1 /* Backend support for Fortran 95 basic types and derived types.
2 Copyright (C) 2002-2015 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
4 and Steven Bosscher <s.bosscher@student.tudelft.nl>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* trans-types.c -- gfortran backend types */
26 #include "coretypes.h"
27 #include "tm.h" /* For INTMAX_TYPE, INT8_TYPE, INT16_TYPE, INT32_TYPE,
28 INT64_TYPE, INT_LEAST8_TYPE, INT_LEAST16_TYPE,
29 INT_LEAST32_TYPE, INT_LEAST64_TYPE, INT_FAST8_TYPE,
30 INT_FAST16_TYPE, INT_FAST32_TYPE, INT_FAST64_TYPE,
31 BOOL_TYPE_SIZE, BITS_PER_UNIT, POINTER_SIZE,
32 INT_TYPE_SIZE, CHAR_TYPE_SIZE, SHORT_TYPE_SIZE,
33 LONG_TYPE_SIZE, LONG_LONG_TYPE_SIZE,
34 FLOAT_TYPE_SIZE, DOUBLE_TYPE_SIZE and
35 LONG_DOUBLE_TYPE_SIZE. */
39 #include "double-int.h"
47 #include "fold-const.h"
48 #include "stor-layout.h"
49 #include "stringpool.h"
50 #include "langhooks.h" /* For iso-c-bindings.def. */
54 #include "diagnostic-core.h" /* For fatal_error. */
55 #include "toplev.h" /* For rest_of_decl_compilation. */
57 #include "trans-types.h"
58 #include "trans-const.h"
60 #include "dwarf2out.h" /* For struct array_descr_info. */
63 #if (GFC_MAX_DIMENSIONS < 10)
64 #define GFC_RANK_DIGITS 1
65 #define GFC_RANK_PRINTF_FORMAT "%01d"
66 #elif (GFC_MAX_DIMENSIONS < 100)
67 #define GFC_RANK_DIGITS 2
68 #define GFC_RANK_PRINTF_FORMAT "%02d"
70 #error If you really need >99 dimensions, continue the sequence above...
73 /* array of structs so we don't have to worry about xmalloc or free */
74 CInteropKind_t c_interop_kinds_table
[ISOCBINDING_NUMBER
];
76 tree gfc_array_index_type
;
77 tree gfc_array_range_type
;
78 tree gfc_character1_type_node
;
80 tree prvoid_type_node
;
81 tree ppvoid_type_node
;
85 tree gfc_charlen_type_node
;
87 tree float128_type_node
= NULL_TREE
;
88 tree complex_float128_type_node
= NULL_TREE
;
90 bool gfc_real16_is_float128
= false;
92 static GTY(()) tree gfc_desc_dim_type
;
93 static GTY(()) tree gfc_max_array_element_size
;
94 static GTY(()) tree gfc_array_descriptor_base
[2 * (GFC_MAX_DIMENSIONS
+1)];
95 static GTY(()) tree gfc_array_descriptor_base_caf
[2 * (GFC_MAX_DIMENSIONS
+1)];
97 /* Arrays for all integral and real kinds. We'll fill this in at runtime
98 after the target has a chance to process command-line options. */
100 #define MAX_INT_KINDS 5
101 gfc_integer_info gfc_integer_kinds
[MAX_INT_KINDS
+ 1];
102 gfc_logical_info gfc_logical_kinds
[MAX_INT_KINDS
+ 1];
103 static GTY(()) tree gfc_integer_types
[MAX_INT_KINDS
+ 1];
104 static GTY(()) tree gfc_logical_types
[MAX_INT_KINDS
+ 1];
106 #define MAX_REAL_KINDS 5
107 gfc_real_info gfc_real_kinds
[MAX_REAL_KINDS
+ 1];
108 static GTY(()) tree gfc_real_types
[MAX_REAL_KINDS
+ 1];
109 static GTY(()) tree gfc_complex_types
[MAX_REAL_KINDS
+ 1];
111 #define MAX_CHARACTER_KINDS 2
112 gfc_character_info gfc_character_kinds
[MAX_CHARACTER_KINDS
+ 1];
113 static GTY(()) tree gfc_character_types
[MAX_CHARACTER_KINDS
+ 1];
114 static GTY(()) tree gfc_pcharacter_types
[MAX_CHARACTER_KINDS
+ 1];
116 static tree
gfc_add_field_to_struct_1 (tree
, tree
, tree
, tree
**);
118 /* The integer kind to use for array indices. This will be set to the
119 proper value based on target information from the backend. */
121 int gfc_index_integer_kind
;
123 /* The default kinds of the various types. */
125 int gfc_default_integer_kind
;
126 int gfc_max_integer_kind
;
127 int gfc_default_real_kind
;
128 int gfc_default_double_kind
;
129 int gfc_default_character_kind
;
130 int gfc_default_logical_kind
;
131 int gfc_default_complex_kind
;
133 int gfc_atomic_int_kind
;
134 int gfc_atomic_logical_kind
;
136 /* The kind size used for record offsets. If the target system supports
137 kind=8, this will be set to 8, otherwise it is set to 4. */
140 /* The integer kind used to store character lengths. */
141 int gfc_charlen_int_kind
;
143 /* The size of the numeric storage unit and character storage unit. */
144 int gfc_numeric_storage_size
;
145 int gfc_character_storage_size
;
149 gfc_check_any_c_kind (gfc_typespec
*ts
)
153 for (i
= 0; i
< ISOCBINDING_NUMBER
; i
++)
155 /* Check for any C interoperable kind for the given type/kind in ts.
