d: Merge upstream dmd 56589f0f4, druntime 651389b5, phobos 1516ecad9.
[official-gcc.git] / gcc / tree-vectorizer.cc
blob53dc4520963094dc3d192faa5e28db87c5cc7a44
1 /* Vectorizer
2 Copyright (C) 2003-2022 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* Loop and basic block vectorizer.
23 This file contains drivers for the three vectorizers:
24 (1) loop vectorizer (inter-iteration parallelism),
25 (2) loop-aware SLP (intra-iteration parallelism) (invoked by the loop
26 vectorizer)
27 (3) BB vectorizer (out-of-loops), aka SLP
29 The rest of the vectorizer's code is organized as follows:
30 - tree-vect-loop.cc - loop specific parts such as reductions, etc. These are
31 used by drivers (1) and (2).
32 - tree-vect-loop-manip.cc - vectorizer's loop control-flow utilities, used by
33 drivers (1) and (2).
34 - tree-vect-slp.cc - BB vectorization specific analysis and transformation,
35 used by drivers (2) and (3).
36 - tree-vect-stmts.cc - statements analysis and transformation (used by all).
37 - tree-vect-data-refs.cc - vectorizer specific data-refs analysis and
38 manipulations (used by all).
39 - tree-vect-patterns.cc - vectorizable code patterns detector (used by all)
41 Here's a poor attempt at illustrating that:
43 tree-vectorizer.cc:
44 loop_vect() loop_aware_slp() slp_vect()
45 | / \ /
46 | / \ /
47 tree-vect-loop.cc tree-vect-slp.cc
48 | \ \ / / |
49 | \ \/ / |
50 | \ /\ / |
51 | \ / \ / |
52 tree-vect-stmts.cc tree-vect-data-refs.cc
53 \ /
54 tree-vect-patterns.cc
57 #include "config.h"
58 #include "system.h"
59 #include "coretypes.h"
60 #include "backend.h"
61 #include "tree.h"
62 #include "gimple.h"
63 #include "predict.h"
64 #include "tree-pass.h"
65 #include "ssa.h"
66 #include "cgraph.h"
67 #include "fold-const.h"
68 #include "stor-layout.h"
69 #include "gimple-iterator.h"
70 #include "gimple-walk.h"
71 #include "tree-ssa-loop-manip.h"
72 #include "tree-ssa-loop-niter.h"
73 #include "tree-cfg.h"
74 #include "cfgloop.h"
75 #include "tree-vectorizer.h"
76 #include "tree-ssa-propagate.h"
77 #include "dbgcnt.h"
78 #include "tree-scalar-evolution.h"
79 #include "stringpool.h"
80 #include "attribs.h"
81 #include "gimple-pretty-print.h"
82 #include "opt-problem.h"
83 #include "internal-fn.h"
84 #include "tree-ssa-sccvn.h"
86 /* Loop or bb location, with hotness information. */
87 dump_user_location_t vect_location;
89 /* auto_purge_vect_location's dtor: reset the vect_location
90 global, to avoid stale location_t values that could reference
91 GC-ed blocks. */
93 auto_purge_vect_location::~auto_purge_vect_location ()
95 vect_location = dump_user_location_t ();
98 /* Dump a cost entry according to args to F. */
100 void
101 dump_stmt_cost (FILE *f, int count, enum vect_cost_for_stmt kind,
102 stmt_vec_info stmt_info, slp_tree node, tree,
103 int misalign, unsigned cost,
104 enum vect_cost_model_location where)
106 if (stmt_info)
108 print_gimple_expr (f, STMT_VINFO_STMT (stmt_info), 0, TDF_SLIM);
109 fprintf (f, " ");
111 else if (node)
112 fprintf (f, "node %p ", (void *)node);
113 else
114 fprintf (f, "<unknown> ");
115 fprintf (f, "%d times ", count);
116 const char *ks = "unknown";
117 switch (kind)
119 case scalar_stmt:
120 ks = "scalar_stmt";
121 break;
122 case scalar_load:
123 ks = "scalar_load";
124 break;
125 case scalar_store:
126 ks = "scalar_store";
127 break;
128 case vector_stmt:
129 ks = "vector_stmt";
130 break;
131 case vector_load:
132 ks = "vector_load";
133 break;
134 case vector_gather_load:
135 ks = "vector_gather_load";
136 break;
137 case unaligned_load:
138 ks = "unaligned_load";
139 break;
140 case unaligned_store:
141 ks = "unaligned_store";
142 break;
143 case vector_store:
144 ks = "vector_store";
145 break;
146 case vector_scatter_store:
147 ks = "vector_scatter_store";
148 break;
149 case vec_to_scalar:
150 ks = "vec_to_scalar";
151 break;
152 case scalar_to_vec:
153 ks = "scalar_to_vec";
154 break;
155 case cond_branch_not_taken:
156 ks = "cond_branch_not_taken";
157 break;
158 case cond_branch_taken:
159 ks = "cond_branch_taken";
160 break;
161 case vec_perm:
162 ks = "vec_perm";
163 break;
164 case vec_promote_demote:
165 ks = "vec_promote_demote";
166 break;
167 case vec_construct:
168 ks = "vec_construct";
169 break;
171 fprintf (f, "%s ", ks);
172 if (kind == unaligned_load || kind == unaligned_store)
173 fprintf (f, "(misalign %d) ", misalign);
174 fprintf (f, "costs %u ", cost);
175 const char *ws = "unknown";
176 switch (where)
178 case vect_prologue:
179 ws = "prologue";
180 break;
181 case vect_body:
182 ws = "body";
183 break;
184 case vect_epilogue:
185 ws = "epilogue";
186 break;
188 fprintf (f, "in %s\n", ws);
191 /* For mapping simduid to vectorization factor. */
193 class simduid_to_vf : public free_ptr_hash<simduid_to_vf>
195 public:
196 unsigned int simduid;
197 poly_uint64 vf;
199 /* hash_table support. */
200 static inline hashval_t hash (const simduid_to_vf *);
201 static inline int equal (const simduid_to_vf *, const simduid_to_vf *);
204 inline hashval_t
205 simduid_to_vf::hash (const simduid_to_vf *p)
207 return p->simduid;
210 inline int
211 simduid_to_vf::equal (const simduid_to_vf *p1, const simduid_to_vf *p2)
213 return p1->simduid == p2->simduid;
216 /* This hash maps the OMP simd array to the corresponding simduid used
217 to index into it. Like thus,
219 _7 = GOMP_SIMD_LANE (simduid.0)
222 D.1737[_7] = stuff;
225 This hash maps from the OMP simd array (D.1737[]) to DECL_UID of
226 simduid.0. */
228 struct simd_array_to_simduid : free_ptr_hash<simd_array_to_simduid>
230 tree decl;
231 unsigned int simduid;
233 /* hash_table support. */
234 static inline hashval_t hash (const simd_array_to_simduid *);
235 static inline int equal (const simd_array_to_simduid *,
236 const simd_array_to_simduid *);
239 inline hashval_t
240 simd_array_to_simduid::hash (const simd_array_to_simduid *p)
242 return DECL_UID (p->decl);
245 inline int
246 simd_array_to_simduid::equal (const simd_array_to_simduid *p1,
247 const simd_array_to_simduid *p2)
249 return p1->decl == p2->decl;
252 /* Fold IFN_GOMP_SIMD_LANE, IFN_GOMP_SIMD_VF, IFN_GOMP_SIMD_LAST_LANE,
253 into their corresponding constants and remove
254 IFN_GOMP_SIMD_ORDERED_{START,END}. */
256 static void
257 adjust_simduid_builtins (hash_table<simduid_to_vf> *htab, function *fun)
259 basic_block bb;
261 FOR_EACH_BB_FN (bb, fun)
263 gimple_stmt_iterator i;
265 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
267 poly_uint64 vf = 1;
268 enum internal_fn ifn;
269 gimple *stmt = gsi_stmt (i);
270 tree t;
271 if (!is_gimple_call (stmt)
272 || !gimple_call_internal_p (stmt))
274 gsi_next (&i);
275 continue;
277 ifn = gimple_call_internal_fn (stmt);
278 switch (ifn)
280 case IFN_GOMP_SIMD_LANE:
281 case IFN_GOMP_SIMD_VF:
282 case IFN_GOMP_SIMD_LAST_LANE:
283 break;
284 case IFN_GOMP_SIMD_ORDERED_START:
285 case IFN_GOMP_SIMD_ORDERED_END:
286 if (integer_onep (gimple_call_arg (stmt, 0)))
288 enum built_in_function bcode
289 = (ifn == IFN_GOMP_SIMD_ORDERED_START
290 ? BUILT_IN_GOMP_ORDERED_START
291 : BUILT_IN_GOMP_ORDERED_END);
292 gimple *g
293 = gimple_build_call (builtin_decl_explicit (bcode), 0);
294 gimple_move_vops (g, stmt);
295 gsi_replace (&i, g, true);
296 continue;
298 gsi_remove (&i, true);
