* c-common.c (catenate_strings): New.
[official-gcc.git] / gcc / reload1.c
blob106d547a1bdc98dffcd6620b0a4ee918de53cbe9
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
27 #include "machmode.h"
28 #include "hard-reg-set.h"
29 #include "rtl.h"
30 #include "tm_p.h"
31 #include "obstack.h"
32 #include "insn-config.h"
33 #include "flags.h"
34 #include "function.h"
35 #include "expr.h"
36 #include "optabs.h"
37 #include "regs.h"
38 #include "basic-block.h"
39 #include "reload.h"
40 #include "recog.h"
41 #include "output.h"
42 #include "real.h"
43 #include "toplev.h"
44 #include "except.h"
45 #include "tree.h"
47 /* This file contains the reload pass of the compiler, which is
48 run after register allocation has been done. It checks that
49 each insn is valid (operands required to be in registers really
50 are in registers of the proper class) and fixes up invalid ones
51 by copying values temporarily into registers for the insns
52 that need them.
54 The results of register allocation are described by the vector
55 reg_renumber; the insns still contain pseudo regs, but reg_renumber
56 can be used to find which hard reg, if any, a pseudo reg is in.
58 The technique we always use is to free up a few hard regs that are
59 called ``reload regs'', and for each place where a pseudo reg
60 must be in a hard reg, copy it temporarily into one of the reload regs.
62 Reload regs are allocated locally for every instruction that needs
63 reloads. When there are pseudos which are allocated to a register that
64 has been chosen as a reload reg, such pseudos must be ``spilled''.
65 This means that they go to other hard regs, or to stack slots if no other
66 available hard regs can be found. Spilling can invalidate more
67 insns, requiring additional need for reloads, so we must keep checking
68 until the process stabilizes.
70 For machines with different classes of registers, we must keep track
71 of the register class needed for each reload, and make sure that
72 we allocate enough reload registers of each class.
74 The file reload.c contains the code that checks one insn for
75 validity and reports the reloads that it needs. This file
76 is in charge of scanning the entire rtl code, accumulating the
77 reload needs, spilling, assigning reload registers to use for
78 fixing up each insn, and generating the new insns to copy values
79 into the reload registers. */
81 /* During reload_as_needed, element N contains a REG rtx for the hard reg
82 into which reg N has been reloaded (perhaps for a previous insn). */
83 static rtx *reg_last_reload_reg;
85 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
86 for an output reload that stores into reg N. */
87 static char *reg_has_output_reload;
89 /* Indicates which hard regs are reload-registers for an output reload
90 in the current insn. */
91 static HARD_REG_SET reg_is_output_reload;
93 /* Element N is the constant value to which pseudo reg N is equivalent,
94 or zero if pseudo reg N is not equivalent to a constant.
95 find_reloads looks at this in order to replace pseudo reg N
96 with the constant it stands for. */
97 rtx *reg_equiv_constant;
99 /* Element N is a memory location to which pseudo reg N is equivalent,
100 prior to any register elimination (such as frame pointer to stack
101 pointer). Depending on whether or not it is a valid address, this value
102 is transferred to either reg_equiv_address or reg_equiv_mem. */
103 rtx *reg_equiv_memory_loc;
105 /* We allocate reg_equiv_memory_loc inside a varray so that the garbage
106 collector can keep track of what is inside. */
107 varray_type reg_equiv_memory_loc_varray;
109 /* Element N is the address of stack slot to which pseudo reg N is equivalent.
110 This is used when the address is not valid as a memory address
111 (because its displacement is too big for the machine.) */
112 rtx *reg_equiv_address;
114 /* Element N is the memory slot to which pseudo reg N is equivalent,
115 or zero if pseudo reg N is not equivalent to a memory slot. */
116 rtx *reg_equiv_mem;
118 /* Widest width in which each pseudo reg is referred to (via subreg). */
119 static unsigned int *reg_max_ref_width;
121 /* Element N is the list of insns that initialized reg N from its equivalent
122 constant or memory slot. */
123 static rtx *reg_equiv_init;
125 /* Vector to remember old contents of reg_renumber before spilling. */
126 static short *reg_old_renumber;
128 /* During reload_as_needed, element N contains the last pseudo regno reloaded
129 into hard register N. If that pseudo reg occupied more than one register,
130 reg_reloaded_contents points to that pseudo for each spill register in
131 use; all of these must remain set for an inheritance to occur. */
132 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
134 /* During reload_as_needed, element N contains the insn for which
135 hard register N was last used. Its contents are significant only
136 when reg_reloaded_valid is set for this register. */
137 static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
139 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
140 static HARD_REG_SET reg_reloaded_valid;
141 /* Indicate if the register was dead at the end of the reload.
142 This is only valid if reg_reloaded_contents is set and valid. */
143 static HARD_REG_SET reg_reloaded_dead;
145 /* Indicate whether the register's current value is one that is not
146 safe to retain across a call, even for registers that are normally
147 call-saved. */
148 static HARD_REG_SET reg_reloaded_call_part_clobbered;
150 /* Number of spill-regs so far; number of valid elements of spill_regs. */
151 static int n_spills;
153 /* In parallel with spill_regs, contains REG rtx's for those regs.
154 Holds the last rtx used for any given reg, or 0 if it has never
155 been used for spilling yet. This rtx is reused, provided it has
156 the proper mode. */
157 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
159 /* In parallel with spill_regs, contains nonzero for a spill reg
160 that was stored after the last time it was used.
161 The precise value is the insn generated to do the store. */
162 static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
164 /* This is the register that was stored with spill_reg_store. This is a
165 copy of reload_out / reload_out_reg when the value was stored; if
166 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
167 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
169 /* This table is the inverse mapping of spill_regs:
170 indexed by hard reg number,
171 it contains the position of that reg in spill_regs,
172 or -1 for something that is not in spill_regs.
174 ?!? This is no longer accurate. */
175 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
177 /* This reg set indicates registers that can't be used as spill registers for
178 the currently processed insn. These are the hard registers which are live
179 during the insn, but not allocated to pseudos, as well as fixed
180 registers. */
181 static HARD_REG_SET bad_spill_regs;
183 /* These are the hard registers that can't be used as spill register for any
184 insn. This includes registers used for user variables and registers that
185 we can't eliminate. A register that appears in this set also can't be used
186 to retry register allocation. */
187 static HARD_REG_SET bad_spill_regs_global;
189 /* Describes order of use of registers for reloading
190 of spilled pseudo-registers. `n_spills' is the number of
191 elements that are actually valid; new ones are added at the end.
193 Both spill_regs and spill_reg_order are used on two occasions:
194 once during find_reload_regs, where they keep track of the spill registers
195 for a single insn, but also during reload_as_needed where they show all
196 the registers ever used by reload. For the latter case, the information
197 is calculated during finish_spills. */
198 static short spill_regs[FIRST_PSEUDO_REGISTER];
200 /* This vector of reg sets indicates, for each pseudo, which hard registers
201 may not be used for retrying global allocation because the register was
202 formerly spilled from one of them. If we allowed reallocating a pseudo to
203 a register that it was already allocated to, reload might not
204 terminate. */
205 static HARD_REG_SET *pseudo_previous_regs;
207 /* This vector of reg sets indicates, for each pseudo, which hard
208 registers may not be used for retrying global allocation because they
209 are used as spill registers during one of the insns in which the
210 pseudo is live. */
211 static HARD_REG_SET *pseudo_forbidden_regs;
213 /* All hard regs that have been used as spill registers for any insn are
214 marked in this set. */
215 static HARD_REG_SET used_spill_regs;
217 /* Index of last register assigned as a spill register. We allocate in
218 a round-robin fashion. */
219 static int last_spill_reg;
221 /* Nonzero if indirect addressing is supported on the machine; this means
222 that spilling (REG n) does not require reloading it into a register in
223 order to do (MEM (REG n)) or (MEM (PLUS (REG n) (CONST_INT c))). The
224 value indicates the level of indirect addressing supported, e.g., two
225 means that (MEM (MEM (REG n))) is also valid if (REG n) does not get
226 a hard register. */
227 static char spill_indirect_levels;
229 /* Nonzero if indirect addressing is supported when the innermost MEM is
230 of the form (MEM (SYMBOL_REF sym)). It is assumed that the level to
231 which these are valid is the same as spill_indirect_levels, above. */
232 char indirect_symref_ok;
234 /* Nonzero if an address (plus (reg frame_pointer) (reg ...)) is valid. */
235 char double_reg_address_ok;
237 /* Record the stack slot for each spilled hard register. */
238 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
240 /* Width allocated so far for that stack slot. */
241 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
243 /* Record which pseudos needed to be spilled. */
244 static regset_head spilled_pseudos;
246 /* Used for communication between order_regs_for_reload and count_pseudo.
247 Used to avoid counting one pseudo twice. */
248 static regset_head pseudos_counted;
250 /* First uid used by insns created by reload in this function.
251 Used in find_equiv_reg. */
252 int reload_first_uid;
254 /* Flag set by local-alloc or global-alloc if anything is live in
255 a call-clobbered reg across calls. */
256 int caller_save_needed;
258 /* Set to 1 while reload_as_needed is operating.
259 Required by some machines to handle any generated moves differently. */
260 int reload_in_progress = 0;
262 /* These arrays record the insn_code of insns that may be needed to
263 perform input and output reloads of special objects. They provide a
264 place to pass a scratch register. */
265 enum insn_code reload_in_optab[NUM_MACHINE_MODES];
266 enum insn_code reload_out_optab[NUM_MACHINE_MODES];
268 /* This obstack is used for allocation of rtl during register elimination.
269 The allocated storage can be freed once find_reloads has processed the
270 insn. */
271 struct obstack reload_obstack;
273 /* Points to the beginning of the reload_obstack. All insn_chain structures
274 are allocated first. */
275 char *reload_startobj;
277 /* The point after all insn_chain structures. Used to quickly deallocate
278 memory allocated in copy_reloads during calculate_needs_all_insns. */
279 char *reload_firstobj;
281 /* This points before all local rtl generated by register elimination.
282 Used to quickly free all memory after processing one insn. */
283 static char *reload_insn_firstobj;
285 /* List of insn_chain instructions, one for every insn that reload needs to
286 examine. */
287 struct insn_chain *reload_insn_chain;
289 /* List of all insns needing reloads. */
290 static struct insn_chain *insns_need_reload;
292 /* This structure is used to record information about register eliminations.
293 Each array entry describes one possible way of eliminating a register
294 in favor of another. If there is more than one way of eliminating a
295 particular register, the most preferred should be specified first. */
297 struct elim_table
299 int from; /* Register number to be eliminated. */
300 int to; /* Register number used as replacement. */
301 HOST_WIDE_INT initial_offset; /* Initial difference between values. */
302 int can_eliminate; /* Nonzero if this elimination can be done. */
303 int can_eliminate_previous; /* Value of CAN_ELIMINATE in previous scan over
304 insns made by reload. */
305 HOST_WIDE_INT offset; /* Current offset between the two regs. */
306 HOST_WIDE_INT previous_offset;/* Offset at end of previous insn. */
307 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
308 rtx from_rtx; /* REG rtx for the register to be eliminated.
309 We cannot simply compare the number since
310 we might then spuriously replace a hard
311 register corresponding to a pseudo
312 assigned to the reg to be eliminated. */
313 rtx to_rtx; /* REG rtx for the replacement. */
316 static struct elim_table *reg_eliminate = 0;
318 /* This is an intermediate structure to initialize the table. It has
319 exactly the members provided by ELIMINABLE_REGS. */
320 static const struct elim_table_1
322 const int from;
323 const int to;
324 } reg_eliminate_1[] =
326 /* If a set of eliminable registers was specified, define the table from it.
327 Otherwise, default to the normal case of the frame pointer being
328 replaced by the stack pointer. */
330 #ifdef ELIMINABLE_REGS
331 ELIMINABLE_REGS;
332 #else
333 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
334 #endif
336 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
338 /* Record the number of pending eliminations that have an offset not equal
339 to their initial offset. If nonzero, we use a new copy of each
340 replacement result in any insns encountered. */
341 int num_not_at_initial_offset;
343 /* Count the number of registers that we may be able to eliminate. */
344 static int num_eliminable;
345 /* And the number of registers that are equivalent to a constant that
346 can be eliminated to frame_pointer / arg_pointer + constant. */
347 static int num_eliminable_invariants;
349 /* For each label, we record the offset of each elimination. If we reach
350 a label by more than one path and an offset differs, we cannot do the
351 elimination. This information is indexed by the difference of the
352 number of the label and the first label number. We can't offset the
353 pointer itself as this can cause problems on machines with segmented
354 memory. The first table is an array of flags that records whether we
355 have yet encountered a label and the second table is an array of arrays,
356 one entry in the latter array for each elimination. */
358 static int first_label_num;
359 static char *offsets_known_at;
360 static HOST_WIDE_INT (*offsets_at)[NUM_ELIMINABLE_REGS];
362 /* Number of labels in the current function. */
364 static int num_labels;
366 static void replace_pseudos_in (rtx *, enum machine_mode, rtx);
367 static void maybe_fix_stack_asms (void);
368 static void copy_reloads (struct insn_chain *);
369 static void calculate_needs_all_insns (int);
370 static int find_reg (struct insn_chain *, int);
371 static void find_reload_regs (struct insn_chain *);
372 static void select_reload_regs (void);
373 static void delete_caller_save_insns (void);
375 static void spill_failure (rtx, enum reg_class);
376 static void count_spilled_pseudo (int, int, int);
377 static void delete_dead_insn (rtx);
378 static void alter_reg (int, int);
379 static void set_label_offsets (rtx, rtx, int);
380 static void check_eliminable_occurrences (rtx);
381 static void elimination_effects (rtx, enum machine_mode);
382 static int eliminate_regs_in_insn (rtx, int);
383 static void update_eliminable_offsets (void);
384 static void mark_not_eliminable (rtx, rtx, void *);
385 static void set_initial_elim_offsets (void);
386 static void verify_initial_elim_offsets (void);
387 static void set_initial_label_offsets (void);
388 static void set_offsets_for_label (rtx);
389 static void init_elim_table (void);
390 static void update_eliminables (HARD_REG_SET *);
391 static void spill_hard_reg (unsigned int, int);
392 static int finish_spills (int);
393 static void scan_paradoxical_subregs (rtx);
394 static void count_pseudo (int);
395 static void order_regs_for_reload (struct insn_chain *);
396 static void reload_as_needed (int);
397 static void forget_old_reloads_1 (rtx, rtx, void *);
398 static int reload_reg_class_lower (const void *, const void *);
399 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
400 enum machine_mode);
401 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
402 enum machine_mode);
403 static int reload_reg_free_p (unsigned int, int, enum reload_type);
404 static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
405 rtx, rtx, int, int);
406 static int free_for_value_p (int, enum machine_mode, int, enum reload_type,
407 rtx, rtx, int, int);
408 static int function_invariant_p (rtx);
409 static int reload_reg_reaches_end_p (unsigned int, int, enum reload_type);
410 static int allocate_reload_reg (struct insn_chain *, int, int);
411 static int conflicts_with_override (rtx);
412 static void failed_reload (rtx, int);
413 static int set_reload_reg (int, int);
414 static void choose_reload_regs_init (struct insn_chain *, rtx *);
415 static void choose_reload_regs (struct insn_chain *);
416 static void merge_assigned_reloads (rtx);
417 static void emit_input_reload_insns (struct insn_chain *, struct reload *,
418 rtx, int);
419 static void emit_output_reload_insns (struct insn_chain *, struct reload *,
420 int);
421 static void do_input_reload (struct insn_chain *, struct reload *, int);
422 static void do_output_reload (struct insn_chain *, struct reload *, int);
423 static bool inherit_piecemeal_p (int, int);
424 static void emit_reload_insns (struct insn_chain *);
425 static void delete_output_reload (rtx, int, int);
426 static void delete_address_reloads (rtx, rtx);
427 static void delete_address_reloads_1 (rtx, rtx, rtx);
428 static rtx inc_for_reload (rtx, rtx, rtx, int);
429 #ifdef AUTO_INC_DEC
430 static void add_auto_inc_notes (rtx, rtx);
431 #endif
432 static void copy_eh_notes (rtx, rtx);
434 /* Initialize the reload pass once per compilation. */
436 void
437 init_reload (void)
439 int i;
441 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
442 Set spill_indirect_levels to the number of levels such addressing is
443 permitted, zero if it is not permitted at all. */
445 rtx tem
446 = gen_rtx_MEM (Pmode,
447 gen_rtx_PLUS (Pmode,
448 gen_rtx_REG (Pmode,
449 LAST_VIRTUAL_REGISTER + 1),
450 GEN_INT (4)));
451 spill_indirect_levels = 0;
453 while (memory_address_p (QImode, tem))
455 spill_indirect_levels++;
456 tem = gen_rtx_MEM (Pmode, tem);
459 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
461 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
462 indirect_symref_ok = memory_address_p (QImode, tem);
464 /* See if reg+reg is a valid (and offsettable) address. */
466 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
468 tem = gen_rtx_PLUS (Pmode,
469 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
470 gen_rtx_REG (Pmode, i));
472 /* This way, we make sure that reg+reg is an offsettable address. */
473 tem = plus_constant (tem, 4);
475 if (memory_address_p (QImode, tem))
477 double_reg_address_ok = 1;
478 break;
482 /* Initialize obstack for our rtl allocation. */
483 gcc_obstack_init (&reload_obstack);
484 reload_startobj = obstack_alloc (&reload_obstack, 0);
486 INIT_REG_SET (&spilled_pseudos);
487 INIT_REG_SET (&pseudos_counted);
488 VARRAY_RTX_INIT (reg_equiv_memory_loc_varray, 0, "reg_equiv_memory_loc");
491 /* List of insn chains that are currently unused. */
492 static struct insn_chain *unused_insn_chains = 0;
494 /* Allocate an empty insn_chain structure. */
495 struct insn_chain *
496 new_insn_chain (void)
498 struct insn_chain *c;
500 if (unused_insn_chains == 0)
502 c = obstack_alloc (&reload_obstack, sizeof (struct insn_chain));
503 INIT_REG_SET (&c->live_throughout);
504 INIT_REG_SET (&c->dead_or_set);
506 else
508 c = unused_insn_chains;
509 unused_insn_chains = c->next;
511 c->is_caller_save_insn = 0;
512 c->need_operand_change = 0;
513 c->need_reload = 0;
514 c->need_elim = 0;
515 return c;
518 /* Small utility function to set all regs in hard reg set TO which are
519 allocated to pseudos in regset FROM. */
521 void
522 compute_use_by_pseudos (HARD_REG_SET *to, regset from)
524 unsigned int regno;
525 reg_set_iterator rsi;
527 EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
529 int r = reg_renumber[regno];
530 int nregs;
532 if (r < 0)
534 /* reload_combine uses the information from
535 BASIC_BLOCK->global_live_at_start, which might still
536 contain registers that have not actually been allocated
537 since they have an equivalence. */
538 gcc_assert (reload_completed);
540 else
542 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (regno)];
543 while (nregs-- > 0)
544 SET_HARD_REG_BIT (*to, r + nregs);
549 /* Replace all pseudos found in LOC with their corresponding
550 equivalences. */
552 static void
553 replace_pseudos_in (rtx *loc, enum machine_mode mem_mode, rtx usage)
555 rtx x = *loc;
556 enum rtx_code code;
557 const char *fmt;
558 int i, j;
560 if (! x)
561 return;
563 code = GET_CODE (x);
564 if (code == REG)
566 unsigned int regno = REGNO (x);
568 if (regno < FIRST_PSEUDO_REGISTER)
569 return;
571 x = eliminate_regs (x, mem_mode, usage);
572 if (x != *loc)
574 *loc = x;
575 replace_pseudos_in (loc, mem_mode, usage);
576 return;
579 if (reg_equiv_constant[regno])
580 *loc = reg_equiv_constant[regno];
581 else if (reg_equiv_mem[regno])
582 *loc = reg_equiv_mem[regno];
583 else if (reg_equiv_address[regno])
584 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address[regno]);
585 else
587 gcc_assert (!REG_P (regno_reg_rtx[regno])
588 || REGNO (regno_reg_rtx[regno]) != regno);
589 *loc = regno_reg_rtx[regno];
592 return;
594 else if (code == MEM)
596 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
597 return;
600 /* Process each of our operands recursively. */
601 fmt = GET_RTX_FORMAT (code);
602 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
603 if (*fmt == 'e')
604 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
605 else if (*fmt == 'E')
606 for (j = 0; j < XVECLEN (x, i); j++)
607 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
611 /* Global variables used by reload and its subroutines. */
613 /* Set during calculate_needs if an insn needs register elimination. */
614 static int something_needs_elimination;
615 /* Set during calculate_needs if an insn needs an operand changed. */
616 int something_needs_operands_changed;
618 /* Nonzero means we couldn't get enough spill regs. */
619 static int failure;
621 /* Main entry point for the reload pass.
623 FIRST is the first insn of the function being compiled.
625 GLOBAL nonzero means we were called from global_alloc
626 and should attempt to reallocate any pseudoregs that we
627 displace from hard regs we will use for reloads.
628 If GLOBAL is zero, we do not have enough information to do that,
629 so any pseudo reg that is spilled must go to the stack.
631 Return value is nonzero if reload failed
632 and we must not do any more for this function. */
635 reload (rtx first, int global)
637 int i;
638 rtx insn;
639 struct elim_table *ep;
640 basic_block bb;
642 /* Make sure even insns with volatile mem refs are recognizable. */
643 init_recog ();
645 failure = 0;
647 reload_firstobj = obstack_alloc (&reload_obstack, 0);
649 /* Make sure that the last insn in the chain
650 is not something that needs reloading. */
651 emit_note (NOTE_INSN_DELETED);
653 /* Enable find_equiv_reg to distinguish insns made by reload. */
654 reload_first_uid = get_max_uid ();
656 #ifdef SECONDARY_MEMORY_NEEDED
657 /* Initialize the secondary memory table. */
658 clear_secondary_mem ();
659 #endif
661 /* We don't have a stack slot for any spill reg yet. */
662 memset (spill_stack_slot, 0, sizeof spill_stack_slot);
663 memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
665 /* Initialize the save area information for caller-save, in case some
666 are needed. */
667 init_save_areas ();
669 /* Compute which hard registers are now in use
670 as homes for pseudo registers.
671 This is done here rather than (eg) in global_alloc
672 because this point is reached even if not optimizing. */
673 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
674 mark_home_live (i);
676 /* A function that receives a nonlocal goto must save all call-saved
677 registers. */
678 if (current_function_has_nonlocal_label)
679 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
680 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
681 regs_ever_live[i] = 1;
683 #ifdef NON_SAVING_SETJMP
684 /* A function that calls setjmp should save and restore all the
685 call-saved registers on a system where longjmp clobbers them. */
686 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
688 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
689 if (! call_used_regs[i])
690 regs_ever_live[i] = 1;
692 #endif
694 /* Find all the pseudo registers that didn't get hard regs
695 but do have known equivalent constants or memory slots.
696 These include parameters (known equivalent to parameter slots)
697 and cse'd or loop-moved constant memory addresses.
699 Record constant equivalents in reg_equiv_constant
700 so they will be substituted by find_reloads.
701 Record memory equivalents in reg_mem_equiv so they can
702 be substituted eventually by altering the REG-rtx's. */
704 reg_equiv_constant = xcalloc (max_regno, sizeof (rtx));
705 reg_equiv_mem = xcalloc (max_regno, sizeof (rtx));
706 reg_equiv_init = xcalloc (max_regno, sizeof (rtx));
707 reg_equiv_address = xcalloc (max_regno, sizeof (rtx));
708 reg_max_ref_width = xcalloc (max_regno, sizeof (int));
709 reg_old_renumber = xcalloc (max_regno, sizeof (short));
710 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
711 pseudo_forbidden_regs = xmalloc (max_regno * sizeof (HARD_REG_SET));
712 pseudo_previous_regs = xcalloc (max_regno, sizeof (HARD_REG_SET));
714 CLEAR_HARD_REG_SET (bad_spill_regs_global);
716 /* Look for REG_EQUIV notes; record what each pseudo is equivalent
717 to. Also find all paradoxical subregs and find largest such for
718 each pseudo. */
720 num_eliminable_invariants = 0;
721 for (insn = first; insn; insn = NEXT_INSN (insn))
723 rtx set = single_set (insn);
725 /* We may introduce USEs that we want to remove at the end, so
726 we'll mark them with QImode. Make sure there are no
727 previously-marked insns left by say regmove. */
728 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
729 && GET_MODE (insn) != VOIDmode)
730 PUT_MODE (insn, VOIDmode);
732 if (set != 0 && REG_P (SET_DEST (set)))
734 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
735 if (note
736 && (! function_invariant_p (XEXP (note, 0))
737 || ! flag_pic
738 /* A function invariant is often CONSTANT_P but may
739 include a register. We promise to only pass
740 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
741 || (CONSTANT_P (XEXP (note, 0))
742 && LEGITIMATE_PIC_OPERAND_P (XEXP (note, 0)))))
744 rtx x = XEXP (note, 0);
745 i = REGNO (SET_DEST (set));
746 if (i > LAST_VIRTUAL_REGISTER)
748 /* It can happen that a REG_EQUIV note contains a MEM
749 that is not a legitimate memory operand. As later
750 stages of reload assume that all addresses found
751 in the reg_equiv_* arrays were originally legitimate,
752 we ignore such REG_EQUIV notes. */
753 if (memory_operand (x, VOIDmode))
755 /* Always unshare the equivalence, so we can
756 substitute into this insn without touching the
757 equivalence. */
758 reg_equiv_memory_loc[i] = copy_rtx (x);
760 else if (function_invariant_p (x))
762 if (GET_CODE (x) == PLUS)
764 /* This is PLUS of frame pointer and a constant,
765 and might be shared. Unshare it. */
766 reg_equiv_constant[i] = copy_rtx (x);
767 num_eliminable_invariants++;
769 else if (x == frame_pointer_rtx
770 || x == arg_pointer_rtx)
772 reg_equiv_constant[i] = x;
773 num_eliminable_invariants++;
775 else if (LEGITIMATE_CONSTANT_P (x))
776 reg_equiv_constant[i] = x;
777 else
779 reg_equiv_memory_loc[i]
780 = force_const_mem (GET_MODE (SET_DEST (set)), x);
781 if (!reg_equiv_memory_loc[i])
782 continue;
785 else
786 continue;
788 /* If this register is being made equivalent to a MEM
789 and the MEM is not SET_SRC, the equivalencing insn
790 is one with the MEM as a SET_DEST and it occurs later.
791 So don't mark this insn now. */
792 if (!MEM_P (x)
793 || rtx_equal_p (SET_SRC (set), x))
794 reg_equiv_init[i]
795 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[i]);
800 /* If this insn is setting a MEM from a register equivalent to it,
801 this is the equivalencing insn. */
802 else if (set && MEM_P (SET_DEST (set))
803 && REG_P (SET_SRC (set))
804 && reg_equiv_memory_loc[REGNO (SET_SRC (set))]
805 && rtx_equal_p (SET_DEST (set),
806 reg_equiv_memory_loc[REGNO (SET_SRC (set))]))
807 reg_equiv_init[REGNO (SET_SRC (set))]
808 = gen_rtx_INSN_LIST (VOIDmode, insn,
809 reg_equiv_init[REGNO (SET_SRC (set))]);
811 if (INSN_P (insn))
812 scan_paradoxical_subregs (PATTERN (insn));
815 init_elim_table ();
817 first_label_num = get_first_label_num ();
818 num_labels = max_label_num () - first_label_num;
820 /* Allocate the tables used to store offset information at labels. */
821 /* We used to use alloca here, but the size of what it would try to
822 allocate would occasionally cause it to exceed the stack limit and
823 cause a core dump. */
824 offsets_known_at = xmalloc (num_labels);
825 offsets_at = xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (HOST_WIDE_INT));
827 /* Alter each pseudo-reg rtx to contain its hard reg number.
828 Assign stack slots to the pseudos that lack hard regs or equivalents.
829 Do not touch virtual registers. */
831 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
832 alter_reg (i, -1);
834 /* If we have some registers we think can be eliminated, scan all insns to
835 see if there is an insn that sets one of these registers to something
836 other than itself plus a constant. If so, the register cannot be
837 eliminated. Doing this scan here eliminates an extra pass through the
838 main reload loop in the most common case where register elimination
839 cannot be done. */
840 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
841 if (INSN_P (insn))
842 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
844 maybe_fix_stack_asms ();
846 insns_need_reload = 0;
847 something_needs_elimination = 0;
849 /* Initialize to -1, which means take the first spill register. */
850 last_spill_reg = -1;
852 /* Spill any hard regs that we know we can't eliminate. */
853 CLEAR_HARD_REG_SET (used_spill_regs);
854 /* There can be multiple ways to eliminate a register;
855 they should be listed adjacently.
856 Elimination for any register fails only if all possible ways fail. */
857 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
859 int from = ep->from;
860 int can_eliminate = 0;
863 can_eliminate |= ep->can_eliminate;
864 ep++;
866 while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
867 if (! can_eliminate)
868 spill_hard_reg (from, 1);
871 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
872 if (frame_pointer_needed)
873 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
874 #endif
875 finish_spills (global);
877 /* From now on, we may need to generate moves differently. We may also
878 allow modifications of insns which cause them to not be recognized.
879 Any such modifications will be cleaned up during reload itself. */
880 reload_in_progress = 1;
882 /* This loop scans the entire function each go-round
883 and repeats until one repetition spills no additional hard regs. */
884 for (;;)
886 int something_changed;
887 int did_spill;
889 HOST_WIDE_INT starting_frame_size;
891 /* Round size of stack frame to stack_alignment_needed. This must be done
892 here because the stack size may be a part of the offset computation
893 for register elimination, and there might have been new stack slots
894 created in the last iteration of this loop. */
895 if (cfun->stack_alignment_needed)
896 assign_stack_local (BLKmode, 0, cfun->stack_alignment_needed);
898 starting_frame_size = get_frame_size ();
900 set_initial_elim_offsets ();
901 set_initial_label_offsets ();
903 /* For each pseudo register that has an equivalent location defined,
904 try to eliminate any eliminable registers (such as the frame pointer)
905 assuming initial offsets for the replacement register, which
906 is the normal case.
908 If the resulting location is directly addressable, substitute
909 the MEM we just got directly for the old REG.
911 If it is not addressable but is a constant or the sum of a hard reg
912 and constant, it is probably not addressable because the constant is
913 out of range, in that case record the address; we will generate
914 hairy code to compute the address in a register each time it is
915 needed. Similarly if it is a hard register, but one that is not
916 valid as an address register.
918 If the location is not addressable, but does not have one of the
919 above forms, assign a stack slot. We have to do this to avoid the
920 potential of producing lots of reloads if, e.g., a location involves
921 a pseudo that didn't get a hard register and has an equivalent memory
922 location that also involves a pseudo that didn't get a hard register.
924 Perhaps at some point we will improve reload_when_needed handling
925 so this problem goes away. But that's very hairy. */
927 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
928 if (reg_renumber[i] < 0 && reg_equiv_memory_loc[i])
930 rtx x = eliminate_regs (reg_equiv_memory_loc[i], 0, NULL_RTX);
932 if (strict_memory_address_p (GET_MODE (regno_reg_rtx[i]),
933 XEXP (x, 0)))
934 reg_equiv_mem[i] = x, reg_equiv_address[i] = 0;
935 else if (CONSTANT_P (XEXP (x, 0))
936 || (REG_P (XEXP (x, 0))
937 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
938 || (GET_CODE (XEXP (x, 0)) == PLUS
939 && REG_P (XEXP (XEXP (x, 0), 0))
940 && (REGNO (XEXP (XEXP (x, 0), 0))
941 < FIRST_PSEUDO_REGISTER)
942 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
943 reg_equiv_address[i] = XEXP (x, 0), reg_equiv_mem[i] = 0;
944 else
946 /* Make a new stack slot. Then indicate that something
947 changed so we go back and recompute offsets for
948 eliminable registers because the allocation of memory
949 below might change some offset. reg_equiv_{mem,address}
950 will be set up for this pseudo on the next pass around
951 the loop. */
952 reg_equiv_memory_loc[i] = 0;
953 reg_equiv_init[i] = 0;
954 alter_reg (i, -1);
958 if (caller_save_needed)
959 setup_save_areas ();
961 /* If we allocated another stack slot, redo elimination bookkeeping. */
962 if (starting_frame_size != get_frame_size ())
963 continue;
965 if (caller_save_needed)
967 save_call_clobbered_regs ();
968 /* That might have allocated new insn_chain structures. */
969 reload_firstobj = obstack_alloc (&reload_obstack, 0);
972 calculate_needs_all_insns (global);
974 CLEAR_REG_SET (&spilled_pseudos);
975 did_spill = 0;
977 something_changed = 0;
979 /* If we allocated any new memory locations, make another pass
980 since it might have changed elimination offsets. */
981 if (starting_frame_size != get_frame_size ())
982 something_changed = 1;
985 HARD_REG_SET to_spill;
986 CLEAR_HARD_REG_SET (to_spill);
987 update_eliminables (&to_spill);
988 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
989 if (TEST_HARD_REG_BIT (to_spill, i))
991 spill_hard_reg (i, 1);
992 did_spill = 1;
994 /* Regardless of the state of spills, if we previously had
995 a register that we thought we could eliminate, but now can
996 not eliminate, we must run another pass.
