2015-05-22 Pascal Obry <obry@adacore.com>
[official-gcc.git] / gcc / optabs.c
blob21150db1b2919f71a481d2e4a9f86a729c1dd132
1 /* Expand the basic unary and binary arithmetic operations, for GNU compiler.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "diagnostic-core.h"
27 /* Include insn-config.h before expr.h so that HAVE_conditional_move
28 is properly defined. */
29 #include "insn-config.h"
30 #include "rtl.h"
31 #include "hash-set.h"
32 #include "machmode.h"
33 #include "vec.h"
34 #include "double-int.h"
35 #include "input.h"
36 #include "alias.h"
37 #include "symtab.h"
38 #include "wide-int.h"
39 #include "inchash.h"
40 #include "tree.h"
41 #include "tree-hasher.h"
42 #include "stor-layout.h"
43 #include "stringpool.h"
44 #include "varasm.h"
45 #include "tm_p.h"
46 #include "flags.h"
47 #include "hard-reg-set.h"
48 #include "function.h"
49 #include "except.h"
50 #include "hashtab.h"
51 #include "statistics.h"
52 #include "real.h"
53 #include "fixed-value.h"
54 #include "expmed.h"
55 #include "dojump.h"
56 #include "explow.h"
57 #include "calls.h"
58 #include "emit-rtl.h"
59 #include "stmt.h"
60 #include "expr.h"
61 #include "insn-codes.h"
62 #include "optabs.h"
63 #include "libfuncs.h"
64 #include "recog.h"
65 #include "reload.h"
66 #include "ggc.h"
67 #include "predict.h"
68 #include "dominance.h"
69 #include "cfg.h"
70 #include "basic-block.h"
71 #include "target.h"
73 struct target_optabs default_target_optabs;
74 struct target_libfuncs default_target_libfuncs;
75 struct target_optabs *this_fn_optabs = &default_target_optabs;
76 #if SWITCHABLE_TARGET
77 struct target_optabs *this_target_optabs = &default_target_optabs;
78 struct target_libfuncs *this_target_libfuncs = &default_target_libfuncs;
79 #endif
81 #define libfunc_hash \
82 (this_target_libfuncs->x_libfunc_hash)
84 static void prepare_float_lib_cmp (rtx, rtx, enum rtx_code, rtx *,
85 machine_mode *);
86 static rtx expand_unop_direct (machine_mode, optab, rtx, rtx, int);
87 static void emit_libcall_block_1 (rtx_insn *, rtx, rtx, rtx, bool);
89 /* Debug facility for use in GDB. */
90 void debug_optab_libfuncs (void);
92 /* Prefixes for the current version of decimal floating point (BID vs. DPD) */
93 #if ENABLE_DECIMAL_BID_FORMAT
94 #define DECIMAL_PREFIX "bid_"
95 #else
96 #define DECIMAL_PREFIX "dpd_"
97 #endif
99 /* Used for libfunc_hash. */
101 hashval_t
102 libfunc_hasher::hash (libfunc_entry *e)
104 return ((e->mode1 + e->mode2 * NUM_MACHINE_MODES) ^ e->op);
107 /* Used for libfunc_hash. */
109 bool
110 libfunc_hasher::equal (libfunc_entry *e1, libfunc_entry *e2)
112 return e1->op == e2->op && e1->mode1 == e2->mode1 && e1->mode2 == e2->mode2;
115 /* Return libfunc corresponding operation defined by OPTAB converting
116 from MODE2 to MODE1. Trigger lazy initialization if needed, return NULL
117 if no libfunc is available. */
119 convert_optab_libfunc (convert_optab optab, machine_mode mode1,
120 machine_mode mode2)
122 struct libfunc_entry e;
123 struct libfunc_entry **slot;
125 /* ??? This ought to be an assert, but not all of the places
126 that we expand optabs know about the optabs that got moved
127 to being direct. */
128 if (!(optab >= FIRST_CONV_OPTAB && optab <= LAST_CONVLIB_OPTAB))
129 return NULL_RTX;
131 e.op = optab;
132 e.mode1 = mode1;
133 e.mode2 = mode2;
134 slot = libfunc_hash->find_slot (&e, NO_INSERT);
135 if (!slot)
137 const struct convert_optab_libcall_d *d
138 = &convlib_def[optab - FIRST_CONV_OPTAB];
140 if (d->libcall_gen == NULL)
141 return NULL;
143 d->libcall_gen (optab, d->libcall_basename, mode1, mode2);
144 slot = libfunc_hash->find_slot (&e, NO_INSERT);
145 if (!slot)
146 return NULL;
148 return (*slot)->libfunc;
151 /* Return libfunc corresponding operation defined by OPTAB in MODE.
152 Trigger lazy initialization if needed, return NULL if no libfunc is
153 available. */
155 optab_libfunc (optab optab, machine_mode mode)
157 struct libfunc_entry e;
158 struct libfunc_entry **slot;
160 /* ??? This ought to be an assert, but not all of the places
161 that we expand optabs know about the optabs that got moved
162 to being direct. */
163 if (!(optab >= FIRST_NORM_OPTAB && optab <= LAST_NORMLIB_OPTAB))
164 return NULL_RTX;
166 e.op = optab;
167 e.mode1 = mode;
168 e.mode2 = VOIDmode;
169 slot = libfunc_hash->find_slot (&e, NO_INSERT);
170 if (!slot)
172 const struct optab_libcall_d *d
173 = &normlib_def[optab - FIRST_NORM_OPTAB];
175 if (d->libcall_gen == NULL)
176 return NULL;
178 d->libcall_gen (optab, d->libcall_basename, d->libcall_suffix, mode);
179 slot = libfunc_hash->find_slot (&e, NO_INSERT);
180 if (!slot)
181 return NULL;
183 return (*slot)->libfunc;
187 /* Add a REG_EQUAL note to the last insn in INSNS. TARGET is being set to
188 the result of operation CODE applied to OP0 (and OP1 if it is a binary
189 operation).
191 If the last insn does not set TARGET, don't do anything, but return 1.
193 If the last insn or a previous insn sets TARGET and TARGET is one of OP0
194 or OP1, don't add the REG_EQUAL note but return 0. Our caller can then
195 try again, ensuring that TARGET is not one of the operands. */
197 static int
198 add_equal_note (rtx_insn *insns, rtx target, enum rtx_code code, rtx op0, rtx op1)
200 rtx_insn *last_insn;
201 rtx set;
202 rtx note;
204 gcc_assert (insns && INSN_P (insns) && NEXT_INSN (insns));
206 if (GET_RTX_CLASS (code) != RTX_COMM_ARITH
207 && GET_RTX_CLASS (code) != RTX_BIN_ARITH
208 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE
209 && GET_RTX_CLASS (code) != RTX_COMPARE
210 && GET_RTX_CLASS (code) != RTX_UNARY)
211 return 1;
213 if (GET_CODE (target) == ZERO_EXTRACT)
214 return 1;
216 for (last_insn = insns;
217 NEXT_INSN (last_insn) != NULL_RTX;
218 last_insn = NEXT_INSN (last_insn))
221 /* If TARGET is in OP0 or OP1, punt. We'd end up with a note referencing
222 a value changing in the insn, so the note would be invalid for CSE. */
223 if (reg_overlap_mentioned_p (target, op0)
224 || (op1 && reg_overlap_mentioned_p (target, op1)))
226 if (MEM_P (target)
227 && (rtx_equal_p (target, op0)
228 || (op1 && rtx_equal_p (target, op1))))
230 /* For MEM target, with MEM = MEM op X, prefer no REG_EQUAL note
231 over expanding it as temp = MEM op X, MEM = temp. If the target
232 supports MEM = MEM op X instructions, it is sometimes too hard
233 to reconstruct that form later, especially if X is also a memory,
234 and due to multiple occurrences of addresses the address might
235 be forced into register unnecessarily.
236 Note that not emitting the REG_EQUIV note might inhibit
237 CSE in some cases. */
238 set = single_set (last_insn);
239 if (set
240 && GET_CODE (SET_SRC (set)) == code
241 && MEM_P (SET_DEST (set))
242 && (rtx_equal_p (SET_DEST (set), XEXP (SET_SRC (set), 0))
243 || (op1 && rtx_equal_p (SET_DEST (set),
244 XEXP (SET_SRC (set), 1)))))
245 return 1;
247 return 0;
250 set = set_for_reg_notes (last_insn);
251 if (set == NULL_RTX)
252 return 1;
254 if (! rtx_equal_p (SET_DEST (set), target)
255 /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside it. */
256 && (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART
257 || ! rtx_equal_p (XEXP (SET_DEST (set), 0), target)))
258 return 1;
260 if (GET_RTX_CLASS (code) == RTX_UNARY)
261 switch (code)
263 case FFS:
264 case CLZ:
265 case CTZ:
266 case CLRSB:
267 case POPCOUNT:
268 case PARITY:
269 case BSWAP:
270 if (GET_MODE (op0) != VOIDmode && GET_MODE (target) != GET_MODE (op0))
272 note = gen_rtx_fmt_e (code, GET_MODE (op0), copy_rtx (op0));
273 if (GET_MODE_SIZE (GET_MODE (op0))
274 > GET_MODE_SIZE (GET_MODE (target)))
275 note = simplify_gen_unary (TRUNCATE, GET_MODE (target),
276 note, GET_MODE (op0));
277 else
278 note = simplify_gen_unary (ZERO_EXTEND, GET_MODE (target),
279 note, GET_MODE (op0));
280 break;
282 /* FALLTHRU */
283 default:
284 note = gen_rtx_fmt_e (code, GET_MODE (target), copy_rtx (op0));
285 break;
287 else
288 note = gen_rtx_fmt_ee (code, GET_MODE (target), copy_rtx (op0), copy_rtx (op1));
290 set_unique_reg_note (last_insn, REG_EQUAL, note);
292 return 1;
295 /* Given two input operands, OP0 and OP1, determine what the correct from_mode
296 for a widening operation would be. In most cases this would be OP0, but if
297 that's a constant it'll be VOIDmode, which isn't useful. */
299 static machine_mode
300 widened_mode (machine_mode to_mode, rtx op0, rtx op1)
302 machine_mode m0 = GET_MODE (op0);
303 machine_mode m1 = GET_MODE (op1);
304 machine_mode result;
306 if (m0 == VOIDmode && m1 == VOIDmode)
307 return to_mode;
308 else if (m0 == VOIDmode || GET_MODE_SIZE (m0) < GET_MODE_SIZE (m1))
309 result = m1;
310 else
311 result = m0;
313 if (GET_MODE_SIZE (result) > GET_MODE_SIZE (to_mode))
314 return to_mode;
316 return result;
319 /* Like optab_handler, but for widening_operations that have a
320 TO_MODE and a FROM_MODE. */
322 enum insn_code
323 widening_optab_handler (optab op, machine_mode to_mode,
324 machine_mode from_mode)
326 unsigned scode = (op << 16) | to_mode;
327 if (to_mode != from_mode && from_mode != VOIDmode)
329 /* ??? Why does find_widening_optab_handler_and_mode attempt to
330 widen things that can't be widened? E.g. add_optab... */
331 if (op > LAST_CONV_OPTAB)
332 return CODE_FOR_nothing;
333 scode |= from_mode << 8;
335 return raw_optab_handler (scode);
338 /* Find a widening optab even if it doesn't widen as much as we want.
339 E.g. if from_mode is HImode, and to_mode is DImode, and there is no
340 direct HI->SI insn, then return SI->DI, if that exists.
341 If PERMIT_NON_WIDENING is non-zero then this can be used with
342 non-widening optabs also. */
344 enum insn_code
345 find_widening_optab_handler_and_mode (optab op, machine_mode to_mode,
346 machine_mode from_mode,
347 int permit_non_widening,
348 machine_mode *found_mode)
350 for (; (permit_non_widening || from_mode != to_mode)
351 && GET_MODE_SIZE (from_mode) <= GET_MODE_SIZE (to_mode)
352 && from_mode != VOIDmode;
353 from_mode = GET_MODE_WIDER_MODE (from_mode))
355 enum insn_code handler = widening_optab_handler (op, to_mode,
356 from_mode);
358 if (handler != CODE_FOR_nothing)
360 if (found_mode)
361 *found_mode = from_mode;
362 return handler;
366 return CODE_FOR_nothing;
369 /* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP
370 says whether OP is signed or unsigned. NO_EXTEND is nonzero if we need
371 not actually do a sign-extend or zero-extend, but can leave the
372 higher-order bits of the result rtx undefined, for example, in the case
373 of logical operations, but not right shifts. */
375 static rtx
376 widen_operand (rtx op, machine_mode mode, machine_mode oldmode,
377 int unsignedp, int no_extend)
379 rtx result;
381 /* If we don't have to extend and this is a constant, return it. */
382 if (no_extend && GET_MODE (op) == VOIDmode)
383 return op;
385 /* If we must extend do so. If OP is a SUBREG for a promoted object, also
386 extend since it will be more efficient to do so unless the signedness of
387 a promoted object differs from our extension. */
388 if (! no_extend
389 || (GET_CODE (op) == SUBREG && SUBREG_PROMOTED_VAR_P (op)
390 && SUBREG_CHECK_PROMOTED_SIGN (op, unsignedp)))
391 return convert_modes (mode, oldmode, op, unsignedp);
393 /* If MODE is no wider than a single word, we return a lowpart or paradoxical
394 SUBREG. */
395 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
396 return gen_lowpart (mode, force_reg (GET_MODE (op), op));
398 /* Otherwise, get an object of MODE, clobber it, and set the low-order
399 part to OP. */
401 result = gen_reg_rtx (mode);
402 emit_clobber (result);
403 emit_move_insn (gen_lowpart (GET_MODE (op), result), op);
404 return result;
407 /* Return the optab used for computing the operation given by the tree code,
408 CODE and the tree EXP. This function is not always usable (for example, it
409 cannot give complete results for multiplication or division) but probably
410 ought to be relied on more widely throughout the expander. */
411 optab
412 optab_for_tree_code (enum tree_code code, const_tree type,
413 enum optab_subtype subtype)
415 bool trapv;
416 switch (code)
418 case BIT_AND_EXPR:
419 return and_optab;
421 case BIT_IOR_EXPR:
422 return ior_optab;
424 case BIT_NOT_EXPR:
425 return one_cmpl_optab;
427 case BIT_XOR_EXPR:
428 return xor_optab;
430 case MULT_HIGHPART_EXPR:
431 return TYPE_UNSIGNED (type) ? umul_highpart_optab : smul_highpart_optab;
433 case TRUNC_MOD_EXPR:
434 case CEIL_MOD_EXPR:
435 case FLOOR_MOD_EXPR:
436 case ROUND_MOD_EXPR:
437 return TYPE_UNSIGNED (type) ? umod_optab : smod_optab;
439 case RDIV_EXPR:
440 case TRUNC_DIV_EXPR:
441 case CEIL_DIV_EXPR:
442 case FLOOR_DIV_EXPR:
443 case ROUND_DIV_EXPR:
444 case EXACT_DIV_EXPR:
445 if (TYPE_SATURATING (type))
446 return TYPE_UNSIGNED (type) ? usdiv_optab : ssdiv_optab;
447 return TYPE_UNSIGNED (type) ? udiv_optab : sdiv_optab;
449 case LSHIFT_EXPR:
450 if (TREE_CODE (type) == VECTOR_TYPE)
452 if (subtype == optab_vector)
453 return TYPE_SATURATING (type) ? unknown_optab : vashl_optab;
455 gcc_assert (subtype == optab_scalar);
457 if (TYPE_SATURATING (type))
458 return TYPE_UNSIGNED (type) ? usashl_optab : ssashl_optab;
459 return ashl_optab;
461 case RSHIFT_EXPR:
462 if (TREE_CODE (type) == VECTOR_TYPE)
464 if (subtype == optab_vector)
465 return TYPE_UNSIGNED (type) ? vlshr_optab : vashr_optab;
467 gcc_assert (subtype == optab_scalar);
469 return TYPE_UNSIGNED (type) ? lshr_optab : ashr_optab;
471 case LROTATE_EXPR:
472 if (TREE_CODE (type) == VECTOR_TYPE)
474 if (subtype == optab_vector)
475 return vrotl_optab;
477 gcc_assert (subtype == optab_scalar);
479 return rotl_optab;
481 case RROTATE_EXPR:
482 if (TREE_CODE (type) == VECTOR_TYPE)
484 if (subtype == optab_vector)
485 return vrotr_optab;
487 gcc_assert (subtype == optab_scalar);
489 return rotr_optab;
491 case MAX_EXPR:
492 return TYPE_UNSIGNED (type) ? umax_optab : smax_optab;
494 case MIN_EXPR:
495 return TYPE_UNSIGNED (type) ? umin_optab : smin_optab;
497 case REALIGN_LOAD_EXPR:
498 return vec_realign_load_optab;
500 case WIDEN_SUM_EXPR:
501 return TYPE_UNSIGNED (type) ? usum_widen_optab : ssum_widen_optab;
503 case DOT_PROD_EXPR:
504 return TYPE_UNSIGNED (type) ? udot_prod_optab : sdot_prod_optab;
506 case SAD_EXPR:
507 return TYPE_UNSIGNED (type) ? usad_optab : ssad_optab;
509 case WIDEN_MULT_PLUS_EXPR:
510 return (TYPE_UNSIGNED (type)
511 ? (TYPE_SATURATING (type)
512 ? usmadd_widen_optab : umadd_widen_optab)
513 : (TYPE_SATURATING (type)
514 ? ssmadd_widen_optab : smadd_widen_optab));
516 case WIDEN_MULT_MINUS_EXPR:
517 return (TYPE_UNSIGNED (type)
518 ? (TYPE_SATURATING (type)
519 ? usmsub_widen_optab : umsub_widen_optab)
520 : (TYPE_SATURATING (type)
521 ? ssmsub_widen_optab : smsub_widen_optab));
523 case FMA_EXPR:
524 return fma_optab;
526 case REDUC_MAX_EXPR:
527 return TYPE_UNSIGNED (type)
528 ? reduc_umax_scal_optab : reduc_smax_scal_optab;
530 case REDUC_MIN_EXPR:
531 return TYPE_UNSIGNED (type)
532 ? reduc_umin_scal_optab : reduc_smin_scal_optab;
534 case REDUC_PLUS_EXPR:
535 return reduc_plus_scal_optab;
537 case VEC_WIDEN_MULT_HI_EXPR:
538 return TYPE_UNSIGNED (type) ?
539 vec_widen_umult_hi_optab : vec_widen_smult_hi_optab;
541 case VEC_WIDEN_MULT_LO_EXPR:
542 return TYPE_UNSIGNED (type) ?
543 vec_widen_umult_lo_optab : vec_widen_smult_lo_optab;
545 case VEC_WIDEN_MULT_EVEN_EXPR:
546 return TYPE_UNSIGNED (type) ?
547 vec_widen_umult_even_optab : vec_widen_smult_even_optab;
549 case VEC_WIDEN_MULT_ODD_EXPR:
550 return TYPE_UNSIGNED (type) ?
551 vec_widen_umult_odd_optab : vec_widen_smult_odd_optab;
553 case VEC_WIDEN_LSHIFT_HI_EXPR:
554 return TYPE_UNSIGNED (type) ?
555 vec_widen_ushiftl_hi_optab : vec_widen_sshiftl_hi_optab;
557 case VEC_WIDEN_LSHIFT_LO_EXPR:
558 return TYPE_UNSIGNED (type) ?
559 vec_widen_ushiftl_lo_optab : vec_widen_sshiftl_lo_optab;
561 case VEC_UNPACK_HI_EXPR:
562 return TYPE_UNSIGNED (type) ?
563 vec_unpacku_hi_optab : vec_unpacks_hi_optab;
565 case VEC_UNPACK_LO_EXPR:
566 return TYPE_UNSIGNED (type) ?
567 vec_unpacku_lo_optab : vec_unpacks_lo_optab;
569 case VEC_UNPACK_FLOAT_HI_EXPR:
570 /* The signedness is determined from input operand. */
571 return TYPE_UNSIGNED (type) ?
572 vec_unpacku_float_hi_optab : vec_unpacks_float_hi_optab;
574 case VEC_UNPACK_FLOAT_LO_EXPR:
575 /* The signedness is determined from input operand. */
576 return TYPE_UNSIGNED (type) ?
577 vec_unpacku_float_lo_optab : vec_unpacks_float_lo_optab;
579 case VEC_PACK_TRUNC_EXPR:
580 return vec_pack_trunc_optab;
582 case VEC_PACK_SAT_EXPR:
583 return TYPE_UNSIGNED (type) ? vec_pack_usat_optab : vec_pack_ssat_optab;
585 case VEC_PACK_FIX_TRUNC_EXPR:
586 /* The signedness is determined from output operand. */
587 return TYPE_UNSIGNED (type) ?
588 vec_pack_ufix_trunc_optab : vec_pack_sfix_trunc_optab;
590 default:
591 break;
594 trapv = INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_TRAPS (type);
595 switch (code)
597 case POINTER_PLUS_EXPR:
598 case PLUS_EXPR:
599 if (TYPE_SATURATING (type))
600 return TYPE_UNSIGNED (type) ? usadd_optab : ssadd_optab;
601 return trapv ? addv_optab : add_optab;
603 case MINUS_EXPR:
604 if (TYPE_SATURATING (type))
605 return TYPE_UNSIGNED (type) ? ussub_optab : sssub_optab;
606 return trapv ? subv_optab : sub_optab;
608 case MULT_EXPR:
609 if (TYPE_SATURATING (type))
610 return TYPE_UNSIGNED (type) ? usmul_optab : ssmul_optab;
611 return trapv ? smulv_optab : smul_optab;
613 case NEGATE_EXPR:
614 if (TYPE_SATURATING (type))
615 return TYPE_UNSIGNED (type) ? usneg_optab : ssneg_optab;
616 return trapv ? negv_optab : neg_optab;
618 case ABS_EXPR:
619 return trapv ? absv_optab : abs_optab;
621 default:
622 return unknown_optab;
626 /* Given optab UNOPTAB that reduces a vector to a scalar, find instead the old
627 optab that produces a vector with the reduction result in one element,
628 for a tree with type TYPE. */
630 optab
631 scalar_reduc_to_vector (optab unoptab, const_tree type)
633 switch (unoptab)
635 case reduc_plus_scal_optab:
636 return TYPE_UNSIGNED (type) ? reduc_uplus_optab : reduc_splus_optab;
638 case reduc_smin_scal_optab: return reduc_smin_optab;
639 case reduc_umin_scal_optab: return reduc_umin_optab;
640 case reduc_smax_scal_optab: return reduc_smax_optab;
641 case reduc_umax_scal_optab: return reduc_umax_optab;
642 default: return unknown_optab;
646 /* Expand vector widening operations.
648 There are two different classes of operations handled here:
649 1) Operations whose result is wider than all the arguments to the operation.
650 Examples: VEC_UNPACK_HI/LO_EXPR, VEC_WIDEN_MULT_HI/LO_EXPR
651 In this case OP0 and optionally OP1 would be initialized,
652 but WIDE_OP wouldn't (not relevant for this case).
653 2) Operations whose result is of the same size as the last argument to the
654 operation, but wider than all the other arguments to the operation.
655 Examples: WIDEN_SUM_EXPR, VEC_DOT_PROD_EXPR.
656 In the case WIDE_OP, OP0 and optionally OP1 would be initialized.
658 E.g, when called to expand the following operations, this is how
659 the arguments will be initialized:
660 nops OP0 OP1 WIDE_OP
661 widening-sum 2 oprnd0 - oprnd1
662 widening-dot-product 3 oprnd0 oprnd1 oprnd2
663 widening-mult 2 oprnd0 oprnd1 -
664 type-promotion (vec-unpack) 1 oprnd0 - - */
667 expand_widen_pattern_expr (sepops ops, rtx op0, rtx op1, rtx wide_op,
668 rtx target, int unsignedp)
670 struct expand_operand eops[4];
671 tree oprnd0, oprnd1, oprnd2;
672 machine_mode wmode = VOIDmode, tmode0, tmode1 = VOIDmode;
673 optab widen_pattern_optab;
674 enum insn_code icode;
675 int nops = TREE_CODE_LENGTH (ops->code);
676 int op;
678 oprnd0 = ops->op0;
679 tmode0 = TYPE_MODE (TREE_TYPE (oprnd0));
680 widen_pattern_optab =
681 optab_for_tree_code (ops->code, TREE_TYPE (oprnd0), optab_default);
682 if (ops->code == WIDEN_MULT_PLUS_EXPR
683 || ops->code == WIDEN_MULT_MINUS_EXPR)
684 icode = find_widening_optab_handler (widen_pattern_optab,
685 TYPE_MODE (TREE_TYPE (ops->op2)),
686 tmode0, 0);
687 else
688 icode = optab_handler (widen_pattern_optab, tmode0);
689 gcc_assert (icode != CODE_FOR_nothing);
691 if (nops >= 2)
693 oprnd1 = ops->op1;
694 tmode1 = TYPE_MODE (TREE_TYPE (oprnd1));
697 /* The last operand is of a wider mode than the rest of the operands. */
698 if (nops == 2)
699 wmode = tmode1;
700 else if (nops == 3)
702 gcc_assert (tmode1 == tmode0);
703 gcc_assert (op1);
704 oprnd2 = ops->op2;
705 wmode = TYPE_MODE (TREE_TYPE (oprnd2));
708 op = 0;
709 create_output_operand (&eops[op++], target, TYPE_MODE (ops->type));
710 create_convert_operand_from (&eops[op++], op0, tmode0, unsignedp);
711 if (op1)
712 create_convert_operand_from (&eops[op++], op1, tmode1, unsignedp);
713 if (wide_op)
714 create_convert_operand_from (&eops[op++], wide_op, wmode, unsignedp);
715 expand_insn (icode, op, eops);
716 return eops[0].value;
719 /* Generate code to perform an operation specified by TERNARY_OPTAB
720 on operands OP0, OP1 and OP2, with result having machine-mode MODE.
722 UNSIGNEDP is for the case where we have to widen the operands
723 to perform the operation. It says to use zero-extension.
725 If TARGET is nonzero, the value
726 is generated there, if it is convenient to do so.
727 In all cases an rtx is returned for the locus of the value;
728 this may or may not be TARGET. */
731 expand_ternary_op (machine_mode mode, optab ternary_optab, rtx op0,
732 rtx op1, rtx op2, rtx target, int unsignedp)
734 struct expand_operand ops[4];
735 enum insn_code icode = optab_handler (ternary_optab, mode);
737 gcc_assert (optab_handler (ternary_optab, mode) != CODE_FOR_nothing);
739 create_output_operand (&ops[0], target, mode);
740 create_convert_operand_from (&ops[1], op0, mode, unsignedp);
741 create_convert_operand_from (&ops[2], op1, mode, unsignedp);
742 create_convert_operand_from (&ops[3], op2, mode, unsignedp);
743 expand_insn (icode, 4, ops);
744 return ops[0].value;
748 /* Like expand_binop, but return a constant rtx if the result can be
749 calculated at compile time. The arguments and return value are
750 otherwise the same as for expand_binop. */
753 simplify_expand_binop (machine_mode mode, optab binoptab,
754 rtx op0, rtx op1, rtx target, int unsignedp,
755 enum optab_methods methods)
757 if (CONSTANT_P (op0) && CONSTANT_P (op1))
759 rtx x = simplify_binary_operation (optab_to_code (binoptab),
760 mode, op0, op1);
761 if (x)
762 return x;
765 return expand_binop (mode, binoptab, op0, op1, target, unsignedp, methods);
768 /* Like simplify_expand_binop, but always put the result in TARGET.
769 Return true if the expansion succeeded. */
771 bool
772 force_expand_binop (machine_mode mode, optab binoptab,
773 rtx op0, rtx op1, rtx target, int unsignedp,
774 enum optab_methods methods)
776 rtx x = simplify_expand_binop (mode, binoptab, op0, op1,
777 target, unsignedp, methods);
778 if (x == 0)
779 return false;
780 if (x != target)
781 emit_move_insn (target, x);
782 return true;
785 /* Create a new vector value in VMODE with all elements set to OP. The
786 mode of OP must be the element mode of VMODE. If OP is a constant,
787 then the return value will be a constant. */
789 static rtx
790 expand_vector_broadcast (machine_mode vmode, rtx op)
792 enum insn_code icode;
793 rtvec vec;
794 rtx ret;
795 int i, n;
797 gcc_checking_assert (VECTOR_MODE_P (vmode));
799 n = GET_MODE_NUNITS (vmode);
800 vec = rtvec_alloc (n);
801 for (i = 0; i < n; ++i)
802 RTVEC_ELT (vec, i) = op;
804 if (CONSTANT_P (op))
805 return gen_rtx_CONST_VECTOR (vmode, vec);
807 /* ??? If the target doesn't have a vec_init, then we have no easy way
808 of performing this operation. Most of this sort of generic support
809 is hidden away in the vector lowering support in gimple. */
810 icode = optab_handler (vec_init_optab, vmode);
811 if (icode == CODE_FOR_nothing)
812 return NULL;
814 ret = gen_reg_rtx (vmode);
815 emit_insn (GEN_FCN (icode) (ret, gen_rtx_PARALLEL (vmode, vec)));
817 return ret;
820 /* This subroutine of expand_doubleword_shift handles the cases in which
821 the effective shift value is >= BITS_PER_WORD. The arguments and return
822 value are the same as for the parent routine, except that SUPERWORD_OP1
823 is the shift count to use when shifting OUTOF_INPUT into INTO_TARGET.
824 INTO_TARGET may be null if the caller has decided to calculate it. */
826 static bool
827 expand_superword_shift (optab binoptab, rtx outof_input, rtx superword_op1,
828 rtx outof_target, rtx into_target,
829 int unsignedp, enum optab_methods methods)
831 if (into_target != 0)
832 if (!force_expand_binop (word_mode, binoptab, outof_input, superword_op1,
833 into_target, unsignedp, methods))
834 return false;
836 if (outof_target != 0)
838 /* For a signed right shift, we must fill OUTOF_TARGET with copies
839 of the sign bit, otherwise we must fill it with zeros. */
840 if (binoptab != ashr_optab)
841 emit_move_insn (outof_target, CONST0_RTX (word_mode));
842 else
843 if (!force_expand_binop (word_mode, binoptab,
844 outof_input, GEN_INT (BITS_PER_WORD - 1),
845 outof_target, unsignedp, methods))
846 return false;
848 return true;
851 /* This subroutine of expand_doubleword_shift handles the cases in which
852 the effective shift value is < BITS_PER_WORD. The arguments and return
853 value are the same as for the parent routine. */
855 static bool
856 expand_subword_shift (machine_mode op1_mode, optab binoptab,
857 rtx outof_input, rtx into_input, rtx op1,
858 rtx outof_target, rtx into_target,
859 int unsignedp, enum optab_methods methods,
860 unsigned HOST_WIDE_INT shift_mask)
862 optab reverse_unsigned_shift, unsigned_shift;
863 rtx tmp, carries;
865 reverse_unsigned_shift = (binoptab == ashl_optab ? lshr_optab : ashl_optab);
866 unsigned_shift = (binoptab == ashl_optab ? ashl_optab : lshr_optab);
868 /* The low OP1 bits of INTO_TARGET come from the high bits of OUTOF_INPUT.
869 We therefore need to shift OUTOF_INPUT by (BITS_PER_WORD - OP1) bits in
870 the opposite direction to BINOPTAB. */
871 if (CONSTANT_P (op1) || shift_mask >= BITS_PER_WORD)
873 carries = outof_input;
874 tmp = immed_wide_int_const (wi::shwi (BITS_PER_WORD,
875 op1_mode), op1_mode);
876 tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
877 0, true, methods);
879 else
881 /* We must avoid shifting by BITS_PER_WORD bits since that is either
882 the same as a zero shift (if shift_mask == BITS_PER_WORD - 1) or
883 has unknown behavior. Do a single shift first, then shift by the
884 remainder. It's OK to use ~OP1 as the remainder if shift counts
885 are truncated to the mode size. */
886 carries = expand_binop (word_mode, reverse_unsigned_shift,
887 outof_input, const1_rtx, 0, unsignedp, methods);
888 if (shift_mask == BITS_PER_WORD - 1)
890 tmp = immed_wide_int_const
891 (wi::minus_one (GET_MODE_PRECISION (op1_mode)), op1_mode);
892 tmp = simplify_expand_binop (op1_mode, xor_optab, op1, tmp,
893 0, true, methods);
895 else
897 tmp = immed_wide_int_const (wi::shwi (BITS_PER_WORD - 1,
898 op1_mode), op1_mode);
899 tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
900 0, true, methods);
903 if (tmp == 0 || carries == 0)
904 return false;
905 carries = expand_binop (word_mode, reverse_unsigned_shift,
906 carries, tmp, 0, unsignedp, methods);
907 if (carries == 0)
908 return false;
910 /* Shift INTO_INPUT logically by OP1. This is the last use of INTO_INPUT
911 so the result can go directly into INTO_TARGET if convenient. */
912 tmp = expand_binop (word_mode, unsigned_shift, into_input, op1,
913 into_target, unsignedp, methods);
914 if (tmp == 0)
915 return false;
917 /* Now OR in the bits carried over from OUTOF_INPUT. */
918 if (!force_expand_binop (word_mode, ior_optab, tmp, carries,
919 into_target, unsignedp, methods))
920 return false;
922 /* Use a standard word_mode shift for the out-of half. */
923 if (outof_target != 0)
924 if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
925 outof_target, unsignedp, methods))
926 return false;
928 return true;
932 /* Try implementing expand_doubleword_shift using conditional moves.
933 The shift is by < BITS_PER_WORD if (CMP_CODE CMP1 CMP2) is true,
934 otherwise it is by >= BITS_PER_WORD. SUBWORD_OP1 and SUPERWORD_OP1
935 are the shift counts to use in the former and latter case. All other
936 arguments are the same as the parent routine. */
938 static bool
939 expand_doubleword_shift_condmove (machine_mode op1_mode, optab binoptab,
940 enum rtx_code cmp_code, rtx cmp1, rtx cmp2,
941 rtx outof_input, rtx into_input,
942 rtx subword_op1, rtx superword_op1,
943 rtx outof_target, rtx into_target,
944 int unsignedp, enum optab_methods methods,
945 unsigned HOST_WIDE_INT shift_mask)
947 rtx outof_superword, into_superword;
949 /* Put the superword version of the output into OUTOF_SUPERWORD and
950 INTO_SUPERWORD. */
951 outof_superword = outof_target != 0 ? gen_reg_rtx (word_mode) : 0;
952 if (outof_target != 0 && subword_op1 == superword_op1)
954 /* The value INTO_TARGET >> SUBWORD_OP1, which we later store in
955 OUTOF_TARGET, is the same as the value of INTO_SUPERWORD. */
956 into_superword = outof_target;
957 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
958 outof_superword, 0, unsignedp, methods))
959 return false;
961 else
963 into_superword = gen_reg_rtx (word_mode);
964 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
965 outof_superword, into_superword,
966 unsignedp, methods))
967 return false;
970 /* Put the subword version directly in OUTOF_TARGET and INTO_TARGET. */
971 if (!expand_subword_shift (op1_mode, binoptab,
972 outof_input, into_input, subword_op1,
973 outof_target, into_target,
974 unsignedp, methods, shift_mask))
975 return false;
977 /* Select between them. Do the INTO half first because INTO_SUPERWORD
978 might be the current value of OUTOF_TARGET. */
979 if (!emit_conditional_move (into_target, cmp_code, cmp1, cmp2, op1_mode,
980 into_target, into_superword, word_mode, false))
981 return false;
983 if (outof_target != 0)
984 if (!emit_conditional_move (outof_target, cmp_code, cmp1, cmp2, op1_mode,
985 outof_target, outof_superword,
986 word_mode, false))
987 return false;
989 return true;
992 /* Expand a doubleword shift (ashl, ashr or lshr) using word-mode shifts.
993 OUTOF_INPUT and INTO_INPUT are the two word-sized halves of the first
994 input operand; the shift moves bits in the direction OUTOF_INPUT->
995 INTO_TARGET. OUTOF_TARGET and INTO_TARGET are the equivalent words
996 of the target. OP1 is the shift count and OP1_MODE is its mode.
997 If OP1 is constant, it will have been truncated as appropriate
998 and is known to be nonzero.
1000 If SHIFT_MASK is zero, the result of word shifts is undefined when the
1001 shift count is outside the range [0, BITS_PER_WORD). This routine must
1002 avoid generating such shifts for OP1s in the range [0, BITS_PER_WORD * 2).
1004 If SHIFT_MASK is nonzero, all word-mode shift counts are effectively
1005 masked by it and shifts in the range [BITS_PER_WORD, SHIFT_MASK) will
1006 fill with zeros or sign bits as appropriate.
1008 If SHIFT_MASK is BITS_PER_WORD - 1, this routine will synthesize
1009 a doubleword shift whose equivalent mask is BITS_PER_WORD * 2 - 1.
1010 Doing this preserves semantics required by SHIFT_COUNT_TRUNCATED.
1011 In all other cases, shifts by values outside [0, BITS_PER_UNIT * 2)
1012 are undefined.
1014 BINOPTAB, UNSIGNEDP and METHODS are as for expand_binop. This function
1015 may not use INTO_INPUT after modifying INTO_TARGET, and similarly for
1016 OUTOF_INPUT and OUTOF_TARGET. OUTOF_TARGET can be null if the parent
1017 function wants to calculate it itself.