299 unlink_stmt_vdef (stmt);
300 continue;
301 default:
302 gsi_next (&i);
303 continue;
305 tree arg = gimple_call_arg (stmt, 0);
306 gcc_assert (arg != NULL_TREE);
307 gcc_assert (TREE_CODE (arg) == SSA_NAME);
308 simduid_to_vf *p = NULL, data;
309 data.simduid = DECL_UID (SSA_NAME_VAR (arg));
310 /* Need to nullify loop safelen field since it's value is not
311 valid after transformation. */
312 if (bb->loop_father && bb->loop_father->safelen > 0)
313 bb->loop_father->safelen = 0;
314 if (htab)
316 p = htab->find (&data);
317 if (p)
318 vf = p->vf;
320 switch (ifn)
322 case IFN_GOMP_SIMD_VF:
323 t = build_int_cst (unsigned_type_node, vf);
324 break;
325 case IFN_GOMP_SIMD_LANE:
326 t = build_int_cst (unsigned_type_node, 0);
327 break;
328 case IFN_GOMP_SIMD_LAST_LANE:
329 t = gimple_call_arg (stmt, 1);
330 break;
331 default:
332 gcc_unreachable ();
334 tree lhs = gimple_call_lhs (stmt);
335 if (lhs)
336 replace_uses_by (lhs, t);
337 release_defs (stmt);
338 gsi_remove (&i, true);
343 /* Helper structure for note_simd_array_uses. */
345 struct note_simd_array_uses_struct
347 hash_table<simd_array_to_simduid> **htab;
348 unsigned int simduid;
351 /* Callback for note_simd_array_uses, called through walk_gimple_op. */
353 static tree
354 note_simd_array_uses_cb (tree *tp, int *walk_subtrees, void *data)
356 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
357 struct note_simd_array_uses_struct *ns
358 = (struct note_simd_array_uses_struct *) wi->info;
360 if (TYPE_P (*tp))
361 *walk_subtrees = 0;
362 else if (VAR_P (*tp)
363 && lookup_attribute ("omp simd array", DECL_ATTRIBUTES (*tp))
364 && DECL_CONTEXT (*tp) == current_function_decl)
366 simd_array_to_simduid data;
367 if (!*ns->htab)
368 *ns->htab = new hash_table<simd_array_to_simduid> (15);
369 data.decl = *tp;
370 data.simduid = ns->simduid;
371 simd_array_to_simduid **slot = (*ns->htab)->find_slot (&data, INSERT);
372 if (*slot == NULL)
374 simd_array_to_simduid *p = XNEW (simd_array_to_simduid);
375 *p = data;
376 *slot = p;
378 else if ((*slot)->simduid != ns->simduid)
379 (*slot)->simduid = -1U;
380 *walk_subtrees = 0;
382 return NULL_TREE;
385 /* Find "omp simd array" temporaries and map them to corresponding
386 simduid. */
388 static void
389 note_simd_array_uses (hash_table<simd_array_to_simduid> **htab, function *fun)
391 basic_block bb;
392 gimple_stmt_iterator gsi;
393 struct walk_stmt_info wi;
394 struct note_simd_array_uses_struct ns;
396 memset (&wi, 0, sizeof (wi));
397 wi.info = &ns;
398 ns.htab = htab;
400 FOR_EACH_BB_FN (bb, fun)
401 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
403 gimple *stmt = gsi_stmt (gsi);
404 if (!is_gimple_call (stmt) || !gimple_call_internal_p (stmt))
405 continue;
406 switch (gimple_call_internal_fn (stmt))
408 case IFN_GOMP_SIMD_LANE:
409 case IFN_GOMP_SIMD_VF:
410 case IFN_GOMP_SIMD_LAST_LANE:
411 break;
412 default:
413 continue;
415 tree lhs = gimple_call_lhs (stmt);
416 if (lhs == NULL_TREE)
417 continue;
418 imm_use_iterator use_iter;
419 gimple *use_stmt;
420 ns.simduid = DECL_UID (SSA_NAME_VAR (gimple_call_arg (stmt, 0)));
421 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, lhs)
422 if (!is_gimple_debug (use_stmt))
423 walk_gimple_op (use_stmt, note_simd_array_uses_cb, &wi);
427 /* Shrink arrays with "omp simd array" attribute to the corresponding
428 vectorization factor. */
430 static void
431 shrink_simd_arrays
432 (hash_table<simd_array_to_simduid> *simd_array_to_simduid_htab,
433 hash_table<simduid_to_vf> *simduid_to_vf_htab)
435 for (hash_table<simd_array_to_simduid>::iterator iter
436 = simd_array_to_simduid_htab->begin ();
437 iter != simd_array_to_simduid_htab->end (); ++iter)
438 if ((*iter)->simduid != -1U)
440 tree decl = (*iter)->decl;
441 poly_uint64 vf = 1;
442 if (simduid_to_vf_htab)
444 simduid_to_vf *p = NULL, data;
445 data.simduid = (*iter)->simduid;
446 p = simduid_to_vf_htab->find (&data);
447 if (p)
448 vf = p->vf;
450 tree atype
451 = build_array_type_nelts (TREE_TYPE (TREE_TYPE (decl)), vf);
452 TREE_TYPE (decl) = atype;
453 relayout_decl (decl);
456 delete simd_array_to_simduid_htab;
459 /* Initialize the vec_info with kind KIND_IN and target cost data
460 TARGET_COST_DATA_IN. */
462 vec_info::vec_info (vec_info::vec_kind kind_in, vec_info_shared *shared_)
463 : kind (kind_in),
464 shared (shared_),
465 stmt_vec_info_ro (false)
467 stmt_vec_infos.create (50);
470 vec_info::~vec_info ()
472 for (slp_instance &instance : slp_instances)
473 vect_free_slp_instance (instance);
475 free_stmt_vec_infos ();
478 vec_info_shared::vec_info_shared ()
479 : n_stmts (0),
480 datarefs (vNULL),
481 datarefs_copy (vNULL),
482 ddrs (vNULL)
486 vec_info_shared::~vec_info_shared ()
488 free_data_refs (datarefs);
489 free_dependence_relations (ddrs);
490 datarefs_copy.release ();
493 void
494 vec_info_shared::save_datarefs ()
496 if (!flag_checking)
497 return;
498 datarefs_copy.reserve_exact (datarefs.length ());
499 for (unsigned i = 0; i < datarefs.length (); ++i)
500 datarefs_copy.quick_push (*datarefs[i]);
503 void
504 vec_info_shared::check_datarefs ()
506 if (!flag_checking)
507 return;
508 gcc_assert (datarefs.length () == datarefs_copy.length ());
509 for (unsigned i = 0; i < datarefs.length (); ++i)
510 if (memcmp (&datarefs_copy[i], datarefs[i],
511 offsetof (data_reference, alt_indices)) != 0)
512 gcc_unreachable ();
515 /* Record that STMT belongs to the vectorizable region. Create and return
516 an associated stmt_vec_info. */
518 stmt_vec_info
519 vec_info::add_stmt (gimple *stmt)
521 stmt_vec_info res = new_stmt_vec_info (stmt);
522 set_vinfo_for_stmt (stmt, res);
523 return res;
526 /* Record that STMT belongs to the vectorizable region. Create a new
527 stmt_vec_info and mark VECINFO as being related and return the new
528 stmt_vec_info. */
530 stmt_vec_info
531 vec_info::add_pattern_stmt (gimple *stmt, stmt_vec_info stmt_info)
533 stmt_vec_info res = new_stmt_vec_info (stmt);
534 set_vinfo_for_stmt (stmt, res, false);
535 STMT_VINFO_RELATED_STMT (res) = stmt_info;
536 return res;
539 /* If STMT has an associated stmt_vec_info, return that vec_info, otherwise
540 return null. It is safe to call this function on any statement, even if
541 it might not be part of the vectorizable region. */
543 stmt_vec_info
544 vec_info::lookup_stmt (gimple *stmt)
546 unsigned int uid = gimple_uid (stmt);
547 if (uid > 0 && uid - 1 < stmt_vec_infos.length ())
549 stmt_vec_info res = stmt_vec_infos[uid - 1];
550 if (res && res->stmt == stmt)
551 return res;
553 return NULL;
556 /* If NAME is an SSA_NAME and its definition has an associated stmt_vec_info,
557 return that stmt_vec_info, otherwise return null. It is safe to call
558 this on arbitrary operands. */
560 stmt_vec_info
561 vec_info::lookup_def (tree name)
563 if (TREE_CODE (name) == SSA_NAME
564 && !SSA_NAME_IS_DEFAULT_DEF (name))
565 return lookup_stmt (SSA_NAME_DEF_STMT (name));
566 return NULL;
569 /* See whether there is a single non-debug statement that uses LHS and
570 whether that statement has an associated stmt_vec_info. Return the
571 stmt_vec_info if so, otherwise return null. */
573 stmt_vec_info
574 vec_info::lookup_single_use (tree lhs)
576 use_operand_p dummy;
577 gimple *use_stmt;