998 Consider pseudos which have an entry in reg_equiv_* which
999 reference an eliminable register. We must make another pass
1000 to update reg_equiv_* so that we do not substitute in the
1001 old value from when we thought the elimination could be
1002 performed. */
1003 something_changed = 1;
1007 select_reload_regs ();
1008 if (failure)
1009 goto failed;
1011 if (insns_need_reload != 0 || did_spill)
1012 something_changed |= finish_spills (global);
1014 if (! something_changed)
1015 break;
1017 if (caller_save_needed)
1018 delete_caller_save_insns ();
1020 obstack_free (&reload_obstack, reload_firstobj);
1023 /* If global-alloc was run, notify it of any register eliminations we have
1024 done. */
1025 if (global)
1026 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1027 if (ep->can_eliminate)
1028 mark_elimination (ep->from, ep->to);
1030 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
1031 If that insn didn't set the register (i.e., it copied the register to
1032 memory), just delete that insn instead of the equivalencing insn plus
1033 anything now dead. If we call delete_dead_insn on that insn, we may
1034 delete the insn that actually sets the register if the register dies
1035 there and that is incorrect. */
1037 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1039 if (reg_renumber[i] < 0 && reg_equiv_init[i] != 0)
1041 rtx list;
1042 for (list = reg_equiv_init[i]; list; list = XEXP (list, 1))
1044 rtx equiv_insn = XEXP (list, 0);
1046 /* If we already deleted the insn or if it may trap, we can't
1047 delete it. The latter case shouldn't happen, but can
1048 if an insn has a variable address, gets a REG_EH_REGION
1049 note added to it, and then gets converted into an load
1050 from a constant address. */
1051 if (NOTE_P (equiv_insn)
1052 || can_throw_internal (equiv_insn))
1054 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
1055 delete_dead_insn (equiv_insn);
1056 else
1057 SET_INSN_DELETED (equiv_insn);
1062 /* Use the reload registers where necessary
1063 by generating move instructions to move the must-be-register
1064 values into or out of the reload registers. */
1066 if (insns_need_reload != 0 || something_needs_elimination
1067 || something_needs_operands_changed)
1069 HOST_WIDE_INT old_frame_size = get_frame_size ();
1071 reload_as_needed (global);
1073 gcc_assert (old_frame_size == get_frame_size ());
1075 if (num_eliminable)
1076 verify_initial_elim_offsets ();
1079 /* If we were able to eliminate the frame pointer, show that it is no
1080 longer live at the start of any basic block. If it ls live by
1081 virtue of being in a pseudo, that pseudo will be marked live
1082 and hence the frame pointer will be known to be live via that
1083 pseudo. */
1085 if (! frame_pointer_needed)
1086 FOR_EACH_BB (bb)
1087 CLEAR_REGNO_REG_SET (bb->global_live_at_start,
1088 HARD_FRAME_POINTER_REGNUM);
1090 /* Come here (with failure set nonzero) if we can't get enough spill regs
1091 and we decide not to abort about it. */
1092 failed:
1094 CLEAR_REG_SET (&spilled_pseudos);
1095 reload_in_progress = 0;
1097 /* Now eliminate all pseudo regs by modifying them into
1098 their equivalent memory references.
1099 The REG-rtx's for the pseudos are modified in place,
1100 so all insns that used to refer to them now refer to memory.
1102 For a reg that has a reg_equiv_address, all those insns
1103 were changed by reloading so that no insns refer to it any longer;
1104 but the DECL_RTL of a variable decl may refer to it,
1105 and if so this causes the debugging info to mention the variable. */
1107 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1109 rtx addr = 0;
1111 if (reg_equiv_mem[i])
1112 addr = XEXP (reg_equiv_mem[i], 0);
1114 if (reg_equiv_address[i])
1115 addr = reg_equiv_address[i];
1117 if (addr)
1119 if (reg_renumber[i] < 0)
1121 rtx reg = regno_reg_rtx[i];
1123 REG_USERVAR_P (reg) = 0;
1124 PUT_CODE (reg, MEM);
1125 XEXP (reg, 0) = addr;
1126 if (reg_equiv_memory_loc[i])
1127 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc[i]);
1128 else
1130 MEM_IN_STRUCT_P (reg) = MEM_SCALAR_P (reg) = 0;
1131 MEM_ATTRS (reg) = 0;
1134 else if (reg_equiv_mem[i])
1135 XEXP (reg_equiv_mem[i], 0) = addr;
1139 /* We must set reload_completed now since the cleanup_subreg_operands call
1140 below will re-recognize each insn and reload may have generated insns
1141 which are only valid during and after reload. */
1142 reload_completed = 1;
1144 /* Make a pass over all the insns and delete all USEs which we inserted
1145 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1146 notes. Delete all CLOBBER insns, except those that refer to the return
1147 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1148 from misarranging variable-array code, and simplify (subreg (reg))
1149 operands. Also remove all REG_RETVAL and REG_LIBCALL notes since they
1150 are no longer useful or accurate. Strip and regenerate REG_INC notes
1151 that may have been moved around. */
1153 for (insn = first; insn; insn = NEXT_INSN (insn))
1154 if (INSN_P (insn))
1156 rtx *pnote;
1158 if (CALL_P (insn))
1159 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1160 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1162 if ((GET_CODE (PATTERN (insn)) == USE
1163 /* We mark with QImode USEs introduced by reload itself. */
1164 && (GET_MODE (insn) == QImode
1165 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1166 || (GET_CODE (PATTERN (insn)) == CLOBBER
1167 && (!MEM_P (XEXP (PATTERN (insn), 0))
1168 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1169 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1170 && XEXP (XEXP (PATTERN (insn), 0), 0)
1171 != stack_pointer_rtx))
1172 && (!REG_P (XEXP (PATTERN (insn), 0))
1173 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1175 delete_insn (insn);
1176 continue;
1179 /* Some CLOBBERs may survive until here and still reference unassigned
1180 pseudos with const equivalent, which may in turn cause ICE in later
1181 passes if the reference remains in place. */
1182 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1183 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1184 VOIDmode, PATTERN (insn));
1186 pnote = &REG_NOTES (insn);
1187 while (*pnote != 0)
1189 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1190 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1191 || REG_NOTE_KIND (*pnote) == REG_INC
1192 || REG_NOTE_KIND (*pnote) == REG_RETVAL
1193 || REG_NOTE_KIND (*pnote) == REG_LIBCALL)
1194 *pnote = XEXP (*pnote, 1);
1195 else
1196 pnote = &XEXP (*pnote, 1);
1199 #ifdef AUTO_INC_DEC
1200 add_auto_inc_notes (insn, PATTERN (insn));
1201 #endif
1203 /* And simplify (subreg (reg)) if it appears as an operand. */
1204 cleanup_subreg_operands (insn);
1207 /* If we are doing stack checking, give a warning if this function's
1208 frame size is larger than we expect. */
1209 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1211 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
1212 static int verbose_warned = 0;
1214 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1215 if (regs_ever_live[i] && ! fixed_regs[i] && call_used_regs[i])
1216 size += UNITS_PER_WORD;
1218 if (size > STACK_CHECK_MAX_FRAME_SIZE)
1220 warning ("frame size too large for reliable stack checking");
1221 if (! verbose_warned)
1223 warning ("try reducing the number of local variables");
1224 verbose_warned = 1;
1229 /* Indicate that we no longer have known memory locations or constants. */
1230 if (reg_equiv_constant)
1231 free (reg_equiv_constant);
1232 reg_equiv_constant = 0;
1233 VARRAY_GROW (reg_equiv_memory_loc_varray, 0);
1234 reg_equiv_memory_loc = 0;
1236 if (offsets_known_at)
1237 free (offsets_known_at);
1238 if (offsets_at)
1239 free (offsets_at);
1241 free (reg_equiv_mem);
1242 free (reg_equiv_init);
1243 free (reg_equiv_address);
1244 free (reg_max_ref_width);
1245 free (reg_old_renumber);
1246 free (pseudo_previous_regs);
1247 free (pseudo_forbidden_regs);
1249 CLEAR_HARD_REG_SET (used_spill_regs);
1250 for (i = 0; i < n_spills; i++)
1251 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1253 /* Free all the insn_chain structures at once. */
1254 obstack_free (&reload_obstack, reload_startobj);
1255 unused_insn_chains = 0;
1256 fixup_abnormal_edges ();
1258 /* Replacing pseudos with their memory equivalents might have
1259 created shared rtx. Subsequent passes would get confused
1260 by this, so unshare everything here. */
1261 unshare_all_rtl_again (first);
1263 #ifdef STACK_BOUNDARY
1264 /* init_emit has set the alignment of the hard frame pointer
1265 to STACK_BOUNDARY. It is very likely no longer valid if
1266 the hard frame pointer was used for register allocation. */
1267 if (!frame_pointer_needed)
1268 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1269 #endif
1271 return failure;
1274 /* Yet another special case. Unfortunately, reg-stack forces people to
1275 write incorrect clobbers in asm statements. These clobbers must not
1276 cause the register to appear in bad_spill_regs, otherwise we'll call
1277 fatal_insn later. We clear the corresponding regnos in the live
1278 register sets to avoid this.
1279 The whole thing is rather sick, I'm afraid. */
1281 static void
1282 maybe_fix_stack_asms (void)
1284 #ifdef STACK_REGS
1285 const char *constraints[MAX_RECOG_OPERANDS];
1286 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1287 struct insn_chain *chain;
1289 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1291 int i, noperands;
1292 HARD_REG_SET clobbered, allowed;
1293 rtx pat;
1295 if (! INSN_P (chain->insn)
1296 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1297 continue;
1298 pat = PATTERN (chain->insn);
1299 if (GET_CODE (pat) != PARALLEL)
1300 continue;
1302 CLEAR_HARD_REG_SET (clobbered);
1303 CLEAR_HARD_REG_SET (allowed);
1305 /* First, make a mask of all stack regs that are clobbered. */
1306 for (i = 0; i < XVECLEN (pat, 0); i++)
1308 rtx t = XVECEXP (pat, 0, i);
1309 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1310 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1313 /* Get the operand values and constraints out of the insn. */
1314 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1315 constraints, operand_mode);
1317 /* For every operand, see what registers are allowed. */
1318 for (i = 0; i < noperands; i++)
1320 const char *p = constraints[i];
1321 /* For every alternative, we compute the class of registers allowed
1322 for reloading in CLS, and merge its contents into the reg set
1323 ALLOWED. */
1324 int cls = (int) NO_REGS;
1326 for (;;)
1328 char c = *p;
1330 if (c == '\0' || c == ',' || c == '#')
1332 /* End of one alternative - mark the regs in the current
1333 class, and reset the class. */
1334 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1335 cls = NO_REGS;
1336 p++;
1337 if (c == '#')
1338 do {
1339 c = *p++;
1340 } while (c != '\0' && c != ',');
1341 if (c == '\0')
1342 break;
1343 continue;
1346 switch (c)
1348 case '=': case '+': case '*': case '%': case '?': case '!':
1349 case '0': case '1': case '2': case '3': case '4': case 'm':
1350 case '<': case '>': case 'V': case 'o': case '&': case 'E':
1351 case 'F': case 's': case 'i': case 'n': case 'X': case 'I':
1352 case 'J': case 'K': case 'L': case 'M': case 'N': case 'O':
1353 case 'P':
1354 break;
1356 case 'p':
1357 cls = (int) reg_class_subunion[cls]
1358 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1359 break;
1361 case 'g':
1362 case 'r':
1363 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1364 break;
1366 default:
1367 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1368 cls = (int) reg_class_subunion[cls]
1369 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1370 else
1371 cls = (int) reg_class_subunion[cls]
1372 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
1374 p += CONSTRAINT_LEN (c, p);
1377 /* Those of the registers which are clobbered, but allowed by the
1378 constraints, must be usable as reload registers. So clear them
1379 out of the life information. */
1380 AND_HARD_REG_SET (allowed, clobbered);
1381 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1382 if (TEST_HARD_REG_BIT (allowed, i))
1384 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1385 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1389 #endif
1392 /* Copy the global variables n_reloads and rld into the corresponding elts
1393 of CHAIN. */
1394 static void
1395 copy_reloads (struct insn_chain *chain)
1397 chain->n_reloads = n_reloads;
1398 chain->rld = obstack_alloc (&reload_obstack,
1399 n_reloads * sizeof (struct reload));
1400 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1401 reload_insn_firstobj = obstack_alloc (&reload_obstack, 0);
1404 /* Walk the chain of insns, and determine for each whether it needs reloads
1405 and/or eliminations. Build the corresponding insns_need_reload list, and
1406 set something_needs_elimination as appropriate. */
1407 static void
1408 calculate_needs_all_insns (int global)
1410 struct insn_chain **pprev_reload = &insns_need_reload;
1411 struct insn_chain *chain, *next = 0;
1413 something_needs_elimination = 0;
1415 reload_insn_firstobj = obstack_alloc (&reload_obstack, 0);
1416 for (chain = reload_insn_chain; chain != 0; chain = next)
1418 rtx insn = chain->insn;
1420 next = chain->next;
1422 /* Clear out the shortcuts. */
1423 chain->n_reloads = 0;
1424 chain->need_elim = 0;
1425 chain->need_reload = 0;
1426 chain->need_operand_change = 0;
1428 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1429 include REG_LABEL), we need to see what effects this has on the
1430 known offsets at labels. */
1432 if (LABEL_P (insn) || JUMP_P (insn)
1433 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1434 set_label_offsets (insn, insn, 0);
1436 if (INSN_P (insn))
1438 rtx old_body = PATTERN (insn);
1439 int old_code = INSN_CODE (insn);
1440 rtx old_notes = REG_NOTES (insn);
1441 int did_elimination = 0;
1442 int operands_changed = 0;
1443 rtx set = single_set (insn);
1445 /* Skip insns that only set an equivalence. */
1446 if (set && REG_P (SET_DEST (set))
1447 && reg_renumber[REGNO (SET_DEST (set))] < 0
1448 && reg_equiv_constant[REGNO (SET_DEST (set))])
1449 continue;
1451 /* If needed, eliminate any eliminable registers. */
1452 if (num_eliminable || num_eliminable_invariants)
1453 did_elimination = eliminate_regs_in_insn (insn, 0);
1455 /* Analyze the instruction. */
1456 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1457 global, spill_reg_order);
1459 /* If a no-op set needs more than one reload, this is likely
1460 to be something that needs input address reloads. We
1461 can't get rid of this cleanly later, and it is of no use
1462 anyway, so discard it now.
1463 We only do this when expensive_optimizations is enabled,
1464 since this complements reload inheritance / output
1465 reload deletion, and it can make debugging harder. */
1466 if (flag_expensive_optimizations && n_reloads > 1)
1468 rtx set = single_set (insn);
1469 if (set
1470 && SET_SRC (set) == SET_DEST (set)
1471 && REG_P (SET_SRC (set))
1472 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1474 delete_insn (insn);
1475 /* Delete it from the reload chain. */
1476 if (chain->prev)
1477 chain->prev->next = next;
1478 else
1479 reload_insn_chain = next;
1480 if (next)
1481 next->prev = chain->prev;
1482 chain->next = unused_insn_chains;
1483 unused_insn_chains = chain;
1484 continue;
1487 if (num_eliminable)
1488 update_eliminable_offsets ();
1490 /* Remember for later shortcuts which insns had any reloads or
1491 register eliminations. */
1492 chain->need_elim = did_elimination;
1493 chain->need_reload = n_reloads > 0;
1494 chain->need_operand_change = operands_changed;
1496 /* Discard any register replacements done. */
1497 if (did_elimination)
1499 obstack_free (&reload_obstack, reload_insn_firstobj);
1500 PATTERN (insn) = old_body;
1501 INSN_CODE (insn) = old_code;
1502 REG_NOTES (insn) = old_notes;
1503 something_needs_elimination = 1;
1506 something_needs_operands_changed |= operands_changed;
1508 if (n_reloads != 0)
1510 copy_reloads (chain);
1511 *pprev_reload = chain;
1512 pprev_reload = &chain->next_need_reload;
1516 *pprev_reload = 0;
1519 /* Comparison function for qsort to decide which of two reloads
1520 should be handled first. *P1 and *P2 are the reload numbers. */
1522 static int
1523 reload_reg_class_lower (const void *r1p, const void *r2p)
1525 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1526 int t;
1528 /* Consider required reloads before optional ones. */
1529 t = rld[r1].optional - rld[r2].optional;
1530 if (t != 0)
1531 return t;
1533 /* Count all solitary classes before non-solitary ones. */
1534 t = ((reg_class_size[(int) rld[r2].class] == 1)
1535 - (reg_class_size[(int) rld[r1].class] == 1));
1536 if (t != 0)
1537 return t;
1539 /* Aside from solitaires, consider all multi-reg groups first. */
1540 t = rld[r2].nregs - rld[r1].nregs;
1541 if (t != 0)
1542 return t;
1544 /* Consider reloads in order of increasing reg-class number. */
1545 t = (int) rld[r1].class - (int) rld[r2].class;
1546 if (t != 0)
1547 return t;
1549 /* If reloads are equally urgent, sort by reload number,
1550 so that the results of qsort leave nothing to chance. */
1551 return r1 - r2;
1554 /* The cost of spilling each hard reg. */
1555 static int spill_cost[FIRST_PSEUDO_REGISTER];
1557 /* When spilling multiple hard registers, we use SPILL_COST for the first
1558 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1559 only the first hard reg for a multi-reg pseudo. */
1560 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1562 /* Update the spill cost arrays, considering that pseudo REG is live. */
1564 static void
1565 count_pseudo (int reg)
1567 int freq = REG_FREQ (reg);
1568 int r = reg_renumber[reg];
1569 int nregs;
1571 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1572 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1573 return;
1575 SET_REGNO_REG_SET (&pseudos_counted, reg);
1577 gcc_assert (r >= 0);
1579 spill_add_cost[r] += freq;
1581 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1582 while (nregs-- > 0)
1583 spill_cost[r + nregs] += freq;
1586 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1587 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1589 static void
1590 order_regs_for_reload (struct insn_chain *chain)
1592 int i;
1593 HARD_REG_SET used_by_pseudos;
1594 HARD_REG_SET used_by_pseudos2;
1595 reg_set_iterator rsi;
1597 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1599 memset (spill_cost, 0, sizeof spill_cost);
1600 memset (spill_add_cost, 0, sizeof spill_add_cost);
1602 /* Count number of uses of each hard reg by pseudo regs allocated to it
1603 and then order them by decreasing use. First exclude hard registers
1604 that are live in or across this insn. */
1606 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1607 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1608 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1609 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1611 /* Now find out which pseudos are allocated to it, and update
1612 hard_reg_n_uses. */
1613 CLEAR_REG_SET (&pseudos_counted);
1615 EXECUTE_IF_SET_IN_REG_SET
1616 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
1618 count_pseudo (i);
1620 EXECUTE_IF_SET_IN_REG_SET
1621 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
1623 count_pseudo (i);
1625 CLEAR_REG_SET (&pseudos_counted);
1628 /* Vector of reload-numbers showing the order in which the reloads should
1629 be processed. */
1630 static short reload_order[MAX_RELOADS];
1632 /* This is used to keep track of the spill regs used in one insn. */
1633 static HARD_REG_SET used_spill_regs_local;
1635 /* We decided to spill hard register SPILLED, which has a size of
1636 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1637 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1638 update SPILL_COST/SPILL_ADD_COST. */
1640 static void
1641 count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1643 int r = reg_renumber[reg];
1644 int nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1646 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1647 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1648 return;
1650 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1652 spill_add_cost[r] -= REG_FREQ (reg);
1653 while (nregs-- > 0)
1654 spill_cost[r + nregs] -= REG_FREQ (reg);
1657 /* Find reload register to use for reload number ORDER. */
1659 static int
1660 find_reg (struct insn_chain *chain, int order)
1662 int rnum = reload_order[order];
1663 struct reload *rl = rld + rnum;
1664 int best_cost = INT_MAX;
1665 int best_reg = -1;
1666 unsigned int i, j;
1667 int k;
1668 HARD_REG_SET not_usable;
1669 HARD_REG_SET used_by_other_reload;
1670 reg_set_iterator rsi;
1672 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1673 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1674 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->class]);
1676 CLEAR_HARD_REG_SET (used_by_other_reload);
1677 for (k = 0; k < order; k++)
1679 int other = reload_order[k];
1681 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1682 for (j = 0; j < rld[other].nregs; j++)
1683 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1686 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1688 unsigned int regno = i;
1690 if (! TEST_HARD_REG_BIT (not_usable, regno)
1691 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1692 && HARD_REGNO_MODE_OK (regno, rl->mode))
1694 int this_cost = spill_cost[regno];
1695 int ok = 1;
1696 unsigned int this_nregs = hard_regno_nregs[regno][rl->mode];
1698 for (j = 1; j < this_nregs; j++)
1700 this_cost += spill_add_cost[regno + j];
1701 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1702 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1703 ok = 0;
1705 if (! ok)
1706 continue;
1707 if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
1708 this_cost--;
1709 if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
1710 this_cost--;
1711 if (this_cost < best_cost
1712 /* Among registers with equal cost, prefer caller-saved ones, or
1713 use REG_ALLOC_ORDER if it is defined. */
1714 || (this_cost == best_cost
1715 #ifdef REG_ALLOC_ORDER
1716 && (inv_reg_alloc_order[regno]
1717 < inv_reg_alloc_order[best_reg])
1718 #else
1719 && call_used_regs[regno]
1720 && ! call_used_regs[best_reg]
1721 #endif
1724 best_reg = regno;
1725 best_cost = this_cost;
1729 if (best_reg == -1)
1730 return 0;
1732 if (dump_file)
1733 fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1735 rl->nregs = hard_regno_nregs[best_reg][rl->mode];
1736 rl->regno = best_reg;
1738 EXECUTE_IF_SET_IN_REG_SET
1739 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
1741 count_spilled_pseudo (best_reg, rl->nregs, j);
1744 EXECUTE_IF_SET_IN_REG_SET
1745 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
1747 count_spilled_pseudo (best_reg, rl->nregs, j);
1750 for (i = 0; i < rl->nregs; i++)
1752 gcc_assert (spill_cost[best_reg + i] == 0);
1753 gcc_assert (spill_add_cost[best_reg + i] == 0);
1754 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1756 return 1;
1759 /* Find more reload regs to satisfy the remaining need of an insn, which
1760 is given by CHAIN.
1761 Do it by ascending class number, since otherwise a reg
1762 might be spilled for a big class and might fail to count
1763 for a smaller class even though it belongs to that class. */
1765 static void
1766 find_reload_regs (struct insn_chain *chain)
1768 int i;
1770 /* In order to be certain of getting the registers we need,
1771 we must sort the reloads into order of increasing register class.
1772 Then our grabbing of reload registers will parallel the process
1773 that provided the reload registers. */
1774 for (i = 0; i < chain->n_reloads; i++)
1776 /* Show whether this reload already has a hard reg. */
1777 if (chain->rld[i].reg_rtx)
1779 int regno = REGNO (chain->rld[i].reg_rtx);
1780 chain->rld[i].regno = regno;
1781 chain->rld[i].nregs
1782 = hard_regno_nregs[regno][GET_MODE (chain->rld[i].reg_rtx)];
1784 else
1785 chain->rld[i].regno = -1;
1786 reload_order[i] = i;
1789 n_reloads = chain->n_reloads;
1790 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
1792 CLEAR_HARD_REG_SET (used_spill_regs_local);
1794 if (dump_file)
1795 fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
1797 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
1799 /* Compute the order of preference for hard registers to spill. */
1801 order_regs_for_reload (chain);
1803 for (i = 0; i < n_reloads; i++)
1805 int r = reload_order[i];
1807 /* Ignore reloads that got marked inoperative. */
1808 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
1809 && ! rld[r].optional
1810 && rld[r].regno == -1)
1811 if (! find_reg (chain, i))
1813 spill_failure (chain->insn, rld[r].class);
1814 failure = 1;
1815 return;
1819 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
1820 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
1822 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1825 static void
1826 select_reload_regs (void)
1828 struct insn_chain *chain;
1830 /* Try to satisfy the needs for each insn. */
1831 for (chain = insns_need_reload; chain != 0;
1832 chain = chain->next_need_reload)
1833 find_reload_regs (chain);
1836 /* Delete all insns that were inserted by emit_caller_save_insns during
1837 this iteration. */
1838 static void
1839 delete_caller_save_insns (void)
1841 struct insn_chain *c = reload_insn_chain;
1843 while (c != 0)
1845 while (c != 0 && c->is_caller_save_insn)
1847 struct insn_chain *next = c->next;
1848 rtx insn = c->insn;
1850 if (c == reload_insn_chain)
1851 reload_insn_chain = next;
1852 delete_insn (insn);
1854 if (next)
1855 next->prev = c->prev;
1856 if (c->prev)
1857 c->prev->next = next;
1858 c->next = unused_insn_chains;
1859 unused_insn_chains = c;
1860 c = next;
1862 if (c != 0)
1863 c = c->next;
1867 /* Handle the failure to find a register to spill.
1868 INSN should be one of the insns which needed this particular spill reg. */
1870 static void
1871 spill_failure (rtx insn, enum reg_class class)
1873 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1874 if (asm_noperands (PATTERN (insn)) >= 0)
1875 error_for_asm (insn, "can't find a register in class %qs while "
1876 "reloading %<asm%>",
1877 reg_class_names[class]);
1878 else
1880 error ("unable to find a register to spill in class %qs",
1881 reg_class_names[class]);
1882 fatal_insn ("this is the insn:", insn);
1886 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
1887 data that is dead in INSN. */
1889 static void
1890 delete_dead_insn (rtx insn)
1892 rtx prev = prev_real_insn (insn);
1893 rtx prev_dest;
1895 /* If the previous insn sets a register that dies in our insn, delete it
1896 too. */
1897 if (prev && GET_CODE (PATTERN (prev)) == SET
1898 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
1899 && reg_mentioned_p (prev_dest, PATTERN (insn))
1900 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
1901 && ! side_effects_p (SET_SRC (PATTERN (prev))))
1902 delete_dead_insn (prev);
1904 SET_INSN_DELETED (insn);
1907 /* Modify the home of pseudo-reg I.
1908 The new home is present in reg_renumber[I].
1910 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
1911 or it may be -1, meaning there is none or it is not relevant.
1912 This is used so that all pseudos spilled from a given hard reg
1913 can share one stack slot. */
1915 static void
1916 alter_reg (int i, int from_reg)
1918 /* When outputting an inline function, this can happen
1919 for a reg that isn't actually used. */
1920 if (regno_reg_rtx[i] == 0)
1921 return;
1923 /* If the reg got changed to a MEM at rtl-generation time,
1924 ignore it. */
1925 if (!REG_P (regno_reg_rtx[i]))
1926 return;
1928 /* Modify the reg-rtx to contain the new hard reg
1929 number or else to contain its pseudo reg number. */
1930 REGNO (regno_reg_rtx[i])
1931 = reg_renumber[i] >= 0 ? reg_renumber[i] : i;
1933 /* If we have a pseudo that is needed but has no hard reg or equivalent,
1934 allocate a stack slot for it. */
1936 if (reg_renumber[i] < 0
1937 && REG_N_REFS (i) > 0
1938 && reg_equiv_constant[i] == 0
1939 && reg_equiv_memory_loc[i] == 0)
1941 rtx x;
1942 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
1943 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
1944 int adjust = 0;
1946 /* Each pseudo reg has an inherent size which comes from its own mode,
1947 and a total size which provides room for paradoxical subregs
1948 which refer to the pseudo reg in wider modes.
1950 We can use a slot already allocated if it provides both
1951 enough inherent space and enough total space.
1952 Otherwise, we allocate a new slot, making sure that it has no less
1953 inherent space, and no less total space, then the previous slot. */
1954 if (from_reg == -1)
1956 /* No known place to spill from => no slot to reuse. */
1957 x = assign_stack_local (GET_MODE (regno_reg_rtx[i]), total_size,
1958 inherent_size == total_size ? 0 : -1);
1959 if (BYTES_BIG_ENDIAN)
1960 /* Cancel the big-endian correction done in assign_stack_local.
1961 Get the address of the beginning of the slot.
1962 This is so we can do a big-endian correction unconditionally
1963 below. */
1964 adjust = inherent_size - total_size;
1966 /* Nothing can alias this slot except this pseudo. */
1967 set_mem_alias_set (x, new_alias_set ());
1970 /* Reuse a stack slot if possible. */
1971 else if (spill_stack_slot[from_reg] != 0
1972 && spill_stack_slot_width[from_reg] >= total_size
1973 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
1974 >= inherent_size))
1975 x = spill_stack_slot[from_reg];
1977 /* Allocate a bigger slot. */
1978 else
1980 /* Compute maximum size needed, both for inherent size
1981 and for total size. */
1982 enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
1983 rtx stack_slot;
1985 if (spill_stack_slot[from_reg])
1987 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
1988 > inherent_size)
1989 mode = GET_MODE (spill_stack_slot[from_reg]);
1990 if (spill_stack_slot_width[from_reg] > total_size)
1991 total_size = spill_stack_slot_width[from_reg];
1994 /* Make a slot with that size. */
1995 x = assign_stack_local (mode, total_size,
1996 inherent_size == total_size ? 0 : -1);
1997 stack_slot = x;
1999 /* All pseudos mapped to this slot can alias each other. */
2000 if (spill_stack_slot[from_reg])
2001 set_mem_alias_set (x, MEM_ALIAS_SET (spill_stack_slot[from_reg]));
2002 else
2003 set_mem_alias_set (x, new_alias_set ());
2005 if (BYTES_BIG_ENDIAN)
2007 /* Cancel the big-endian correction done in assign_stack_local.
2008 Get the address of the beginning of the slot.
2009 This is so we can do a big-endian correction unconditionally
2010 below. */
2011 adjust = GET_MODE_SIZE (mode) - total_size;
2012 if (adjust)
2013 stack_slot
2014 = adjust_address_nv (x, mode_for_size (total_size
2015 * BITS_PER_UNIT,
2016 MODE_INT, 1),
2017 adjust);
2020 spill_stack_slot[from_reg] = stack_slot;
2021 spill_stack_slot_width[from_reg] = total_size;
2024 /* On a big endian machine, the "address" of the slot
2025 is the address of the low part that fits its inherent mode. */
2026 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2027 adjust += (total_size - inherent_size);
2029 /* If we have any adjustment to make, or if the stack slot is the
2030 wrong mode, make a new stack slot. */
2031 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2033 /* If we have a decl for the original register, set it for the
2034 memory. If this is a shared MEM, make a copy. */
2035 if (REG_EXPR (regno_reg_rtx[i])
2036 && DECL_P (REG_EXPR (regno_reg_rtx[i])))
2038 rtx decl = DECL_RTL_IF_SET (REG_EXPR (regno_reg_rtx[i]));
2040 /* We can do this only for the DECLs home pseudo, not for
2041 any copies of it, since otherwise when the stack slot
2042 is reused, nonoverlapping_memrefs_p might think they
2043 cannot overlap. */
2044 if (decl && REG_P (decl) && REGNO (decl) == (unsigned) i)
2046 if (from_reg != -1 && spill_stack_slot[from_reg] == x)
2047 x = copy_rtx (x);
2049 set_mem_attrs_from_reg (x, regno_reg_rtx[i]);
2053 /* Save the stack slot for later. */
2054 reg_equiv_memory_loc[i] = x;
2058 /* Mark the slots in regs_ever_live for the hard regs
2059 used by pseudo-reg number REGNO. */
2061 void
2062 mark_home_live (int regno)
2064 int i, lim;
2066 i = reg_renumber[regno];
2067 if (i < 0)
2068 return;
2069 lim = i + hard_regno_nregs[i][PSEUDO_REGNO_MODE (regno)];
2070 while (i < lim)
2071 regs_ever_live[i++] = 1;
2074 /* This function handles the tracking of elimination offsets around branches.