1019 Return true if the shift could be successfully synthesized. */
1021 static bool
1022 expand_doubleword_shift (machine_mode op1_mode, optab binoptab,
1023 rtx outof_input, rtx into_input, rtx op1,
1024 rtx outof_target, rtx into_target,
1025 int unsignedp, enum optab_methods methods,
1026 unsigned HOST_WIDE_INT shift_mask)
1028 rtx superword_op1, tmp, cmp1, cmp2;
1029 enum rtx_code cmp_code;
1031 /* See if word-mode shifts by BITS_PER_WORD...BITS_PER_WORD * 2 - 1 will
1032 fill the result with sign or zero bits as appropriate. If so, the value
1033 of OUTOF_TARGET will always be (SHIFT OUTOF_INPUT OP1). Recursively call
1034 this routine to calculate INTO_TARGET (which depends on both OUTOF_INPUT
1035 and INTO_INPUT), then emit code to set up OUTOF_TARGET.
1037 This isn't worthwhile for constant shifts since the optimizers will
1038 cope better with in-range shift counts. */
1039 if (shift_mask >= BITS_PER_WORD
1040 && outof_target != 0
1041 && !CONSTANT_P (op1))
1043 if (!expand_doubleword_shift (op1_mode, binoptab,
1044 outof_input, into_input, op1,
1045 0, into_target,
1046 unsignedp, methods, shift_mask))
1047 return false;
1048 if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
1049 outof_target, unsignedp, methods))
1050 return false;
1051 return true;
1054 /* Set CMP_CODE, CMP1 and CMP2 so that the rtx (CMP_CODE CMP1 CMP2)
1055 is true when the effective shift value is less than BITS_PER_WORD.
1056 Set SUPERWORD_OP1 to the shift count that should be used to shift
1057 OUTOF_INPUT into INTO_TARGET when the condition is false. */
1058 tmp = immed_wide_int_const (wi::shwi (BITS_PER_WORD, op1_mode), op1_mode);
1059 if (!CONSTANT_P (op1) && shift_mask == BITS_PER_WORD - 1)
1061 /* Set CMP1 to OP1 & BITS_PER_WORD. The result is zero iff OP1
1062 is a subword shift count. */
1063 cmp1 = simplify_expand_binop (op1_mode, and_optab, op1, tmp,
1064 0, true, methods);
1065 cmp2 = CONST0_RTX (op1_mode);
1066 cmp_code = EQ;
1067 superword_op1 = op1;
1069 else
1071 /* Set CMP1 to OP1 - BITS_PER_WORD. */
1072 cmp1 = simplify_expand_binop (op1_mode, sub_optab, op1, tmp,
1073 0, true, methods);
1074 cmp2 = CONST0_RTX (op1_mode);
1075 cmp_code = LT;
1076 superword_op1 = cmp1;
1078 if (cmp1 == 0)
1079 return false;
1081 /* If we can compute the condition at compile time, pick the
1082 appropriate subroutine. */
1083 tmp = simplify_relational_operation (cmp_code, SImode, op1_mode, cmp1, cmp2);
1084 if (tmp != 0 && CONST_INT_P (tmp))
1086 if (tmp == const0_rtx)
1087 return expand_superword_shift (binoptab, outof_input, superword_op1,
1088 outof_target, into_target,
1089 unsignedp, methods);
1090 else
1091 return expand_subword_shift (op1_mode, binoptab,
1092 outof_input, into_input, op1,
1093 outof_target, into_target,
1094 unsignedp, methods, shift_mask);
1097 /* Try using conditional moves to generate straight-line code. */
1098 if (HAVE_conditional_move)
1100 rtx_insn *start = get_last_insn ();
1101 if (expand_doubleword_shift_condmove (op1_mode, binoptab,
1102 cmp_code, cmp1, cmp2,
1103 outof_input, into_input,
1104 op1, superword_op1,
1105 outof_target, into_target,
1106 unsignedp, methods, shift_mask))
1107 return true;
1108 delete_insns_since (start);
1111 /* As a last resort, use branches to select the correct alternative. */
1112 rtx_code_label *subword_label = gen_label_rtx ();
1113 rtx_code_label *done_label = gen_label_rtx ();
1115 NO_DEFER_POP;
1116 do_compare_rtx_and_jump (cmp1, cmp2, cmp_code, false, op1_mode,
1117 0, 0, subword_label, -1);
1118 OK_DEFER_POP;
1120 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
1121 outof_target, into_target,
1122 unsignedp, methods))
1123 return false;
1125 emit_jump_insn (gen_jump (done_label));
1126 emit_barrier ();
1127 emit_label (subword_label);
1129 if (!expand_subword_shift (op1_mode, binoptab,
1130 outof_input, into_input, op1,
1131 outof_target, into_target,
1132 unsignedp, methods, shift_mask))
1133 return false;
1135 emit_label (done_label);
1136 return true;
1139 /* Subroutine of expand_binop. Perform a double word multiplication of
1140 operands OP0 and OP1 both of mode MODE, which is exactly twice as wide
1141 as the target's word_mode. This function return NULL_RTX if anything
1142 goes wrong, in which case it may have already emitted instructions
1143 which need to be deleted.
1145 If we want to multiply two two-word values and have normal and widening
1146 multiplies of single-word values, we can do this with three smaller
1147 multiplications.
1149 The multiplication proceeds as follows:
1150 _______________________
1151 [__op0_high_|__op0_low__]
1152 _______________________
1153 * [__op1_high_|__op1_low__]
1154 _______________________________________________
1155 _______________________
1156 (1) [__op0_low__*__op1_low__]
1157 _______________________
1158 (2a) [__op0_low__*__op1_high_]
1159 _______________________
1160 (2b) [__op0_high_*__op1_low__]
1161 _______________________
1162 (3) [__op0_high_*__op1_high_]
1165 This gives a 4-word result. Since we are only interested in the
1166 lower 2 words, partial result (3) and the upper words of (2a) and
1167 (2b) don't need to be calculated. Hence (2a) and (2b) can be
1168 calculated using non-widening multiplication.
1170 (1), however, needs to be calculated with an unsigned widening
1171 multiplication. If this operation is not directly supported we
1172 try using a signed widening multiplication and adjust the result.
1173 This adjustment works as follows:
1175 If both operands are positive then no adjustment is needed.
1177 If the operands have different signs, for example op0_low < 0 and
1178 op1_low >= 0, the instruction treats the most significant bit of
1179 op0_low as a sign bit instead of a bit with significance
1180 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
1181 with 2**BITS_PER_WORD - op0_low, and two's complements the
1182 result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
1183 the result.
1185 Similarly, if both operands are negative, we need to add
1186 (op0_low + op1_low) * 2**BITS_PER_WORD.
1188 We use a trick to adjust quickly. We logically shift op0_low right
1189 (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
1190 op0_high (op1_high) before it is used to calculate 2b (2a). If no
1191 logical shift exists, we do an arithmetic right shift and subtract
1192 the 0 or -1. */
1194 static rtx
1195 expand_doubleword_mult (machine_mode mode, rtx op0, rtx op1, rtx target,
1196 bool umulp, enum optab_methods methods)
1198 int low = (WORDS_BIG_ENDIAN ? 1 : 0);
1199 int high = (WORDS_BIG_ENDIAN ? 0 : 1);
1200 rtx wordm1 = umulp ? NULL_RTX : GEN_INT (BITS_PER_WORD - 1);
1201 rtx product, adjust, product_high, temp;
1203 rtx op0_high = operand_subword_force (op0, high, mode);
1204 rtx op0_low = operand_subword_force (op0, low, mode);
1205 rtx op1_high = operand_subword_force (op1, high, mode);
1206 rtx op1_low = operand_subword_force (op1, low, mode);
1208 /* If we're using an unsigned multiply to directly compute the product
1209 of the low-order words of the operands and perform any required
1210 adjustments of the operands, we begin by trying two more multiplications
1211 and then computing the appropriate sum.
1213 We have checked above that the required addition is provided.
1214 Full-word addition will normally always succeed, especially if
1215 it is provided at all, so we don't worry about its failure. The
1216 multiplication may well fail, however, so we do handle that. */
1218 if (!umulp)
1220 /* ??? This could be done with emit_store_flag where available. */
1221 temp = expand_binop (word_mode, lshr_optab, op0_low, wordm1,
1222 NULL_RTX, 1, methods);
1223 if (temp)
1224 op0_high = expand_binop (word_mode, add_optab, op0_high, temp,
1225 NULL_RTX, 0, OPTAB_DIRECT);
1226 else
1228 temp = expand_binop (word_mode, ashr_optab, op0_low, wordm1,
1229 NULL_RTX, 0, methods);
1230 if (!temp)
1231 return NULL_RTX;
1232 op0_high = expand_binop (word_mode, sub_optab, op0_high, temp,
1233 NULL_RTX, 0, OPTAB_DIRECT);
1236 if (!op0_high)
1237 return NULL_RTX;
1240 adjust = expand_binop (word_mode, smul_optab, op0_high, op1_low,
1241 NULL_RTX, 0, OPTAB_DIRECT);
1242 if (!adjust)
1243 return NULL_RTX;
1245 /* OP0_HIGH should now be dead. */
1247 if (!umulp)
1249 /* ??? This could be done with emit_store_flag where available. */
1250 temp = expand_binop (word_mode, lshr_optab, op1_low, wordm1,
1251 NULL_RTX, 1, methods);
1252 if (temp)
1253 op1_high = expand_binop (word_mode, add_optab, op1_high, temp,
1254 NULL_RTX, 0, OPTAB_DIRECT);
1255 else
1257 temp = expand_binop (word_mode, ashr_optab, op1_low, wordm1,
1258 NULL_RTX, 0, methods);
1259 if (!temp)
1260 return NULL_RTX;
1261 op1_high = expand_binop (word_mode, sub_optab, op1_high, temp,
1262 NULL_RTX, 0, OPTAB_DIRECT);
1265 if (!op1_high)
1266 return NULL_RTX;
1269 temp = expand_binop (word_mode, smul_optab, op1_high, op0_low,
1270 NULL_RTX, 0, OPTAB_DIRECT);
1271 if (!temp)
1272 return NULL_RTX;
1274 /* OP1_HIGH should now be dead. */
1276 adjust = expand_binop (word_mode, add_optab, adjust, temp,
1277 NULL_RTX, 0, OPTAB_DIRECT);
1279 if (target && !REG_P (target))
1280 target = NULL_RTX;
1282 if (umulp)
1283 product = expand_binop (mode, umul_widen_optab, op0_low, op1_low,
1284 target, 1, OPTAB_DIRECT);
1285 else
1286 product = expand_binop (mode, smul_widen_optab, op0_low, op1_low,
1287 target, 1, OPTAB_DIRECT);
1289 if (!product)
1290 return NULL_RTX;
1292 product_high = operand_subword (product, high, 1, mode);
1293 adjust = expand_binop (word_mode, add_optab, product_high, adjust,
1294 NULL_RTX, 0, OPTAB_DIRECT);
1295 emit_move_insn (product_high, adjust);
1296 return product;
1299 /* Wrapper around expand_binop which takes an rtx code to specify
1300 the operation to perform, not an optab pointer. All other
1301 arguments are the same. */
1303 expand_simple_binop (machine_mode mode, enum rtx_code code, rtx op0,
1304 rtx op1, rtx target, int unsignedp,
1305 enum optab_methods methods)
1307 optab binop = code_to_optab (code);
1308 gcc_assert (binop);
1310 return expand_binop (mode, binop, op0, op1, target, unsignedp, methods);
1313 /* Return whether OP0 and OP1 should be swapped when expanding a commutative
1314 binop. Order them according to commutative_operand_precedence and, if
1315 possible, try to put TARGET or a pseudo first. */
1316 static bool
1317 swap_commutative_operands_with_target (rtx target, rtx op0, rtx op1)
1319 int op0_prec = commutative_operand_precedence (op0);
1320 int op1_prec = commutative_operand_precedence (op1);
1322 if (op0_prec < op1_prec)
1323 return true;
1325 if (op0_prec > op1_prec)
1326 return false;
1328 /* With equal precedence, both orders are ok, but it is better if the
1329 first operand is TARGET, or if both TARGET and OP0 are pseudos. */
1330 if (target == 0 || REG_P (target))
1331 return (REG_P (op1) && !REG_P (op0)) || target == op1;
1332 else
1333 return rtx_equal_p (op1, target);
1336 /* Return true if BINOPTAB implements a shift operation. */
1338 static bool
1339 shift_optab_p (optab binoptab)
1341 switch (optab_to_code (binoptab))
1343 case ASHIFT:
1344 case SS_ASHIFT:
1345 case US_ASHIFT:
1346 case ASHIFTRT:
1347 case LSHIFTRT:
1348 case ROTATE:
1349 case ROTATERT:
1350 return true;
1352 default:
1353 return false;
1357 /* Return true if BINOPTAB implements a commutative binary operation. */
1359 static bool
1360 commutative_optab_p (optab binoptab)
1362 return (GET_RTX_CLASS (optab_to_code (binoptab)) == RTX_COMM_ARITH
1363 || binoptab == smul_widen_optab
1364 || binoptab == umul_widen_optab
1365 || binoptab == smul_highpart_optab
1366 || binoptab == umul_highpart_optab);
1369 /* X is to be used in mode MODE as operand OPN to BINOPTAB. If we're
1370 optimizing, and if the operand is a constant that costs more than
1371 1 instruction, force the constant into a register and return that
1372 register. Return X otherwise. UNSIGNEDP says whether X is unsigned. */
1374 static rtx
1375 avoid_expensive_constant (machine_mode mode, optab binoptab,
1376 int opn, rtx x, bool unsignedp)
1378 bool speed = optimize_insn_for_speed_p ();
1380 if (mode != VOIDmode
1381 && optimize
1382 && CONSTANT_P (x)
1383 && (rtx_cost (x, optab_to_code (binoptab), opn, speed)
1384 > set_src_cost (x, speed)))
1386 if (CONST_INT_P (x))
1388 HOST_WIDE_INT intval = trunc_int_for_mode (INTVAL (x), mode);
1389 if (intval != INTVAL (x))
1390 x = GEN_INT (intval);
1392 else
1393 x = convert_modes (mode, VOIDmode, x, unsignedp);
1394 x = force_reg (mode, x);
1396 return x;
1399 /* Helper function for expand_binop: handle the case where there
1400 is an insn that directly implements the indicated operation.
1401 Returns null if this is not possible. */
1402 static rtx
1403 expand_binop_directly (machine_mode mode, optab binoptab,
1404 rtx op0, rtx op1,
1405 rtx target, int unsignedp, enum optab_methods methods,
1406 rtx_insn *last)
1408 machine_mode from_mode = widened_mode (mode, op0, op1);
1409 enum insn_code icode = find_widening_optab_handler (binoptab, mode,
1410 from_mode, 1);
1411 machine_mode xmode0 = insn_data[(int) icode].operand[1].mode;
1412 machine_mode xmode1 = insn_data[(int) icode].operand[2].mode;
1413 machine_mode mode0, mode1, tmp_mode;
1414 struct expand_operand ops[3];
1415 bool commutative_p;
1416 rtx_insn *pat;
1417 rtx xop0 = op0, xop1 = op1;
1419 /* If it is a commutative operator and the modes would match
1420 if we would swap the operands, we can save the conversions. */
1421 commutative_p = commutative_optab_p (binoptab);
1422 if (commutative_p
1423 && GET_MODE (xop0) != xmode0 && GET_MODE (xop1) != xmode1
1424 && GET_MODE (xop0) == xmode1 && GET_MODE (xop1) == xmode1)
1425 std::swap (xop0, xop1);
1427 /* If we are optimizing, force expensive constants into a register. */
1428 xop0 = avoid_expensive_constant (xmode0, binoptab, 0, xop0, unsignedp);
1429 if (!shift_optab_p (binoptab))
1430 xop1 = avoid_expensive_constant (xmode1, binoptab, 1, xop1, unsignedp);
1432 /* In case the insn wants input operands in modes different from
1433 those of the actual operands, convert the operands. It would
1434 seem that we don't need to convert CONST_INTs, but we do, so
1435 that they're properly zero-extended, sign-extended or truncated
1436 for their mode. */
1438 mode0 = GET_MODE (xop0) != VOIDmode ? GET_MODE (xop0) : mode;
1439 if (xmode0 != VOIDmode && xmode0 != mode0)
1441 xop0 = convert_modes (xmode0, mode0, xop0, unsignedp);
1442 mode0 = xmode0;
1445 mode1 = GET_MODE (xop1) != VOIDmode ? GET_MODE (xop1) : mode;
1446 if (xmode1 != VOIDmode && xmode1 != mode1)
1448 xop1 = convert_modes (xmode1, mode1, xop1, unsignedp);
1449 mode1 = xmode1;
1452 /* If operation is commutative,
1453 try to make the first operand a register.
1454 Even better, try to make it the same as the target.
1455 Also try to make the last operand a constant. */
1456 if (commutative_p
1457 && swap_commutative_operands_with_target (target, xop0, xop1))
1458 std::swap (xop0, xop1);
1460 /* Now, if insn's predicates don't allow our operands, put them into
1461 pseudo regs. */
1463 if (binoptab == vec_pack_trunc_optab
1464 || binoptab == vec_pack_usat_optab
1465 || binoptab == vec_pack_ssat_optab
1466 || binoptab == vec_pack_ufix_trunc_optab
1467 || binoptab == vec_pack_sfix_trunc_optab)
1469 /* The mode of the result is different then the mode of the
1470 arguments. */
1471 tmp_mode = insn_data[(int) icode].operand[0].mode;
1472 if (GET_MODE_NUNITS (tmp_mode) != 2 * GET_MODE_NUNITS (mode))
1474 delete_insns_since (last);
1475 return NULL_RTX;
1478 else
1479 tmp_mode = mode;
1481 create_output_operand (&ops[0], target, tmp_mode);
1482 create_input_operand (&ops[1], xop0, mode0);
1483 create_input_operand (&ops[2], xop1, mode1);
1484 pat = maybe_gen_insn (icode, 3, ops);
1485 if (pat)
1487 /* If PAT is composed of more than one insn, try to add an appropriate
1488 REG_EQUAL note to it. If we can't because TEMP conflicts with an
1489 operand, call expand_binop again, this time without a target. */
1490 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
1491 && ! add_equal_note (pat, ops[0].value,
1492 optab_to_code (binoptab),
1493 ops[1].value, ops[2].value))
1495 delete_insns_since (last);
1496 return expand_binop (mode, binoptab, op0, op1, NULL_RTX,
1497 unsignedp, methods);
1500 emit_insn (pat);
1501 return ops[0].value;
1503 delete_insns_since (last);
1504 return NULL_RTX;
1507 /* Generate code to perform an operation specified by BINOPTAB
1508 on operands OP0 and OP1, with result having machine-mode MODE.
1510 UNSIGNEDP is for the case where we have to widen the operands
1511 to perform the operation. It says to use zero-extension.
1513 If TARGET is nonzero, the value
1514 is generated there, if it is convenient to do so.
1515 In all cases an rtx is returned for the locus of the value;
1516 this may or may not be TARGET. */
1519 expand_binop (machine_mode mode, optab binoptab, rtx op0, rtx op1,
1520 rtx target, int unsignedp, enum optab_methods methods)
1522 enum optab_methods next_methods
1523 = (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN
1524 ? OPTAB_WIDEN : methods);
1525 enum mode_class mclass;
1526 machine_mode wider_mode;
1527 rtx libfunc;
1528 rtx temp;
1529 rtx_insn *entry_last = get_last_insn ();
1530 rtx_insn *last;
1532 mclass = GET_MODE_CLASS (mode);
1534 /* If subtracting an integer constant, convert this into an addition of
1535 the negated constant. */
1537 if (binoptab == sub_optab && CONST_INT_P (op1))
1539 op1 = negate_rtx (mode, op1);
1540 binoptab = add_optab;
1543 /* Record where to delete back to if we backtrack. */
1544 last = get_last_insn ();
1546 /* If we can do it with a three-operand insn, do so. */
1548 if (methods != OPTAB_MUST_WIDEN
1549 && find_widening_optab_handler (binoptab, mode,
1550 widened_mode (mode, op0, op1), 1)
1551 != CODE_FOR_nothing)
1553 temp = expand_binop_directly (mode, binoptab, op0, op1, target,
1554 unsignedp, methods, last);
1555 if (temp)
1556 return temp;
1559 /* If we were trying to rotate, and that didn't work, try rotating
1560 the other direction before falling back to shifts and bitwise-or. */
1561 if (((binoptab == rotl_optab
1562 && optab_handler (rotr_optab, mode) != CODE_FOR_nothing)
1563 || (binoptab == rotr_optab
1564 && optab_handler (rotl_optab, mode) != CODE_FOR_nothing))
1565 && mclass == MODE_INT)
1567 optab otheroptab = (binoptab == rotl_optab ? rotr_optab : rotl_optab);
1568 rtx newop1;
1569 unsigned int bits = GET_MODE_PRECISION (mode);
1571 if (CONST_INT_P (op1))
1572 newop1 = GEN_INT (bits - INTVAL (op1));
1573 else if (targetm.shift_truncation_mask (mode) == bits - 1)
1574 newop1 = negate_rtx (GET_MODE (op1), op1);
1575 else
1576 newop1 = expand_binop (GET_MODE (op1), sub_optab,
1577 gen_int_mode (bits, GET_MODE (op1)), op1,
1578 NULL_RTX, unsignedp, OPTAB_DIRECT);
1580 temp = expand_binop_directly (mode, otheroptab, op0, newop1,
1581 target, unsignedp, methods, last);
1582 if (temp)
1583 return temp;
1586 /* If this is a multiply, see if we can do a widening operation that
1587 takes operands of this mode and makes a wider mode. */
1589 if (binoptab == smul_optab
1590 && GET_MODE_2XWIDER_MODE (mode) != VOIDmode
1591 && (widening_optab_handler ((unsignedp ? umul_widen_optab
1592 : smul_widen_optab),
1593 GET_MODE_2XWIDER_MODE (mode), mode)
1594 != CODE_FOR_nothing))
1596 temp = expand_binop (GET_MODE_2XWIDER_MODE (mode),
1597 unsignedp ? umul_widen_optab : smul_widen_optab,
1598 op0, op1, NULL_RTX, unsignedp, OPTAB_DIRECT);
1600 if (temp != 0)
1602 if (GET_MODE_CLASS (mode) == MODE_INT
1603 && TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (temp)))
1604 return gen_lowpart (mode, temp);
1605 else
1606 return convert_to_mode (mode, temp, unsignedp);
1610 /* If this is a vector shift by a scalar, see if we can do a vector
1611 shift by a vector. If so, broadcast the scalar into a vector. */
1612 if (mclass == MODE_VECTOR_INT)
1614 optab otheroptab = unknown_optab;
1616 if (binoptab == ashl_optab)
1617 otheroptab = vashl_optab;
1618 else if (binoptab == ashr_optab)
1619 otheroptab = vashr_optab;
1620 else if (binoptab == lshr_optab)
1621 otheroptab = vlshr_optab;
1622 else if (binoptab == rotl_optab)
1623 otheroptab = vrotl_optab;
1624 else if (binoptab == rotr_optab)
1625 otheroptab = vrotr_optab;
1627 if (otheroptab && optab_handler (otheroptab, mode) != CODE_FOR_nothing)
1629 rtx vop1 = expand_vector_broadcast (mode, op1);
1630 if (vop1)
1632 temp = expand_binop_directly (mode, otheroptab, op0, vop1,
1633 target, unsignedp, methods, last);
1634 if (temp)
1635 return temp;
1640 /* Look for a wider mode of the same class for which we think we
1641 can open-code the operation. Check for a widening multiply at the
1642 wider mode as well. */
1644 if (CLASS_HAS_WIDER_MODES_P (mclass)
1645 && methods != OPTAB_DIRECT && methods != OPTAB_LIB)
1646 for (wider_mode = GET_MODE_WIDER_MODE (mode);
1647 wider_mode != VOIDmode;
1648 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
1650 if (optab_handler (binoptab, wider_mode) != CODE_FOR_nothing
1651 || (binoptab == smul_optab
1652 && GET_MODE_WIDER_MODE (wider_mode) != VOIDmode
1653 && (find_widening_optab_handler ((unsignedp
1654 ? umul_widen_optab
1655 : smul_widen_optab),
1656 GET_MODE_WIDER_MODE (wider_mode),
1657 mode, 0)
1658 != CODE_FOR_nothing)))
1660 rtx xop0 = op0, xop1 = op1;
1661 int no_extend = 0;
1663 /* For certain integer operations, we need not actually extend
1664 the narrow operands, as long as we will truncate
1665 the results to the same narrowness. */
1667 if ((binoptab == ior_optab || binoptab == and_optab
1668 || binoptab == xor_optab
1669 || binoptab == add_optab || binoptab == sub_optab
1670 || binoptab == smul_optab || binoptab == ashl_optab)
1671 && mclass == MODE_INT)
1673 no_extend = 1;
1674 xop0 = avoid_expensive_constant (mode, binoptab, 0,
1675 xop0, unsignedp);
1676 if (binoptab != ashl_optab)
1677 xop1 = avoid_expensive_constant (mode, binoptab, 1,
1678 xop1, unsignedp);
1681 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp, no_extend);
1683 /* The second operand of a shift must always be extended. */
1684 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
1685 no_extend && binoptab != ashl_optab);
1687 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
1688 unsignedp, OPTAB_DIRECT);
1689 if (temp)
1691 if (mclass != MODE_INT
1692 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
1694 if (target == 0)
1695 target = gen_reg_rtx (mode);
1696 convert_move (target, temp, 0);
1697 return target;
1699 else
1700 return gen_lowpart (mode, temp);
1702 else
1703 delete_insns_since (last);
1707 /* If operation is commutative,
1708 try to make the first operand a register.
1709 Even better, try to make it the same as the target.
1710 Also try to make the last operand a constant. */
1711 if (commutative_optab_p (binoptab)
1712 && swap_commutative_operands_with_target (target, op0, op1))
1713 std::swap (op0, op1);
1715 /* These can be done a word at a time. */
1716 if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab)
1717 && mclass == MODE_INT
1718 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
1719 && optab_handler (binoptab, word_mode) != CODE_FOR_nothing)
1721 int i;
1722 rtx_insn *insns;
1724 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1725 won't be accurate, so use a new target. */
1726 if (target == 0
1727 || target == op0
1728 || target == op1
1729 || !valid_multiword_target_p (target))
1730 target = gen_reg_rtx (mode);
1732 start_sequence ();
1734 /* Do the actual arithmetic. */
1735 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
1737 rtx target_piece = operand_subword (target, i, 1, mode);
1738 rtx x = expand_binop (word_mode, binoptab,
1739 operand_subword_force (op0, i, mode),
1740 operand_subword_force (op1, i, mode),
1741 target_piece, unsignedp, next_methods);
1743 if (x == 0)
1744 break;
1746 if (target_piece != x)
1747 emit_move_insn (target_piece, x);
1750 insns = get_insns ();
1751 end_sequence ();
1753 if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
1755 emit_insn (insns);
1756 return target;
1760 /* Synthesize double word shifts from single word shifts. */
1761 if ((binoptab == lshr_optab || binoptab == ashl_optab
1762 || binoptab == ashr_optab)
1763 && mclass == MODE_INT
1764 && (CONST_INT_P (op1) || optimize_insn_for_speed_p ())
1765 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1766 && GET_MODE_PRECISION (mode) == GET_MODE_BITSIZE (mode)
1767 && optab_handler (binoptab, word_mode) != CODE_FOR_nothing
1768 && optab_handler (ashl_optab, word_mode) != CODE_FOR_nothing
1769 && optab_handler (lshr_optab, word_mode) != CODE_FOR_nothing)
1771 unsigned HOST_WIDE_INT shift_mask, double_shift_mask;
1772 machine_mode op1_mode;
1774 double_shift_mask = targetm.shift_truncation_mask (mode);
1775 shift_mask = targetm.shift_truncation_mask (word_mode);
1776 op1_mode = GET_MODE (op1) != VOIDmode ? GET_MODE (op1) : word_mode;
1778 /* Apply the truncation to constant shifts. */
1779 if (double_shift_mask > 0 && CONST_INT_P (op1))
1780 op1 = GEN_INT (INTVAL (op1) & double_shift_mask);
1782 if (op1 == CONST0_RTX (op1_mode))
1783 return op0;
1785 /* Make sure that this is a combination that expand_doubleword_shift
1786 can handle. See the comments there for details. */
1787 if (double_shift_mask == 0
1788 || (shift_mask == BITS_PER_WORD - 1
1789 && double_shift_mask == BITS_PER_WORD * 2 - 1))
1791 rtx_insn *insns;
1792 rtx into_target, outof_target;
1793 rtx into_input, outof_input;
1794 int left_shift, outof_word;
1796 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1797 won't be accurate, so use a new target. */
1798 if (target == 0
1799 || target == op0
1800 || target == op1
1801 || !valid_multiword_target_p (target))
1802 target = gen_reg_rtx (mode);
1804 start_sequence ();
1806 /* OUTOF_* is the word we are shifting bits away from, and
1807 INTO_* is the word that we are shifting bits towards, thus
1808 they differ depending on the direction of the shift and
1809 WORDS_BIG_ENDIAN. */
1811 left_shift = binoptab == ashl_optab;
1812 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1814 outof_target = operand_subword (target, outof_word, 1, mode);
1815 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1817 outof_input = operand_subword_force (op0, outof_word, mode);
1818 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1820 if (expand_doubleword_shift (op1_mode, binoptab,
1821 outof_input, into_input, op1,
1822 outof_target, into_target,
1823 unsignedp, next_methods, shift_mask))
1825 insns = get_insns ();
1826 end_sequence ();
1828 emit_insn (insns);
1829 return target;
1831 end_sequence ();
1835 /* Synthesize double word rotates from single word shifts. */
1836 if ((binoptab == rotl_optab || binoptab == rotr_optab)
1837 && mclass == MODE_INT
1838 && CONST_INT_P (op1)
1839 && GET_MODE_PRECISION (mode) == 2 * BITS_PER_WORD
1840 && optab_handler (ashl_optab, word_mode) != CODE_FOR_nothing
1841 && optab_handler (lshr_optab, word_mode) != CODE_FOR_nothing)
1843 rtx_insn *insns;
1844 rtx into_target, outof_target;
1845 rtx into_input, outof_input;
1846 rtx inter;
1847 int shift_count, left_shift, outof_word;
1849 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1850 won't be accurate, so use a new target. Do this also if target is not
1851 a REG, first because having a register instead may open optimization
1852 opportunities, and second because if target and op0 happen to be MEMs
1853 designating the same location, we would risk clobbering it too early
1854 in the code sequence we generate below. */
1855 if (target == 0
1856 || target == op0
1857 || target == op1
1858 || !REG_P (target)
1859 || !valid_multiword_target_p (target))
1860 target = gen_reg_rtx (mode);
1862 start_sequence ();
1864 shift_count = INTVAL (op1);
1866 /* OUTOF_* is the word we are shifting bits away from, and
1867 INTO_* is the word that we are shifting bits towards, thus
1868 they differ depending on the direction of the shift and
1869 WORDS_BIG_ENDIAN. */
1871 left_shift = (binoptab == rotl_optab);
1872 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1874 outof_target = operand_subword (target, outof_word, 1, mode);
1875 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1877 outof_input = operand_subword_force (op0, outof_word, mode);
1878 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1880 if (shift_count == BITS_PER_WORD)
1882 /* This is just a word swap. */
1883 emit_move_insn (outof_target, into_input);
1884 emit_move_insn (into_target, outof_input);
1885 inter = const0_rtx;
1887 else
1889 rtx into_temp1, into_temp2, outof_temp1, outof_temp2;
1890 rtx first_shift_count, second_shift_count;
1891 optab reverse_unsigned_shift, unsigned_shift;
1893 reverse_unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1894 ? lshr_optab : ashl_optab);
1896 unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1897 ? ashl_optab : lshr_optab);
1899 if (shift_count > BITS_PER_WORD)
1901 first_shift_count = GEN_INT (shift_count - BITS_PER_WORD);
1902 second_shift_count = GEN_INT (2 * BITS_PER_WORD - shift_count);
1904 else
1906 first_shift_count = GEN_INT (BITS_PER_WORD - shift_count);
1907 second_shift_count = GEN_INT (shift_count);
1910 into_temp1 = expand_binop (word_mode, unsigned_shift,
1911 outof_input, first_shift_count,
1912 NULL_RTX, unsignedp, next_methods);
1913 into_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1914 into_input, second_shift_count,
1915 NULL_RTX, unsignedp, next_methods);
1917 if (into_temp1 != 0 && into_temp2 != 0)
1918 inter = expand_binop (word_mode, ior_optab, into_temp1, into_temp2,
1919 into_target, unsignedp, next_methods);
1920 else
1921 inter = 0;
1923 if (inter != 0 && inter != into_target)
1924 emit_move_insn (into_target, inter);
1926 outof_temp1 = expand_binop (word_mode, unsigned_shift,
1927 into_input, first_shift_count,
1928 NULL_RTX, unsignedp, next_methods);
1929 outof_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1930 outof_input, second_shift_count,
1931 NULL_RTX, unsignedp, next_methods);
1933 if (inter != 0 && outof_temp1 != 0 && outof_temp2 != 0)
1934 inter = expand_binop (word_mode, ior_optab,
1935 outof_temp1, outof_temp2,
1936 outof_target, unsignedp, next_methods);
1938 if (inter != 0 && inter != outof_target)
1939 emit_move_insn (outof_target, inter);
1942 insns = get_insns ();
1943 end_sequence ();
1945 if (inter != 0)
1947 emit_insn (insns);
1948 return target;
1952 /* These can be done a word at a time by propagating carries. */
1953 if ((binoptab == add_optab || binoptab == sub_optab)
1954 && mclass == MODE_INT
1955 && GET_MODE_SIZE (mode) >= 2 * UNITS_PER_WORD
1956 && optab_handler (binoptab, word_mode) != CODE_FOR_nothing)
1958 unsigned int i;
1959 optab otheroptab = binoptab == add_optab ? sub_optab : add_optab;
1960 const unsigned int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
1961 rtx carry_in = NULL_RTX, carry_out = NULL_RTX;
1962 rtx xop0, xop1, xtarget;
1964 /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
1965 value is one of those, use it. Otherwise, use 1 since it is the
1966 one easiest to get. */
1967 #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
1968 int normalizep = STORE_FLAG_VALUE;
1969 #else
1970 int normalizep = 1;
1971 #endif
1973 /* Prepare the operands. */
1974 xop0 = force_reg (mode, op0);
1975 xop1 = force_reg (mode, op1);
1977 xtarget = gen_reg_rtx (mode);
1979 if (target == 0 || !REG_P (target) || !valid_multiword_target_p (target))
1980 target = xtarget;
1982 /* Indicate for flow that the entire target reg is being set. */
1983 if (REG_P (target))
1984 emit_clobber (xtarget);
1986 /* Do the actual arithmetic. */
1987 for (i = 0; i < nwords; i++)
1989 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
1990 rtx target_piece = operand_subword (xtarget, index, 1, mode);
1991 rtx op0_piece = operand_subword_force (xop0, index, mode);
1992 rtx op1_piece = operand_subword_force (xop1, index, mode);
1993 rtx x;
1995 /* Main add/subtract of the input operands. */
1996 x = expand_binop (word_mode, binoptab,
1997 op0_piece, op1_piece,
1998 target_piece, unsignedp, next_methods);
1999 if (x == 0)
2000 break;
2002 if (i + 1 < nwords)
2004 /* Store carry from main add/subtract. */
2005 carry_out = gen_reg_rtx (word_mode);
2006 carry_out = emit_store_flag_force (carry_out,
2007 (binoptab == add_optab
2008 ? LT : GT),
2009 x, op0_piece,
2010 word_mode, 1, normalizep);
2013 if (i > 0)
2015 rtx newx;
2017 /* Add/subtract previous carry to main result. */
2018 newx = expand_binop (word_mode,
2019 normalizep == 1 ? binoptab : otheroptab,
2020 x, carry_in,
2021 NULL_RTX, 1, next_methods);
2023 if (i + 1 < nwords)
2025 /* Get out carry from adding/subtracting carry in. */
2026 rtx carry_tmp = gen_reg_rtx (word_mode);
2027 carry_tmp = emit_store_flag_force (carry_tmp,
2028 (binoptab == add_optab
2029 ? LT : GT),
2030 newx, x,
2031 word_mode, 1, normalizep);
2033 /* Logical-ior the two poss. carry together. */
2034 carry_out = expand_binop (word_mode, ior_optab,
2035 carry_out, carry_tmp,
2036 carry_out, 0, next_methods);
2037 if (carry_out == 0)
2038 break;
2040 emit_move_insn (target_piece, newx);
2042 else
2044 if (x != target_piece)
2045 emit_move_insn (target_piece, x);
2048 carry_in = carry_out;
2051 if (i == GET_MODE_BITSIZE (mode) / (unsigned) BITS_PER_WORD)
2053 if (optab_handler (mov_optab, mode) != CODE_FOR_nothing
2054 || ! rtx_equal_p (target, xtarget))
2056 rtx temp = emit_move_insn (target, xtarget);
2058 set_dst_reg_note (temp, REG_EQUAL,
2059 gen_rtx_fmt_ee (optab_to_code (binoptab),
2060 mode, copy_rtx (xop0),
2061 copy_rtx (xop1)),
2062 target);
2064 else
2065 target = xtarget;
2067 return target;
2070 else
2071 delete_insns_since (last);
2074 /* Attempt to synthesize double word multiplies using a sequence of word
2075 mode multiplications. We first attempt to generate a sequence using a
2076 more efficient unsigned widening multiply, and if that fails we then
2077 try using a signed widening multiply. */
2079 if (binoptab == smul_optab
2080 && mclass == MODE_INT
2081 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
2082 && optab_handler (smul_optab, word_mode) != CODE_FOR_nothing
2083 && optab_handler (add_optab, word_mode) != CODE_FOR_nothing)
2085 rtx product = NULL_RTX;
2086 if (widening_optab_handler (umul_widen_optab, mode, word_mode)
2087 != CODE_FOR_nothing)
2089 product = expand_doubleword_mult (mode, op0, op1, target,
2090 true, methods);
2091 if (!product)
2092 delete_insns_since (last);
2095 if (product == NULL_RTX
2096 && widening_optab_handler (smul_widen_optab, mode, word_mode)
2097 != CODE_FOR_nothing)
2099 product = expand_doubleword_mult (mode, op0, op1, target,
2100 false, methods);
2101 if (!product)
2102 delete_insns_since (last);
2105 if (product != NULL_RTX)
2107 if (optab_handler (mov_optab, mode) != CODE_FOR_nothing)
2109 temp = emit_move_insn (target ? target : product, product);
2110 set_dst_reg_note (temp,
2111 REG_EQUAL,
2112 gen_rtx_fmt_ee (MULT, mode,
2113 copy_rtx (op0),
2114 copy_rtx (op1)),
2115 target ? target : product);
2117 return product;
2121 /* It can't be open-coded in this mode.