578 if (single_imm_use (lhs, &dummy, &use_stmt))
579 return lookup_stmt (use_stmt);
580 return NULL;
583 /* Return vectorization information about DR. */
585 dr_vec_info *
586 vec_info::lookup_dr (data_reference *dr)
588 stmt_vec_info stmt_info = lookup_stmt (DR_STMT (dr));
589 /* DR_STMT should never refer to a stmt in a pattern replacement. */
590 gcc_checking_assert (!is_pattern_stmt_p (stmt_info));
591 return STMT_VINFO_DR_INFO (stmt_info->dr_aux.stmt);
594 /* Record that NEW_STMT_INFO now implements the same data reference
595 as OLD_STMT_INFO. */
597 void
598 vec_info::move_dr (stmt_vec_info new_stmt_info, stmt_vec_info old_stmt_info)
600 gcc_assert (!is_pattern_stmt_p (old_stmt_info));
601 STMT_VINFO_DR_INFO (old_stmt_info)->stmt = new_stmt_info;
602 new_stmt_info->dr_aux = old_stmt_info->dr_aux;
603 STMT_VINFO_DR_WRT_VEC_LOOP (new_stmt_info)
604 = STMT_VINFO_DR_WRT_VEC_LOOP (old_stmt_info);
605 STMT_VINFO_GATHER_SCATTER_P (new_stmt_info)
606 = STMT_VINFO_GATHER_SCATTER_P (old_stmt_info);
609 /* Permanently remove the statement described by STMT_INFO from the
610 function. */
612 void
613 vec_info::remove_stmt (stmt_vec_info stmt_info)
615 gcc_assert (!stmt_info->pattern_stmt_p);
616 set_vinfo_for_stmt (stmt_info->stmt, NULL);
617 unlink_stmt_vdef (stmt_info->stmt);
618 gimple_stmt_iterator si = gsi_for_stmt (stmt_info->stmt);
619 gsi_remove (&si, true);
620 release_defs (stmt_info->stmt);
621 free_stmt_vec_info (stmt_info);
624 /* Replace the statement at GSI by NEW_STMT, both the vectorization
625 information and the function itself. STMT_INFO describes the statement
626 at GSI. */
628 void
629 vec_info::replace_stmt (gimple_stmt_iterator *gsi, stmt_vec_info stmt_info,
630 gimple *new_stmt)
632 gimple *old_stmt = stmt_info->stmt;
633 gcc_assert (!stmt_info->pattern_stmt_p && old_stmt == gsi_stmt (*gsi));
634 gimple_set_uid (new_stmt, gimple_uid (old_stmt));
635 stmt_info->stmt = new_stmt;
636 gsi_replace (gsi, new_stmt, true);
639 /* Insert stmts in SEQ on the VEC_INFO region entry. If CONTEXT is
640 not NULL it specifies whether to use the sub-region entry
641 determined by it, currently used for loop vectorization to insert
642 on the inner loop entry vs. the outer loop entry. */
644 void
645 vec_info::insert_seq_on_entry (stmt_vec_info context, gimple_seq seq)
647 if (loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (this))
649 class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
650 basic_block new_bb;
651 edge pe;
653 if (context && nested_in_vect_loop_p (loop, context))
654 loop = loop->inner;
656 pe = loop_preheader_edge (loop);
657 new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
658 gcc_assert (!new_bb);
660 else
662 bb_vec_info bb_vinfo = as_a <bb_vec_info> (this);
663 gimple_stmt_iterator gsi_region_begin
664 = gsi_after_labels (bb_vinfo->bbs[0]);
665 gsi_insert_seq_before (&gsi_region_begin, seq, GSI_SAME_STMT);
669 /* Like insert_seq_on_entry but just inserts the single stmt NEW_STMT. */
671 void
672 vec_info::insert_on_entry (stmt_vec_info context, gimple *new_stmt)
674 gimple_seq seq = NULL;
675 gimple_stmt_iterator gsi = gsi_start (seq);
676 gsi_insert_before_without_update (&gsi, new_stmt, GSI_SAME_STMT);
677 insert_seq_on_entry (context, seq);
680 /* Create and initialize a new stmt_vec_info struct for STMT. */
682 stmt_vec_info
683 vec_info::new_stmt_vec_info (gimple *stmt)
685 stmt_vec_info res = XCNEW (class _stmt_vec_info);
686 res->stmt = stmt;
688 STMT_VINFO_TYPE (res) = undef_vec_info_type;
689 STMT_VINFO_RELEVANT (res) = vect_unused_in_scope;
690 STMT_VINFO_VECTORIZABLE (res) = true;
691 STMT_VINFO_REDUC_TYPE (res) = TREE_CODE_REDUCTION;
692 STMT_VINFO_REDUC_CODE (res) = ERROR_MARK;
693 STMT_VINFO_REDUC_FN (res) = IFN_LAST;
694 STMT_VINFO_REDUC_IDX (res) = -1;
695 STMT_VINFO_SLP_VECT_ONLY (res) = false;
696 STMT_VINFO_SLP_VECT_ONLY_PATTERN (res) = false;
697 STMT_VINFO_VEC_STMTS (res) = vNULL;
698 res->reduc_initial_values = vNULL;
699 res->reduc_scalar_results = vNULL;
701 if (is_a <loop_vec_info> (this)
702 && gimple_code (stmt) == GIMPLE_PHI
703 && is_loop_header_bb_p (gimple_bb (stmt)))
704 STMT_VINFO_DEF_TYPE (res) = vect_unknown_def_type;
705 else
706 STMT_VINFO_DEF_TYPE (res) = vect_internal_def;
708 STMT_SLP_TYPE (res) = loop_vect;
710 /* This is really "uninitialized" until vect_compute_data_ref_alignment. */
711 res->dr_aux.misalignment = DR_MISALIGNMENT_UNINITIALIZED;
713 return res;
716 /* Associate STMT with INFO. */
718 void
719 vec_info::set_vinfo_for_stmt (gimple *stmt, stmt_vec_info info, bool check_ro)
721 unsigned int uid = gimple_uid (stmt);
722 if (uid == 0)
724 gcc_assert (!check_ro || !stmt_vec_info_ro);
725 gcc_checking_assert (info);
726 uid = stmt_vec_infos.length () + 1;
727 gimple_set_uid (stmt, uid);
728 stmt_vec_infos.safe_push (info);
730 else
732 gcc_checking_assert (info == NULL);
733 stmt_vec_infos[uid - 1] = info;
737 /* Free the contents of stmt_vec_infos. */
739 void
740 vec_info::free_stmt_vec_infos (void)
742 for (stmt_vec_info &info : stmt_vec_infos)
743 if (info != NULL)
744 free_stmt_vec_info (info);
745 stmt_vec_infos.release ();
748 /* Free STMT_INFO. */
750 void
751 vec_info::free_stmt_vec_info (stmt_vec_info stmt_info)
753 if (stmt_info->pattern_stmt_p)
755 gimple_set_bb (stmt_info->stmt, NULL);
756 tree lhs = gimple_get_lhs (stmt_info->stmt);
757 if (lhs && TREE_CODE (lhs) == SSA_NAME)
758 release_ssa_name (lhs);
761 stmt_info->reduc_initial_values.release ();
762 stmt_info->reduc_scalar_results.release ();
763 STMT_VINFO_SIMD_CLONE_INFO (stmt_info).release ();
764 STMT_VINFO_VEC_STMTS (stmt_info).release ();
765 free (stmt_info);
768 /* Returns true if S1 dominates S2. */
770 bool
771 vect_stmt_dominates_stmt_p (gimple *s1, gimple *s2)
773 basic_block bb1 = gimple_bb (s1), bb2 = gimple_bb (s2);
775 /* If bb1 is NULL, it should be a GIMPLE_NOP def stmt of an (D)
776 SSA_NAME. Assume it lives at the beginning of function and
777 thus dominates everything. */
778 if (!bb1 || s1 == s2)
779 return true;
781 /* If bb2 is NULL, it doesn't dominate any stmt with a bb. */
782 if (!bb2)
783 return false;
785 if (bb1 != bb2)
786 return dominated_by_p (CDI_DOMINATORS, bb2, bb1);
788 /* PHIs in the same basic block are assumed to be
789 executed all in parallel, if only one stmt is a PHI,
790 it dominates the other stmt in the same basic block. */
791 if (gimple_code (s1) == GIMPLE_PHI)
792 return true;
794 if (gimple_code (s2) == GIMPLE_PHI)
795 return false;
797 /* Inserted vectorized stmts all have UID 0 while the original stmts
798 in the IL have UID increasing within a BB. Walk from both sides
799 until we find the other stmt or a stmt with UID != 0. */
800 gimple_stmt_iterator gsi1 = gsi_for_stmt (s1);
801 while (gimple_uid (gsi_stmt (gsi1)) == 0)
803 gsi_next (&gsi1);
804 if (gsi_end_p (gsi1))
805 return false;
806 if (gsi_stmt (gsi1) == s2)
807 return true;
809 if (gimple_uid (gsi_stmt (gsi1)) == -1u)
810 return false;
812 gimple_stmt_iterator gsi2 = gsi_for_stmt (s2);
813 while (gimple_uid (gsi_stmt (gsi2)) == 0)
815 gsi_prev (&gsi2);
816 if (gsi_end_p (gsi2))
817 return false;
818 if (gsi_stmt (gsi2) == s1)
819 return true;
821 if (gimple_uid (gsi_stmt (gsi2)) == -1u)
822 return false;