156 This can be used after verify_c_interop to make sure that the
157 Fortran kind being used exists in at least some form for C. */
158 if (c_interop_kinds_table
[i
].f90_type
== ts
->type
&&
159 c_interop_kinds_table
[i
].value
== ts
->kind
)
168 get_real_kind_from_node (tree type
)
172 for (i
= 0; gfc_real_kinds
[i
].kind
!= 0; i
++)
173 if (gfc_real_kinds
[i
].mode_precision
== TYPE_PRECISION (type
))
174 return gfc_real_kinds
[i
].kind
;
180 get_int_kind_from_node (tree type
)
187 for (i
= 0; gfc_integer_kinds
[i
].kind
!= 0; i
++)
188 if (gfc_integer_kinds
[i
].bit_size
== TYPE_PRECISION (type
))
189 return gfc_integer_kinds
[i
].kind
;
194 /* Return a typenode for the "standard" C type with a given name. */
196 get_typenode_from_name (const char *name
)
198 if (name
== NULL
|| *name
== '\0')
201 if (strcmp (name
, "char") == 0)
202 return char_type_node
;
203 if (strcmp (name
, "unsigned char") == 0)
204 return unsigned_char_type_node
;
205 if (strcmp (name
, "signed char") == 0)
206 return signed_char_type_node
;
208 if (strcmp (name
, "short int") == 0)
209 return short_integer_type_node
;
210 if (strcmp (name
, "short unsigned int") == 0)
211 return short_unsigned_type_node
;
213 if (strcmp (name
, "int") == 0)
214 return integer_type_node
;
215 if (strcmp (name
, "unsigned int") == 0)
216 return unsigned_type_node
;
218 if (strcmp (name
, "long int") == 0)
219 return long_integer_type_node
;
220 if (strcmp (name
, "long unsigned int") == 0)
221 return long_unsigned_type_node
;
223 if (strcmp (name
, "long long int") == 0)
224 return long_long_integer_type_node
;
225 if (strcmp (name
, "long long unsigned int") == 0)
226 return long_long_unsigned_type_node
;
232 get_int_kind_from_name (const char *name
)
234 return get_int_kind_from_node (get_typenode_from_name (name
));
238 /* Get the kind number corresponding to an integer of given size,
239 following the required return values for ISO_FORTRAN_ENV INT* constants:
240 -2 is returned if we support a kind of larger size, -1 otherwise. */
242 gfc_get_int_kind_from_width_isofortranenv (int size
)
246 /* Look for a kind with matching storage size. */
247 for (i
= 0; gfc_integer_kinds
[i
].kind
!= 0; i
++)
248 if (gfc_integer_kinds
[i
].bit_size
== size
)
249 return gfc_integer_kinds
[i
].kind
;
251 /* Look for a kind with larger storage size. */
252 for (i
= 0; gfc_integer_kinds
[i
].kind
!= 0; i
++)
253 if (gfc_integer_kinds
[i
].bit_size
> size
)
259 /* Get the kind number corresponding to a real of given storage size,
260 following the required return values for ISO_FORTRAN_ENV REAL* constants:
261 -2 is returned if we support a kind of larger size, -1 otherwise. */
263 gfc_get_real_kind_from_width_isofortranenv (int size
)
269 /* Look for a kind with matching storage size. */
270 for (i
= 0; gfc_real_kinds
[i
].kind
!= 0; i
++)
271 if (int_size_in_bytes (gfc_get_real_type (gfc_real_kinds
[i
].kind
)) == size
)
272 return gfc_real_kinds
[i
].kind
;
274 /* Look for a kind with larger storage size. */
275 for (i
= 0; gfc_real_kinds
[i
].kind
!= 0; i
++)
276 if (int_size_in_bytes (gfc_get_real_type (gfc_real_kinds
[i
].kind
)) > size
)
285 get_int_kind_from_width (int size
)
289 for (i
= 0; gfc_integer_kinds
[i
].kind
!= 0; i
++)
290 if (gfc_integer_kinds
[i
].bit_size
== size
)
291 return gfc_integer_kinds
[i
].kind
;
297 get_int_kind_from_minimal_width (int size
)
301 for (i
= 0; gfc_integer_kinds
[i
].kind
!= 0; i
++)
302 if (gfc_integer_kinds
[i
].bit_size
>= size
)
303 return gfc_integer_kinds
[i
].kind
;
309 /* Generate the CInteropKind_t objects for the C interoperable
313 gfc_init_c_interop_kinds (void)
317 /* init all pointers in the list to NULL */
318 for (i
= 0; i
< ISOCBINDING_NUMBER
; i
++)
320 /* Initialize the name and value fields. */
321 c_interop_kinds_table
[i
].name
[0] = '\0';
322 c_interop_kinds_table
[i
].value
= -100;
323 c_interop_kinds_table
[i
].f90_type
= BT_UNKNOWN
;
326 #define NAMED_INTCST(a,b,c,d) \
327 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
328 c_interop_kinds_table[a].f90_type = BT_INTEGER; \
329 c_interop_kinds_table[a].value = c;
330 #define NAMED_REALCST(a,b,c,d) \
331 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
332 c_interop_kinds_table[a].f90_type = BT_REAL; \
333 c_interop_kinds_table[a].value = c;
334 #define NAMED_CMPXCST(a,b,c,d) \
335 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
336 c_interop_kinds_table[a].f90_type = BT_COMPLEX; \
337 c_interop_kinds_table[a].value = c;
338 #define NAMED_LOGCST(a,b,c) \
339 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
340 c_interop_kinds_table[a].f90_type = BT_LOGICAL; \
341 c_interop_kinds_table[a].value = c;
342 #define NAMED_CHARKNDCST(a,b,c) \
343 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
344 c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
345 c_interop_kinds_table[a].value = c;
346 #define NAMED_CHARCST(a,b,c) \
347 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
348 c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
349 c_interop_kinds_table[a].value = c;
350 #define DERIVED_TYPE(a,b,c) \
351 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
352 c_interop_kinds_table[a].f90_type = BT_DERIVED; \
353 c_interop_kinds_table[a].value = c;
354 #define NAMED_FUNCTION(a,b,c,d) \
355 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
356 c_interop_kinds_table[a].f90_type = BT_PROCEDURE; \
357 c_interop_kinds_table[a].value = c;
358 #define NAMED_SUBROUTINE(a,b,c,d) \
359 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
360 c_interop_kinds_table[a].f90_type = BT_PROCEDURE; \
361 c_interop_kinds_table[a].value = c;
362 #include "iso-c-binding.def"
366 /* Query the target to determine which machine modes are available for
367 computation. Choose KIND numbers for them. */
370 gfc_init_kinds (void)
373 int i_index
, r_index
, kind
;
374 bool saw_i4
= false, saw_i8
= false;
375 bool saw_r4
= false, saw_r8
= false, saw_r10
= false, saw_r16
= false;
377 for (i_index
= 0, mode
= MIN_MODE_INT
; mode
<= MAX_MODE_INT
; mode
++)
381 if (!targetm
.scalar_mode_supported_p ((machine_mode
) mode
))
384 /* The middle end doesn't support constants larger than 2*HWI.