2122 Use a library call if one is available and caller says that's ok. */
2124 libfunc = optab_libfunc (binoptab, mode);
2125 if (libfunc
2126 && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
2128 rtx_insn *insns;
2129 rtx op1x = op1;
2130 machine_mode op1_mode = mode;
2131 rtx value;
2133 start_sequence ();
2135 if (shift_optab_p (binoptab))
2137 op1_mode = targetm.libgcc_shift_count_mode ();
2138 /* Specify unsigned here,
2139 since negative shift counts are meaningless. */
2140 op1x = convert_to_mode (op1_mode, op1, 1);
2143 if (GET_MODE (op0) != VOIDmode
2144 && GET_MODE (op0) != mode)
2145 op0 = convert_to_mode (mode, op0, unsignedp);
2147 /* Pass 1 for NO_QUEUE so we don't lose any increments
2148 if the libcall is cse'd or moved. */
2149 value = emit_library_call_value (libfunc,
2150 NULL_RTX, LCT_CONST, mode, 2,
2151 op0, mode, op1x, op1_mode);
2153 insns = get_insns ();
2154 end_sequence ();
2156 target = gen_reg_rtx (mode);
2157 emit_libcall_block_1 (insns, target, value,
2158 gen_rtx_fmt_ee (optab_to_code (binoptab),
2159 mode, op0, op1),
2160 trapv_binoptab_p (binoptab));
2162 return target;
2165 delete_insns_since (last);
2167 /* It can't be done in this mode. Can we do it in a wider mode? */
2169 if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN
2170 || methods == OPTAB_MUST_WIDEN))
2172 /* Caller says, don't even try. */
2173 delete_insns_since (entry_last);
2174 return 0;
2177 /* Compute the value of METHODS to pass to recursive calls.
2178 Don't allow widening to be tried recursively. */
2180 methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT);
2182 /* Look for a wider mode of the same class for which it appears we can do
2183 the operation. */
2185 if (CLASS_HAS_WIDER_MODES_P (mclass))
2187 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2188 wider_mode != VOIDmode;
2189 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2191 if (find_widening_optab_handler (binoptab, wider_mode, mode, 1)
2192 != CODE_FOR_nothing
2193 || (methods == OPTAB_LIB
2194 && optab_libfunc (binoptab, wider_mode)))
2196 rtx xop0 = op0, xop1 = op1;
2197 int no_extend = 0;
2199 /* For certain integer operations, we need not actually extend
2200 the narrow operands, as long as we will truncate
2201 the results to the same narrowness. */
2203 if ((binoptab == ior_optab || binoptab == and_optab
2204 || binoptab == xor_optab
2205 || binoptab == add_optab || binoptab == sub_optab
2206 || binoptab == smul_optab || binoptab == ashl_optab)
2207 && mclass == MODE_INT)
2208 no_extend = 1;
2210 xop0 = widen_operand (xop0, wider_mode, mode,
2211 unsignedp, no_extend);
2213 /* The second operand of a shift must always be extended. */
2214 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
2215 no_extend && binoptab != ashl_optab);
2217 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
2218 unsignedp, methods);
2219 if (temp)
2221 if (mclass != MODE_INT
2222 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
2224 if (target == 0)
2225 target = gen_reg_rtx (mode);
2226 convert_move (target, temp, 0);
2227 return target;
2229 else
2230 return gen_lowpart (mode, temp);
2232 else
2233 delete_insns_since (last);
2238 delete_insns_since (entry_last);
2239 return 0;
2242 /* Expand a binary operator which has both signed and unsigned forms.
2243 UOPTAB is the optab for unsigned operations, and SOPTAB is for
2244 signed operations.
2246 If we widen unsigned operands, we may use a signed wider operation instead
2247 of an unsigned wider operation, since the result would be the same. */
2250 sign_expand_binop (machine_mode mode, optab uoptab, optab soptab,
2251 rtx op0, rtx op1, rtx target, int unsignedp,
2252 enum optab_methods methods)
2254 rtx temp;
2255 optab direct_optab = unsignedp ? uoptab : soptab;
2256 bool save_enable;
2258 /* Do it without widening, if possible. */
2259 temp = expand_binop (mode, direct_optab, op0, op1, target,
2260 unsignedp, OPTAB_DIRECT);
2261 if (temp || methods == OPTAB_DIRECT)
2262 return temp;
2264 /* Try widening to a signed int. Disable any direct use of any
2265 signed insn in the current mode. */
2266 save_enable = swap_optab_enable (soptab, mode, false);
2268 temp = expand_binop (mode, soptab, op0, op1, target,
2269 unsignedp, OPTAB_WIDEN);
2271 /* For unsigned operands, try widening to an unsigned int. */
2272 if (!temp && unsignedp)
2273 temp = expand_binop (mode, uoptab, op0, op1, target,
2274 unsignedp, OPTAB_WIDEN);
2275 if (temp || methods == OPTAB_WIDEN)
2276 goto egress;
2278 /* Use the right width libcall if that exists. */
2279 temp = expand_binop (mode, direct_optab, op0, op1, target,
2280 unsignedp, OPTAB_LIB);
2281 if (temp || methods == OPTAB_LIB)
2282 goto egress;
2284 /* Must widen and use a libcall, use either signed or unsigned. */
2285 temp = expand_binop (mode, soptab, op0, op1, target,
2286 unsignedp, methods);
2287 if (!temp && unsignedp)
2288 temp = expand_binop (mode, uoptab, op0, op1, target,
2289 unsignedp, methods);
2291 egress:
2292 /* Undo the fiddling above. */
2293 if (save_enable)
2294 swap_optab_enable (soptab, mode, true);
2295 return temp;
2298 /* Generate code to perform an operation specified by UNOPPTAB
2299 on operand OP0, with two results to TARG0 and TARG1.
2300 We assume that the order of the operands for the instruction
2301 is TARG0, TARG1, OP0.
2303 Either TARG0 or TARG1 may be zero, but what that means is that
2304 the result is not actually wanted. We will generate it into
2305 a dummy pseudo-reg and discard it. They may not both be zero.
2307 Returns 1 if this operation can be performed; 0 if not. */
2310 expand_twoval_unop (optab unoptab, rtx op0, rtx targ0, rtx targ1,
2311 int unsignedp)
2313 machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
2314 enum mode_class mclass;
2315 machine_mode wider_mode;
2316 rtx_insn *entry_last = get_last_insn ();
2317 rtx_insn *last;
2319 mclass = GET_MODE_CLASS (mode);
2321 if (!targ0)
2322 targ0 = gen_reg_rtx (mode);
2323 if (!targ1)
2324 targ1 = gen_reg_rtx (mode);
2326 /* Record where to go back to if we fail. */
2327 last = get_last_insn ();
2329 if (optab_handler (unoptab, mode) != CODE_FOR_nothing)
2331 struct expand_operand ops[3];
2332 enum insn_code icode = optab_handler (unoptab, mode);
2334 create_fixed_operand (&ops[0], targ0);
2335 create_fixed_operand (&ops[1], targ1);
2336 create_convert_operand_from (&ops[2], op0, mode, unsignedp);
2337 if (maybe_expand_insn (icode, 3, ops))
2338 return 1;
2341 /* It can't be done in this mode. Can we do it in a wider mode? */
2343 if (CLASS_HAS_WIDER_MODES_P (mclass))
2345 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2346 wider_mode != VOIDmode;
2347 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2349 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
2351 rtx t0 = gen_reg_rtx (wider_mode);
2352 rtx t1 = gen_reg_rtx (wider_mode);
2353 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2355 if (expand_twoval_unop (unoptab, cop0, t0, t1, unsignedp))
2357 convert_move (targ0, t0, unsignedp);
2358 convert_move (targ1, t1, unsignedp);
2359 return 1;
2361 else
2362 delete_insns_since (last);
2367 delete_insns_since (entry_last);
2368 return 0;
2371 /* Generate code to perform an operation specified by BINOPTAB
2372 on operands OP0 and OP1, with two results to TARG1 and TARG2.
2373 We assume that the order of the operands for the instruction
2374 is TARG0, OP0, OP1, TARG1, which would fit a pattern like
2375 [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
2377 Either TARG0 or TARG1 may be zero, but what that means is that
2378 the result is not actually wanted. We will generate it into
2379 a dummy pseudo-reg and discard it. They may not both be zero.
2381 Returns 1 if this operation can be performed; 0 if not. */
2384 expand_twoval_binop (optab binoptab, rtx op0, rtx op1, rtx targ0, rtx targ1,
2385 int unsignedp)
2387 machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
2388 enum mode_class mclass;
2389 machine_mode wider_mode;
2390 rtx_insn *entry_last = get_last_insn ();
2391 rtx_insn *last;
2393 mclass = GET_MODE_CLASS (mode);
2395 if (!targ0)
2396 targ0 = gen_reg_rtx (mode);
2397 if (!targ1)
2398 targ1 = gen_reg_rtx (mode);
2400 /* Record where to go back to if we fail. */
2401 last = get_last_insn ();
2403 if (optab_handler (binoptab, mode) != CODE_FOR_nothing)
2405 struct expand_operand ops[4];
2406 enum insn_code icode = optab_handler (binoptab, mode);
2407 machine_mode mode0 = insn_data[icode].operand[1].mode;
2408 machine_mode mode1 = insn_data[icode].operand[2].mode;
2409 rtx xop0 = op0, xop1 = op1;
2411 /* If we are optimizing, force expensive constants into a register. */
2412 xop0 = avoid_expensive_constant (mode0, binoptab, 0, xop0, unsignedp);
2413 xop1 = avoid_expensive_constant (mode1, binoptab, 1, xop1, unsignedp);
2415 create_fixed_operand (&ops[0], targ0);
2416 create_convert_operand_from (&ops[1], op0, mode, unsignedp);
2417 create_convert_operand_from (&ops[2], op1, mode, unsignedp);
2418 create_fixed_operand (&ops[3], targ1);
2419 if (maybe_expand_insn (icode, 4, ops))
2420 return 1;
2421 delete_insns_since (last);
2424 /* It can't be done in this mode. Can we do it in a wider mode? */
2426 if (CLASS_HAS_WIDER_MODES_P (mclass))
2428 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2429 wider_mode != VOIDmode;
2430 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2432 if (optab_handler (binoptab, wider_mode) != CODE_FOR_nothing)
2434 rtx t0 = gen_reg_rtx (wider_mode);
2435 rtx t1 = gen_reg_rtx (wider_mode);
2436 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2437 rtx cop1 = convert_modes (wider_mode, mode, op1, unsignedp);
2439 if (expand_twoval_binop (binoptab, cop0, cop1,
2440 t0, t1, unsignedp))
2442 convert_move (targ0, t0, unsignedp);
2443 convert_move (targ1, t1, unsignedp);
2444 return 1;
2446 else
2447 delete_insns_since (last);
2452 delete_insns_since (entry_last);
2453 return 0;
2456 /* Expand the two-valued library call indicated by BINOPTAB, but
2457 preserve only one of the values. If TARG0 is non-NULL, the first
2458 value is placed into TARG0; otherwise the second value is placed
2459 into TARG1. Exactly one of TARG0 and TARG1 must be non-NULL. The
2460 value stored into TARG0 or TARG1 is equivalent to (CODE OP0 OP1).
2461 This routine assumes that the value returned by the library call is
2462 as if the return value was of an integral mode twice as wide as the
2463 mode of OP0. Returns 1 if the call was successful. */
2465 bool
2466 expand_twoval_binop_libfunc (optab binoptab, rtx op0, rtx op1,
2467 rtx targ0, rtx targ1, enum rtx_code code)
2469 machine_mode mode;
2470 machine_mode libval_mode;
2471 rtx libval;
2472 rtx_insn *insns;
2473 rtx libfunc;
2475 /* Exactly one of TARG0 or TARG1 should be non-NULL. */
2476 gcc_assert (!targ0 != !targ1);
2478 mode = GET_MODE (op0);
2479 libfunc = optab_libfunc (binoptab, mode);
2480 if (!libfunc)
2481 return false;
2483 /* The value returned by the library function will have twice as
2484 many bits as the nominal MODE. */
2485 libval_mode = smallest_mode_for_size (2 * GET_MODE_BITSIZE (mode),
2486 MODE_INT);
2487 start_sequence ();
2488 libval = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
2489 libval_mode, 2,
2490 op0, mode,
2491 op1, mode);
2492 /* Get the part of VAL containing the value that we want. */
2493 libval = simplify_gen_subreg (mode, libval, libval_mode,
2494 targ0 ? 0 : GET_MODE_SIZE (mode));
2495 insns = get_insns ();
2496 end_sequence ();
2497 /* Move the into the desired location. */
2498 emit_libcall_block (insns, targ0 ? targ0 : targ1, libval,
2499 gen_rtx_fmt_ee (code, mode, op0, op1));
2501 return true;
2505 /* Wrapper around expand_unop which takes an rtx code to specify
2506 the operation to perform, not an optab pointer. All other
2507 arguments are the same. */
2509 expand_simple_unop (machine_mode mode, enum rtx_code code, rtx op0,
2510 rtx target, int unsignedp)
2512 optab unop = code_to_optab (code);
2513 gcc_assert (unop);
2515 return expand_unop (mode, unop, op0, target, unsignedp);
2518 /* Try calculating
2519 (clz:narrow x)
2521 (clz:wide (zero_extend:wide x)) - ((width wide) - (width narrow)).
2523 A similar operation can be used for clrsb. UNOPTAB says which operation
2524 we are trying to expand. */
2525 static rtx
2526 widen_leading (machine_mode mode, rtx op0, rtx target, optab unoptab)
2528 enum mode_class mclass = GET_MODE_CLASS (mode);
2529 if (CLASS_HAS_WIDER_MODES_P (mclass))
2531 machine_mode wider_mode;
2532 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2533 wider_mode != VOIDmode;
2534 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2536 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
2538 rtx xop0, temp;
2539 rtx_insn *last;
2541 last = get_last_insn ();
2543 if (target == 0)
2544 target = gen_reg_rtx (mode);
2545 xop0 = widen_operand (op0, wider_mode, mode,
2546 unoptab != clrsb_optab, false);
2547 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2548 unoptab != clrsb_optab);
2549 if (temp != 0)
2550 temp = expand_binop
2551 (wider_mode, sub_optab, temp,
2552 gen_int_mode (GET_MODE_PRECISION (wider_mode)
2553 - GET_MODE_PRECISION (mode),
2554 wider_mode),
2555 target, true, OPTAB_DIRECT);
2556 if (temp == 0)
2557 delete_insns_since (last);
2559 return temp;
2563 return 0;
2566 /* Try calculating clz of a double-word quantity as two clz's of word-sized
2567 quantities, choosing which based on whether the high word is nonzero. */
2568 static rtx
2569 expand_doubleword_clz (machine_mode mode, rtx op0, rtx target)
2571 rtx xop0 = force_reg (mode, op0);
2572 rtx subhi = gen_highpart (word_mode, xop0);
2573 rtx sublo = gen_lowpart (word_mode, xop0);
2574 rtx_code_label *hi0_label = gen_label_rtx ();
2575 rtx_code_label *after_label = gen_label_rtx ();
2576 rtx_insn *seq;
2577 rtx temp, result;
2579 /* If we were not given a target, use a word_mode register, not a
2580 'mode' register. The result will fit, and nobody is expecting
2581 anything bigger (the return type of __builtin_clz* is int). */
2582 if (!target)
2583 target = gen_reg_rtx (word_mode);
2585 /* In any case, write to a word_mode scratch in both branches of the
2586 conditional, so we can ensure there is a single move insn setting
2587 'target' to tag a REG_EQUAL note on. */
2588 result = gen_reg_rtx (word_mode);
2590 start_sequence ();
2592 /* If the high word is not equal to zero,
2593 then clz of the full value is clz of the high word. */
2594 emit_cmp_and_jump_insns (subhi, CONST0_RTX (word_mode), EQ, 0,
2595 word_mode, true, hi0_label);
2597 temp = expand_unop_direct (word_mode, clz_optab, subhi, result, true);
2598 if (!temp)
2599 goto fail;
2601 if (temp != result)
2602 convert_move (result, temp, true);
2604 emit_jump_insn (gen_jump (after_label));
2605 emit_barrier ();
2607 /* Else clz of the full value is clz of the low word plus the number
2608 of bits in the high word. */
2609 emit_label (hi0_label);
2611 temp = expand_unop_direct (word_mode, clz_optab, sublo, 0, true);
2612 if (!temp)
2613 goto fail;
2614 temp = expand_binop (word_mode, add_optab, temp,
2615 gen_int_mode (GET_MODE_BITSIZE (word_mode), word_mode),
2616 result, true, OPTAB_DIRECT);
2617 if (!temp)
2618 goto fail;
2619 if (temp != result)
2620 convert_move (result, temp, true);
2622 emit_label (after_label);
2623 convert_move (target, result, true);
2625 seq = get_insns ();
2626 end_sequence ();
2628 add_equal_note (seq, target, CLZ, xop0, 0);
2629 emit_insn (seq);
2630 return target;
2632 fail:
2633 end_sequence ();
2634 return 0;
2637 /* Try calculating
2638 (bswap:narrow x)
2640 (lshiftrt:wide (bswap:wide x) ((width wide) - (width narrow))). */
2641 static rtx
2642 widen_bswap (machine_mode mode, rtx op0, rtx target)
2644 enum mode_class mclass = GET_MODE_CLASS (mode);
2645 machine_mode wider_mode;
2646 rtx x;
2647 rtx_insn *last;
2649 if (!CLASS_HAS_WIDER_MODES_P (mclass))
2650 return NULL_RTX;
2652 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2653 wider_mode != VOIDmode;
2654 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2655 if (optab_handler (bswap_optab, wider_mode) != CODE_FOR_nothing)
2656 goto found;
2657 return NULL_RTX;
2659 found:
2660 last = get_last_insn ();
2662 x = widen_operand (op0, wider_mode, mode, true, true);
2663 x = expand_unop (wider_mode, bswap_optab, x, NULL_RTX, true);
2665 gcc_assert (GET_MODE_PRECISION (wider_mode) == GET_MODE_BITSIZE (wider_mode)
2666 && GET_MODE_PRECISION (mode) == GET_MODE_BITSIZE (mode));
2667 if (x != 0)
2668 x = expand_shift (RSHIFT_EXPR, wider_mode, x,
2669 GET_MODE_BITSIZE (wider_mode)
2670 - GET_MODE_BITSIZE (mode),
2671 NULL_RTX, true);
2673 if (x != 0)
2675 if (target == 0)
2676 target = gen_reg_rtx (mode);
2677 emit_move_insn (target, gen_lowpart (mode, x));
2679 else
2680 delete_insns_since (last);
2682 return target;
2685 /* Try calculating bswap as two bswaps of two word-sized operands. */
2687 static rtx
2688 expand_doubleword_bswap (machine_mode mode, rtx op, rtx target)
2690 rtx t0, t1;
2692 t1 = expand_unop (word_mode, bswap_optab,
2693 operand_subword_force (op, 0, mode), NULL_RTX, true);
2694 t0 = expand_unop (word_mode, bswap_optab,
2695 operand_subword_force (op, 1, mode), NULL_RTX, true);
2697 if (target == 0 || !valid_multiword_target_p (target))
2698 target = gen_reg_rtx (mode);
2699 if (REG_P (target))
2700 emit_clobber (target);
2701 emit_move_insn (operand_subword (target, 0, 1, mode), t0);
2702 emit_move_insn (operand_subword (target, 1, 1, mode), t1);
2704 return target;
2707 /* Try calculating (parity x) as (and (popcount x) 1), where
2708 popcount can also be done in a wider mode. */
2709 static rtx
2710 expand_parity (machine_mode mode, rtx op0, rtx target)
2712 enum mode_class mclass = GET_MODE_CLASS (mode);
2713 if (CLASS_HAS_WIDER_MODES_P (mclass))
2715 machine_mode wider_mode;
2716 for (wider_mode = mode; wider_mode != VOIDmode;
2717 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2719 if (optab_handler (popcount_optab, wider_mode) != CODE_FOR_nothing)
2721 rtx xop0, temp;
2722 rtx_insn *last;
2724 last = get_last_insn ();
2726 if (target == 0)
2727 target = gen_reg_rtx (mode);
2728 xop0 = widen_operand (op0, wider_mode, mode, true, false);
2729 temp = expand_unop (wider_mode, popcount_optab, xop0, NULL_RTX,
2730 true);
2731 if (temp != 0)
2732 temp = expand_binop (wider_mode, and_optab, temp, const1_rtx,
2733 target, true, OPTAB_DIRECT);
2734 if (temp == 0)
2735 delete_insns_since (last);
2737 return temp;
2741 return 0;
2744 /* Try calculating ctz(x) as K - clz(x & -x) ,
2745 where K is GET_MODE_PRECISION(mode) - 1.
2747 Both __builtin_ctz and __builtin_clz are undefined at zero, so we
2748 don't have to worry about what the hardware does in that case. (If
2749 the clz instruction produces the usual value at 0, which is K, the
2750 result of this code sequence will be -1; expand_ffs, below, relies
2751 on this. It might be nice to have it be K instead, for consistency
2752 with the (very few) processors that provide a ctz with a defined
2753 value, but that would take one more instruction, and it would be
2754 less convenient for expand_ffs anyway. */
2756 static rtx
2757 expand_ctz (machine_mode mode, rtx op0, rtx target)
2759 rtx_insn *seq;
2760 rtx temp;
2762 if (optab_handler (clz_optab, mode) == CODE_FOR_nothing)
2763 return 0;
2765 start_sequence ();
2767 temp = expand_unop_direct (mode, neg_optab, op0, NULL_RTX, true);
2768 if (temp)
2769 temp = expand_binop (mode, and_optab, op0, temp, NULL_RTX,
2770 true, OPTAB_DIRECT);
2771 if (temp)
2772 temp = expand_unop_direct (mode, clz_optab, temp, NULL_RTX, true);
2773 if (temp)
2774 temp = expand_binop (mode, sub_optab,
2775 gen_int_mode (GET_MODE_PRECISION (mode) - 1, mode),
2776 temp, target,
2777 true, OPTAB_DIRECT);
2778 if (temp == 0)
2780 end_sequence ();
2781 return 0;
2784 seq = get_insns ();
2785 end_sequence ();
2787 add_equal_note (seq, temp, CTZ, op0, 0);
2788 emit_insn (seq);
2789 return temp;
2793 /* Try calculating ffs(x) using ctz(x) if we have that instruction, or
2794 else with the sequence used by expand_clz.
2796 The ffs builtin promises to return zero for a zero value and ctz/clz
2797 may have an undefined value in that case. If they do not give us a
2798 convenient value, we have to generate a test and branch. */
2799 static rtx
2800 expand_ffs (machine_mode mode, rtx op0, rtx target)
2802 HOST_WIDE_INT val = 0;
2803 bool defined_at_zero = false;
2804 rtx temp;
2805 rtx_insn *seq;
2807 if (optab_handler (ctz_optab, mode) != CODE_FOR_nothing)
2809 start_sequence ();
2811 temp = expand_unop_direct (mode, ctz_optab, op0, 0, true);
2812 if (!temp)
2813 goto fail;
2815 defined_at_zero = (CTZ_DEFINED_VALUE_AT_ZERO (mode, val) == 2);
2817 else if (optab_handler (clz_optab, mode) != CODE_FOR_nothing)
2819 start_sequence ();
2820 temp = expand_ctz (mode, op0, 0);
2821 if (!temp)
2822 goto fail;
2824 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, val) == 2)
2826 defined_at_zero = true;
2827 val = (GET_MODE_PRECISION (mode) - 1) - val;
2830 else
2831 return 0;
2833 if (defined_at_zero && val == -1)
2834 /* No correction needed at zero. */;
2835 else
2837 /* We don't try to do anything clever with the situation found
2838 on some processors (eg Alpha) where ctz(0:mode) ==
2839 bitsize(mode). If someone can think of a way to send N to -1
2840 and leave alone all values in the range 0..N-1 (where N is a
2841 power of two), cheaper than this test-and-branch, please add it.
2843 The test-and-branch is done after the operation itself, in case
2844 the operation sets condition codes that can be recycled for this.
2845 (This is true on i386, for instance.) */
2847 rtx_code_label *nonzero_label = gen_label_rtx ();
2848 emit_cmp_and_jump_insns (op0, CONST0_RTX (mode), NE, 0,
2849 mode, true, nonzero_label);
2851 convert_move (temp, GEN_INT (-1), false);
2852 emit_label (nonzero_label);
2855 /* temp now has a value in the range -1..bitsize-1. ffs is supposed
2856 to produce a value in the range 0..bitsize. */
2857 temp = expand_binop (mode, add_optab, temp, gen_int_mode (1, mode),
2858 target, false, OPTAB_DIRECT);
2859 if (!temp)
2860 goto fail;
2862 seq = get_insns ();
2863 end_sequence ();
2865 add_equal_note (seq, temp, FFS, op0, 0);
2866 emit_insn (seq);
2867 return temp;
2869 fail:
2870 end_sequence ();
2871 return 0;
2874 /* Extract the OMODE lowpart from VAL, which has IMODE. Under certain
2875 conditions, VAL may already be a SUBREG against which we cannot generate
2876 a further SUBREG. In this case, we expect forcing the value into a
2877 register will work around the situation. */
2879 static rtx
2880 lowpart_subreg_maybe_copy (machine_mode omode, rtx val,
2881 machine_mode imode)
2883 rtx ret;
2884 ret = lowpart_subreg (omode, val, imode);
2885 if (ret == NULL)
2887 val = force_reg (imode, val);
2888 ret = lowpart_subreg (omode, val, imode);
2889 gcc_assert (ret != NULL);
2891 return ret;
2894 /* Expand a floating point absolute value or negation operation via a
2895 logical operation on the sign bit. */
2897 static rtx
2898 expand_absneg_bit (enum rtx_code code, machine_mode mode,
2899 rtx op0, rtx target)
2901 const struct real_format *fmt;
2902 int bitpos, word, nwords, i;
2903 machine_mode imode;
2904 rtx temp;
2905 rtx_insn *insns;
2907 /* The format has to have a simple sign bit. */
2908 fmt = REAL_MODE_FORMAT (mode);
2909 if (fmt == NULL)
2910 return NULL_RTX;
2912 bitpos = fmt->signbit_rw;
2913 if (bitpos < 0)
2914 return NULL_RTX;
2916 /* Don't create negative zeros if the format doesn't support them. */
2917 if (code == NEG && !fmt->has_signed_zero)
2918 return NULL_RTX;
2920 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
2922 imode = int_mode_for_mode (mode);
2923 if (imode == BLKmode)
2924 return NULL_RTX;
2925 word = 0;
2926 nwords = 1;
2928 else
2930 imode = word_mode;
2932 if (FLOAT_WORDS_BIG_ENDIAN)
2933 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
2934 else
2935 word = bitpos / BITS_PER_WORD;
2936 bitpos = bitpos % BITS_PER_WORD;
2937 nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
2940 wide_int mask = wi::set_bit_in_zero (bitpos, GET_MODE_PRECISION (imode));
2941 if (code == ABS)
2942 mask = ~mask;
2944 if (target == 0
2945 || target == op0
2946 || (nwords > 1 && !valid_multiword_target_p (target)))
2947 target = gen_reg_rtx (mode);
2949 if (nwords > 1)
2951 start_sequence ();
2953 for (i = 0; i < nwords; ++i)
2955 rtx targ_piece = operand_subword (target, i, 1, mode);
2956 rtx op0_piece = operand_subword_force (op0, i, mode);
2958 if (i == word)
2960 temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
2961 op0_piece,
2962 immed_wide_int_const (mask, imode),
2963 targ_piece, 1, OPTAB_LIB_WIDEN);
2964 if (temp != targ_piece)
2965 emit_move_insn (targ_piece, temp);
2967 else
2968 emit_move_insn (targ_piece, op0_piece);
2971 insns = get_insns ();
2972 end_sequence ();
2974 emit_insn (insns);
2976 else
2978 temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
2979 gen_lowpart (imode, op0),
2980 immed_wide_int_const (mask, imode),
2981 gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
2982 target = lowpart_subreg_maybe_copy (mode, temp, imode);
2984 set_dst_reg_note (get_last_insn (), REG_EQUAL,
2985 gen_rtx_fmt_e (code, mode, copy_rtx (op0)),
2986 target);
2989 return target;
2992 /* As expand_unop, but will fail rather than attempt the operation in a
2993 different mode or with a libcall. */
2994 static rtx
2995 expand_unop_direct (machine_mode mode, optab unoptab, rtx op0, rtx target,
2996 int unsignedp)
2998 if (optab_handler (unoptab, mode) != CODE_FOR_nothing)
3000 struct expand_operand ops[2];
3001 enum insn_code icode = optab_handler (unoptab, mode);
3002 rtx_insn *last = get_last_insn ();
3003 rtx_insn *pat;
3005 create_output_operand (&ops[0], target, mode);
3006 create_convert_operand_from (&ops[1], op0, mode, unsignedp);
3007 pat = maybe_gen_insn (icode, 2, ops);
3008 if (pat)
3010 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
3011 && ! add_equal_note (pat, ops[0].value,
3012 optab_to_code (unoptab),
3013 ops[1].value, NULL_RTX))
3015 delete_insns_since (last);
3016 return expand_unop (mode, unoptab, op0, NULL_RTX, unsignedp);
3019 emit_insn (pat);
3021 return ops[0].value;
3024 return 0;
3027 /* Generate code to perform an operation specified by UNOPTAB
3028 on operand OP0, with result having machine-mode MODE.
3030 UNSIGNEDP is for the case where we have to widen the operands
3031 to perform the operation. It says to use zero-extension.
3033 If TARGET is nonzero, the value
3034 is generated there, if it is convenient to do so.
3035 In all cases an rtx is returned for the locus of the value;
3036 this may or may not be TARGET. */
3039 expand_unop (machine_mode mode, optab unoptab, rtx op0, rtx target,
3040 int unsignedp)
3042 enum mode_class mclass = GET_MODE_CLASS (mode);
3043 machine_mode wider_mode;
3044 rtx temp;
3045 rtx libfunc;
3047 temp = expand_unop_direct (mode, unoptab, op0, target, unsignedp);
3048 if (temp)
3049 return temp;
3051 /* It can't be done in this mode. Can we open-code it in a wider mode? */
3053 /* Widening (or narrowing) clz needs special treatment. */
3054 if (unoptab == clz_optab)
3056 temp = widen_leading (mode, op0, target, unoptab);
3057 if (temp)
3058 return temp;
3060 if (GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
3061 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
3063 temp = expand_doubleword_clz (mode, op0, target);
3064 if (temp)
3065 return temp;
3068 goto try_libcall;
3071 if (unoptab == clrsb_optab)
3073 temp = widen_leading (mode, op0, target, unoptab);
3074 if (temp)
3075 return temp;
3076 goto try_libcall;
3079 /* Widening (or narrowing) bswap needs special treatment. */
3080 if (unoptab == bswap_optab)
3082 /* HImode is special because in this mode BSWAP is equivalent to ROTATE
3083 or ROTATERT. First try these directly; if this fails, then try the
3084 obvious pair of shifts with allowed widening, as this will probably
3085 be always more efficient than the other fallback methods. */
3086 if (mode == HImode)
3088 rtx_insn *last;
3089 rtx temp1, temp2;
3091 if (optab_handler (rotl_optab, mode) != CODE_FOR_nothing)
3093 temp = expand_binop (mode, rotl_optab, op0, GEN_INT (8), target,
3094 unsignedp, OPTAB_DIRECT);
3095 if (temp)
3096 return temp;
3099 if (optab_handler (rotr_optab, mode) != CODE_FOR_nothing)
3101 temp = expand_binop (mode, rotr_optab, op0, GEN_INT (8), target,
3102 unsignedp, OPTAB_DIRECT);
3103 if (temp)
3104 return temp;
3107 last = get_last_insn ();
3109 temp1 = expand_binop (mode, ashl_optab, op0, GEN_INT (8), NULL_RTX,
3110 unsignedp, OPTAB_WIDEN);
3111 temp2 = expand_binop (mode, lshr_optab, op0, GEN_INT (8), NULL_RTX,
3112 unsignedp, OPTAB_WIDEN);
3113 if (temp1 && temp2)
3115 temp = expand_binop (mode, ior_optab, temp1, temp2, target,
3116 unsignedp, OPTAB_WIDEN);
3117 if (temp)
3118 return temp;
3121 delete_insns_since (last);
3124 temp = widen_bswap (mode, op0, target);
3125 if (temp)
3126 return temp;
3128 if (GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
3129 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
3131 temp = expand_doubleword_bswap (mode, op0, target);
3132 if (temp)
3133 return temp;
3136 goto try_libcall;
3139 if (CLASS_HAS_WIDER_MODES_P (mclass))
3140 for (wider_mode = GET_MODE_WIDER_MODE (mode);
3141 wider_mode != VOIDmode;
3142 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3144 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
3146 rtx xop0 = op0;
3147 rtx_insn *last = get_last_insn ();
3149 /* For certain operations, we need not actually extend
3150 the narrow operand, as long as we will truncate the
3151 results to the same narrowness. */
3153 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
3154 (unoptab == neg_optab
3155 || unoptab == one_cmpl_optab)
3156 && mclass == MODE_INT);
3158 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
3159 unsignedp);
3161 if (temp)
3163 if (mclass != MODE_INT
3164 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
3166 if (target == 0)
3167 target = gen_reg_rtx (mode);
3168 convert_move (target, temp, 0);
3169 return target;
3171 else
3172 return gen_lowpart (mode, temp);
3174 else
3175 delete_insns_since (last);
3179 /* These can be done a word at a time. */
3180 if (unoptab == one_cmpl_optab
3181 && mclass == MODE_INT
3182 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
3183 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
3185 int i;
3186 rtx_insn *insns;
3188 if (target == 0 || target == op0 || !valid_multiword_target_p (target))
3189 target = gen_reg_rtx (mode);
3191 start_sequence ();
3193 /* Do the actual arithmetic. */
3194 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
3196 rtx target_piece = operand_subword (target, i, 1, mode);
3197 rtx x = expand_unop (word_mode, unoptab,
3198 operand_subword_force (op0, i, mode),
3199 target_piece, unsignedp);
3201 if (target_piece != x)
3202 emit_move_insn (target_piece, x);
3205 insns = get_insns ();
3206 end_sequence ();
3208 emit_insn (insns);
3209 return target;
3212 if (optab_to_code (unoptab) == NEG)
3214 /* Try negating floating point values by flipping the sign bit. */
3215 if (SCALAR_FLOAT_MODE_P (mode))
3217 temp = expand_absneg_bit (NEG, mode, op0, target);
3218 if (temp)
3219 return temp;
3222 /* If there is no negation pattern, and we have no negative zero,
3223 try subtracting from zero. */
3224 if (!HONOR_SIGNED_ZEROS (mode))
3226 temp = expand_binop (mode, (unoptab == negv_optab
3227 ? subv_optab : sub_optab),
3228 CONST0_RTX (mode), op0, target,
3229 unsignedp, OPTAB_DIRECT);
3230 if (temp)
3231 return temp;
3235 /* Try calculating parity (x) as popcount (x) % 2. */
3236 if (unoptab == parity_optab)
3238 temp = expand_parity (mode, op0, target);
3239 if (temp)
3240 return temp;
3243 /* Try implementing ffs (x) in terms of clz (x). */
3244 if (unoptab == ffs_optab)
3246 temp = expand_ffs (mode, op0, target);
3247 if (temp)
3248 return temp;
3251 /* Try implementing ctz (x) in terms of clz (x). */
3252 if (unoptab == ctz_optab)
3254 temp = expand_ctz (mode, op0, target);
3255 if (temp)
3256 return temp;
3259 try_libcall:
3260 /* Now try a library call in this mode. */
3261 libfunc = optab_libfunc (unoptab, mode);
3262 if (libfunc)
3264 rtx_insn *insns;
3265 rtx value;
3266 rtx eq_value;
3267 machine_mode outmode = mode;
3269 /* All of these functions return small values. Thus we choose to
3270 have them return something that isn't a double-word. */
3271 if (unoptab == ffs_optab || unoptab == clz_optab || unoptab == ctz_optab
3272 || unoptab == clrsb_optab || unoptab == popcount_optab
3273 || unoptab == parity_optab)
3274 outmode
3275 = GET_MODE (hard_libcall_value (TYPE_MODE (integer_type_node),
3276 optab_libfunc (unoptab, mode)));
3278 start_sequence ();
3280 /* Pass 1 for NO_QUEUE so we don't lose any increments
3281 if the libcall is cse'd or moved. */
3282 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, outmode,
3283 1, op0, mode);
3284 insns = get_insns ();
3285 end_sequence ();
3287 target = gen_reg_rtx (outmode);
3288 eq_value = gen_rtx_fmt_e (optab_to_code (unoptab), mode, op0);
3289 if (GET_MODE_SIZE (outmode) < GET_MODE_SIZE (mode))
3290 eq_value = simplify_gen_unary (TRUNCATE, outmode, eq_value, mode);
3291 else if (GET_MODE_SIZE (outmode) > GET_MODE_SIZE (mode))
3292 eq_value = simplify_gen_unary (ZERO_EXTEND, outmode, eq_value, mode);
3293 emit_libcall_block_1 (insns, target, value, eq_value,
3294 trapv_unoptab_p (unoptab));
3296 return target;
3299 /* It can't be done in this mode. Can we do it in a wider mode? */
3301 if (CLASS_HAS_WIDER_MODES_P (mclass))
3303 for (wider_mode = GET_MODE_WIDER_MODE (mode);
3304 wider_mode != VOIDmode;
3305 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3307 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing
3308 || optab_libfunc (unoptab, wider_mode))
3310 rtx xop0 = op0;
3311 rtx_insn *last = get_last_insn ();
3313 /* For certain operations, we need not actually extend
3314 the narrow operand, as long as we will truncate the
3315 results to the same narrowness. */
3316 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
3317 (unoptab == neg_optab
3318 || unoptab == one_cmpl_optab
3319 || unoptab == bswap_optab)
3320 && mclass == MODE_INT);
3322 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
3323 unsignedp);
3325 /* If we are generating clz using wider mode, adjust the
3326 result. Similarly for clrsb. */
3327 if ((unoptab == clz_optab || unoptab == clrsb_optab)
3328 && temp != 0)
3329 temp = expand_binop
3330 (wider_mode, sub_optab, temp,
3331 gen_int_mode (GET_MODE_PRECISION (wider_mode)
3332 - GET_MODE_PRECISION (mode),
3333 wider_mode),
3334 target, true, OPTAB_DIRECT);
3336 /* Likewise for bswap. */
3337 if (unoptab == bswap_optab && temp != 0)
3339 gcc_assert (GET_MODE_PRECISION (wider_mode)
3340 == GET_MODE_BITSIZE (wider_mode)
3341 && GET_MODE_PRECISION (mode)
3342 == GET_MODE_BITSIZE (mode));
3344 temp = expand_shift (RSHIFT_EXPR, wider_mode, temp,
3345 GET_MODE_BITSIZE (wider_mode)
3346 - GET_MODE_BITSIZE (mode),
3347 NULL_RTX, true);
3350 if (temp)
3352 if (mclass != MODE_INT)
3354 if (target == 0)
3355 target = gen_reg_rtx (mode);
3356 convert_move (target, temp, 0);
3357 return target;
3359 else
3360 return gen_lowpart (mode, temp);
3362 else
3363 delete_insns_since (last);
3368 /* One final attempt at implementing negation via subtraction,
3369 this time allowing widening of the operand. */
3370 if (optab_to_code (unoptab) == NEG && !HONOR_SIGNED_ZEROS (mode))
3372 rtx temp;
3373 temp = expand_binop (mode,
3374 unoptab == negv_optab ? subv_optab : sub_optab,
3375 CONST0_RTX (mode), op0,
3376 target, unsignedp, OPTAB_LIB_WIDEN);
3377 if (temp)
3378 return temp;
3381 return 0;
3384 /* Emit code to compute the absolute value of OP0, with result to
3385 TARGET if convenient. (TARGET may be 0.) The return value says
3386 where the result actually is to be found.