824 if (gimple_uid (gsi_stmt (gsi1)) <= gimple_uid (gsi_stmt (gsi2)))
825 return true;
826 return false;
829 /* A helper function to free scev and LOOP niter information, as well as
830 clear loop constraint LOOP_C_FINITE. */
832 void
833 vect_free_loop_info_assumptions (class loop *loop)
835 scev_reset_htab ();
836 /* We need to explicitly reset upper bound information since they are
837 used even after free_numbers_of_iterations_estimates. */
838 loop->any_upper_bound = false;
839 loop->any_likely_upper_bound = false;
840 free_numbers_of_iterations_estimates (loop);
841 loop_constraint_clear (loop, LOOP_C_FINITE);
844 /* If LOOP has been versioned during ifcvt, return the internal call
845 guarding it. */
847 gimple *
848 vect_loop_vectorized_call (class loop *loop, gcond **cond)
850 basic_block bb = loop_preheader_edge (loop)->src;
851 gimple *g;
854 g = last_stmt (bb);
855 if ((g && gimple_code (g) == GIMPLE_COND)
856 || !single_succ_p (bb))
857 break;
858 if (!single_pred_p (bb))
859 break;
860 bb = single_pred (bb);
862 while (1);
863 if (g && gimple_code (g) == GIMPLE_COND)
865 if (cond)
866 *cond = as_a <gcond *> (g);
867 gimple_stmt_iterator gsi = gsi_for_stmt (g);
868 gsi_prev (&gsi);
869 if (!gsi_end_p (gsi))
871 g = gsi_stmt (gsi);
872 if (gimple_call_internal_p (g, IFN_LOOP_VECTORIZED)
873 && (tree_to_shwi (gimple_call_arg (g, 0)) == loop->num
874 || tree_to_shwi (gimple_call_arg (g, 1)) == loop->num))
875 return g;
878 return NULL;
881 /* If LOOP has been versioned during loop distribution, return the gurading
882 internal call. */
884 static gimple *
885 vect_loop_dist_alias_call (class loop *loop, function *fun)
887 basic_block bb;
888 basic_block entry;
889 class loop *outer, *orig;
890 gimple_stmt_iterator gsi;
891 gimple *g;
893 if (loop->orig_loop_num == 0)
894 return NULL;
896 orig = get_loop (fun, loop->orig_loop_num);
897 if (orig == NULL)
899 /* The original loop is somehow destroyed. Clear the information. */
900 loop->orig_loop_num = 0;
901 return NULL;
904 if (loop != orig)
905 bb = nearest_common_dominator (CDI_DOMINATORS, loop->header, orig->header);
906 else
907 bb = loop_preheader_edge (loop)->src;
909 outer = bb->loop_father;
910 entry = ENTRY_BLOCK_PTR_FOR_FN (fun);
912 /* Look upward in dominance tree. */
913 for (; bb != entry && flow_bb_inside_loop_p (outer, bb);
914 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
916 g = last_stmt (bb);
917 if (g == NULL || gimple_code (g) != GIMPLE_COND)
918 continue;
920 gsi = gsi_for_stmt (g);
921 gsi_prev (&gsi);
922 if (gsi_end_p (gsi))
923 continue;
925 g = gsi_stmt (gsi);
926 /* The guarding internal function call must have the same distribution
927 alias id. */
928 if (gimple_call_internal_p (g, IFN_LOOP_DIST_ALIAS)
929 && (tree_to_shwi (gimple_call_arg (g, 0)) == loop->orig_loop_num))
930 return g;
932 return NULL;
935 /* Set the uids of all the statements in basic blocks inside loop
936 represented by LOOP_VINFO. LOOP_VECTORIZED_CALL is the internal
937 call guarding the loop which has been if converted. */
938 static void
939 set_uid_loop_bbs (loop_vec_info loop_vinfo, gimple *loop_vectorized_call,
940 function *fun)
942 tree arg = gimple_call_arg (loop_vectorized_call, 1);
943 basic_block *bbs;
944 unsigned int i;
945 class loop *scalar_loop = get_loop (fun, tree_to_shwi (arg));
947 LOOP_VINFO_SCALAR_LOOP (loop_vinfo) = scalar_loop;
948 gcc_checking_assert (vect_loop_vectorized_call (scalar_loop)
949 == loop_vectorized_call);
950 /* If we are going to vectorize outer loop, prevent vectorization
951 of the inner loop in the scalar loop - either the scalar loop is
952 thrown away, so it is a wasted work, or is used only for
953 a few iterations. */
954 if (scalar_loop->inner)
956 gimple *g = vect_loop_vectorized_call (scalar_loop->inner);
957 if (g)
959 arg = gimple_call_arg (g, 0);
960 get_loop (fun, tree_to_shwi (arg))->dont_vectorize = true;
961 fold_loop_internal_call (g, boolean_false_node);
964 bbs = get_loop_body (scalar_loop);
965 for (i = 0; i < scalar_loop->num_nodes; i++)
967 basic_block bb = bbs[i];
968 gimple_stmt_iterator gsi;
969 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
971 gimple *phi = gsi_stmt (gsi);
972 gimple_set_uid (phi, 0);
974 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
976 gimple *stmt = gsi_stmt (gsi);
977 gimple_set_uid (stmt, 0);
980 free (bbs);
983 /* Generate vectorized code for LOOP and its epilogues. */
985 static void
986 vect_transform_loops (hash_table<simduid_to_vf> *&simduid_to_vf_htab,
987 loop_p loop, gimple *loop_vectorized_call,
988 function *fun)
990 loop_vec_info loop_vinfo = loop_vec_info_for_loop (loop);
992 if (loop_vectorized_call)
993 set_uid_loop_bbs (loop_vinfo, loop_vectorized_call, fun);
995 unsigned HOST_WIDE_INT bytes;
996 if (dump_enabled_p ())
998 if (GET_MODE_SIZE (loop_vinfo->vector_mode).is_constant (&bytes))
999 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
1000 "loop vectorized using %wu byte vectors\n", bytes);
1001 else
1002 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
1003 "loop vectorized using variable length vectors\n");
1006 loop_p new_loop = vect_transform_loop (loop_vinfo,
1007 loop_vectorized_call);
1008 /* Now that the loop has been vectorized, allow it to be unrolled
1009 etc. */
1010 loop->force_vectorize = false;
1012 if (loop->simduid)
1014 simduid_to_vf *simduid_to_vf_data = XNEW (simduid_to_vf);
1015 if (!simduid_to_vf_htab)
1016 simduid_to_vf_htab = new hash_table<simduid_to_vf> (15);
1017 simduid_to_vf_data->simduid = DECL_UID (loop->simduid);
1018 simduid_to_vf_data->vf = loop_vinfo->vectorization_factor;
1019 *simduid_to_vf_htab->find_slot (simduid_to_vf_data, INSERT)
1020 = simduid_to_vf_data;
1023 /* Epilogue of vectorized loop must be vectorized too. */
1024 if (new_loop)
1025 vect_transform_loops (simduid_to_vf_htab, new_loop, NULL, fun);
1028 /* Try to vectorize LOOP. */
1030 static unsigned
1031 try_vectorize_loop_1 (hash_table<simduid_to_vf> *&simduid_to_vf_htab,
1032 unsigned *num_vectorized_loops, loop_p loop,
1033 gimple *loop_vectorized_call,
1034 gimple *loop_dist_alias_call,
1035 function *fun)
1037 unsigned ret = 0;
1038 vec_info_shared shared;
1039 auto_purge_vect_location sentinel;
1040 vect_location = find_loop_location (loop);
1042 if (LOCATION_LOCUS (vect_location.get_location_t ()) != UNKNOWN_LOCATION
1043 && dump_enabled_p ())
1044 dump_printf (MSG_NOTE | MSG_PRIORITY_INTERNALS,
1045 "\nAnalyzing loop at %s:%d\n",
1046 LOCATION_FILE (vect_location.get_location_t ()),
1047 LOCATION_LINE (vect_location.get_location_t ()));
1049 /* Try to analyze the loop, retaining an opt_problem if dump_enabled_p. */
1050 opt_loop_vec_info loop_vinfo = vect_analyze_loop (loop, &shared);
1051 loop->aux = loop_vinfo;
1053 if (!loop_vinfo)
1054 if (dump_enabled_p ())
1055 if (opt_problem *problem = loop_vinfo.get_problem ())
1057 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1058 "couldn't vectorize loop\n");
1059 problem->emit_and_clear ();
1062 if (!loop_vinfo || !LOOP_VINFO_VECTORIZABLE_P (loop_vinfo))
1064 /* Free existing information if loop is analyzed with some
1065 assumptions. */
1066 if (loop_constraint_set_p (loop, LOOP_C_FINITE))
1067 vect_free_loop_info_assumptions (loop);