2076 X is a piece of RTL being scanned.
2078 INSN is the insn that it came from, if any.
2080 INITIAL_P is nonzero if we are to set the offset to be the initial
2081 offset and zero if we are setting the offset of the label to be the
2082 current offset. */
2084 static void
2085 set_label_offsets (rtx x, rtx insn, int initial_p)
2087 enum rtx_code code = GET_CODE (x);
2088 rtx tem;
2089 unsigned int i;
2090 struct elim_table *p;
2092 switch (code)
2094 case LABEL_REF:
2095 if (LABEL_REF_NONLOCAL_P (x))
2096 return;
2098 x = XEXP (x, 0);
2100 /* ... fall through ... */
2102 case CODE_LABEL:
2103 /* If we know nothing about this label, set the desired offsets. Note
2104 that this sets the offset at a label to be the offset before a label
2105 if we don't know anything about the label. This is not correct for
2106 the label after a BARRIER, but is the best guess we can make. If
2107 we guessed wrong, we will suppress an elimination that might have
2108 been possible had we been able to guess correctly. */
2110 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2112 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2113 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2114 = (initial_p ? reg_eliminate[i].initial_offset
2115 : reg_eliminate[i].offset);
2116 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2119 /* Otherwise, if this is the definition of a label and it is
2120 preceded by a BARRIER, set our offsets to the known offset of
2121 that label. */
2123 else if (x == insn
2124 && (tem = prev_nonnote_insn (insn)) != 0
2125 && BARRIER_P (tem))
2126 set_offsets_for_label (insn);
2127 else
2128 /* If neither of the above cases is true, compare each offset
2129 with those previously recorded and suppress any eliminations
2130 where the offsets disagree. */
2132 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2133 if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2134 != (initial_p ? reg_eliminate[i].initial_offset
2135 : reg_eliminate[i].offset))
2136 reg_eliminate[i].can_eliminate = 0;
2138 return;
2140 case JUMP_INSN:
2141 set_label_offsets (PATTERN (insn), insn, initial_p);
2143 /* ... fall through ... */
2145 case INSN:
2146 case CALL_INSN:
2147 /* Any labels mentioned in REG_LABEL notes can be branched to indirectly
2148 and hence must have all eliminations at their initial offsets. */
2149 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2150 if (REG_NOTE_KIND (tem) == REG_LABEL)
2151 set_label_offsets (XEXP (tem, 0), insn, 1);
2152 return;
2154 case PARALLEL:
2155 case ADDR_VEC:
2156 case ADDR_DIFF_VEC:
2157 /* Each of the labels in the parallel or address vector must be
2158 at their initial offsets. We want the first field for PARALLEL
2159 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2161 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2162 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2163 insn, initial_p);
2164 return;
2166 case SET:
2167 /* We only care about setting PC. If the source is not RETURN,
2168 IF_THEN_ELSE, or a label, disable any eliminations not at
2169 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2170 isn't one of those possibilities. For branches to a label,
2171 call ourselves recursively.
2173 Note that this can disable elimination unnecessarily when we have
2174 a non-local goto since it will look like a non-constant jump to
2175 someplace in the current function. This isn't a significant
2176 problem since such jumps will normally be when all elimination
2177 pairs are back to their initial offsets. */
2179 if (SET_DEST (x) != pc_rtx)
2180 return;
2182 switch (GET_CODE (SET_SRC (x)))
2184 case PC:
2185 case RETURN:
2186 return;
2188 case LABEL_REF:
2189 set_label_offsets (SET_SRC (x), insn, initial_p);
2190 return;
2192 case IF_THEN_ELSE:
2193 tem = XEXP (SET_SRC (x), 1);
2194 if (GET_CODE (tem) == LABEL_REF)
2195 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2196 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2197 break;
2199 tem = XEXP (SET_SRC (x), 2);
2200 if (GET_CODE (tem) == LABEL_REF)
2201 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2202 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2203 break;
2204 return;
2206 default:
2207 break;
2210 /* If we reach here, all eliminations must be at their initial
2211 offset because we are doing a jump to a variable address. */
2212 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2213 if (p->offset != p->initial_offset)
2214 p->can_eliminate = 0;
2215 break;
2217 default:
2218 break;
2222 /* Scan X and replace any eliminable registers (such as fp) with a
2223 replacement (such as sp), plus an offset.
2225 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2226 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2227 MEM, we are allowed to replace a sum of a register and the constant zero
2228 with the register, which we cannot do outside a MEM. In addition, we need
2229 to record the fact that a register is referenced outside a MEM.
2231 If INSN is an insn, it is the insn containing X. If we replace a REG
2232 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2233 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2234 the REG is being modified.
2236 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2237 That's used when we eliminate in expressions stored in notes.
2238 This means, do not set ref_outside_mem even if the reference
2239 is outside of MEMs.
2241 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2242 replacements done assuming all offsets are at their initial values. If
2243 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2244 encounter, return the actual location so that find_reloads will do
2245 the proper thing. */
2248 eliminate_regs (rtx x, enum machine_mode mem_mode, rtx insn)
2250 enum rtx_code code = GET_CODE (x);
2251 struct elim_table *ep;
2252 int regno;
2253 rtx new;
2254 int i, j;
2255 const char *fmt;
2256 int copied = 0;
2258 if (! current_function_decl)
2259 return x;
2261 switch (code)
2263 case CONST_INT:
2264 case CONST_DOUBLE:
2265 case CONST_VECTOR:
2266 case CONST:
2267 case SYMBOL_REF:
2268 case CODE_LABEL:
2269 case PC:
2270 case CC0:
2271 case ASM_INPUT:
2272 case ADDR_VEC:
2273 case ADDR_DIFF_VEC:
2274 case RETURN:
2275 return x;
2277 case REG:
2278 regno = REGNO (x);
2280 /* First handle the case where we encounter a bare register that
2281 is eliminable. Replace it with a PLUS. */
2282 if (regno < FIRST_PSEUDO_REGISTER)
2284 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2285 ep++)
2286 if (ep->from_rtx == x && ep->can_eliminate)
2287 return plus_constant (ep->to_rtx, ep->previous_offset);
2290 else if (reg_renumber && reg_renumber[regno] < 0
2291 && reg_equiv_constant && reg_equiv_constant[regno]
2292 && ! CONSTANT_P (reg_equiv_constant[regno]))
2293 return eliminate_regs (copy_rtx (reg_equiv_constant[regno]),
2294 mem_mode, insn);
2295 return x;
2297 /* You might think handling MINUS in a manner similar to PLUS is a
2298 good idea. It is not. It has been tried multiple times and every
2299 time the change has had to have been reverted.
2301 Other parts of reload know a PLUS is special (gen_reload for example)
2302 and require special code to handle code a reloaded PLUS operand.
2304 Also consider backends where the flags register is clobbered by a
2305 MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2306 lea instruction comes to mind). If we try to reload a MINUS, we
2307 may kill the flags register that was holding a useful value.
2309 So, please before trying to handle MINUS, consider reload as a
2310 whole instead of this little section as well as the backend issues. */
2311 case PLUS:
2312 /* If this is the sum of an eliminable register and a constant, rework
2313 the sum. */
2314 if (REG_P (XEXP (x, 0))
2315 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2316 && CONSTANT_P (XEXP (x, 1)))
2318 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2319 ep++)
2320 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2322 /* The only time we want to replace a PLUS with a REG (this
2323 occurs when the constant operand of the PLUS is the negative
2324 of the offset) is when we are inside a MEM. We won't want
2325 to do so at other times because that would change the
2326 structure of the insn in a way that reload can't handle.
2327 We special-case the commonest situation in
2328 eliminate_regs_in_insn, so just replace a PLUS with a
2329 PLUS here, unless inside a MEM. */
2330 if (mem_mode != 0 && GET_CODE (XEXP (x, 1)) == CONST_INT
2331 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2332 return ep->to_rtx;
2333 else
2334 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2335 plus_constant (XEXP (x, 1),
2336 ep->previous_offset));
2339 /* If the register is not eliminable, we are done since the other
2340 operand is a constant. */
2341 return x;
2344 /* If this is part of an address, we want to bring any constant to the
2345 outermost PLUS. We will do this by doing register replacement in
2346 our operands and seeing if a constant shows up in one of them.
2348 Note that there is no risk of modifying the structure of the insn,
2349 since we only get called for its operands, thus we are either
2350 modifying the address inside a MEM, or something like an address
2351 operand of a load-address insn. */
2354 rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2355 rtx new1 = eliminate_regs (XEXP (x, 1), mem_mode, insn);
2357 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2359 /* If one side is a PLUS and the other side is a pseudo that
2360 didn't get a hard register but has a reg_equiv_constant,
2361 we must replace the constant here since it may no longer
2362 be in the position of any operand. */
2363 if (GET_CODE (new0) == PLUS && REG_P (new1)
2364 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2365 && reg_renumber[REGNO (new1)] < 0
2366 && reg_equiv_constant != 0
2367 && reg_equiv_constant[REGNO (new1)] != 0)
2368 new1 = reg_equiv_constant[REGNO (new1)];
2369 else if (GET_CODE (new1) == PLUS && REG_P (new0)
2370 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2371 && reg_renumber[REGNO (new0)] < 0
2372 && reg_equiv_constant[REGNO (new0)] != 0)
2373 new0 = reg_equiv_constant[REGNO (new0)];
2375 new = form_sum (new0, new1);
2377 /* As above, if we are not inside a MEM we do not want to
2378 turn a PLUS into something else. We might try to do so here
2379 for an addition of 0 if we aren't optimizing. */
2380 if (! mem_mode && GET_CODE (new) != PLUS)
2381 return gen_rtx_PLUS (GET_MODE (x), new, const0_rtx);
2382 else
2383 return new;
2386 return x;
2388 case MULT:
2389 /* If this is the product of an eliminable register and a
2390 constant, apply the distribute law and move the constant out
2391 so that we have (plus (mult ..) ..). This is needed in order
2392 to keep load-address insns valid. This case is pathological.
2393 We ignore the possibility of overflow here. */
2394 if (REG_P (XEXP (x, 0))
2395 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2396 && GET_CODE (XEXP (x, 1)) == CONST_INT)
2397 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2398 ep++)
2399 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2401 if (! mem_mode
2402 /* Refs inside notes don't count for this purpose. */
2403 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2404 || GET_CODE (insn) == INSN_LIST)))
2405 ep->ref_outside_mem = 1;
2407 return
2408 plus_constant (gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2409 ep->previous_offset * INTVAL (XEXP (x, 1)));
2412 /* ... fall through ... */
2414 case CALL:
2415 case COMPARE:
2416 /* See comments before PLUS about handling MINUS. */
2417 case MINUS:
2418 case DIV: case UDIV:
2419 case MOD: case UMOD:
2420 case AND: case IOR: case XOR:
2421 case ROTATERT: case ROTATE:
2422 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2423 case NE: case EQ:
2424 case GE: case GT: case GEU: case GTU:
2425 case LE: case LT: case LEU: case LTU:
2427 rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2428 rtx new1
2429 = XEXP (x, 1) ? eliminate_regs (XEXP (x, 1), mem_mode, insn) : 0;
2431 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2432 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2434 return x;
2436 case EXPR_LIST:
2437 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2438 if (XEXP (x, 0))
2440 new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2441 if (new != XEXP (x, 0))
2443 /* If this is a REG_DEAD note, it is not valid anymore.
2444 Using the eliminated version could result in creating a
2445 REG_DEAD note for the stack or frame pointer. */
2446 if (GET_MODE (x) == REG_DEAD)
2447 return (XEXP (x, 1)
2448 ? eliminate_regs (XEXP (x, 1), mem_mode, insn)
2449 : NULL_RTX);
2451 x = gen_rtx_EXPR_LIST (REG_NOTE_KIND (x), new, XEXP (x, 1));
2455 /* ... fall through ... */
2457 case INSN_LIST:
2458 /* Now do eliminations in the rest of the chain. If this was
2459 an EXPR_LIST, this might result in allocating more memory than is
2460 strictly needed, but it simplifies the code. */
2461 if (XEXP (x, 1))
2463 new = eliminate_regs (XEXP (x, 1), mem_mode, insn);
2464 if (new != XEXP (x, 1))
2465 return
2466 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new);
2468 return x;
2470 case PRE_INC:
2471 case POST_INC:
2472 case PRE_DEC:
2473 case POST_DEC:
2474 case STRICT_LOW_PART:
2475 case NEG: case NOT:
2476 case SIGN_EXTEND: case ZERO_EXTEND:
2477 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2478 case FLOAT: case FIX:
2479 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2480 case ABS:
2481 case SQRT:
2482 case FFS:
2483 case CLZ:
2484 case CTZ:
2485 case POPCOUNT:
2486 case PARITY:
2487 new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2488 if (new != XEXP (x, 0))
2489 return gen_rtx_fmt_e (code, GET_MODE (x), new);
2490 return x;
2492 case SUBREG:
2493 /* Similar to above processing, but preserve SUBREG_BYTE.
2494 Convert (subreg (mem)) to (mem) if not paradoxical.
2495 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2496 pseudo didn't get a hard reg, we must replace this with the
2497 eliminated version of the memory location because push_reload
2498 may do the replacement in certain circumstances. */
2499 if (REG_P (SUBREG_REG (x))
2500 && (GET_MODE_SIZE (GET_MODE (x))
2501 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2502 && reg_equiv_memory_loc != 0
2503 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2505 new = SUBREG_REG (x);
2507 else
2508 new = eliminate_regs (SUBREG_REG (x), mem_mode, insn);
2510 if (new != SUBREG_REG (x))
2512 int x_size = GET_MODE_SIZE (GET_MODE (x));
2513 int new_size = GET_MODE_SIZE (GET_MODE (new));
2515 if (MEM_P (new)
2516 && ((x_size < new_size
2517 #ifdef WORD_REGISTER_OPERATIONS
2518 /* On these machines, combine can create rtl of the form
2519 (set (subreg:m1 (reg:m2 R) 0) ...)
2520 where m1 < m2, and expects something interesting to
2521 happen to the entire word. Moreover, it will use the
2522 (reg:m2 R) later, expecting all bits to be preserved.
2523 So if the number of words is the same, preserve the
2524 subreg so that push_reload can see it. */
2525 && ! ((x_size - 1) / UNITS_PER_WORD
2526 == (new_size -1 ) / UNITS_PER_WORD)
2527 #endif
2529 || x_size == new_size)
2531 return adjust_address_nv (new, GET_MODE (x), SUBREG_BYTE (x));
2532 else
2533 return gen_rtx_SUBREG (GET_MODE (x), new, SUBREG_BYTE (x));
2536 return x;
2538 case MEM:
2539 /* Our only special processing is to pass the mode of the MEM to our
2540 recursive call and copy the flags. While we are here, handle this
2541 case more efficiently. */
2542 return
2543 replace_equiv_address_nv (x,
2544 eliminate_regs (XEXP (x, 0),
2545 GET_MODE (x), insn));
2547 case USE:
2548 /* Handle insn_list USE that a call to a pure function may generate. */
2549 new = eliminate_regs (XEXP (x, 0), 0, insn);
2550 if (new != XEXP (x, 0))
2551 return gen_rtx_USE (GET_MODE (x), new);
2552 return x;
2554 case CLOBBER:
2555 case ASM_OPERANDS:
2556 case SET:
2557 gcc_unreachable ();
2559 default:
2560 break;
2563 /* Process each of our operands recursively. If any have changed, make a
2564 copy of the rtx. */
2565 fmt = GET_RTX_FORMAT (code);
2566 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2568 if (*fmt == 'e')
2570 new = eliminate_regs (XEXP (x, i), mem_mode, insn);
2571 if (new != XEXP (x, i) && ! copied)
2573 rtx new_x = rtx_alloc (code);
2574 memcpy (new_x, x, RTX_SIZE (code));
2575 x = new_x;
2576 copied = 1;
2578 XEXP (x, i) = new;
2580 else if (*fmt == 'E')
2582 int copied_vec = 0;
2583 for (j = 0; j < XVECLEN (x, i); j++)
2585 new = eliminate_regs (XVECEXP (x, i, j), mem_mode, insn);
2586 if (new != XVECEXP (x, i, j) && ! copied_vec)
2588 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2589 XVEC (x, i)->elem);
2590 if (! copied)
2592 rtx new_x = rtx_alloc (code);
2593 memcpy (new_x, x, RTX_SIZE (code));
2594 x = new_x;
2595 copied = 1;
2597 XVEC (x, i) = new_v;
2598 copied_vec = 1;
2600 XVECEXP (x, i, j) = new;
2605 return x;
2608 /* Scan rtx X for modifications of elimination target registers. Update
2609 the table of eliminables to reflect the changed state. MEM_MODE is
2610 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2612 static void
2613 elimination_effects (rtx x, enum machine_mode mem_mode)
2615 enum rtx_code code = GET_CODE (x);
2616 struct elim_table *ep;
2617 int regno;
2618 int i, j;
2619 const char *fmt;
2621 switch (code)
2623 case CONST_INT:
2624 case CONST_DOUBLE:
2625 case CONST_VECTOR:
2626 case CONST:
2627 case SYMBOL_REF:
2628 case CODE_LABEL:
2629 case PC:
2630 case CC0:
2631 case ASM_INPUT:
2632 case ADDR_VEC:
2633 case ADDR_DIFF_VEC:
2634 case RETURN:
2635 return;
2637 case REG:
2638 regno = REGNO (x);
2640 /* First handle the case where we encounter a bare register that
2641 is eliminable. Replace it with a PLUS. */
2642 if (regno < FIRST_PSEUDO_REGISTER)
2644 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2645 ep++)
2646 if (ep->from_rtx == x && ep->can_eliminate)
2648 if (! mem_mode)
2649 ep->ref_outside_mem = 1;
2650 return;
2654 else if (reg_renumber[regno] < 0 && reg_equiv_constant
2655 && reg_equiv_constant[regno]
2656 && ! function_invariant_p (reg_equiv_constant[regno]))
2657 elimination_effects (reg_equiv_constant[regno], mem_mode);
2658 return;
2660 case PRE_INC:
2661 case POST_INC:
2662 case PRE_DEC:
2663 case POST_DEC:
2664 case POST_MODIFY:
2665 case PRE_MODIFY:
2666 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2667 if (ep->to_rtx == XEXP (x, 0))
2669 int size = GET_MODE_SIZE (mem_mode);
2671 /* If more bytes than MEM_MODE are pushed, account for them. */
2672 #ifdef PUSH_ROUNDING
2673 if (ep->to_rtx == stack_pointer_rtx)
2674 size = PUSH_ROUNDING (size);
2675 #endif
2676 if (code == PRE_DEC || code == POST_DEC)
2677 ep->offset += size;
2678 else if (code == PRE_INC || code == POST_INC)
2679 ep->offset -= size;
2680 else if ((code == PRE_MODIFY || code == POST_MODIFY)
2681 && GET_CODE (XEXP (x, 1)) == PLUS
2682 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
2683 && CONSTANT_P (XEXP (XEXP (x, 1), 1)))
2684 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
2687 /* These two aren't unary operators. */
2688 if (code == POST_MODIFY || code == PRE_MODIFY)
2689 break;
2691 /* Fall through to generic unary operation case. */
2692 case STRICT_LOW_PART:
2693 case NEG: case NOT:
2694 case SIGN_EXTEND: case ZERO_EXTEND:
2695 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2696 case FLOAT: case FIX:
2697 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2698 case ABS:
2699 case SQRT:
2700 case FFS:
2701 case CLZ:
2702 case CTZ:
2703 case POPCOUNT:
2704 case PARITY:
2705 elimination_effects (XEXP (x, 0), mem_mode);
2706 return;
2708 case SUBREG:
2709 if (REG_P (SUBREG_REG (x))
2710 && (GET_MODE_SIZE (GET_MODE (x))
2711 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2712 && reg_equiv_memory_loc != 0
2713 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2714 return;
2716 elimination_effects (SUBREG_REG (x), mem_mode);
2717 return;
2719 case USE:
2720 /* If using a register that is the source of an eliminate we still
2721 think can be performed, note it cannot be performed since we don't
2722 know how this register is used. */
2723 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2724 if (ep->from_rtx == XEXP (x, 0))
2725 ep->can_eliminate = 0;
2727 elimination_effects (XEXP (x, 0), mem_mode);
2728 return;
2730 case CLOBBER:
2731 /* If clobbering a register that is the replacement register for an
2732 elimination we still think can be performed, note that it cannot
2733 be performed. Otherwise, we need not be concerned about it. */
2734 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2735 if (ep->to_rtx == XEXP (x, 0))
2736 ep->can_eliminate = 0;
2738 elimination_effects (XEXP (x, 0), mem_mode);
2739 return;
2741 case SET:
2742 /* Check for setting a register that we know about. */
2743 if (REG_P (SET_DEST (x)))
2745 /* See if this is setting the replacement register for an
2746 elimination.
2748 If DEST is the hard frame pointer, we do nothing because we
2749 assume that all assignments to the frame pointer are for
2750 non-local gotos and are being done at a time when they are valid
2751 and do not disturb anything else. Some machines want to
2752 eliminate a fake argument pointer (or even a fake frame pointer)
2753 with either the real frame or the stack pointer. Assignments to
2754 the hard frame pointer must not prevent this elimination. */
2756 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2757 ep++)
2758 if (ep->to_rtx == SET_DEST (x)
2759 && SET_DEST (x) != hard_frame_pointer_rtx)
2761 /* If it is being incremented, adjust the offset. Otherwise,
2762 this elimination can't be done. */
2763 rtx src = SET_SRC (x);
2765 if (GET_CODE (src) == PLUS
2766 && XEXP (src, 0) == SET_DEST (x)
2767 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2768 ep->offset -= INTVAL (XEXP (src, 1));
2769 else
2770 ep->can_eliminate = 0;
2774 elimination_effects (SET_DEST (x), 0);
2775 elimination_effects (SET_SRC (x), 0);
2776 return;
2778 case MEM:
2779 /* Our only special processing is to pass the mode of the MEM to our
2780 recursive call. */
2781 elimination_effects (XEXP (x, 0), GET_MODE (x));
2782 return;
2784 default:
2785 break;
2788 fmt = GET_RTX_FORMAT (code);
2789 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2791 if (*fmt == 'e')
2792 elimination_effects (XEXP (x, i), mem_mode);
2793 else if (*fmt == 'E')
2794 for (j = 0; j < XVECLEN (x, i); j++)
2795 elimination_effects (XVECEXP (x, i, j), mem_mode);
2799 /* Descend through rtx X and verify that no references to eliminable registers
2800 remain. If any do remain, mark the involved register as not
2801 eliminable. */
2803 static void
2804 check_eliminable_occurrences (rtx x)
2806 const char *fmt;
2807 int i;
2808 enum rtx_code code;
2810 if (x == 0)
2811 return;
2813 code = GET_CODE (x);
2815 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
2817 struct elim_table *ep;
2819 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2820 if (ep->from_rtx == x)
2821 ep->can_eliminate = 0;
2822 return;
2825 fmt = GET_RTX_FORMAT (code);
2826 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2828 if (*fmt == 'e')
2829 check_eliminable_occurrences (XEXP (x, i));
2830 else if (*fmt == 'E')
2832 int j;
2833 for (j = 0; j < XVECLEN (x, i); j++)
2834 check_eliminable_occurrences (XVECEXP (x, i, j));
2839 /* Scan INSN and eliminate all eliminable registers in it.
2841 If REPLACE is nonzero, do the replacement destructively. Also
2842 delete the insn as dead it if it is setting an eliminable register.
2844 If REPLACE is zero, do all our allocations in reload_obstack.
2846 If no eliminations were done and this insn doesn't require any elimination
2847 processing (these are not identical conditions: it might be updating sp,
2848 but not referencing fp; this needs to be seen during reload_as_needed so
2849 that the offset between fp and sp can be taken into consideration), zero
2850 is returned. Otherwise, 1 is returned. */
2852 static int
2853 eliminate_regs_in_insn (rtx insn, int replace)
2855 int icode = recog_memoized (insn);
2856 rtx old_body = PATTERN (insn);
2857 int insn_is_asm = asm_noperands (old_body) >= 0;
2858 rtx old_set = single_set (insn);
2859 rtx new_body;
2860 int val = 0;
2861 int i;
2862 rtx substed_operand[MAX_RECOG_OPERANDS];
2863 rtx orig_operand[MAX_RECOG_OPERANDS];
2864 struct elim_table *ep;
2865 rtx plus_src;
2867 if (! insn_is_asm && icode < 0)
2869 gcc_assert (GET_CODE (PATTERN (insn)) == USE
2870 || GET_CODE (PATTERN (insn)) == CLOBBER
2871 || GET_CODE (PATTERN (insn)) == ADDR_VEC
2872 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
2873 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
2874 return 0;
2877 if (old_set != 0 && REG_P (SET_DEST (old_set))
2878 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
2880 /* Check for setting an eliminable register. */
2881 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2882 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
2884 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2885 /* If this is setting the frame pointer register to the
2886 hardware frame pointer register and this is an elimination
2887 that will be done (tested above), this insn is really
2888 adjusting the frame pointer downward to compensate for
2889 the adjustment done before a nonlocal goto. */
2890 if (ep->from == FRAME_POINTER_REGNUM
2891 && ep->to == HARD_FRAME_POINTER_REGNUM)
2893 rtx base = SET_SRC (old_set);
2894 rtx base_insn = insn;
2895 HOST_WIDE_INT offset = 0;
2897 while (base != ep->to_rtx)
2899 rtx prev_insn, prev_set;
2901 if (GET_CODE (base) == PLUS
2902 && GET_CODE (XEXP (base, 1)) == CONST_INT)
2904 offset += INTVAL (XEXP (base, 1));
2905 base = XEXP (base, 0);
2907 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
2908 && (prev_set = single_set (prev_insn)) != 0
2909 && rtx_equal_p (SET_DEST (prev_set), base))
2911 base = SET_SRC (prev_set);
2912 base_insn = prev_insn;
2914 else
2915 break;
2918 if (base == ep->to_rtx)
2920 rtx src
2921 = plus_constant (ep->to_rtx, offset - ep->offset);
2923 new_body = old_body;
2924 if (! replace)
2926 new_body = copy_insn (old_body);
2927 if (REG_NOTES (insn))
2928 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
2930 PATTERN (insn) = new_body;
2931 old_set = single_set (insn);
2933 /* First see if this insn remains valid when we
2934 make the change. If not, keep the INSN_CODE
2935 the same and let reload fit it up. */
2936 validate_change (insn, &SET_SRC (old_set), src, 1);
2937 validate_change (insn, &SET_DEST (old_set),
2938 ep->to_rtx, 1);
2939 if (! apply_change_group ())
2941 SET_SRC (old_set) = src;
2942 SET_DEST (old_set) = ep->to_rtx;
2945 val = 1;
2946 goto done;
2949 #endif
2951 /* In this case this insn isn't serving a useful purpose. We
2952 will delete it in reload_as_needed once we know that this
2953 elimination is, in fact, being done.
2955 If REPLACE isn't set, we can't delete this insn, but needn't
2956 process it since it won't be used unless something changes. */
2957 if (replace)
2959 delete_dead_insn (insn);
2960 return 1;
2962 val = 1;
2963 goto done;
2967 /* We allow one special case which happens to work on all machines we
2968 currently support: a single set with the source or a REG_EQUAL
2969 note being a PLUS of an eliminable register and a constant. */
2970 plus_src = 0;
2971 if (old_set && REG_P (SET_DEST (old_set)))
2973 /* First see if the source is of the form (plus (reg) CST). */
2974 if (GET_CODE (SET_SRC (old_set)) == PLUS
2975 && REG_P (XEXP (SET_SRC (old_set), 0))
2976 && GET_CODE (XEXP (SET_SRC (old_set), 1)) == CONST_INT
2977 && REGNO (XEXP (SET_SRC (old_set), 0)) < FIRST_PSEUDO_REGISTER)
2978 plus_src = SET_SRC (old_set);
2979 else if (REG_P (SET_SRC (old_set)))
2981 /* Otherwise, see if we have a REG_EQUAL note of the form
2982 (plus (reg) CST). */
2983 rtx links;
2984 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
2986 if (REG_NOTE_KIND (links) == REG_EQUAL
2987 && GET_CODE (XEXP (links, 0)) == PLUS
2988 && REG_P (XEXP (XEXP (links, 0), 0))
2989 && GET_CODE (XEXP (XEXP (links, 0), 1)) == CONST_INT
2990 && REGNO (XEXP (XEXP (links, 0), 0)) < FIRST_PSEUDO_REGISTER)
2992 plus_src = XEXP (links, 0);
2993 break;
2998 if (plus_src)
3000 rtx reg = XEXP (plus_src, 0);
3001 HOST_WIDE_INT offset = INTVAL (XEXP (plus_src, 1));
3003 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3004 if (ep->from_rtx == reg && ep->can_eliminate)
3006 offset += ep->offset;
3008 if (offset == 0)
3010 int num_clobbers;
3011 /* We assume here that if we need a PARALLEL with
3012 CLOBBERs for this assignment, we can do with the
3013 MATCH_SCRATCHes that add_clobbers allocates.
3014 There's not much we can do if that doesn't work. */
3015 PATTERN (insn) = gen_rtx_SET (VOIDmode,
3016 SET_DEST (old_set),
3017 ep->to_rtx);
3018 num_clobbers = 0;
3019 INSN_CODE (insn) = recog (PATTERN (insn), insn, &num_clobbers);
3020 if (num_clobbers)
3022 rtvec vec = rtvec_alloc (num_clobbers + 1);
3024 vec->elem[0] = PATTERN (insn);
3025 PATTERN (insn) = gen_rtx_PARALLEL (VOIDmode, vec);
3026 add_clobbers (PATTERN (insn), INSN_CODE (insn));
3028 gcc_assert (INSN_CODE (insn) >= 0);
3030 /* If we have a nonzero offset, and the source is already
3031 a simple REG, the following transformation would
3032 increase the cost of the insn by replacing a simple REG
3033 with (plus (reg sp) CST). So try only when plus_src
3034 comes from old_set proper, not REG_NOTES. */
3035 else if (SET_SRC (old_set) == plus_src)
3037 new_body = old_body;
3038 if (! replace)
3040 new_body = copy_insn (old_body);
3041 if (REG_NOTES (insn))
3042 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3044 PATTERN (insn) = new_body;
3045 old_set = single_set (insn);
3047 XEXP (SET_SRC (old_set), 0) = ep->to_rtx;
3048 XEXP (SET_SRC (old_set), 1) = GEN_INT (offset);
3050 else
3051 break;
3053 val = 1;
3054 /* This can't have an effect on elimination offsets, so skip right
3055 to the end. */
3056 goto done;
3060 /* Determine the effects of this insn on elimination offsets. */
3061 elimination_effects (old_body, 0);
3063 /* Eliminate all eliminable registers occurring in operands that
3064 can be handled by reload. */
3065 extract_insn (insn);
3066 for (i = 0; i < recog_data.n_operands; i++)
3068 orig_operand[i] = recog_data.operand[i];
3069 substed_operand[i] = recog_data.operand[i];
3071 /* For an asm statement, every operand is eliminable. */
3072 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3074 /* Check for setting a register that we know about. */
3075 if (recog_data.operand_type[i] != OP_IN
3076 && REG_P (orig_operand[i]))
3078 /* If we are assigning to a register that can be eliminated, it
3079 must be as part of a PARALLEL, since the code above handles
3080 single SETs. We must indicate that we can no longer
3081 eliminate this reg. */
3082 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3083 ep++)
3084 if (ep->from_rtx == orig_operand[i])
3085 ep->can_eliminate = 0;
3088 substed_operand[i] = eliminate_regs (recog_data.operand[i], 0,
3089 replace ? insn : NULL_RTX);
3090 if (substed_operand[i] != orig_operand[i])
3091 val = 1;
3092 /* Terminate the search in check_eliminable_occurrences at
3093 this point. */
3094 *recog_data.operand_loc[i] = 0;
3096 /* If an output operand changed from a REG to a MEM and INSN is an
3097 insn, write a CLOBBER insn. */
3098 if (recog_data.operand_type[i] != OP_IN
3099 && REG_P (orig_operand[i])
3100 && MEM_P (substed_operand[i])
3101 && replace)
3102 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, orig_operand[i]),
3103 insn);
3107 for (i = 0; i < recog_data.n_dups; i++)
3108 *recog_data.dup_loc[i]
3109 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3111 /* If any eliminable remain, they aren't eliminable anymore. */
3112 check_eliminable_occurrences (old_body);
3114 /* Substitute the operands; the new values are in the substed_operand
3115 array. */
3116 for (i = 0; i < recog_data.n_operands; i++)
3117 *recog_data.operand_loc[i] = substed_operand[i];
3118 for (i = 0; i < recog_data.n_dups; i++)
3119 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3121 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3122 re-recognize the insn. We do this in case we had a simple addition
3123 but now can do this as a load-address. This saves an insn in this
3124 common case.