3388 MODE is the mode of the operand; the mode of the result is
3389 different but can be deduced from MODE.
3394 expand_abs_nojump (machine_mode mode, rtx op0, rtx target,
3395 int result_unsignedp)
3397 rtx temp;
3399 if (GET_MODE_CLASS (mode) != MODE_INT
3400 || ! flag_trapv)
3401 result_unsignedp = 1;
3403 /* First try to do it with a special abs instruction. */
3404 temp = expand_unop (mode, result_unsignedp ? abs_optab : absv_optab,
3405 op0, target, 0);
3406 if (temp != 0)
3407 return temp;
3409 /* For floating point modes, try clearing the sign bit. */
3410 if (SCALAR_FLOAT_MODE_P (mode))
3412 temp = expand_absneg_bit (ABS, mode, op0, target);
3413 if (temp)
3414 return temp;
3417 /* If we have a MAX insn, we can do this as MAX (x, -x). */
3418 if (optab_handler (smax_optab, mode) != CODE_FOR_nothing
3419 && !HONOR_SIGNED_ZEROS (mode))
3421 rtx_insn *last = get_last_insn ();
3423 temp = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab,
3424 op0, NULL_RTX, 0);
3425 if (temp != 0)
3426 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
3427 OPTAB_WIDEN);
3429 if (temp != 0)
3430 return temp;
3432 delete_insns_since (last);
3435 /* If this machine has expensive jumps, we can do integer absolute
3436 value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
3437 where W is the width of MODE. */
3439 if (GET_MODE_CLASS (mode) == MODE_INT
3440 && BRANCH_COST (optimize_insn_for_speed_p (),
3441 false) >= 2)
3443 rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
3444 GET_MODE_PRECISION (mode) - 1,
3445 NULL_RTX, 0);
3447 temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
3448 OPTAB_LIB_WIDEN);
3449 if (temp != 0)
3450 temp = expand_binop (mode, result_unsignedp ? sub_optab : subv_optab,
3451 temp, extended, target, 0, OPTAB_LIB_WIDEN);
3453 if (temp != 0)
3454 return temp;
3457 return NULL_RTX;
3461 expand_abs (machine_mode mode, rtx op0, rtx target,
3462 int result_unsignedp, int safe)
3464 rtx temp;
3465 rtx_code_label *op1;
3467 if (GET_MODE_CLASS (mode) != MODE_INT
3468 || ! flag_trapv)
3469 result_unsignedp = 1;
3471 temp = expand_abs_nojump (mode, op0, target, result_unsignedp);
3472 if (temp != 0)
3473 return temp;
3475 /* If that does not win, use conditional jump and negate. */
3477 /* It is safe to use the target if it is the same
3478 as the source if this is also a pseudo register */
3479 if (op0 == target && REG_P (op0)
3480 && REGNO (op0) >= FIRST_PSEUDO_REGISTER)
3481 safe = 1;
3483 op1 = gen_label_rtx ();
3484 if (target == 0 || ! safe
3485 || GET_MODE (target) != mode
3486 || (MEM_P (target) && MEM_VOLATILE_P (target))
3487 || (REG_P (target)
3488 && REGNO (target) < FIRST_PSEUDO_REGISTER))
3489 target = gen_reg_rtx (mode);
3491 emit_move_insn (target, op0);
3492 NO_DEFER_POP;
3494 do_compare_rtx_and_jump (target, CONST0_RTX (mode), GE, 0, mode,
3495 NULL_RTX, NULL, op1, -1);
3497 op0 = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab,
3498 target, target, 0);
3499 if (op0 != target)
3500 emit_move_insn (target, op0);
3501 emit_label (op1);
3502 OK_DEFER_POP;
3503 return target;
3506 /* Emit code to compute the one's complement absolute value of OP0
3507 (if (OP0 < 0) OP0 = ~OP0), with result to TARGET if convenient.
3508 (TARGET may be NULL_RTX.) The return value says where the result
3509 actually is to be found.
3511 MODE is the mode of the operand; the mode of the result is
3512 different but can be deduced from MODE. */
3515 expand_one_cmpl_abs_nojump (machine_mode mode, rtx op0, rtx target)
3517 rtx temp;
3519 /* Not applicable for floating point modes. */
3520 if (FLOAT_MODE_P (mode))
3521 return NULL_RTX;
3523 /* If we have a MAX insn, we can do this as MAX (x, ~x). */
3524 if (optab_handler (smax_optab, mode) != CODE_FOR_nothing)
3526 rtx_insn *last = get_last_insn ();
3528 temp = expand_unop (mode, one_cmpl_optab, op0, NULL_RTX, 0);
3529 if (temp != 0)
3530 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
3531 OPTAB_WIDEN);
3533 if (temp != 0)
3534 return temp;
3536 delete_insns_since (last);
3539 /* If this machine has expensive jumps, we can do one's complement
3540 absolute value of X as (((signed) x >> (W-1)) ^ x). */
3542 if (GET_MODE_CLASS (mode) == MODE_INT
3543 && BRANCH_COST (optimize_insn_for_speed_p (),
3544 false) >= 2)
3546 rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
3547 GET_MODE_PRECISION (mode) - 1,
3548 NULL_RTX, 0);
3550 temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
3551 OPTAB_LIB_WIDEN);
3553 if (temp != 0)
3554 return temp;
3557 return NULL_RTX;
3560 /* A subroutine of expand_copysign, perform the copysign operation using the
3561 abs and neg primitives advertised to exist on the target. The assumption
3562 is that we have a split register file, and leaving op0 in fp registers,
3563 and not playing with subregs so much, will help the register allocator. */
3565 static rtx
3566 expand_copysign_absneg (machine_mode mode, rtx op0, rtx op1, rtx target,
3567 int bitpos, bool op0_is_abs)
3569 machine_mode imode;
3570 enum insn_code icode;
3571 rtx sign;
3572 rtx_code_label *label;
3574 if (target == op1)
3575 target = NULL_RTX;
3577 /* Check if the back end provides an insn that handles signbit for the
3578 argument's mode. */
3579 icode = optab_handler (signbit_optab, mode);
3580 if (icode != CODE_FOR_nothing)
3582 imode = insn_data[(int) icode].operand[0].mode;
3583 sign = gen_reg_rtx (imode);
3584 emit_unop_insn (icode, sign, op1, UNKNOWN);
3586 else
3588 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
3590 imode = int_mode_for_mode (mode);
3591 if (imode == BLKmode)
3592 return NULL_RTX;
3593 op1 = gen_lowpart (imode, op1);
3595 else
3597 int word;
3599 imode = word_mode;
3600 if (FLOAT_WORDS_BIG_ENDIAN)
3601 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
3602 else
3603 word = bitpos / BITS_PER_WORD;
3604 bitpos = bitpos % BITS_PER_WORD;
3605 op1 = operand_subword_force (op1, word, mode);
3608 wide_int mask = wi::set_bit_in_zero (bitpos, GET_MODE_PRECISION (imode));
3609 sign = expand_binop (imode, and_optab, op1,
3610 immed_wide_int_const (mask, imode),
3611 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3614 if (!op0_is_abs)
3616 op0 = expand_unop (mode, abs_optab, op0, target, 0);
3617 if (op0 == NULL)
3618 return NULL_RTX;
3619 target = op0;
3621 else
3623 if (target == NULL_RTX)
3624 target = copy_to_reg (op0);
3625 else
3626 emit_move_insn (target, op0);
3629 label = gen_label_rtx ();
3630 emit_cmp_and_jump_insns (sign, const0_rtx, EQ, NULL_RTX, imode, 1, label);
3632 if (CONST_DOUBLE_AS_FLOAT_P (op0))
3633 op0 = simplify_unary_operation (NEG, mode, op0, mode);
3634 else
3635 op0 = expand_unop (mode, neg_optab, op0, target, 0);
3636 if (op0 != target)
3637 emit_move_insn (target, op0);
3639 emit_label (label);
3641 return target;
3645 /* A subroutine of expand_copysign, perform the entire copysign operation
3646 with integer bitmasks. BITPOS is the position of the sign bit; OP0_IS_ABS
3647 is true if op0 is known to have its sign bit clear. */
3649 static rtx
3650 expand_copysign_bit (machine_mode mode, rtx op0, rtx op1, rtx target,
3651 int bitpos, bool op0_is_abs)
3653 machine_mode imode;
3654 int word, nwords, i;
3655 rtx temp;
3656 rtx_insn *insns;
3658 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
3660 imode = int_mode_for_mode (mode);
3661 if (imode == BLKmode)
3662 return NULL_RTX;
3663 word = 0;
3664 nwords = 1;
3666 else
3668 imode = word_mode;
3670 if (FLOAT_WORDS_BIG_ENDIAN)
3671 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
3672 else
3673 word = bitpos / BITS_PER_WORD;
3674 bitpos = bitpos % BITS_PER_WORD;
3675 nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
3678 wide_int mask = wi::set_bit_in_zero (bitpos, GET_MODE_PRECISION (imode));
3680 if (target == 0
3681 || target == op0
3682 || target == op1
3683 || (nwords > 1 && !valid_multiword_target_p (target)))
3684 target = gen_reg_rtx (mode);
3686 if (nwords > 1)
3688 start_sequence ();
3690 for (i = 0; i < nwords; ++i)
3692 rtx targ_piece = operand_subword (target, i, 1, mode);
3693 rtx op0_piece = operand_subword_force (op0, i, mode);
3695 if (i == word)
3697 if (!op0_is_abs)
3698 op0_piece
3699 = expand_binop (imode, and_optab, op0_piece,
3700 immed_wide_int_const (~mask, imode),
3701 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3702 op1 = expand_binop (imode, and_optab,
3703 operand_subword_force (op1, i, mode),
3704 immed_wide_int_const (mask, imode),
3705 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3707 temp = expand_binop (imode, ior_optab, op0_piece, op1,
3708 targ_piece, 1, OPTAB_LIB_WIDEN);
3709 if (temp != targ_piece)
3710 emit_move_insn (targ_piece, temp);
3712 else
3713 emit_move_insn (targ_piece, op0_piece);
3716 insns = get_insns ();
3717 end_sequence ();
3719 emit_insn (insns);
3721 else
3723 op1 = expand_binop (imode, and_optab, gen_lowpart (imode, op1),
3724 immed_wide_int_const (mask, imode),
3725 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3727 op0 = gen_lowpart (imode, op0);
3728 if (!op0_is_abs)
3729 op0 = expand_binop (imode, and_optab, op0,
3730 immed_wide_int_const (~mask, imode),
3731 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3733 temp = expand_binop (imode, ior_optab, op0, op1,
3734 gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
3735 target = lowpart_subreg_maybe_copy (mode, temp, imode);
3738 return target;
3741 /* Expand the C99 copysign operation. OP0 and OP1 must be the same
3742 scalar floating point mode. Return NULL if we do not know how to
3743 expand the operation inline. */
3746 expand_copysign (rtx op0, rtx op1, rtx target)
3748 machine_mode mode = GET_MODE (op0);
3749 const struct real_format *fmt;
3750 bool op0_is_abs;
3751 rtx temp;
3753 gcc_assert (SCALAR_FLOAT_MODE_P (mode));
3754 gcc_assert (GET_MODE (op1) == mode);
3756 /* First try to do it with a special instruction. */
3757 temp = expand_binop (mode, copysign_optab, op0, op1,
3758 target, 0, OPTAB_DIRECT);
3759 if (temp)
3760 return temp;
3762 fmt = REAL_MODE_FORMAT (mode);
3763 if (fmt == NULL || !fmt->has_signed_zero)
3764 return NULL_RTX;
3766 op0_is_abs = false;
3767 if (CONST_DOUBLE_AS_FLOAT_P (op0))
3769 if (real_isneg (CONST_DOUBLE_REAL_VALUE (op0)))
3770 op0 = simplify_unary_operation (ABS, mode, op0, mode);
3771 op0_is_abs = true;
3774 if (fmt->signbit_ro >= 0
3775 && (CONST_DOUBLE_AS_FLOAT_P (op0)
3776 || (optab_handler (neg_optab, mode) != CODE_FOR_nothing
3777 && optab_handler (abs_optab, mode) != CODE_FOR_nothing)))
3779 temp = expand_copysign_absneg (mode, op0, op1, target,
3780 fmt->signbit_ro, op0_is_abs);
3781 if (temp)
3782 return temp;
3785 if (fmt->signbit_rw < 0)
3786 return NULL_RTX;
3787 return expand_copysign_bit (mode, op0, op1, target,
3788 fmt->signbit_rw, op0_is_abs);
3791 /* Generate an instruction whose insn-code is INSN_CODE,
3792 with two operands: an output TARGET and an input OP0.
3793 TARGET *must* be nonzero, and the output is always stored there.
3794 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3795 the value that is stored into TARGET.
3797 Return false if expansion failed. */
3799 bool
3800 maybe_emit_unop_insn (enum insn_code icode, rtx target, rtx op0,
3801 enum rtx_code code)
3803 struct expand_operand ops[2];
3804 rtx_insn *pat;
3806 create_output_operand (&ops[0], target, GET_MODE (target));
3807 create_input_operand (&ops[1], op0, GET_MODE (op0));
3808 pat = maybe_gen_insn (icode, 2, ops);
3809 if (!pat)
3810 return false;
3812 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
3813 && code != UNKNOWN)
3814 add_equal_note (pat, ops[0].value, code, ops[1].value, NULL_RTX);
3816 emit_insn (pat);
3818 if (ops[0].value != target)
3819 emit_move_insn (target, ops[0].value);
3820 return true;
3822 /* Generate an instruction whose insn-code is INSN_CODE,
3823 with two operands: an output TARGET and an input OP0.
3824 TARGET *must* be nonzero, and the output is always stored there.
3825 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3826 the value that is stored into TARGET. */
3828 void
3829 emit_unop_insn (enum insn_code icode, rtx target, rtx op0, enum rtx_code code)
3831 bool ok = maybe_emit_unop_insn (icode, target, op0, code);
3832 gcc_assert (ok);
3835 struct no_conflict_data
3837 rtx target;
3838 rtx_insn *first, *insn;
3839 bool must_stay;
3842 /* Called via note_stores by emit_libcall_block. Set P->must_stay if
3843 the currently examined clobber / store has to stay in the list of
3844 insns that constitute the actual libcall block. */
3845 static void
3846 no_conflict_move_test (rtx dest, const_rtx set, void *p0)
3848 struct no_conflict_data *p= (struct no_conflict_data *) p0;
3850 /* If this inns directly contributes to setting the target, it must stay. */
3851 if (reg_overlap_mentioned_p (p->target, dest))
3852 p->must_stay = true;
3853 /* If we haven't committed to keeping any other insns in the list yet,
3854 there is nothing more to check. */
3855 else if (p->insn == p->first)
3856 return;
3857 /* If this insn sets / clobbers a register that feeds one of the insns
3858 already in the list, this insn has to stay too. */
3859 else if (reg_overlap_mentioned_p (dest, PATTERN (p->first))
3860 || (CALL_P (p->first) && (find_reg_fusage (p->first, USE, dest)))
3861 || reg_used_between_p (dest, p->first, p->insn)
3862 /* Likewise if this insn depends on a register set by a previous
3863 insn in the list, or if it sets a result (presumably a hard
3864 register) that is set or clobbered by a previous insn.
3865 N.B. the modified_*_p (SET_DEST...) tests applied to a MEM
3866 SET_DEST perform the former check on the address, and the latter
3867 check on the MEM. */
3868 || (GET_CODE (set) == SET
3869 && (modified_in_p (SET_SRC (set), p->first)
3870 || modified_in_p (SET_DEST (set), p->first)
3871 || modified_between_p (SET_SRC (set), p->first, p->insn)
3872 || modified_between_p (SET_DEST (set), p->first, p->insn))))
3873 p->must_stay = true;
3877 /* Emit code to make a call to a constant function or a library call.
3879 INSNS is a list containing all insns emitted in the call.
3880 These insns leave the result in RESULT. Our block is to copy RESULT
3881 to TARGET, which is logically equivalent to EQUIV.
3883 We first emit any insns that set a pseudo on the assumption that these are
3884 loading constants into registers; doing so allows them to be safely cse'ed
3885 between blocks. Then we emit all the other insns in the block, followed by
3886 an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
3887 note with an operand of EQUIV. */
3889 static void
3890 emit_libcall_block_1 (rtx_insn *insns, rtx target, rtx result, rtx equiv,
3891 bool equiv_may_trap)
3893 rtx final_dest = target;
3894 rtx_insn *next, *last, *insn;
3896 /* If this is a reg with REG_USERVAR_P set, then it could possibly turn
3897 into a MEM later. Protect the libcall block from this change. */
3898 if (! REG_P (target) || REG_USERVAR_P (target))
3899 target = gen_reg_rtx (GET_MODE (target));
3901 /* If we're using non-call exceptions, a libcall corresponding to an
3902 operation that may trap may also trap. */
3903 /* ??? See the comment in front of make_reg_eh_region_note. */
3904 if (cfun->can_throw_non_call_exceptions
3905 && (equiv_may_trap || may_trap_p (equiv)))
3907 for (insn = insns; insn; insn = NEXT_INSN (insn))
3908 if (CALL_P (insn))
3910 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3911 if (note)
3913 int lp_nr = INTVAL (XEXP (note, 0));
3914 if (lp_nr == 0 || lp_nr == INT_MIN)
3915 remove_note (insn, note);
3919 else
3921 /* Look for any CALL_INSNs in this sequence, and attach a REG_EH_REGION
3922 reg note to indicate that this call cannot throw or execute a nonlocal
3923 goto (unless there is already a REG_EH_REGION note, in which case
3924 we update it). */
3925 for (insn = insns; insn; insn = NEXT_INSN (insn))
3926 if (CALL_P (insn))
3927 make_reg_eh_region_note_nothrow_nononlocal (insn);
3930 /* First emit all insns that set pseudos. Remove them from the list as
3931 we go. Avoid insns that set pseudos which were referenced in previous
3932 insns. These can be generated by move_by_pieces, for example,
3933 to update an address. Similarly, avoid insns that reference things
3934 set in previous insns. */
3936 for (insn = insns; insn; insn = next)
3938 rtx set = single_set (insn);
3940 next = NEXT_INSN (insn);
3942 if (set != 0 && REG_P (SET_DEST (set))
3943 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3945 struct no_conflict_data data;
3947 data.target = const0_rtx;
3948 data.first = insns;
3949 data.insn = insn;
3950 data.must_stay = 0;
3951 note_stores (PATTERN (insn), no_conflict_move_test, &data);
3952 if (! data.must_stay)
3954 if (PREV_INSN (insn))
3955 SET_NEXT_INSN (PREV_INSN (insn)) = next;
3956 else
3957 insns = next;
3959 if (next)
3960 SET_PREV_INSN (next) = PREV_INSN (insn);
3962 add_insn (insn);
3966 /* Some ports use a loop to copy large arguments onto the stack.
3967 Don't move anything outside such a loop. */
3968 if (LABEL_P (insn))
3969 break;
3972 /* Write the remaining insns followed by the final copy. */
3973 for (insn = insns; insn; insn = next)
3975 next = NEXT_INSN (insn);
3977 add_insn (insn);
3980 last = emit_move_insn (target, result);
3981 set_dst_reg_note (last, REG_EQUAL, copy_rtx (equiv), target);
3983 if (final_dest != target)
3984 emit_move_insn (final_dest, target);
3987 void
3988 emit_libcall_block (rtx insns, rtx target, rtx result, rtx equiv)
3990 emit_libcall_block_1 (safe_as_a <rtx_insn *> (insns),
3991 target, result, equiv, false);
3994 /* Nonzero if we can perform a comparison of mode MODE straightforwardly.
3995 PURPOSE describes how this comparison will be used. CODE is the rtx
3996 comparison code we will be using.
3998 ??? Actually, CODE is slightly weaker than that. A target is still
3999 required to implement all of the normal bcc operations, but not
4000 required to implement all (or any) of the unordered bcc operations. */
4003 can_compare_p (enum rtx_code code, machine_mode mode,
4004 enum can_compare_purpose purpose)
4006 rtx test;
4007 test = gen_rtx_fmt_ee (code, mode, const0_rtx, const0_rtx);
4010 enum insn_code icode;
4012 if (purpose == ccp_jump
4013 && (icode = optab_handler (cbranch_optab, mode)) != CODE_FOR_nothing
4014 && insn_operand_matches (icode, 0, test))
4015 return 1;
4016 if (purpose == ccp_store_flag
4017 && (icode = optab_handler (cstore_optab, mode)) != CODE_FOR_nothing
4018 && insn_operand_matches (icode, 1, test))
4019 return 1;
4020 if (purpose == ccp_cmov
4021 && optab_handler (cmov_optab, mode) != CODE_FOR_nothing)
4022 return 1;
4024 mode = GET_MODE_WIDER_MODE (mode);
4025 PUT_MODE (test, mode);
4027 while (mode != VOIDmode);
4029 return 0;
4032 /* This function is called when we are going to emit a compare instruction that
4033 compares the values found in *PX and *PY, using the rtl operator COMPARISON.
4035 *PMODE is the mode of the inputs (in case they are const_int).
4036 *PUNSIGNEDP nonzero says that the operands are unsigned;
4037 this matters if they need to be widened (as given by METHODS).
4039 If they have mode BLKmode, then SIZE specifies the size of both operands.
4041 This function performs all the setup necessary so that the caller only has
4042 to emit a single comparison insn. This setup can involve doing a BLKmode
4043 comparison or emitting a library call to perform the comparison if no insn
4044 is available to handle it.
4045 The values which are passed in through pointers can be modified; the caller
4046 should perform the comparison on the modified values. Constant
4047 comparisons must have already been folded. */
4049 static void
4050 prepare_cmp_insn (rtx x, rtx y, enum rtx_code comparison, rtx size,
4051 int unsignedp, enum optab_methods methods,
4052 rtx *ptest, machine_mode *pmode)
4054 machine_mode mode = *pmode;
4055 rtx libfunc, test;
4056 machine_mode cmp_mode;
4057 enum mode_class mclass;
4059 /* The other methods are not needed. */
4060 gcc_assert (methods == OPTAB_DIRECT || methods == OPTAB_WIDEN
4061 || methods == OPTAB_LIB_WIDEN);
4063 /* If we are optimizing, force expensive constants into a register. */
4064 if (CONSTANT_P (x) && optimize
4065 && (rtx_cost (x, COMPARE, 0, optimize_insn_for_speed_p ())
4066 > COSTS_N_INSNS (1)))
4067 x = force_reg (mode, x);
4069 if (CONSTANT_P (y) && optimize
4070 && (rtx_cost (y, COMPARE, 1, optimize_insn_for_speed_p ())
4071 > COSTS_N_INSNS (1)))
4072 y = force_reg (mode, y);
4074 #if HAVE_cc0
4075 /* Make sure if we have a canonical comparison. The RTL
4076 documentation states that canonical comparisons are required only
4077 for targets which have cc0. */
4078 gcc_assert (!CONSTANT_P (x) || CONSTANT_P (y));
4079 #endif
4081 /* Don't let both operands fail to indicate the mode. */
4082 if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode)
4083 x = force_reg (mode, x);
4084 if (mode == VOIDmode)
4085 mode = GET_MODE (x) != VOIDmode ? GET_MODE (x) : GET_MODE (y);
4087 /* Handle all BLKmode compares. */
4089 if (mode == BLKmode)
4091 machine_mode result_mode;
4092 enum insn_code cmp_code;
4093 tree length_type;
4094 rtx libfunc;
4095 rtx result;
4096 rtx opalign
4097 = GEN_INT (MIN (MEM_ALIGN (x), MEM_ALIGN (y)) / BITS_PER_UNIT);
4099 gcc_assert (size);
4101 /* Try to use a memory block compare insn - either cmpstr
4102 or cmpmem will do. */
4103 for (cmp_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
4104 cmp_mode != VOIDmode;
4105 cmp_mode = GET_MODE_WIDER_MODE (cmp_mode))
4107 cmp_code = direct_optab_handler (cmpmem_optab, cmp_mode);
4108 if (cmp_code == CODE_FOR_nothing)
4109 cmp_code = direct_optab_handler (cmpstr_optab, cmp_mode);
4110 if (cmp_code == CODE_FOR_nothing)
4111 cmp_code = direct_optab_handler (cmpstrn_optab, cmp_mode);
4112 if (cmp_code == CODE_FOR_nothing)
4113 continue;
4115 /* Must make sure the size fits the insn's mode. */
4116 if ((CONST_INT_P (size)
4117 && INTVAL (size) >= (1 << GET_MODE_BITSIZE (cmp_mode)))
4118 || (GET_MODE_BITSIZE (GET_MODE (size))
4119 > GET_MODE_BITSIZE (cmp_mode)))
4120 continue;
4122 result_mode = insn_data[cmp_code].operand[0].mode;
4123 result = gen_reg_rtx (result_mode);
4124 size = convert_to_mode (cmp_mode, size, 1);
4125 emit_insn (GEN_FCN (cmp_code) (result, x, y, size, opalign));
4127 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, result, const0_rtx);
4128 *pmode = result_mode;
4129 return;
4132 if (methods != OPTAB_LIB && methods != OPTAB_LIB_WIDEN)
4133 goto fail;
4135 /* Otherwise call a library function, memcmp. */
4136 libfunc = memcmp_libfunc;
4137 length_type = sizetype;
4138 result_mode = TYPE_MODE (integer_type_node);
4139 cmp_mode = TYPE_MODE (length_type);
4140 size = convert_to_mode (TYPE_MODE (length_type), size,
4141 TYPE_UNSIGNED (length_type));
4143 result = emit_library_call_value (libfunc, 0, LCT_PURE,
4144 result_mode, 3,
4145 XEXP (x, 0), Pmode,
4146 XEXP (y, 0), Pmode,
4147 size, cmp_mode);
4148 x = result;
4149 y = const0_rtx;
4150 mode = result_mode;
4151 methods = OPTAB_LIB_WIDEN;
4152 unsignedp = false;
4155 /* Don't allow operands to the compare to trap, as that can put the
4156 compare and branch in different basic blocks. */
4157 if (cfun->can_throw_non_call_exceptions)
4159 if (may_trap_p (x))
4160 x = force_reg (mode, x);
4161 if (may_trap_p (y))
4162 y = force_reg (mode, y);
4165 if (GET_MODE_CLASS (mode) == MODE_CC)
4167 enum insn_code icode = optab_handler (cbranch_optab, CCmode);
4168 test = gen_rtx_fmt_ee (comparison, VOIDmode, x, y);
4169 gcc_assert (icode != CODE_FOR_nothing
4170 && insn_operand_matches (icode, 0, test));
4171 *ptest = test;
4172 return;
4175 mclass = GET_MODE_CLASS (mode);
4176 test = gen_rtx_fmt_ee (comparison, VOIDmode, x, y);
4177 cmp_mode = mode;
4180 enum insn_code icode;
4181 icode = optab_handler (cbranch_optab, cmp_mode);
4182 if (icode != CODE_FOR_nothing
4183 && insn_operand_matches (icode, 0, test))
4185 rtx_insn *last = get_last_insn ();
4186 rtx op0 = prepare_operand (icode, x, 1, mode, cmp_mode, unsignedp);
4187 rtx op1 = prepare_operand (icode, y, 2, mode, cmp_mode, unsignedp);
4188 if (op0 && op1
4189 && insn_operand_matches (icode, 1, op0)
4190 && insn_operand_matches (icode, 2, op1))
4192 XEXP (test, 0) = op0;
4193 XEXP (test, 1) = op1;
4194 *ptest = test;
4195 *pmode = cmp_mode;
4196 return;
4198 delete_insns_since (last);
4201 if (methods == OPTAB_DIRECT || !CLASS_HAS_WIDER_MODES_P (mclass))
4202 break;
4203 cmp_mode = GET_MODE_WIDER_MODE (cmp_mode);
4205 while (cmp_mode != VOIDmode);
4207 if (methods != OPTAB_LIB_WIDEN)
4208 goto fail;
4210 if (!SCALAR_FLOAT_MODE_P (mode))
4212 rtx result;
4213 machine_mode ret_mode;
4215 /* Handle a libcall just for the mode we are using. */
4216 libfunc = optab_libfunc (cmp_optab, mode);
4217 gcc_assert (libfunc);
4219 /* If we want unsigned, and this mode has a distinct unsigned
4220 comparison routine, use that. */
4221 if (unsignedp)
4223 rtx ulibfunc = optab_libfunc (ucmp_optab, mode);
4224 if (ulibfunc)
4225 libfunc = ulibfunc;
4228 ret_mode = targetm.libgcc_cmp_return_mode ();
4229 result = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4230 ret_mode, 2, x, mode, y, mode);
4232 /* There are two kinds of comparison routines. Biased routines
4233 return 0/1/2, and unbiased routines return -1/0/1. Other parts
4234 of gcc expect that the comparison operation is equivalent
4235 to the modified comparison. For signed comparisons compare the
4236 result against 1 in the biased case, and zero in the unbiased
4237 case. For unsigned comparisons always compare against 1 after
4238 biasing the unbiased result by adding 1. This gives us a way to
4239 represent LTU.
4240 The comparisons in the fixed-point helper library are always
4241 biased. */
4242 x = result;
4243 y = const1_rtx;
4245 if (!TARGET_LIB_INT_CMP_BIASED && !ALL_FIXED_POINT_MODE_P (mode))
4247 if (unsignedp)
4248 x = plus_constant (ret_mode, result, 1);
4249 else
4250 y = const0_rtx;
4253 *pmode = ret_mode;
4254 prepare_cmp_insn (x, y, comparison, NULL_RTX, unsignedp, methods,
4255 ptest, pmode);
4257 else
4258 prepare_float_lib_cmp (x, y, comparison, ptest, pmode);
4260 return;
4262 fail:
4263 *ptest = NULL_RTX;
4266 /* Before emitting an insn with code ICODE, make sure that X, which is going
4267 to be used for operand OPNUM of the insn, is converted from mode MODE to
4268 WIDER_MODE (UNSIGNEDP determines whether it is an unsigned conversion), and
4269 that it is accepted by the operand predicate. Return the new value. */
4272 prepare_operand (enum insn_code icode, rtx x, int opnum, machine_mode mode,
4273 machine_mode wider_mode, int unsignedp)
4275 if (mode != wider_mode)
4276 x = convert_modes (wider_mode, mode, x, unsignedp);
4278 if (!insn_operand_matches (icode, opnum, x))
4280 machine_mode op_mode = insn_data[(int) icode].operand[opnum].mode;
4281 if (reload_completed)
4282 return NULL_RTX;
4283 if (GET_MODE (x) != op_mode && GET_MODE (x) != VOIDmode)
4284 return NULL_RTX;
4285 x = copy_to_mode_reg (op_mode, x);
4288 return x;
4291 /* Subroutine of emit_cmp_and_jump_insns; this function is called when we know
4292 we can do the branch. */
4294 static void
4295 emit_cmp_and_jump_insn_1 (rtx test, machine_mode mode, rtx label, int prob)
4297 machine_mode optab_mode;
4298 enum mode_class mclass;
4299 enum insn_code icode;
4300 rtx_insn *insn;
4302 mclass = GET_MODE_CLASS (mode);
4303 optab_mode = (mclass == MODE_CC) ? CCmode : mode;
4304 icode = optab_handler (cbranch_optab, optab_mode);
4306 gcc_assert (icode != CODE_FOR_nothing);
4307 gcc_assert (insn_operand_matches (icode, 0, test));
4308 insn = emit_jump_insn (GEN_FCN (icode) (test, XEXP (test, 0),
4309 XEXP (test, 1), label));
4310 if (prob != -1
4311 && profile_status_for_fn (cfun) != PROFILE_ABSENT
4312 && insn
4313 && JUMP_P (insn)
4314 && any_condjump_p (insn)
4315 && !find_reg_note (insn, REG_BR_PROB, 0))
4316 add_int_reg_note (insn, REG_BR_PROB, prob);
4319 /* Generate code to compare X with Y so that the condition codes are
4320 set and to jump to LABEL if the condition is true. If X is a
4321 constant and Y is not a constant, then the comparison is swapped to
4322 ensure that the comparison RTL has the canonical form.
4324 UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
4325 need to be widened. UNSIGNEDP is also used to select the proper
4326 branch condition code.
4328 If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y.
4330 MODE is the mode of the inputs (in case they are const_int).
4332 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.).
4333 It will be potentially converted into an unsigned variant based on
4334 UNSIGNEDP to select a proper jump instruction.
4336 PROB is the probability of jumping to LABEL. */
4338 void
4339 emit_cmp_and_jump_insns (rtx x, rtx y, enum rtx_code comparison, rtx size,
4340 machine_mode mode, int unsignedp, rtx label,
4341 int prob)
4343 rtx op0 = x, op1 = y;
4344 rtx test;
4346 /* Swap operands and condition to ensure canonical RTL. */
4347 if (swap_commutative_operands_p (x, y)
4348 && can_compare_p (swap_condition (comparison), mode, ccp_jump))
4350 op0 = y, op1 = x;
4351 comparison = swap_condition (comparison);
4354 /* If OP0 is still a constant, then both X and Y must be constants
4355 or the opposite comparison is not supported. Force X into a register
4356 to create canonical RTL. */
4357 if (CONSTANT_P (op0))
4358 op0 = force_reg (mode, op0);
4360 if (unsignedp)
4361 comparison = unsigned_condition (comparison);
4363 prepare_cmp_insn (op0, op1, comparison, size, unsignedp, OPTAB_LIB_WIDEN,
4364 &test, &mode);
4365 emit_cmp_and_jump_insn_1 (test, mode, label, prob);
4369 /* Emit a library call comparison between floating point X and Y.
