BITSIZE (compare_mode) -1))));
5306 op0 = target;
5307 compare_mode = target_mode;
5309 else
5310 op0 = subtarget;
5312 /* If we want to keep subexpressions around, don't reuse our
5313 last target. */
5315 if (optimize)
5316 subtarget = 0;
5318 /* Now normalize to the proper value in COMPARE_MODE. Sometimes
5319 we don't have to do anything. */
5320 if (normalizep == 0 || normalizep == STORE_FLAG_VALUE)
5322 /* STORE_FLAG_VALUE might be the most negative number, so write
5323 the comparison this way to avoid a compiler-time warning. */
5324 else if (- normalizep == STORE_FLAG_VALUE)
5325 op0 = expand_unop (compare_mode, neg_optab, op0, subtarget, 0);
5327 /* We don't want to use STORE_FLAG_VALUE < 0 below since this
5328 makes it hard to use a value of just the sign bit due to
5329 ANSI integer constant typing rules. */
5330 else if (GET_MODE_BITSIZE (compare_mode) <= HOST_BITS_PER_WIDE_INT
5331 && (STORE_FLAG_VALUE
5332 & ((HOST_WIDE_INT) 1
5333 << (GET_MODE_BITSIZE (compare_mode) - 1))))
5334 op0 = expand_shift (RSHIFT_EXPR, compare_mode, op0,
5335 size_int (GET_MODE_BITSIZE (compare_mode) - 1),
5336 subtarget, normalizep == 1);
5337 else
5339 gcc_assert (STORE_FLAG_VALUE & 1);
5341 op0 = expand_and (compare_mode, op0, const1_rtx, subtarget);
5342 if (normalizep == -1)
5343 op0 = expand_unop (compare_mode, neg_optab, op0, op0, 0);
5346 /* If we were converting to a smaller mode, do the
5347 conversion now. */
5348 if (target_mode != compare_mode)
5350 convert_move (target, op0, 0);
5351 return target;
5353 else
5354 return op0;
5358 delete_insns_since (last);
5360 /* If optimizing, use different pseudo registers for each insn, instead
5361 of reusing the same pseudo. This leads to better CSE, but slows
5362 down the compiler, since there are more pseudos */
5363 subtarget = (!optimize
5364 && (target_mode == mode)) ? target : NULL_RTX;
5366 /* If we reached here, we can't do this with a scc insn. However, there
5367 are some comparisons that can be done directly. For example, if
5368 this is an equality comparison of integers, we can try to exclusive-or
5369 (or subtract) the two operands and use a recursive call to try the
5370 comparison with zero. Don't do any of these cases if branches are
5371 very cheap. */
5373 if (BRANCH_COST > 0
5374 && GET_MODE_CLASS (mode) == MODE_INT && (code == EQ || code == NE)
5375 && op1 != const0_rtx)
5377 tem = expand_binop (mode, xor_optab, op0, op1, subtarget, 1,
5378 OPTAB_WIDEN);
5380 if (tem == 0)
5381 tem = expand_binop (mode, sub_optab, op0, op1, subtarget, 1,
5382 OPTAB_WIDEN);
5383 if (tem != 0)
5384 tem = emit_store_flag (target, code, tem, const0_rtx,
5385 mode, unsignedp, normalizep);
5386 if (tem == 0)
5387 delete_insns_since (last);
5388 return tem;
5391 /* Some other cases we can do are EQ, NE, LE, and GT comparisons with
5392 the constant zero. Reject all other comparisons at this point. Only
5393 do LE and GT if branches are expensive since they are expensive on
5394 2-operand machines. */
5396 if (BRANCH_COST == 0
5397 || GET_MODE_CLASS (mode) != MODE_INT || op1 != const0_rtx
5398 || (code != EQ && code != NE
5399 && (BRANCH_COST <= 1 || (code != LE && code != GT))))
5400 return 0;
5402 /* See what we need to return. We can only return a 1, -1, or the
5403 sign bit. */
5405 if (normalizep == 0)
5407 if (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5408 normalizep = STORE_FLAG_VALUE;
5410 else if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5411 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5412 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1)))
5414 else
5415 return 0;
5418 /* Try to put the result of the comparison in the sign bit. Assume we can't
5419 do the necessary operation below. */
5421 tem = 0;
5423 /* To see if A <= 0, compute (A | (A - 1)). A <= 0 iff that result has
5424 the sign bit set. */
5426 if (code == LE)
5428 /* This is destructive, so SUBTARGET can't be OP0. */
5429 if (rtx_equal_p (subtarget, op0))
5430 subtarget = 0;
5432 tem = expand_binop (mode, sub_optab, op0, const1_rtx, subtarget, 0,
5433 OPTAB_WIDEN);
5434 if (tem)
5435 tem = expand_binop (mode, ior_optab, op0, tem, subtarget, 0,
5436 OPTAB_WIDEN);
5439 /* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
5440 number of bits in the mode of OP0, minus one. */
5442 if (code == GT)
5444 if (rtx_equal_p (subtarget, op0))
5445 subtarget = 0;
5447 tem = expand_shift (RSHIFT_EXPR, mode, op0,
5448 size_int (GET_MODE_BITSIZE (mode) - 1),
5449 subtarget, 0);
5450 tem = expand_binop (mode, sub_optab, tem, op0, subtarget, 0,
5451 OPTAB_WIDEN);
5454 if (code == EQ || code == NE)
5456 /* For EQ or NE, one way to do the comparison is to apply an operation
5457 that converts the operand into a positive number if it is nonzero
5458 or zero if it was originally zero. Then, for EQ, we subtract 1 and
5459 for NE we negate. This puts the result in the sign bit. Then we
5460 normalize with a shift, if needed.
