Add support for 32-bit hppa targets in muldi3 expander
[official-gcc.git] / libgfortran / generated / reshape_c4.c
blob3e55dad37fa56cd7c4993aebb59f66b1a9790841
1 /* Implementation of the RESHAPE intrinsic
2 Copyright (C) 2002-2021 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
5 This file is part of the GNU Fortran runtime library (libgfortran).
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 3 of the License, or (at your option) any later version.
12 Libgfortran is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 <http://www.gnu.org/licenses/>. */
26 #include "libgfortran.h"
29 #if defined (HAVE_GFC_COMPLEX_4)
31 typedef GFC_FULL_ARRAY_DESCRIPTOR(1, index_type) shape_type;
34 extern void reshape_c4 (gfc_array_c4 * const restrict,
35 gfc_array_c4 * const restrict,
36 shape_type * const restrict,
37 gfc_array_c4 * const restrict,
38 shape_type * const restrict);
39 export_proto(reshape_c4);
41 void
42 reshape_c4 (gfc_array_c4 * const restrict ret,
43 gfc_array_c4 * const restrict source,
44 shape_type * const restrict shape,
45 gfc_array_c4 * const restrict pad,
46 shape_type * const restrict order)
48 /* r.* indicates the return array. */
49 index_type rcount[GFC_MAX_DIMENSIONS];
50 index_type rextent[GFC_MAX_DIMENSIONS];
51 index_type rstride[GFC_MAX_DIMENSIONS];
52 index_type rstride0;
53 index_type rdim;
54 index_type rsize;
55 index_type rs;
56 index_type rex;
57 GFC_COMPLEX_4 *rptr;
58 /* s.* indicates the source array. */
59 index_type scount[GFC_MAX_DIMENSIONS];
60 index_type sextent[GFC_MAX_DIMENSIONS];
61 index_type sstride[GFC_MAX_DIMENSIONS];
62 index_type sstride0;
63 index_type sdim;
64 index_type ssize;
65 const GFC_COMPLEX_4 *sptr;
66 /* p.* indicates the pad array. */
67 index_type pcount[GFC_MAX_DIMENSIONS];
68 index_type pextent[GFC_MAX_DIMENSIONS];
69 index_type pstride[GFC_MAX_DIMENSIONS];
70 index_type pdim;
71 index_type psize;
72 const GFC_COMPLEX_4 *pptr;
74 const GFC_COMPLEX_4 *src;
75 int sempty, pempty, shape_empty;
76 index_type shape_data[GFC_MAX_DIMENSIONS];
78 rdim = GFC_DESCRIPTOR_EXTENT(shape,0);
79 /* rdim is always > 0; this lets the compiler optimize more and
80 avoids a potential warning. */
81 GFC_ASSERT(rdim>0);
83 if (rdim != GFC_DESCRIPTOR_RANK(ret))
84 runtime_error("rank of return array incorrect in RESHAPE intrinsic");
86 shape_empty = 0;
88 for (index_type n = 0; n < rdim; n++)
90 shape_data[n] = shape->base_addr[n * GFC_DESCRIPTOR_STRIDE(shape,0)];
91 if (shape_data[n] <= 0)
93 shape_data[n] = 0;
94 shape_empty = 1;
98 if (ret->base_addr == NULL)
100 index_type alloc_size;
102 rs = 1;
103 for (index_type n = 0; n < rdim; n++)
105 rex = shape_data[n];
107 GFC_DIMENSION_SET(ret->dim[n], 0, rex - 1, rs);
109 rs *= rex;
111 ret->offset = 0;
113 if (unlikely (rs < 1))
114 alloc_size = 0;
115 else
116 alloc_size = rs;
118 ret->base_addr = xmallocarray (alloc_size, sizeof (GFC_COMPLEX_4));
119 ret->dtype.rank = rdim;
122 if (shape_empty)
123 return;
125 if (pad)
127 pdim = GFC_DESCRIPTOR_RANK (pad);
128 psize = 1;
129 pempty = 0;
130 for (index_type n = 0; n < pdim; n++)
132 pcount[n] = 0;
133 pstride[n] = GFC_DESCRIPTOR_STRIDE(pad,n);
134 pextent[n] = GFC_DESCRIPTOR_EXTENT(pad,n);
135 if (pextent[n] <= 0)
137 pempty = 1;
138 pextent[n] = 0;
141 if (psize == pstride[n])
142 psize *= pextent[n];
143 else
144 psize = 0;
146 pptr = pad->base_addr;
148 else
150 pdim = 0;
151 psize = 1;
152 pempty = 1;
153 pptr = NULL;
156 if (unlikely (compile_options.bounds_check))
158 index_type ret_extent, source_extent;
160 rs = 1;
161 for (index_type n = 0; n < rdim; n++)
163 rs *= shape_data[n];
164 ret_extent = GFC_DESCRIPTOR_EXTENT(ret,n);
165 if (ret_extent != shape_data[n])
166 runtime_error("Incorrect extent in return value of RESHAPE"
167 " intrinsic in dimension %ld: is %ld,"
168 " should be %ld", (long int) n+1,
169 (long int) ret_extent, (long int) shape_data[n]);
172 source_extent = 1;
173 sdim = GFC_DESCRIPTOR_RANK (source);
174 for (index_type n = 0; n < sdim; n++)
176 index_type se;
177 se = GFC_DESCRIPTOR_EXTENT(source,n);
178 source_extent *= se > 0 ? se : 0;
