runtime: add special handling for signal 34
[official-gcc.git] / libgo / go / math / sqrt.go
blob2533972f26d3232f9704c5f3e7ae8674f50cb280
1 // Copyright 2009 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
5 package math
7 //extern sqrt
8 func libc_sqrt(float64) float64
10 func Sqrt(x float64) float64 {
11 return libc_sqrt(x)
14 // The original C code and the long comment below are
15 // from FreeBSD's /usr/src/lib/msun/src/e_sqrt.c and
16 // came with this notice. The go code is a simplified
17 // version of the original C.
19 // ====================================================
20 // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
22 // Developed at SunPro, a Sun Microsystems, Inc. business.
23 // Permission to use, copy, modify, and distribute this
24 // software is freely granted, provided that this notice
25 // is preserved.
26 // ====================================================
28 // __ieee754_sqrt(x)
29 // Return correctly rounded sqrt.
30 // -----------------------------------------
31 // | Use the hardware sqrt if you have one |
32 // -----------------------------------------
33 // Method:
34 // Bit by bit method using integer arithmetic. (Slow, but portable)
35 // 1. Normalization
36 // Scale x to y in [1,4) with even powers of 2:
37 // find an integer k such that 1 <= (y=x*2**(2k)) < 4, then
38 // sqrt(x) = 2**k * sqrt(y)
39 // 2. Bit by bit computation
40 // Let q = sqrt(y) truncated to i bit after binary point (q = 1),
41 // i 0
42 // i+1 2
43 // s = 2*q , and y = 2 * ( y - q ). (1)
44 // i i i i
46 // To compute q from q , one checks whether
47 // i+1 i
49 // -(i+1) 2
50 // (q + 2 ) <= y. (2)
51 // i
52 // -(i+1)
53 // If (2) is false, then q = q ; otherwise q = q + 2 .
54 // i+1 i i+1 i
56 // With some algebraic manipulation, it is not difficult to see
57 // that (2) is equivalent to
58 // -(i+1)
59 // s + 2 <= y (3)
60 // i i
62 // The advantage of (3) is that s and y can be computed by
63 // i i
64 // the following recurrence formula:
65 // if (3) is false
67 // s = s , y = y ; (4)
68 // i+1 i i+1 i
70 // otherwise,
71 // -i -(i+1)
72 // s = s + 2 , y = y - s - 2 (5)
73 // i+1 i i+1 i i
75 // One may easily use induction to prove (4) and (5).
76 // Note. Since the left hand side of (3) contain only i+2 bits,
77 // it is not necessary to do a full (53-bit) comparison
78 // in (3).
79 // 3. Final rounding
80 // After generating the 53 bits result, we compute one more bit.
81 // Together with the remainder, we can decide whether the
82 // result is exact, bigger than 1/2ulp, or less than 1/2ulp
83 // (it will never equal to 1/2ulp).
84 // The rounding mode can be detected by checking whether
85 // huge + tiny is equal to huge, and whether huge - tiny is
86 // equal to huge for some floating point number "huge" and "tiny".
89 // Notes: Rounding mode detection omitted. The constants "mask", "shift",
90 // and "bias" are found in src/math/bits.go
92 // Sqrt returns the square root of x.
94 // Special cases are:
95 // Sqrt(+Inf) = +Inf
96 // Sqrt(±0) = ±0
97 // Sqrt(x < 0) = NaN
98 // Sqrt(NaN) = NaN
100 // Note: Sqrt is implemented in assembly on some systems.
101 // Others have assembly stubs that jump to func sqrt below.
102 // On systems where Sqrt is a single instruction, the compiler
103 // may turn a direct call into a direct use of that instruction instead.
105 func sqrt(x float64) float64 {
106 // special cases
107 switch {
108 case x == 0 || IsNaN(x) || IsInf(x, 1):
109 return x
110 case x < 0:
111 return NaN()
113 ix := Float64bits(x)
114 // normalize x
115 exp := int((ix >> shift) & mask)
116 if exp == 0 { // subnormal x
117 for ix&(1<<shift) == 0 {
118 ix <<= 1
119 exp--
121 exp++
123 exp -= bias // unbias exponent
124 ix &^= mask << shift
125 ix |= 1 << shift
126 if exp&1 == 1 { // odd exp, double x to make it even
127 ix <<= 1
129 exp >>= 1 // exp = exp/2, exponent of square root
130 // generate sqrt(x) bit by bit
131 ix <<= 1
132 var q, s uint64 // q = sqrt(x)
133 r := uint64(1 << (shift + 1)) // r = moving bit from MSB to LSB
134 for r != 0 {
135 t := s + r
136 if t <= ix {
137 s = t + r
138 ix -= t
139 q += r
141 ix <<= 1
142 r >>= 1
144 // final rounding
145 if ix != 0 { // remainder, result not exact
146 q += q & 1 // round according to extra bit
148 ix = q>>1 + uint64(exp-1+bias)<<shift // significand + biased exponent
149 return Float64frombits(ix)