4370 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
4372 static void
4373 prepare_float_lib_cmp (rtx x, rtx y, enum rtx_code comparison,
4374 rtx *ptest, machine_mode *pmode)
4376 enum rtx_code swapped = swap_condition (comparison);
4377 enum rtx_code reversed = reverse_condition_maybe_unordered (comparison);
4378 machine_mode orig_mode = GET_MODE (x);
4379 machine_mode mode, cmp_mode;
4380 rtx true_rtx, false_rtx;
4381 rtx value, target, equiv;
4382 rtx_insn *insns;
4383 rtx libfunc = 0;
4384 bool reversed_p = false;
4385 cmp_mode = targetm.libgcc_cmp_return_mode ();
4387 for (mode = orig_mode;
4388 mode != VOIDmode;
4389 mode = GET_MODE_WIDER_MODE (mode))
4391 if (code_to_optab (comparison)
4392 && (libfunc = optab_libfunc (code_to_optab (comparison), mode)))
4393 break;
4395 if (code_to_optab (swapped)
4396 && (libfunc = optab_libfunc (code_to_optab (swapped), mode)))
4398 rtx tmp;
4399 tmp = x; x = y; y = tmp;
4400 comparison = swapped;
4401 break;
4404 if (code_to_optab (reversed)
4405 && (libfunc = optab_libfunc (code_to_optab (reversed), mode)))
4407 comparison = reversed;
4408 reversed_p = true;
4409 break;
4413 gcc_assert (mode != VOIDmode);
4415 if (mode != orig_mode)
4417 x = convert_to_mode (mode, x, 0);
4418 y = convert_to_mode (mode, y, 0);
4421 /* Attach a REG_EQUAL note describing the semantics of the libcall to
4422 the RTL. The allows the RTL optimizers to delete the libcall if the
4423 condition can be determined at compile-time. */
4424 if (comparison == UNORDERED
4425 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4427 true_rtx = const_true_rtx;
4428 false_rtx = const0_rtx;
4430 else
4432 switch (comparison)
4434 case EQ:
4435 true_rtx = const0_rtx;
4436 false_rtx = const_true_rtx;
4437 break;
4439 case NE:
4440 true_rtx = const_true_rtx;
4441 false_rtx = const0_rtx;
4442 break;
4444 case GT:
4445 true_rtx = const1_rtx;
4446 false_rtx = const0_rtx;
4447 break;
4449 case GE:
4450 true_rtx = const0_rtx;
4451 false_rtx = constm1_rtx;
4452 break;
4454 case LT:
4455 true_rtx = constm1_rtx;
4456 false_rtx = const0_rtx;
4457 break;
4459 case LE:
4460 true_rtx = const0_rtx;
4461 false_rtx = const1_rtx;
4462 break;
4464 default:
4465 gcc_unreachable ();
4469 if (comparison == UNORDERED)
4471 rtx temp = simplify_gen_relational (NE, cmp_mode, mode, x, x);
4472 equiv = simplify_gen_relational (NE, cmp_mode, mode, y, y);
4473 equiv = simplify_gen_ternary (IF_THEN_ELSE, cmp_mode, cmp_mode,
4474 temp, const_true_rtx, equiv);
4476 else
4478 equiv = simplify_gen_relational (comparison, cmp_mode, mode, x, y);
4479 if (! FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4480 equiv = simplify_gen_ternary (IF_THEN_ELSE, cmp_mode, cmp_mode,
4481 equiv, true_rtx, false_rtx);
4484 start_sequence ();
4485 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4486 cmp_mode, 2, x, mode, y, mode);
4487 insns = get_insns ();
4488 end_sequence ();
4490 target = gen_reg_rtx (cmp_mode);
4491 emit_libcall_block (insns, target, value, equiv);
4493 if (comparison == UNORDERED
4494 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison)
4495 || reversed_p)
4496 *ptest = gen_rtx_fmt_ee (reversed_p ? EQ : NE, VOIDmode, target, false_rtx);
4497 else
4498 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, target, const0_rtx);
4500 *pmode = cmp_mode;
4503 /* Generate code to indirectly jump to a location given in the rtx LOC. */
4505 void
4506 emit_indirect_jump (rtx loc ATTRIBUTE_UNUSED)
4508 #ifndef HAVE_indirect_jump
4509 sorry ("indirect jumps are not available on this target");
4510 #else
4511 struct expand_operand ops[1];
4512 create_address_operand (&ops[0], loc);
4513 expand_jump_insn (CODE_FOR_indirect_jump, 1, ops);
4514 emit_barrier ();
4515 #endif
4519 /* Emit a conditional move instruction if the machine supports one for that
4520 condition and machine mode.
4522 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4523 the mode to use should they be constants. If it is VOIDmode, they cannot
4524 both be constants.
4526 OP2 should be stored in TARGET if the comparison is true, otherwise OP3
4527 should be stored there. MODE is the mode to use should they be constants.
4528 If it is VOIDmode, they cannot both be constants.
4530 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4531 is not supported. */
4534 emit_conditional_move (rtx target, enum rtx_code code, rtx op0, rtx op1,
4535 machine_mode cmode, rtx op2, rtx op3,
4536 machine_mode mode, int unsignedp)
4538 rtx comparison;
4539 rtx_insn *last;
4540 enum insn_code icode;
4541 enum rtx_code reversed;
4543 /* If one operand is constant, make it the second one. Only do this
4544 if the other operand is not constant as well. */
4546 if (swap_commutative_operands_p (op0, op1))
4548 std::swap (op0, op1);
4549 code = swap_condition (code);
4552 /* get_condition will prefer to generate LT and GT even if the old
4553 comparison was against zero, so undo that canonicalization here since
4554 comparisons against zero are cheaper. */
4555 if (code == LT && op1 == const1_rtx)
4556 code = LE, op1 = const0_rtx;
4557 else if (code == GT && op1 == constm1_rtx)
4558 code = GE, op1 = const0_rtx;
4560 if (cmode == VOIDmode)
4561 cmode = GET_MODE (op0);
4563 if (swap_commutative_operands_p (op2, op3)
4564 && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
4565 != UNKNOWN))
4567 std::swap (op2, op3);
4568 code = reversed;
4571 if (mode == VOIDmode)
4572 mode = GET_MODE (op2);
4574 icode = direct_optab_handler (movcc_optab, mode);
4576 if (icode == CODE_FOR_nothing)
4577 return 0;
4579 if (!target)
4580 target = gen_reg_rtx (mode);
4582 code = unsignedp ? unsigned_condition (code) : code;
4583 comparison = simplify_gen_relational (code, VOIDmode, cmode, op0, op1);
4585 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4586 return NULL and let the caller figure out how best to deal with this
4587 situation. */
4588 if (!COMPARISON_P (comparison))
4589 return NULL_RTX;
4591 saved_pending_stack_adjust save;
4592 save_pending_stack_adjust (&save);
4593 last = get_last_insn ();
4594 do_pending_stack_adjust ();
4595 prepare_cmp_insn (XEXP (comparison, 0), XEXP (comparison, 1),
4596 GET_CODE (comparison), NULL_RTX, unsignedp, OPTAB_WIDEN,
4597 &comparison, &cmode);
4598 if (comparison)
4600 struct expand_operand ops[4];
4602 create_output_operand (&ops[0], target, mode);
4603 create_fixed_operand (&ops[1], comparison);
4604 create_input_operand (&ops[2], op2, mode);
4605 create_input_operand (&ops[3], op3, mode);
4606 if (maybe_expand_insn (icode, 4, ops))
4608 if (ops[0].value != target)
4609 convert_move (target, ops[0].value, false);
4610 return target;
4613 delete_insns_since (last);
4614 restore_pending_stack_adjust (&save);
4615 return NULL_RTX;
4618 /* Return nonzero if a conditional move of mode MODE is supported.
4620 This function is for combine so it can tell whether an insn that looks
4621 like a conditional move is actually supported by the hardware. If we
4622 guess wrong we lose a bit on optimization, but that's it. */
4623 /* ??? sparc64 supports conditionally moving integers values based on fp
4624 comparisons, and vice versa. How do we handle them? */
4627 can_conditionally_move_p (machine_mode mode)
4629 if (direct_optab_handler (movcc_optab, mode) != CODE_FOR_nothing)
4630 return 1;
4632 return 0;
4635 /* Emit a conditional addition instruction if the machine supports one for that
4636 condition and machine mode.
4638 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4639 the mode to use should they be constants. If it is VOIDmode, they cannot
4640 both be constants.
4642 OP2 should be stored in TARGET if the comparison is false, otherwise OP2+OP3
4643 should be stored there. MODE is the mode to use should they be constants.
4644 If it is VOIDmode, they cannot both be constants.
4646 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4647 is not supported. */
4650 emit_conditional_add (rtx target, enum rtx_code code, rtx op0, rtx op1,
4651 machine_mode cmode, rtx op2, rtx op3,
4652 machine_mode mode, int unsignedp)
4654 rtx comparison;
4655 rtx_insn *last;
4656 enum insn_code icode;
4658 /* If one operand is constant, make it the second one. Only do this
4659 if the other operand is not constant as well. */
4661 if (swap_commutative_operands_p (op0, op1))
4663 std::swap (op0, op1);
4664 code = swap_condition (code);
4667 /* get_condition will prefer to generate LT and GT even if the old
4668 comparison was against zero, so undo that canonicalization here since
4669 comparisons against zero are cheaper. */
4670 if (code == LT && op1 == const1_rtx)
4671 code = LE, op1 = const0_rtx;
4672 else if (code == GT && op1 == constm1_rtx)
4673 code = GE, op1 = const0_rtx;
4675 if (cmode == VOIDmode)
4676 cmode = GET_MODE (op0);
4678 if (mode == VOIDmode)
4679 mode = GET_MODE (op2);
4681 icode = optab_handler (addcc_optab, mode);
4683 if (icode == CODE_FOR_nothing)
4684 return 0;
4686 if (!target)
4687 target = gen_reg_rtx (mode);
4689 code = unsignedp ? unsigned_condition (code) : code;
4690 comparison = simplify_gen_relational (code, VOIDmode, cmode, op0, op1);
4692 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4693 return NULL and let the caller figure out how best to deal with this
4694 situation. */
4695 if (!COMPARISON_P (comparison))
4696 return NULL_RTX;
4698 do_pending_stack_adjust ();
4699 last = get_last_insn ();
4700 prepare_cmp_insn (XEXP (comparison, 0), XEXP (comparison, 1),
4701 GET_CODE (comparison), NULL_RTX, unsignedp, OPTAB_WIDEN,
4702 &comparison, &cmode);
4703 if (comparison)
4705 struct expand_operand ops[4];
4707 create_output_operand (&ops[0], target, mode);
4708 create_fixed_operand (&ops[1], comparison);
4709 create_input_operand (&ops[2], op2, mode);
4710 create_input_operand (&ops[3], op3, mode);
4711 if (maybe_expand_insn (icode, 4, ops))
4713 if (ops[0].value != target)
4714 convert_move (target, ops[0].value, false);
4715 return target;
4718 delete_insns_since (last);
4719 return NULL_RTX;
4722 /* These functions attempt to generate an insn body, rather than
4723 emitting the insn, but if the gen function already emits them, we
4724 make no attempt to turn them back into naked patterns. */
4726 /* Generate and return an insn body to add Y to X. */
4729 gen_add2_insn (rtx x, rtx y)
4731 enum insn_code icode = optab_handler (add_optab, GET_MODE (x));
4733 gcc_assert (insn_operand_matches (icode, 0, x));
4734 gcc_assert (insn_operand_matches (icode, 1, x));
4735 gcc_assert (insn_operand_matches (icode, 2, y));
4737 return GEN_FCN (icode) (x, x, y);
4740 /* Generate and return an insn body to add r1 and c,
4741 storing the result in r0. */
4744 gen_add3_insn (rtx r0, rtx r1, rtx c)
4746 enum insn_code icode = optab_handler (add_optab, GET_MODE (r0));
4748 if (icode == CODE_FOR_nothing
4749 || !insn_operand_matches (icode, 0, r0)
4750 || !insn_operand_matches (icode, 1, r1)
4751 || !insn_operand_matches (icode, 2, c))
4752 return NULL_RTX;
4754 return GEN_FCN (icode) (r0, r1, c);
4758 have_add2_insn (rtx x, rtx y)
4760 enum insn_code icode;
4762 gcc_assert (GET_MODE (x) != VOIDmode);
4764 icode = optab_handler (add_optab, GET_MODE (x));
4766 if (icode == CODE_FOR_nothing)
4767 return 0;
4769 if (!insn_operand_matches (icode, 0, x)
4770 || !insn_operand_matches (icode, 1, x)
4771 || !insn_operand_matches (icode, 2, y))
4772 return 0;
4774 return 1;
4777 /* Generate and return an insn body to add Y to X. */
4780 gen_addptr3_insn (rtx x, rtx y, rtx z)
4782 enum insn_code icode = optab_handler (addptr3_optab, GET_MODE (x));
4784 gcc_assert (insn_operand_matches (icode, 0, x));
4785 gcc_assert (insn_operand_matches (icode, 1, y));
4786 gcc_assert (insn_operand_matches (icode, 2, z));
4788 return GEN_FCN (icode) (x, y, z);
4791 /* Return true if the target implements an addptr pattern and X, Y,
4792 and Z are valid for the pattern predicates. */
4795 have_addptr3_insn (rtx x, rtx y, rtx z)
4797 enum insn_code icode;
4799 gcc_assert (GET_MODE (x) != VOIDmode);
4801 icode = optab_handler (addptr3_optab, GET_MODE (x));
4803 if (icode == CODE_FOR_nothing)
4804 return 0;
4806 if (!insn_operand_matches (icode, 0, x)
4807 || !insn_operand_matches (icode, 1, y)
4808 || !insn_operand_matches (icode, 2, z))
4809 return 0;
4811 return 1;
4814 /* Generate and return an insn body to subtract Y from X. */
4817 gen_sub2_insn (rtx x, rtx y)
4819 enum insn_code icode = optab_handler (sub_optab, GET_MODE (x));
4821 gcc_assert (insn_operand_matches (icode, 0, x));
4822 gcc_assert (insn_operand_matches (icode, 1, x));
4823 gcc_assert (insn_operand_matches (icode, 2, y));
4825 return GEN_FCN (icode) (x, x, y);
4828 /* Generate and return an insn body to subtract r1 and c,
4829 storing the result in r0. */
4832 gen_sub3_insn (rtx r0, rtx r1, rtx c)
4834 enum insn_code icode = optab_handler (sub_optab, GET_MODE (r0));
4836 if (icode == CODE_FOR_nothing
4837 || !insn_operand_matches (icode, 0, r0)
4838 || !insn_operand_matches (icode, 1, r1)
4839 || !insn_operand_matches (icode, 2, c))
4840 return NULL_RTX;
4842 return GEN_FCN (icode) (r0, r1, c);
4846 have_sub2_insn (rtx x, rtx y)
4848 enum insn_code icode;
4850 gcc_assert (GET_MODE (x) != VOIDmode);
4852 icode = optab_handler (sub_optab, GET_MODE (x));
4854 if (icode == CODE_FOR_nothing)
4855 return 0;
4857 if (!insn_operand_matches (icode, 0, x)
4858 || !insn_operand_matches (icode, 1, x)
4859 || !insn_operand_matches (icode, 2, y))
4860 return 0;
4862 return 1;
4865 /* Return the insn code used to extend FROM_MODE to TO_MODE.
4866 UNSIGNEDP specifies zero-extension instead of sign-extension. If
4867 no such operation exists, CODE_FOR_nothing will be returned. */
4869 enum insn_code
4870 can_extend_p (machine_mode to_mode, machine_mode from_mode,
4871 int unsignedp)
4873 convert_optab tab;
4874 #ifdef HAVE_ptr_extend
4875 if (unsignedp < 0)
4876 return CODE_FOR_ptr_extend;
4877 #endif
4879 tab = unsignedp ? zext_optab : sext_optab;
4880 return convert_optab_handler (tab, to_mode, from_mode);
4883 /* Generate the body of an insn to extend Y (with mode MFROM)
4884 into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
4887 gen_extend_insn (rtx x, rtx y, machine_mode mto,
4888 machine_mode mfrom, int unsignedp)
4890 enum insn_code icode = can_extend_p (mto, mfrom, unsignedp);
4891 return GEN_FCN (icode) (x, y);
4894 /* can_fix_p and can_float_p say whether the target machine
4895 can directly convert a given fixed point type to
4896 a given floating point type, or vice versa.
4897 The returned value is the CODE_FOR_... value to use,
4898 or CODE_FOR_nothing if these modes cannot be directly converted.
4900 *TRUNCP_PTR is set to 1 if it is necessary to output
4901 an explicit FTRUNC insn before the fix insn; otherwise 0. */
4903 static enum insn_code
4904 can_fix_p (machine_mode fixmode, machine_mode fltmode,
4905 int unsignedp, int *truncp_ptr)
4907 convert_optab tab;
4908 enum insn_code icode;
4910 tab = unsignedp ? ufixtrunc_optab : sfixtrunc_optab;
4911 icode = convert_optab_handler (tab, fixmode, fltmode);
4912 if (icode != CODE_FOR_nothing)
4914 *truncp_ptr = 0;
4915 return icode;
4918 /* FIXME: This requires a port to define both FIX and FTRUNC pattern
4919 for this to work. We need to rework the fix* and ftrunc* patterns
4920 and documentation. */
4921 tab = unsignedp ? ufix_optab : sfix_optab;
4922 icode = convert_optab_handler (tab, fixmode, fltmode);
4923 if (icode != CODE_FOR_nothing
4924 && optab_handler (ftrunc_optab, fltmode) != CODE_FOR_nothing)
4926 *truncp_ptr = 1;
4927 return icode;
4930 *truncp_ptr = 0;
4931 return CODE_FOR_nothing;
4934 enum insn_code
4935 can_float_p (machine_mode fltmode, machine_mode fixmode,
4936 int unsignedp)
4938 convert_optab tab;
4940 tab = unsignedp ? ufloat_optab : sfloat_optab;
4941 return convert_optab_handler (tab, fltmode, fixmode);
4944 /* Function supportable_convert_operation
4946 Check whether an operation represented by the code CODE is a
4947 convert operation that is supported by the target platform in
4948 vector form (i.e., when operating on arguments of type VECTYPE_IN
4949 producing a result of type VECTYPE_OUT).
4951 Convert operations we currently support directly are FIX_TRUNC and FLOAT.
4952 This function checks if these operations are supported
4953 by the target platform either directly (via vector tree-codes), or via
4954 target builtins.
4956 Output:
4957 - CODE1 is code of vector operation to be used when
4958 vectorizing the operation, if available.
4959 - DECL is decl of target builtin functions to be used
4960 when vectorizing the operation, if available. In this case,
4961 CODE1 is CALL_EXPR. */
4963 bool
4964 supportable_convert_operation (enum tree_code code,
4965 tree vectype_out, tree vectype_in,
4966 tree *decl, enum tree_code *code1)
4968 machine_mode m1,m2;
4969 int truncp;
4971 m1 = TYPE_MODE (vectype_out);
4972 m2 = TYPE_MODE (vectype_in);
4974 /* First check if we can done conversion directly. */
4975 if ((code == FIX_TRUNC_EXPR
4976 && can_fix_p (m1,m2,TYPE_UNSIGNED (vectype_out), &truncp)
4977 != CODE_FOR_nothing)
4978 || (code == FLOAT_EXPR
4979 && can_float_p (m1,m2,TYPE_UNSIGNED (vectype_in))
4980 != CODE_FOR_nothing))
4982 *code1 = code;
4983 return true;
4986 /* Now check for builtin. */
4987 if (targetm.vectorize.builtin_conversion
4988 && targetm.vectorize.builtin_conversion (code, vectype_out, vectype_in))
4990 *code1 = CALL_EXPR;
4991 *decl = targetm.vectorize.builtin_conversion (code, vectype_out, vectype_in);
4992 return true;
4994 return false;
4998 /* Generate code to convert FROM to floating point
4999 and store in TO. FROM must be fixed point and not VOIDmode.
5000 UNSIGNEDP nonzero means regard FROM as unsigned.
5001 Normally this is done by correcting the final value
5002 if it is negative. */
5004 void
5005 expand_float (rtx to, rtx from, int unsignedp)
5007 enum insn_code icode;
5008 rtx target = to;
5009 machine_mode fmode, imode;
5010 bool can_do_signed = false;
5012 /* Crash now, because we won't be able to decide which mode to use. */
5013 gcc_assert (GET_MODE (from) != VOIDmode);
5015 /* Look for an insn to do the conversion. Do it in the specified
5016 modes if possible; otherwise convert either input, output or both to
5017 wider mode. If the integer mode is wider than the mode of FROM,
5018 we can do the conversion signed even if the input is unsigned. */
5020 for (fmode = GET_MODE (to); fmode != VOIDmode;
5021 fmode = GET_MODE_WIDER_MODE (fmode))
5022 for (imode = GET_MODE (from); imode != VOIDmode;
5023 imode = GET_MODE_WIDER_MODE (imode))
5025 int doing_unsigned = unsignedp;
5027 if (fmode != GET_MODE (to)
5028 && significand_size (fmode) < GET_MODE_PRECISION (GET_MODE (from)))
5029 continue;
5031 icode = can_float_p (fmode, imode, unsignedp);
5032 if (icode == CODE_FOR_nothing && unsignedp)
5034 enum insn_code scode = can_float_p (fmode, imode, 0);
5035 if (scode != CODE_FOR_nothing)
5036 can_do_signed = true;
5037 if (imode != GET_MODE (from))
5038 icode = scode, doing_unsigned = 0;
5041 if (icode != CODE_FOR_nothing)
5043 if (imode != GET_MODE (from))
5044 from = convert_to_mode (imode, from, unsignedp);
5046 if (fmode != GET_MODE (to))
5047 target = gen_reg_rtx (fmode);
5049 emit_unop_insn (icode, target, from,
5050 doing_unsigned ? UNSIGNED_FLOAT : FLOAT);
5052 if (target != to)
5053 convert_move (to, target, 0);
5054 return;
5058 /* Unsigned integer, and no way to convert directly. Convert as signed,
5059 then unconditionally adjust the result. */
5060 if (unsignedp && can_do_signed)
5062 rtx_code_label *label = gen_label_rtx ();
5063 rtx temp;
5064 REAL_VALUE_TYPE offset;
5066 /* Look for a usable floating mode FMODE wider than the source and at
5067 least as wide as the target. Using FMODE will avoid rounding woes
5068 with unsigned values greater than the signed maximum value. */
5070 for (fmode = GET_MODE (to); fmode != VOIDmode;
5071 fmode = GET_MODE_WIDER_MODE (fmode))
5072 if (GET_MODE_PRECISION (GET_MODE (from)) < GET_MODE_BITSIZE (fmode)
5073 && can_float_p (fmode, GET_MODE (from), 0) != CODE_FOR_nothing)
5074 break;
5076 if (fmode == VOIDmode)
5078 /* There is no such mode. Pretend the target is wide enough. */
5079 fmode = GET_MODE (to);
5081 /* Avoid double-rounding when TO is narrower than FROM. */
5082 if ((significand_size (fmode) + 1)
5083 < GET_MODE_PRECISION (GET_MODE (from)))
5085 rtx temp1;
5086 rtx_code_label *neglabel = gen_label_rtx ();
5088 /* Don't use TARGET if it isn't a register, is a hard register,
5089 or is the wrong mode. */
5090 if (!REG_P (target)
5091 || REGNO (target) < FIRST_PSEUDO_REGISTER
5092 || GET_MODE (target) != fmode)
5093 target = gen_reg_rtx (fmode);
5095 imode = GET_MODE (from);
5096 do_pending_stack_adjust ();
5098 /* Test whether the sign bit is set. */
5099 emit_cmp_and_jump_insns (from, const0_rtx, LT, NULL_RTX, imode,
5100 0, neglabel);
5102 /* The sign bit is not set. Convert as signed. */
5103 expand_float (target, from, 0);
5104 emit_jump_insn (gen_jump (label));
5105 emit_barrier ();
5107 /* The sign bit is set.
5108 Convert to a usable (positive signed) value by shifting right
5109 one bit, while remembering if a nonzero bit was shifted
5110 out; i.e., compute (from & 1) | (from >> 1). */
5112 emit_label (neglabel);
5113 temp = expand_binop (imode, and_optab, from, const1_rtx,
5114 NULL_RTX, 1, OPTAB_LIB_WIDEN);
5115 temp1 = expand_shift (RSHIFT_EXPR, imode, from, 1, NULL_RTX, 1);
5116 temp = expand_binop (imode, ior_optab, temp, temp1, temp, 1,
5117 OPTAB_LIB_WIDEN);
5118 expand_float (target, temp, 0);
5120 /* Multiply by 2 to undo the shift above. */
5121 temp = expand_binop (fmode, add_optab, target, target,
5122 target, 0, OPTAB_LIB_WIDEN);
5123 if (temp != target)
5124 emit_move_insn (target, temp);
5126 do_pending_stack_adjust ();
5127 emit_label (label);
5128 goto done;
5132 /* If we are about to do some arithmetic to correct for an
5133 unsigned operand, do it in a pseudo-register. */
5135 if (GET_MODE (to) != fmode
5136 || !REG_P (to) || REGNO (to) < FIRST_PSEUDO_REGISTER)
5137 target = gen_reg_rtx (fmode);
5139 /* Convert as signed integer to floating. */
5140 expand_float (target, from, 0);
5142 /* If FROM is negative (and therefore TO is negative),
5143 correct its value by 2**bitwidth. */
5145 do_pending_stack_adjust ();
5146 emit_cmp_and_jump_insns (from, const0_rtx, GE, NULL_RTX, GET_MODE (from),
5147 0, label);
5150 real_2expN (&offset, GET_MODE_PRECISION (GET_MODE (from)), fmode);
5151 temp = expand_binop (fmode, add_optab, target,
5152 CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode),
5153 target, 0, OPTAB_LIB_WIDEN);
5154 if (temp != target)
5155 emit_move_insn (target, temp);
5157 do_pending_stack_adjust ();
5158 emit_label (label);
5159 goto done;
5162 /* No hardware instruction available; call a library routine. */
5164 rtx libfunc;
5165 rtx_insn *insns;
5166 rtx value;
5167 convert_optab tab = unsignedp ? ufloat_optab : sfloat_optab;
5169 if (GET_MODE_PRECISION (GET_MODE (from)) < GET_MODE_PRECISION (SImode))
5170 from = convert_to_mode (SImode, from, unsignedp);
5172 libfunc = convert_optab_libfunc (tab, GET_MODE (to), GET_MODE (from));
5173 gcc_assert (libfunc);
5175 start_sequence ();
5177 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
5178 GET_MODE (to), 1, from,
5179 GET_MODE (from));
5180 insns = get_insns ();
5181 end_sequence ();
5183 emit_libcall_block (insns, target, value,
5184 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FLOAT : FLOAT,
5185 GET_MODE (to), from));
5188 done:
5190 /* Copy result to requested destination
5191 if we have been computing in a temp location. */
5193 if (target != to)
5195 if (GET_MODE (target) == GET_MODE (to))
5196 emit_move_insn (to, target);
5197 else
5198 convert_move (to, target, 0);
5202 /* Generate code to convert FROM to fixed point and store in TO. FROM
5203 must be floating point. */
5205 void
5206 expand_fix (rtx to, rtx from, int unsignedp)
5208 enum insn_code icode;
5209 rtx target = to;
5210 machine_mode fmode, imode;
5211 int must_trunc = 0;
5213 /* We first try to find a pair of modes, one real and one integer, at
5214 least as wide as FROM and TO, respectively, in which we can open-code
5215 this conversion. If the integer mode is wider than the mode of TO,
5216 we can do the conversion either signed or unsigned. */
5218 for (fmode = GET_MODE (from); fmode != VOIDmode;
5219 fmode = GET_MODE_WIDER_MODE (fmode))
5220 for (imode = GET_MODE (to); imode != VOIDmode;
5221 imode = GET_MODE_WIDER_MODE (imode))
5223 int doing_unsigned = unsignedp;
5225 icode = can_fix_p (imode, fmode, unsignedp, &must_trunc);
5226 if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp)
5227 icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0;
5229 if (icode != CODE_FOR_nothing)
5231 rtx_insn *last = get_last_insn ();
5232 if (fmode != GET_MODE (from))
5233 from = convert_to_mode (fmode, from, 0);
5235 if (must_trunc)
5237 rtx temp = gen_reg_rtx (GET_MODE (from));
5238 from = expand_unop (GET_MODE (from), ftrunc_optab, from,
5239 temp, 0);
5242 if (imode != GET_MODE (to))
5243 target = gen_reg_rtx (imode);
5245 if (maybe_emit_unop_insn (icode, target, from,
5246 doing_unsigned ? UNSIGNED_FIX : FIX))
5248 if (target != to)
5249 convert_move (to, target, unsignedp);
5250 return;
5252 delete_insns_since (last);
5256 /* For an unsigned conversion, there is one more way to do it.
5257 If we have a signed conversion, we generate code that compares
5258 the real value to the largest representable positive number. If if
5259 is smaller, the conversion is done normally. Otherwise, subtract
5260 one plus the highest signed number, convert, and add it back.
5262 We only need to check all real modes, since we know we didn't find
5263 anything with a wider integer mode.
5265 This code used to extend FP value into mode wider than the destination.
5266 This is needed for decimal float modes which cannot accurately
5267 represent one plus the highest signed number of the same size, but
5268 not for binary modes. Consider, for instance conversion from SFmode
5269 into DImode.
5271 The hot path through the code is dealing with inputs smaller than 2^63
5272 and doing just the conversion, so there is no bits to lose.
5274 In the other path we know the value is positive in the range 2^63..2^64-1
5275 inclusive. (as for other input overflow happens and result is undefined)
5276 So we know that the most important bit set in mantissa corresponds to
5277 2^63. The subtraction of 2^63 should not generate any rounding as it
5278 simply clears out that bit. The rest is trivial. */
5280 if (unsignedp && GET_MODE_PRECISION (GET_MODE (to)) <= HOST_BITS_PER_WIDE_INT)
5281 for (fmode = GET_MODE (from); fmode != VOIDmode;
5282 fmode = GET_MODE_WIDER_MODE (fmode))
5283 if (CODE_FOR_nothing != can_fix_p (GET_MODE (to), fmode, 0, &must_trunc)
5284 && (!DECIMAL_FLOAT_MODE_P (fmode)
5285 || GET_MODE_BITSIZE (fmode) > GET_MODE_PRECISION (GET_MODE (to))))
5287 int bitsize;
5288 REAL_VALUE_TYPE offset;
5289 rtx limit;
5290 rtx_code_label *lab1, *lab2;
5291 rtx_insn *insn;
5293 bitsize = GET_MODE_PRECISION (GET_MODE (to));
5294 real_2expN (&offset, bitsize - 1, fmode);
5295 limit = CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode);
5296 lab1 = gen_label_rtx ();
5297 lab2 = gen_label_rtx ();
5299 if (fmode != GET_MODE (from))
5300 from = convert_to_mode (fmode, from, 0);
5302 /* See if we need to do the subtraction. */
5303 do_pending_stack_adjust ();
5304 emit_cmp_and_jump_insns (from, limit, GE, NULL_RTX, GET_MODE (from),
5305 0, lab1);
5307 /* If not, do the signed "fix" and branch around fixup code. */
5308 expand_fix (to, from, 0);
5309 emit_jump_insn (gen_jump (lab2));
5310 emit_barrier ();
5312 /* Otherwise, subtract 2**(N-1), convert to signed number,
5313 then add 2**(N-1). Do the addition using XOR since this
5314 will often generate better code. */
5315 emit_label (lab1);
5316 target = expand_binop (GET_MODE (from), sub_optab, from, limit,
5317 NULL_RTX, 0, OPTAB_LIB_WIDEN);
5318 expand_fix (to, target, 0);
5319 target = expand_binop (GET_MODE (to), xor_optab, to,
5320 gen_int_mode
5321 ((HOST_WIDE_INT) 1 << (bitsize - 1),
5322 GET_MODE (to)),
5323 to, 1, OPTAB_LIB_WIDEN);
5325 if (target != to)
5326 emit_move_insn (to, target);
5328 emit_label (lab2);
5330 if (optab_handler (mov_optab, GET_MODE (to)) != CODE_FOR_nothing)
5332 /* Make a place for a REG_NOTE and add it. */
5333 insn = emit_move_insn (to, to);
5334 set_dst_reg_note (insn, REG_EQUAL,
5335 gen_rtx_fmt_e (UNSIGNED_FIX, GET_MODE (to),
5336 copy_rtx (from)),
5337 to);
5340 return;
5343 /* We can't do it with an insn, so use a library call. But first ensure
5344 that the mode of TO is at least as wide as SImode, since those are the
5345 only library calls we know about. */
5347 if (GET_MODE_PRECISION (GET_MODE (to)) < GET_MODE_PRECISION (SImode))
5349 target = gen_reg_rtx (SImode);
5351 expand_fix (target, from, unsignedp);
5353 else
5355 rtx_insn *insns;
5356 rtx value;
5357 rtx libfunc;
5359 convert_optab tab = unsignedp ? ufix_optab : sfix_optab;
5360 libfunc = convert_optab_libfunc (tab, GET_MODE (to), GET_MODE (from));
5361 gcc_assert (libfunc);
5363 start_sequence ();
5365 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
5366 GET_MODE (to), 1, from,
5367 GET_MODE (from));
5368 insns = get_insns ();
5369 end_sequence ();
5371 emit_libcall_block (insns, target, value,
5372 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FIX : FIX,
5373 GET_MODE (to), from));
5376 if (target != to)
5378 if (GET_MODE (to) == GET_MODE (target))
5379 emit_move_insn (to, target);
5380 else
5381 convert_move (to, target, 0);
5385 /* Generate code to convert FROM or TO a fixed-point.
5386 If UINTP is true, either TO or FROM is an unsigned integer.
5387 If SATP is true, we need to saturate the result. */
5389 void
5390 expand_fixed_convert (rtx to, rtx from, int uintp, int satp)
5392 machine_mode to_mode = GET_MODE (to);
5393 machine_mode from_mode = GET_MODE (from);
5394 convert_optab tab;
5395 enum rtx_code this_code;
5396 enum insn_code code;
5397 rtx_insn *insns;
5398 rtx value;
5399 rtx libfunc;
5401 if (to_mode == from_mode)
5403 emit_move_insn (to, from);
5404 return;
5407 if (uintp)
5409 tab = satp ? satfractuns_optab : fractuns_optab;
5410 this_code = satp ? UNSIGNED_SAT_FRACT : UNSIGNED_FRACT_CONVERT;
5412 else
5414 tab = satp ? satfract_optab : fract_optab;
5415 this_code = satp ? SAT_FRACT : FRACT_CONVERT;
5417 code = convert_optab_handler (tab, to_mode, from_mode);
5418 if (code != CODE_FOR_nothing)
5420 emit_unop_insn (code, to, from, this_code);
5421 return;
5424 libfunc = convert_optab_libfunc (tab, to_mode, from_mode);
5425 gcc_assert (libfunc);
5427 start_sequence ();
5428 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, to_mode,
5429 1, from, from_mode);
5430 insns = get_insns ();
5431 end_sequence ();
5433 emit_libcall_block (insns, to, value,
5434 gen_rtx_fmt_e (optab_to_code (tab), to_mode, from));
5437 /* Generate code to convert FROM to fixed point and store in TO. FROM
5438 must be floating point, TO must be signed. Use the conversion optab
5439 TAB to do the conversion. */
5441 bool
5442 expand_sfix_optab (rtx to, rtx from, convert_optab tab)
5444 enum insn_code icode;
5445 rtx target = to;
5446 machine_mode fmode, imode;
5448 /* We first try to find a pair of modes, one real and one integer, at
5449 least as wide as FROM and TO, respectively, in which we can open-code
5450 this conversion. If the integer mode is wider than the mode of TO,
5451 we can do the conversion either signed or unsigned. */
5453 for (fmode = GET_MODE (from); fmode != VOIDmode;
5454 fmode = GET_MODE_WIDER_MODE (fmode))
5455 for (imode = GET_MODE (to); imode != VOIDmode;
5456 imode = GET_MODE_WIDER_MODE (imode))
5458 icode = convert_optab_handler (tab, imode, fmode);
5459 if (icode != CODE_FOR_nothing)
5461 rtx_insn *last = get_last_insn ();
5462 if (fmode != GET_MODE (from))
5463 from = convert_to_mode (fmode, from, 0);
5465 if (imode != GET_MODE (to))
5466 target = gen_reg_rtx (imode);
5468 if (!maybe_emit_unop_insn (icode, target, from, UNKNOWN))
5470 delete_insns_since (last);
5471 continue;
5473 if (target != to)
5474 convert_move (to, target, 0);
5475 return true;
5479 return false;
5482 /* Report whether we have an instruction to perform the operation
5483 specified by CODE on operands of mode MODE. */
5485 have_insn_for (enum rtx_code code, machine_mode mode)
5487 return (code_to_optab (code)
5488 && (optab_handler (code_to_optab (code), mode)
5489 != CODE_FOR_nothing));
5492 /* Initialize the libfunc fields of an entire group of entries in some
5493 optab. Each entry is set equal to a string consisting of a leading
5494 pair of underscores followed by a generic operation name followed by
5495 a mode name (downshifted to lowercase) followed by a single character
5496 representing the number of operands for the given operation (which is
5497 usually one of the characters '2', '3', or '4').
5499 OPTABLE is the table in which libfunc fields are to be initialized.
5500 OPNAME is the generic (string) name of the operation.
5501 SUFFIX is the character which specifies the number of operands for
5502 the given generic operation.