3125 If re-recognition fails, the old insn code number will still be used,
3126 and some register operands may have changed into PLUS expressions.
3127 These will be handled by find_reloads by loading them into a register
3128 again. */
3130 if (val)
3132 /* If we aren't replacing things permanently and we changed something,
3133 make another copy to ensure that all the RTL is new. Otherwise
3134 things can go wrong if find_reload swaps commutative operands
3135 and one is inside RTL that has been copied while the other is not. */
3136 new_body = old_body;
3137 if (! replace)
3139 new_body = copy_insn (old_body);
3140 if (REG_NOTES (insn))
3141 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3143 PATTERN (insn) = new_body;
3145 /* If we had a move insn but now we don't, rerecognize it. This will
3146 cause spurious re-recognition if the old move had a PARALLEL since
3147 the new one still will, but we can't call single_set without
3148 having put NEW_BODY into the insn and the re-recognition won't
3149 hurt in this rare case. */
3150 /* ??? Why this huge if statement - why don't we just rerecognize the
3151 thing always? */
3152 if (! insn_is_asm
3153 && old_set != 0
3154 && ((REG_P (SET_SRC (old_set))
3155 && (GET_CODE (new_body) != SET
3156 || !REG_P (SET_SRC (new_body))))
3157 /* If this was a load from or store to memory, compare
3158 the MEM in recog_data.operand to the one in the insn.
3159 If they are not equal, then rerecognize the insn. */
3160 || (old_set != 0
3161 && ((MEM_P (SET_SRC (old_set))
3162 && SET_SRC (old_set) != recog_data.operand[1])
3163 || (MEM_P (SET_DEST (old_set))
3164 && SET_DEST (old_set) != recog_data.operand[0])))
3165 /* If this was an add insn before, rerecognize. */
3166 || GET_CODE (SET_SRC (old_set)) == PLUS))
3168 int new_icode = recog (PATTERN (insn), insn, 0);
3169 if (new_icode < 0)
3170 INSN_CODE (insn) = icode;
3174 /* Restore the old body. If there were any changes to it, we made a copy
3175 of it while the changes were still in place, so we'll correctly return
3176 a modified insn below. */
3177 if (! replace)
3179 /* Restore the old body. */
3180 for (i = 0; i < recog_data.n_operands; i++)
3181 *recog_data.operand_loc[i] = orig_operand[i];
3182 for (i = 0; i < recog_data.n_dups; i++)
3183 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3186 /* Update all elimination pairs to reflect the status after the current
3187 insn. The changes we make were determined by the earlier call to
3188 elimination_effects.
3190 We also detect cases where register elimination cannot be done,
3191 namely, if a register would be both changed and referenced outside a MEM
3192 in the resulting insn since such an insn is often undefined and, even if
3193 not, we cannot know what meaning will be given to it. Note that it is
3194 valid to have a register used in an address in an insn that changes it
3195 (presumably with a pre- or post-increment or decrement).
3197 If anything changes, return nonzero. */
3199 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3201 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3202 ep->can_eliminate = 0;
3204 ep->ref_outside_mem = 0;
3206 if (ep->previous_offset != ep->offset)
3207 val = 1;
3210 done:
3211 /* If we changed something, perform elimination in REG_NOTES. This is
3212 needed even when REPLACE is zero because a REG_DEAD note might refer
3213 to a register that we eliminate and could cause a different number
3214 of spill registers to be needed in the final reload pass than in
3215 the pre-passes. */
3216 if (val && REG_NOTES (insn) != 0)
3217 REG_NOTES (insn) = eliminate_regs (REG_NOTES (insn), 0, REG_NOTES (insn));
3219 return val;
3222 /* Loop through all elimination pairs.
3223 Recalculate the number not at initial offset.
3225 Compute the maximum offset (minimum offset if the stack does not
3226 grow downward) for each elimination pair. */
3228 static void
3229 update_eliminable_offsets (void)
3231 struct elim_table *ep;
3233 num_not_at_initial_offset = 0;
3234 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3236 ep->previous_offset = ep->offset;
3237 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3238 num_not_at_initial_offset++;
3242 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3243 replacement we currently believe is valid, mark it as not eliminable if X
3244 modifies DEST in any way other than by adding a constant integer to it.
3246 If DEST is the frame pointer, we do nothing because we assume that
3247 all assignments to the hard frame pointer are nonlocal gotos and are being
3248 done at a time when they are valid and do not disturb anything else.
3249 Some machines want to eliminate a fake argument pointer with either the
3250 frame or stack pointer. Assignments to the hard frame pointer must not
3251 prevent this elimination.
3253 Called via note_stores from reload before starting its passes to scan
3254 the insns of the function. */
3256 static void
3257 mark_not_eliminable (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
3259 unsigned int i;
3261 /* A SUBREG of a hard register here is just changing its mode. We should
3262 not see a SUBREG of an eliminable hard register, but check just in
3263 case. */
3264 if (GET_CODE (dest) == SUBREG)
3265 dest = SUBREG_REG (dest);
3267 if (dest == hard_frame_pointer_rtx)
3268 return;
3270 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3271 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3272 && (GET_CODE (x) != SET
3273 || GET_CODE (SET_SRC (x)) != PLUS
3274 || XEXP (SET_SRC (x), 0) != dest
3275 || GET_CODE (XEXP (SET_SRC (x), 1)) != CONST_INT))
3277 reg_eliminate[i].can_eliminate_previous
3278 = reg_eliminate[i].can_eliminate = 0;
3279 num_eliminable--;
3283 /* Verify that the initial elimination offsets did not change since the
3284 last call to set_initial_elim_offsets. This is used to catch cases
3285 where something illegal happened during reload_as_needed that could
3286 cause incorrect code to be generated if we did not check for it. */
3288 static void
3289 verify_initial_elim_offsets (void)
3291 HOST_WIDE_INT t;
3293 #ifdef ELIMINABLE_REGS
3294 struct elim_table *ep;
3296 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3298 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3299 gcc_assert (t == ep->initial_offset);
3301 #else
3302 INITIAL_FRAME_POINTER_OFFSET (t);
3303 gcc_assert (t == reg_eliminate[0].initial_offset);
3304 #endif
3307 /* Reset all offsets on eliminable registers to their initial values. */
3309 static void
3310 set_initial_elim_offsets (void)
3312 struct elim_table *ep = reg_eliminate;
3314 #ifdef ELIMINABLE_REGS
3315 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3317 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3318 ep->previous_offset = ep->offset = ep->initial_offset;
3320 #else
3321 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3322 ep->previous_offset = ep->offset = ep->initial_offset;
3323 #endif
3325 num_not_at_initial_offset = 0;
3328 /* Initialize the known label offsets.
3329 Set a known offset for each forced label to be at the initial offset
3330 of each elimination. We do this because we assume that all
3331 computed jumps occur from a location where each elimination is
3332 at its initial offset.
3333 For all other labels, show that we don't know the offsets. */
3335 static void
3336 set_initial_label_offsets (void)
3338 rtx x;
3339 memset (offsets_known_at, 0, num_labels);
3341 for (x = forced_labels; x; x = XEXP (x, 1))
3342 if (XEXP (x, 0))
3343 set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3346 /* Set all elimination offsets to the known values for the code label given
3347 by INSN. */
3349 static void
3350 set_offsets_for_label (rtx insn)
3352 unsigned int i;
3353 int label_nr = CODE_LABEL_NUMBER (insn);
3354 struct elim_table *ep;
3356 num_not_at_initial_offset = 0;
3357 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3359 ep->offset = ep->previous_offset
3360 = offsets_at[label_nr - first_label_num][i];
3361 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3362 num_not_at_initial_offset++;
3366 /* See if anything that happened changes which eliminations are valid.
3367 For example, on the SPARC, whether or not the frame pointer can
3368 be eliminated can depend on what registers have been used. We need
3369 not check some conditions again (such as flag_omit_frame_pointer)
3370 since they can't have changed. */
3372 static void
3373 update_eliminables (HARD_REG_SET *pset)
3375 int previous_frame_pointer_needed = frame_pointer_needed;
3376 struct elim_table *ep;
3378 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3379 if ((ep->from == HARD_FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED)
3380 #ifdef ELIMINABLE_REGS
3381 || ! CAN_ELIMINATE (ep->from, ep->to)
3382 #endif
3384 ep->can_eliminate = 0;
3386 /* Look for the case where we have discovered that we can't replace
3387 register A with register B and that means that we will now be
3388 trying to replace register A with register C. This means we can
3389 no longer replace register C with register B and we need to disable
3390 such an elimination, if it exists. This occurs often with A == ap,
3391 B == sp, and C == fp. */
3393 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3395 struct elim_table *op;
3396 int new_to = -1;
3398 if (! ep->can_eliminate && ep->can_eliminate_previous)
3400 /* Find the current elimination for ep->from, if there is a
3401 new one. */
3402 for (op = reg_eliminate;
3403 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3404 if (op->from == ep->from && op->can_eliminate)
3406 new_to = op->to;
3407 break;
3410 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3411 disable it. */
3412 for (op = reg_eliminate;
3413 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3414 if (op->from == new_to && op->to == ep->to)
3415 op->can_eliminate = 0;
3419 /* See if any registers that we thought we could eliminate the previous
3420 time are no longer eliminable. If so, something has changed and we
3421 must spill the register. Also, recompute the number of eliminable
3422 registers and see if the frame pointer is needed; it is if there is
3423 no elimination of the frame pointer that we can perform. */
3425 frame_pointer_needed = 1;
3426 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3428 if (ep->can_eliminate && ep->from == FRAME_POINTER_REGNUM
3429 && ep->to != HARD_FRAME_POINTER_REGNUM)
3430 frame_pointer_needed = 0;
3432 if (! ep->can_eliminate && ep->can_eliminate_previous)
3434 ep->can_eliminate_previous = 0;
3435 SET_HARD_REG_BIT (*pset, ep->from);
3436 num_eliminable--;
3440 /* If we didn't need a frame pointer last time, but we do now, spill
3441 the hard frame pointer. */
3442 if (frame_pointer_needed && ! previous_frame_pointer_needed)
3443 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
3446 /* Initialize the table of registers to eliminate. */
3448 static void
3449 init_elim_table (void)
3451 struct elim_table *ep;
3452 #ifdef ELIMINABLE_REGS
3453 const struct elim_table_1 *ep1;
3454 #endif
3456 if (!reg_eliminate)
3457 reg_eliminate = xcalloc (sizeof (struct elim_table), NUM_ELIMINABLE_REGS);
3459 /* Does this function require a frame pointer? */
3461 frame_pointer_needed = (! flag_omit_frame_pointer
3462 /* ?? If EXIT_IGNORE_STACK is set, we will not save
3463 and restore sp for alloca. So we can't eliminate
3464 the frame pointer in that case. At some point,
3465 we should improve this by emitting the
3466 sp-adjusting insns for this case. */
3467 || (current_function_calls_alloca
3468 && EXIT_IGNORE_STACK)
3469 || FRAME_POINTER_REQUIRED);
3471 num_eliminable = 0;
3473 #ifdef ELIMINABLE_REGS
3474 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
3475 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
3477 ep->from = ep1->from;
3478 ep->to = ep1->to;
3479 ep->can_eliminate = ep->can_eliminate_previous
3480 = (CAN_ELIMINATE (ep->from, ep->to)
3481 && ! (ep->to == STACK_POINTER_REGNUM && frame_pointer_needed));
3483 #else
3484 reg_eliminate[0].from = reg_eliminate_1[0].from;
3485 reg_eliminate[0].to = reg_eliminate_1[0].to;
3486 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
3487 = ! frame_pointer_needed;
3488 #endif
3490 /* Count the number of eliminable registers and build the FROM and TO
3491 REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
3492 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
3493 We depend on this. */
3494 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3496 num_eliminable += ep->can_eliminate;
3497 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
3498 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
3502 /* Kick all pseudos out of hard register REGNO.
3504 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
3505 because we found we can't eliminate some register. In the case, no pseudos
3506 are allowed to be in the register, even if they are only in a block that
3507 doesn't require spill registers, unlike the case when we are spilling this
3508 hard reg to produce another spill register.
3510 Return nonzero if any pseudos needed to be kicked out. */
3512 static void
3513 spill_hard_reg (unsigned int regno, int cant_eliminate)
3515 int i;
3517 if (cant_eliminate)
3519 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
3520 regs_ever_live[regno] = 1;
3523 /* Spill every pseudo reg that was allocated to this reg
3524 or to something that overlaps this reg. */
3526 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3527 if (reg_renumber[i] >= 0
3528 && (unsigned int) reg_renumber[i] <= regno
3529 && ((unsigned int) reg_renumber[i]
3530 + hard_regno_nregs[(unsigned int) reg_renumber[i]]
3531 [PSEUDO_REGNO_MODE (i)]
3532 > regno))
3533 SET_REGNO_REG_SET (&spilled_pseudos, i);
3536 /* After find_reload_regs has been run for all insn that need reloads,
3537 and/or spill_hard_regs was called, this function is used to actually
3538 spill pseudo registers and try to reallocate them. It also sets up the
3539 spill_regs array for use by choose_reload_regs. */
3541 static int
3542 finish_spills (int global)
3544 struct insn_chain *chain;
3545 int something_changed = 0;
3546 int i;
3547 reg_set_iterator rsi;
3549 /* Build the spill_regs array for the function. */
3550 /* If there are some registers still to eliminate and one of the spill regs
3551 wasn't ever used before, additional stack space may have to be
3552 allocated to store this register. Thus, we may have changed the offset
3553 between the stack and frame pointers, so mark that something has changed.
3555 One might think that we need only set VAL to 1 if this is a call-used
3556 register. However, the set of registers that must be saved by the
3557 prologue is not identical to the call-used set. For example, the
3558 register used by the call insn for the return PC is a call-used register,
3559 but must be saved by the prologue. */
3561 n_spills = 0;
3562 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3563 if (TEST_HARD_REG_BIT (used_spill_regs, i))
3565 spill_reg_order[i] = n_spills;
3566 spill_regs[n_spills++] = i;
3567 if (num_eliminable && ! regs_ever_live[i])
3568 something_changed = 1;
3569 regs_ever_live[i] = 1;
3571 else
3572 spill_reg_order[i] = -1;
3574 EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
3576 /* Record the current hard register the pseudo is allocated to in
3577 pseudo_previous_regs so we avoid reallocating it to the same
3578 hard reg in a later pass. */
3579 gcc_assert (reg_renumber[i] >= 0);
3581 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
3582 /* Mark it as no longer having a hard register home. */
3583 reg_renumber[i] = -1;
3584 /* We will need to scan everything again. */
3585 something_changed = 1;
3588 /* Retry global register allocation if possible. */
3589 if (global)
3591 memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
3592 /* For every insn that needs reloads, set the registers used as spill
3593 regs in pseudo_forbidden_regs for every pseudo live across the
3594 insn. */
3595 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
3597 EXECUTE_IF_SET_IN_REG_SET
3598 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
3600 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
3601 chain->used_spill_regs);
3603 EXECUTE_IF_SET_IN_REG_SET
3604 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
3606 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
3607 chain->used_spill_regs);
3611 /* Retry allocating the spilled pseudos. For each reg, merge the
3612 various reg sets that indicate which hard regs can't be used,
3613 and call retry_global_alloc.
3614 We change spill_pseudos here to only contain pseudos that did not
3615 get a new hard register. */
3616 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3617 if (reg_old_renumber[i] != reg_renumber[i])
3619 HARD_REG_SET forbidden;
3620 COPY_HARD_REG_SET (forbidden, bad_spill_regs_global);
3621 IOR_HARD_REG_SET (forbidden, pseudo_forbidden_regs[i]);
3622 IOR_HARD_REG_SET (forbidden, pseudo_previous_regs[i]);
3623 retry_global_alloc (i, forbidden);
3624 if (reg_renumber[i] >= 0)
3625 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
3629 /* Fix up the register information in the insn chain.
3630 This involves deleting those of the spilled pseudos which did not get
3631 a new hard register home from the live_{before,after} sets. */
3632 for (chain = reload_insn_chain; chain; chain = chain->next)
3634 HARD_REG_SET used_by_pseudos;
3635 HARD_REG_SET used_by_pseudos2;
3637 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
3638 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
3640 /* Mark any unallocated hard regs as available for spills. That
3641 makes inheritance work somewhat better. */
3642 if (chain->need_reload)
3644 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
3645 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
3646 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
3648 /* Save the old value for the sanity test below. */
3649 COPY_HARD_REG_SET (used_by_pseudos2, chain->used_spill_regs);
3651 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
3652 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
3653 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
3654 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
3656 /* Make sure we only enlarge the set. */
3657 GO_IF_HARD_REG_SUBSET (used_by_pseudos2, chain->used_spill_regs, ok);
3658 gcc_unreachable ();
3659 ok:;
3663 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
3664 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3666 int regno = reg_renumber[i];
3667 if (reg_old_renumber[i] == regno)
3668 continue;
3670 alter_reg (i, reg_old_renumber[i]);
3671 reg_old_renumber[i] = regno;
3672 if (dump_file)
3674 if (regno == -1)
3675 fprintf (dump_file, " Register %d now on stack.\n\n", i);
3676 else
3677 fprintf (dump_file, " Register %d now in %d.\n\n",
3678 i, reg_renumber[i]);
3682 return something_changed;
3685 /* Find all paradoxical subregs within X and update reg_max_ref_width. */
3687 static void
3688 scan_paradoxical_subregs (rtx x)
3690 int i;
3691 const char *fmt;
3692 enum rtx_code code = GET_CODE (x);
3694 switch (code)
3696 case REG:
3697 case CONST_INT:
3698 case CONST:
3699 case SYMBOL_REF:
3700 case LABEL_REF:
3701 case CONST_DOUBLE:
3702 case CONST_VECTOR: /* shouldn't happen, but just in case. */
3703 case CC0:
3704 case PC:
3705 case USE:
3706 case CLOBBER:
3707 return;
3709 case SUBREG:
3710 if (REG_P (SUBREG_REG (x))
3711 && GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3712 reg_max_ref_width[REGNO (SUBREG_REG (x))]
3713 = GET_MODE_SIZE (GET_MODE (x));
3714 return;
3716 default:
3717 break;
3720 fmt = GET_RTX_FORMAT (code);
3721 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3723 if (fmt[i] == 'e')
3724 scan_paradoxical_subregs (XEXP (x, i));
3725 else if (fmt[i] == 'E')
3727 int j;
3728 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3729 scan_paradoxical_subregs (XVECEXP (x, i, j));
3734 /* Reload pseudo-registers into hard regs around each insn as needed.
3735 Additional register load insns are output before the insn that needs it
3736 and perhaps store insns after insns that modify the reloaded pseudo reg.
3738 reg_last_reload_reg and reg_reloaded_contents keep track of
3739 which registers are already available in reload registers.
3740 We update these for the reloads that we perform,
3741 as the insns are scanned. */
3743 static void
3744 reload_as_needed (int live_known)
3746 struct insn_chain *chain;
3747 #if defined (AUTO_INC_DEC)
3748 int i;
3749 #endif
3750 rtx x;
3752 memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
3753 memset (spill_reg_store, 0, sizeof spill_reg_store);
3754 reg_last_reload_reg = xcalloc (max_regno, sizeof (rtx));
3755 reg_has_output_reload = xmalloc (max_regno);
3756 CLEAR_HARD_REG_SET (reg_reloaded_valid);
3757 CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
3759 set_initial_elim_offsets ();
3761 for (chain = reload_insn_chain; chain; chain = chain->next)
3763 rtx prev = 0;
3764 rtx insn = chain->insn;
3765 rtx old_next = NEXT_INSN (insn);
3767 /* If we pass a label, copy the offsets from the label information
3768 into the current offsets of each elimination. */
3769 if (LABEL_P (insn))
3770 set_offsets_for_label (insn);
3772 else if (INSN_P (insn))
3774 rtx oldpat = copy_rtx (PATTERN (insn));
3776 /* If this is a USE and CLOBBER of a MEM, ensure that any
3777 references to eliminable registers have been removed. */
3779 if ((GET_CODE (PATTERN (insn)) == USE
3780 || GET_CODE (PATTERN (insn)) == CLOBBER)
3781 && MEM_P (XEXP (PATTERN (insn), 0)))
3782 XEXP (XEXP (PATTERN (insn), 0), 0)
3783 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
3784 GET_MODE (XEXP (PATTERN (insn), 0)),
3785 NULL_RTX);
3787 /* If we need to do register elimination processing, do so.
3788 This might delete the insn, in which case we are done. */
3789 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
3791 eliminate_regs_in_insn (insn, 1);
3792 if (NOTE_P (insn))
3794 update_eliminable_offsets ();
3795 continue;
3799 /* If need_elim is nonzero but need_reload is zero, one might think
3800 that we could simply set n_reloads to 0. However, find_reloads
3801 could have done some manipulation of the insn (such as swapping
3802 commutative operands), and these manipulations are lost during
3803 the first pass for every insn that needs register elimination.
3804 So the actions of find_reloads must be redone here. */
3806 if (! chain->need_elim && ! chain->need_reload
3807 && ! chain->need_operand_change)
3808 n_reloads = 0;
3809 /* First find the pseudo regs that must be reloaded for this insn.
3810 This info is returned in the tables reload_... (see reload.h).
3811 Also modify the body of INSN by substituting RELOAD
3812 rtx's for those pseudo regs. */
3813 else
3815 memset (reg_has_output_reload, 0, max_regno);
3816 CLEAR_HARD_REG_SET (reg_is_output_reload);
3818 find_reloads (insn, 1, spill_indirect_levels, live_known,
3819 spill_reg_order);
3822 if (n_reloads > 0)
3824 rtx next = NEXT_INSN (insn);
3825 rtx p;
3827 prev = PREV_INSN (insn);
3829 /* Now compute which reload regs to reload them into. Perhaps
3830 reusing reload regs from previous insns, or else output
3831 load insns to reload them. Maybe output store insns too.
3832 Record the choices of reload reg in reload_reg_rtx. */
3833 choose_reload_regs (chain);
3835 /* Merge any reloads that we didn't combine for fear of
3836 increasing the number of spill registers needed but now
3837 discover can be safely merged. */
3838 if (SMALL_REGISTER_CLASSES)
3839 merge_assigned_reloads (insn);
3841 /* Generate the insns to reload operands into or out of
3842 their reload regs. */
3843 emit_reload_insns (chain);
3845 /* Substitute the chosen reload regs from reload_reg_rtx
3846 into the insn's body (or perhaps into the bodies of other
3847 load and store insn that we just made for reloading
3848 and that we moved the structure into). */
3849 subst_reloads (insn);
3851 /* If this was an ASM, make sure that all the reload insns
3852 we have generated are valid. If not, give an error
3853 and delete them. */
3855 if (asm_noperands (PATTERN (insn)) >= 0)
3856 for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
3857 if (p != insn && INSN_P (p)
3858 && GET_CODE (PATTERN (p)) != USE
3859 && (recog_memoized (p) < 0
3860 || (extract_insn (p), ! constrain_operands (1))))
3862 error_for_asm (insn,
3863 "%<asm%> operand requires "
3864 "impossible reload");
3865 delete_insn (p);
3869 if (num_eliminable && chain->need_elim)
3870 update_eliminable_offsets ();
3872 /* Any previously reloaded spilled pseudo reg, stored in this insn,
3873 is no longer validly lying around to save a future reload.
3874 Note that this does not detect pseudos that were reloaded
3875 for this insn in order to be stored in
3876 (obeying register constraints). That is correct; such reload
3877 registers ARE still valid. */
3878 note_stores (oldpat, forget_old_reloads_1, NULL);
3880 /* There may have been CLOBBER insns placed after INSN. So scan
3881 between INSN and NEXT and use them to forget old reloads. */
3882 for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
3883 if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
3884 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
3886 #ifdef AUTO_INC_DEC
3887 /* Likewise for regs altered by auto-increment in this insn.
3888 REG_INC notes have been changed by reloading:
3889 find_reloads_address_1 records substitutions for them,
3890 which have been performed by subst_reloads above. */
3891 for (i = n_reloads - 1; i >= 0; i--)
3893 rtx in_reg = rld[i].in_reg;
3894 if (in_reg)
3896 enum rtx_code code = GET_CODE (in_reg);
3897 /* PRE_INC / PRE_DEC will have the reload register ending up
3898 with the same value as the stack slot, but that doesn't
3899 hold true for POST_INC / POST_DEC. Either we have to
3900 convert the memory access to a true POST_INC / POST_DEC,
3901 or we can't use the reload register for inheritance. */
3902 if ((code == POST_INC || code == POST_DEC)
3903 && TEST_HARD_REG_BIT (reg_reloaded_valid,
3904 REGNO (rld[i].reg_rtx))
3905 /* Make sure it is the inc/dec pseudo, and not
3906 some other (e.g. output operand) pseudo. */
3907 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
3908 == REGNO (XEXP (in_reg, 0))))
3911 rtx reload_reg = rld[i].reg_rtx;
3912 enum machine_mode mode = GET_MODE (reload_reg);
3913 int n = 0;
3914 rtx p;
3916 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
3918 /* We really want to ignore REG_INC notes here, so
3919 use PATTERN (p) as argument to reg_set_p . */
3920 if (reg_set_p (reload_reg, PATTERN (p)))
3921 break;
3922 n = count_occurrences (PATTERN (p), reload_reg, 0);
3923 if (! n)
3924 continue;
3925 if (n == 1)
3927 n = validate_replace_rtx (reload_reg,
3928 gen_rtx_fmt_e (code,
3929 mode,
3930 reload_reg),
3933 /* We must also verify that the constraints
3934 are met after the replacement. */
3935 extract_insn (p);
3936 if (n)
3937 n = constrain_operands (1);
3938 else
3939 break;
3941 /* If the constraints were not met, then
3942 undo the replacement. */
3943 if (!n)
3945 validate_replace_rtx (gen_rtx_fmt_e (code,
3946 mode,
3947 reload_reg),
3948 reload_reg, p);
3949 break;
3953 break;
3955 if (n == 1)
3957 REG_NOTES (p)
3958 = gen_rtx_EXPR_LIST (REG_INC, reload_reg,
3959 REG_NOTES (p));
3960 /* Mark this as having an output reload so that the
3961 REG_INC processing code below won't invalidate
3962 the reload for inheritance. */
3963 SET_HARD_REG_BIT (reg_is_output_reload,
3964 REGNO (reload_reg));
3965 reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
3967 else
3968 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
3969 NULL);
3971 else if ((code == PRE_INC || code == PRE_DEC)
3972 && TEST_HARD_REG_BIT (reg_reloaded_valid,
3973 REGNO (rld[i].reg_rtx))
3974 /* Make sure it is the inc/dec pseudo, and not
3975 some other (e.g. output operand) pseudo. */
3976 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
3977 == REGNO (XEXP (in_reg, 0))))
3979 SET_HARD_REG_BIT (reg_is_output_reload,
3980 REGNO (rld[i].reg_rtx));
3981 reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
3985 /* If a pseudo that got a hard register is auto-incremented,
3986 we must purge records of copying it into pseudos without
3987 hard registers. */
3988 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
3989 if (REG_NOTE_KIND (x) == REG_INC)
3991 /* See if this pseudo reg was reloaded in this insn.
3992 If so, its last-reload info is still valid
3993 because it is based on this insn's reload. */
3994 for (i = 0; i < n_reloads; i++)
3995 if (rld[i].out == XEXP (x, 0))
3996 break;
3998 if (i == n_reloads)
3999 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4001 #endif
4003 /* A reload reg's contents are unknown after a label. */
4004 if (LABEL_P (insn))
4005 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4007 /* Don't assume a reload reg is still good after a call insn
4008 if it is a call-used reg, or if it contains a value that will
4009 be partially clobbered by the call. */
4010 else if (CALL_P (insn))
4012 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4013 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
4017 /* Clean up. */
4018 free (reg_last_reload_reg);
4019 free (reg_has_output_reload);
4022 /* Discard all record of any value reloaded from X,
4023 or reloaded in X from someplace else;
4024 unless X is an output reload reg of the current insn.
4026 X may be a hard reg (the reload reg)
4027 or it may be a pseudo reg that was reloaded from. */
4029 static void
4030 forget_old_reloads_1 (rtx x, rtx ignored ATTRIBUTE_UNUSED,
4031 void *data ATTRIBUTE_UNUSED)
4033 unsigned int regno;
4034 unsigned int nr;
4036 /* note_stores does give us subregs of hard regs,
4037 subreg_regno_offset will abort if it is not a hard reg. */
4038 while (GET_CODE (x) == SUBREG)
4040 /* We ignore the subreg offset when calculating the regno,
4041 because we are using the entire underlying hard register
4042 below. */
4043 x = SUBREG_REG (x);
4046 if (!REG_P (x))
4047 return;
4049 regno = REGNO (x);
4051 if (regno >= FIRST_PSEUDO_REGISTER)
4052 nr = 1;
4053 else
4055 unsigned int i;
4057 nr = hard_regno_nregs[regno][GET_MODE (x)];
4058 /* Storing into a spilled-reg invalidates its contents.
4059 This can happen if a block-local pseudo is allocated to that reg
4060 and it wasn't spilled because this block's total need is 0.