385 Perhaps the target hook shouldn't have accepted these either,
386 but just to be safe... */
387 bitsize
= GET_MODE_BITSIZE ((machine_mode
) mode
);
388 if (bitsize
> 2*HOST_BITS_PER_WIDE_INT
)
391 gcc_assert (i_index
!= MAX_INT_KINDS
);
393 /* Let the kind equal the bit size divided by 8. This insulates the
394 programmer from the underlying byte size. */
402 gfc_integer_kinds
[i_index
].kind
= kind
;
403 gfc_integer_kinds
[i_index
].radix
= 2;
404 gfc_integer_kinds
[i_index
].digits
= bitsize
- 1;
405 gfc_integer_kinds
[i_index
].bit_size
= bitsize
;
407 gfc_logical_kinds
[i_index
].kind
= kind
;
408 gfc_logical_kinds
[i_index
].bit_size
= bitsize
;
413 /* Set the kind used to match GFC_INT_IO in libgfortran. This is
414 used for large file access. */
421 /* If we do not at least have kind = 4, everything is pointless. */
424 /* Set the maximum integer kind. Used with at least BOZ constants. */
425 gfc_max_integer_kind
= gfc_integer_kinds
[i_index
- 1].kind
;
427 for (r_index
= 0, mode
= MIN_MODE_FLOAT
; mode
<= MAX_MODE_FLOAT
; mode
++)
429 const struct real_format
*fmt
=
430 REAL_MODE_FORMAT ((machine_mode
) mode
);
435 if (!targetm
.scalar_mode_supported_p ((machine_mode
) mode
))
438 /* Only let float, double, long double and __float128 go through.
439 Runtime support for others is not provided, so they would be
441 if (!targetm
.libgcc_floating_mode_supported_p ((machine_mode
)
444 if (mode
!= TYPE_MODE (float_type_node
)
445 && (mode
!= TYPE_MODE (double_type_node
))
446 && (mode
!= TYPE_MODE (long_double_type_node
))
447 #if defined(HAVE_TFmode) && defined(ENABLE_LIBQUADMATH_SUPPORT)
453 /* Let the kind equal the precision divided by 8, rounding up. Again,
454 this insulates the programmer from the underlying byte size.
456 Also, it effectively deals with IEEE extended formats. There, the
457 total size of the type may equal 16, but it's got 6 bytes of padding
458 and the increased size can get in the way of a real IEEE quad format
459 which may also be supported by the target.
461 We round up so as to handle IA-64 __floatreg (RFmode), which is an
462 82 bit type. Not to be confused with __float80 (XFmode), which is
463 an 80 bit type also supported by IA-64. So XFmode should come out
464 to be kind=10, and RFmode should come out to be kind=11. Egads. */
466 kind
= (GET_MODE_PRECISION (mode
) + 7) / 8;
477 /* Careful we don't stumble a weird internal mode. */
478 gcc_assert (r_index
<= 0 || gfc_real_kinds
[r_index
-1].kind
!= kind
);
479 /* Or have too many modes for the allocated space. */
480 gcc_assert (r_index
!= MAX_REAL_KINDS
);
482 gfc_real_kinds
[r_index
].kind
= kind
;
483 gfc_real_kinds
[r_index
].radix
= fmt
->b
;
484 gfc_real_kinds
[r_index
].digits
= fmt
->p
;
485 gfc_real_kinds
[r_index
].min_exponent
= fmt
->emin
;
486 gfc_real_kinds
[r_index
].max_exponent
= fmt
->emax
;
487 if (fmt
->pnan
< fmt
->p
)
488 /* This is an IBM extended double format (or the MIPS variant)
489 made up of two IEEE doubles. The value of the long double is
490 the sum of the values of the two parts. The most significant
491 part is required to be the value of the long double rounded
492 to the nearest double. If we use emax of 1024 then we can't
493 represent huge(x) = (1 - b**(-p)) * b**(emax-1) * b, because
494 rounding will make the most significant part overflow. */
495 gfc_real_kinds
[r_index
].max_exponent
= fmt
->emax
- 1;
496 gfc_real_kinds
[r_index
].mode_precision
= GET_MODE_PRECISION (mode
);
500 /* Choose the default integer kind. We choose 4 unless the user directs us
501 otherwise. Even if the user specified that the default integer kind is 8,
502 the numeric storage size is not 64 bits. In this case, a warning will be
503 issued when NUMERIC_STORAGE_SIZE is used. Set NUMERIC_STORAGE_SIZE to 32. */
505 gfc_numeric_storage_size
= 4 * 8;
507 if (flag_default_integer
)
510 gfc_fatal_error ("INTEGER(KIND=8) is not available for "
511 "%<-fdefault-integer-8%> option");
513 gfc_default_integer_kind
= 8;
516 else if (flag_integer4_kind
== 8)
519 gfc_fatal_error ("INTEGER(KIND=8) is not available for "
520 "%<-finteger-4-integer-8%> option");
522 gfc_default_integer_kind
= 8;
526 gfc_default_integer_kind
= 4;
530 gfc_default_integer_kind
= gfc_integer_kinds
[i_index
- 1].kind
;
531 gfc_numeric_storage_size
= gfc_integer_kinds
[i_index
- 1].bit_size
;
534 /* Choose the default real kind. Again, we choose 4 when possible. */
535 if (flag_default_real
)
538 gfc_fatal_error ("REAL(KIND=8) is not available for "
539 "%<-fdefault-real-8%> option");
541 gfc_default_real_kind
= 8;
543 else if (flag_real4_kind
== 8)
546 gfc_fatal_error ("REAL(KIND=8) is not available for %<-freal-4-real-8%> "
549 gfc_default_real_kind
= 8;
551 else if (flag_real4_kind
== 10)
554 gfc_fatal_error ("REAL(KIND=10) is not available for "
555 "%<-freal-4-real-10%> option");
557 gfc_default_real_kind
= 10;
559 else if (flag_real4_kind
== 16)
562 gfc_fatal_error ("REAL(KIND=16) is not available for "
563 "%<-freal-4-real-16%> option");
565 gfc_default_real_kind
= 16;
568 gfc_default_real_kind
= 4;
570 gfc_default_real_kind
= gfc_real_kinds
[0].kind
;
572 /* Choose the default double kind. If -fdefault-real and -fdefault-double
573 are specified, we use kind=8, if it's available. If -fdefault-real is
574 specified without -fdefault-double, we use kind=16, if it's available.