5462 Two operations that can do the above actions are ABS and FFS, so try
5463 them. If that doesn't work, and MODE is smaller than a full word,
5464 we can use zero-extension to the wider mode (an unsigned conversion)
5465 as the operation. */
5467 /* Note that ABS doesn't yield a positive number for INT_MIN, but
5468 that is compensated by the subsequent overflow when subtracting
5469 one / negating. */
5471 if (abs_optab->handlers[mode].insn_code != CODE_FOR_nothing)
5472 tem = expand_unop (mode, abs_optab, op0, subtarget, 1);
5473 else if (ffs_optab->handlers[mode].insn_code != CODE_FOR_nothing)
5474 tem = expand_unop (mode, ffs_optab, op0, subtarget, 1);
5475 else if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5477 tem = convert_modes (word_mode, mode, op0, 1);
5478 mode = word_mode;
5481 if (tem != 0)
5483 if (code == EQ)
5484 tem = expand_binop (mode, sub_optab, tem, const1_rtx, subtarget,
5485 0, OPTAB_WIDEN);
5486 else
5487 tem = expand_unop (mode, neg_optab, tem, subtarget, 0);
5490 /* If we couldn't do it that way, for NE we can "or" the two's complement
5491 of the value with itself. For EQ, we take the one's complement of
5492 that "or", which is an extra insn, so we only handle EQ if branches
5493 are expensive. */
5495 if (tem == 0 && (code == NE || BRANCH_COST > 1))
5497 if (rtx_equal_p (subtarget, op0))
5498 subtarget = 0;
5500 tem = expand_unop (mode, neg_optab, op0, subtarget, 0);
5501 tem = expand_binop (mode, ior_optab, tem, op0, subtarget, 0,
5502 OPTAB_WIDEN);
5504 if (tem && code == EQ)
5505 tem = expand_unop (mode, one_cmpl_optab, tem, subtarget, 0);
5509 if (tem && normalizep)
5510 tem = expand_shift (RSHIFT_EXPR, mode, tem,
5511 size_int (GET_MODE_BITSIZE (mode) - 1),
5512 subtarget, normalizep == 1);
5514 if (tem)
5516 if (GET_MODE (tem) != target_mode)
5518 convert_move (target, tem, 0);
5519 tem = target;
5521 else if (!subtarget)
5523 emit_move_insn (target, tem);
5524 tem = target;
5527 else
5528 delete_insns_since (last);
5530 return tem;
5533 /* Like emit_store_flag, but always succeeds. */
5536 emit_store_flag_force (rtx target, enum rtx_code code, rtx op0, rtx op1,
5537 enum machine_mode mode, int unsignedp, int normalizep)
5539 rtx tem, label;
5541 /* First see if emit_store_flag can do the job. */
5542 tem = emit_store_flag (target, code, op0, op1, mode, unsignedp, normalizep);
5543 if (tem != 0)
5544 return tem;
5546 if (normalizep == 0)
5547 normalizep = 1;
5549 /* If this failed, we have to do this with set/compare/jump/set code. */
5551 if (!REG_P (target)
5552 || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
5553 target = gen_reg_rtx (GET_MODE (target));
5555 emit_move_insn (target, const1_rtx);
5556 label = gen_label_rtx ();
5557 do_compare_rtx_and_jump (op0, op1, code, unsignedp, mode, NULL_RTX,
5558 NULL_RTX, label);
5560 emit_move_insn (target, const0_rtx);
5561 emit_label (label);
5563 return target;
5566 /* Perform possibly multi-word comparison and conditional jump to LABEL
5567 if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE. This is
5568 now a thin wrapper around do_compare_rtx_and_jump. */
5570 static void
5571 do_cmp_and_jump (rtx arg1, rtx arg2, enum rtx_code op, enum machine_mode mode,
5572 rtx label)
5574 int unsignedp = (op == LTU || op == LEU || op == GTU || op == GEU);
5575 do_compare_rtx_and_jump (arg1, arg2, op, unsignedp, mode,
5576 NULL_RTX, NULL_RTX, label);