4061 Then some insn might have an optional reload and use this reg. */
4062 for (i = 0; i < nr; i++)
4063 /* But don't do this if the reg actually serves as an output
4064 reload reg in the current instruction. */
4065 if (n_reloads == 0
4066 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4068 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4069 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered, regno + i);
4070 spill_reg_store[regno + i] = 0;
4074 /* Since value of X has changed,
4075 forget any value previously copied from it. */
4077 while (nr-- > 0)
4078 /* But don't forget a copy if this is the output reload
4079 that establishes the copy's validity. */
4080 if (n_reloads == 0 || reg_has_output_reload[regno + nr] == 0)
4081 reg_last_reload_reg[regno + nr] = 0;
4084 /* The following HARD_REG_SETs indicate when each hard register is
4085 used for a reload of various parts of the current insn. */
4087 /* If reg is unavailable for all reloads. */
4088 static HARD_REG_SET reload_reg_unavailable;
4089 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4090 static HARD_REG_SET reload_reg_used;
4091 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4092 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4093 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4094 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4095 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4096 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4097 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4098 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
4099 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4100 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4101 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4102 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
4103 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4104 static HARD_REG_SET reload_reg_used_in_op_addr;
4105 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
4106 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
4107 /* If reg is in use for a RELOAD_FOR_INSN reload. */
4108 static HARD_REG_SET reload_reg_used_in_insn;
4109 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
4110 static HARD_REG_SET reload_reg_used_in_other_addr;
4112 /* If reg is in use as a reload reg for any sort of reload. */
4113 static HARD_REG_SET reload_reg_used_at_all;
4115 /* If reg is use as an inherited reload. We just mark the first register
4116 in the group. */
4117 static HARD_REG_SET reload_reg_used_for_inherit;
4119 /* Records which hard regs are used in any way, either as explicit use or
4120 by being allocated to a pseudo during any point of the current insn. */
4121 static HARD_REG_SET reg_used_in_insn;
4123 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
4124 TYPE. MODE is used to indicate how many consecutive regs are
4125 actually used. */
4127 static void
4128 mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
4129 enum machine_mode mode)
4131 unsigned int nregs = hard_regno_nregs[regno][mode];
4132 unsigned int i;
4134 for (i = regno; i < nregs + regno; i++)
4136 switch (type)
4138 case RELOAD_OTHER:
4139 SET_HARD_REG_BIT (reload_reg_used, i);
4140 break;
4142 case RELOAD_FOR_INPUT_ADDRESS:
4143 SET_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], i);
4144 break;
4146 case RELOAD_FOR_INPADDR_ADDRESS:
4147 SET_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], i);
4148 break;
4150 case RELOAD_FOR_OUTPUT_ADDRESS:
4151 SET_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], i);
4152 break;
4154 case RELOAD_FOR_OUTADDR_ADDRESS:
4155 SET_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], i);
4156 break;
4158 case RELOAD_FOR_OPERAND_ADDRESS:
4159 SET_HARD_REG_BIT (reload_reg_used_in_op_addr, i);
4160 break;
4162 case RELOAD_FOR_OPADDR_ADDR:
4163 SET_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, i);
4164 break;
4166 case RELOAD_FOR_OTHER_ADDRESS:
4167 SET_HARD_REG_BIT (reload_reg_used_in_other_addr, i);
4168 break;
4170 case RELOAD_FOR_INPUT:
4171 SET_HARD_REG_BIT (reload_reg_used_in_input[opnum], i);
4172 break;
4174 case RELOAD_FOR_OUTPUT:
4175 SET_HARD_REG_BIT (reload_reg_used_in_output[opnum], i);
4176 break;
4178 case RELOAD_FOR_INSN:
4179 SET_HARD_REG_BIT (reload_reg_used_in_insn, i);
4180 break;
4183 SET_HARD_REG_BIT (reload_reg_used_at_all, i);
4187 /* Similarly, but show REGNO is no longer in use for a reload. */
4189 static void
4190 clear_reload_reg_in_use (unsigned int regno, int opnum,
4191 enum reload_type type, enum machine_mode mode)
4193 unsigned int nregs = hard_regno_nregs[regno][mode];
4194 unsigned int start_regno, end_regno, r;
4195 int i;
4196 /* A complication is that for some reload types, inheritance might
4197 allow multiple reloads of the same types to share a reload register.
4198 We set check_opnum if we have to check only reloads with the same
4199 operand number, and check_any if we have to check all reloads. */
4200 int check_opnum = 0;
4201 int check_any = 0;
4202 HARD_REG_SET *used_in_set;
4204 switch (type)
4206 case RELOAD_OTHER:
4207 used_in_set = &reload_reg_used;
4208 break;
4210 case RELOAD_FOR_INPUT_ADDRESS:
4211 used_in_set = &reload_reg_used_in_input_addr[opnum];
4212 break;
4214 case RELOAD_FOR_INPADDR_ADDRESS:
4215 check_opnum = 1;
4216 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
4217 break;
4219 case RELOAD_FOR_OUTPUT_ADDRESS:
4220 used_in_set = &reload_reg_used_in_output_addr[opnum];
4221 break;
4223 case RELOAD_FOR_OUTADDR_ADDRESS:
4224 check_opnum = 1;
4225 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
4226 break;
4228 case RELOAD_FOR_OPERAND_ADDRESS:
4229 used_in_set = &reload_reg_used_in_op_addr;
4230 break;
4232 case RELOAD_FOR_OPADDR_ADDR:
4233 check_any = 1;
4234 used_in_set = &reload_reg_used_in_op_addr_reload;
4235 break;
4237 case RELOAD_FOR_OTHER_ADDRESS:
4238 used_in_set = &reload_reg_used_in_other_addr;
4239 check_any = 1;
4240 break;
4242 case RELOAD_FOR_INPUT:
4243 used_in_set = &reload_reg_used_in_input[opnum];
4244 break;
4246 case RELOAD_FOR_OUTPUT:
4247 used_in_set = &reload_reg_used_in_output[opnum];
4248 break;
4250 case RELOAD_FOR_INSN:
4251 used_in_set = &reload_reg_used_in_insn;
4252 break;
4253 default:
4254 gcc_unreachable ();
4256 /* We resolve conflicts with remaining reloads of the same type by
4257 excluding the intervals of reload registers by them from the
4258 interval of freed reload registers. Since we only keep track of
4259 one set of interval bounds, we might have to exclude somewhat
4260 more than what would be necessary if we used a HARD_REG_SET here.
4261 But this should only happen very infrequently, so there should
4262 be no reason to worry about it. */
4264 start_regno = regno;
4265 end_regno = regno + nregs;
4266 if (check_opnum || check_any)
4268 for (i = n_reloads - 1; i >= 0; i--)
4270 if (rld[i].when_needed == type
4271 && (check_any || rld[i].opnum == opnum)
4272 && rld[i].reg_rtx)
4274 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
4275 unsigned int conflict_end
4276 = (conflict_start
4277 + hard_regno_nregs[conflict_start][rld[i].mode]);
4279 /* If there is an overlap with the first to-be-freed register,
4280 adjust the interval start. */
4281 if (conflict_start <= start_regno && conflict_end > start_regno)
4282 start_regno = conflict_end;
4283 /* Otherwise, if there is a conflict with one of the other
4284 to-be-freed registers, adjust the interval end. */
4285 if (conflict_start > start_regno && conflict_start < end_regno)
4286 end_regno = conflict_start;
4291 for (r = start_regno; r < end_regno; r++)
4292 CLEAR_HARD_REG_BIT (*used_in_set, r);
4295 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
4296 specified by OPNUM and TYPE. */
4298 static int
4299 reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
4301 int i;
4303 /* In use for a RELOAD_OTHER means it's not available for anything. */
4304 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
4305 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4306 return 0;
4308 switch (type)
4310 case RELOAD_OTHER:
4311 /* In use for anything means we can't use it for RELOAD_OTHER. */
4312 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
4313 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4314 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
4315 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4316 return 0;
4318 for (i = 0; i < reload_n_operands; i++)
4319 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4320 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4321 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4322 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4323 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4324 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4325 return 0;
4327 return 1;
4329 case RELOAD_FOR_INPUT:
4330 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4331 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
4332 return 0;
4334 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4335 return 0;
4337 /* If it is used for some other input, can't use it. */
4338 for (i = 0; i < reload_n_operands; i++)
4339 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4340 return 0;
4342 /* If it is used in a later operand's address, can't use it. */
4343 for (i = opnum + 1; i < reload_n_operands; i++)
4344 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4345 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4346 return 0;
4348 return 1;
4350 case RELOAD_FOR_INPUT_ADDRESS:
4351 /* Can't use a register if it is used for an input address for this
4352 operand or used as an input in an earlier one. */
4353 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
4354 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4355 return 0;
4357 for (i = 0; i < opnum; i++)
4358 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4359 return 0;
4361 return 1;
4363 case RELOAD_FOR_INPADDR_ADDRESS:
4364 /* Can't use a register if it is used for an input address
4365 for this operand or used as an input in an earlier
4366 one. */
4367 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4368 return 0;
4370 for (i = 0; i < opnum; i++)
4371 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4372 return 0;
4374 return 1;
4376 case RELOAD_FOR_OUTPUT_ADDRESS:
4377 /* Can't use a register if it is used for an output address for this
4378 operand or used as an output in this or a later operand. Note
4379 that multiple output operands are emitted in reverse order, so
4380 the conflicting ones are those with lower indices. */
4381 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
4382 return 0;
4384 for (i = 0; i <= opnum; i++)
4385 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4386 return 0;
4388 return 1;
4390 case RELOAD_FOR_OUTADDR_ADDRESS:
4391 /* Can't use a register if it is used for an output address
4392 for this operand or used as an output in this or a
4393 later operand. Note that multiple output operands are
4394 emitted in reverse order, so the conflicting ones are
4395 those with lower indices. */
4396 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
4397 return 0;
4399 for (i = 0; i <= opnum; i++)
4400 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4401 return 0;
4403 return 1;
4405 case RELOAD_FOR_OPERAND_ADDRESS:
4406 for (i = 0; i < reload_n_operands; i++)
4407 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4408 return 0;
4410 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4411 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4413 case RELOAD_FOR_OPADDR_ADDR:
4414 for (i = 0; i < reload_n_operands; i++)
4415 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4416 return 0;
4418 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
4420 case RELOAD_FOR_OUTPUT:
4421 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
4422 outputs, or an operand address for this or an earlier output.
4423 Note that multiple output operands are emitted in reverse order,
4424 so the conflicting ones are those with higher indices. */
4425 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4426 return 0;
4428 for (i = 0; i < reload_n_operands; i++)
4429 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4430 return 0;
4432 for (i = opnum; i < reload_n_operands; i++)
4433 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4434 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4435 return 0;
4437 return 1;
4439 case RELOAD_FOR_INSN:
4440 for (i = 0; i < reload_n_operands; i++)
4441 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4442 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4443 return 0;
4445 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4446 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4448 case RELOAD_FOR_OTHER_ADDRESS:
4449 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
4451 default:
4452 gcc_unreachable ();
4456 /* Return 1 if the value in reload reg REGNO, as used by a reload
4457 needed for the part of the insn specified by OPNUM and TYPE,
4458 is still available in REGNO at the end of the insn.
4460 We can assume that the reload reg was already tested for availability
4461 at the time it is needed, and we should not check this again,
4462 in case the reg has already been marked in use. */
4464 static int
4465 reload_reg_reaches_end_p (unsigned int regno, int opnum, enum reload_type type)
4467 int i;
4469 switch (type)
4471 case RELOAD_OTHER:
4472 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
4473 its value must reach the end. */
4474 return 1;
4476 /* If this use is for part of the insn,
4477 its value reaches if no subsequent part uses the same register.
4478 Just like the above function, don't try to do this with lots
4479 of fallthroughs. */
4481 case RELOAD_FOR_OTHER_ADDRESS:
4482 /* Here we check for everything else, since these don't conflict
4483 with anything else and everything comes later. */
4485 for (i = 0; i < reload_n_operands; i++)
4486 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4487 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4488 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
4489 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4490 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4491 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4492 return 0;
4494 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4495 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
4496 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4497 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
4499 case RELOAD_FOR_INPUT_ADDRESS:
4500 case RELOAD_FOR_INPADDR_ADDRESS:
4501 /* Similar, except that we check only for this and subsequent inputs
4502 and the address of only subsequent inputs and we do not need
4503 to check for RELOAD_OTHER objects since they are known not to
4504 conflict. */
4506 for (i = opnum; i < reload_n_operands; i++)
4507 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4508 return 0;
4510 for (i = opnum + 1; i < reload_n_operands; i++)
4511 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4512 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4513 return 0;
4515 for (i = 0; i < reload_n_operands; i++)
4516 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4517 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4518 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4519 return 0;
4521 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4522 return 0;
4524 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4525 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4526 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
4528 case RELOAD_FOR_INPUT:
4529 /* Similar to input address, except we start at the next operand for
4530 both input and input address and we do not check for
4531 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
4532 would conflict. */
4534 for (i = opnum + 1; i < reload_n_operands; i++)
4535 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4536 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4537 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4538 return 0;
4540 /* ... fall through ... */
4542 case RELOAD_FOR_OPERAND_ADDRESS:
4543 /* Check outputs and their addresses. */
4545 for (i = 0; i < reload_n_operands; i++)
4546 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4547 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4548 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4549 return 0;
4551 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
4553 case RELOAD_FOR_OPADDR_ADDR:
4554 for (i = 0; i < reload_n_operands; i++)
4555 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4556 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4557 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4558 return 0;
4560 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4561 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4562 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
4564 case RELOAD_FOR_INSN:
4565 /* These conflict with other outputs with RELOAD_OTHER. So
4566 we need only check for output addresses. */
4568 opnum = reload_n_operands;
4570 /* ... fall through ... */
4572 case RELOAD_FOR_OUTPUT:
4573 case RELOAD_FOR_OUTPUT_ADDRESS:
4574 case RELOAD_FOR_OUTADDR_ADDRESS:
4575 /* We already know these can't conflict with a later output. So the
4576 only thing to check are later output addresses.
4577 Note that multiple output operands are emitted in reverse order,
4578 so the conflicting ones are those with lower indices. */
4579 for (i = 0; i < opnum; i++)
4580 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4581 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4582 return 0;
4584 return 1;
4586 default:
4587 gcc_unreachable ();
4591 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
4592 Return 0 otherwise.
4594 This function uses the same algorithm as reload_reg_free_p above. */
4597 reloads_conflict (int r1, int r2)
4599 enum reload_type r1_type = rld[r1].when_needed;
4600 enum reload_type r2_type = rld[r2].when_needed;
4601 int r1_opnum = rld[r1].opnum;
4602 int r2_opnum = rld[r2].opnum;
4604 /* RELOAD_OTHER conflicts with everything. */
4605 if (r2_type == RELOAD_OTHER)
4606 return 1;
4608 /* Otherwise, check conflicts differently for each type. */
4610 switch (r1_type)
4612 case RELOAD_FOR_INPUT:
4613 return (r2_type == RELOAD_FOR_INSN
4614 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
4615 || r2_type == RELOAD_FOR_OPADDR_ADDR
4616 || r2_type == RELOAD_FOR_INPUT
4617 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
4618 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
4619 && r2_opnum > r1_opnum));
4621 case RELOAD_FOR_INPUT_ADDRESS:
4622 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
4623 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4625 case RELOAD_FOR_INPADDR_ADDRESS:
4626 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
4627 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4629 case RELOAD_FOR_OUTPUT_ADDRESS:
4630 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
4631 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
4633 case RELOAD_FOR_OUTADDR_ADDRESS:
4634 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
4635 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
4637 case RELOAD_FOR_OPERAND_ADDRESS:
4638 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
4639 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4641 case RELOAD_FOR_OPADDR_ADDR:
4642 return (r2_type == RELOAD_FOR_INPUT
4643 || r2_type == RELOAD_FOR_OPADDR_ADDR);
4645 case RELOAD_FOR_OUTPUT:
4646 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
4647 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
4648 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
4649 && r2_opnum >= r1_opnum));
4651 case RELOAD_FOR_INSN:
4652 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
4653 || r2_type == RELOAD_FOR_INSN
4654 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4656 case RELOAD_FOR_OTHER_ADDRESS:
4657 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
4659 case RELOAD_OTHER:
4660 return 1;
4662 default:
4663 gcc_unreachable ();
4667 /* Indexed by reload number, 1 if incoming value
4668 inherited from previous insns. */
4669 char reload_inherited[MAX_RELOADS];
4671 /* For an inherited reload, this is the insn the reload was inherited from,
4672 if we know it. Otherwise, this is 0. */
4673 rtx reload_inheritance_insn[MAX_RELOADS];
4675 /* If nonzero, this is a place to get the value of the reload,
4676 rather than using reload_in. */
4677 rtx reload_override_in[MAX_RELOADS];
4679 /* For each reload, the hard register number of the register used,
4680 or -1 if we did not need a register for this reload. */
4681 int reload_spill_index[MAX_RELOADS];
4683 /* Subroutine of free_for_value_p, used to check a single register.
4684 START_REGNO is the starting regno of the full reload register
4685 (possibly comprising multiple hard registers) that we are considering. */
4687 static int
4688 reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
4689 enum reload_type type, rtx value, rtx out,
4690 int reloadnum, int ignore_address_reloads)
4692 int time1;
4693 /* Set if we see an input reload that must not share its reload register
4694 with any new earlyclobber, but might otherwise share the reload
4695 register with an output or input-output reload. */
4696 int check_earlyclobber = 0;
4697 int i;
4698 int copy = 0;
4700 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4701 return 0;
4703 if (out == const0_rtx)
4705 copy = 1;
4706 out = NULL_RTX;
4709 /* We use some pseudo 'time' value to check if the lifetimes of the
4710 new register use would overlap with the one of a previous reload
4711 that is not read-only or uses a different value.
4712 The 'time' used doesn't have to be linear in any shape or form, just
4713 monotonic.
4714 Some reload types use different 'buckets' for each operand.
4715 So there are MAX_RECOG_OPERANDS different time values for each
4716 such reload type.
4717 We compute TIME1 as the time when the register for the prospective
4718 new reload ceases to be live, and TIME2 for each existing
4719 reload as the time when that the reload register of that reload
4720 becomes live.
4721 Where there is little to be gained by exact lifetime calculations,
4722 we just make conservative assumptions, i.e. a longer lifetime;
4723 this is done in the 'default:' cases. */
4724 switch (type)
4726 case RELOAD_FOR_OTHER_ADDRESS:
4727 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
4728 time1 = copy ? 0 : 1;
4729 break;
4730 case RELOAD_OTHER:
4731 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
4732 break;
4733 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
4734 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
4735 respectively, to the time values for these, we get distinct time
4736 values. To get distinct time values for each operand, we have to
4737 multiply opnum by at least three. We round that up to four because
4738 multiply by four is often cheaper. */
4739 case RELOAD_FOR_INPADDR_ADDRESS:
4740 time1 = opnum * 4 + 2;
4741 break;
4742 case RELOAD_FOR_INPUT_ADDRESS:
4743 time1 = opnum * 4 + 3;
4744 break;
4745 case RELOAD_FOR_INPUT:
4746 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
4747 executes (inclusive). */
4748 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
4749 break;
4750 case RELOAD_FOR_OPADDR_ADDR:
4751 /* opnum * 4 + 4
4752 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
4753 time1 = MAX_RECOG_OPERANDS * 4 + 1;
4754 break;
4755 case RELOAD_FOR_OPERAND_ADDRESS:
4756 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
4757 is executed. */
4758 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
4759 break;
4760 case RELOAD_FOR_OUTADDR_ADDRESS:
4761 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
4762 break;
4763 case RELOAD_FOR_OUTPUT_ADDRESS:
4764 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
4765 break;
4766 default:
4767 time1 = MAX_RECOG_OPERANDS * 5 + 5;
4770 for (i = 0; i < n_reloads; i++)
4772 rtx reg = rld[i].reg_rtx;
4773 if (reg && REG_P (reg)
4774 && ((unsigned) regno - true_regnum (reg)
4775 <= hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] - (unsigned) 1)
4776 && i != reloadnum)
4778 rtx other_input = rld[i].in;
4780 /* If the other reload loads the same input value, that
4781 will not cause a conflict only if it's loading it into
4782 the same register. */
4783 if (true_regnum (reg) != start_regno)
4784 other_input = NULL_RTX;
4785 if (! other_input || ! rtx_equal_p (other_input, value)
4786 || rld[i].out || out)
4788 int time2;
4789 switch (rld[i].when_needed)
4791 case RELOAD_FOR_OTHER_ADDRESS:
4792 time2 = 0;
4793 break;
4794 case RELOAD_FOR_INPADDR_ADDRESS:
4795 /* find_reloads makes sure that a
4796 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
4797 by at most one - the first -
4798 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
4799 address reload is inherited, the address address reload
4800 goes away, so we can ignore this conflict. */
4801 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
4802 && ignore_address_reloads
4803 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
4804 Then the address address is still needed to store
4805 back the new address. */
4806 && ! rld[reloadnum].out)
4807 continue;
4808 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
4809 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
4810 reloads go away. */
4811 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
4812 && ignore_address_reloads
4813 /* Unless we are reloading an auto_inc expression. */
4814 && ! rld[reloadnum].out)
4815 continue;
4816 time2 = rld[i].opnum * 4 + 2;
4817 break;
4818 case RELOAD_FOR_INPUT_ADDRESS:
4819 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
4820 && ignore_address_reloads
4821 && ! rld[reloadnum].out)
4822 continue;
4823 time2 = rld[i].opnum * 4 + 3;
4824 break;
4825 case RELOAD_FOR_INPUT:
4826 time2 = rld[i].opnum * 4 + 4;
4827 check_earlyclobber = 1;
4828 break;
4829 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
4830 == MAX_RECOG_OPERAND * 4 */
4831 case RELOAD_FOR_OPADDR_ADDR:
4832 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
4833 && ignore_address_reloads
4834 && ! rld[reloadnum].out)
4835 continue;
4836 time2 = MAX_RECOG_OPERANDS * 4 + 1;
4837 break;
4838 case RELOAD_FOR_OPERAND_ADDRESS:
4839 time2 = MAX_RECOG_OPERANDS * 4 + 2;
4840 check_earlyclobber = 1;
4841 break;
4842 case RELOAD_FOR_INSN:
4843 time2 = MAX_RECOG_OPERANDS * 4 + 3;
4844 break;
4845 case RELOAD_FOR_OUTPUT:
4846 /* All RELOAD_FOR_OUTPUT reloads become live just after the
4847 instruction is executed. */
4848 time2 = MAX_RECOG_OPERANDS * 4 + 4;
4849 break;
4850 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
4851 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
4852 value. */
4853 case RELOAD_FOR_OUTADDR_ADDRESS:
4854 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
4855 && ignore_address_reloads
4856 && ! rld[reloadnum].out)
4857 continue;
4858 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
4859 break;
4860 case RELOAD_FOR_OUTPUT_ADDRESS:
4861 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
4862 break;
4863 case RELOAD_OTHER:
4864 /* If there is no conflict in the input part, handle this
4865 like an output reload. */
4866 if (! rld[i].in || rtx_equal_p (other_input, value))
4868 time2 = MAX_RECOG_OPERANDS * 4 + 4;
4869 /* Earlyclobbered outputs must conflict with inputs. */
4870 if (earlyclobber_operand_p (rld[i].out))
4871 time2 = MAX_RECOG_OPERANDS * 4 + 3;
4873 break;
4875 time2 = 1;
4876 /* RELOAD_OTHER might be live beyond instruction execution,
4877 but this is not obvious when we set time2 = 1. So check
4878 here if there might be a problem with the new reload
4879 clobbering the register used by the RELOAD_OTHER. */
4880 if (out)
4881 return 0;
4882 break;
4883 default:
4884 return 0;
4886 if ((time1 >= time2
4887 && (! rld[i].in || rld[i].out
4888 || ! rtx_equal_p (other_input, value)))
4889 || (out && rld[reloadnum].out_reg
4890 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
4891 return 0;
4896 /* Earlyclobbered outputs must conflict with inputs. */
4897 if (check_earlyclobber && out && earlyclobber_operand_p (out))
4898 return 0;
4900 return 1;
4903 /* Return 1 if the value in reload reg REGNO, as used by a reload
4904 needed for the part of the insn specified by OPNUM and TYPE,
4905 may be used to load VALUE into it.
4907 MODE is the mode in which the register is used, this is needed to
4908 determine how many hard regs to test.
4910 Other read-only reloads with the same value do not conflict
4911 unless OUT is nonzero and these other reloads have to live while
4912 output reloads live.
4913 If OUT is CONST0_RTX, this is a special case: it means that the
4914 test should not be for using register REGNO as reload register, but
4915 for copying from register REGNO into the reload register.
4917 RELOADNUM is the number of the reload we want to load this value for;
4918 a reload does not conflict with itself.
4920 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
4921 reloads that load an address for the very reload we are considering.
4923 The caller has to make sure that there is no conflict with the return
4924 register. */
4926 static int
4927 free_for_value_p (int regno, enum machine_mode mode, int opnum,
4928 enum reload_type type, rtx value, rtx out, int reloadnum,
4929 int ignore_address_reloads)
4931 int nregs = hard_regno_nregs[regno][mode];
4932 while (nregs-- > 0)
4933 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
4934 value, out, reloadnum,
4935 ignore_address_reloads))
4936 return 0;
4937 return 1;
4940 /* Return nonzero if the rtx X is invariant over the current function. */
4941 /* ??? Actually, the places where we use this expect exactly what
4942 * is tested here, and not everything that is function invariant. In
4943 * particular, the frame pointer and arg pointer are special cased;
4944 * pic_offset_table_rtx is not, and this will cause aborts when we
4945 * go to spill these things to memory. */
4947 static int
4948 function_invariant_p (rtx x)
4950 if (CONSTANT_P (x))
4951 return 1;
4952 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
4953 return 1;
4954 if (GET_CODE (x) == PLUS
4955 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
4956 && CONSTANT_P (XEXP (x, 1)))
4957 return 1;
4958 return 0;
4961 /* Determine whether the reload reg X overlaps any rtx'es used for
4962 overriding inheritance. Return nonzero if so. */
4964 static int
4965 conflicts_with_override (rtx x)
4967 int i;
4968 for (i = 0; i < n_reloads; i++)
4969 if (reload_override_in[i]
4970 && reg_overlap_mentioned_p (x, reload_override_in[i]))
4971 return 1;
4972 return 0;
4975 /* Give an error message saying we failed to find a reload for INSN,
4976 and clear out reload R. */
4977 static void
4978 failed_reload (rtx insn, int r)
4980 if (asm_noperands (PATTERN (insn)) < 0)
4981 /* It's the compiler's fault. */
4982 fatal_insn ("could not find a spill register", insn);
4984 /* It's the user's fault; the operand's mode and constraint
4985 don't match. Disable this reload so we don't crash in final. */
4986 error_for_asm (insn,
4987 "%<asm%> operand constraint incompatible with operand size");
4988 rld[r].in = 0;
4989 rld[r].out = 0;
4990 rld[r].reg_rtx = 0;
4991 rld[r].optional = 1;
4992 rld[r].secondary_p = 1;
4995 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
4996 for reload R. If it's valid, get an rtx for it. Return nonzero if
4997 successful. */
4998 static int
4999 set_reload_reg (int i, int r)
5001 int regno;
5002 rtx reg = spill_reg_rtx[i];
5004 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
5005 spill_reg_rtx[i] = reg
5006 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
5008 regno = true_regnum (reg);
5010 /* Detect when the reload reg can't hold the reload mode.
5011 This used to be one `if', but Sequent compiler can't handle that. */
5012 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
5014 enum machine_mode test_mode = VOIDmode;
5015 if (rld[r].in)
5016 test_mode = GET_MODE (rld[r].in);
5017 /* If rld[r].in has VOIDmode, it means we will load it
5018 in whatever mode the reload reg has: to wit, rld[r].mode.
5019 We have already tested that for validity. */
5020 /* Aside from that, we need to test that the expressions
5021 to reload from or into have modes which are valid for this
5022 reload register. Otherwise the reload insns would be invalid. */
5023 if (! (rld[r].in != 0 && test_mode != VOIDmode
5024 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
5025 if (! (rld[r].out != 0
5026 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
5028 /* The reg is OK. */
5029 last_spill_reg = i;
5031 /* Mark as in use for this insn the reload regs we use
5032 for this. */
5033 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
5034 rld[r].when_needed, rld[r].mode);
5036 rld[r].reg_rtx = reg;
5037 reload_spill_index[r] = spill_regs[i];
5038 return 1;
5041 return 0;
5044 /* Find a spill register to use as a reload register for reload R.
5045 LAST_RELOAD is nonzero if this is the last reload for the insn being
5046 processed.
5048 Set rld[R].reg_rtx to the register allocated.
5050 We return 1 if successful, or 0 if we couldn't find a spill reg and
5051 we didn't change anything. */
5053 static int
5054 allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
5055 int last_reload)
5057 int i, pass, count;
5059 /* If we put this reload ahead, thinking it is a group,
5060 then insist on finding a group. Otherwise we can grab a
5061 reg that some other reload needs.
5062 (That can happen when we have a 68000 DATA_OR_FP_REG
5063 which is a group of data regs or one fp reg.)
5064 We need not be so restrictive if there are no more reloads
5065 for this insn.
5067 ??? Really it would be nicer to have smarter handling
5068 for that kind of reg class, where a problem like this is normal.
5069 Perhaps those classes should be avoided for reloading
5070 by use of more alternatives. */
5072 int force_group = rld[r].nregs > 1 && ! last_reload;
5074 /* If we want a single register and haven't yet found one,
5075 take any reg in the right class and not in use.
5076 If we want a consecutive group, here is where we look for it.
5078 We use two passes so we can first look for reload regs to
5079 reuse, which are already in use for other reloads in this insn,
5080 and only then use additional registers.
5081 I think that maximizing reuse is needed to make sure we don't
5082 run out of reload regs. Suppose we have three reloads, and
5083 reloads A and B can share regs. These need two regs.
5084 Suppose A and B are given different regs.
5085 That leaves none for C. */
5086 for (pass = 0; pass < 2; pass++)
5088 /* I is the index in spill_regs.
5089 We advance it round-robin between insns to use all spill regs
5090 equally, so that inherited reloads have a chance
5091 of leapfrogging each other. */
5093 i = last_spill_reg;
5095 for (count = 0; count < n_spills; count++)
5097 int class = (int) rld[r].class;
5098 int regnum;
5100 i++;
5101 if (i >= n_spills)
5102 i -= n_spills;
5103 regnum = spill_regs[i];
5105 if ((reload_reg_free_p (regnum, rld[r].opnum,
5106 rld[r].when_needed)
5107 || (rld[r].in
5108 /* We check reload_reg_used to make sure we
5109 don't clobber the return register. */
5110 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
5111 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
5112 rld[r].when_needed, rld[r].in,
5113 rld[r].out, r, 1)))
5114 && TEST_HARD_REG_BIT (reg_class_contents[class], regnum)
5115 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
5116 /* Look first for regs to share, then for unshared. But
5117 don't share regs used for inherited reloads; they are
5118 the ones we want to preserve. */
5119 && (pass
5120 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
5121 regnum)
5122 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
5123 regnum))))
5125 int nr = hard_regno_nregs[regnum][rld[r].mode];
5126 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
5127 (on 68000) got us two FP regs. If NR is 1,
5128 we would reject both of them. */
5129 if (force_group)
5130 nr = rld[r].nregs;
5131 /* If we need only one reg, we have already won. */
5132 if (nr == 1)
5134 /* But reject a single reg if we demand a group. */
5135 if (force_group)
5136 continue;
5137 break;
5139 /* Otherwise check that as many consecutive regs as we need
5140 are available here. */
5141 while (nr > 1)
5143 int regno = regnum + nr - 1;
5144 if (!(TEST_HARD_REG_BIT (reg_class_contents[class], regno)
5145 && spill_reg_order[regno] >= 0
5146 && reload_reg_free_p (regno, rld[r].opnum,
5147 rld[r].when_needed)))
5148 break;
5149 nr--;
5151 if (nr == 1)
5152 break;
5156 /* If we found something on pass 1, omit pass 2. */
5157 if (count < n_spills)
5158 break;
5161 /* We should have found a spill register by now. */
5162 if (count >= n_spills)
5163 return 0;
5165 /* I is the index in SPILL_REG_RTX of the reload register we are to
5166 allocate. Get an rtx for it and find its register number. */
5168 return set_reload_reg (i, r);
5171 /* Initialize all the tables needed to allocate reload registers.
5172 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
5173 is the array we use to restore the reg_rtx field for every reload. */
5175 static void
5176 choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
5178 int i;
5180 for (i = 0; i < n_reloads; i++)
5181 rld[i].reg_rtx = save_reload_reg_rtx[i];
5183 memset (reload_inherited, 0, MAX_RELOADS);
5184 memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
5185 memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
5187 CLEAR_HARD_REG_SET (reload_reg_used);
5188 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
5189 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
5190 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
5191 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
5192 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
5194 CLEAR_HARD_REG_SET (reg_used_in_insn);
5196 HARD_REG_SET tmp;
5197 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
5198 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5199 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
5200 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5201 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
5202 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
5205 for (i = 0; i < reload_n_operands; i++)
5207 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
5208 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
5209 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
5210 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
5211 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
5212 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
5215 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
5217 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
5219 for (i = 0; i < n_reloads; i++)
5220 /* If we have already decided to use a certain register,
5221 don't use it in another way. */
5222 if (rld[i].reg_rtx)
5223 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
5224 rld[i].when_needed, rld[i].mode);
5227 /* Assign hard reg targets for the pseudo-registers we must reload
5228 into hard regs for this insn.
5229 Also output the instructions to copy them in and out of the hard regs.
5231 For machines with register classes, we are responsible for
5232 finding a reload reg in the proper class. */
5234 static void
5235 choose_reload_regs (struct insn_chain *chain)
5237 rtx insn = chain->insn;
5238 int i, j;
5239 unsigned int max_group_size = 1;
5240 enum reg_class group_class = NO_REGS;
5241 int pass, win, inheritance;
5243 rtx save_reload_reg_rtx[MAX_RELOADS];
5245 /* In order to be certain of getting the registers we need,
5246 we must sort the reloads into order of increasing register class.