575 Otherwise we do not change anything. */
576 if (flag_default_double
&& !flag_default_real
)
577 gfc_fatal_error ("Use of %<-fdefault-double-8%> requires "
578 "%<-fdefault-real-8%>");
580 if (flag_default_real
&& flag_default_double
&& saw_r8
)
581 gfc_default_double_kind
= 8;
582 else if (flag_default_real
&& saw_r16
)
583 gfc_default_double_kind
= 16;
584 else if (flag_real8_kind
== 4)
587 gfc_fatal_error ("REAL(KIND=4) is not available for "
588 "%<-freal-8-real-4%> option");
590 gfc_default_double_kind
= 4;
592 else if (flag_real8_kind
== 10 )
595 gfc_fatal_error ("REAL(KIND=10) is not available for "
596 "%<-freal-8-real-10%> option");
598 gfc_default_double_kind
= 10;
600 else if (flag_real8_kind
== 16 )
603 gfc_fatal_error ("REAL(KIND=10) is not available for "
604 "%<-freal-8-real-16%> option");
606 gfc_default_double_kind
= 16;
608 else if (saw_r4
&& saw_r8
)
609 gfc_default_double_kind
= 8;
612 /* F95 14.6.3.1: A nonpointer scalar object of type double precision
613 real ... occupies two contiguous numeric storage units.
615 Therefore we must be supplied a kind twice as large as we chose
616 for single precision. There are loopholes, in that double
617 precision must *occupy* two storage units, though it doesn't have
618 to *use* two storage units. Which means that you can make this
619 kind artificially wide by padding it. But at present there are
620 no GCC targets for which a two-word type does not exist, so we
621 just let gfc_validate_kind abort and tell us if something breaks. */
623 gfc_default_double_kind
624 = gfc_validate_kind (BT_REAL
, gfc_default_real_kind
* 2, false);
627 /* The default logical kind is constrained to be the same as the
628 default integer kind. Similarly with complex and real. */
629 gfc_default_logical_kind
= gfc_default_integer_kind
;
630 gfc_default_complex_kind
= gfc_default_real_kind
;
632 /* We only have two character kinds: ASCII and UCS-4.
633 ASCII corresponds to a 8-bit integer type, if one is available.
634 UCS-4 corresponds to a 32-bit integer type, if one is available. */
636 if ((kind
= get_int_kind_from_width (8)) > 0)
638 gfc_character_kinds
[i_index
].kind
= kind
;
639 gfc_character_kinds
[i_index
].bit_size
= 8;
640 gfc_character_kinds
[i_index
].name
= "ascii";
643 if ((kind
= get_int_kind_from_width (32)) > 0)
645 gfc_character_kinds
[i_index
].kind
= kind
;
646 gfc_character_kinds
[i_index
].bit_size
= 32;
647 gfc_character_kinds
[i_index
].name
= "iso_10646";
651 /* Choose the smallest integer kind for our default character. */
652 gfc_default_character_kind
= gfc_character_kinds
[0].kind
;
653 gfc_character_storage_size
= gfc_default_character_kind
* 8;
655 gfc_index_integer_kind
= get_int_kind_from_name (PTRDIFF_TYPE
);
657 /* Pick a kind the same size as the C "int" type. */
658 gfc_c_int_kind
= INT_TYPE_SIZE
/ 8;
660 /* Choose atomic kinds to match C's int. */
661 gfc_atomic_int_kind
= gfc_c_int_kind
;
662 gfc_atomic_logical_kind
= gfc_c_int_kind
;
666 /* Make sure that a valid kind is present. Returns an index into the
667 associated kinds array, -1 if the kind is not present. */
670 validate_integer (int kind
)
674 for (i
= 0; gfc_integer_kinds
[i
].kind
!= 0; i
++)
675 if (gfc_integer_kinds
[i
].kind
== kind
)
682 validate_real (int kind
)
686 for (i
= 0; gfc_real_kinds
[i
].kind
!= 0; i
++)
687 if (gfc_real_kinds
[i
].kind
== kind
)
694 validate_logical (int kind
)
698 for (i
= 0; gfc_logical_kinds
[i
].kind
; i
++)
699 if (gfc_logical_kinds
[i
].kind
== kind
)
706 validate_character (int kind
)
710 for (i
= 0; gfc_character_kinds
[i
].kind
; i
++)
711 if (gfc_character_kinds
[i
].kind
== kind
)
717 /* Validate a kind given a basic type. The return value is the same
718 for the child functions, with -1 indicating nonexistence of the
719 type. If MAY_FAIL is false, then -1 is never returned, and we ICE. */
722 gfc_validate_kind (bt type
, int kind
, bool may_fail
)
728 case BT_REAL
: /* Fall through */
730 rc
= validate_real (kind
);
733 rc
= validate_integer (kind
);
736 rc
= validate_logical (kind
);
739 rc
= validate_character (kind
);
743 gfc_internal_error ("gfc_validate_kind(): Got bad type");
746 if (rc
< 0 && !may_fail
)
747 gfc_internal_error ("gfc_validate_kind(): Got bad kind");
753 /* Four subroutines of gfc_init_types. Create type nodes for the given kind.