1069 /* If we applied if-conversion then try to vectorize the
1070 BB of innermost loops.
1071 ??? Ideally BB vectorization would learn to vectorize
1072 control flow by applying if-conversion on-the-fly, the
1073 following retains the if-converted loop body even when
1074 only non-if-converted parts took part in BB vectorization. */
1075 if (flag_tree_slp_vectorize != 0
1076 && loop_vectorized_call
1077 && ! loop->inner)
1079 basic_block bb = loop->header;
1080 bool require_loop_vectorize = false;
1081 for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
1082 !gsi_end_p (gsi); gsi_next (&gsi))
1084 gimple *stmt = gsi_stmt (gsi);
1085 gcall *call = dyn_cast <gcall *> (stmt);
1086 if (call && gimple_call_internal_p (call))
1088 internal_fn ifn = gimple_call_internal_fn (call);
1089 if (ifn == IFN_MASK_LOAD || ifn == IFN_MASK_STORE
1090 /* Don't keep the if-converted parts when the ifn with
1091 specifc type is not supported by the backend. */
1092 || (direct_internal_fn_p (ifn)
1093 && !direct_internal_fn_supported_p
1094 (call, OPTIMIZE_FOR_SPEED)))
1096 require_loop_vectorize = true;
1097 break;
1100 gimple_set_uid (stmt, -1);
1101 gimple_set_visited (stmt, false);
1103 if (!require_loop_vectorize)
1105 tree arg = gimple_call_arg (loop_vectorized_call, 1);
1106 class loop *scalar_loop = get_loop (fun, tree_to_shwi (arg));
1107 if (vect_slp_if_converted_bb (bb, scalar_loop))
1109 fold_loop_internal_call (loop_vectorized_call,
1110 boolean_true_node);
1111 loop_vectorized_call = NULL;
1112 ret |= TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
1116 /* If outer loop vectorization fails for LOOP_VECTORIZED guarded
1117 loop, don't vectorize its inner loop; we'll attempt to
1118 vectorize LOOP_VECTORIZED guarded inner loop of the scalar
1119 loop version. */
1120 if (loop_vectorized_call && loop->inner)
1121 loop->inner->dont_vectorize = true;
1122 return ret;
1125 if (!dbg_cnt (vect_loop))
1127 /* Free existing information if loop is analyzed with some
1128 assumptions. */
1129 if (loop_constraint_set_p (loop, LOOP_C_FINITE))
1130 vect_free_loop_info_assumptions (loop);
1131 return ret;
1134 (*num_vectorized_loops)++;
1135 /* Transform LOOP and its epilogues. */
1136 vect_transform_loops (simduid_to_vf_htab, loop, loop_vectorized_call, fun);
1138 if (loop_vectorized_call)
1140 fold_loop_internal_call (loop_vectorized_call, boolean_true_node);
1141 ret |= TODO_cleanup_cfg;
1143 if (loop_dist_alias_call)
1145 tree value = gimple_call_arg (loop_dist_alias_call, 1);
1146 fold_loop_internal_call (loop_dist_alias_call, value);
1147 ret |= TODO_cleanup_cfg;
1150 return ret;
1153 /* Try to vectorize LOOP. */
1155 static unsigned
1156 try_vectorize_loop (hash_table<simduid_to_vf> *&simduid_to_vf_htab,
1157 unsigned *num_vectorized_loops, loop_p loop,
1158 function *fun)
1160 if (!((flag_tree_loop_vectorize
1161 && optimize_loop_nest_for_speed_p (loop))
1162 || loop->force_vectorize))
1163 return 0;
1165 return try_vectorize_loop_1 (simduid_to_vf_htab, num_vectorized_loops, loop,
1166 vect_loop_vectorized_call (loop),
1167 vect_loop_dist_alias_call (loop, fun), fun);
1171 /* Loop autovectorization. */
1173 namespace {
1175 const pass_data pass_data_vectorize =
1177 GIMPLE_PASS, /* type */
1178 "vect", /* name */
1179 OPTGROUP_LOOP | OPTGROUP_VEC, /* optinfo_flags */
1180 TV_TREE_VECTORIZATION, /* tv_id */
1181 ( PROP_cfg | PROP_ssa ), /* properties_required */
1182 0, /* properties_provided */
1183 0, /* properties_destroyed */
1184 0, /* todo_flags_start */
1185 0, /* todo_flags_finish */
1188 class pass_vectorize : public gimple_opt_pass
1190 public:
1191 pass_vectorize (gcc::context *ctxt)
1192 : gimple_opt_pass (pass_data_vectorize, ctxt)
1195 /* opt_pass methods: */
1196 bool gate (function *fun) final override
1198 return flag_tree_loop_vectorize || fun->has_force_vectorize_loops;
1201 unsigned int execute (function *) final override;
1203 }; // class pass_vectorize
1205 /* Function vectorize_loops.
1207 Entry point to loop vectorization phase. */
1209 unsigned
1210 pass_vectorize::execute (function *fun)
1212 unsigned int i;
1213 unsigned int num_vectorized_loops = 0;
1214 unsigned int vect_loops_num;
1215 hash_table<simduid_to_vf> *simduid_to_vf_htab = NULL;
1216 hash_table<simd_array_to_simduid> *simd_array_to_simduid_htab = NULL;
1217 bool any_ifcvt_loops = false;
1218 unsigned ret = 0;
1220 vect_loops_num = number_of_loops (fun);
1222 /* Bail out if there are no loops. */
1223 if (vect_loops_num <= 1)
1224 return 0;
1226 vect_slp_init ();
1228 if (fun->has_simduid_loops)
1229 note_simd_array_uses (&simd_array_to_simduid_htab, fun);
1231 /* ----------- Analyze loops. ----------- */
1233 /* If some loop was duplicated, it gets bigger number
1234 than all previously defined loops. This fact allows us to run
1235 only over initial loops skipping newly generated ones. */
1236 for (auto loop : loops_list (fun, 0))
1237 if (loop->dont_vectorize)
1239 any_ifcvt_loops = true;
1240 /* If-conversion sometimes versions both the outer loop
1241 (for the case when outer loop vectorization might be
1242 desirable) as well as the inner loop in the scalar version
1243 of the loop. So we have:
1244 if (LOOP_VECTORIZED (1, 3))
1246 loop1
1247 loop2
1249 else
1250 loop3 (copy of loop1)
1251 if (LOOP_VECTORIZED (4, 5))
1252 loop4 (copy of loop2)
1253 else
1254 loop5 (copy of loop4)
1255 If loops' iteration gives us loop3 first (which has
1256 dont_vectorize set), make sure to process loop1 before loop4;
1257 so that we can prevent vectorization of loop4 if loop1
1258 is successfully vectorized. */
1259 if (loop->inner)
1261 gimple *loop_vectorized_call
1262 = vect_loop_vectorized_call (loop);
1263 if (loop_vectorized_call
1264 && vect_loop_vectorized_call (loop->inner))
1266 tree arg = gimple_call_arg (loop_vectorized_call, 0);
1267 class loop *vector_loop
1268 = get_loop (fun, tree_to_shwi (arg));
1269 if (vector_loop && vector_loop != loop)
1271 /* Make sure we don't vectorize it twice. */
1272 vector_loop->dont_vectorize = true;
1273 ret |= try_vectorize_loop (simduid_to_vf_htab,
1274 &num_vectorized_loops,
1275 vector_loop, fun);
1280 else
1281 ret |= try_vectorize_loop (simduid_to_vf_htab, &num_vectorized_loops,
1282 loop, fun);
1284 vect_location = dump_user_location_t ();
1286 statistics_counter_event (fun, "Vectorized loops", num_vectorized_loops);
1287 if (dump_enabled_p ()
1288 || (num_vectorized_loops > 0 && dump_enabled_p ()))
1289 dump_printf_loc (MSG_NOTE, vect_location,
1290 "vectorized %u loops in function.\n",
1291 num_vectorized_loops);
1293 /* ----------- Finalize. ----------- */
1295 if (any_ifcvt_loops)
1296 for (i = 1; i < number_of_loops (fun); i++)
1298 class loop *loop = get_loop (fun, i);
1299 if (loop && loop->dont_vectorize)
1301 gimple *g = vect_loop_vectorized_call (loop);
1302 if (g)
1304 fold_loop_internal_call (g, boolean_false_node);
1305 ret |= TODO_cleanup_cfg;
1306 g = NULL;
1308 else
1309 g = vect_loop_dist_alias_call (loop, fun);
1311 if (g)
1313 fold_loop_internal_call (g, boolean_false_node);
1314 ret |= TODO_cleanup_cfg;
1319 /* Fold IFN_GOMP_SIMD_{VF,LANE,LAST_LANE,ORDERED_{START,END}} builtins. */
1320 if (fun->has_simduid_loops)
1322 adjust_simduid_builtins (simduid_to_vf_htab, fun);
1323 /* Avoid stale SCEV cache entries for the SIMD_LANE defs. */
1324 scev_reset ();
1326 /* Shrink any "omp array simd" temporary arrays to the
1327 actual vectorization factors. */
1328 if (simd_array_to_simduid_htab)
1329 shrink_simd_arrays (simd_array_to_simduid_htab, simduid_to_vf_htab);
1330 delete simduid_to_vf_htab;
1331 fun->has_simduid_loops = false;
1333 if (num_vectorized_loops > 0)
1335 /* If we vectorized any loop only virtual SSA form needs to be updated.
