1 // Copyright 2009 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
8 func libc_sqrt(float64) float64
10 func Sqrt(x
float64) float64 {
14 // The original C code and the long comment below are
15 // from FreeBSD's /usr/src/lib/msun/src/e_sqrt.c and
16 // came with this notice. The go code is a simplified
17 // version of the original C.
19 // ====================================================
20 // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
22 // Developed at SunPro, a Sun Microsystems, Inc. business.
23 // Permission to use, copy, modify, and distribute this
24 // software is freely granted, provided that this notice
26 // ====================================================
29 // Return correctly rounded sqrt.
30 // -----------------------------------------
31 // | Use the hardware sqrt if you have one |
32 // -----------------------------------------
34 // Bit by bit method using integer arithmetic. (Slow, but portable)
36 // Scale x to y in [1,4) with even powers of 2:
37 // find an integer k such that 1 <= (y=x*2**(2k)) < 4, then
38 // sqrt(x) = 2**k * sqrt(y)
39 // 2. Bit by bit computation
40 // Let q = sqrt(y) truncated to i bit after binary point (q = 1),
43 // s = 2*q , and y = 2 * ( y - q ). (1)
46 // To compute q from q , one checks whether
53 // If (2) is false, then q = q ; otherwise q = q + 2 .
56 // With some algebraic manipulation, it is not difficult to see
57 // that (2) is equivalent to
62 // The advantage of (3) is that s and y can be computed by
64 // the following recurrence formula:
67 // s = s , y = y ; (4)
72 // s = s + 2 , y = y - s - 2 (5)
75 // One may easily use induction to prove (4) and (5).
76 // Note. Since the left hand side of (3) contain only i+2 bits,
77 // it is not necessary to do a full (53-bit) comparison
80 // After generating the 53 bits result, we compute one more bit.
81 // Together with the remainder, we can decide whether the
82 // result is exact, bigger than 1/2ulp, or less than 1/2ulp
83 // (it will never equal to 1/2ulp).
84 // The rounding mode can be detected by checking whether
85 // huge + tiny is equal to huge, and whether huge - tiny is
86 // equal to huge for some floating point number "huge" and "tiny".
89 // Notes: Rounding mode detection omitted. The constants "mask", "shift",
90 // and "bias" are found in src/math/bits.go
92 // Sqrt returns the square root of x.
100 // Note: Sqrt is implemented in assembly on some systems.
101 // Others have assembly stubs that jump to func sqrt below.
102 // On systems where Sqrt is a single instruction, the compiler
103 // may turn a direct call into a direct use of that instruction instead.
105 func sqrt(x
float64) float64 {
108 case x
== 0 ||
IsNaN(x
) ||
IsInf(x
, 1):
115 exp
:= int((ix
>> shift
) & mask
)
116 if exp
== 0 { // subnormal x
117 for ix
&(1<<shift
) == 0 {
123 exp
-= bias
// unbias exponent
126 if exp
&1 == 1 { // odd exp, double x to make it even
129 exp
>>= 1 // exp = exp/2, exponent of square root
130 // generate sqrt(x) bit by bit
132 var q
, s
uint64 // q = sqrt(x)
133 r
:= uint64(1 << (shift
+ 1)) // r = moving bit from MSB to LSB
145 if ix
!= 0 { // remainder, result not exact
146 q
+= q
& 1 // round according to extra bit
148 ix
= q
>>1 + uint64(exp
-1+bias
)<<shift
// significand + biased exponent
149 return Float64frombits(ix
)