Add support for 32-bit hppa targets in muldi3 expander
[official-gcc.git] / libgfortran / generated / pack_r10.c
blob64fa38aded03d0796761d35b762d441e55aed481
1 /* Specific implementation of the PACK intrinsic
2 Copyright (C) 2002-2021 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
5 This file is part of the GNU Fortran runtime library (libgfortran).
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 3 of the License, or (at your option) any later version.
12 Ligbfortran is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 <http://www.gnu.org/licenses/>. */
26 #include "libgfortran.h"
27 #include <string.h>
30 #if defined (HAVE_GFC_REAL_10)
32 /* PACK is specified as follows:
34 13.14.80 PACK (ARRAY, MASK, [VECTOR])
36 Description: Pack an array into an array of rank one under the
37 control of a mask.
39 Class: Transformational function.
41 Arguments:
42 ARRAY may be of any type. It shall not be scalar.
43 MASK shall be of type LOGICAL. It shall be conformable with ARRAY.
44 VECTOR (optional) shall be of the same type and type parameters
45 as ARRAY. VECTOR shall have at least as many elements as
46 there are true elements in MASK. If MASK is a scalar
47 with the value true, VECTOR shall have at least as many
48 elements as there are in ARRAY.
50 Result Characteristics: The result is an array of rank one with the
51 same type and type parameters as ARRAY. If VECTOR is present, the
52 result size is that of VECTOR; otherwise, the result size is the
53 number /t/ of true elements in MASK unless MASK is scalar with the
54 value true, in which case the result size is the size of ARRAY.
56 Result Value: Element /i/ of the result is the element of ARRAY
57 that corresponds to the /i/th true element of MASK, taking elements
58 in array element order, for /i/ = 1, 2, ..., /t/. If VECTOR is
59 present and has size /n/ > /t/, element /i/ of the result has the
60 value VECTOR(/i/), for /i/ = /t/ + 1, ..., /n/.
62 Examples: The nonzero elements of an array M with the value
63 | 0 0 0 |
64 | 9 0 0 | may be "gathered" by the function PACK. The result of
65 | 0 0 7 |
66 PACK (M, MASK = M.NE.0) is [9,7] and the result of PACK (M, M.NE.0,
67 VECTOR = (/ 2,4,6,8,10,12 /)) is [9,7,6,8,10,12].
69 There are two variants of the PACK intrinsic: one, where MASK is
70 array valued, and the other one where MASK is scalar. */
72 void
73 pack_r10 (gfc_array_r10 *ret, const gfc_array_r10 *array,
74 const gfc_array_l1 *mask, const gfc_array_r10 *vector)
76 /* r.* indicates the return array. */
77 index_type rstride0;
78 GFC_REAL_10 * restrict rptr;
79 /* s.* indicates the source array. */
80 index_type sstride[GFC_MAX_DIMENSIONS];
81 index_type sstride0;
82 const GFC_REAL_10 *sptr;
83 /* m.* indicates the mask array. */
84 index_type mstride[GFC_MAX_DIMENSIONS];
85 index_type mstride0;
86 const GFC_LOGICAL_1 *mptr;
88 index_type count[GFC_MAX_DIMENSIONS];
89 index_type extent[GFC_MAX_DIMENSIONS];
90 int zero_sized;
91 index_type n;
92 index_type dim;
93 index_type nelem;
94 index_type total;
95 int mask_kind;
97 dim = GFC_DESCRIPTOR_RANK (array);
99 mptr = mask->base_addr;
101 /* Use the same loop for all logical types, by using GFC_LOGICAL_1
102 and using shifting to address size and endian issues. */
104 mask_kind = GFC_DESCRIPTOR_SIZE (mask);
106 if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
107 #ifdef HAVE_GFC_LOGICAL_16
108 || mask_kind == 16
109 #endif
112 /* Do not convert a NULL pointer as we use test for NULL below. */
113 if (mptr)
114 mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
116 else
117 runtime_error ("Funny sized logical array");
119 zero_sized = 0;
120 for (n = 0; n < dim; n++)
122 count[n] = 0;
123 extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
124 if (extent[n] <= 0)
125 zero_sized = 1;
126 sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
127 mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
129 if (sstride[0] == 0)
130 sstride[0] = 1;
131 if (mstride[0] == 0)
132 mstride[0] = mask_kind;
134 if (zero_sized)
135 sptr = NULL;
136 else
137 sptr = array->base_addr;
139 if (ret->base_addr == NULL || unlikely (compile_options.bounds_check))
141 /* Count the elements, either for allocating memory or
142 for bounds checking. */
144 if (vector != NULL)
146 /* The return array will have as many
147 elements as there are in VECTOR. */
148 total = GFC_DESCRIPTOR_EXTENT(vector,0);
149 if (total < 0)
151 total = 0;
152 vector = NULL;
155 else
157 /* We have to count the true elements in MASK. */
158 total = count_0 (mask);
161 if (ret->base_addr == NULL)
163 /* Setup the array descriptor. */
164 GFC_DIMENSION_SET(ret->dim[0], 0, total-1, 1);
166 ret->offset = 0;
168 /* xmallocarray allocates a single byte for zero size. */
169 ret->base_addr = xmallocarray (total, sizeof (GFC_REAL_10));
171 if (total == 0)
172 return;
174 else
176 /* We come here because of range checking. */
177 index_type ret_extent;
179 ret_extent = GFC_DESCRIPTOR_EXTENT(ret,0);
180 if (total != ret_extent)
181 runtime_error ("Incorrect extent in return value of PACK intrinsic;"
182 " is %ld, should be %ld", (long int) total,
183 (long int) ret_extent);
187 rstride0 = GFC_DESCRIPTOR_STRIDE(ret,0);
188 if (rstride0 == 0)
189 rstride0 = 1;
190 sstride0 = sstride[0];
191 mstride0 = mstride[0];
192 rptr = ret->base_addr;
194 while (sptr && mptr)
196 /* Test this element. */
197 if (*mptr)
199 /* Add it. */
200 *rptr = *sptr;
201 rptr += rstride0;
203 /* Advance to the next element. */
204 sptr += sstride0;
205 mptr += mstride0;
206 count[0]++;
207 n = 0;
208 while (count[n] == extent[n])
210 /* When we get to the end of a dimension, reset it and increment
211 the next dimension. */
212 count[n] = 0;
213 /* We could precalculate these products, but this is a less
214 frequently used path so probably not worth it. */
215 sptr -= sstride[n] * extent[n];
216 mptr -= mstride[n] * extent[n];
217 n++;
218 if (n >= dim)
220 /* Break out of the loop. */
221 sptr = NULL;
222 break;
224 else
226 count[n]++;
227 sptr += sstride[n];
228 mptr += mstride[n];
233 /* Add any remaining elements from VECTOR. */
234 if (vector)
236 n = GFC_DESCRIPTOR_EXTENT(vector,0);
237 nelem = ((rptr - ret->base_addr) / rstride0);
238 if (n > nelem)
240 sstride0 = GFC_DESCRIPTOR_STRIDE(vector,0);
241 if (sstride0 == 0)
242 sstride0 = 1;
244 sptr = vector->base_addr + sstride0 * nelem;
245 n -= nelem;
246 while (n--)
248 *rptr = *sptr;
249 rptr += rstride0;
250 sptr += sstride0;
256 #endif