754 Reuse common type nodes where possible. Recognize if the kind matches up
755 with a C type. This will be used later in determining which routines may
756 be scarfed from libm. */
759 gfc_build_int_type (gfc_integer_info
*info
)
761 int mode_precision
= info
->bit_size
;
763 if (mode_precision
== CHAR_TYPE_SIZE
)
765 if (mode_precision
== SHORT_TYPE_SIZE
)
767 if (mode_precision
== INT_TYPE_SIZE
)
769 if (mode_precision
== LONG_TYPE_SIZE
)
771 if (mode_precision
== LONG_LONG_TYPE_SIZE
)
772 info
->c_long_long
= 1;
774 if (TYPE_PRECISION (intQI_type_node
) == mode_precision
)
775 return intQI_type_node
;
776 if (TYPE_PRECISION (intHI_type_node
) == mode_precision
)
777 return intHI_type_node
;
778 if (TYPE_PRECISION (intSI_type_node
) == mode_precision
)
779 return intSI_type_node
;
780 if (TYPE_PRECISION (intDI_type_node
) == mode_precision
)
781 return intDI_type_node
;
782 if (TYPE_PRECISION (intTI_type_node
) == mode_precision
)
783 return intTI_type_node
;
785 return make_signed_type (mode_precision
);
789 gfc_build_uint_type (int size
)
791 if (size
== CHAR_TYPE_SIZE
)
792 return unsigned_char_type_node
;
793 if (size
== SHORT_TYPE_SIZE
)
794 return short_unsigned_type_node
;
795 if (size
== INT_TYPE_SIZE
)
796 return unsigned_type_node
;
797 if (size
== LONG_TYPE_SIZE
)
798 return long_unsigned_type_node
;
799 if (size
== LONG_LONG_TYPE_SIZE
)
800 return long_long_unsigned_type_node
;
802 return make_unsigned_type (size
);
807 gfc_build_real_type (gfc_real_info
*info
)
809 int mode_precision
= info
->mode_precision
;
812 if (mode_precision
== FLOAT_TYPE_SIZE
)
814 if (mode_precision
== DOUBLE_TYPE_SIZE
)
816 if (mode_precision
== LONG_DOUBLE_TYPE_SIZE
)
817 info
->c_long_double
= 1;
818 if (mode_precision
!= LONG_DOUBLE_TYPE_SIZE
&& mode_precision
== 128)
820 info
->c_float128
= 1;
821 gfc_real16_is_float128
= true;
824 if (TYPE_PRECISION (float_type_node
) == mode_precision
)
825 return float_type_node
;
826 if (TYPE_PRECISION (double_type_node
) == mode_precision
)
827 return double_type_node
;
828 if (TYPE_PRECISION (long_double_type_node
) == mode_precision
)
829 return long_double_type_node
;
831 new_type
= make_node (REAL_TYPE
);
832 TYPE_PRECISION (new_type
) = mode_precision
;
833 layout_type (new_type
);
838 gfc_build_complex_type (tree scalar_type
)
842 if (scalar_type
== NULL
)
844 if (scalar_type
== float_type_node
)
845 return complex_float_type_node
;
846 if (scalar_type
== double_type_node
)
847 return complex_double_type_node
;
848 if (scalar_type
== long_double_type_node
)
849 return complex_long_double_type_node
;
851 new_type
= make_node (COMPLEX_TYPE
);
852 TREE_TYPE (new_type
) = scalar_type
;
853 layout_type (new_type
);
858 gfc_build_logical_type (gfc_logical_info
*info
)
860 int bit_size
= info
->bit_size
;
863 if (bit_size
== BOOL_TYPE_SIZE
)
866 return boolean_type_node
;
869 new_type
= make_unsigned_type (bit_size
);
870 TREE_SET_CODE (new_type
, BOOLEAN_TYPE
);
871 TYPE_MAX_VALUE (new_type
) = build_int_cst (new_type
, 1);
872 TYPE_PRECISION (new_type
) = 1;
878 /* Create the backend type nodes. We map them to their
879 equivalent C type, at least for now. We also give
880 names to the types here, and we push them in the
881 global binding level context.*/
884 gfc_init_types (void)
891 /* Create and name the types. */
892 #define PUSH_TYPE(name, node) \
893 pushdecl (build_decl (input_location, \
894 TYPE_DECL, get_identifier (name), node))
896 for (index
= 0; gfc_integer_kinds
[index
].kind
!= 0; ++index
)
898 type
= gfc_build_int_type (&gfc_integer_kinds
[index
]);
899 /* Ensure integer(kind=1) doesn't have TYPE_STRING_FLAG set. */
900 if (TYPE_STRING_FLAG (type
))
901 type
= make_signed_type (gfc_integer_kinds
[index
].bit_size
);
902 gfc_integer_types
[index
] = type
;
903 snprintf (name_buf
, sizeof(name_buf
), "integer(kind=%d)",
904 gfc_integer_kinds
[index
].kind
);
905 PUSH_TYPE (name_buf
, type
);
908 for (index
= 0; gfc_logical_kinds
[index
].kind
!= 0; ++index
)
910 type
= gfc_build_logical_type (&gfc_logical_kinds
[index
]);
911 gfc_logical_types
[index
] = type
;
912 snprintf (name_buf
, sizeof(name_buf
), "logical(kind=%d)",
913 gfc_logical_kinds
[index
].kind
);
914 PUSH_TYPE (name_buf
, type
);
917 for (index
= 0; gfc_real_kinds
[index
].kind
!= 0; index
++)
919 type
= gfc_build_real_type (&gfc_real_kinds
[index
]);
920 gfc_real_types
[index
] = type
;
921 snprintf (name_buf
, sizeof(name_buf
), "real(kind=%d)",
922 gfc_real_kinds
[index
].kind
);
923 PUSH_TYPE (name_buf
, type
);
925 if (gfc_real_kinds
[index
].c_float128
)
926 float128_type_node
= type
;
928 type
= gfc_build_complex_type (type
);
929 gfc_complex_types
[index
] = type
;
930 snprintf (name_buf
, sizeof(name_buf
), "complex(kind=%d)",
931 gfc_real_kinds
[index
].kind
);
932 PUSH_TYPE (name_buf
, type
);
934 if (gfc_real_kinds
[index