5503 MODE is the mode to generate for.
5506 static void
5507 gen_libfunc (optab optable, const char *opname, int suffix,
5508 machine_mode mode)
5510 unsigned opname_len = strlen (opname);
5511 const char *mname = GET_MODE_NAME (mode);
5512 unsigned mname_len = strlen (mname);
5513 int prefix_len = targetm.libfunc_gnu_prefix ? 6 : 2;
5514 int len = prefix_len + opname_len + mname_len + 1 + 1;
5515 char *libfunc_name = XALLOCAVEC (char, len);
5516 char *p;
5517 const char *q;
5519 p = libfunc_name;
5520 *p++ = '_';
5521 *p++ = '_';
5522 if (targetm.libfunc_gnu_prefix)
5524 *p++ = 'g';
5525 *p++ = 'n';
5526 *p++ = 'u';
5527 *p++ = '_';
5529 for (q = opname; *q; )
5530 *p++ = *q++;
5531 for (q = mname; *q; q++)
5532 *p++ = TOLOWER (*q);
5533 *p++ = suffix;
5534 *p = '\0';
5536 set_optab_libfunc (optable, mode,
5537 ggc_alloc_string (libfunc_name, p - libfunc_name));
5540 /* Like gen_libfunc, but verify that integer operation is involved. */
5542 void
5543 gen_int_libfunc (optab optable, const char *opname, char suffix,
5544 machine_mode mode)
5546 int maxsize = 2 * BITS_PER_WORD;
5547 int minsize = BITS_PER_WORD;
5549 if (GET_MODE_CLASS (mode) != MODE_INT)
5550 return;
5551 if (maxsize < LONG_LONG_TYPE_SIZE)
5552 maxsize = LONG_LONG_TYPE_SIZE;
5553 if (minsize > INT_TYPE_SIZE
5554 && (trapv_binoptab_p (optable)
5555 || trapv_unoptab_p (optable)))
5556 minsize = INT_TYPE_SIZE;
5557 if (GET_MODE_BITSIZE (mode) < minsize
5558 || GET_MODE_BITSIZE (mode) > maxsize)
5559 return;
5560 gen_libfunc (optable, opname, suffix, mode);
5563 /* Like gen_libfunc, but verify that FP and set decimal prefix if needed. */
5565 void
5566 gen_fp_libfunc (optab optable, const char *opname, char suffix,
5567 machine_mode mode)
5569 char *dec_opname;
5571 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5572 gen_libfunc (optable, opname, suffix, mode);
5573 if (DECIMAL_FLOAT_MODE_P (mode))
5575 dec_opname = XALLOCAVEC (char, sizeof (DECIMAL_PREFIX) + strlen (opname));
5576 /* For BID support, change the name to have either a bid_ or dpd_ prefix
5577 depending on the low level floating format used. */
5578 memcpy (dec_opname, DECIMAL_PREFIX, sizeof (DECIMAL_PREFIX) - 1);
5579 strcpy (dec_opname + sizeof (DECIMAL_PREFIX) - 1, opname);
5580 gen_libfunc (optable, dec_opname, suffix, mode);
5584 /* Like gen_libfunc, but verify that fixed-point operation is involved. */
5586 void
5587 gen_fixed_libfunc (optab optable, const char *opname, char suffix,
5588 machine_mode mode)
5590 if (!ALL_FIXED_POINT_MODE_P (mode))
5591 return;
5592 gen_libfunc (optable, opname, suffix, mode);
5595 /* Like gen_libfunc, but verify that signed fixed-point operation is
5596 involved. */
5598 void
5599 gen_signed_fixed_libfunc (optab optable, const char *opname, char suffix,
5600 machine_mode mode)
5602 if (!SIGNED_FIXED_POINT_MODE_P (mode))
5603 return;
5604 gen_libfunc (optable, opname, suffix, mode);
5607 /* Like gen_libfunc, but verify that unsigned fixed-point operation is
5608 involved. */
5610 void
5611 gen_unsigned_fixed_libfunc (optab optable, const char *opname, char suffix,
5612 machine_mode mode)
5614 if (!UNSIGNED_FIXED_POINT_MODE_P (mode))
5615 return;
5616 gen_libfunc (optable, opname, suffix, mode);
5619 /* Like gen_libfunc, but verify that FP or INT operation is involved. */
5621 void
5622 gen_int_fp_libfunc (optab optable, const char *name, char suffix,
5623 machine_mode mode)
5625 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5626 gen_fp_libfunc (optable, name, suffix, mode);
5627 if (INTEGRAL_MODE_P (mode))
5628 gen_int_libfunc (optable, name, suffix, mode);
5631 /* Like gen_libfunc, but verify that FP or INT operation is involved
5632 and add 'v' suffix for integer operation. */
5634 void
5635 gen_intv_fp_libfunc (optab optable, const char *name, char suffix,
5636 machine_mode mode)
5638 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5639 gen_fp_libfunc (optable, name, suffix, mode);
5640 if (GET_MODE_CLASS (mode) == MODE_INT)
5642 int len = strlen (name);
5643 char *v_name = XALLOCAVEC (char, len + 2);
5644 strcpy (v_name, name);
5645 v_name[len] = 'v';
5646 v_name[len + 1] = 0;
5647 gen_int_libfunc (optable, v_name, suffix, mode);
5651 /* Like gen_libfunc, but verify that FP or INT or FIXED operation is
5652 involved. */
5654 void
5655 gen_int_fp_fixed_libfunc (optab optable, const char *name, char suffix,
5656 machine_mode mode)
5658 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5659 gen_fp_libfunc (optable, name, suffix, mode);
5660 if (INTEGRAL_MODE_P (mode))
5661 gen_int_libfunc (optable, name, suffix, mode);
5662 if (ALL_FIXED_POINT_MODE_P (mode))
5663 gen_fixed_libfunc (optable, name, suffix, mode);
5666 /* Like gen_libfunc, but verify that FP or INT or signed FIXED operation is
5667 involved. */
5669 void
5670 gen_int_fp_signed_fixed_libfunc (optab optable, const char *name, char suffix,
5671 machine_mode mode)
5673 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5674 gen_fp_libfunc (optable, name, suffix, mode);
5675 if (INTEGRAL_MODE_P (mode))
5676 gen_int_libfunc (optable, name, suffix, mode);
5677 if (SIGNED_FIXED_POINT_MODE_P (mode))
5678 gen_signed_fixed_libfunc (optable, name, suffix, mode);
5681 /* Like gen_libfunc, but verify that INT or FIXED operation is
5682 involved. */
5684 void
5685 gen_int_fixed_libfunc (optab optable, const char *name, char suffix,
5686 machine_mode mode)
5688 if (INTEGRAL_MODE_P (mode))
5689 gen_int_libfunc (optable, name, suffix, mode);
5690 if (ALL_FIXED_POINT_MODE_P (mode))
5691 gen_fixed_libfunc (optable, name, suffix, mode);
5694 /* Like gen_libfunc, but verify that INT or signed FIXED operation is
5695 involved. */
5697 void
5698 gen_int_signed_fixed_libfunc (optab optable, const char *name, char suffix,
5699 machine_mode mode)
5701 if (INTEGRAL_MODE_P (mode))
5702 gen_int_libfunc (optable, name, suffix, mode);
5703 if (SIGNED_FIXED_POINT_MODE_P (mode))
5704 gen_signed_fixed_libfunc (optable, name, suffix, mode);
5707 /* Like gen_libfunc, but verify that INT or unsigned FIXED operation is
5708 involved. */
5710 void
5711 gen_int_unsigned_fixed_libfunc (optab optable, const char *name, char suffix,
5712 machine_mode mode)
5714 if (INTEGRAL_MODE_P (mode))
5715 gen_int_libfunc (optable, name, suffix, mode);
5716 if (UNSIGNED_FIXED_POINT_MODE_P (mode))
5717 gen_unsigned_fixed_libfunc (optable, name, suffix, mode);
5720 /* Initialize the libfunc fields of an entire group of entries of an
5721 inter-mode-class conversion optab. The string formation rules are
5722 similar to the ones for init_libfuncs, above, but instead of having
5723 a mode name and an operand count these functions have two mode names
5724 and no operand count. */
5726 void
5727 gen_interclass_conv_libfunc (convert_optab tab,
5728 const char *opname,
5729 machine_mode tmode,
5730 machine_mode fmode)
5732 size_t opname_len = strlen (opname);
5733 size_t mname_len = 0;
5735 const char *fname, *tname;
5736 const char *q;
5737 int prefix_len = targetm.libfunc_gnu_prefix ? 6 : 2;
5738 char *libfunc_name, *suffix;
5739 char *nondec_name, *dec_name, *nondec_suffix, *dec_suffix;
5740 char *p;
5742 /* If this is a decimal conversion, add the current BID vs. DPD prefix that
5743 depends on which underlying decimal floating point format is used. */
5744 const size_t dec_len = sizeof (DECIMAL_PREFIX) - 1;
5746 mname_len = strlen (GET_MODE_NAME (tmode)) + strlen (GET_MODE_NAME (fmode));
5748 nondec_name = XALLOCAVEC (char, prefix_len + opname_len + mname_len + 1 + 1);
5749 nondec_name[0] = '_';
5750 nondec_name[1] = '_';
5751 if (targetm.libfunc_gnu_prefix)
5753 nondec_name[2] = 'g';
5754 nondec_name[3] = 'n';
5755 nondec_name[4] = 'u';
5756 nondec_name[5] = '_';
5759 memcpy (&nondec_name[prefix_len], opname, opname_len);
5760 nondec_suffix = nondec_name + opname_len + prefix_len;
5762 dec_name = XALLOCAVEC (char, 2 + dec_len + opname_len + mname_len + 1 + 1);
5763 dec_name[0] = '_';
5764 dec_name[1] = '_';
5765 memcpy (&dec_name[2], DECIMAL_PREFIX, dec_len);
5766 memcpy (&dec_name[2+dec_len], opname, opname_len);
5767 dec_suffix = dec_name + dec_len + opname_len + 2;
5769 fname = GET_MODE_NAME (fmode);
5770 tname = GET_MODE_NAME (tmode);
5772 if (DECIMAL_FLOAT_MODE_P (fmode) || DECIMAL_FLOAT_MODE_P (tmode))
5774 libfunc_name = dec_name;
5775 suffix = dec_suffix;
5777 else
5779 libfunc_name = nondec_name;
5780 suffix = nondec_suffix;
5783 p = suffix;
5784 for (q = fname; *q; p++, q++)
5785 *p = TOLOWER (*q);
5786 for (q = tname; *q; p++, q++)
5787 *p = TOLOWER (*q);
5789 *p = '\0';
5791 set_conv_libfunc (tab, tmode, fmode,
5792 ggc_alloc_string (libfunc_name, p - libfunc_name));
5795 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5796 int->fp conversion. */
5798 void
5799 gen_int_to_fp_conv_libfunc (convert_optab tab,
5800 const char *opname,
5801 machine_mode tmode,
5802 machine_mode fmode)
5804 if (GET_MODE_CLASS (fmode) != MODE_INT)
5805 return;
5806 if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
5807 return;
5808 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5811 /* ufloat_optab is special by using floatun for FP and floatuns decimal fp
5812 naming scheme. */
5814 void
5815 gen_ufloat_conv_libfunc (convert_optab tab,
5816 const char *opname ATTRIBUTE_UNUSED,
5817 machine_mode tmode,
5818 machine_mode fmode)
5820 if (DECIMAL_FLOAT_MODE_P (tmode))
5821 gen_int_to_fp_conv_libfunc (tab, "floatuns", tmode, fmode);
5822 else
5823 gen_int_to_fp_conv_libfunc (tab, "floatun", tmode, fmode);
5826 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5827 fp->int conversion. */
5829 void
5830 gen_int_to_fp_nondecimal_conv_libfunc (convert_optab tab,
5831 const char *opname,
5832 machine_mode tmode,
5833 machine_mode fmode)
5835 if (GET_MODE_CLASS (fmode) != MODE_INT)
5836 return;
5837 if (GET_MODE_CLASS (tmode) != MODE_FLOAT)
5838 return;
5839 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5842 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5843 fp->int conversion with no decimal floating point involved. */
5845 void
5846 gen_fp_to_int_conv_libfunc (convert_optab tab,
5847 const char *opname,
5848 machine_mode tmode,
5849 machine_mode fmode)
5851 if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
5852 return;
5853 if (GET_MODE_CLASS (tmode) != MODE_INT)
5854 return;
5855 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5858 /* Initialize the libfunc fields of an of an intra-mode-class conversion optab.
5859 The string formation rules are
5860 similar to the ones for init_libfunc, above. */
5862 void
5863 gen_intraclass_conv_libfunc (convert_optab tab, const char *opname,
5864 machine_mode tmode, machine_mode fmode)
5866 size_t opname_len = strlen (opname);
5867 size_t mname_len = 0;
5869 const char *fname, *tname;
5870 const char *q;
5871 int prefix_len = targetm.libfunc_gnu_prefix ? 6 : 2;
5872 char *nondec_name, *dec_name, *nondec_suffix, *dec_suffix;
5873 char *libfunc_name, *suffix;
5874 char *p;
5876 /* If this is a decimal conversion, add the current BID vs. DPD prefix that
5877 depends on which underlying decimal floating point format is used. */
5878 const size_t dec_len = sizeof (DECIMAL_PREFIX) - 1;
5880 mname_len = strlen (GET_MODE_NAME (tmode)) + strlen (GET_MODE_NAME (fmode));
5882 nondec_name = XALLOCAVEC (char, 2 + opname_len + mname_len + 1 + 1);
5883 nondec_name[0] = '_';
5884 nondec_name[1] = '_';
5885 if (targetm.libfunc_gnu_prefix)
5887 nondec_name[2] = 'g';
5888 nondec_name[3] = 'n';
5889 nondec_name[4] = 'u';
5890 nondec_name[5] = '_';
5892 memcpy (&nondec_name[prefix_len], opname, opname_len);
5893 nondec_suffix = nondec_name + opname_len + prefix_len;
5895 dec_name = XALLOCAVEC (char, 2 + dec_len + opname_len + mname_len + 1 + 1);
5896 dec_name[0] = '_';
5897 dec_name[1] = '_';
5898 memcpy (&dec_name[2], DECIMAL_PREFIX, dec_len);
5899 memcpy (&dec_name[2 + dec_len], opname, opname_len);
5900 dec_suffix = dec_name + dec_len + opname_len + 2;
5902 fname = GET_MODE_NAME (fmode);
5903 tname = GET_MODE_NAME (tmode);
5905 if (DECIMAL_FLOAT_MODE_P (fmode) || DECIMAL_FLOAT_MODE_P (tmode))
5907 libfunc_name = dec_name;
5908 suffix = dec_suffix;
5910 else
5912 libfunc_name = nondec_name;
5913 suffix = nondec_suffix;
5916 p = suffix;
5917 for (q = fname; *q; p++, q++)
5918 *p = TOLOWER (*q);
5919 for (q = tname; *q; p++, q++)
5920 *p = TOLOWER (*q);
5922 *p++ = '2';
5923 *p = '\0';
5925 set_conv_libfunc (tab, tmode, fmode,
5926 ggc_alloc_string (libfunc_name, p - libfunc_name));
5929 /* Pick proper libcall for trunc_optab. We need to chose if we do
5930 truncation or extension and interclass or intraclass. */
5932 void
5933 gen_trunc_conv_libfunc (convert_optab tab,
5934 const char *opname,
5935 machine_mode tmode,
5936 machine_mode fmode)
5938 if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
5939 return;
5940 if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
5941 return;
5942 if (tmode == fmode)
5943 return;
5945 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (fmode))
5946 || (GET_MODE_CLASS (fmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (tmode)))
5947 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5949 if (GET_MODE_PRECISION (fmode) <= GET_MODE_PRECISION (tmode))
5950 return;
5952 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT
5953 && GET_MODE_CLASS (fmode) == MODE_FLOAT)
5954 || (DECIMAL_FLOAT_MODE_P (fmode) && DECIMAL_FLOAT_MODE_P (tmode)))
5955 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5958 /* Pick proper libcall for extend_optab. We need to chose if we do
5959 truncation or extension and interclass or intraclass. */
5961 void
5962 gen_extend_conv_libfunc (convert_optab tab,
5963 const char *opname ATTRIBUTE_UNUSED,
5964 machine_mode tmode,
5965 machine_mode fmode)
5967 if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
5968 return;
5969 if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
5970 return;
5971 if (tmode == fmode)
5972 return;
5974 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (fmode))
5975 || (GET_MODE_CLASS (fmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (tmode)))
5976 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5978 if (GET_MODE_PRECISION (fmode) > GET_MODE_PRECISION (tmode))
5979 return;
5981 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT
5982 && GET_MODE_CLASS (fmode) == MODE_FLOAT)
5983 || (DECIMAL_FLOAT_MODE_P (fmode) && DECIMAL_FLOAT_MODE_P (tmode)))
5984 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5987 /* Pick proper libcall for fract_optab. We need to chose if we do
5988 interclass or intraclass. */
5990 void
5991 gen_fract_conv_libfunc (convert_optab tab,
5992 const char *opname,
5993 machine_mode tmode,
5994 machine_mode fmode)
5996 if (tmode == fmode)
5997 return;
5998 if (!(ALL_FIXED_POINT_MODE_P (tmode) || ALL_FIXED_POINT_MODE_P (fmode)))
5999 return;
6001 if (GET_MODE_CLASS (tmode) == GET_MODE_CLASS (fmode))
6002 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
6003 else
6004 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
6007 /* Pick proper libcall for fractuns_optab. */
6009 void
6010 gen_fractuns_conv_libfunc (convert_optab tab,
6011 const char *opname,
6012 machine_mode tmode,
6013 machine_mode fmode)
6015 if (tmode == fmode)
6016 return;
6017 /* One mode must be a fixed-point mode, and the other must be an integer
6018 mode. */
6019 if (!((ALL_FIXED_POINT_MODE_P (tmode) && GET_MODE_CLASS (fmode) == MODE_INT)
6020 || (ALL_FIXED_POINT_MODE_P (fmode)
6021 && GET_MODE_CLASS (tmode) == MODE_INT)))
6022 return;
6024 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
6027 /* Pick proper libcall for satfract_optab. We need to chose if we do
6028 interclass or intraclass. */
6030 void
6031 gen_satfract_conv_libfunc (convert_optab tab,
6032 const char *opname,
6033 machine_mode tmode,
6034 machine_mode fmode)
6036 if (tmode == fmode)
6037 return;
6038 /* TMODE must be a fixed-point mode. */
6039 if (!ALL_FIXED_POINT_MODE_P (tmode))
6040 return;
6042 if (GET_MODE_CLASS (tmode) == GET_MODE_CLASS (fmode))
6043 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
6044 else
6045 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
6048 /* Pick proper libcall for satfractuns_optab. */
6050 void
6051 gen_satfractuns_conv_libfunc (convert_optab tab,
6052 const char *opname,
6053 machine_mode tmode,
6054 machine_mode fmode)
6056 if (tmode == fmode)
6057 return;
6058 /* TMODE must be a fixed-point mode, and FMODE must be an integer mode. */
6059 if (!(ALL_FIXED_POINT_MODE_P (tmode) && GET_MODE_CLASS (fmode) == MODE_INT))
6060 return;
6062 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
6065 /* Hashtable callbacks for libfunc_decls. */
6067 struct libfunc_decl_hasher : ggc_hasher<tree>
6069 static hashval_t
6070 hash (tree entry)
6072 return IDENTIFIER_HASH_VALUE (DECL_NAME (entry));
6075 static bool
6076 equal (tree decl, tree name)
6078 return DECL_NAME (decl) == name;
6082 /* A table of previously-created libfuncs, hashed by name. */
6083 static GTY (()) hash_table<libfunc_decl_hasher> *libfunc_decls;
6085 /* Build a decl for a libfunc named NAME. */
6087 tree
6088 build_libfunc_function (const char *name)
6090 tree decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
6091 get_identifier (name),
6092 build_function_type (integer_type_node, NULL_TREE));
6093 /* ??? We don't have any type information except for this is
6094 a function. Pretend this is "int foo()". */
6095 DECL_ARTIFICIAL (decl) = 1;
6096 DECL_EXTERNAL (decl) = 1;
6097 TREE_PUBLIC (decl) = 1;
6098 gcc_assert (DECL_ASSEMBLER_NAME (decl));
6100 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
6101 are the flags assigned by targetm.encode_section_info. */
6102 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
6104 return decl;
6108 init_one_libfunc (const char *name)
6110 tree id, decl;
6111 hashval_t hash;
6113 if (libfunc_decls == NULL)
6114 libfunc_decls = hash_table<libfunc_decl_hasher>::create_ggc (37);
6116 /* See if we have already created a libfunc decl for this function. */
6117 id = get_identifier (name);
6118 hash = IDENTIFIER_HASH_VALUE (id);
6119 tree *slot = libfunc_decls->find_slot_with_hash (id, hash, INSERT);
6120 decl = *slot;
6121 if (decl == NULL)
6123 /* Create a new decl, so that it can be passed to
6124 targetm.encode_section_info. */
6125 decl = build_libfunc_function (name);
6126 *slot = decl;
6128 return XEXP (DECL_RTL (decl), 0);
6131 /* Adjust the assembler name of libfunc NAME to ASMSPEC. */
6134 set_user_assembler_libfunc (const char *name, const char *asmspec)
6136 tree id, decl;
6137 hashval_t hash;
6139 id = get_identifier (name);
6140 hash = IDENTIFIER_HASH_VALUE (id);
6141 tree *slot = libfunc_decls->find_slot_with_hash (id, hash, NO_INSERT);
6142 gcc_assert (slot);
6143 decl = (tree) *slot;
6144 set_user_assembler_name (decl, asmspec);
6145 return XEXP (DECL_RTL (decl), 0);
6148 /* Call this to reset the function entry for one optab (OPTABLE) in mode
6149 MODE to NAME, which should be either 0 or a string constant. */
6150 void
6151 set_optab_libfunc (optab op, machine_mode mode, const char *name)
6153 rtx val;
6154 struct libfunc_entry e;
6155 struct libfunc_entry **slot;
6157 e.op = op;
6158 e.mode1 = mode;
6159 e.mode2 = VOIDmode;
6161 if (name)
6162 val = init_one_libfunc (name);
6163 else
6164 val = 0;
6165 slot = libfunc_hash->find_slot (&e, INSERT);
6166 if (*slot == NULL)
6167 *slot = ggc_alloc<libfunc_entry> ();
6168 (*slot)->op = op;
6169 (*slot)->mode1 = mode;
6170 (*slot)->mode2 = VOIDmode;
6171 (*slot)->libfunc = val;
6174 /* Call this to reset the function entry for one conversion optab
6175 (OPTABLE) from mode FMODE to mode TMODE to NAME, which should be
6176 either 0 or a string constant. */
6177 void
6178 set_conv_libfunc (convert_optab optab, machine_mode tmode,
6179 machine_mode fmode, const char *name)
6181 rtx val;
6182 struct libfunc_entry e;
6183 struct libfunc_entry **slot;
6185 e.op = optab;
6186 e.mode1 = tmode;
6187 e.mode2 = fmode;
6189 if (name)
6190 val = init_one_libfunc (name);
6191 else
6192 val = 0;
6193 slot = libfunc_hash->find_slot (&e, INSERT);
6194 if (*slot == NULL)
6195 *slot = ggc_alloc<libfunc_entry> ();
6196 (*slot)->op = optab;
6197 (*slot)->mode1 = tmode;
6198 (*slot)->mode2 = fmode;
6199 (*slot)->libfunc = val;
6202 /* Call this to initialize the contents of the optabs
6203 appropriately for the current target machine. */
6205 void
6206 init_optabs (void)
6208 if (libfunc_hash)
6209 libfunc_hash->empty ();
6210 else
6211 libfunc_hash = hash_table<libfunc_hasher>::create_ggc (10);
6213 /* Fill in the optabs with the insns we support. */
6214 init_all_optabs (this_fn_optabs);
6216 /* The ffs function operates on `int'. Fall back on it if we do not
6217 have a libgcc2 function for that width. */
6218 if (INT_TYPE_SIZE < BITS_PER_WORD)
6219 set_optab_libfunc (ffs_optab, mode_for_size (INT_TYPE_SIZE, MODE_INT, 0),
6220 "ffs");
6222 /* Explicitly initialize the bswap libfuncs since we need them to be
6223 valid for things other than word_mode. */
6224 if (targetm.libfunc_gnu_prefix)
6226 set_optab_libfunc (bswap_optab, SImode, "__gnu_bswapsi2");
6227 set_optab_libfunc (bswap_optab, DImode, "__gnu_bswapdi2");
6229 else
6231 set_optab_libfunc (bswap_optab, SImode, "__bswapsi2");
6232 set_optab_libfunc (bswap_optab, DImode, "__bswapdi2");
6235 /* Use cabs for double complex abs, since systems generally have cabs.
6236 Don't define any libcall for float complex, so that cabs will be used. */
6237 if (complex_double_type_node)
6238 set_optab_libfunc (abs_optab, TYPE_MODE (complex_double_type_node),
6239 "cabs");
6241 abort_libfunc = init_one_libfunc ("abort");
6242 memcpy_libfunc = init_one_libfunc ("memcpy");
6243 memmove_libfunc = init_one_libfunc ("memmove");
6244 memcmp_libfunc = init_one_libfunc ("memcmp");
6245 memset_libfunc = init_one_libfunc ("memset");
6246 setbits_libfunc = init_one_libfunc ("__setbits");
6248 #ifndef DONT_USE_BUILTIN_SETJMP
6249 setjmp_libfunc = init_one_libfunc ("__builtin_setjmp");
6250 longjmp_libfunc = init_one_libfunc ("__builtin_longjmp");
6251 #else
6252 setjmp_libfunc = init_one_libfunc ("setjmp");
6253 longjmp_libfunc = init_one_libfunc ("longjmp");
6254 #endif
6255 unwind_sjlj_register_libfunc = init_one_libfunc ("_Unwind_SjLj_Register");
6256 unwind_sjlj_unregister_libfunc
6257 = init_one_libfunc ("_Unwind_SjLj_Unregister");
6259 /* For function entry/exit instrumentation. */
6260 profile_function_entry_libfunc
6261 = init_one_libfunc ("__cyg_profile_func_enter");
6262 profile_function_exit_libfunc
6263 = init_one_libfunc ("__cyg_profile_func_exit");
6265 gcov_flush_libfunc = init_one_libfunc ("__gcov_flush");
6267 /* Allow the target to add more libcalls or rename some, etc. */
6268 targetm.init_libfuncs ();
6271 /* Use the current target and options to initialize
6272 TREE_OPTIMIZATION_OPTABS (OPTNODE). */
6274 void
6275 init_tree_optimization_optabs (tree optnode)
6277 /* Quick exit if we have already computed optabs for this target. */
6278 if (TREE_OPTIMIZATION_BASE_OPTABS (optnode) == this_target_optabs)
6279 return;
6281 /* Forget any previous information and set up for the current target. */
6282 TREE_OPTIMIZATION_BASE_OPTABS (optnode) = this_target_optabs;
6283 struct target_optabs *tmp_optabs = (struct target_optabs *)
6284 TREE_OPTIMIZATION_OPTABS (optnode);
6285 if (tmp_optabs)
6286 memset (tmp_optabs, 0, sizeof (struct target_optabs));
6287 else
6288 tmp_optabs = ggc_alloc<target_optabs> ();
6290 /* Generate a new set of optabs into tmp_optabs. */
6291 init_all_optabs (tmp_optabs);
6293 /* If the optabs changed, record it. */
6294 if (memcmp (tmp_optabs, this_target_optabs, sizeof (struct target_optabs)))
6295 TREE_OPTIMIZATION_OPTABS (optnode) = tmp_optabs;
6296 else
6298 TREE_OPTIMIZATION_OPTABS (optnode) = NULL;
6299 ggc_free (tmp_optabs);
6303 /* A helper function for init_sync_libfuncs. Using the basename BASE,
6304 install libfuncs into TAB for BASE_N for 1 <= N <= MAX. */
6306 static void
6307 init_sync_libfuncs_1 (optab tab, const char *base, int max)
6309 machine_mode mode;
6310 char buf[64];
6311 size_t len = strlen (base);
6312 int i;
6314 gcc_assert (max <= 8);
6315 gcc_assert (len + 3 < sizeof (buf));
6317 memcpy (buf, base, len);
6318 buf[len] = '_';
6319 buf[len + 1] = '0';
6320 buf[len + 2] = '\0';
6322 mode = QImode;
6323 for (i = 1; i <= max; i *= 2)
6325 buf[len + 1] = '0' + i;
6326 set_optab_libfunc (tab, mode, buf);
6327 mode = GET_MODE_2XWIDER_MODE (mode);
6331 void
6332 init_sync_libfuncs (int max)
6334 if (!flag_sync_libcalls)
6335 return;
6337 init_sync_libfuncs_1 (sync_compare_and_swap_optab,
6338 "__sync_val_compare_and_swap", max);
6339 init_sync_libfuncs_1 (sync_lock_test_and_set_optab,
6340 "__sync_lock_test_and_set", max);
6342 init_sync_libfuncs_1 (sync_old_add_optab, "__sync_fetch_and_add", max);
6343 init_sync_libfuncs_1 (sync_old_sub_optab, "__sync_fetch_and_sub", max);
6344 init_sync_libfuncs_1 (sync_old_ior_optab, "__sync_fetch_and_or", max);
6345 init_sync_libfuncs_1 (sync_old_and_optab, "__sync_fetch_and_and", max);
6346 init_sync_libfuncs_1 (sync_old_xor_optab, "__sync_fetch_and_xor", max);
6347 init_sync_libfuncs_1 (sync_old_nand_optab, "__sync_fetch_and_nand", max);
6349 init_sync_libfuncs_1 (sync_new_add_optab, "__sync_add_and_fetch", max);
6350 init_sync_libfuncs_1 (sync_new_sub_optab, "__sync_sub_and_fetch", max);
6351 init_sync_libfuncs_1 (sync_new_ior_optab, "__sync_or_and_fetch", max);
6352 init_sync_libfuncs_1 (sync_new_and_optab, "__sync_and_and_fetch", max);
6353 init_sync_libfuncs_1 (sync_new_xor_optab, "__sync_xor_and_fetch", max);
6354 init_sync_libfuncs_1 (sync_new_nand_optab, "__sync_nand_and_fetch", max);
6357 /* Print information about the current contents of the optabs on
6358 STDERR. */
6360 DEBUG_FUNCTION void
6361 debug_optab_libfuncs (void)
6363 int i, j, k;
6365 /* Dump the arithmetic optabs. */
6366 for (i = FIRST_NORM_OPTAB; i <= LAST_NORMLIB_OPTAB; ++i)
6367 for (j = 0; j < NUM_MACHINE_MODES; ++j)
6369 rtx l = optab_libfunc ((optab) i, (machine_mode) j);
6370 if (l)
6372 gcc_assert (GET_CODE (l) == SYMBOL_REF);
6373 fprintf (stderr, "%s\t%s:\t%s\n",
6374 GET_RTX_NAME (optab_to_code ((optab) i)),
6375 GET_MODE_NAME (j),
6376 XSTR (l, 0));
6380 /* Dump the conversion optabs. */
6381 for (i = FIRST_CONV_OPTAB; i <= LAST_CONVLIB_OPTAB; ++i)
6382 for (j = 0; j < NUM_MACHINE_MODES; ++j)
6383 for (k = 0; k < NUM_MACHINE_MODES; ++k)
6385 rtx l = convert_optab_libfunc ((optab) i, (machine_mode) j,
6386 (machine_mode) k);
6387 if (l)
6389 gcc_assert (GET_CODE (l) == SYMBOL_REF);
6390 fprintf (stderr, "%s\t%s\t%s:\t%s\n",
6391 GET_RTX_NAME (optab_to_code ((optab) i)),
6392 GET_MODE_NAME (j),
6393 GET_MODE_NAME (k),
6394 XSTR (l, 0));
6400 /* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition
6401 CODE. Return 0 on failure. */
6404 gen_cond_trap (enum rtx_code code, rtx op1, rtx op2, rtx tcode)
6406 machine_mode mode = GET_MODE (op1);
6407 enum insn_code icode;
6408 rtx insn;
6409 rtx trap_rtx;
6411 if (mode == VOIDmode)
6412 return 0;
6414 icode = optab_handler (ctrap_optab, mode);
6415 if (icode == CODE_FOR_nothing)
6416 return 0;
6418 /* Some targets only accept a zero trap code. */
6419 if (!insn_operand_matches (icode, 3, tcode))
6420 return 0;
6422 do_pending_stack_adjust ();
6423 start_sequence ();
6424 prepare_cmp_insn (op1, op2, code, NULL_RTX, false, OPTAB_DIRECT,
6425 &trap_rtx, &mode);
6426 if (!trap_rtx)
6427 insn = NULL_RTX;
6428 else
6429 insn = GEN_FCN (icode) (trap_rtx, XEXP (trap_rtx, 0), XEXP (trap_rtx, 1),
6430 tcode);
6432 /* If that failed, then give up. */
6433 if (insn == 0)
6435 end_sequence ();
6436 return 0;
6439 emit_insn (insn);
6440 insn = get_insns ();
6441 end_sequence ();
6442 return insn;
6445 /* Return rtx code for TCODE. Use UNSIGNEDP to select signed
6446 or unsigned operation code. */
6448 enum rtx_code
6449 get_rtx_code (enum tree_code tcode, bool unsignedp)
6451 enum rtx_code code;
6452 switch (tcode)
6454 case EQ_EXPR:
6455 code = EQ;
6456 break;
6457 case NE_EXPR:
6458 code = NE;
6459 break;
6460 case LT_EXPR:
6461 code = unsignedp ? LTU : LT;
6462 break;
6463 case LE_EXPR:
6464 code = unsignedp ? LEU : LE;
6465 break;
6466 case GT_EXPR:
6467 code = unsignedp ? GTU : GT;
6468 break;
6469 case GE_EXPR:
6470 code = unsignedp ? GEU : GE;
6471 break;
6473 case UNORDERED_EXPR:
6474 code = UNORDERED;
6475 break;
6476 case ORDERED_EXPR:
6477 code = ORDERED;
6478 break;
6479 case UNLT_EXPR:
6480 code = UNLT;
6481 break;
6482 case UNLE_EXPR:
6483 code = UNLE;
6484 break;
6485 case UNGT_EXPR:
6486 code = UNGT;
6487 break;
6488 case UNGE_EXPR:
6489 code = UNGE;
6490 break;
6491 case UNEQ_EXPR:
6492 code = UNEQ;
6493 break;
6494 case LTGT_EXPR:
6495 code = LTGT;
6496 break;
6498 case BIT_AND_EXPR:
6499 code = AND;
6500 break;
6502 case BIT_IOR_EXPR:
6503 code = IOR;
6504 break;
6506 default:
6507 gcc_unreachable ();
6509 return code;
6512 /* Return comparison rtx for COND. Use UNSIGNEDP to select signed or
6513 unsigned operators. Do not generate compare instruction. */
6515 static rtx
6516 vector_compare_rtx (enum tree_code tcode, tree t_op0, tree t_op1,
6517 bool unsignedp, enum insn_code icode)
6519 struct expand_operand ops[2];
6520 rtx rtx_op0, rtx_op1;
6521 machine_mode m0, m1;
6522 enum rtx_code rcode = get_rtx_code (tcode, unsignedp);
6524 gcc_assert (TREE_CODE_CLASS (tcode) == tcc_comparison);
6526 /* Expand operands. For vector types with scalar modes, e.g. where int64x1_t
6527 has mode DImode, this can produce a constant RTX of mode VOIDmode; in such
6528 cases, use the original mode. */
6529 rtx_op0 = expand_expr (t_op0, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op0)),
6530 EXPAND_STACK_PARM);
6531 m0 = GET_MODE (rtx_op0);
6532 if (m0 == VOIDmode)
6533 m0 = TYPE_MODE (TREE_TYPE (t_op0));
6535 rtx_op1 = expand_expr (t_op1, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op1)),
6536 EXPAND_STACK_PARM);
6537 m1 = GET_MODE (rtx_op1);
6538 if (m1 == VOIDmode)
6539 m1 = TYPE_MODE (TREE_TYPE (t_op1));
6541 create_input_operand (&ops[0], rtx_op0, m0);
6542 create_input_operand (&ops[1], rtx_op1, m1);
6543 if (!maybe_legitimize_operands (icode, 4, 2, ops))
6544 gcc_unreachable ();
6545 return gen_rtx_fmt_ee (rcode, VOIDmode, ops[0].value, ops[1].value);
6548 /* Return true if VEC_PERM_EXPR of arbitrary input vectors can be expanded using
6549 SIMD extensions of the CPU. SEL may be NULL, which stands for an unknown
6550 constant. Note that additional permutations representing whole-vector shifts
6551 may also be handled via the vec_shr optab, but only where the second input
6552 vector is entirely constant zeroes; this case is not dealt with here. */
6554 bool
6555 can_vec_perm_p (machine_mode mode, bool variable,
6556 const unsigned char *sel)
6558 machine_mode qimode;
6560 /* If the target doesn't implement a vector mode for the vector type,
6561 then no operations are supported. */
6562 if (!VECTOR_MODE_P (mode))
6563 return false;
6565 if (!variable)
6567 if (direct_optab_handler (vec_perm_const_optab, mode) != CODE_FOR_nothing
6568 && (sel == NULL
6569 || targetm.vectorize.vec_perm_const_ok == NULL
6570 || targetm.vectorize.vec_perm_const_ok (mode, sel)))
6571 return true;
6574 if (direct_optab_handler (vec_perm_optab, mode) != CODE_FOR_nothing)
6575 return true;
6577 /* We allow fallback to a QI vector mode, and adjust the mask. */
6578 if (GET_MODE_INNER (mode) == QImode)
6579 return false;
6580 qimode = mode_for_vector (QImode, GET_MODE_SIZE (mode));
6581 if (!VECTOR_MODE_P (qimode))
6582 return false;
6584 /* ??? For completeness, we ought to check the QImode version of
6585 vec_perm_const_optab. But all users of this implicit lowering
6586 feature implement the variable vec_perm_optab. */
6587 if (direct_optab_handler (vec_perm_optab, qimode) == CODE_FOR_nothing)
6588 return false;
6590 /* In order to support the lowering of variable permutations,
6591 we need to support shifts and adds. */
6592 if (variable)
6594 if (GET_MODE_UNIT_SIZE (mode) > 2
6595 && optab_handler (ashl_optab, mode) == CODE_FOR_nothing
6596 && optab_handler (vashl_optab, mode) == CODE_FOR_nothing)
6597 return false;
6598 if (optab_handler (add_optab, qimode) == CODE_FOR_nothing)
6599 return false;
6602 return true;
6605 /* Checks if vec_perm mask SEL is a constant equivalent to a shift of the first
6606 vec_perm operand, assuming the second operand is a constant vector of zeroes.