1336 ??? Also while we try hard to update loop-closed SSA form we fail
1337 to properly do this in some corner-cases (see PR56286). */
1338 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa_only_virtuals);
1339 ret |= TODO_cleanup_cfg;
1342 for (i = 1; i < number_of_loops (fun); i++)
1344 loop_vec_info loop_vinfo;
1345 bool has_mask_store;
1347 class loop *loop = get_loop (fun, i);
1348 if (!loop || !loop->aux)
1349 continue;
1350 loop_vinfo = (loop_vec_info) loop->aux;
1351 has_mask_store = LOOP_VINFO_HAS_MASK_STORE (loop_vinfo);
1352 delete loop_vinfo;
1353 if (has_mask_store
1354 && targetm.vectorize.empty_mask_is_expensive (IFN_MASK_STORE))
1355 optimize_mask_stores (loop);
1357 auto_bitmap exit_bbs;
1358 /* Perform local CSE, this esp. helps because we emit code for
1359 predicates that need to be shared for optimal predicate usage.
1360 However reassoc will re-order them and prevent CSE from working
1361 as it should. CSE only the loop body, not the entry. */
1362 bitmap_set_bit (exit_bbs, single_exit (loop)->dest->index);
1364 edge entry = EDGE_PRED (loop_preheader_edge (loop)->src, 0);
1365 do_rpo_vn (fun, entry, exit_bbs);
1367 loop->aux = NULL;
1370 vect_slp_fini ();
1372 return ret;
1375 } // anon namespace
1377 gimple_opt_pass *
1378 make_pass_vectorize (gcc::context *ctxt)
1380 return new pass_vectorize (ctxt);
1383 /* Entry point to the simduid cleanup pass. */
1385 namespace {
1387 const pass_data pass_data_simduid_cleanup =
1389 GIMPLE_PASS, /* type */
1390 "simduid", /* name */
1391 OPTGROUP_NONE, /* optinfo_flags */
1392 TV_NONE, /* tv_id */
1393 ( PROP_ssa | PROP_cfg ), /* properties_required */
1394 0, /* properties_provided */
1395 0, /* properties_destroyed */
1396 0, /* todo_flags_start */
1397 0, /* todo_flags_finish */
1400 class pass_simduid_cleanup : public gimple_opt_pass
1402 public:
1403 pass_simduid_cleanup (gcc::context *ctxt)
1404 : gimple_opt_pass (pass_data_simduid_cleanup, ctxt)
1407 /* opt_pass methods: */
1408 opt_pass * clone () final override
1410 return new pass_simduid_cleanup (m_ctxt);
1412 bool gate (function *fun) final override { return fun->has_simduid_loops; }
1413 unsigned int execute (function *) final override;
1415 }; // class pass_simduid_cleanup
1417 unsigned int
1418 pass_simduid_cleanup::execute (function *fun)
1420 hash_table<simd_array_to_simduid> *simd_array_to_simduid_htab = NULL;
1422 note_simd_array_uses (&simd_array_to_simduid_htab, fun);
1424 /* Fold IFN_GOMP_SIMD_{VF,LANE,LAST_LANE,ORDERED_{START,END}} builtins. */
1425 adjust_simduid_builtins (NULL, fun);
1427 /* Shrink any "omp array simd" temporary arrays to the
1428 actual vectorization factors. */
1429 if (simd_array_to_simduid_htab)
1430 shrink_simd_arrays (simd_array_to_simduid_htab, NULL);
1431 fun->has_simduid_loops = false;
1432 return 0;
1435 } // anon namespace
1437 gimple_opt_pass *
1438 make_pass_simduid_cleanup (gcc::context *ctxt)
1440 return new pass_simduid_cleanup (ctxt);
1444 /* Entry point to basic block SLP phase. */
1446 namespace {
1448 const pass_data pass_data_slp_vectorize =
1450 GIMPLE_PASS, /* type */
1451 "slp", /* name */
1452 OPTGROUP_LOOP | OPTGROUP_VEC, /* optinfo_flags */
1453 TV_TREE_SLP_VECTORIZATION, /* tv_id */
1454 ( PROP_ssa | PROP_cfg ), /* properties_required */
1455 0, /* properties_provided */
1456 0, /* properties_destroyed */
1457 0, /* todo_flags_start */
1458 TODO_update_ssa, /* todo_flags_finish */
1461 class pass_slp_vectorize : public gimple_opt_pass
1463 public:
1464 pass_slp_vectorize (gcc::context *ctxt)
1465 : gimple_opt_pass (pass_data_slp_vectorize, ctxt)
1468 /* opt_pass methods: */
1469 opt_pass * clone () final override { return new pass_slp_vectorize (m_ctxt); }
1470 bool gate (function *) final override { return flag_tree_slp_vectorize != 0; }
1471 unsigned int execute (function *) final override;
1473 }; // class pass_slp_vectorize
1475 unsigned int
1476 pass_slp_vectorize::execute (function *fun)
1478 auto_purge_vect_location sentinel;
1479 basic_block bb;
1481 bool in_loop_pipeline = scev_initialized_p ();
1482 if (!in_loop_pipeline)
1484 loop_optimizer_init (LOOPS_NORMAL);
1485 scev_initialize ();
1488 /* Mark all stmts as not belonging to the current region and unvisited. */
1489 FOR_EACH_BB_FN (bb, fun)
1491 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
1492 gsi_next (&gsi))
1494 gphi *stmt = gsi.phi ();
1495 gimple_set_uid (stmt, -1);
1496 gimple_set_visited (stmt, false);
1498 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
1499 gsi_next (&gsi))
1501 gimple *stmt = gsi_stmt (gsi);
1502 gimple_set_uid (stmt, -1);
1503 gimple_set_visited (stmt, false);
1507 vect_slp_init ();
1509 vect_slp_function (fun);
1511 vect_slp_fini ();
1513 if (!in_loop_pipeline)
1515 scev_finalize ();
1516 loop_optimizer_finalize ();
1519 return 0;
1522 } // anon namespace
1524 gimple_opt_pass *
1525 make_pass_slp_vectorize (gcc::context *ctxt)
1527 return new pass_slp_vectorize (ctxt);
1531 /* Increase alignment of global arrays to improve vectorization potential.
1532 TODO:
1533 - Consider also structs that have an array field.
1534 - Use ipa analysis to prune arrays that can't be vectorized?
1535 This should involve global alignment analysis and in the future also
1536 array padding. */
1538 static unsigned get_vec_alignment_for_type (tree);
1539 static hash_map<tree, unsigned> *type_align_map;
1541 /* Return alignment of array's vector type corresponding to scalar type.
1542 0 if no vector type exists. */
1543 static unsigned
1544 get_vec_alignment_for_array_type (tree type)
1546 gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
1547 poly_uint64 array_size, vector_size;
1549 tree scalar_type = strip_array_types (type);
1550 tree vectype = get_related_vectype_for_scalar_type (VOIDmode, scalar_type);
1551 if (!vectype
1552 || !poly_int_tree_p (TYPE_SIZE (type), &array_size)
1553 || !poly_int_tree_p (TYPE_SIZE (vectype), &vector_size)
1554 || maybe_lt (array_size, vector_size))
1555 return 0;
1557 return TYPE_ALIGN (vectype);
1560 /* Return alignment of field having maximum alignment of vector type
1561 corresponding to it's scalar type. For now, we only consider fields whose
1562 offset is a multiple of it's vector alignment.