].c_float128
)
935 complex_float128_type_node
= type
;
938 for (index
= 0; gfc_character_kinds
[index
].kind
!= 0; ++index
)
940 type
= gfc_build_uint_type (gfc_character_kinds
[index
].bit_size
);
941 type
= build_qualified_type (type
, TYPE_UNQUALIFIED
);
942 snprintf (name_buf
, sizeof(name_buf
), "character(kind=%d)",
943 gfc_character_kinds
[index
].kind
);
944 PUSH_TYPE (name_buf
, type
);
945 gfc_character_types
[index
] = type
;
946 gfc_pcharacter_types
[index
] = build_pointer_type (type
);
948 gfc_character1_type_node
= gfc_character_types
[0];
950 PUSH_TYPE ("byte", unsigned_char_type_node
);
951 PUSH_TYPE ("void", void_type_node
);
953 /* DBX debugging output gets upset if these aren't set. */
954 if (!TYPE_NAME (integer_type_node
))
955 PUSH_TYPE ("c_integer", integer_type_node
);
956 if (!TYPE_NAME (char_type_node
))
957 PUSH_TYPE ("c_char", char_type_node
);
961 pvoid_type_node
= build_pointer_type (void_type_node
);
962 prvoid_type_node
= build_qualified_type (pvoid_type_node
, TYPE_QUAL_RESTRICT
);
963 ppvoid_type_node
= build_pointer_type (pvoid_type_node
);
964 pchar_type_node
= build_pointer_type (gfc_character1_type_node
);
966 = build_pointer_type (build_function_type_list (void_type_node
, NULL_TREE
));
968 gfc_array_index_type
= gfc_get_int_type (gfc_index_integer_kind
);
969 /* We cannot use gfc_index_zero_node in definition of gfc_array_range_type,
970 since this function is called before gfc_init_constants. */
972 = build_range_type (gfc_array_index_type
,
973 build_int_cst (gfc_array_index_type
, 0),
976 /* The maximum array element size that can be handled is determined
977 by the number of bits available to store this field in the array
980 n
= TYPE_PRECISION (gfc_array_index_type
) - GFC_DTYPE_SIZE_SHIFT
;
981 gfc_max_array_element_size
982 = wide_int_to_tree (size_type_node
,
983 wi::mask (n
, UNSIGNED
,
984 TYPE_PRECISION (size_type_node
)));
986 boolean_type_node
= gfc_get_logical_type (gfc_default_logical_kind
);
987 boolean_true_node
= build_int_cst (boolean_type_node
, 1);
988 boolean_false_node
= build_int_cst (boolean_type_node
, 0);
990 /* ??? Shouldn't this be based on gfc_index_integer_kind or so? */
991 gfc_charlen_int_kind
= 4;
992 gfc_charlen_type_node
= gfc_get_int_type (gfc_charlen_int_kind
);
995 /* Get the type node for the given type and kind. */
998 gfc_get_int_type (int kind
)
1000 int index
= gfc_validate_kind (BT_INTEGER
, kind
, true);
1001 return index
< 0 ? 0 : gfc_integer_types
[index
];
1005 gfc_get_real_type (int kind
)
1007 int index
= gfc_validate_kind (BT_REAL
, kind
, true);
1008 return index
< 0 ? 0 : gfc_real_types
[index
];
1012 gfc_get_complex_type (int kind
)
1014 int index
= gfc_validate_kind (BT_COMPLEX
, kind
, true);
1015 return index
< 0 ? 0 : gfc_complex_types
[index
];
1019 gfc_get_logical_type (int kind
)
1021 int index
= gfc_validate_kind (BT_LOGICAL
, kind
, true);
1022 return index
< 0 ? 0 : gfc_logical_types
[index
];
1026 gfc_get_char_type (int kind
)
1028 int index
= gfc_validate_kind (BT_CHARACTER
, kind
, true);
1029 return index
< 0 ? 0 : gfc_character_types
[index
];
1033 gfc_get_pchar_type (int kind
)
1035 int index
= gfc_validate_kind (BT_CHARACTER
, kind
, true);
1036 return index
< 0 ? 0 : gfc_pcharacter_types
[index
];
1040 /* Create a character type with the given kind and length. */
1043 gfc_get_character_type_len_for_eltype (tree eltype
, tree len
)
1047 bounds
= build_range_type (gfc_charlen_type_node
, gfc_index_one_node
, len
);
1048 type
= build_array_type (eltype
, bounds
);
1049 TYPE_STRING_FLAG (type
) = 1;
1055 gfc_get_character_type_len (int kind
, tree len
)
1057 gfc_validate_kind (BT_CHARACTER
, kind
, false);
1058 return gfc_get_character_type_len_for_eltype (gfc_get_char_type (kind
), len
);
1062 /* Get a type node for a character kind. */
1065 gfc_get_character_type (int kind
, gfc_charlen
* cl
)
1069 len
= (cl
== NULL
) ? NULL_TREE
: cl
->backend_decl
;
1071 return gfc_get_character_type_len (kind
, len
);
1074 /* Covert a basic type. This will be an array for character types. */
1077 gfc_typenode_for_spec (gfc_typespec
* spec
)
1087 /* We use INTEGER(c_intptr_t) for C_PTR and C_FUNPTR once the symbol
1088 has been resolved. This is done so we can convert C_PTR and
1089 C_FUNPTR to simple variables that get translated to (void *). */
1090 if (spec
->f90_type
== BT_VOID
)
1093 && spec
->u
.derived
->intmod_sym_id
== ISOCBINDING_PTR
)
1094 basetype
= ptr_type_node
;
1096 basetype
= pfunc_type_node
;
1099 basetype
= gfc_get_int_type (spec
->kind
);
1103 basetype
= gfc_get_real_type (spec
->kind
);
1107 basetype
= gfc_get_complex_type (spec
->kind
);
1111 basetype
= gfc_get_logical_type (spec
->kind
);
1115 basetype
= gfc_get_character_type (spec
->kind
, spec
->u
.cl
);
1119 /* Since this cannot be used, return a length one character. */
1120 basetype