6607 Return the shift distance in bits if so, or NULL_RTX if the vec_perm is not a
6608 shift. */
6609 static rtx
6610 shift_amt_for_vec_perm_mask (rtx sel)
6612 unsigned int i, first, nelt = GET_MODE_NUNITS (GET_MODE (sel));
6613 unsigned int bitsize = GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (sel)));
6615 if (GET_CODE (sel) != CONST_VECTOR)
6616 return NULL_RTX;
6618 first = INTVAL (CONST_VECTOR_ELT (sel, 0));
6619 if (first >= 2*nelt)
6620 return NULL_RTX;
6621 for (i = 1; i < nelt; i++)
6623 int idx = INTVAL (CONST_VECTOR_ELT (sel, i));
6624 unsigned int expected = (i + first) & (2 * nelt - 1);
6625 /* Indices into the second vector are all equivalent. */
6626 if (idx < 0 || (MIN (nelt, (unsigned) idx) != MIN (nelt, expected)))
6627 return NULL_RTX;
6630 return GEN_INT (first * bitsize);
6633 /* A subroutine of expand_vec_perm for expanding one vec_perm insn. */
6635 static rtx
6636 expand_vec_perm_1 (enum insn_code icode, rtx target,
6637 rtx v0, rtx v1, rtx sel)
6639 machine_mode tmode = GET_MODE (target);
6640 machine_mode smode = GET_MODE (sel);
6641 struct expand_operand ops[4];
6643 create_output_operand (&ops[0], target, tmode);
6644 create_input_operand (&ops[3], sel, smode);
6646 /* Make an effort to preserve v0 == v1. The target expander is able to
6647 rely on this to determine if we're permuting a single input operand. */
6648 if (rtx_equal_p (v0, v1))
6650 if (!insn_operand_matches (icode, 1, v0))
6651 v0 = force_reg (tmode, v0);
6652 gcc_checking_assert (insn_operand_matches (icode, 1, v0));
6653 gcc_checking_assert (insn_operand_matches (icode, 2, v0));
6655 create_fixed_operand (&ops[1], v0);
6656 create_fixed_operand (&ops[2], v0);
6658 else
6660 create_input_operand (&ops[1], v0, tmode);
6661 /* See if this can be handled with a vec_shr. We only do this if the
6662 second vector is all zeroes. */
6663 enum insn_code shift_code = optab_handler (vec_shr_optab, GET_MODE (v0));
6664 if (v1 == CONST0_RTX (GET_MODE (v1)) && shift_code)
6665 if (rtx shift_amt = shift_amt_for_vec_perm_mask (sel))
6667 create_convert_operand_from_type (&ops[2], shift_amt,
6668 sizetype_tab[(int) stk_sizetype]);
6669 if (maybe_expand_insn (shift_code, 3, ops))
6670 return ops[0].value;
6672 create_input_operand (&ops[2], v1, tmode);
6675 if (maybe_expand_insn (icode, 4, ops))
6676 return ops[0].value;
6677 return NULL_RTX;
6680 /* Generate instructions for vec_perm optab given its mode
6681 and three operands. */
6684 expand_vec_perm (machine_mode mode, rtx v0, rtx v1, rtx sel, rtx target)
6686 enum insn_code icode;
6687 machine_mode qimode;
6688 unsigned int i, w, e, u;
6689 rtx tmp, sel_qi = NULL;
6690 rtvec vec;
6692 if (!target || GET_MODE (target) != mode)
6693 target = gen_reg_rtx (mode);
6695 w = GET_MODE_SIZE (mode);
6696 e = GET_MODE_NUNITS (mode);
6697 u = GET_MODE_UNIT_SIZE (mode);
6699 /* Set QIMODE to a different vector mode with byte elements.
6700 If no such mode, or if MODE already has byte elements, use VOIDmode. */
6701 qimode = VOIDmode;
6702 if (GET_MODE_INNER (mode) != QImode)
6704 qimode = mode_for_vector (QImode, w);
6705 if (!VECTOR_MODE_P (qimode))
6706 qimode = VOIDmode;
6709 /* If the input is a constant, expand it specially. */
6710 gcc_assert (GET_MODE_CLASS (GET_MODE (sel)) == MODE_VECTOR_INT);
6711 if (GET_CODE (sel) == CONST_VECTOR)
6713 icode = direct_optab_handler (vec_perm_const_optab, mode);
6714 if (icode != CODE_FOR_nothing)
6716 tmp = expand_vec_perm_1 (icode, target, v0, v1, sel);
6717 if (tmp)
6718 return tmp;
6721 /* Fall back to a constant byte-based permutation. */
6722 if (qimode != VOIDmode)
6724 vec = rtvec_alloc (w);
6725 for (i = 0; i < e; ++i)
6727 unsigned int j, this_e;
6729 this_e = INTVAL (CONST_VECTOR_ELT (sel, i));
6730 this_e &= 2 * e - 1;
6731 this_e *= u;
6733 for (j = 0; j < u; ++j)
6734 RTVEC_ELT (vec, i * u + j) = GEN_INT (this_e + j);
6736 sel_qi = gen_rtx_CONST_VECTOR (qimode, vec);
6738 icode = direct_optab_handler (vec_perm_const_optab, qimode);
6739 if (icode != CODE_FOR_nothing)
6741 tmp = mode != qimode ? gen_reg_rtx (qimode) : target;
6742 tmp = expand_vec_perm_1 (icode, tmp, gen_lowpart (qimode, v0),
6743 gen_lowpart (qimode, v1), sel_qi);
6744 if (tmp)
6745 return gen_lowpart (mode, tmp);
6750 /* Otherwise expand as a fully variable permuation. */
6751 icode = direct_optab_handler (vec_perm_optab, mode);
6752 if (icode != CODE_FOR_nothing)
6754 tmp = expand_vec_perm_1 (icode, target, v0, v1, sel);
6755 if (tmp)
6756 return tmp;
6759 /* As a special case to aid several targets, lower the element-based
6760 permutation to a byte-based permutation and try again. */
6761 if (qimode == VOIDmode)
6762 return NULL_RTX;
6763 icode = direct_optab_handler (vec_perm_optab, qimode);
6764 if (icode == CODE_FOR_nothing)
6765 return NULL_RTX;
6767 if (sel_qi == NULL)
6769 /* Multiply each element by its byte size. */
6770 machine_mode selmode = GET_MODE (sel);
6771 if (u == 2)
6772 sel = expand_simple_binop (selmode, PLUS, sel, sel,
6773 NULL, 0, OPTAB_DIRECT);
6774 else
6775 sel = expand_simple_binop (selmode, ASHIFT, sel,
6776 GEN_INT (exact_log2 (u)),
6777 NULL, 0, OPTAB_DIRECT);
6778 gcc_assert (sel != NULL);
6780 /* Broadcast the low byte each element into each of its bytes. */
6781 vec = rtvec_alloc (w);
6782 for (i = 0; i < w; ++i)
6784 int this_e = i / u * u;
6785 if (BYTES_BIG_ENDIAN)
6786 this_e += u - 1;
6787 RTVEC_ELT (vec, i) = GEN_INT (this_e);
6789 tmp = gen_rtx_CONST_VECTOR (qimode, vec);
6790 sel = gen_lowpart (qimode, sel);
6791 sel = expand_vec_perm (qimode, sel, sel, tmp, NULL);
6792 gcc_assert (sel != NULL);
6794 /* Add the byte offset to each byte element. */
6795 /* Note that the definition of the indicies here is memory ordering,
6796 so there should be no difference between big and little endian. */
6797 vec = rtvec_alloc (w);
6798 for (i = 0; i < w; ++i)
6799 RTVEC_ELT (vec, i) = GEN_INT (i % u);
6800 tmp = gen_rtx_CONST_VECTOR (qimode, vec);
6801 sel_qi = expand_simple_binop (qimode, PLUS, sel, tmp,
6802 sel, 0, OPTAB_DIRECT);
6803 gcc_assert (sel_qi != NULL);
6806 tmp = mode != qimode ? gen_reg_rtx (qimode) : target;
6807 tmp = expand_vec_perm_1 (icode, tmp, gen_lowpart (qimode, v0),
6808 gen_lowpart (qimode, v1), sel_qi);
6809 if (tmp)
6810 tmp = gen_lowpart (mode, tmp);
6811 return tmp;
6814 /* Return insn code for a conditional operator with a comparison in
6815 mode CMODE, unsigned if UNS is true, resulting in a value of mode VMODE. */
6817 static inline enum insn_code
6818 get_vcond_icode (machine_mode vmode, machine_mode cmode, bool uns)
6820 enum insn_code icode = CODE_FOR_nothing;
6821 if (uns)
6822 icode = convert_optab_handler (vcondu_optab, vmode, cmode);
6823 else
6824 icode = convert_optab_handler (vcond_optab, vmode, cmode);
6825 return icode;
6828 /* Return TRUE iff, appropriate vector insns are available
6829 for vector cond expr with vector type VALUE_TYPE and a comparison
6830 with operand vector types in CMP_OP_TYPE. */
6832 bool
6833 expand_vec_cond_expr_p (tree value_type, tree cmp_op_type)
6835 machine_mode value_mode = TYPE_MODE (value_type);
6836 machine_mode cmp_op_mode = TYPE_MODE (cmp_op_type);
6837 if (GET_MODE_SIZE (value_mode) != GET_MODE_SIZE (cmp_op_mode)
6838 || GET_MODE_NUNITS (value_mode) != GET_MODE_NUNITS (cmp_op_mode)
6839 || get_vcond_icode (TYPE_MODE (value_type), TYPE_MODE (cmp_op_type),
6840 TYPE_UNSIGNED (cmp_op_type)) == CODE_FOR_nothing)
6841 return false;
6842 return true;
6845 /* Generate insns for a VEC_COND_EXPR, given its TYPE and its
6846 three operands. */
6849 expand_vec_cond_expr (tree vec_cond_type, tree op0, tree op1, tree op2,
6850 rtx target)
6852 struct expand_operand ops[6];
6853 enum insn_code icode;
6854 rtx comparison, rtx_op1, rtx_op2;
6855 machine_mode mode = TYPE_MODE (vec_cond_type);
6856 machine_mode cmp_op_mode;
6857 bool unsignedp;
6858 tree op0a, op0b;
6859 enum tree_code tcode;
6861 if (COMPARISON_CLASS_P (op0))
6863 op0a = TREE_OPERAND (op0, 0);
6864 op0b = TREE_OPERAND (op0, 1);
6865 tcode = TREE_CODE (op0);
6867 else
6869 /* Fake op0 < 0. */
6870 gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (op0)));
6871 op0a = op0;
6872 op0b = build_zero_cst (TREE_TYPE (op0));
6873 tcode = LT_EXPR;
6875 unsignedp = TYPE_UNSIGNED (TREE_TYPE (op0a));
6876 cmp_op_mode = TYPE_MODE (TREE_TYPE (op0a));
6879 gcc_assert (GET_MODE_SIZE (mode) == GET_MODE_SIZE (cmp_op_mode)
6880 && GET_MODE_NUNITS (mode) == GET_MODE_NUNITS (cmp_op_mode));
6882 icode = get_vcond_icode (mode, cmp_op_mode, unsignedp);
6883 if (icode == CODE_FOR_nothing)
6884 return 0;
6886 comparison = vector_compare_rtx (tcode, op0a, op0b, unsignedp, icode);
6887 rtx_op1 = expand_normal (op1);
6888 rtx_op2 = expand_normal (op2);
6890 create_output_operand (&ops[0], target, mode);
6891 create_input_operand (&ops[1], rtx_op1, mode);
6892 create_input_operand (&ops[2], rtx_op2, mode);
6893 create_fixed_operand (&ops[3], comparison);
6894 create_fixed_operand (&ops[4], XEXP (comparison, 0));
6895 create_fixed_operand (&ops[5], XEXP (comparison, 1));
6896 expand_insn (icode, 6, ops);
6897 return ops[0].value;
6900 /* Return non-zero if a highpart multiply is supported of can be synthisized.
6901 For the benefit of expand_mult_highpart, the return value is 1 for direct,
6902 2 for even/odd widening, and 3 for hi/lo widening. */
6905 can_mult_highpart_p (machine_mode mode, bool uns_p)
6907 optab op;
6908 unsigned char *sel;
6909 unsigned i, nunits;
6911 op = uns_p ? umul_highpart_optab : smul_highpart_optab;
6912 if (optab_handler (op, mode) != CODE_FOR_nothing)
6913 return 1;
6915 /* If the mode is an integral vector, synth from widening operations. */
6916 if (GET_MODE_CLASS (mode) != MODE_VECTOR_INT)
6917 return 0;
6919 nunits = GET_MODE_NUNITS (mode);
6920 sel = XALLOCAVEC (unsigned char, nunits);
6922 op = uns_p ? vec_widen_umult_even_optab : vec_widen_smult_even_optab;
6923 if (optab_handler (op, mode) != CODE_FOR_nothing)
6925 op = uns_p ? vec_widen_umult_odd_optab : vec_widen_smult_odd_optab;
6926 if (optab_handler (op, mode) != CODE_FOR_nothing)
6928 for (i = 0; i < nunits; ++i)
6929 sel[i] = !BYTES_BIG_ENDIAN + (i & ~1) + ((i & 1) ? nunits : 0);
6930 if (can_vec_perm_p (mode, false, sel))
6931 return 2;
6935 op = uns_p ? vec_widen_umult_hi_optab : vec_widen_smult_hi_optab;
6936 if (optab_handler (op, mode) != CODE_FOR_nothing)
6938 op = uns_p ? vec_widen_umult_lo_optab : vec_widen_smult_lo_optab;
6939 if (optab_handler (op, mode) != CODE_FOR_nothing)
6941 for (i = 0; i < nunits; ++i)
6942 sel[i] = 2 * i + (BYTES_BIG_ENDIAN ? 0 : 1);
6943 if (can_vec_perm_p (mode, false, sel))
6944 return 3;
6948 return 0;
6951 /* Expand a highpart multiply. */
6954 expand_mult_highpart (machine_mode mode, rtx op0, rtx op1,
6955 rtx target, bool uns_p)
6957 struct expand_operand eops[3];
6958 enum insn_code icode;
6959 int method, i, nunits;
6960 machine_mode wmode;
6961 rtx m1, m2, perm;
6962 optab tab1, tab2;
6963 rtvec v;
6965 method = can_mult_highpart_p (mode, uns_p);
6966 switch (method)
6968 case 0:
6969 return NULL_RTX;
6970 case 1:
6971 tab1 = uns_p ? umul_highpart_optab : smul_highpart_optab;
6972 return expand_binop (mode, tab1, op0, op1, target, uns_p,
6973 OPTAB_LIB_WIDEN);
6974 case 2:
6975 tab1 = uns_p ? vec_widen_umult_even_optab : vec_widen_smult_even_optab;
6976 tab2 = uns_p ? vec_widen_umult_odd_optab : vec_widen_smult_odd_optab;
6977 break;
6978 case 3:
6979 tab1 = uns_p ? vec_widen_umult_lo_optab : vec_widen_smult_lo_optab;
6980 tab2 = uns_p ? vec_widen_umult_hi_optab : vec_widen_smult_hi_optab;
6981 if (BYTES_BIG_ENDIAN)
6983 optab t = tab1;
6984 tab1 = tab2;
6985 tab2 = t;
6987 break;
6988 default:
6989 gcc_unreachable ();
6992 icode = optab_handler (tab1, mode);
6993 nunits = GET_MODE_NUNITS (mode);
6994 wmode = insn_data[icode].operand[0].mode;
6995 gcc_checking_assert (2 * GET_MODE_NUNITS (wmode) == nunits);
6996 gcc_checking_assert (GET_MODE_SIZE (wmode) == GET_MODE_SIZE (mode));
6998 create_output_operand (&eops[0], gen_reg_rtx (wmode), wmode);
6999 create_input_operand (&eops[1], op0, mode);
7000 create_input_operand (&eops[2], op1, mode);
7001 expand_insn (icode, 3, eops);
7002 m1 = gen_lowpart (mode, eops[0].value);
7004 create_output_operand (&eops[0], gen_reg_rtx (wmode), wmode);
7005 create_input_operand (&eops[1], op0, mode);
7006 create_input_operand (&eops[2], op1, mode);
7007 expand_insn (optab_handler (tab2, mode), 3, eops);
7008 m2 = gen_lowpart (mode, eops[0].value);
7010 v = rtvec_alloc (nunits);
7011 if (method == 2)
7013 for (i = 0; i < nunits; ++i)
7014 RTVEC_ELT (v, i) = GEN_INT (!BYTES_BIG_ENDIAN + (i & ~1)
7015 + ((i & 1) ? nunits : 0));
7017 else
7019 for (i = 0; i < nunits; ++i)
7020 RTVEC_ELT (v, i) = GEN_INT (2 * i + (BYTES_BIG_ENDIAN ? 0 : 1));
7022 perm = gen_rtx_CONST_VECTOR (mode, v);
7024 return expand_vec_perm (mode, m1, m2, perm, target);
7027 /* Return true if target supports vector masked load/store for mode. */
7028 bool
7029 can_vec_mask_load_store_p (machine_mode mode, bool is_load)
7031 optab op = is_load ? maskload_optab : maskstore_optab;
7032 machine_mode vmode;
7033 unsigned int vector_sizes;
7035 /* If mode is vector mode, check it directly. */
7036 if (VECTOR_MODE_P (mode))
7037 return optab_handler (op, mode) != CODE_FOR_nothing;
7039 /* Otherwise, return true if there is some vector mode with
7040 the mask load/store supported. */
7042 /* See if there is any chance the mask load or store might be
7043 vectorized. If not, punt. */
7044 vmode = targetm.vectorize.preferred_simd_mode (mode);
7045 if (!VECTOR_MODE_P (vmode))
7046 return false;
7048 if (optab_handler (op, vmode) != CODE_FOR_nothing)
7049 return true;
7051 vector_sizes = targetm.vectorize.autovectorize_vector_sizes ();
7052 while (vector_sizes != 0)
7054 unsigned int cur = 1 << floor_log2 (vector_sizes);
7055 vector_sizes &= ~cur;
7056 if (cur <= GET_MODE_SIZE (mode))
7057 continue;
7058 vmode = mode_for_vector (mode, cur / GET_MODE_SIZE (mode));
7059 if (VECTOR_MODE_P (vmode)
7060 && optab_handler (op, vmode) != CODE_FOR_nothing)
7061 return true;
7063 return false;
7066 /* Return true if there is a compare_and_swap pattern. */
7068 bool
7069 can_compare_and_swap_p (machine_mode mode, bool allow_libcall)
7071 enum insn_code icode;
7073 /* Check for __atomic_compare_and_swap. */
7074 icode = direct_optab_handler (atomic_compare_and_swap_optab, mode);
7075 if (icode != CODE_FOR_nothing)
7076 return true;
7078 /* Check for __sync_compare_and_swap. */
7079 icode = optab_handler (sync_compare_and_swap_optab, mode);
7080 if (icode != CODE_FOR_nothing)
7081 return true;
7082 if (allow_libcall && optab_libfunc (sync_compare_and_swap_optab, mode))
7083 return true;
7085 /* No inline compare and swap. */
7086 return false;
7089 /* Return true if an atomic exchange can be performed. */
7091 bool
7092 can_atomic_exchange_p (machine_mode mode, bool allow_libcall)
7094 enum insn_code icode;
7096 /* Check for __atomic_exchange. */
7097 icode = direct_optab_handler (atomic_exchange_optab, mode);
7098 if (icode != CODE_FOR_nothing)
7099 return true;
7101 /* Don't check __sync_test_and_set, as on some platforms that
7102 has reduced functionality. Targets that really do support
7103 a proper exchange should simply be updated to the __atomics. */
7105 return can_compare_and_swap_p (mode, allow_libcall);
7109 /* Helper function to find the MODE_CC set in a sync_compare_and_swap
7110 pattern. */
7112 static void
7113 find_cc_set (rtx x, const_rtx pat, void *data)
7115 if (REG_P (x) && GET_MODE_CLASS (GET_MODE (x)) == MODE_CC
7116 && GET_CODE (pat) == SET)
7118 rtx *p_cc_reg = (rtx *) data;
7119 gcc_assert (!*p_cc_reg);
7120 *p_cc_reg = x;
7124 /* This is a helper function for the other atomic operations. This function
7125 emits a loop that contains SEQ that iterates until a compare-and-swap
7126 operation at the end succeeds. MEM is the memory to be modified. SEQ is
7127 a set of instructions that takes a value from OLD_REG as an input and
7128 produces a value in NEW_REG as an output. Before SEQ, OLD_REG will be
7129 set to the current contents of MEM. After SEQ, a compare-and-swap will
7130 attempt to update MEM with NEW_REG. The function returns true when the
7131 loop was generated successfully. */
7133 static bool
7134 expand_compare_and_swap_loop (rtx mem, rtx old_reg, rtx new_reg, rtx seq)
7136 machine_mode mode = GET_MODE (mem);
7137 rtx_code_label *label;
7138 rtx cmp_reg, success, oldval;
7140 /* The loop we want to generate looks like
7142 cmp_reg = mem;
7143 label:
7144 old_reg = cmp_reg;
7145 seq;
7146 (success, cmp_reg) = compare-and-swap(mem, old_reg, new_reg)
7147 if (success)
7148 goto label;
7150 Note that we only do the plain load from memory once. Subsequent
7151 iterations use the value loaded by the compare-and-swap pattern. */
7153 label = gen_label_rtx ();
7154 cmp_reg = gen_reg_rtx (mode);
7156 emit_move_insn (cmp_reg, mem);
7157 emit_label (label);
7158 emit_move_insn (old_reg, cmp_reg);
7159 if (seq)
7160 emit_insn (seq);
7162 success = NULL_RTX;
7163 oldval = cmp_reg;
7164 if (!expand_atomic_compare_and_swap (&success, &oldval, mem, old_reg,
7165 new_reg, false, MEMMODEL_SYNC_SEQ_CST,
7166 MEMMODEL_RELAXED))
7167 return false;
7169 if (oldval != cmp_reg)
7170 emit_move_insn (cmp_reg, oldval);
7172 /* Mark this jump predicted not taken. */
7173 emit_cmp_and_jump_insns (success, const0_rtx, EQ, const0_rtx,
7174 GET_MODE (success), 1, label, 0);
7175 return true;
7179 /* This function tries to emit an atomic_exchange intruction. VAL is written
7180 to *MEM using memory model MODEL. The previous contents of *MEM are returned,
7181 using TARGET if possible. */
7183 static rtx
7184 maybe_emit_atomic_exchange (rtx target, rtx mem, rtx val, enum memmodel model)
7186 machine_mode mode = GET_MODE (mem);
7187 enum insn_code icode;
7189 /* If the target supports the exchange directly, great. */
7190 icode = direct_optab_handler (atomic_exchange_optab, mode);
7191 if (icode != CODE_FOR_nothing)
7193 struct expand_operand ops[4];
7195 create_output_operand (&ops[0], target, mode);
7196 create_fixed_operand (&ops[1], mem);
7197 create_input_operand (&ops[2], val, mode);
7198 create_integer_operand (&ops[3], model);
7199 if (maybe_expand_insn (icode, 4, ops))
7200 return ops[0].value;
7203 return NULL_RTX;
7206 /* This function tries to implement an atomic exchange operation using
7207 __sync_lock_test_and_set. VAL is written to *MEM using memory model MODEL.
7208 The previous contents of *MEM are returned, using TARGET if possible.
7209 Since this instructionn is an acquire barrier only, stronger memory
7210 models may require additional barriers to be emitted. */
7212 static rtx
7213 maybe_emit_sync_lock_test_and_set (rtx target, rtx mem, rtx val,
7214 enum memmodel model)
7216 machine_mode mode = GET_MODE (mem);
7217 enum insn_code icode;
7218 rtx_insn *last_insn = get_last_insn ();
7220 icode = optab_handler (sync_lock_test_and_set_optab, mode);
7222 /* Legacy sync_lock_test_and_set is an acquire barrier. If the pattern
7223 exists, and the memory model is stronger than acquire, add a release
7224 barrier before the instruction. */
7226 if (is_mm_seq_cst (model) || is_mm_release (model) || is_mm_acq_rel (model))
7227 expand_mem_thread_fence (model);
7229 if (icode != CODE_FOR_nothing)
7231 struct expand_operand ops[3];
7232 create_output_operand (&ops[0], target, mode);
7233 create_fixed_operand (&ops[1], mem);
7234 create_input_operand (&ops[2], val, mode);
7235 if (maybe_expand_insn (icode, 3, ops))
7236 return ops[0].value;
7239 /* If an external test-and-set libcall is provided, use that instead of
7240 any external compare-and-swap that we might get from the compare-and-
7241 swap-loop expansion later. */
7242 if (!can_compare_and_swap_p (mode, false))
7244 rtx libfunc = optab_libfunc (sync_lock_test_and_set_optab, mode);
7245 if (libfunc != NULL)
7247 rtx addr;
7249 addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
7250 return emit_library_call_value (libfunc, NULL_RTX, LCT_NORMAL,
7251 mode, 2, addr, ptr_mode,
7252 val, mode);
7256 /* If the test_and_set can't be emitted, eliminate any barrier that might
7257 have been emitted. */
7258 delete_insns_since (last_insn);
7259 return NULL_RTX;
7262 /* This function tries to implement an atomic exchange operation using a
7263 compare_and_swap loop. VAL is written to *MEM. The previous contents of
7264 *MEM are returned, using TARGET if possible. No memory model is required
7265 since a compare_and_swap loop is seq-cst. */
7267 static rtx
7268 maybe_emit_compare_and_swap_exchange_loop (rtx target, rtx mem, rtx val)
7270 machine_mode mode = GET_MODE (mem);
7272 if (can_compare_and_swap_p (mode, true))
7274 if (!target || !register_operand (target, mode))
7275 target = gen_reg_rtx (mode);
7276 if (expand_compare_and_swap_loop (mem, target, val, NULL_RTX))
7277 return target;
7280 return NULL_RTX;
7283 /* This function tries to implement an atomic test-and-set operation
7284 using the atomic_test_and_set instruction pattern. A boolean value
7285 is returned from the operation, using TARGET if possible. */
7287 #ifndef HAVE_atomic_test_and_set
7288 #define HAVE_atomic_test_and_set 0
7289 #define CODE_FOR_atomic_test_and_set CODE_FOR_nothing
7290 #endif
7292 static rtx
7293 maybe_emit_atomic_test_and_set (rtx target, rtx mem, enum memmodel model)
7295 machine_mode pat_bool_mode;
7296 struct expand_operand ops[3];
7298 if (!HAVE_atomic_test_and_set)
7299 return NULL_RTX;
7301 /* While we always get QImode from __atomic_test_and_set, we get
7302 other memory modes from __sync_lock_test_and_set. Note that we
7303 use no endian adjustment here. This matches the 4.6 behavior
7304 in the Sparc backend. */
7305 gcc_checking_assert
7306 (insn_data[CODE_FOR_atomic_test_and_set].operand[1].mode == QImode);
7307 if (GET_MODE (mem) != QImode)
7308 mem = adjust_address_nv (mem, QImode, 0);
7310 pat_bool_mode = insn_data[CODE_FOR_atomic_test_and_set].operand[0].mode;
7311 create_output_operand (&ops[0], target, pat_bool_mode);
7312 create_fixed_operand (&ops[1], mem);
7313 create_integer_operand (&ops[2], model);
7315 if (maybe_expand_insn (CODE_FOR_atomic_test_and_set, 3, ops))
7316 return ops[0].value;
7317 return NULL_RTX;
7320 /* This function expands the legacy _sync_lock test_and_set operation which is
7321 generally an atomic exchange. Some limited targets only allow the
7322 constant 1 to be stored. This is an ACQUIRE operation.
7324 TARGET is an optional place to stick the return value.
7325 MEM is where VAL is stored. */
7328 expand_sync_lock_test_and_set (rtx target, rtx mem, rtx val)
7330 rtx ret;
7332 /* Try an atomic_exchange first. */
7333 ret = maybe_emit_atomic_exchange (target, mem, val, MEMMODEL_SYNC_ACQUIRE);
7334 if (ret)
7335 return ret;
7337 ret = maybe_emit_sync_lock_test_and_set (target, mem, val,
7338 MEMMODEL_SYNC_ACQUIRE);
7339 if (ret)
7340 return ret;
7342 ret = maybe_emit_compare_and_swap_exchange_loop (target, mem, val);
7343 if (ret)
7344 return ret;
7346 /* If there are no other options, try atomic_test_and_set if the value
7347 being stored is 1. */
7348 if (val == const1_rtx)
7349 ret = maybe_emit_atomic_test_and_set (target, mem, MEMMODEL_SYNC_ACQUIRE);
7351 return ret;
7354 /* This function expands the atomic test_and_set operation:
7355 atomically store a boolean TRUE into MEM and return the previous value.
7357 MEMMODEL is the memory model variant to use.
7358 TARGET is an optional place to stick the return value. */
7361 expand_atomic_test_and_set (rtx target, rtx mem, enum memmodel model)
7363 machine_mode mode = GET_MODE (mem);
7364 rtx ret, trueval, subtarget;
7366 ret = maybe_emit_atomic_test_and_set (target, mem, model);
7367 if (ret)
7368 return ret;
7370 /* Be binary compatible with non-default settings of trueval, and different
7371 cpu revisions. E.g. one revision may have atomic-test-and-set, but
7372 another only has atomic-exchange. */
7373 if (targetm.atomic_test_and_set_trueval == 1)
7375 trueval = const1_rtx;
7376 subtarget = target ? target : gen_reg_rtx (mode);
7378 else
7380 trueval = gen_int_mode (targetm.atomic_test_and_set_trueval, mode);
7381 subtarget = gen_reg_rtx (mode);
7384 /* Try the atomic-exchange optab... */
7385 ret = maybe_emit_atomic_exchange (subtarget, mem, trueval, model);
7387 /* ... then an atomic-compare-and-swap loop ... */
7388 if (!ret)
7389 ret = maybe_emit_compare_and_swap_exchange_loop (subtarget, mem, trueval);
7391 /* ... before trying the vaguely defined legacy lock_test_and_set. */
7392 if (!ret)
7393 ret = maybe_emit_sync_lock_test_and_set (subtarget, mem, trueval, model);
7395 /* Recall that the legacy lock_test_and_set optab was allowed to do magic
7396 things with the value 1. Thus we try again without trueval. */
7397 if (!ret && targetm.atomic_test_and_set_trueval != 1)
7398 ret = maybe_emit_sync_lock_test_and_set (subtarget, mem, const1_rtx, model);
7400 /* Failing all else, assume a single threaded environment and simply
7401 perform the operation. */
7402 if (!ret)
7404 /* If the result is ignored skip the move to target. */
7405 if (subtarget != const0_rtx)
7406 emit_move_insn (subtarget, mem);
7408 emit_move_insn (mem, trueval);
7409 ret = subtarget;
7412 /* Recall that have to return a boolean value; rectify if trueval
7413 is not exactly one. */
7414 if (targetm.atomic_test_and_set_trueval != 1)
7415 ret = emit_store_flag_force (target, NE, ret, const0_rtx, mode, 0, 1);
7417 return ret;
7420 /* This function expands the atomic exchange operation:
7421 atomically store VAL in MEM and return the previous value in MEM.
7423 MEMMODEL is the memory model variant to use.
7424 TARGET is an optional place to stick the return value. */
7427 expand_atomic_exchange (rtx target, rtx mem, rtx val, enum memmodel model)
7429 rtx ret;
7431 ret = maybe_emit_atomic_exchange (target, mem, val, model);
7433 /* Next try a compare-and-swap loop for the exchange. */
7434 if (!ret)
7435 ret = maybe_emit_compare_and_swap_exchange_loop (target, mem, val);
7437 return ret;
7440 /* This function expands the atomic compare exchange operation:
7442 *PTARGET_BOOL is an optional place to store the boolean success/failure.
7443 *PTARGET_OVAL is an optional place to store the old value from memory.
7444 Both target parameters may be NULL to indicate that we do not care about
7445 that return value. Both target parameters are updated on success to
7446 the actual location of the corresponding result.
7448 MEMMODEL is the memory model variant to use.
7450 The return value of the function is true for success. */
7452 bool
7453 expand_atomic_compare_and_swap (rtx *ptarget_bool, rtx *ptarget_oval,
7454 rtx mem, rtx expected, rtx desired,
7455 bool is_weak, enum memmodel succ_model,
7456 enum memmodel fail_model)
7458 machine_mode mode = GET_MODE (mem);
7459 struct expand_operand ops[8];
7460 enum insn_code icode;
7461 rtx target_oval, target_bool = NULL_RTX;
7462 rtx libfunc;
7464 /* Load expected into a register for the compare and swap. */
7465 if (MEM_P (expected))
7466 expected = copy_to_reg (expected);
7468 /* Make sure we always have some place to put the return oldval.
7469 Further, make sure that place is distinct from the input expected,
7470 just in case we need that path down below. */
7471 if (ptarget_oval == NULL
7472 || (target_oval = *ptarget_oval) == NULL
7473 || reg_overlap_mentioned_p (expected, target_oval))
7474 target_oval = gen_reg_rtx (mode);
7476 icode = direct_optab_handler (atomic_compare_and_swap_optab, mode);
7477 if (icode != CODE_FOR_nothing)
7479 machine_mode bool_mode = insn_data[icode].operand[0].mode;
7481 /* Make sure we always have a place for the bool operand. */
7482 if (ptarget_bool == NULL
7483 || (target_bool = *ptarget_bool) == NULL
7484 || GET_MODE (target_bool) != bool_mode)
7485 target_bool = gen_reg_rtx (bool_mode);
7487 /* Emit the compare_and_swap. */
7488 create_output_operand (&ops[0], target_bool, bool_mode);
7489 create_output_operand (&ops[1], target_oval, mode);
7490 create_fixed_operand (&ops[2], mem);
7491 create_input_operand (&ops[3], expected, mode);
7492 create_input_operand (&ops[4], desired, mode);
7493 create_integer_operand (&ops[5], is_weak);
7494 create_integer_operand (&ops[6], succ_model);
7495 create_integer_operand (&ops[7], fail_model);
7496 if (maybe_expand_insn (icode, 8, ops))
7498 /* Return success/failure. */
7499 target_bool = ops[0].value;
7500 target_oval = ops[1].value;
7501 goto success;
7505 /* Otherwise fall back to the original __sync_val_compare_and_swap
7506 which is always seq-cst. */
7507 icode = optab_handler (sync_compare_and_swap_optab, mode);
7508 if (icode != CODE_FOR_nothing)
7510 rtx cc_reg;
7512 create_output_operand (&ops[0], target_oval, mode);
7513 create_fixed_operand (&ops[1], mem);
7514 create_input_operand (&ops[2], expected, mode);
7515 create_input_operand (&ops[3], desired, mode);
7516 if (!maybe_expand_insn (icode, 4, ops))
7517 return false;
7519 target_oval = ops[0].value;
7521 /* If the caller isn't interested in the boolean return value,
7522 skip the computation of it. */
7523 if (ptarget_bool == NULL)
7524 goto success;
7526 /* Otherwise, work out if the compare-and-swap succeeded. */
7527 cc_reg = NULL_RTX;
7528 if (have_insn_for (COMPARE, CCmode))
7529 note_stores (PATTERN (get_last_insn ()), find_cc_set, &cc_reg);
7530 if (cc_reg)
7532 target_bool = emit_store_flag_force (target_bool, EQ, cc_reg,
7533 const0_rtx, VOIDmode, 0, 1);
7534 goto success;
7536 goto success_bool_from_val;
7539 /* Also check for library support for __sync_val_compare_and_swap. */
7540 libfunc = optab_libfunc (sync_compare_and_swap_optab, mode);
7541 if (libfunc != NULL)
7543 rtx addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
7544 target_oval = emit_library_call_value (libfunc, NULL_RTX, LCT_NORMAL,
7545 mode, 3, addr, ptr_mode,
7546 expected, mode, desired, mode);
7548 /* Compute the boolean return value only if requested. */
7549 if (ptarget_bool)
7550 goto success_bool_from_val;
7551 else
7552 goto success;
7555 /* Failure. */
7556 return false;
7558 success_bool_from_val:
7559 target_bool = emit_store_flag_force (target_bool, EQ, target_oval,
7560 expected, VOIDmode, 1, 1);
7561 success:
7562 /* Make sure that the oval output winds up where the caller asked. */
7563 if (ptarget_oval)
7564 *ptarget_oval = target_oval;
7565 if (ptarget_bool)
7566 *ptarget_bool = target_bool;
7567 return true;
7570 /* Generate asm volatile("" : : : "memory") as the memory barrier. */
7572 static void
7573 expand_asm_memory_barrier (void)
7575 rtx asm_op, clob;
7577 asm_op = gen_rtx_ASM_OPERANDS (VOIDmode, empty_string, empty_string, 0,
7578 rtvec_alloc (0), rtvec_alloc (0),
7579 rtvec_alloc (0), UNKNOWN_LOCATION);
7580 MEM_VOLATILE_P (asm_op) = 1;
7582 clob = gen_rtx_SCRATCH (VOIDmode);
7583 clob = gen_rtx_MEM (BLKmode, clob);
7584 clob = gen_rtx_CLOBBER (VOIDmode, clob);
7586 emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, asm_op, clob)));
7589 /* This routine will either emit the mem_thread_fence pattern or issue a
7590 sync_synchronize to generate a fence for memory model MEMMODEL. */
7592 #ifndef HAVE_mem_thread_fence
7593 # define HAVE_mem_thread_fence 0
7594 # define gen_mem_thread_fence(x) (gcc_unreachable (), NULL_RTX)
7595 #endif
7596 #ifndef HAVE_memory_barrier
7597 # define HAVE_memory_barrier 0
7598 # define gen_memory_barrier() (gcc_unreachable (), NULL_RTX)
7599 #endif
7601 void
7602 expand_mem_thread_fence (enum memmodel model)
7604 if (HAVE_mem_thread_fence)
7605 emit_insn (gen_mem_thread_fence (GEN_INT (model)));
7606 else if (!is_mm_relaxed (model))
7608 if (HAVE_memory_barrier)
7609 emit_insn (gen_memory_barrier ());
7610 else if (synchronize_libfunc != NULL_RTX)
7611 emit_library_call (synchronize_libfunc, LCT_NORMAL, VOIDmode, 0);
7612 else
7613 expand_asm_memory_barrier ();
7617 /* This routine will either emit the mem_signal_fence pattern or issue a
7618 sync_synchronize to generate a fence for memory model MEMMODEL. */
7620 #ifndef HAVE_mem_signal_fence
7621 # define HAVE_mem_signal_fence 0
7622 # define gen_mem_signal_fence(x) (gcc_unreachable (), NULL_RTX)
7623 #endif
7625 void
7626 expand_mem_signal_fence (enum memmodel model)
7628 if (HAVE_mem_signal_fence)
7629 emit_insn (gen_mem_signal_fence (GEN_INT (model)));
7630 else if (!is_mm_relaxed (model))
7632 /* By default targets are coherent between a thread and the signal
7633 handler running on the same thread. Thus this really becomes a
7634 compiler barrier, in that stores must not be sunk past
7635 (or raised above) a given point. */
7636 expand_asm_memory_barrier ();
7640 /* This function expands the atomic load operation:
7641 return the atomically loaded value in MEM.