5247 Then our grabbing of reload registers will parallel the process
5248 that provided the reload registers.
5250 Also note whether any of the reloads wants a consecutive group of regs.
5251 If so, record the maximum size of the group desired and what
5252 register class contains all the groups needed by this insn. */
5254 for (j = 0; j < n_reloads; j++)
5256 reload_order[j] = j;
5257 reload_spill_index[j] = -1;
5259 if (rld[j].nregs > 1)
5261 max_group_size = MAX (rld[j].nregs, max_group_size);
5262 group_class
5263 = reg_class_superunion[(int) rld[j].class][(int) group_class];
5266 save_reload_reg_rtx[j] = rld[j].reg_rtx;
5269 if (n_reloads > 1)
5270 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
5272 /* If -O, try first with inheritance, then turning it off.
5273 If not -O, don't do inheritance.
5274 Using inheritance when not optimizing leads to paradoxes
5275 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
5276 because one side of the comparison might be inherited. */
5277 win = 0;
5278 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
5280 choose_reload_regs_init (chain, save_reload_reg_rtx);
5282 /* Process the reloads in order of preference just found.
5283 Beyond this point, subregs can be found in reload_reg_rtx.
5285 This used to look for an existing reloaded home for all of the
5286 reloads, and only then perform any new reloads. But that could lose
5287 if the reloads were done out of reg-class order because a later
5288 reload with a looser constraint might have an old home in a register
5289 needed by an earlier reload with a tighter constraint.
5291 To solve this, we make two passes over the reloads, in the order
5292 described above. In the first pass we try to inherit a reload
5293 from a previous insn. If there is a later reload that needs a
5294 class that is a proper subset of the class being processed, we must
5295 also allocate a spill register during the first pass.
5297 Then make a second pass over the reloads to allocate any reloads
5298 that haven't been given registers yet. */
5300 for (j = 0; j < n_reloads; j++)
5302 int r = reload_order[j];
5303 rtx search_equiv = NULL_RTX;
5305 /* Ignore reloads that got marked inoperative. */
5306 if (rld[r].out == 0 && rld[r].in == 0
5307 && ! rld[r].secondary_p)
5308 continue;
5310 /* If find_reloads chose to use reload_in or reload_out as a reload
5311 register, we don't need to chose one. Otherwise, try even if it
5312 found one since we might save an insn if we find the value lying
5313 around.
5314 Try also when reload_in is a pseudo without a hard reg. */
5315 if (rld[r].in != 0 && rld[r].reg_rtx != 0
5316 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
5317 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
5318 && !MEM_P (rld[r].in)
5319 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
5320 continue;
5322 #if 0 /* No longer needed for correct operation.
5323 It might give better code, or might not; worth an experiment? */
5324 /* If this is an optional reload, we can't inherit from earlier insns
5325 until we are sure that any non-optional reloads have been allocated.
5326 The following code takes advantage of the fact that optional reloads
5327 are at the end of reload_order. */
5328 if (rld[r].optional != 0)
5329 for (i = 0; i < j; i++)
5330 if ((rld[reload_order[i]].out != 0
5331 || rld[reload_order[i]].in != 0
5332 || rld[reload_order[i]].secondary_p)
5333 && ! rld[reload_order[i]].optional
5334 && rld[reload_order[i]].reg_rtx == 0)
5335 allocate_reload_reg (chain, reload_order[i], 0);
5336 #endif
5338 /* First see if this pseudo is already available as reloaded
5339 for a previous insn. We cannot try to inherit for reloads
5340 that are smaller than the maximum number of registers needed
5341 for groups unless the register we would allocate cannot be used
5342 for the groups.
5344 We could check here to see if this is a secondary reload for
5345 an object that is already in a register of the desired class.
5346 This would avoid the need for the secondary reload register.
5347 But this is complex because we can't easily determine what
5348 objects might want to be loaded via this reload. So let a
5349 register be allocated here. In `emit_reload_insns' we suppress
5350 one of the loads in the case described above. */
5352 if (inheritance)
5354 int byte = 0;
5355 int regno = -1;
5356 enum machine_mode mode = VOIDmode;
5358 if (rld[r].in == 0)
5360 else if (REG_P (rld[r].in))
5362 regno = REGNO (rld[r].in);
5363 mode = GET_MODE (rld[r].in);
5365 else if (REG_P (rld[r].in_reg))
5367 regno = REGNO (rld[r].in_reg);
5368 mode = GET_MODE (rld[r].in_reg);
5370 else if (GET_CODE (rld[r].in_reg) == SUBREG
5371 && REG_P (SUBREG_REG (rld[r].in_reg)))
5373 byte = SUBREG_BYTE (rld[r].in_reg);
5374 regno = REGNO (SUBREG_REG (rld[r].in_reg));
5375 if (regno < FIRST_PSEUDO_REGISTER)
5376 regno = subreg_regno (rld[r].in_reg);
5377 mode = GET_MODE (rld[r].in_reg);
5379 #ifdef AUTO_INC_DEC
5380 else if ((GET_CODE (rld[r].in_reg) == PRE_INC
5381 || GET_CODE (rld[r].in_reg) == PRE_DEC
5382 || GET_CODE (rld[r].in_reg) == POST_INC
5383 || GET_CODE (rld[r].in_reg) == POST_DEC)
5384 && REG_P (XEXP (rld[r].in_reg, 0)))
5386 regno = REGNO (XEXP (rld[r].in_reg, 0));
5387 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
5388 rld[r].out = rld[r].in;
5390 #endif
5391 #if 0
5392 /* This won't work, since REGNO can be a pseudo reg number.
5393 Also, it takes much more hair to keep track of all the things
5394 that can invalidate an inherited reload of part of a pseudoreg. */
5395 else if (GET_CODE (rld[r].in) == SUBREG
5396 && REG_P (SUBREG_REG (rld[r].in)))
5397 regno = subreg_regno (rld[r].in);
5398 #endif
5400 if (regno >= 0 && reg_last_reload_reg[regno] != 0)
5402 enum reg_class class = rld[r].class, last_class;
5403 rtx last_reg = reg_last_reload_reg[regno];
5404 enum machine_mode need_mode;
5406 i = REGNO (last_reg);
5407 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
5408 last_class = REGNO_REG_CLASS (i);
5410 if (byte == 0)
5411 need_mode = mode;
5412 else
5413 need_mode
5414 = smallest_mode_for_size (GET_MODE_SIZE (mode) + byte,
5415 GET_MODE_CLASS (mode));
5417 if (
5418 #ifdef CANNOT_CHANGE_MODE_CLASS
5419 (!REG_CANNOT_CHANGE_MODE_P (i, GET_MODE (last_reg),
5420 need_mode)
5422 #endif
5423 (GET_MODE_SIZE (GET_MODE (last_reg))
5424 >= GET_MODE_SIZE (need_mode))
5425 #ifdef CANNOT_CHANGE_MODE_CLASS
5427 #endif
5428 && reg_reloaded_contents[i] == regno
5429 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
5430 && HARD_REGNO_MODE_OK (i, rld[r].mode)
5431 && (TEST_HARD_REG_BIT (reg_class_contents[(int) class], i)
5432 /* Even if we can't use this register as a reload
5433 register, we might use it for reload_override_in,
5434 if copying it to the desired class is cheap
5435 enough. */
5436 || ((REGISTER_MOVE_COST (mode, last_class, class)
5437 < MEMORY_MOVE_COST (mode, class, 1))
5438 #ifdef SECONDARY_INPUT_RELOAD_CLASS
5439 && (SECONDARY_INPUT_RELOAD_CLASS (class, mode,
5440 last_reg)
5441 == NO_REGS)
5442 #endif
5443 #ifdef SECONDARY_MEMORY_NEEDED
5444 && ! SECONDARY_MEMORY_NEEDED (last_class, class,
5445 mode)
5446 #endif
5449 && (rld[r].nregs == max_group_size
5450 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
5452 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
5453 rld[r].when_needed, rld[r].in,
5454 const0_rtx, r, 1))
5456 /* If a group is needed, verify that all the subsequent
5457 registers still have their values intact. */
5458 int nr = hard_regno_nregs[i][rld[r].mode];
5459 int k;
5461 for (k = 1; k < nr; k++)
5462 if (reg_reloaded_contents[i + k] != regno
5463 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
5464 break;
5466 if (k == nr)
5468 int i1;
5469 int bad_for_class;
5471 last_reg = (GET_MODE (last_reg) == mode
5472 ? last_reg : gen_rtx_REG (mode, i));
5474 bad_for_class = 0;
5475 for (k = 0; k < nr; k++)
5476 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5477 i+k);
5479 /* We found a register that contains the
5480 value we need. If this register is the
5481 same as an `earlyclobber' operand of the
5482 current insn, just mark it as a place to
5483 reload from since we can't use it as the
5484 reload register itself. */
5486 for (i1 = 0; i1 < n_earlyclobbers; i1++)
5487 if (reg_overlap_mentioned_for_reload_p
5488 (reg_last_reload_reg[regno],
5489 reload_earlyclobbers[i1]))
5490 break;
5492 if (i1 != n_earlyclobbers
5493 || ! (free_for_value_p (i, rld[r].mode,
5494 rld[r].opnum,
5495 rld[r].when_needed, rld[r].in,
5496 rld[r].out, r, 1))
5497 /* Don't use it if we'd clobber a pseudo reg. */
5498 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
5499 && rld[r].out
5500 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
5501 /* Don't clobber the frame pointer. */
5502 || (i == HARD_FRAME_POINTER_REGNUM
5503 && frame_pointer_needed
5504 && rld[r].out)
5505 /* Don't really use the inherited spill reg
5506 if we need it wider than we've got it. */
5507 || (GET_MODE_SIZE (rld[r].mode)
5508 > GET_MODE_SIZE (mode))
5509 || bad_for_class
5511 /* If find_reloads chose reload_out as reload
5512 register, stay with it - that leaves the
5513 inherited register for subsequent reloads. */
5514 || (rld[r].out && rld[r].reg_rtx
5515 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
5517 if (! rld[r].optional)
5519 reload_override_in[r] = last_reg;
5520 reload_inheritance_insn[r]
5521 = reg_reloaded_insn[i];
5524 else
5526 int k;
5527 /* We can use this as a reload reg. */
5528 /* Mark the register as in use for this part of
5529 the insn. */
5530 mark_reload_reg_in_use (i,
5531 rld[r].opnum,
5532 rld[r].when_needed,
5533 rld[r].mode);
5534 rld[r].reg_rtx = last_reg;
5535 reload_inherited[r] = 1;
5536 reload_inheritance_insn[r]
5537 = reg_reloaded_insn[i];
5538 reload_spill_index[r] = i;
5539 for (k = 0; k < nr; k++)
5540 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5541 i + k);
5548 /* Here's another way to see if the value is already lying around. */
5549 if (inheritance
5550 && rld[r].in != 0
5551 && ! reload_inherited[r]
5552 && rld[r].out == 0
5553 && (CONSTANT_P (rld[r].in)
5554 || GET_CODE (rld[r].in) == PLUS
5555 || REG_P (rld[r].in)
5556 || MEM_P (rld[r].in))
5557 && (rld[r].nregs == max_group_size
5558 || ! reg_classes_intersect_p (rld[r].class, group_class)))
5559 search_equiv = rld[r].in;
5560 /* If this is an output reload from a simple move insn, look
5561 if an equivalence for the input is available. */
5562 else if (inheritance && rld[r].in == 0 && rld[r].out != 0)
5564 rtx set = single_set (insn);
5566 if (set
5567 && rtx_equal_p (rld[r].out, SET_DEST (set))
5568 && CONSTANT_P (SET_SRC (set)))
5569 search_equiv = SET_SRC (set);
5572 if (search_equiv)
5574 rtx equiv
5575 = find_equiv_reg (search_equiv, insn, rld[r].class,
5576 -1, NULL, 0, rld[r].mode);
5577 int regno = 0;
5579 if (equiv != 0)
5581 if (REG_P (equiv))
5582 regno = REGNO (equiv);
5583 else
5585 /* This must be a SUBREG of a hard register.
5586 Make a new REG since this might be used in an
5587 address and not all machines support SUBREGs
5588 there. */
5589 gcc_assert (GET_CODE (equiv) == SUBREG);
5590 regno = subreg_regno (equiv);
5591 equiv = gen_rtx_REG (rld[r].mode, regno);
5595 /* If we found a spill reg, reject it unless it is free
5596 and of the desired class. */
5597 if (equiv != 0)
5599 int regs_used = 0;
5600 int bad_for_class = 0;
5601 int max_regno = regno + rld[r].nregs;
5603 for (i = regno; i < max_regno; i++)
5605 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
5607 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5611 if ((regs_used
5612 && ! free_for_value_p (regno, rld[r].mode,
5613 rld[r].opnum, rld[r].when_needed,
5614 rld[r].in, rld[r].out, r, 1))
5615 || bad_for_class)
5616 equiv = 0;
5619 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
5620 equiv = 0;
5622 /* We found a register that contains the value we need.
5623 If this register is the same as an `earlyclobber' operand
5624 of the current insn, just mark it as a place to reload from
5625 since we can't use it as the reload register itself. */
5627 if (equiv != 0)
5628 for (i = 0; i < n_earlyclobbers; i++)
5629 if (reg_overlap_mentioned_for_reload_p (equiv,
5630 reload_earlyclobbers[i]))
5632 if (! rld[r].optional)
5633 reload_override_in[r] = equiv;
5634 equiv = 0;
5635 break;
5638 /* If the equiv register we have found is explicitly clobbered
5639 in the current insn, it depends on the reload type if we
5640 can use it, use it for reload_override_in, or not at all.
5641 In particular, we then can't use EQUIV for a
5642 RELOAD_FOR_OUTPUT_ADDRESS reload. */
5644 if (equiv != 0)
5646 if (regno_clobbered_p (regno, insn, rld[r].mode, 0))
5647 switch (rld[r].when_needed)
5649 case RELOAD_FOR_OTHER_ADDRESS:
5650 case RELOAD_FOR_INPADDR_ADDRESS:
5651 case RELOAD_FOR_INPUT_ADDRESS:
5652 case RELOAD_FOR_OPADDR_ADDR:
5653 break;
5654 case RELOAD_OTHER:
5655 case RELOAD_FOR_INPUT:
5656 case RELOAD_FOR_OPERAND_ADDRESS:
5657 if (! rld[r].optional)
5658 reload_override_in[r] = equiv;
5659 /* Fall through. */
5660 default:
5661 equiv = 0;
5662 break;
5664 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
5665 switch (rld[r].when_needed)
5667 case RELOAD_FOR_OTHER_ADDRESS:
5668 case RELOAD_FOR_INPADDR_ADDRESS:
5669 case RELOAD_FOR_INPUT_ADDRESS:
5670 case RELOAD_FOR_OPADDR_ADDR:
5671 case RELOAD_FOR_OPERAND_ADDRESS:
5672 case RELOAD_FOR_INPUT:
5673 break;
5674 case RELOAD_OTHER:
5675 if (! rld[r].optional)
5676 reload_override_in[r] = equiv;
5677 /* Fall through. */
5678 default:
5679 equiv = 0;
5680 break;
5684 /* If we found an equivalent reg, say no code need be generated
5685 to load it, and use it as our reload reg. */
5686 if (equiv != 0
5687 && (regno != HARD_FRAME_POINTER_REGNUM
5688 || !frame_pointer_needed))
5690 int nr = hard_regno_nregs[regno][rld[r].mode];
5691 int k;
5692 rld[r].reg_rtx = equiv;
5693 reload_inherited[r] = 1;
5695 /* If reg_reloaded_valid is not set for this register,
5696 there might be a stale spill_reg_store lying around.
5697 We must clear it, since otherwise emit_reload_insns
5698 might delete the store. */
5699 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
5700 spill_reg_store[regno] = NULL_RTX;
5701 /* If any of the hard registers in EQUIV are spill
5702 registers, mark them as in use for this insn. */
5703 for (k = 0; k < nr; k++)
5705 i = spill_reg_order[regno + k];
5706 if (i >= 0)
5708 mark_reload_reg_in_use (regno, rld[r].opnum,
5709 rld[r].when_needed,
5710 rld[r].mode);
5711 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5712 regno + k);
5718 /* If we found a register to use already, or if this is an optional
5719 reload, we are done. */
5720 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
5721 continue;
5723 #if 0
5724 /* No longer needed for correct operation. Might or might
5725 not give better code on the average. Want to experiment? */
5727 /* See if there is a later reload that has a class different from our
5728 class that intersects our class or that requires less register
5729 than our reload. If so, we must allocate a register to this
5730 reload now, since that reload might inherit a previous reload
5731 and take the only available register in our class. Don't do this
5732 for optional reloads since they will force all previous reloads
5733 to be allocated. Also don't do this for reloads that have been
5734 turned off. */
5736 for (i = j + 1; i < n_reloads; i++)
5738 int s = reload_order[i];
5740 if ((rld[s].in == 0 && rld[s].out == 0
5741 && ! rld[s].secondary_p)
5742 || rld[s].optional)
5743 continue;
5745 if ((rld[s].class != rld[r].class
5746 && reg_classes_intersect_p (rld[r].class,
5747 rld[s].class))
5748 || rld[s].nregs < rld[r].nregs)
5749 break;
5752 if (i == n_reloads)
5753 continue;
5755 allocate_reload_reg (chain, r, j == n_reloads - 1);
5756 #endif
5759 /* Now allocate reload registers for anything non-optional that
5760 didn't get one yet. */
5761 for (j = 0; j < n_reloads; j++)
5763 int r = reload_order[j];
5765 /* Ignore reloads that got marked inoperative. */
5766 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
5767 continue;
5769 /* Skip reloads that already have a register allocated or are
5770 optional. */
5771 if (rld[r].reg_rtx != 0 || rld[r].optional)
5772 continue;
5774 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
5775 break;
5778 /* If that loop got all the way, we have won. */
5779 if (j == n_reloads)
5781 win = 1;
5782 break;
5785 /* Loop around and try without any inheritance. */
5788 if (! win)
5790 /* First undo everything done by the failed attempt
5791 to allocate with inheritance. */
5792 choose_reload_regs_init (chain, save_reload_reg_rtx);
5794 /* Some sanity tests to verify that the reloads found in the first
5795 pass are identical to the ones we have now. */
5796 gcc_assert (chain->n_reloads == n_reloads);
5798 for (i = 0; i < n_reloads; i++)
5800 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
5801 continue;
5802 gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
5803 for (j = 0; j < n_spills; j++)
5804 if (spill_regs[j] == chain->rld[i].regno)
5805 if (! set_reload_reg (j, i))
5806 failed_reload (chain->insn, i);
5810 /* If we thought we could inherit a reload, because it seemed that
5811 nothing else wanted the same reload register earlier in the insn,
5812 verify that assumption, now that all reloads have been assigned.
5813 Likewise for reloads where reload_override_in has been set. */
5815 /* If doing expensive optimizations, do one preliminary pass that doesn't
5816 cancel any inheritance, but removes reloads that have been needed only
5817 for reloads that we know can be inherited. */
5818 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
5820 for (j = 0; j < n_reloads; j++)
5822 int r = reload_order[j];
5823 rtx check_reg;
5824 if (reload_inherited[r] && rld[r].reg_rtx)
5825 check_reg = rld[r].reg_rtx;
5826 else if (reload_override_in[r]
5827 && (REG_P (reload_override_in[r])
5828 || GET_CODE (reload_override_in[r]) == SUBREG))
5829 check_reg = reload_override_in[r];
5830 else
5831 continue;
5832 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
5833 rld[r].opnum, rld[r].when_needed, rld[r].in,
5834 (reload_inherited[r]
5835 ? rld[r].out : const0_rtx),
5836 r, 1))
5838 if (pass)
5839 continue;
5840 reload_inherited[r] = 0;
5841 reload_override_in[r] = 0;
5843 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
5844 reload_override_in, then we do not need its related
5845 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
5846 likewise for other reload types.
5847 We handle this by removing a reload when its only replacement
5848 is mentioned in reload_in of the reload we are going to inherit.
5849 A special case are auto_inc expressions; even if the input is
5850 inherited, we still need the address for the output. We can
5851 recognize them because they have RELOAD_OUT set to RELOAD_IN.
5852 If we succeeded removing some reload and we are doing a preliminary
5853 pass just to remove such reloads, make another pass, since the
5854 removal of one reload might allow us to inherit another one. */
5855 else if (rld[r].in
5856 && rld[r].out != rld[r].in
5857 && remove_address_replacements (rld[r].in) && pass)
5858 pass = 2;
5862 /* Now that reload_override_in is known valid,
5863 actually override reload_in. */
5864 for (j = 0; j < n_reloads; j++)
5865 if (reload_override_in[j])
5866 rld[j].in = reload_override_in[j];
5868 /* If this reload won't be done because it has been canceled or is
5869 optional and not inherited, clear reload_reg_rtx so other
5870 routines (such as subst_reloads) don't get confused. */
5871 for (j = 0; j < n_reloads; j++)
5872 if (rld[j].reg_rtx != 0
5873 && ((rld[j].optional && ! reload_inherited[j])
5874 || (rld[j].in == 0 && rld[j].out == 0
5875 && ! rld[j].secondary_p)))
5877 int regno = true_regnum (rld[j].reg_rtx);
5879 if (spill_reg_order[regno] >= 0)
5880 clear_reload_reg_in_use (regno, rld[j].opnum,
5881 rld[j].when_needed, rld[j].mode);
5882 rld[j].reg_rtx = 0;
5883 reload_spill_index[j] = -1;
5886 /* Record which pseudos and which spill regs have output reloads. */
5887 for (j = 0; j < n_reloads; j++)
5889 int r = reload_order[j];
5891 i = reload_spill_index[r];
5893 /* I is nonneg if this reload uses a register.
5894 If rld[r].reg_rtx is 0, this is an optional reload
5895 that we opted to ignore. */
5896 if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
5897 && rld[r].reg_rtx != 0)
5899 int nregno = REGNO (rld[r].out_reg);
5900 int nr = 1;
5902 if (nregno < FIRST_PSEUDO_REGISTER)
5903 nr = hard_regno_nregs[nregno][rld[r].mode];
5905 while (--nr >= 0)
5906 reg_has_output_reload[nregno + nr] = 1;
5908 if (i >= 0)
5910 nr = hard_regno_nregs[i][rld[r].mode];
5911 while (--nr >= 0)
5912 SET_HARD_REG_BIT (reg_is_output_reload, i + nr);
5915 gcc_assert (rld[r].when_needed == RELOAD_OTHER
5916 || rld[r].when_needed == RELOAD_FOR_OUTPUT
5917 || rld[r].when_needed == RELOAD_FOR_INSN);
5922 /* Deallocate the reload register for reload R. This is called from
5923 remove_address_replacements. */
5925 void
5926 deallocate_reload_reg (int r)
5928 int regno;
5930 if (! rld[r].reg_rtx)
5931 return;
5932 regno = true_regnum (rld[r].reg_rtx);
5933 rld[r].reg_rtx = 0;
5934 if (spill_reg_order[regno] >= 0)
5935 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
5936 rld[r].mode);
5937 reload_spill_index[r] = -1;
5940 /* If SMALL_REGISTER_CLASSES is nonzero, we may not have merged two
5941 reloads of the same item for fear that we might not have enough reload
5942 registers. However, normally they will get the same reload register
5943 and hence actually need not be loaded twice.
5945 Here we check for the most common case of this phenomenon: when we have
5946 a number of reloads for the same object, each of which were allocated
5947 the same reload_reg_rtx, that reload_reg_rtx is not used for any other
5948 reload, and is not modified in the insn itself. If we find such,
5949 merge all the reloads and set the resulting reload to RELOAD_OTHER.
5950 This will not increase the number of spill registers needed and will
5951 prevent redundant code. */
5953 static void
5954 merge_assigned_reloads (rtx insn)
5956 int i, j;
5958 /* Scan all the reloads looking for ones that only load values and
5959 are not already RELOAD_OTHER and ones whose reload_reg_rtx are
5960 assigned and not modified by INSN. */
5962 for (i = 0; i < n_reloads; i++)
5964 int conflicting_input = 0;
5965 int max_input_address_opnum = -1;
5966 int min_conflicting_input_opnum = MAX_RECOG_OPERANDS;
5968 if (rld[i].in == 0 || rld[i].when_needed == RELOAD_OTHER
5969 || rld[i].out != 0 || rld[i].reg_rtx == 0
5970 || reg_set_p (rld[i].reg_rtx, insn))
5971 continue;
5973 /* Look at all other reloads. Ensure that the only use of this
5974 reload_reg_rtx is in a reload that just loads the same value
5975 as we do. Note that any secondary reloads must be of the identical
5976 class since the values, modes, and result registers are the
5977 same, so we need not do anything with any secondary reloads. */
5979 for (j = 0; j < n_reloads; j++)
5981 if (i == j || rld[j].reg_rtx == 0
5982 || ! reg_overlap_mentioned_p (rld[j].reg_rtx,
5983 rld[i].reg_rtx))
5984 continue;
5986 if (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
5987 && rld[j].opnum > max_input_address_opnum)
5988 max_input_address_opnum = rld[j].opnum;
5990 /* If the reload regs aren't exactly the same (e.g, different modes)
5991 or if the values are different, we can't merge this reload.
5992 But if it is an input reload, we might still merge
5993 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_OTHER_ADDRESS reloads. */
5995 if (! rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
5996 || rld[j].out != 0 || rld[j].in == 0
5997 || ! rtx_equal_p (rld[i].in, rld[j].in))
5999 if (rld[j].when_needed != RELOAD_FOR_INPUT
6000 || ((rld[i].when_needed != RELOAD_FOR_INPUT_ADDRESS
6001 || rld[i].opnum > rld[j].opnum)
6002 && rld[i].when_needed != RELOAD_FOR_OTHER_ADDRESS))
6003 break;
6004 conflicting_input = 1;
6005 if (min_conflicting_input_opnum > rld[j].opnum)
6006 min_conflicting_input_opnum = rld[j].opnum;
6010 /* If all is OK, merge the reloads. Only set this to RELOAD_OTHER if
6011 we, in fact, found any matching reloads. */
6013 if (j == n_reloads
6014 && max_input_address_opnum <= min_conflicting_input_opnum)
6016 for (j = 0; j < n_reloads; j++)
6017 if (i != j && rld[j].reg_rtx != 0
6018 && rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6019 && (! conflicting_input
6020 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6021 || rld[j].when_needed == RELOAD_FOR_OTHER_ADDRESS))
6023 rld[i].when_needed = RELOAD_OTHER;
6024 rld[j].in = 0;
6025 reload_spill_index[j] = -1;
6026 transfer_replacements (i, j);
6029 /* If this is now RELOAD_OTHER, look for any reloads that load
6030 parts of this operand and set them to RELOAD_FOR_OTHER_ADDRESS
6031 if they were for inputs, RELOAD_OTHER for outputs. Note that
6032 this test is equivalent to looking for reloads for this operand
6033 number. */
6034 /* We must take special care when there are two or more reloads to
6035 be merged and a RELOAD_FOR_OUTPUT_ADDRESS reload that loads the
6036 same value or a part of it; we must not change its type if there
6037 is a conflicting input. */
6039 if (rld[i].when_needed == RELOAD_OTHER)
6040 for (j = 0; j < n_reloads; j++)
6041 if (rld[j].in != 0
6042 && rld[j].when_needed != RELOAD_OTHER
6043 && rld[j].when_needed != RELOAD_FOR_OTHER_ADDRESS
6044 && (! conflicting_input
6045 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6046 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
6047 && reg_overlap_mentioned_for_reload_p (rld[j].in,
6048 rld[i].in))
6050 int k;
6052 rld[j].when_needed
6053 = ((rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6054 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
6055 ? RELOAD_FOR_OTHER_ADDRESS : RELOAD_OTHER);
6057 /* Check to see if we accidentally converted two reloads
6058 that use the same reload register with different inputs
6059 to the same type. If so, the resulting code won't work,
6060 so abort. */
6061 if (rld[j].reg_rtx)
6062 for (k = 0; k < j; k++)
6063 gcc_assert (rld[k].in == 0 || rld[k].reg_rtx == 0
6064 || rld[k].when_needed != rld[j].when_needed
6065 || !rtx_equal_p (rld[k].reg_rtx,
6066 rld[j].reg_rtx)
6067 || rtx_equal_p (rld[k].in,
6068 rld[j].in));
6074 /* These arrays are filled by emit_reload_insns and its subroutines. */
6075 static rtx input_reload_insns[MAX_RECOG_OPERANDS];
6076 static rtx other_input_address_reload_insns = 0;
6077 static rtx other_input_reload_insns = 0;
6078 static rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
6079 static rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6080 static rtx output_reload_insns[MAX_RECOG_OPERANDS];
6081 static rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
6082 static rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6083 static rtx operand_reload_insns = 0;
6084 static rtx other_operand_reload_insns = 0;
6085 static rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
6087 /* Values to be put in spill_reg_store are put here first. */
6088 static rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
6089 static HARD_REG_SET reg_reloaded_died;
6091 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
6092 has the number J. OLD contains the value to be used as input. */
6094 static void
6095 emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
6096 rtx old, int j)
6098 rtx insn = chain->insn;
6099 rtx reloadreg = rl->reg_rtx;
6100 rtx oldequiv_reg = 0;
6101 rtx oldequiv = 0;
6102 int special = 0;
6103 enum machine_mode mode;
6104 rtx *where;
6106 /* Determine the mode to reload in.
6107 This is very tricky because we have three to choose from.
6108 There is the mode the insn operand wants (rl->inmode).
6109 There is the mode of the reload register RELOADREG.
6110 There is the intrinsic mode of the operand, which we could find
6111 by stripping some SUBREGs.
6112 It turns out that RELOADREG's mode is irrelevant:
6113 we can change that arbitrarily.
6115 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
6116 then the reload reg may not support QImode moves, so use SImode.
6117 If foo is in memory due to spilling a pseudo reg, this is safe,
6118 because the QImode value is in the least significant part of a
6119 slot big enough for a SImode. If foo is some other sort of
6120 memory reference, then it is impossible to reload this case,
6121 so previous passes had better make sure this never happens.
6123 Then consider a one-word union which has SImode and one of its
6124 members is a float, being fetched as (SUBREG:SF union:SI).
6125 We must fetch that as SFmode because we could be loading into
6126 a float-only register. In this case OLD's mode is correct.
6128 Consider an immediate integer: it has VOIDmode. Here we need
6129 to get a mode from something else.
6131 In some cases, there is a fourth mode, the operand's
6132 containing mode. If the insn specifies a containing mode for
6133 this operand, it overrides all others.
6135 I am not sure whether the algorithm here is always right,
6136 but it does the right things in those cases. */
6138 mode = GET_MODE (old);
6139 if (mode == VOIDmode)
6140 mode = rl->inmode;
6142 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6143 /* If we need a secondary register for this operation, see if
6144 the value is already in a register in that class. Don't
6145 do this if the secondary register will be used as a scratch
6146 register. */
6148 if (rl->secondary_in_reload >= 0
6149 && rl->secondary_in_icode == CODE_FOR_nothing
6150 && optimize)
6151 oldequiv
6152 = find_equiv_reg (old, insn,
6153 rld[rl->secondary_in_reload].class,
6154 -1, NULL, 0, mode);
6155 #endif
6157 /* If reloading from memory, see if there is a register
6158 that already holds the same value. If so, reload from there.