= gfc_get_character_type_len (gfc_default_character_kind
,
1121 gfc_index_one_node
);
1126 basetype
= gfc_get_derived_type (spec
->u
.derived
);
1128 if (spec
->type
== BT_CLASS
)
1129 GFC_CLASS_TYPE_P (basetype
) = 1;
1131 /* If we're dealing with either C_PTR or C_FUNPTR, we modified the
1132 type and kind to fit a (void *) and the basetype returned was a
1133 ptr_type_node. We need to pass up this new information to the
1134 symbol that was declared of type C_PTR or C_FUNPTR. */
1135 if (spec
->u
.derived
->ts
.f90_type
== BT_VOID
)
1137 spec
->type
= BT_INTEGER
;
1138 spec
->kind
= gfc_index_integer_kind
;
1139 spec
->f90_type
= BT_VOID
;
1144 /* This is for the second arg to c_f_pointer and c_f_procpointer
1145 of the iso_c_binding module, to accept any ptr type. */
1146 basetype
= ptr_type_node
;
1147 if (spec
->f90_type
== BT_VOID
)
1150 && spec
->u
.derived
->intmod_sym_id
== ISOCBINDING_PTR
)
1151 basetype
= ptr_type_node
;
1153 basetype
= pfunc_type_node
;
1162 /* Build an INT_CST for constant expressions, otherwise return NULL_TREE. */
1165 gfc_conv_array_bound (gfc_expr
* expr
)
1167 /* If expr is an integer constant, return that. */
1168 if (expr
!= NULL
&& expr
->expr_type
== EXPR_CONSTANT
)
1169 return gfc_conv_mpz_to_tree (expr
->value
.integer
, gfc_index_integer_kind
);
1171 /* Otherwise return NULL. */
1175 /* Return the type of an element of the array. Note that scalar coarrays
1176 are special. In particular, for GFC_ARRAY_TYPE_P, the original argument
1177 (with POINTER_TYPE stripped) is returned. */
1180 gfc_get_element_type (tree type
)
1184 if (GFC_ARRAY_TYPE_P (type
))
1186 if (TREE_CODE (type
) == POINTER_TYPE
)
1187 type
= TREE_TYPE (type
);
1188 if (GFC_TYPE_ARRAY_RANK (type
) == 0)
1190 gcc_assert (GFC_TYPE_ARRAY_CORANK (type
) > 0);
1195 gcc_assert (TREE_CODE (type
) == ARRAY_TYPE
);
1196 element
= TREE_TYPE (type
);
1201 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type
));
1202 element
= GFC_TYPE_ARRAY_DATAPTR_TYPE (type
);
1204 gcc_assert (TREE_CODE (element
) == POINTER_TYPE
);
1205 element
= TREE_TYPE (element
);
1207 /* For arrays, which are not scalar coarrays. */
1208 if (TREE_CODE (element
) == ARRAY_TYPE
&& !TYPE_STRING_FLAG (element
))
1209 element
= TREE_TYPE (element
);
1215 /* Build an array. This function is called from gfc_sym_type().
1216 Actually returns array descriptor type.
1218 Format of array descriptors is as follows:
1220 struct gfc_array_descriptor
1225 struct descriptor_dimension dimension[N_DIM];
1228 struct descriptor_dimension
1235 Translation code should use gfc_conv_descriptor_* rather than
1236 accessing the descriptor directly. Any changes to the array
1237 descriptor type will require changes in gfc_conv_descriptor_* and
1238 gfc_build_array_initializer.
1240 This is represented internally as a RECORD_TYPE. The index nodes
1241 are gfc_array_index_type and the data node is a pointer to the
1242 data. See below for the handling of character types.
1244 The dtype member is formatted as follows:
1245 rank = dtype & GFC_DTYPE_RANK_MASK // 3 bits
1246 type = (dtype & GFC_DTYPE_TYPE_MASK) >> GFC_DTYPE_TYPE_SHIFT // 3 bits
1247 size = dtype >> GFC_DTYPE_SIZE_SHIFT
1249 I originally used nested ARRAY_TYPE nodes to represent arrays, but
1250 this generated poor code for assumed/deferred size arrays. These
1251 require use of PLACEHOLDER_EXPR/WITH_RECORD_EXPR, which isn't part
1252 of the GENERIC grammar. Also, there is no way to explicitly set
1253 the array stride, so all data must be packed(1). I've tried to
1254 mark all the functions which would require modification with a GCC
1257 The data component points to the first element in the array. The
1258 offset field is the position of the origin of the array (i.e. element
1259 (0, 0 ...)). This may be outside the bounds of the array.
1261 An element is accessed by
1262 data[offset + index0*stride0 + index1*stride1 + index2*stride2]
1263 This gives good performance as the computation does not involve the
1264 bounds of the array. For packed arrays, this is optimized further
1265 by substituting the known strides.
1267 This system has one problem: all array bounds must be within 2^31
1268 elements of the origin (2^63 on 64-bit machines). For example
1269 integer, dimension (80000:90000, 80000:90000, 2) :: array
1270 may not work properly on 32-bit machines because 80000*80000 >
1271 2^31, so the calculation for stride2 would overflow. This may
1272 still work, but I haven't checked, and it relies on the overflow
1273 doing the right thing.
1275 The way to fix this problem is to access elements as follows:
1276 data[(index0-lbound0)*stride0 + (index1-lbound1)*stride1]
1277 Obviously this is much slower. I will make this a compile time
1278 option, something like -fsmall-array-offsets. Mixing code compiled
1279 with and without this switch will work.