7643 MEMMODEL is the memory model variant to use.
7644 TARGET is an option place to stick the return value. */
7647 expand_atomic_load (rtx target, rtx mem, enum memmodel model)
7649 machine_mode mode = GET_MODE (mem);
7650 enum insn_code icode;
7652 /* If the target supports the load directly, great. */
7653 icode = direct_optab_handler (atomic_load_optab, mode);
7654 if (icode != CODE_FOR_nothing)
7656 struct expand_operand ops[3];
7658 create_output_operand (&ops[0], target, mode);
7659 create_fixed_operand (&ops[1], mem);
7660 create_integer_operand (&ops[2], model);
7661 if (maybe_expand_insn (icode, 3, ops))
7662 return ops[0].value;
7665 /* If the size of the object is greater than word size on this target,
7666 then we assume that a load will not be atomic. */
7667 if (GET_MODE_PRECISION (mode) > BITS_PER_WORD)
7669 /* Issue val = compare_and_swap (mem, 0, 0).
7670 This may cause the occasional harmless store of 0 when the value is
7671 already 0, but it seems to be OK according to the standards guys. */
7672 if (expand_atomic_compare_and_swap (NULL, &target, mem, const0_rtx,
7673 const0_rtx, false, model, model))
7674 return target;
7675 else
7676 /* Otherwise there is no atomic load, leave the library call. */
7677 return NULL_RTX;
7680 /* Otherwise assume loads are atomic, and emit the proper barriers. */
7681 if (!target || target == const0_rtx)
7682 target = gen_reg_rtx (mode);
7684 /* For SEQ_CST, emit a barrier before the load. */
7685 if (is_mm_seq_cst (model))
7686 expand_mem_thread_fence (model);
7688 emit_move_insn (target, mem);
7690 /* Emit the appropriate barrier after the load. */
7691 expand_mem_thread_fence (model);
7693 return target;
7696 /* This function expands the atomic store operation:
7697 Atomically store VAL in MEM.
7698 MEMMODEL is the memory model variant to use.
7699 USE_RELEASE is true if __sync_lock_release can be used as a fall back.
7700 function returns const0_rtx if a pattern was emitted. */
7703 expand_atomic_store (rtx mem, rtx val, enum memmodel model, bool use_release)
7705 machine_mode mode = GET_MODE (mem);
7706 enum insn_code icode;
7707 struct expand_operand ops[3];
7709 /* If the target supports the store directly, great. */
7710 icode = direct_optab_handler (atomic_store_optab, mode);
7711 if (icode != CODE_FOR_nothing)
7713 create_fixed_operand (&ops[0], mem);
7714 create_input_operand (&ops[1], val, mode);
7715 create_integer_operand (&ops[2], model);
7716 if (maybe_expand_insn (icode, 3, ops))
7717 return const0_rtx;
7720 /* If using __sync_lock_release is a viable alternative, try it. */
7721 if (use_release)
7723 icode = direct_optab_handler (sync_lock_release_optab, mode);
7724 if (icode != CODE_FOR_nothing)
7726 create_fixed_operand (&ops[0], mem);
7727 create_input_operand (&ops[1], const0_rtx, mode);
7728 if (maybe_expand_insn (icode, 2, ops))
7730 /* lock_release is only a release barrier. */
7731 if (is_mm_seq_cst (model))
7732 expand_mem_thread_fence (model);
7733 return const0_rtx;
7738 /* If the size of the object is greater than word size on this target,
7739 a default store will not be atomic, Try a mem_exchange and throw away
7740 the result. If that doesn't work, don't do anything. */
7741 if (GET_MODE_PRECISION (mode) > BITS_PER_WORD)
7743 rtx target = maybe_emit_atomic_exchange (NULL_RTX, mem, val, model);
7744 if (!target)
7745 target = maybe_emit_compare_and_swap_exchange_loop (NULL_RTX, mem, val);
7746 if (target)
7747 return const0_rtx;
7748 else
7749 return NULL_RTX;
7752 /* Otherwise assume stores are atomic, and emit the proper barriers. */
7753 expand_mem_thread_fence (model);
7755 emit_move_insn (mem, val);
7757 /* For SEQ_CST, also emit a barrier after the store. */
7758 if (is_mm_seq_cst (model))
7759 expand_mem_thread_fence (model);
7761 return const0_rtx;
7765 /* Structure containing the pointers and values required to process the
7766 various forms of the atomic_fetch_op and atomic_op_fetch builtins. */
7768 struct atomic_op_functions
7770 direct_optab mem_fetch_before;
7771 direct_optab mem_fetch_after;
7772 direct_optab mem_no_result;
7773 optab fetch_before;
7774 optab fetch_after;
7775 direct_optab no_result;
7776 enum rtx_code reverse_code;
7780 /* Fill in structure pointed to by OP with the various optab entries for an
7781 operation of type CODE. */
7783 static void
7784 get_atomic_op_for_code (struct atomic_op_functions *op, enum rtx_code code)
7786 gcc_assert (op!= NULL);
7788 /* If SWITCHABLE_TARGET is defined, then subtargets can be switched
7789 in the source code during compilation, and the optab entries are not
7790 computable until runtime. Fill in the values at runtime. */
7791 switch (code)
7793 case PLUS:
7794 op->mem_fetch_before = atomic_fetch_add_optab;
7795 op->mem_fetch_after = atomic_add_fetch_optab;
7796 op->mem_no_result = atomic_add_optab;
7797 op->fetch_before = sync_old_add_optab;
7798 op->fetch_after = sync_new_add_optab;
7799 op->no_result = sync_add_optab;
7800 op->reverse_code = MINUS;
7801 break;
7802 case MINUS:
7803 op->mem_fetch_before = atomic_fetch_sub_optab;
7804 op->mem_fetch_after = atomic_sub_fetch_optab;
7805 op->mem_no_result = atomic_sub_optab;
7806 op->fetch_before = sync_old_sub_optab;
7807 op->fetch_after = sync_new_sub_optab;
7808 op->no_result = sync_sub_optab;
7809 op->reverse_code = PLUS;
7810 break;
7811 case XOR:
7812 op->mem_fetch_before = atomic_fetch_xor_optab;
7813 op->mem_fetch_after = atomic_xor_fetch_optab;
7814 op->mem_no_result = atomic_xor_optab;
7815 op->fetch_before = sync_old_xor_optab;
7816 op->fetch_after = sync_new_xor_optab;
7817 op->no_result = sync_xor_optab;
7818 op->reverse_code = XOR;
7819 break;
7820 case AND:
7821 op->mem_fetch_before = atomic_fetch_and_optab;
7822 op->mem_fetch_after = atomic_and_fetch_optab;
7823 op->mem_no_result = atomic_and_optab;
7824 op->fetch_before = sync_old_and_optab;
7825 op->fetch_after = sync_new_and_optab;
7826 op->no_result = sync_and_optab;
7827 op->reverse_code = UNKNOWN;
7828 break;
7829 case IOR:
7830 op->mem_fetch_before = atomic_fetch_or_optab;
7831 op->mem_fetch_after = atomic_or_fetch_optab;
7832 op->mem_no_result = atomic_or_optab;
7833 op->fetch_before = sync_old_ior_optab;
7834 op->fetch_after = sync_new_ior_optab;
7835 op->no_result = sync_ior_optab;
7836 op->reverse_code = UNKNOWN;
7837 break;
7838 case NOT:
7839 op->mem_fetch_before = atomic_fetch_nand_optab;
7840 op->mem_fetch_after = atomic_nand_fetch_optab;
7841 op->mem_no_result = atomic_nand_optab;
7842 op->fetch_before = sync_old_nand_optab;
7843 op->fetch_after = sync_new_nand_optab;
7844 op->no_result = sync_nand_optab;
7845 op->reverse_code = UNKNOWN;
7846 break;
7847 default:
7848 gcc_unreachable ();
7852 /* See if there is a more optimal way to implement the operation "*MEM CODE VAL"
7853 using memory order MODEL. If AFTER is true the operation needs to return
7854 the value of *MEM after the operation, otherwise the previous value.
7855 TARGET is an optional place to place the result. The result is unused if
7856 it is const0_rtx.
7857 Return the result if there is a better sequence, otherwise NULL_RTX. */
7859 static rtx
7860 maybe_optimize_fetch_op (rtx target, rtx mem, rtx val, enum rtx_code code,
7861 enum memmodel model, bool after)
7863 /* If the value is prefetched, or not used, it may be possible to replace
7864 the sequence with a native exchange operation. */
7865 if (!after || target == const0_rtx)
7867 /* fetch_and (&x, 0, m) can be replaced with exchange (&x, 0, m). */
7868 if (code == AND && val == const0_rtx)
7870 if (target == const0_rtx)
7871 target = gen_reg_rtx (GET_MODE (mem));
7872 return maybe_emit_atomic_exchange (target, mem, val, model);
7875 /* fetch_or (&x, -1, m) can be replaced with exchange (&x, -1, m). */
7876 if (code == IOR && val == constm1_rtx)
7878 if (target == const0_rtx)
7879 target = gen_reg_rtx (GET_MODE (mem));
7880 return maybe_emit_atomic_exchange (target, mem, val, model);
7884 return NULL_RTX;
7887 /* Try to emit an instruction for a specific operation varaition.
7888 OPTAB contains the OP functions.
7889 TARGET is an optional place to return the result. const0_rtx means unused.
7890 MEM is the memory location to operate on.
7891 VAL is the value to use in the operation.
7892 USE_MEMMODEL is TRUE if the variation with a memory model should be tried.
7893 MODEL is the memory model, if used.
7894 AFTER is true if the returned result is the value after the operation. */
7896 static rtx
7897 maybe_emit_op (const struct atomic_op_functions *optab, rtx target, rtx mem,
7898 rtx val, bool use_memmodel, enum memmodel model, bool after)
7900 machine_mode mode = GET_MODE (mem);
7901 struct expand_operand ops[4];
7902 enum insn_code icode;
7903 int op_counter = 0;
7904 int num_ops;
7906 /* Check to see if there is a result returned. */
7907 if (target == const0_rtx)
7909 if (use_memmodel)
7911 icode = direct_optab_handler (optab->mem_no_result, mode);
7912 create_integer_operand (&ops[2], model);
7913 num_ops = 3;
7915 else
7917 icode = direct_optab_handler (optab->no_result, mode);
7918 num_ops = 2;
7921 /* Otherwise, we need to generate a result. */
7922 else
7924 if (use_memmodel)
7926 icode = direct_optab_handler (after ? optab->mem_fetch_after
7927 : optab->mem_fetch_before, mode);
7928 create_integer_operand (&ops[3], model);
7929 num_ops = 4;
7931 else
7933 icode = optab_handler (after ? optab->fetch_after
7934 : optab->fetch_before, mode);
7935 num_ops = 3;
7937 create_output_operand (&ops[op_counter++], target, mode);
7939 if (icode == CODE_FOR_nothing)
7940 return NULL_RTX;
7942 create_fixed_operand (&ops[op_counter++], mem);
7943 /* VAL may have been promoted to a wider mode. Shrink it if so. */
7944 create_convert_operand_to (&ops[op_counter++], val, mode, true);
7946 if (maybe_expand_insn (icode, num_ops, ops))
7947 return (target == const0_rtx ? const0_rtx : ops[0].value);
7949 return NULL_RTX;
7953 /* This function expands an atomic fetch_OP or OP_fetch operation:
7954 TARGET is an option place to stick the return value. const0_rtx indicates
7955 the result is unused.
7956 atomically fetch MEM, perform the operation with VAL and return it to MEM.
7957 CODE is the operation being performed (OP)
7958 MEMMODEL is the memory model variant to use.
7959 AFTER is true to return the result of the operation (OP_fetch).
7960 AFTER is false to return the value before the operation (fetch_OP).
7962 This function will *only* generate instructions if there is a direct
7963 optab. No compare and swap loops or libcalls will be generated. */
7965 static rtx
7966 expand_atomic_fetch_op_no_fallback (rtx target, rtx mem, rtx val,
7967 enum rtx_code code, enum memmodel model,
7968 bool after)
7970 machine_mode mode = GET_MODE (mem);
7971 struct atomic_op_functions optab;
7972 rtx result;
7973 bool unused_result = (target == const0_rtx);
7975 get_atomic_op_for_code (&optab, code);
7977 /* Check to see if there are any better instructions. */
7978 result = maybe_optimize_fetch_op (target, mem, val, code, model, after);
7979 if (result)
7980 return result;
7982 /* Check for the case where the result isn't used and try those patterns. */
7983 if (unused_result)
7985 /* Try the memory model variant first. */
7986 result = maybe_emit_op (&optab, target, mem, val, true, model, true);
7987 if (result)
7988 return result;
7990 /* Next try the old style withuot a memory model. */
7991 result = maybe_emit_op (&optab, target, mem, val, false, model, true);
7992 if (result)
7993 return result;
7995 /* There is no no-result pattern, so try patterns with a result. */
7996 target = NULL_RTX;
7999 /* Try the __atomic version. */
8000 result = maybe_emit_op (&optab, target, mem, val, true, model, after);
8001 if (result)
8002 return result;
8004 /* Try the older __sync version. */
8005 result = maybe_emit_op (&optab, target, mem, val, false, model, after);
8006 if (result)
8007 return result;
8009 /* If the fetch value can be calculated from the other variation of fetch,
8010 try that operation. */
8011 if (after || unused_result || optab.reverse_code != UNKNOWN)
8013 /* Try the __atomic version, then the older __sync version. */
8014 result = maybe_emit_op (&optab, target, mem, val, true, model, !after);
8015 if (!result)
8016 result = maybe_emit_op (&optab, target, mem, val, false, model, !after);
8018 if (result)
8020 /* If the result isn't used, no need to do compensation code. */
8021 if (unused_result)
8022 return result;
8024 /* Issue compensation code. Fetch_after == fetch_before OP val.
8025 Fetch_before == after REVERSE_OP val. */
8026 if (!after)
8027 code = optab.reverse_code;
8028 if (code == NOT)
8030 result = expand_simple_binop (mode, AND, result, val, NULL_RTX,
8031 true, OPTAB_LIB_WIDEN);
8032 result = expand_simple_unop (mode, NOT, result, target, true);
8034 else
8035 result = expand_simple_binop (mode, code, result, val, target,
8036 true, OPTAB_LIB_WIDEN);
8037 return result;
8041 /* No direct opcode can be generated. */
8042 return NULL_RTX;
8047 /* This function expands an atomic fetch_OP or OP_fetch operation:
8048 TARGET is an option place to stick the return value. const0_rtx indicates
8049 the result is unused.
8050 atomically fetch MEM, perform the operation with VAL and return it to MEM.
8051 CODE is the operation being performed (OP)
8052 MEMMODEL is the memory model variant to use.
8053 AFTER is true to return the result of the operation (OP_fetch).
8054 AFTER is false to return the value before the operation (fetch_OP). */
8056 expand_atomic_fetch_op (rtx target, rtx mem, rtx val, enum rtx_code code,
8057 enum memmodel model, bool after)
8059 machine_mode mode = GET_MODE (mem);
8060 rtx result;
8061 bool unused_result = (target == const0_rtx);
8063 result = expand_atomic_fetch_op_no_fallback (target, mem, val, code, model,
8064 after);
8066 if (result)
8067 return result;
8069 /* Add/sub can be implemented by doing the reverse operation with -(val). */
8070 if (code == PLUS || code == MINUS)
8072 rtx tmp;
8073 enum rtx_code reverse = (code == PLUS ? MINUS : PLUS);
8075 start_sequence ();
8076 tmp = expand_simple_unop (mode, NEG, val, NULL_RTX, true);
8077 result = expand_atomic_fetch_op_no_fallback (target, mem, tmp, reverse,
8078 model, after);
8079 if (result)
8081 /* PLUS worked so emit the insns and return. */
8082 tmp = get_insns ();
8083 end_sequence ();
8084 emit_insn (tmp);
8085 return result;
8088 /* PLUS did not work, so throw away the negation code and continue. */
8089 end_sequence ();
8092 /* Try the __sync libcalls only if we can't do compare-and-swap inline. */
8093 if (!can_compare_and_swap_p (mode, false))
8095 rtx libfunc;
8096 bool fixup = false;
8097 enum rtx_code orig_code = code;
8098 struct atomic_op_functions optab;
8100 get_atomic_op_for_code (&optab, code);
8101 libfunc = optab_libfunc (after ? optab.fetch_after
8102 : optab.fetch_before, mode);
8103 if (libfunc == NULL
8104 && (after || unused_result || optab.reverse_code != UNKNOWN))
8106 fixup = true;
8107 if (!after)
8108 code = optab.reverse_code;
8109 libfunc = optab_libfunc (after ? optab.fetch_before
8110 : optab.fetch_after, mode);
8112 if (libfunc != NULL)
8114 rtx addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
8115 result = emit_library_call_value (libfunc, NULL, LCT_NORMAL, mode,
8116 2, addr, ptr_mode, val, mode);
8118 if (!unused_result && fixup)
8119 result = expand_simple_binop (mode, code, result, val, target,
8120 true, OPTAB_LIB_WIDEN);
8121 return result;
8124 /* We need the original code for any further attempts. */
8125 code = orig_code;
8128 /* If nothing else has succeeded, default to a compare and swap loop. */
8129 if (can_compare_and_swap_p (mode, true))
8131 rtx_insn *insn;
8132 rtx t0 = gen_reg_rtx (mode), t1;
8134 start_sequence ();
8136 /* If the result is used, get a register for it. */
8137 if (!unused_result)
8139 if (!target || !register_operand (target, mode))
8140 target = gen_reg_rtx (mode);
8141 /* If fetch_before, copy the value now. */
8142 if (!after)
8143 emit_move_insn (target, t0);
8145 else
8146 target = const0_rtx;
8148 t1 = t0;
8149 if (code == NOT)
8151 t1 = expand_simple_binop (mode, AND, t1, val, NULL_RTX,
8152 true, OPTAB_LIB_WIDEN);
8153 t1 = expand_simple_unop (mode, code, t1, NULL_RTX, true);
8155 else
8156 t1 = expand_simple_binop (mode, code, t1, val, NULL_RTX, true,
8157 OPTAB_LIB_WIDEN);
8159 /* For after, copy the value now. */
8160 if (!unused_result && after)
8161 emit_move_insn (target, t1);
8162 insn = get_insns ();
8163 end_sequence ();
8165 if (t1 != NULL && expand_compare_and_swap_loop (mem, t0, t1, insn))
8166 return target;
8169 return NULL_RTX;
8172 /* Return true if OPERAND is suitable for operand number OPNO of
8173 instruction ICODE. */
8175 bool
8176 insn_operand_matches (enum insn_code icode, unsigned int opno, rtx operand)
8178 return (!insn_data[(int) icode].operand[opno].predicate
8179 || (insn_data[(int) icode].operand[opno].predicate
8180 (operand, insn_data[(int) icode].operand[opno].mode)));
8183 /* TARGET is a target of a multiword operation that we are going to
8184 implement as a series of word-mode operations. Return true if
8185 TARGET is suitable for this purpose. */
8187 bool
8188 valid_multiword_target_p (rtx target)
8190 machine_mode mode;
8191 int i;
8193 mode = GET_MODE (target);
8194 for (i = 0; i < GET_MODE_SIZE (mode); i += UNITS_PER_WORD)
8195 if (!validate_subreg (word_mode, mode, target, i))
8196 return false;
8197 return true;
8200 /* Like maybe_legitimize_operand, but do not change the code of the
8201 current rtx value. */
8203 static bool
8204 maybe_legitimize_operand_same_code (enum insn_code icode, unsigned int opno,
8205 struct expand_operand *op)
8207 /* See if the operand matches in its current form. */
8208 if (insn_operand_matches (icode, opno, op->value))
8209 return true;
8211 /* If the operand is a memory whose address has no side effects,
8212 try forcing the address into a non-virtual pseudo register.
8213 The check for side effects is important because copy_to_mode_reg
8214 cannot handle things like auto-modified addresses. */
8215 if (insn_data[(int) icode].operand[opno].allows_mem && MEM_P (op->value))
8217 rtx addr, mem;
8219 mem = op->value;
8220 addr = XEXP (mem, 0);
8221 if (!(REG_P (addr) && REGNO (addr) > LAST_VIRTUAL_REGISTER)
8222 && !side_effects_p (addr))
8224 rtx_insn *last;
8225 machine_mode mode;
8227 last = get_last_insn ();
8228 mode = get_address_mode (mem);
8229 mem = replace_equiv_address (mem, copy_to_mode_reg (mode, addr));
8230 if (insn_operand_matches (icode, opno, mem))
8232 op->value = mem;
8233 return true;
8235 delete_insns_since (last);
8239 return false;
8242 /* Try to make OP match operand OPNO of instruction ICODE. Return true
8243 on success, storing the new operand value back in OP. */
8245 static bool
8246 maybe_legitimize_operand (enum insn_code icode, unsigned int opno,
8247 struct expand_operand *op)
8249 machine_mode mode, imode;
8250 bool old_volatile_ok, result;
8252 mode = op->mode;
8253 switch (op->type)
8255 case EXPAND_FIXED:
8256 old_volatile_ok = volatile_ok;
8257 volatile_ok = true;
8258 result = maybe_legitimize_operand_same_code (icode, opno, op);
8259 volatile_ok = old_volatile_ok;
8260 return result;
8262 case EXPAND_OUTPUT:
8263 gcc_assert (mode != VOIDmode);
8264 if (op->value
8265 && op->value != const0_rtx
8266 && GET_MODE (op->value) == mode
8267 && maybe_legitimize_operand_same_code (icode, opno, op))
8268 return true;
8270 op->value = gen_reg_rtx (mode);
8271 break;
8273 case EXPAND_INPUT:
8274 input:
8275 gcc_assert (mode != VOIDmode);
8276 gcc_assert (GET_MODE (op->value) == VOIDmode
8277 || GET_MODE (op->value) == mode);
8278 if (maybe_legitimize_operand_same_code (icode, opno, op))
8279 return true;
8281 op->value = copy_to_mode_reg (mode, op->value);
8282 break;
8284 case EXPAND_CONVERT_TO:
8285 gcc_assert (mode != VOIDmode);
8286 op->value = convert_to_mode (mode, op->value, op->unsigned_p);
8287 goto input;
8289 case EXPAND_CONVERT_FROM:
8290 if (GET_MODE (op->value) != VOIDmode)
8291 mode = GET_MODE (op->value);
8292 else
8293 /* The caller must tell us what mode this value has. */
8294 gcc_assert (mode != VOIDmode);
8296 imode = insn_data[(int) icode].operand[opno].mode;
8297 if (imode != VOIDmode && imode != mode)
8299 op->value = convert_modes (imode, mode, op->value, op->unsigned_p);
8300 mode = imode;
8302 goto input;
8304 case EXPAND_ADDRESS:
8305 gcc_assert (mode != VOIDmode);
8306 op->value = convert_memory_address (mode, op->value);
8307 goto input;
8309 case EXPAND_INTEGER:
8310 mode = insn_data[(int) icode].operand[opno].mode;
8311 if (mode != VOIDmode && const_int_operand (op->value, mode))
8312 goto input;
8313 break;
8315 return insn_operand_matches (icode, opno, op->value);
8318 /* Make OP describe an input operand that should have the same value
8319 as VALUE, after any mode conversion that the target might request.
8320 TYPE is the type of VALUE. */
8322 void
8323 create_convert_operand_from_type (struct expand_operand *op,
8324 rtx value, tree type)
8326 create_convert_operand_from (op, value, TYPE_MODE (type),
8327 TYPE_UNSIGNED (type));
8330 /* Try to make operands [OPS, OPS + NOPS) match operands [OPNO, OPNO + NOPS)
8331 of instruction ICODE. Return true on success, leaving the new operand
8332 values in the OPS themselves. Emit no code on failure. */
8334 bool
8335 maybe_legitimize_operands (enum insn_code icode, unsigned int opno,
8336 unsigned int nops, struct expand_operand *ops)
8338 rtx_insn *last;
8339 unsigned int i;
8341 last = get_last_insn ();
8342 for (i = 0; i < nops; i++)
8343 if (!maybe_legitimize_operand (icode, opno + i, &ops[i]))
8345 delete_insns_since (last);
8346 return false;
8348 return true;
8351 /* Try to generate instruction ICODE, using operands [OPS, OPS + NOPS)
8352 as its operands. Return the instruction pattern on success,
8353 and emit any necessary set-up code. Return null and emit no
8354 code on failure. */
8356 rtx_insn *
8357 maybe_gen_insn (enum insn_code icode, unsigned int nops,
8358 struct expand_operand *ops)
8360 gcc_assert (nops == (unsigned int) insn_data[(int) icode].n_generator_args);
8361 if (!maybe_legitimize_operands (icode, 0, nops, ops))
8362 return NULL;
8364 switch (nops)
8366 case 1:
8367 return GEN_FCN (icode) (ops[0].value);
8368 case 2:
8369 return GEN_FCN (icode) (ops[0].value, ops[1].value);
8370 case 3:
8371 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value);
8372 case 4:
8373 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8374 ops[3].value);
8375 case 5:
8376 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8377 ops[3].value, ops[4].value);
8378 case 6:
8379 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8380 ops[3].value, ops[4].value, ops[5].value);
8381 case 7:
8382 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8383 ops[3].value, ops[4].value, ops[5].value,
8384 ops[6].value);
8385 case 8:
8386 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8387 ops[3].value, ops[4].value, ops[5].value,
8388 ops[6].value, ops[7].value);
8389 case 9:
8390 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8391 ops[3].value, ops[4].value, ops[5].value,
8392 ops[6].value, ops[7].value, ops[8].value);
8394 gcc_unreachable ();
8397 /* Try to emit instruction ICODE, using operands [OPS, OPS + NOPS)
8398 as its operands. Return true on success and emit no code on failure. */
8400 bool
8401 maybe_expand_insn (enum insn_code icode, unsigned int nops,
8402 struct expand_operand *ops)
8404 rtx pat = maybe_gen_insn (icode, nops, ops);
8405 if (pat)
8407 emit_insn (pat);
8408 return true;
8410 return false;
8413 /* Like maybe_expand_insn, but for jumps. */
8415 bool
8416 maybe_expand_jump_insn (enum insn_code icode, unsigned int nops,
8417 struct expand_operand *ops)
8419 rtx pat = maybe_gen_insn (icode, nops, ops);
8420 if (pat)
8422 emit_jump_insn (pat);
8423 return true;
8425 return false;
8428 /* Emit instruction ICODE, using operands [OPS, OPS + NOPS)
8429 as its operands. */
8431 void
8432 expand_insn (enum insn_code icode, unsigned int nops,
8433 struct expand_operand *ops)
8435 if (!maybe_expand_insn (icode, nops, ops))
8436 gcc_unreachable ();
8439 /* Like expand_insn, but for jumps. */
8441 void
8442 expand_jump_insn (enum insn_code icode, unsigned int nops,
8443 struct expand_operand *ops)
8445 if (!maybe_expand_jump_insn (icode, nops, ops))
8446 gcc_unreachable ();
8449 /* Reduce conditional compilation elsewhere. */
8450 #ifndef HAVE_insv
8451 #define HAVE_insv 0
8452 #define CODE_FOR_insv CODE_FOR_nothing
8453 #endif
8454 #ifndef HAVE_extv
8455 #define HAVE_extv 0
8456 #define CODE_FOR_extv CODE_FOR_nothing
8457 #endif
8458 #ifndef HAVE_extzv
8459 #define HAVE_extzv 0
8460 #define CODE_FOR_extzv CODE_FOR_nothing
8461 #endif
8463 /* Enumerates the possible types of structure operand to an
8464 extraction_insn. */
8465 enum extraction_type { ET_unaligned_mem, ET_reg };
8467 /* Check whether insv, extv or extzv pattern ICODE can be used for an
8468 insertion or extraction of type TYPE on a structure of mode MODE.
8469 Return true if so and fill in *INSN accordingly. STRUCT_OP is the
8470 operand number of the structure (the first sign_extract or zero_extract
8471 operand) and FIELD_OP is the operand number of the field (the other
8472 side of the set from the sign_extract or zero_extract). */
8474 static bool
8475 get_traditional_extraction_insn (extraction_insn *insn,
8476 enum extraction_type type,
8477 machine_mode mode,
8478 enum insn_code icode,
8479 int struct_op, int field_op)
8481 const struct insn_data_d *data = &insn_data[icode];
8483 machine_mode struct_mode = data->operand[struct_op].mode;
8484 if (struct_mode == VOIDmode)
8485 struct_mode = word_mode;
8486 if (mode != struct_mode)
8487 return false;
8489 machine_mode field_mode = data->operand[field_op].mode;
8490 if (field_mode == VOIDmode)
8491 field_mode = word_mode;
8493 machine_mode pos_mode = data->operand[struct_op + 2].mode;
8494 if (pos_mode == VOIDmode)
8495 pos_mode = word_mode;
8497 insn->icode = icode;
8498 insn->field_mode = field_mode;
8499 insn->struct_mode = (type == ET_unaligned_mem ? byte_mode : struct_mode);
8500 insn->pos_mode = pos_mode;
8501 return true;
8504 /* Return true if an optab exists to perform an insertion or extraction
8505 of type TYPE in mode MODE. Describe the instruction in *INSN if so.
8507 REG_OPTAB is the optab to use for register structures and
8508 MISALIGN_OPTAB is the optab to use for misaligned memory structures.
8509 POS_OP is the operand number of the bit position. */
8511 static bool
8512 get_optab_extraction_insn (struct extraction_insn *insn,
8513 enum extraction_type type,
8514 machine_mode mode, direct_optab reg_optab,
8515 direct_optab misalign_optab, int pos_op)
8517 direct_optab optab = (type == ET_unaligned_mem ? misalign_optab : reg_optab);
8518 enum insn_code icode = direct_optab_handler (optab, mode);
8519 if (icode == CODE_FOR_nothing)
8520 return false;
8522 const struct insn_data_d *data = &insn_data[icode];
8524 insn->icode = icode;
8525 insn->field_mode = mode;
8526 insn->struct_mode = (type == ET_unaligned_mem ? BLKmode : mode);
8527 insn->pos_mode = data->operand[pos_op].mode;
8528 if (insn->pos_mode == VOIDmode)
8529 insn->pos_mode = word_mode;
8530 return true;
8533 /* Return true if an instruction exists to perform an insertion or
8534 extraction (PATTERN says which) of type TYPE in mode MODE.
8535 Describe the instruction in *INSN if so. */
8537 static bool
8538 get_extraction_insn (extraction_insn *insn,
8539 enum extraction_pattern pattern,
8540 enum extraction_type type,
8541 machine_mode mode)
8543 switch (pattern)
8545 case EP_insv:
8546 if (HAVE_insv
8547 && get_traditional_extraction_insn (insn, type, mode,
8548 CODE_FOR_insv, 0, 3))
8549 return true;
8550 return get_optab_extraction_insn (insn, type, mode, insv_optab,
8551 insvmisalign_optab, 2);
8553 case EP_extv:
8554 if (HAVE_extv
8555 && get_traditional_extraction_insn (insn, type, mode,
8556 CODE_FOR_extv, 1, 0))
8557 return true;
8558 return get_optab_extraction_insn (insn, type, mode, extv_optab,
8559 extvmisalign_optab, 3);
8561 case EP_extzv:
8562 if (HAVE_extzv
8563 && get_traditional_extraction_insn (insn, type, mode,
8564 CODE_FOR_extzv, 1, 0))
8565 return true;
8566 return get_optab_extraction_insn (insn, type, mode, extzv_optab,
8567 extzvmisalign_optab, 3);
8569 default:
8570 gcc_unreachable ();
8574 /* Return true if an instruction exists to access a field of mode
8575 FIELDMODE in a structure that has STRUCT_BITS significant bits.
8576 Describe the "best" such instruction in *INSN if so. PATTERN and
8577 TYPE describe the type of insertion or extraction we want to perform.
8579 For an insertion, the number of significant structure bits includes
8580 all bits of the target. For an extraction, it need only include the
8581 most significant bit of the field. Larger widths are acceptable
8582 in both cases. */
8584 static bool
8585 get_best_extraction_insn (extraction_insn *insn,
8586 enum extraction_pattern pattern,
8587 enum extraction_type type,
8588 unsigned HOST_WIDE_INT struct_bits,
8589 machine_mode field_mode)
8591 machine_mode mode = smallest_mode_for_size (struct_bits, MODE_INT);
8592 while (mode != VOIDmode)
8594 if (get_extraction_insn (insn, pattern, type, mode))
8596 while (mode != VOIDmode
8597 && GET_MODE_SIZE (mode) <= GET_MODE_SIZE (field_mode)
8598 && !TRULY_NOOP_TRUNCATION_MODES_P (insn->field_mode,
8599 field_mode))
8601 get_extraction_insn (insn, pattern, type, mode);
8602 mode = GET_MODE_WIDER_MODE (mode);
8604 return true;
8606 mode = GET_MODE_WIDER_MODE (mode);
8608 return false;
8611 /* Return true if an instruction exists to access a field of mode
8612 FIELDMODE in a register structure that has STRUCT_BITS significant bits.
8613 Describe the "best" such instruction in *INSN if so. PATTERN describes
8614 the type of insertion or extraction we want to perform.
8616 For an insertion, the number of significant structure bits includes
8617 all bits of the target. For an extraction, it need only include the
8618 most significant bit of the field. Larger widths are acceptable
8619 in both cases. */
8621 bool
8622 get_best_reg_extraction_insn (extraction_insn *insn,
8623 enum extraction_pattern pattern,
8624 unsigned HOST_WIDE_INT struct_bits,
8625 machine_mode field_mode)
8627 return get_best_extraction_insn (insn, pattern, ET_reg, struct_bits,
8628 field_mode);
8631 /* Return true if an instruction exists to access a field of BITSIZE
8632 bits starting BITNUM bits into a memory structure. Describe the
8633 "best" such instruction in *INSN if so. PATTERN describes the type
8634 of insertion or extraction we want to perform and FIELDMODE is the
8635 natural mode of the extracted field.
8637 The instructions considered here only access bytes that overlap
8638 the bitfield; they do not touch any surrounding bytes. */
8640 bool
8641 get_best_mem_extraction_insn (extraction_insn *insn,
8642 enum extraction_pattern pattern,
8643 HOST_WIDE_INT bitsize, HOST_WIDE_INT bitnum,
8644 machine_mode field_mode)
8646 unsigned HOST_WIDE_INT struct_bits = (bitnum % BITS_PER_UNIT
8647 + bitsize
8648 + BITS_PER_UNIT - 1);
8649 struct_bits -= struct_bits % BITS_PER_UNIT;
8650 return get_best_extraction_insn (insn, pattern, ET_unaligned_mem,
8651 struct_bits, field_mode);
8654 /* Determine whether "1 << x" is relatively cheap in word_mode. */
8656 bool
8657 lshift_cheap_p (bool speed_p)
8659 /* FIXME: This should be made target dependent via this "this_target"
8660 mechanism, similar to e.g. can_copy_init_p in gcse.c. */
8661 static bool init[2] = { false, false };
8662 static bool cheap[2] = { true, true };
8664 /* If the targer has no lshift in word_mode, the operation will most
8665 probably not be cheap. ??? Does GCC even work for such targets? */
8666 if (optab_handler (ashl_optab, word_mode) == CODE_FOR_nothing)
8667 return false;
8669 if (!init[speed_p])
8671 rtx reg = gen_raw_REG (word_mode, 10000);
8672 int cost = set_src_cost (gen_rtx_ASHIFT (word_mode, const1_rtx, reg),
8673 speed_p);
8674 cheap[speed_p] = cost < COSTS_N_INSNS (3);
8675 init[speed_p] = true;
8678 return cheap[speed_p];
8681 #include "gt-optabs.h"