6159 We can pass 0 as the reload_reg_p argument because
6160 any other reload has either already been emitted,
6161 in which case find_equiv_reg will see the reload-insn,
6162 or has yet to be emitted, in which case it doesn't matter
6163 because we will use this equiv reg right away. */
6165 if (oldequiv == 0 && optimize
6166 && (MEM_P (old)
6167 || (REG_P (old)
6168 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6169 && reg_renumber[REGNO (old)] < 0)))
6170 oldequiv = find_equiv_reg (old, insn, ALL_REGS, -1, NULL, 0, mode);
6172 if (oldequiv)
6174 unsigned int regno = true_regnum (oldequiv);
6176 /* Don't use OLDEQUIV if any other reload changes it at an
6177 earlier stage of this insn or at this stage. */
6178 if (! free_for_value_p (regno, rl->mode, rl->opnum, rl->when_needed,
6179 rl->in, const0_rtx, j, 0))
6180 oldequiv = 0;
6182 /* If it is no cheaper to copy from OLDEQUIV into the
6183 reload register than it would be to move from memory,
6184 don't use it. Likewise, if we need a secondary register
6185 or memory. */
6187 if (oldequiv != 0
6188 && (((enum reg_class) REGNO_REG_CLASS (regno) != rl->class
6189 && (REGISTER_MOVE_COST (mode, REGNO_REG_CLASS (regno),
6190 rl->class)
6191 >= MEMORY_MOVE_COST (mode, rl->class, 1)))
6192 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6193 || (SECONDARY_INPUT_RELOAD_CLASS (rl->class,
6194 mode, oldequiv)
6195 != NO_REGS)
6196 #endif
6197 #ifdef SECONDARY_MEMORY_NEEDED
6198 || SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (regno),
6199 rl->class,
6200 mode)
6201 #endif
6203 oldequiv = 0;
6206 /* delete_output_reload is only invoked properly if old contains
6207 the original pseudo register. Since this is replaced with a
6208 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
6209 find the pseudo in RELOAD_IN_REG. */
6210 if (oldequiv == 0
6211 && reload_override_in[j]
6212 && REG_P (rl->in_reg))
6214 oldequiv = old;
6215 old = rl->in_reg;
6217 if (oldequiv == 0)
6218 oldequiv = old;
6219 else if (REG_P (oldequiv))
6220 oldequiv_reg = oldequiv;
6221 else if (GET_CODE (oldequiv) == SUBREG)
6222 oldequiv_reg = SUBREG_REG (oldequiv);
6224 /* If we are reloading from a register that was recently stored in
6225 with an output-reload, see if we can prove there was
6226 actually no need to store the old value in it. */
6228 if (optimize && REG_P (oldequiv)
6229 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6230 && spill_reg_store[REGNO (oldequiv)]
6231 && REG_P (old)
6232 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
6233 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6234 rl->out_reg)))
6235 delete_output_reload (insn, j, REGNO (oldequiv));
6237 /* Encapsulate both RELOADREG and OLDEQUIV into that mode,
6238 then load RELOADREG from OLDEQUIV. Note that we cannot use
6239 gen_lowpart_common since it can do the wrong thing when
6240 RELOADREG has a multi-word mode. Note that RELOADREG
6241 must always be a REG here. */
6243 if (GET_MODE (reloadreg) != mode)
6244 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
6245 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
6246 oldequiv = SUBREG_REG (oldequiv);
6247 if (GET_MODE (oldequiv) != VOIDmode
6248 && mode != GET_MODE (oldequiv))
6249 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
6251 /* Switch to the right place to emit the reload insns. */
6252 switch (rl->when_needed)
6254 case RELOAD_OTHER:
6255 where = &other_input_reload_insns;
6256 break;
6257 case RELOAD_FOR_INPUT:
6258 where = &input_reload_insns[rl->opnum];
6259 break;
6260 case RELOAD_FOR_INPUT_ADDRESS:
6261 where = &input_address_reload_insns[rl->opnum];
6262 break;
6263 case RELOAD_FOR_INPADDR_ADDRESS:
6264 where = &inpaddr_address_reload_insns[rl->opnum];
6265 break;
6266 case RELOAD_FOR_OUTPUT_ADDRESS:
6267 where = &output_address_reload_insns[rl->opnum];
6268 break;
6269 case RELOAD_FOR_OUTADDR_ADDRESS:
6270 where = &outaddr_address_reload_insns[rl->opnum];
6271 break;
6272 case RELOAD_FOR_OPERAND_ADDRESS:
6273 where = &operand_reload_insns;
6274 break;
6275 case RELOAD_FOR_OPADDR_ADDR:
6276 where = &other_operand_reload_insns;
6277 break;
6278 case RELOAD_FOR_OTHER_ADDRESS:
6279 where = &other_input_address_reload_insns;
6280 break;
6281 default:
6282 gcc_unreachable ();
6285 push_to_sequence (*where);
6287 /* Auto-increment addresses must be reloaded in a special way. */
6288 if (rl->out && ! rl->out_reg)
6290 /* We are not going to bother supporting the case where a
6291 incremented register can't be copied directly from
6292 OLDEQUIV since this seems highly unlikely. */
6293 gcc_assert (rl->secondary_in_reload < 0);
6295 if (reload_inherited[j])
6296 oldequiv = reloadreg;
6298 old = XEXP (rl->in_reg, 0);
6300 if (optimize && REG_P (oldequiv)
6301 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6302 && spill_reg_store[REGNO (oldequiv)]
6303 && REG_P (old)
6304 && (dead_or_set_p (insn,
6305 spill_reg_stored_to[REGNO (oldequiv)])
6306 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6307 old)))
6308 delete_output_reload (insn, j, REGNO (oldequiv));
6310 /* Prevent normal processing of this reload. */
6311 special = 1;
6312 /* Output a special code sequence for this case. */
6313 new_spill_reg_store[REGNO (reloadreg)]
6314 = inc_for_reload (reloadreg, oldequiv, rl->out,
6315 rl->inc);
6318 /* If we are reloading a pseudo-register that was set by the previous
6319 insn, see if we can get rid of that pseudo-register entirely
6320 by redirecting the previous insn into our reload register. */
6322 else if (optimize && REG_P (old)
6323 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6324 && dead_or_set_p (insn, old)
6325 /* This is unsafe if some other reload
6326 uses the same reg first. */
6327 && ! conflicts_with_override (reloadreg)
6328 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
6329 rl->when_needed, old, rl->out, j, 0))
6331 rtx temp = PREV_INSN (insn);
6332 while (temp && NOTE_P (temp))
6333 temp = PREV_INSN (temp);
6334 if (temp
6335 && NONJUMP_INSN_P (temp)
6336 && GET_CODE (PATTERN (temp)) == SET
6337 && SET_DEST (PATTERN (temp)) == old
6338 /* Make sure we can access insn_operand_constraint. */
6339 && asm_noperands (PATTERN (temp)) < 0
6340 /* This is unsafe if operand occurs more than once in current
6341 insn. Perhaps some occurrences aren't reloaded. */
6342 && count_occurrences (PATTERN (insn), old, 0) == 1)
6344 rtx old = SET_DEST (PATTERN (temp));
6345 /* Store into the reload register instead of the pseudo. */
6346 SET_DEST (PATTERN (temp)) = reloadreg;
6348 /* Verify that resulting insn is valid. */
6349 extract_insn (temp);
6350 if (constrain_operands (1))
6352 /* If the previous insn is an output reload, the source is
6353 a reload register, and its spill_reg_store entry will
6354 contain the previous destination. This is now
6355 invalid. */
6356 if (REG_P (SET_SRC (PATTERN (temp)))
6357 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
6359 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6360 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6363 /* If these are the only uses of the pseudo reg,
6364 pretend for GDB it lives in the reload reg we used. */
6365 if (REG_N_DEATHS (REGNO (old)) == 1
6366 && REG_N_SETS (REGNO (old)) == 1)
6368 reg_renumber[REGNO (old)] = REGNO (rl->reg_rtx);
6369 alter_reg (REGNO (old), -1);
6371 special = 1;
6373 else
6375 SET_DEST (PATTERN (temp)) = old;
6380 /* We can't do that, so output an insn to load RELOADREG. */
6382 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6383 /* If we have a secondary reload, pick up the secondary register
6384 and icode, if any. If OLDEQUIV and OLD are different or
6385 if this is an in-out reload, recompute whether or not we
6386 still need a secondary register and what the icode should
6387 be. If we still need a secondary register and the class or
6388 icode is different, go back to reloading from OLD if using
6389 OLDEQUIV means that we got the wrong type of register. We
6390 cannot have different class or icode due to an in-out reload
6391 because we don't make such reloads when both the input and
6392 output need secondary reload registers. */
6394 if (! special && rl->secondary_in_reload >= 0)
6396 rtx second_reload_reg = 0;
6397 int secondary_reload = rl->secondary_in_reload;
6398 rtx real_oldequiv = oldequiv;
6399 rtx real_old = old;
6400 rtx tmp;
6401 enum insn_code icode;
6403 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
6404 and similarly for OLD.
6405 See comments in get_secondary_reload in reload.c. */
6406 /* If it is a pseudo that cannot be replaced with its
6407 equivalent MEM, we must fall back to reload_in, which
6408 will have all the necessary substitutions registered.
6409 Likewise for a pseudo that can't be replaced with its
6410 equivalent constant.
6412 Take extra care for subregs of such pseudos. Note that
6413 we cannot use reg_equiv_mem in this case because it is
6414 not in the right mode. */
6416 tmp = oldequiv;
6417 if (GET_CODE (tmp) == SUBREG)
6418 tmp = SUBREG_REG (tmp);
6419 if (REG_P (tmp)
6420 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6421 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6422 || reg_equiv_constant[REGNO (tmp)] != 0))
6424 if (! reg_equiv_mem[REGNO (tmp)]
6425 || num_not_at_initial_offset
6426 || GET_CODE (oldequiv) == SUBREG)
6427 real_oldequiv = rl->in;
6428 else
6429 real_oldequiv = reg_equiv_mem[REGNO (tmp)];
6432 tmp = old;
6433 if (GET_CODE (tmp) == SUBREG)
6434 tmp = SUBREG_REG (tmp);
6435 if (REG_P (tmp)
6436 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6437 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6438 || reg_equiv_constant[REGNO (tmp)] != 0))
6440 if (! reg_equiv_mem[REGNO (tmp)]
6441 || num_not_at_initial_offset
6442 || GET_CODE (old) == SUBREG)
6443 real_old = rl->in;
6444 else
6445 real_old = reg_equiv_mem[REGNO (tmp)];
6448 second_reload_reg = rld[secondary_reload].reg_rtx;
6449 icode = rl->secondary_in_icode;
6451 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
6452 || (rl->in != 0 && rl->out != 0))
6454 enum reg_class new_class
6455 = SECONDARY_INPUT_RELOAD_CLASS (rl->class,
6456 mode, real_oldequiv);
6458 if (new_class == NO_REGS)
6459 second_reload_reg = 0;
6460 else
6462 enum insn_code new_icode;
6463 enum machine_mode new_mode;
6465 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) new_class],
6466 REGNO (second_reload_reg)))
6467 oldequiv = old, real_oldequiv = real_old;
6468 else
6470 new_icode = reload_in_optab[(int) mode];
6471 if (new_icode != CODE_FOR_nothing
6472 && ((insn_data[(int) new_icode].operand[0].predicate
6473 && ! ((*insn_data[(int) new_icode].operand[0].predicate)
6474 (reloadreg, mode)))
6475 || (insn_data[(int) new_icode].operand[1].predicate
6476 && ! ((*insn_data[(int) new_icode].operand[1].predicate)
6477 (real_oldequiv, mode)))))
6478 new_icode = CODE_FOR_nothing;
6480 if (new_icode == CODE_FOR_nothing)
6481 new_mode = mode;
6482 else
6483 new_mode = insn_data[(int) new_icode].operand[2].mode;
6485 if (GET_MODE (second_reload_reg) != new_mode)
6487 if (!HARD_REGNO_MODE_OK (REGNO (second_reload_reg),
6488 new_mode))
6489 oldequiv = old, real_oldequiv = real_old;
6490 else
6491 second_reload_reg
6492 = reload_adjust_reg_for_mode (second_reload_reg,
6493 new_mode);
6499 /* If we still need a secondary reload register, check
6500 to see if it is being used as a scratch or intermediate
6501 register and generate code appropriately. If we need
6502 a scratch register, use REAL_OLDEQUIV since the form of
6503 the insn may depend on the actual address if it is
6504 a MEM. */
6506 if (second_reload_reg)
6508 if (icode != CODE_FOR_nothing)
6510 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
6511 second_reload_reg));
6512 special = 1;
6514 else
6516 /* See if we need a scratch register to load the
6517 intermediate register (a tertiary reload). */
6518 enum insn_code tertiary_icode
6519 = rld[secondary_reload].secondary_in_icode;
6521 if (tertiary_icode != CODE_FOR_nothing)
6523 rtx third_reload_reg
6524 = rld[rld[secondary_reload].secondary_in_reload].reg_rtx;
6526 emit_insn ((GEN_FCN (tertiary_icode)
6527 (second_reload_reg, real_oldequiv,
6528 third_reload_reg)));
6530 else
6531 gen_reload (second_reload_reg, real_oldequiv,
6532 rl->opnum,
6533 rl->when_needed);
6535 oldequiv = second_reload_reg;
6539 #endif
6541 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
6543 rtx real_oldequiv = oldequiv;
6545 if ((REG_P (oldequiv)
6546 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
6547 && (reg_equiv_memory_loc[REGNO (oldequiv)] != 0
6548 || reg_equiv_constant[REGNO (oldequiv)] != 0))
6549 || (GET_CODE (oldequiv) == SUBREG
6550 && REG_P (SUBREG_REG (oldequiv))
6551 && (REGNO (SUBREG_REG (oldequiv))
6552 >= FIRST_PSEUDO_REGISTER)
6553 && ((reg_equiv_memory_loc
6554 [REGNO (SUBREG_REG (oldequiv))] != 0)
6555 || (reg_equiv_constant
6556 [REGNO (SUBREG_REG (oldequiv))] != 0)))
6557 || (CONSTANT_P (oldequiv)
6558 && (PREFERRED_RELOAD_CLASS (oldequiv,
6559 REGNO_REG_CLASS (REGNO (reloadreg)))
6560 == NO_REGS)))
6561 real_oldequiv = rl->in;
6562 gen_reload (reloadreg, real_oldequiv, rl->opnum,
6563 rl->when_needed);
6566 if (flag_non_call_exceptions)
6567 copy_eh_notes (insn, get_insns ());
6569 /* End this sequence. */
6570 *where = get_insns ();
6571 end_sequence ();
6573 /* Update reload_override_in so that delete_address_reloads_1
6574 can see the actual register usage. */
6575 if (oldequiv_reg)
6576 reload_override_in[j] = oldequiv;
6579 /* Generate insns to for the output reload RL, which is for the insn described
6580 by CHAIN and has the number J. */
6581 static void
6582 emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
6583 int j)
6585 rtx reloadreg = rl->reg_rtx;
6586 rtx insn = chain->insn;
6587 int special = 0;
6588 rtx old = rl->out;
6589 enum machine_mode mode = GET_MODE (old);
6590 rtx p;
6592 if (rl->when_needed == RELOAD_OTHER)
6593 start_sequence ();
6594 else
6595 push_to_sequence (output_reload_insns[rl->opnum]);
6597 /* Determine the mode to reload in.
6598 See comments above (for input reloading). */
6600 if (mode == VOIDmode)
6602 /* VOIDmode should never happen for an output. */
6603 if (asm_noperands (PATTERN (insn)) < 0)
6604 /* It's the compiler's fault. */
6605 fatal_insn ("VOIDmode on an output", insn);
6606 error_for_asm (insn, "output operand is constant in %<asm%>");
6607 /* Prevent crash--use something we know is valid. */
6608 mode = word_mode;
6609 old = gen_rtx_REG (mode, REGNO (reloadreg));
6612 if (GET_MODE (reloadreg) != mode)
6613 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
6615 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
6617 /* If we need two reload regs, set RELOADREG to the intermediate
6618 one, since it will be stored into OLD. We might need a secondary
6619 register only for an input reload, so check again here. */
6621 if (rl->secondary_out_reload >= 0)
6623 rtx real_old = old;
6625 if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
6626 && reg_equiv_mem[REGNO (old)] != 0)
6627 real_old = reg_equiv_mem[REGNO (old)];
6629 if ((SECONDARY_OUTPUT_RELOAD_CLASS (rl->class,
6630 mode, real_old)
6631 != NO_REGS))
6633 rtx second_reloadreg = reloadreg;
6634 reloadreg = rld[rl->secondary_out_reload].reg_rtx;
6636 /* See if RELOADREG is to be used as a scratch register
6637 or as an intermediate register. */
6638 if (rl->secondary_out_icode != CODE_FOR_nothing)
6640 emit_insn ((GEN_FCN (rl->secondary_out_icode)
6641 (real_old, second_reloadreg, reloadreg)));
6642 special = 1;
6644 else
6646 /* See if we need both a scratch and intermediate reload
6647 register. */
6649 int secondary_reload = rl->secondary_out_reload;
6650 enum insn_code tertiary_icode
6651 = rld[secondary_reload].secondary_out_icode;
6653 if (GET_MODE (reloadreg) != mode)
6654 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
6656 if (tertiary_icode != CODE_FOR_nothing)
6658 rtx third_reloadreg
6659 = rld[rld[secondary_reload].secondary_out_reload].reg_rtx;
6660 rtx tem;
6662 /* Copy primary reload reg to secondary reload reg.
6663 (Note that these have been swapped above, then
6664 secondary reload reg to OLD using our insn.) */
6666 /* If REAL_OLD is a paradoxical SUBREG, remove it
6667 and try to put the opposite SUBREG on
6668 RELOADREG. */
6669 if (GET_CODE (real_old) == SUBREG
6670 && (GET_MODE_SIZE (GET_MODE (real_old))
6671 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (real_old))))
6672 && 0 != (tem = gen_lowpart_common
6673 (GET_MODE (SUBREG_REG (real_old)),
6674 reloadreg)))
6675 real_old = SUBREG_REG (real_old), reloadreg = tem;
6677 gen_reload (reloadreg, second_reloadreg,
6678 rl->opnum, rl->when_needed);
6679 emit_insn ((GEN_FCN (tertiary_icode)
6680 (real_old, reloadreg, third_reloadreg)));
6681 special = 1;
6684 else
6685 /* Copy between the reload regs here and then to
6686 OUT later. */
6688 gen_reload (reloadreg, second_reloadreg,
6689 rl->opnum, rl->when_needed);
6693 #endif
6695 /* Output the last reload insn. */
6696 if (! special)
6698 rtx set;
6700 /* Don't output the last reload if OLD is not the dest of
6701 INSN and is in the src and is clobbered by INSN. */
6702 if (! flag_expensive_optimizations
6703 || !REG_P (old)
6704 || !(set = single_set (insn))
6705 || rtx_equal_p (old, SET_DEST (set))
6706 || !reg_mentioned_p (old, SET_SRC (set))
6707 || !regno_clobbered_p (REGNO (old), insn, rl->mode, 0))
6708 gen_reload (old, reloadreg, rl->opnum,
6709 rl->when_needed);
6712 /* Look at all insns we emitted, just to be safe. */
6713 for (p = get_insns (); p; p = NEXT_INSN (p))
6714 if (INSN_P (p))
6716 rtx pat = PATTERN (p);
6718 /* If this output reload doesn't come from a spill reg,
6719 clear any memory of reloaded copies of the pseudo reg.
6720 If this output reload comes from a spill reg,
6721 reg_has_output_reload will make this do nothing. */
6722 note_stores (pat, forget_old_reloads_1, NULL);
6724 if (reg_mentioned_p (rl->reg_rtx, pat))
6726 rtx set = single_set (insn);
6727 if (reload_spill_index[j] < 0
6728 && set
6729 && SET_SRC (set) == rl->reg_rtx)
6731 int src = REGNO (SET_SRC (set));
6733 reload_spill_index[j] = src;
6734 SET_HARD_REG_BIT (reg_is_output_reload, src);
6735 if (find_regno_note (insn, REG_DEAD, src))
6736 SET_HARD_REG_BIT (reg_reloaded_died, src);
6738 if (REGNO (rl->reg_rtx) < FIRST_PSEUDO_REGISTER)
6740 int s = rl->secondary_out_reload;
6741 set = single_set (p);
6742 /* If this reload copies only to the secondary reload
6743 register, the secondary reload does the actual
6744 store. */
6745 if (s >= 0 && set == NULL_RTX)
6746 /* We can't tell what function the secondary reload
6747 has and where the actual store to the pseudo is
6748 made; leave new_spill_reg_store alone. */
6750 else if (s >= 0
6751 && SET_SRC (set) == rl->reg_rtx
6752 && SET_DEST (set) == rld[s].reg_rtx)
6754 /* Usually the next instruction will be the
6755 secondary reload insn; if we can confirm
6756 that it is, setting new_spill_reg_store to
6757 that insn will allow an extra optimization. */
6758 rtx s_reg = rld[s].reg_rtx;
6759 rtx next = NEXT_INSN (p);
6760 rld[s].out = rl->out;
6761 rld[s].out_reg = rl->out_reg;
6762 set = single_set (next);
6763 if (set && SET_SRC (set) == s_reg
6764 && ! new_spill_reg_store[REGNO (s_reg)])
6766 SET_HARD_REG_BIT (reg_is_output_reload,
6767 REGNO (s_reg));
6768 new_spill_reg_store[REGNO (s_reg)] = next;
6771 else
6772 new_spill_reg_store[REGNO (rl->reg_rtx)] = p;
6777 if (rl->when_needed == RELOAD_OTHER)
6779 emit_insn (other_output_reload_insns[rl->opnum]);
6780 other_output_reload_insns[rl->opnum] = get_insns ();
6782 else
6783 output_reload_insns[rl->opnum] = get_insns ();
6785 if (flag_non_call_exceptions)
6786 copy_eh_notes (insn, get_insns ());
6788 end_sequence ();
6791 /* Do input reloading for reload RL, which is for the insn described by CHAIN
6792 and has the number J. */
6793 static void
6794 do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
6796 rtx insn = chain->insn;
6797 rtx old = (rl->in && MEM_P (rl->in)
6798 ? rl->in_reg : rl->in);
6800 if (old != 0
6801 /* AUTO_INC reloads need to be handled even if inherited. We got an
6802 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
6803 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
6804 && ! rtx_equal_p (rl->reg_rtx, old)
6805 && rl->reg_rtx != 0)
6806 emit_input_reload_insns (chain, rld + j, old, j);
6808 /* When inheriting a wider reload, we have a MEM in rl->in,
6809 e.g. inheriting a SImode output reload for
6810 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
6811 if (optimize && reload_inherited[j] && rl->in
6812 && MEM_P (rl->in)
6813 && MEM_P (rl->in_reg)
6814 && reload_spill_index[j] >= 0
6815 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
6816 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
6818 /* If we are reloading a register that was recently stored in with an
6819 output-reload, see if we can prove there was
6820 actually no need to store the old value in it. */
6822 if (optimize
6823 && (reload_inherited[j] || reload_override_in[j])
6824 && rl->reg_rtx
6825 && REG_P (rl->reg_rtx)
6826 && spill_reg_store[REGNO (rl->reg_rtx)] != 0
6827 #if 0
6828 /* There doesn't seem to be any reason to restrict this to pseudos
6829 and doing so loses in the case where we are copying from a
6830 register of the wrong class. */
6831 && (REGNO (spill_reg_stored_to[REGNO (rl->reg_rtx)])
6832 >= FIRST_PSEUDO_REGISTER)
6833 #endif
6834 /* The insn might have already some references to stackslots
6835 replaced by MEMs, while reload_out_reg still names the
6836 original pseudo. */
6837 && (dead_or_set_p (insn,
6838 spill_reg_stored_to[REGNO (rl->reg_rtx)])
6839 || rtx_equal_p (spill_reg_stored_to[REGNO (rl->reg_rtx)],
6840 rl->out_reg)))
6841 delete_output_reload (insn, j, REGNO (rl->reg_rtx));
6844 /* Do output reloading for reload RL, which is for the insn described by
6845 CHAIN and has the number J.
6846 ??? At some point we need to support handling output reloads of
6847 JUMP_INSNs or insns that set cc0. */
6848 static void
6849 do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
6851 rtx note, old;
6852 rtx insn = chain->insn;
6853 /* If this is an output reload that stores something that is
6854 not loaded in this same reload, see if we can eliminate a previous
6855 store. */
6856 rtx pseudo = rl->out_reg;
6858 if (pseudo
6859 && optimize
6860 && REG_P (pseudo)
6861 && ! rtx_equal_p (rl->in_reg, pseudo)
6862 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
6863 && reg_last_reload_reg[REGNO (pseudo)])
6865 int pseudo_no = REGNO (pseudo);
6866 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
6868 /* We don't need to test full validity of last_regno for
6869 inherit here; we only want to know if the store actually
6870 matches the pseudo. */
6871 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
6872 && reg_reloaded_contents[last_regno] == pseudo_no
6873 && spill_reg_store[last_regno]
6874 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
6875 delete_output_reload (insn, j, last_regno);
6878 old = rl->out_reg;
6879 if (old == 0
6880 || rl->reg_rtx == old
6881 || rl->reg_rtx == 0)
6882 return;
6884 /* An output operand that dies right away does need a reload,
6885 but need not be copied from it. Show the new location in the
6886 REG_UNUSED note. */
6887 if ((REG_P (old) || GET_CODE (old) == SCRATCH)
6888 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
6890 XEXP (note, 0) = rl->reg_rtx;
6891 return;
6893 /* Likewise for a SUBREG of an operand that dies. */
6894 else if (GET_CODE (old) == SUBREG
6895 && REG_P (SUBREG_REG (old))
6896 && 0 != (note = find_reg_note (insn, REG_UNUSED,
6897 SUBREG_REG (old))))
6899 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old),
6900 rl->reg_rtx);
6901 return;
6903 else if (GET_CODE (old) == SCRATCH)
6904 /* If we aren't optimizing, there won't be a REG_UNUSED note,
6905 but we don't want to make an output reload. */
6906 return;
6908 /* If is a JUMP_INSN, we can't support output reloads yet. */
6909 gcc_assert (!JUMP_P (insn));
6911 emit_output_reload_insns (chain, rld + j, j);
6914 /* Reload number R reloads from or to a group of hard registers starting at
6915 register REGNO. Return true if it can be treated for inheritance purposes
6916 like a group of reloads, each one reloading a single hard register.
6917 The caller has already checked that the spill register and REGNO use
6918 the same number of registers to store the reload value. */
6920 static bool
6921 inherit_piecemeal_p (int r ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED)
6923 #ifdef CANNOT_CHANGE_MODE_CLASS
6924 return (!REG_CANNOT_CHANGE_MODE_P (reload_spill_index[r],
6925 GET_MODE (rld[r].reg_rtx),
6926 reg_raw_mode[reload_spill_index[r]])
6927 && !REG_CANNOT_CHANGE_MODE_P (regno,
6928 GET_MODE (rld[r].reg_rtx),
6929 reg_raw_mode[regno]));
6930 #else
6931 return true;
6932 #endif
6935 /* Output insns to reload values in and out of the chosen reload regs. */
6937 static void
6938 emit_reload_insns (struct insn_chain *chain)
6940 rtx insn = chain->insn;
6942 int j;
6944 CLEAR_HARD_REG_SET (reg_reloaded_died);
6946 for (j = 0; j < reload_n_operands; j++)
6947 input_reload_insns[j] = input_address_reload_insns[j]
6948 = inpaddr_address_reload_insns[j]
6949 = output_reload_insns[j] = output_address_reload_insns[j]
6950 = outaddr_address_reload_insns[j]
6951 = other_output_reload_insns[j] = 0;
6952 other_input_address_reload_insns = 0;
6953 other_input_reload_insns = 0;
6954 operand_reload_insns = 0;
6955 other_operand_reload_insns = 0;
6957 /* Dump reloads into the dump file. */
6958 if (dump_file)
6960 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
6961 debug_reload_to_stream (dump_file);
6964 /* Now output the instructions to copy the data into and out of the
6965 reload registers. Do these in the order that the reloads were reported,
6966 since reloads of base and index registers precede reloads of operands
6967 and the operands may need the base and index registers reloaded. */
6969 for (j = 0; j < n_reloads; j++)
6971 if (rld[j].reg_rtx
6972 && REGNO (rld[j].reg_rtx) < FIRST_PSEUDO_REGISTER)
6973 new_spill_reg_store[REGNO (rld[j].reg_rtx)] = 0;
6975 do_input_reload (chain, rld + j, j);
6976 do_output_reload (chain, rld + j, j);
6979 /* Now write all the insns we made for reloads in the order expected by
6980 the allocation functions. Prior to the insn being reloaded, we write
6981 the following reloads:
6983 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
6985 RELOAD_OTHER reloads.
6987 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
6988 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
6989 RELOAD_FOR_INPUT reload for the operand.
6991 RELOAD_FOR_OPADDR_ADDRS reloads.
6993 RELOAD_FOR_OPERAND_ADDRESS reloads.
6995 After the insn being reloaded, we write the following:
6997 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
6998 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
6999 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
7000 reloads for the operand. The RELOAD_OTHER output reloads are
7001 output in descending order by reload number. */
7003 emit_insn_before (other_input_address_reload_insns, insn);
7004 emit_insn_before (other_input_reload_insns, insn);
7006 for (j = 0; j < reload_n_operands; j++)
7008 emit_insn_before (inpaddr_address_reload_insns[j], insn);
7009 emit_insn_before (input_address_reload_insns[j], insn);
7010 emit_insn_before (input_reload_insns[j], insn);
7013 emit_insn_before (other_operand_reload_insns, insn);
7014 emit_insn_before (operand_reload_insns, insn);
7016 for (j = 0; j < reload_n_operands; j++)
7018 rtx x = emit_insn_after (outaddr_address_reload_insns[j], insn);
7019 x = emit_insn_after (output_address_reload_insns[j], x);
7020 x = emit_insn_after (output_reload_insns[j], x);
7021 emit_insn_after (other_output_reload_insns[j], x);
7024 /* For all the spill regs newly reloaded in this instruction,
7025 record what they were reloaded from, so subsequent instructions
7026 can inherit the reloads.
7028 Update spill_reg_store for the reloads of this insn.
7029 Copy the elements that were updated in the loop above. */
7031 for (j = 0; j < n_reloads; j++)
7033 int r = reload_order[j];
7034 int i = reload_spill_index[r];
7036 /* If this is a non-inherited input reload from a pseudo, we must
7037 clear any memory of a previous store to the same pseudo. Only do
7038 something if there will not be an output reload for the pseudo
7039 being reloaded. */
7040 if (rld[r].in_reg != 0
7041 && ! (reload_inherited[r] || reload_override_in[r]))
7043 rtx reg = rld[r].in_reg;
7045 if (GET_CODE (reg) == SUBREG)
7046 reg = SUBREG_REG (reg);
7048 if (REG_P (reg)
7049 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
7050 && ! reg_has_output_reload[REGNO (reg)])
7052 int nregno = REGNO (reg);
7054 if (reg_last_reload_reg[nregno])
7056 int last_regno = REGNO (reg_last_reload_reg[nregno]);
7058 if (reg_reloaded_contents[last_regno] == nregno)
7059 spill_reg_store[last_regno] = 0;
7064 /* I is nonneg if this reload used a register.
7065 If rld[r].reg_rtx is 0, this is an optional reload
7066 that we opted to ignore. */
7068 if (i >= 0 && rld[r].reg_rtx != 0)
7070 int nr = hard_regno_nregs[i][GET_MODE (rld[r].reg_rtx)];
7071 int k;
7072 int part_reaches_end = 0;
7073 int all_reaches_end = 1;
7075 /* For a multi register reload, we need to check if all or part
7076 of the value lives to the end. */
7077 for (k = 0; k < nr; k++)
7079 if (reload_reg_reaches_end_p (i + k, rld[r].opnum,
7080 rld[r].when_needed))
7081 part_reaches_end = 1;
7082 else
7083 all_reaches_end = 0;
7086 /* Ignore reloads that don't reach the end of the insn in
7087 entirety. */
7088 if (all_reaches_end)
7090 /* First, clear out memory of what used to be in this spill reg.
