1 // Copyright 2010 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
7 // The original C code, the long comment, and the constants
8 // below are from http://netlib.sandia.gov/cephes/cprob/gamma.c.
9 // The go code is a simplified version of the original C.
17 // double x, y, tgamma();
18 // extern int signgam;
24 // Returns gamma function of the argument. The result is
25 // correctly signed, and the sign (+1 or -1) is also
26 // returned in a global (extern) variable named signgam.
27 // This variable is also filled in by the logarithmic gamma
30 // Arguments |x| <= 34 are reduced by recurrence and the function
31 // approximated by a rational function of degree 6/7 in the
32 // interval (2,3). Large arguments are handled by Stirling's
33 // formula. Large negative arguments are made positive using
34 // a reflection formula.
39 // arithmetic domain # trials peak rms
40 // DEC -34, 34 10000 1.3e-16 2.5e-17
41 // IEEE -170,-33 20000 2.3e-15 3.3e-16
42 // IEEE -33, 33 20000 9.4e-16 2.2e-16
43 // IEEE 33, 171.6 20000 2.3e-15 3.2e-16
45 // Error for arguments outside the test range will be larger
46 // owing to error amplification by the exponential function.
48 // Cephes Math Library Release 2.8: June, 2000
49 // Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
51 // The readme file at http://netlib.sandia.gov/cephes/ says:
52 // Some software in this archive may be from the book _Methods and
53 // Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
54 // International, 1989) or from the Cephes Mathematical Library, a
55 // commercial product. In either event, it is copyrighted by the author.
56 // What you see here may be used freely but it comes with no support or
59 // The two known misprints in the book are repaired here in the
60 // source listings for the gamma function and the incomplete beta
64 // moshier@na-net.ornl.gov
66 var _gamP
= [...]float64{
67 1.60119522476751861407e-04,
68 1.19135147006586384913e-03,
69 1.04213797561761569935e-02,
70 4.76367800457137231464e-02,
71 2.07448227648435975150e-01,
72 4.94214826801497100753e-01,
73 9.99999999999999996796e-01,
75 var _gamQ
= [...]float64{
76 -2.31581873324120129819e-05,
77 5.39605580493303397842e-04,
78 -4.45641913851797240494e-03,
79 1.18139785222060435552e-02,
80 3.58236398605498653373e-02,
81 -2.34591795718243348568e-01,
82 7.14304917030273074085e-02,
83 1.00000000000000000320e+00,
85 var _gamS
= [...]float64{
86 7.87311395793093628397e-04,
87 -2.29549961613378126380e-04,
88 -2.68132617805781232825e-03,
89 3.47222221605458667310e-03,
90 8.33333333333482257126e-02,
93 // Gamma function computed by Stirling's formula.
94 // The pair of results must be multiplied together to get the actual answer.
95 // The multiplication is left to the caller so that, if careful, the caller can avoid
96 // infinity for 172 <= x <= 180.
97 // The polynomial is valid for 33 <= x <= 172; larger values are only used
98 // in reciprocal and produce denormalized floats. The lower precision there
99 // masks any imprecision in the polynomial.
100 func stirling(x
float64) (float64, float64) {
105 SqrtTwoPi
= 2.506628274631000502417
106 MaxStirling
= 143.01608
109 w
= 1 + w
*((((_gamS
[0]*w
+_gamS
[1])*w
+_gamS
[2])*w
+_gamS
[3])*w
+_gamS
[4])
112 if x
> MaxStirling
{ // avoid Pow() overflow
113 v
:= Pow(x
, 0.5*x
-0.25)
116 y1
= Pow(x
, x
-0.5) / y1
118 return y1
, SqrtTwoPi
* w
* y2
121 // Gamma returns the Gamma function of x.
123 // Special cases are:
124 // Gamma(+Inf) = +Inf
127 // Gamma(x) = NaN for integer x < 0
130 func Gamma(x
float64) float64 {
131 const Euler
= 0.57721566490153286060651209008240243104215933593992 // A001620
134 case isNegInt(x
) ||
IsInf(x
, -1) ||
IsNaN(x
):
148 y1
, y2
:= stirling(x
)
151 // Note: x is negative but (checked above) not a negative integer,
152 // so x must be small enough to be in range for conversion to int64.
153 // If |x| were >= 2⁶³ it would have to be an integer.
155 if ip
:= int64(p
); ip
&1 == 0 {
167 sq1
, sq2
:= stirling(q
)
169 d
:= absz
* sq1
* sq2
171 z
= Pi
/ absz
/ sq1
/ sq2
175 return float64(signgam
) * z
204 p
= (((((x
*_gamP
[0]+_gamP
[1])*x
+_gamP
[2])*x
+_gamP
[3])*x
+_gamP
[4])*x
+_gamP
[5])*x
+ _gamP
[6]
205 q
= ((((((x
*_gamQ
[0]+_gamQ
[1])*x
+_gamQ
[2])*x
+_gamQ
[3])*x
+_gamQ
[4])*x
+_gamQ
[5])*x
+_gamQ
[6])*x
+ _gamQ
[7]
212 return z
/ ((1 + Euler
*x
) * x
)
215 func isNegInt(x
float64) bool {