1563 0 if no suitable field is found. */
1564 static unsigned
1565 get_vec_alignment_for_record_type (tree type)
1567 gcc_assert (TREE_CODE (type) == RECORD_TYPE);
1569 unsigned max_align = 0, alignment;
1570 HOST_WIDE_INT offset;
1571 tree offset_tree;
1573 if (TYPE_PACKED (type))
1574 return 0;
1576 unsigned *slot = type_align_map->get (type);
1577 if (slot)
1578 return *slot;
1580 for (tree field = first_field (type);
1581 field != NULL_TREE;
1582 field = DECL_CHAIN (field))
1584 /* Skip if not FIELD_DECL or if alignment is set by user. */
1585 if (TREE_CODE (field) != FIELD_DECL
1586 || DECL_USER_ALIGN (field)
1587 || DECL_ARTIFICIAL (field))
1588 continue;
1590 /* We don't need to process the type further if offset is variable,
1591 since the offsets of remaining members will also be variable. */
1592 if (TREE_CODE (DECL_FIELD_OFFSET (field)) != INTEGER_CST
1593 || TREE_CODE (DECL_FIELD_BIT_OFFSET (field)) != INTEGER_CST)
1594 break;
1596 /* Similarly stop processing the type if offset_tree
1597 does not fit in unsigned HOST_WIDE_INT. */
1598 offset_tree = bit_position (field);
1599 if (!tree_fits_uhwi_p (offset_tree))
1600 break;
1602 offset = tree_to_uhwi (offset_tree);
1603 alignment = get_vec_alignment_for_type (TREE_TYPE (field));
1605 /* Get maximum alignment of vectorized field/array among those members
1606 whose offset is multiple of the vector alignment. */
1607 if (alignment
1608 && (offset % alignment == 0)
1609 && (alignment > max_align))
1610 max_align = alignment;
1613 type_align_map->put (type, max_align);
1614 return max_align;
1617 /* Return alignment of vector type corresponding to decl's scalar type
1618 or 0 if it doesn't exist or the vector alignment is lesser than
1619 decl's alignment. */
1620 static unsigned
1621 get_vec_alignment_for_type (tree type)
1623 if (type == NULL_TREE)
1624 return 0;
1626 gcc_assert (TYPE_P (type));
1628 static unsigned alignment = 0;
1629 switch (TREE_CODE (type))
1631 case ARRAY_TYPE:
1632 alignment = get_vec_alignment_for_array_type (type);
1633 break;
1634 case RECORD_TYPE:
1635 alignment = get_vec_alignment_for_record_type (type);
1636 break;
1637 default:
1638 alignment = 0;
1639 break;
1642 return (alignment > TYPE_ALIGN (type)) ? alignment : 0;
1645 /* Entry point to increase_alignment pass. */
1646 static unsigned int
1647 increase_alignment (void)
1649 varpool_node *vnode;
1651 vect_location = dump_user_location_t ();
1652 type_align_map = new hash_map<tree, unsigned>;
1654 /* Increase the alignment of all global arrays for vectorization. */
1655 FOR_EACH_DEFINED_VARIABLE (vnode)
1657 tree decl = vnode->decl;
1658 unsigned int alignment;
1660 if ((decl_in_symtab_p (decl)
1661 && !symtab_node::get (decl)->can_increase_alignment_p ())
1662 || DECL_USER_ALIGN (decl) || DECL_ARTIFICIAL (decl))
1663 continue;
1665 alignment = get_vec_alignment_for_type (TREE_TYPE (decl));
1666 if (alignment && vect_can_force_dr_alignment_p (decl, alignment))
1668 vnode->increase_alignment (alignment);
1669 if (dump_enabled_p ())
1670 dump_printf (MSG_NOTE, "Increasing alignment of decl: %T\n", decl);
1674 delete type_align_map;
1675 return 0;
1679 namespace {
1681 const pass_data pass_data_ipa_increase_alignment =
1683 SIMPLE_IPA_PASS, /* type */
1684 "increase_alignment", /* name */
1685 OPTGROUP_LOOP | OPTGROUP_VEC, /* optinfo_flags */
1686 TV_IPA_OPT, /* tv_id */
1687 0, /* properties_required */
1688 0, /* properties_provided */
1689 0, /* properties_destroyed */
1690 0, /* todo_flags_start */
1691 0, /* todo_flags_finish */
1694 class pass_ipa_increase_alignment : public simple_ipa_opt_pass
1696 public:
1697 pass_ipa_increase_alignment (gcc::context *ctxt)
1698 : simple_ipa_opt_pass (pass_data_ipa_increase_alignment, ctxt)
1701 /* opt_pass methods: */
1702 bool gate (function *) final override
1704 return flag_section_anchors && flag_tree_loop_vectorize;
1707 unsigned int execute (function *) final override
1709 return increase_alignment ();
1712 }; // class pass_ipa_increase_alignment
1714 } // anon namespace
1716 simple_ipa_opt_pass *
1717 make_pass_ipa_increase_alignment (gcc::context *ctxt)
1719 return new pass_ipa_increase_alignment (ctxt);
1722 /* If the condition represented by T is a comparison or the SSA name
1723 result of a comparison, extract the comparison's operands. Represent
1724 T as NE_EXPR <T, 0> otherwise. */
1726 void
1727 scalar_cond_masked_key::get_cond_ops_from_tree (tree t)
1729 if (TREE_CODE_CLASS (TREE_CODE (t)) == tcc_comparison)
1731 this->code = TREE_CODE (t);
1732 this->op0 = TREE_OPERAND (t, 0);
1733 this->op1 = TREE_OPERAND (t, 1);
1734 this->inverted_p = false;
1735 return;
1738 if (TREE_CODE (t) == SSA_NAME)
1739 if (gassign *stmt = dyn_cast<gassign *> (SSA_NAME_DEF_STMT (t)))
1741 tree_code code = gimple_assign_rhs_code (stmt);
1742 if (TREE_CODE_CLASS (code) == tcc_comparison)
1744 this->code = code;
1745 this->op0 = gimple_assign_rhs1 (stmt);
1746 this->op1 = gimple_assign_rhs2 (stmt);
1747 this->inverted_p = false;
1748 return;
1750 else if (code == BIT_NOT_EXPR)
1752 tree n_op = gimple_assign_rhs1 (stmt);
1753 if ((stmt = dyn_cast<gassign *> (SSA_NAME_DEF_STMT (n_op))))
1755 code = gimple_assign_rhs_code (stmt);
1756 if (TREE_CODE_CLASS (code) == tcc_comparison)
1758 this->code = code;
1759 this->op0 = gimple_assign_rhs1 (stmt);
1760 this->op1 = gimple_assign_rhs2 (stmt);
1761 this->inverted_p = true;
1762 return;
1768 this->code = NE_EXPR;
1769 this->op0 = t;
1770 this->op1 = build_zero_cst (TREE_TYPE (t));
1771 this->inverted_p = false;
1774 /* See the comment above the declaration for details. */
1776 unsigned int
1777 vector_costs::add_stmt_cost (int count, vect_cost_for_stmt kind,
1778 stmt_vec_info stmt_info, slp_tree,
1779 tree vectype, int misalign,
1780 vect_cost_model_location where)
1782 unsigned int cost
1783 = builtin_vectorization_cost (kind, vectype, misalign) * count;
1784 return record_stmt_cost (stmt_info, where, cost);
1787 /* See the comment above the declaration for details. */
1789 void
1790 vector_costs::finish_cost (const vector_costs *)
1792 gcc_assert (!m_finished);
1793 m_finished = true;
1796 /* Record a base cost of COST units against WHERE. If STMT_INFO is
1797 nonnull, use it to adjust the cost based on execution frequency
1798 (where appropriate). */
1800 unsigned int
1801 vector_costs::record_stmt_cost (stmt_vec_info stmt_info,
1802 vect_cost_model_location where,
1803 unsigned int cost)
1805 cost = adjust_cost_for_freq (stmt_info, where, cost);
1806 m_costs[where] += cost;
1807 return cost;
1810 /* COST is the base cost we have calculated for an operation in location WHERE.