7091 If consecutive registers are used, clear them all. */
7093 for (k = 0; k < nr; k++)
7095 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7096 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered, i + k);
7099 /* Maybe the spill reg contains a copy of reload_out. */
7100 if (rld[r].out != 0
7101 && (REG_P (rld[r].out)
7102 #ifdef AUTO_INC_DEC
7103 || ! rld[r].out_reg
7104 #endif
7105 || REG_P (rld[r].out_reg)))
7107 rtx out = (REG_P (rld[r].out)
7108 ? rld[r].out
7109 : rld[r].out_reg
7110 ? rld[r].out_reg
7111 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
7112 int nregno = REGNO (out);
7113 int nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7114 : hard_regno_nregs[nregno]
7115 [GET_MODE (rld[r].reg_rtx)]);
7116 bool piecemeal;
7118 spill_reg_store[i] = new_spill_reg_store[i];
7119 spill_reg_stored_to[i] = out;
7120 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
7122 piecemeal = (nregno < FIRST_PSEUDO_REGISTER
7123 && nr == nnr
7124 && inherit_piecemeal_p (r, nregno));
7126 /* If NREGNO is a hard register, it may occupy more than
7127 one register. If it does, say what is in the
7128 rest of the registers assuming that both registers
7129 agree on how many words the object takes. If not,
7130 invalidate the subsequent registers. */
7132 if (nregno < FIRST_PSEUDO_REGISTER)
7133 for (k = 1; k < nnr; k++)
7134 reg_last_reload_reg[nregno + k]
7135 = (piecemeal
7136 ? regno_reg_rtx[REGNO (rld[r].reg_rtx) + k]
7137 : 0);
7139 /* Now do the inverse operation. */
7140 for (k = 0; k < nr; k++)
7142 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7143 reg_reloaded_contents[i + k]
7144 = (nregno >= FIRST_PSEUDO_REGISTER || !piecemeal
7145 ? nregno
7146 : nregno + k);
7147 reg_reloaded_insn[i + k] = insn;
7148 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
7149 if (HARD_REGNO_CALL_PART_CLOBBERED (i + k, GET_MODE (out)))
7150 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered, i + k);
7154 /* Maybe the spill reg contains a copy of reload_in. Only do
7155 something if there will not be an output reload for
7156 the register being reloaded. */
7157 else if (rld[r].out_reg == 0
7158 && rld[r].in != 0
7159 && ((REG_P (rld[r].in)
7160 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER
7161 && ! reg_has_output_reload[REGNO (rld[r].in)])
7162 || (REG_P (rld[r].in_reg)
7163 && ! reg_has_output_reload[REGNO (rld[r].in_reg)]))
7164 && ! reg_set_p (rld[r].reg_rtx, PATTERN (insn)))
7166 int nregno;
7167 int nnr;
7168 rtx in;
7169 bool piecemeal;
7171 if (REG_P (rld[r].in)
7172 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
7173 in = rld[r].in;
7174 else if (REG_P (rld[r].in_reg))
7175 in = rld[r].in_reg;
7176 else
7177 in = XEXP (rld[r].in_reg, 0);
7178 nregno = REGNO (in);
7180 nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7181 : hard_regno_nregs[nregno]
7182 [GET_MODE (rld[r].reg_rtx)]);
7184 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
7186 piecemeal = (nregno < FIRST_PSEUDO_REGISTER
7187 && nr == nnr
7188 && inherit_piecemeal_p (r, nregno));
7190 if (nregno < FIRST_PSEUDO_REGISTER)
7191 for (k = 1; k < nnr; k++)
7192 reg_last_reload_reg[nregno + k]
7193 = (piecemeal
7194 ? regno_reg_rtx[REGNO (rld[r].reg_rtx) + k]
7195 : 0);
7197 /* Unless we inherited this reload, show we haven't
7198 recently done a store.
7199 Previous stores of inherited auto_inc expressions
7200 also have to be discarded. */
7201 if (! reload_inherited[r]
7202 || (rld[r].out && ! rld[r].out_reg))
7203 spill_reg_store[i] = 0;
7205 for (k = 0; k < nr; k++)
7207 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7208 reg_reloaded_contents[i + k]
7209 = (nregno >= FIRST_PSEUDO_REGISTER || !piecemeal
7210 ? nregno
7211 : nregno + k);
7212 reg_reloaded_insn[i + k] = insn;
7213 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
7214 if (HARD_REGNO_CALL_PART_CLOBBERED (i + k, GET_MODE (in)))
7215 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered, i + k);
7220 /* However, if part of the reload reaches the end, then we must
7221 invalidate the old info for the part that survives to the end. */
7222 else if (part_reaches_end)
7224 for (k = 0; k < nr; k++)
7225 if (reload_reg_reaches_end_p (i + k,
7226 rld[r].opnum,
7227 rld[r].when_needed))
7228 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7232 /* The following if-statement was #if 0'd in 1.34 (or before...).
7233 It's reenabled in 1.35 because supposedly nothing else
7234 deals with this problem. */
7236 /* If a register gets output-reloaded from a non-spill register,
7237 that invalidates any previous reloaded copy of it.
7238 But forget_old_reloads_1 won't get to see it, because
7239 it thinks only about the original insn. So invalidate it here. */
7240 if (i < 0 && rld[r].out != 0
7241 && (REG_P (rld[r].out)
7242 || (MEM_P (rld[r].out)
7243 && REG_P (rld[r].out_reg))))
7245 rtx out = (REG_P (rld[r].out)
7246 ? rld[r].out : rld[r].out_reg);
7247 int nregno = REGNO (out);
7248 if (nregno >= FIRST_PSEUDO_REGISTER)
7250 rtx src_reg, store_insn = NULL_RTX;
7252 reg_last_reload_reg[nregno] = 0;
7254 /* If we can find a hard register that is stored, record
7255 the storing insn so that we may delete this insn with
7256 delete_output_reload. */
7257 src_reg = rld[r].reg_rtx;
7259 /* If this is an optional reload, try to find the source reg
7260 from an input reload. */
7261 if (! src_reg)
7263 rtx set = single_set (insn);
7264 if (set && SET_DEST (set) == rld[r].out)
7266 int k;
7268 src_reg = SET_SRC (set);
7269 store_insn = insn;
7270 for (k = 0; k < n_reloads; k++)
7272 if (rld[k].in == src_reg)
7274 src_reg = rld[k].reg_rtx;
7275 break;
7280 else
7281 store_insn = new_spill_reg_store[REGNO (src_reg)];
7282 if (src_reg && REG_P (src_reg)
7283 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
7285 int src_regno = REGNO (src_reg);
7286 int nr = hard_regno_nregs[src_regno][rld[r].mode];
7287 /* The place where to find a death note varies with
7288 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
7289 necessarily checked exactly in the code that moves
7290 notes, so just check both locations. */
7291 rtx note = find_regno_note (insn, REG_DEAD, src_regno);
7292 if (! note && store_insn)
7293 note = find_regno_note (store_insn, REG_DEAD, src_regno);
7294 while (nr-- > 0)
7296 spill_reg_store[src_regno + nr] = store_insn;
7297 spill_reg_stored_to[src_regno + nr] = out;
7298 reg_reloaded_contents[src_regno + nr] = nregno;
7299 reg_reloaded_insn[src_regno + nr] = store_insn;
7300 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + nr);
7301 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + nr);
7302 if (HARD_REGNO_CALL_PART_CLOBBERED (src_regno + nr,
7303 GET_MODE (src_reg)))
7304 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
7305 src_regno + nr);
7306 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + nr);
7307 if (note)
7308 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
7309 else
7310 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
7312 reg_last_reload_reg[nregno] = src_reg;
7313 /* We have to set reg_has_output_reload here, or else
7314 forget_old_reloads_1 will clear reg_last_reload_reg
7315 right away. */
7316 reg_has_output_reload[nregno] = 1;
7319 else
7321 int num_regs = hard_regno_nregs[nregno][GET_MODE (rld[r].out)];
7323 while (num_regs-- > 0)
7324 reg_last_reload_reg[nregno + num_regs] = 0;
7328 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
7331 /* Emit code to perform a reload from IN (which may be a reload register) to
7332 OUT (which may also be a reload register). IN or OUT is from operand
7333 OPNUM with reload type TYPE.
7335 Returns first insn emitted. */
7338 gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
7340 rtx last = get_last_insn ();
7341 rtx tem;
7343 /* If IN is a paradoxical SUBREG, remove it and try to put the
7344 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
7345 if (GET_CODE (in) == SUBREG
7346 && (GET_MODE_SIZE (GET_MODE (in))
7347 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
7348 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (in)), out)) != 0)
7349 in = SUBREG_REG (in), out = tem;
7350 else if (GET_CODE (out) == SUBREG
7351 && (GET_MODE_SIZE (GET_MODE (out))
7352 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
7353 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (out)), in)) != 0)
7354 out = SUBREG_REG (out), in = tem;
7356 /* How to do this reload can get quite tricky. Normally, we are being
7357 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
7358 register that didn't get a hard register. In that case we can just
7359 call emit_move_insn.
7361 We can also be asked to reload a PLUS that adds a register or a MEM to
7362 another register, constant or MEM. This can occur during frame pointer
7363 elimination and while reloading addresses. This case is handled by
7364 trying to emit a single insn to perform the add. If it is not valid,
7365 we use a two insn sequence.
7367 Finally, we could be called to handle an 'o' constraint by putting
7368 an address into a register. In that case, we first try to do this
7369 with a named pattern of "reload_load_address". If no such pattern
7370 exists, we just emit a SET insn and hope for the best (it will normally
7371 be valid on machines that use 'o').
7373 This entire process is made complex because reload will never
7374 process the insns we generate here and so we must ensure that
7375 they will fit their constraints and also by the fact that parts of
7376 IN might be being reloaded separately and replaced with spill registers.
7377 Because of this, we are, in some sense, just guessing the right approach
7378 here. The one listed above seems to work.
7380 ??? At some point, this whole thing needs to be rethought. */
7382 if (GET_CODE (in) == PLUS
7383 && (REG_P (XEXP (in, 0))
7384 || GET_CODE (XEXP (in, 0)) == SUBREG
7385 || MEM_P (XEXP (in, 0)))
7386 && (REG_P (XEXP (in, 1))
7387 || GET_CODE (XEXP (in, 1)) == SUBREG
7388 || CONSTANT_P (XEXP (in, 1))
7389 || MEM_P (XEXP (in, 1))))
7391 /* We need to compute the sum of a register or a MEM and another
7392 register, constant, or MEM, and put it into the reload
7393 register. The best possible way of doing this is if the machine
7394 has a three-operand ADD insn that accepts the required operands.
7396 The simplest approach is to try to generate such an insn and see if it
7397 is recognized and matches its constraints. If so, it can be used.
7399 It might be better not to actually emit the insn unless it is valid,
7400 but we need to pass the insn as an operand to `recog' and
7401 `extract_insn' and it is simpler to emit and then delete the insn if
7402 not valid than to dummy things up. */
7404 rtx op0, op1, tem, insn;
7405 int code;
7407 op0 = find_replacement (&XEXP (in, 0));
7408 op1 = find_replacement (&XEXP (in, 1));
7410 /* Since constraint checking is strict, commutativity won't be
7411 checked, so we need to do that here to avoid spurious failure
7412 if the add instruction is two-address and the second operand
7413 of the add is the same as the reload reg, which is frequently
7414 the case. If the insn would be A = B + A, rearrange it so
7415 it will be A = A + B as constrain_operands expects. */
7417 if (REG_P (XEXP (in, 1))
7418 && REGNO (out) == REGNO (XEXP (in, 1)))
7419 tem = op0, op0 = op1, op1 = tem;
7421 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
7422 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
7424 insn = emit_insn (gen_rtx_SET (VOIDmode, out, in));
7425 code = recog_memoized (insn);
7427 if (code >= 0)
7429 extract_insn (insn);
7430 /* We want constrain operands to treat this insn strictly in
7431 its validity determination, i.e., the way it would after reload
7432 has completed. */
7433 if (constrain_operands (1))
7434 return insn;
7437 delete_insns_since (last);
7439 /* If that failed, we must use a conservative two-insn sequence.
7441 Use a move to copy one operand into the reload register. Prefer
7442 to reload a constant, MEM or pseudo since the move patterns can
7443 handle an arbitrary operand. If OP1 is not a constant, MEM or
7444 pseudo and OP1 is not a valid operand for an add instruction, then
7445 reload OP1.
7447 After reloading one of the operands into the reload register, add
7448 the reload register to the output register.
7450 If there is another way to do this for a specific machine, a
7451 DEFINE_PEEPHOLE should be specified that recognizes the sequence
7452 we emit below. */
7454 code = (int) add_optab->handlers[(int) GET_MODE (out)].insn_code;
7456 if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
7457 || (REG_P (op1)
7458 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
7459 || (code != CODE_FOR_nothing
7460 && ! ((*insn_data[code].operand[2].predicate)
7461 (op1, insn_data[code].operand[2].mode))))
7462 tem = op0, op0 = op1, op1 = tem;
7464 gen_reload (out, op0, opnum, type);
7466 /* If OP0 and OP1 are the same, we can use OUT for OP1.
7467 This fixes a problem on the 32K where the stack pointer cannot
7468 be used as an operand of an add insn. */
7470 if (rtx_equal_p (op0, op1))
7471 op1 = out;
7473 insn = emit_insn (gen_add2_insn (out, op1));
7475 /* If that failed, copy the address register to the reload register.
7476 Then add the constant to the reload register. */
7478 code = recog_memoized (insn);
7480 if (code >= 0)
7482 extract_insn (insn);
7483 /* We want constrain operands to treat this insn strictly in
7484 its validity determination, i.e., the way it would after reload
7485 has completed. */
7486 if (constrain_operands (1))
7488 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
7489 REG_NOTES (insn)
7490 = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7491 return insn;
7495 delete_insns_since (last);
7497 gen_reload (out, op1, opnum, type);
7498 insn = emit_insn (gen_add2_insn (out, op0));
7499 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7502 #ifdef SECONDARY_MEMORY_NEEDED
7503 /* If we need a memory location to do the move, do it that way. */
7504 else if ((REG_P (in) || GET_CODE (in) == SUBREG)
7505 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
7506 && (REG_P (out) || GET_CODE (out) == SUBREG)
7507 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
7508 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
7509 REGNO_REG_CLASS (reg_or_subregno (out)),
7510 GET_MODE (out)))
7512 /* Get the memory to use and rewrite both registers to its mode. */
7513 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
7515 if (GET_MODE (loc) != GET_MODE (out))
7516 out = gen_rtx_REG (GET_MODE (loc), REGNO (out));
7518 if (GET_MODE (loc) != GET_MODE (in))
7519 in = gen_rtx_REG (GET_MODE (loc), REGNO (in));
7521 gen_reload (loc, in, opnum, type);
7522 gen_reload (out, loc, opnum, type);
7524 #endif
7526 /* If IN is a simple operand, use gen_move_insn. */
7527 else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
7528 emit_insn (gen_move_insn (out, in));
7530 #ifdef HAVE_reload_load_address
7531 else if (HAVE_reload_load_address)
7532 emit_insn (gen_reload_load_address (out, in));
7533 #endif
7535 /* Otherwise, just write (set OUT IN) and hope for the best. */
7536 else
7537 emit_insn (gen_rtx_SET (VOIDmode, out, in));
7539 /* Return the first insn emitted.
7540 We can not just return get_last_insn, because there may have
7541 been multiple instructions emitted. Also note that gen_move_insn may
7542 emit more than one insn itself, so we can not assume that there is one
7543 insn emitted per emit_insn_before call. */
7545 return last ? NEXT_INSN (last) : get_insns ();
7548 /* Delete a previously made output-reload whose result we now believe
7549 is not needed. First we double-check.
7551 INSN is the insn now being processed.
7552 LAST_RELOAD_REG is the hard register number for which we want to delete
7553 the last output reload.
7554 J is the reload-number that originally used REG. The caller has made
7555 certain that reload J doesn't use REG any longer for input. */
7557 static void
7558 delete_output_reload (rtx insn, int j, int last_reload_reg)
7560 rtx output_reload_insn = spill_reg_store[last_reload_reg];
7561 rtx reg = spill_reg_stored_to[last_reload_reg];
7562 int k;
7563 int n_occurrences;
7564 int n_inherited = 0;
7565 rtx i1;
7566 rtx substed;
7568 /* It is possible that this reload has been only used to set another reload
7569 we eliminated earlier and thus deleted this instruction too. */
7570 if (INSN_DELETED_P (output_reload_insn))
7571 return;
7573 /* Get the raw pseudo-register referred to. */
7575 while (GET_CODE (reg) == SUBREG)
7576 reg = SUBREG_REG (reg);
7577 substed = reg_equiv_memory_loc[REGNO (reg)];
7579 /* This is unsafe if the operand occurs more often in the current
7580 insn than it is inherited. */
7581 for (k = n_reloads - 1; k >= 0; k--)
7583 rtx reg2 = rld[k].in;
7584 if (! reg2)
7585 continue;
7586 if (MEM_P (reg2) || reload_override_in[k])
7587 reg2 = rld[k].in_reg;
7588 #ifdef AUTO_INC_DEC
7589 if (rld[k].out && ! rld[k].out_reg)
7590 reg2 = XEXP (rld[k].in_reg, 0);
7591 #endif
7592 while (GET_CODE (reg2) == SUBREG)
7593 reg2 = SUBREG_REG (reg2);
7594 if (rtx_equal_p (reg2, reg))
7596 if (reload_inherited[k] || reload_override_in[k] || k == j)
7598 n_inherited++;
7599 reg2 = rld[k].out_reg;
7600 if (! reg2)
7601 continue;
7602 while (GET_CODE (reg2) == SUBREG)
7603 reg2 = XEXP (reg2, 0);
7604 if (rtx_equal_p (reg2, reg))
7605 n_inherited++;
7607 else
7608 return;
7611 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
7612 if (substed)
7613 n_occurrences += count_occurrences (PATTERN (insn),
7614 eliminate_regs (substed, 0,
7615 NULL_RTX), 0);
7616 if (n_occurrences > n_inherited)
7617 return;
7619 /* If the pseudo-reg we are reloading is no longer referenced
7620 anywhere between the store into it and here,
7621 and no jumps or labels intervene, then the value can get
7622 here through the reload reg alone.
7623 Otherwise, give up--return. */
7624 for (i1 = NEXT_INSN (output_reload_insn);
7625 i1 != insn; i1 = NEXT_INSN (i1))
7627 if (LABEL_P (i1) || JUMP_P (i1))
7628 return;
7629 if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
7630 && reg_mentioned_p (reg, PATTERN (i1)))
7632 /* If this is USE in front of INSN, we only have to check that
7633 there are no more references than accounted for by inheritance. */
7634 while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
7636 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
7637 i1 = NEXT_INSN (i1);
7639 if (n_occurrences <= n_inherited && i1 == insn)
7640 break;
7641 return;
7645 /* We will be deleting the insn. Remove the spill reg information. */
7646 for (k = hard_regno_nregs[last_reload_reg][GET_MODE (reg)]; k-- > 0; )
7648 spill_reg_store[last_reload_reg + k] = 0;
7649 spill_reg_stored_to[last_reload_reg + k] = 0;
7652 /* The caller has already checked that REG dies or is set in INSN.
7653 It has also checked that we are optimizing, and thus some
7654 inaccuracies in the debugging information are acceptable.
7655 So we could just delete output_reload_insn. But in some cases
7656 we can improve the debugging information without sacrificing
7657 optimization - maybe even improving the code: See if the pseudo
7658 reg has been completely replaced with reload regs. If so, delete
7659 the store insn and forget we had a stack slot for the pseudo. */
7660 if (rld[j].out != rld[j].in
7661 && REG_N_DEATHS (REGNO (reg)) == 1
7662 && REG_N_SETS (REGNO (reg)) == 1
7663 && REG_BASIC_BLOCK (REGNO (reg)) >= 0
7664 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
7666 rtx i2;
7668 /* We know that it was used only between here and the beginning of
7669 the current basic block. (We also know that the last use before
7670 INSN was the output reload we are thinking of deleting, but never
7671 mind that.) Search that range; see if any ref remains. */
7672 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
7674 rtx set = single_set (i2);
7676 /* Uses which just store in the pseudo don't count,
7677 since if they are the only uses, they are dead. */
7678 if (set != 0 && SET_DEST (set) == reg)
7679 continue;
7680 if (LABEL_P (i2)
7681 || JUMP_P (i2))
7682 break;
7683 if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
7684 && reg_mentioned_p (reg, PATTERN (i2)))
7686 /* Some other ref remains; just delete the output reload we
7687 know to be dead. */
7688 delete_address_reloads (output_reload_insn, insn);
7689 delete_insn (output_reload_insn);
7690 return;
7694 /* Delete the now-dead stores into this pseudo. Note that this
7695 loop also takes care of deleting output_reload_insn. */
7696 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
7698 rtx set = single_set (i2);
7700 if (set != 0 && SET_DEST (set) == reg)
7702 delete_address_reloads (i2, insn);
7703 delete_insn (i2);
7705 if (LABEL_P (i2)
7706 || JUMP_P (i2))
7707 break;
7710 /* For the debugging info, say the pseudo lives in this reload reg. */
7711 reg_renumber[REGNO (reg)] = REGNO (rld[j].reg_rtx);
7712 alter_reg (REGNO (reg), -1);
7714 else
7716 delete_address_reloads (output_reload_insn, insn);
7717 delete_insn (output_reload_insn);
7721 /* We are going to delete DEAD_INSN. Recursively delete loads of
7722 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
7723 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
7724 static void
7725 delete_address_reloads (rtx dead_insn, rtx current_insn)
7727 rtx set = single_set (dead_insn);
7728 rtx set2, dst, prev, next;
7729 if (set)
7731 rtx dst = SET_DEST (set);
7732 if (MEM_P (dst))
7733 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
7735 /* If we deleted the store from a reloaded post_{in,de}c expression,
7736 we can delete the matching adds. */
7737 prev = PREV_INSN (dead_insn);
7738 next = NEXT_INSN (dead_insn);
7739 if (! prev || ! next)
7740 return;
7741 set = single_set (next);
7742 set2 = single_set (prev);
7743 if (! set || ! set2
7744 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
7745 || GET_CODE (XEXP (SET_SRC (set), 1)) != CONST_INT
7746 || GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT)
7747 return;
7748 dst = SET_DEST (set);
7749 if (! rtx_equal_p (dst, SET_DEST (set2))
7750 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
7751 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
7752 || (INTVAL (XEXP (SET_SRC (set), 1))
7753 != -INTVAL (XEXP (SET_SRC (set2), 1))))
7754 return;
7755 delete_related_insns (prev);
7756 delete_related_insns (next);
7759 /* Subfunction of delete_address_reloads: process registers found in X. */
7760 static void
7761 delete_address_reloads_1 (rtx dead_insn, rtx x, rtx current_insn)
7763 rtx prev, set, dst, i2;
7764 int i, j;
7765 enum rtx_code code = GET_CODE (x);
7767 if (code != REG)
7769 const char *fmt = GET_RTX_FORMAT (code);
7770 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7772 if (fmt[i] == 'e')
7773 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
7774 else if (fmt[i] == 'E')
7776 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7777 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
7778 current_insn);
7781 return;
7784 if (spill_reg_order[REGNO (x)] < 0)
7785 return;
7787 /* Scan backwards for the insn that sets x. This might be a way back due
7788 to inheritance. */
7789 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
7791 code = GET_CODE (prev);
7792 if (code == CODE_LABEL || code == JUMP_INSN)
7793 return;
7794 if (!INSN_P (prev))
7795 continue;
7796 if (reg_set_p (x, PATTERN (prev)))
7797 break;
7798 if (reg_referenced_p (x, PATTERN (prev)))
7799 return;
7801 if (! prev || INSN_UID (prev) < reload_first_uid)
7802 return;
7803 /* Check that PREV only sets the reload register. */
7804 set = single_set (prev);
7805 if (! set)
7806 return;
7807 dst = SET_DEST (set);
7808 if (!REG_P (dst)
7809 || ! rtx_equal_p (dst, x))
7810 return;
7811 if (! reg_set_p (dst, PATTERN (dead_insn)))
7813 /* Check if DST was used in a later insn -
7814 it might have been inherited. */
7815 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
7817 if (LABEL_P (i2))
7818 break;
7819 if (! INSN_P (i2))
7820 continue;
7821 if (reg_referenced_p (dst, PATTERN (i2)))
7823 /* If there is a reference to the register in the current insn,
7824 it might be loaded in a non-inherited reload. If no other
7825 reload uses it, that means the register is set before
7826 referenced. */
7827 if (i2 == current_insn)
7829 for (j = n_reloads - 1; j >= 0; j--)
7830 if ((rld[j].reg_rtx == dst && reload_inherited[j])
7831 || reload_override_in[j] == dst)
7832 return;
7833 for (j = n_reloads - 1; j >= 0; j--)
7834 if (rld[j].in && rld[j].reg_rtx == dst)
7835 break;
7836 if (j >= 0)
7837 break;
7839 return;
7841 if (JUMP_P (i2))
7842 break;
7843 /* If DST is still live at CURRENT_INSN, check if it is used for
7844 any reload. Note that even if CURRENT_INSN sets DST, we still
7845 have to check the reloads. */
7846 if (i2 == current_insn)
7848 for (j = n_reloads - 1; j >= 0; j--)
7849 if ((rld[j].reg_rtx == dst && reload_inherited[j])
7850 || reload_override_in[j] == dst)
7851 return;
7852 /* ??? We can't finish the loop here, because dst might be
7853 allocated to a pseudo in this block if no reload in this
7854 block needs any of the classes containing DST - see
7855 spill_hard_reg. There is no easy way to tell this, so we
7856 have to scan till the end of the basic block. */
7858 if (reg_set_p (dst, PATTERN (i2)))
7859 break;
7862 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
7863 reg_reloaded_contents[REGNO (dst)] = -1;
7864 delete_insn (prev);
7867 /* Output reload-insns to reload VALUE into RELOADREG.
7868 VALUE is an autoincrement or autodecrement RTX whose operand
7869 is a register or memory location;
7870 so reloading involves incrementing that location.
7871 IN is either identical to VALUE, or some cheaper place to reload from.
7873 INC_AMOUNT is the number to increment or decrement by (always positive).
7874 This cannot be deduced from VALUE.
7876 Return the instruction that stores into RELOADREG. */
7878 static rtx
7879 inc_for_reload (rtx reloadreg, rtx in, rtx value, int inc_amount)
7881 /* REG or MEM to be copied and incremented. */
7882 rtx incloc = XEXP (value, 0);
7883 /* Nonzero if increment after copying. */
7884 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC);
7885 rtx last;
7886 rtx inc;
7887 rtx add_insn;
7888 int code;
7889 rtx store;
7890 rtx real_in = in == value ? XEXP (in, 0) : in;
7892 /* No hard register is equivalent to this register after
7893 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
7894 we could inc/dec that register as well (maybe even using it for
7895 the source), but I'm not sure it's worth worrying about. */
7896 if (REG_P (incloc))
7897 reg_last_reload_reg[REGNO (incloc)] = 0;
7899 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
7900 inc_amount = -inc_amount;
7902 inc = GEN_INT (inc_amount);
7904 /* If this is post-increment, first copy the location to the reload reg. */
7905 if (post && real_in != reloadreg)
7906 emit_insn (gen_move_insn (reloadreg, real_in));
7908 if (in == value)
7910 /* See if we can directly increment INCLOC. Use a method similar to
7911 that in gen_reload. */
7913 last = get_last_insn ();
7914 add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
7915 gen_rtx_PLUS (GET_MODE (incloc),
7916 incloc, inc)));
7918 code = recog_memoized (add_insn);
7919 if (code >= 0)
7921 extract_insn (add_insn);
7922 if (constrain_operands (1))
7924 /* If this is a pre-increment and we have incremented the value
7925 where it lives, copy the incremented value to RELOADREG to
7926 be used as an address. */
7928 if (! post)
7929 emit_insn (gen_move_insn (reloadreg, incloc));
7931 return add_insn;
7934 delete_insns_since (last);
7937 /* If couldn't do the increment directly, must increment in RELOADREG.
7938 The way we do this depends on whether this is pre- or post-increment.
7939 For pre-increment, copy INCLOC to the reload register, increment it
7940 there, then save back. */
7942 if (! post)
7944 if (in != reloadreg)
7945 emit_insn (gen_move_insn (reloadreg, real_in));
7946 emit_insn (gen_add2_insn (reloadreg, inc));
7947 store = emit_insn (gen_move_insn (incloc, reloadreg));
7949 else
7951 /* Postincrement.
7952 Because this might be a jump insn or a compare, and because RELOADREG
7953 may not be available after the insn in an input reload, we must do
7954 the incrementation before the insn being reloaded for.
7956 We have already copied IN to RELOADREG. Increment the copy in
7957 RELOADREG, save that back, then decrement RELOADREG so it has
7958 the original value. */
7960 emit_insn (gen_add2_insn (reloadreg, inc));
7961 store = emit_insn (gen_move_insn (incloc, reloadreg));
7962 emit_insn (gen_add2_insn (reloadreg, GEN_INT (-inc_amount)));
7965 return store;
7968 #ifdef AUTO_INC_DEC
7969 static void
7970 add_auto_inc_notes (rtx insn, rtx x)
7972 enum rtx_code code = GET_CODE (x);
7973 const char *fmt;
7974 int i, j;
7976 if (code == MEM && auto_inc_p (XEXP (x, 0)))
7978 REG_NOTES (insn)
7979 = gen_rtx_EXPR_LIST (REG_INC, XEXP (XEXP (x, 0), 0), REG_NOTES (insn));
7980 return;
7983 /* Scan all the operand sub-expressions. */
7984 fmt = GET_RTX_FORMAT (code);
7985 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7987 if (fmt[i] == 'e')
7988 add_auto_inc_notes (insn, XEXP (x, i));
7989 else if (fmt[i] == 'E')
7990 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7991 add_auto_inc_notes (insn, XVECEXP (x, i, j));
7994 #endif
7996 /* Copy EH notes from an insn to its reloads. */
7997 static void
7998 copy_eh_notes (rtx insn, rtx x)
8000 rtx eh_note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
8001 if (eh_note)
8003 for (; x != 0; x = NEXT_INSN (x))
8005 if (may_trap_p (PATTERN (x)))
8006 REG_NOTES (x)
8007 = gen_rtx_EXPR_LIST (REG_EH_REGION, XEXP (eh_note, 0),
8008 REG_NOTES (x));
8013 /* This is used by reload pass, that does emit some instructions after
8014 abnormal calls moving basic block end, but in fact it wants to emit
8015 them on the edge. Looks for abnormal call edges, find backward the
8016 proper call and fix the damage.
8018 Similar handle instructions throwing exceptions internally. */
8019 void
8020 fixup_abnormal_edges (void)
8022 bool inserted = false;
8023 basic_block bb;
8025 FOR_EACH_BB (bb)
8027 edge e;
8028 edge_iterator ei;
8030 /* Look for cases we are interested in - calls or instructions causing
8031 exceptions. */
8032 FOR_EACH_EDGE (e, ei, bb->succs)
8034 if (e->flags & EDGE_ABNORMAL_CALL)
8035 break;
8036 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH))
8037 == (EDGE_ABNORMAL | EDGE_EH))
8038 break;
8040 if (e && !CALL_P (BB_END (bb))
8041 && !can_throw_internal (BB_END (bb)))
8043 rtx insn = BB_END (bb), stop = NEXT_INSN (BB_END (bb));
8044 rtx next;
8045 FOR_EACH_EDGE (e, ei, bb->succs)
8046 if (e->flags & EDGE_FALLTHRU)
8047 break;
8048 /* Get past the new insns generated. Allow notes, as the insns may
8049 be already deleted. */
8050 while ((NONJUMP_INSN_P (insn) || NOTE_P (insn))
8051 && !can_throw_internal (insn)
8052 && insn != BB_HEAD (bb))
8053 insn = PREV_INSN (insn);
8054 gcc_assert (CALL_P (insn) || can_throw_internal (insn));
8055 BB_END (bb) = insn;
8056 inserted = true;
8057 insn = NEXT_INSN (insn);
8058 while (insn && insn != stop)
8060 next = NEXT_INSN (insn);
8061 if (INSN_P (insn))
8063 delete_insn (insn);
8065 /* Sometimes there's still the return value USE.
8066 If it's placed after a trapping call (i.e. that
8067 call is the last insn anyway), we have no fallthru
8068 edge. Simply delete this use and don't try to insert
8069 on the non-existent edge. */
8070 if (GET_CODE (PATTERN (insn)) != USE)
8072 /* We're not deleting it, we're moving it. */
8073 INSN_DELETED_P (insn) = 0;
8074 PREV_INSN (insn) = NULL_RTX;
8075 NEXT_INSN (insn) = NULL_RTX;
8077 insert_insn_on_edge (insn, e);
8080 insn = next;
8084 /* We've possibly turned single trapping insn into multiple ones. */
8085 if (flag_non_call_exceptions)
8087 sbitmap blocks;
8088 blocks = sbitmap_alloc (last_basic_block);
8089 sbitmap_ones (blocks);
8090 find_many_sub_basic_blocks (blocks);
8092 if (inserted)
8093 commit_edge_insertions ();