181 if (rs > source_extent && (!pad || pempty))
182 runtime_error("Incorrect size in SOURCE argument to RESHAPE"
183 " intrinsic: is %ld, should be %ld",
184 (long int) source_extent, (long int) rs);
186 if (order)
188 int seen[GFC_MAX_DIMENSIONS];
189 index_type v;
191 for (index_type n = 0; n < rdim; n++)
192 seen[n] = 0;
194 for (index_type n = 0; n < rdim; n++)
196 v = order->base_addr[n * GFC_DESCRIPTOR_STRIDE(order,0)] - 1;
198 if (v < 0 || v >= rdim)
199 runtime_error("Value %ld out of range in ORDER argument"
200 " to RESHAPE intrinsic", (long int) v + 1);
202 if (seen[v] != 0)
203 runtime_error("Duplicate value %ld in ORDER argument to"
204 " RESHAPE intrinsic", (long int) v + 1);
206 seen[v] = 1;
211 rsize = 1;
212 for (index_type n = 0; n < rdim; n++)
214 index_type dim;
215 if (order)
216 dim = order->base_addr[n * GFC_DESCRIPTOR_STRIDE(order,0)] - 1;
217 else
218 dim = n;
220 rcount[n] = 0;
221 rstride[n] = GFC_DESCRIPTOR_STRIDE(ret,dim);
222 rextent[n] = GFC_DESCRIPTOR_EXTENT(ret,dim);
223 if (rextent[n] < 0)
224 rextent[n] = 0;
226 if (rextent[n] != shape_data[dim])
227 runtime_error ("shape and target do not conform");
229 if (rsize == rstride[n])
230 rsize *= rextent[n];
231 else
232 rsize = 0;
233 if (rextent[n] <= 0)
234 return;
237 sdim = GFC_DESCRIPTOR_RANK (source);
239 /* sdim is always > 0; this lets the compiler optimize more and
240 avoids a warning. */
241 GFC_ASSERT(sdim>0);
243 ssize = 1;
244 sempty = 0;
245 for (index_type n = 0; n < sdim; n++)
247 scount[n] = 0;
248 sstride[n] = GFC_DESCRIPTOR_STRIDE(source,n);
249 sextent[n] = GFC_DESCRIPTOR_EXTENT(source,n);
250 if (sextent[n] <= 0)
252 sempty = 1;
253 sextent[n] = 0;
256 if (ssize == sstride[n])
257 ssize *= sextent[n];
258 else
259 ssize = 0;
262 if (rsize != 0 && ssize != 0 && psize != 0)
264 rsize *= sizeof (GFC_COMPLEX_4);
265 ssize *= sizeof (GFC_COMPLEX_4);
266 psize *= sizeof (GFC_COMPLEX_4);
267 reshape_packed ((char *)ret->base_addr, rsize, (char *)source->base_addr,
268 ssize, pad ? (char *)pad->base_addr : NULL, psize);
269 return;
271 rptr = ret->base_addr;
272 src = sptr = source->base_addr;
273 rstride0 = rstride[0];
274 sstride0 = sstride[0];
276 if (sempty && pempty)
277 abort ();
279 if (sempty)
281 /* Pretend we are using the pad array the first time around, too. */
282 src = pptr;
283 sptr = pptr;
284 sdim = pdim;
285 for (index_type dim = 0; dim < pdim; dim++)
287 scount[dim] = pcount[dim];
288 sextent[dim] = pextent[dim];
289 sstride[dim] = pstride[dim];
290 sstride0 = pstride[0];
294 while (rptr)
296 /* Select between the source and pad arrays. */
297 *rptr = *src;
298 /* Advance to the next element. */
299 rptr += rstride0;
300 src += sstride0;
301 rcount[0]++;
302 scount[0]++;
304 /* Advance to the next destination element. */
305 index_type n = 0;
306 while (rcount[n] == rextent[n])
308 /* When we get to the end of a dimension, reset it and increment
309 the next dimension. */
310 rcount[n] = 0;
311 /* We could precalculate these products, but this is a less
312 frequently used path so probably not worth it. */
313 rptr -= rstride[n] * rextent[n];
314 n++;
315 if (n == rdim)
317 /* Break out of the loop. */
318 rptr = NULL;
319 break;
321 else
323 rcount[n]++;
324 rptr += rstride[n];
327 /* Advance to the next source element. */
328 n = 0;
329 while (scount[n] == sextent[n])
331 /* When we get to the end of a dimension, reset it and increment
332 the next dimension. */
333 scount[n] = 0;
334 /* We could precalculate these products, but this is a less
335 frequently used path so probably not worth it. */
336 src -= sstride[n] * sextent[n];
337 n++;
338 if (n == sdim)
340 if (sptr && pad)
342 /* Switch to the pad array. */
343 sptr = NULL;
344 sdim = pdim;
345 for (index_type dim = 0; dim < pdim; dim++)
347 scount[dim] = pcount[dim];
348 sextent[dim] = pextent[dim];
349 sstride[dim] = pstride[dim];
350 sstride0 = sstride[0];
353 /* We now start again from the beginning of the pad array. */
354 src = pptr;
355 break;
357 else
359 scount[n]++;
360 src += sstride[n];
366 #endif