1811 If STMT_INFO is nonnull, use it to adjust the cost based on execution
1812 frequency (where appropriate). Return the adjusted cost. */
1814 unsigned int
1815 vector_costs::adjust_cost_for_freq (stmt_vec_info stmt_info,
1816 vect_cost_model_location where,
1817 unsigned int cost)
1819 /* Statements in an inner loop relative to the loop being
1820 vectorized are weighted more heavily. The value here is
1821 arbitrary and could potentially be improved with analysis. */
1822 if (where == vect_body
1823 && stmt_info
1824 && stmt_in_inner_loop_p (m_vinfo, stmt_info))
1826 loop_vec_info loop_vinfo = as_a<loop_vec_info> (m_vinfo);
1827 cost *= LOOP_VINFO_INNER_LOOP_COST_FACTOR (loop_vinfo);
1829 return cost;
1832 /* See the comment above the declaration for details. */
1834 bool
1835 vector_costs::better_main_loop_than_p (const vector_costs *other) const
1837 int diff = compare_inside_loop_cost (other);
1838 if (diff != 0)
1839 return diff < 0;
1841 /* If there's nothing to choose between the loop bodies, see whether
1842 there's a difference in the prologue and epilogue costs. */
1843 diff = compare_outside_loop_cost (other);
1844 if (diff != 0)
1845 return diff < 0;
1847 return false;
1851 /* See the comment above the declaration for details. */
1853 bool
1854 vector_costs::better_epilogue_loop_than_p (const vector_costs *other,
1855 loop_vec_info main_loop) const
1857 loop_vec_info this_loop_vinfo = as_a<loop_vec_info> (this->m_vinfo);
1858 loop_vec_info other_loop_vinfo = as_a<loop_vec_info> (other->m_vinfo);
1860 poly_int64 this_vf = LOOP_VINFO_VECT_FACTOR (this_loop_vinfo);
1861 poly_int64 other_vf = LOOP_VINFO_VECT_FACTOR (other_loop_vinfo);
1863 poly_uint64 main_poly_vf = LOOP_VINFO_VECT_FACTOR (main_loop);
1864 unsigned HOST_WIDE_INT main_vf;
1865 unsigned HOST_WIDE_INT other_factor, this_factor, other_cost, this_cost;
1866 /* If we can determine how many iterations are left for the epilogue
1867 loop, that is if both the main loop's vectorization factor and number
1868 of iterations are constant, then we use them to calculate the cost of
1869 the epilogue loop together with a 'likely value' for the epilogues
1870 vectorization factor. Otherwise we use the main loop's vectorization
1871 factor and the maximum poly value for the epilogue's. If the target
1872 has not provided with a sensible upper bound poly vectorization
1873 factors are likely to be favored over constant ones. */
1874 if (main_poly_vf.is_constant (&main_vf)
1875 && LOOP_VINFO_NITERS_KNOWN_P (main_loop))
1877 unsigned HOST_WIDE_INT niters
1878 = LOOP_VINFO_INT_NITERS (main_loop) % main_vf;
1879 HOST_WIDE_INT other_likely_vf
1880 = estimated_poly_value (other_vf, POLY_VALUE_LIKELY);
1881 HOST_WIDE_INT this_likely_vf
1882 = estimated_poly_value (this_vf, POLY_VALUE_LIKELY);
1884 /* If the epilogue is using partial vectors we account for the
1885 partial iteration here too. */
1886 other_factor = niters / other_likely_vf;
1887 if (LOOP_VINFO_USING_PARTIAL_VECTORS_P (other_loop_vinfo)
1888 && niters % other_likely_vf != 0)
1889 other_factor++;
1891 this_factor = niters / this_likely_vf;
1892 if (LOOP_VINFO_USING_PARTIAL_VECTORS_P (this_loop_vinfo)
1893 && niters % this_likely_vf != 0)
1894 this_factor++;
1896 else
1898 unsigned HOST_WIDE_INT main_vf_max
1899 = estimated_poly_value (main_poly_vf, POLY_VALUE_MAX);
1900 unsigned HOST_WIDE_INT other_vf_max
1901 = estimated_poly_value (other_vf, POLY_VALUE_MAX);
1902 unsigned HOST_WIDE_INT this_vf_max
1903 = estimated_poly_value (this_vf, POLY_VALUE_MAX);
1905 other_factor = CEIL (main_vf_max, other_vf_max);
1906 this_factor = CEIL (main_vf_max, this_vf_max);
1908 /* If the loop is not using partial vectors then it will iterate one
1909 time less than one that does. It is safe to subtract one here,
1910 because the main loop's vf is always at least 2x bigger than that
1911 of an epilogue. */
1912 if (!LOOP_VINFO_USING_PARTIAL_VECTORS_P (other_loop_vinfo))
1913 other_factor -= 1;
1914 if (!LOOP_VINFO_USING_PARTIAL_VECTORS_P (this_loop_vinfo))
1915 this_factor -= 1;
1918 /* Compute the costs by multiplying the inside costs with the factor and
1919 add the outside costs for a more complete picture. The factor is the
1920 amount of times we are expecting to iterate this epilogue. */
1921 other_cost = other->body_cost () * other_factor;
1922 this_cost = this->body_cost () * this_factor;
1923 other_cost += other->outside_cost ();
1924 this_cost += this->outside_cost ();
1925 return this_cost < other_cost;
1928 /* A <=>-style subroutine of better_main_loop_than_p. Check whether we can
1929 determine the return value of better_main_loop_than_p by comparing the
1930 inside (loop body) costs of THIS and OTHER. Return:
1932 * -1 if better_main_loop_than_p should return true.
1933 * 1 if better_main_loop_than_p should return false.
1934 * 0 if we can't decide. */
1937 vector_costs::compare_inside_loop_cost (const vector_costs *other) const
1939 loop_vec_info this_loop_vinfo = as_a<loop_vec_info> (this->m_vinfo);
1940 loop_vec_info other_loop_vinfo = as_a<loop_vec_info> (other->m_vinfo);
1942 struct loop *loop = LOOP_VINFO_LOOP (this_loop_vinfo);
1943 gcc_assert (LOOP_VINFO_LOOP (other_loop_vinfo) == loop);
1945 poly_int64 this_vf = LOOP_VINFO_VECT_FACTOR (this_loop_vinfo);
1946 poly_int64 other_vf = LOOP_VINFO_VECT_FACTOR (other_loop_vinfo);
1948 /* Limit the VFs to what is likely to be the maximum number of iterations,
1949 to handle cases in which at least one loop_vinfo is fully-masked. */
1950 HOST_WIDE_INT estimated_max_niter = likely_max_stmt_executions_int (loop);
1951 if (estimated_max_niter != -1)
1953 if (known_le (estimated_max_niter, this_vf))
1954 this_vf = estimated_max_niter;
1955 if (known_le (estimated_max_niter, other_vf))
1956 other_vf = estimated_max_niter;
1959 /* Check whether the (fractional) cost per scalar iteration is lower or
1960 higher: this_inside_cost / this_vf vs. other_inside_cost / other_vf. */
1961 poly_int64 rel_this = this_loop_vinfo->vector_costs->body_cost () * other_vf;
1962 poly_int64 rel_other
1963 = other_loop_vinfo->vector_costs->body_cost () * this_vf;
1965 HOST_WIDE_INT est_rel_this_min
1966 = estimated_poly_value (rel_this, POLY_VALUE_MIN);
1967 HOST_WIDE_INT est_rel_this_max
1968 = estimated_poly_value (rel_this, POLY_VALUE_MAX);
1970 HOST_WIDE_INT est_rel_other_min
1971 = estimated_poly_value (rel_other, POLY_VALUE_MIN);
1972 HOST_WIDE_INT est_rel_other_max
1973 = estimated_poly_value (rel_other, POLY_VALUE_MAX);
1975 /* Check first if we can make out an unambigous total order from the minimum
1976 and maximum estimates. */
1977 if (est_rel_this_min < est_rel_other_min
1978 && est_rel_this_max < est_rel_other_max)
1979 return -1;
1981 if (est_rel_other_min < est_rel_this_min
1982 && est_rel_other_max < est_rel_this_max)
1983 return 1;
1985 /* When other_loop_vinfo uses a variable vectorization factor,
1986 we know that it has a lower cost for at least one runtime VF.
1987 However, we don't know how likely that VF is.
1989 One option would be to compare the costs for the estimated VFs.
1990 The problem is that that can put too much pressure on the cost
1991 model. E.g. if the estimated VF is also the lowest possible VF,
1992 and if other_loop_vinfo is 1 unit worse than this_loop_vinfo
1993 for the estimated VF, we'd then choose this_loop_vinfo even
1994 though (a) this_loop_vinfo might not actually be better than
1995 other_loop_vinfo for that VF and (b) it would be significantly
1996 worse at larger VFs.
1998 Here we go for a hacky compromise: pick this_loop_vinfo if it is
1999 no more expensive than other_loop_vinfo even after doubling the
2000 estimated other_loop_vinfo VF. For all but trivial loops, this
2001 ensures that we only pick this_loop_vinfo if it is significantly
2002 better than other_loop_vinfo at the estimated VF. */
2003 if (est_rel_other_min != est_rel_this_min
2004 || est_rel_other_max != est_rel_this_max)
2006 HOST_WIDE_INT est_rel_this_likely
2007 = estimated_poly_value (rel_this, POLY_VALUE_LIKELY);
2008 HOST_WIDE_INT est_rel_other_likely
2009 = estimated_poly_value (rel_other, POLY_VALUE_LIKELY);
2011 return est_rel_this_likely * 2 <= est_rel_other_likely ? -1 : 1;
2014 return 0;
2017 /* A <=>-style subroutine of better_main_loop_than_p, used when there is
2018 nothing to choose between the inside (loop body) costs of THIS and OTHER.
2019 Check whether we can determine the return value of better_main_loop_than_p
2020 by comparing the outside (prologue and epilogue) costs of THIS and OTHER.
2021 Return:
2023 * -1 if better_main_loop_than_p should return true.
2024 * 1 if better_main_loop_than_p should return false.
2025 * 0 if we can't decide. */
2028 vector_costs::compare_outside_loop_cost (const vector_costs *other) const
2030 auto this_outside_cost = this->outside_cost ();
2031 auto other_outside_cost = other->outside_cost ();
2032 if (this_outside_cost != other_outside_cost)
2033 return this_outside_cost < other_outside_cost ? -1 : 1;
2035 return 0;