1281 (1) This can be worked around by modifying the upper bound of the
1282 previous dimension. This requires extra fields in the descriptor
1283 (both real_ubound and fake_ubound). */
1286 /* Returns true if the array sym does not require a descriptor. */
1289 gfc_is_nodesc_array (gfc_symbol
* sym
)
1291 symbol_attribute
*array_attr
;
1293 bool is_classarray
= IS_CLASS_ARRAY (sym
);
1295 array_attr
= is_classarray
? &CLASS_DATA (sym
)->attr
: &sym
->attr
;
1296 as
= is_classarray
? CLASS_DATA (sym
)->as
: sym
->as
;
1298 gcc_assert (array_attr
->dimension
|| array_attr
->codimension
);
1300 /* We only want local arrays. */
1301 if ((sym
->ts
.type
!= BT_CLASS
&& sym
->attr
.pointer
)
1302 || (sym
->ts
.type
== BT_CLASS
&& CLASS_DATA (sym
)->attr
.class_pointer
)
1303 || array_attr
->allocatable
)
1306 /* We want a descriptor for associate-name arrays that do not have an
1307 explicitly known shape already. */
1308 if (sym
->assoc
&& as
->type
!= AS_EXPLICIT
)
1311 /* The dummy is stored in sym and not in the component. */
1312 if (sym
->attr
.dummy
)
1313 return as
->type
!= AS_ASSUMED_SHAPE
1314 && as
->type
!= AS_ASSUMED_RANK
;
1316 if (sym
->attr
.result
|| sym
->attr
.function
)
1319 gcc_assert (as
->type
== AS_EXPLICIT
|| as
->cp_was_assumed
);
1325 /* Create an array descriptor type. */
1328 gfc_build_array_type (tree type
, gfc_array_spec
* as
,
1329 enum gfc_array_kind akind
, bool restricted
,
1332 tree lbound
[GFC_MAX_DIMENSIONS
];
1333 tree ubound
[GFC_MAX_DIMENSIONS
];
1336 /* Assumed-shape arrays do not have codimension information stored in the
1338 corank
= as
->corank
;
1339 if (as
->type
== AS_ASSUMED_SHAPE
||
1340 (as
->type
== AS_ASSUMED_RANK
&& akind
== GFC_ARRAY_ALLOCATABLE
))
1343 if (as
->type
== AS_ASSUMED_RANK
)
1344 for (n
= 0; n
< GFC_MAX_DIMENSIONS
; n
++)
1346 lbound
[n
] = NULL_TREE
;
1347 ubound
[n
] = NULL_TREE
;
1350 for (n
= 0; n
< as
->rank
; n
++)
1352 /* Create expressions for the known bounds of the array. */
1353 if (as
->type
== AS_ASSUMED_SHAPE
&& as
->lower
[n
] == NULL
)
1354 lbound
[n
] = gfc_index_one_node
;
1356 lbound
[n
] = gfc_conv_array_bound (as
->lower
[n
]);
1357 ubound
[n
] = gfc_conv_array_bound (as
->upper
[n
]);
1360 for (n
= as
->rank
; n
< as
->rank
+ corank
; n
++)
1362 if (as
->type
!= AS_DEFERRED
&& as
->lower
[n
] == NULL
)
1363 lbound
[n
] = gfc_index_one_node
;
1365 lbound
[n
] = gfc_conv_array_bound (as
->lower
[n
]);
1367 if (n
< as
->rank
+ corank
- 1)
1368 ubound
[n
] = gfc_conv_array_bound (as
->upper
[n
]);
1371 if (as
->type
== AS_ASSUMED_SHAPE
)
1372 akind
= contiguous
? GFC_ARRAY_ASSUMED_SHAPE_CONT
1373 : GFC_ARRAY_ASSUMED_SHAPE
;
1374 else if (as
->type
== AS_ASSUMED_RANK
)
1375 akind
= contiguous
? GFC_ARRAY_ASSUMED_RANK_CONT
1376 : GFC_ARRAY_ASSUMED_RANK
;
1377 return gfc_get_array_type_bounds (type
, as
->rank
== -1
1378 ? GFC_MAX_DIMENSIONS
: as
->rank
,
1380 ubound
, 0, akind
, restricted
);
1383 /* Returns the struct descriptor_dimension type. */
1386 gfc_get_desc_dim_type (void)
1389 tree decl
, *chain
= NULL
;
1391 if (gfc_desc_dim_type
)
1392 return gfc_desc_dim_type
;
1394 /* Build the type node. */
1395 type
= make_node (RECORD_TYPE
);
1397 TYPE_NAME (type
) = get_identifier ("descriptor_dimension");
1398 TYPE_PACKED (type
) = 1;
1400 /* Consists of the stride, lbound and ubound members. */
1401 decl
= gfc_add_field_to_struct_1 (type
,
1402 get_identifier ("stride"),
1403 gfc_array_index_type
, &chain
);
1404 TREE_NO_WARNING (decl
) = 1;
1406 decl
= gfc_add_field_to_struct_1 (type
,
1407 get_identifier ("lbound"),
1408 gfc_array_index_type
, &chain
);
1409 TREE_NO_WARNING (decl
) = 1;
1411 decl
= gfc_add_field_to_struct_1 (type
,
1412 get_identifier ("ubound"),
1413 gfc_array_index_type
, &chain
);
1414 TREE_NO_WARNING (decl
) = 1;
1416 /* Finish off the type. */
1417 gfc_finish_type (type
);
1418 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type
)) = 1;
1420 gfc_desc_dim_type
= type
;
1425 /* Return the DTYPE for an array. This describes the type and type parameters
1427 /* TODO: Only call this when the value is actually used, and make all the
1428 unknown cases abort. */
1431 gfc_get_dtype_rank_type (int rank
, tree etype
)
1439 switch (TREE_CODE (etype
))
1457 /* We will never have arrays of arrays. */
1471 /* TODO: Don't do dtype for temporary descriptorless arrays. */
1472 /* We can strange array types for temporary arrays. */
1473 return gfc_index_zero_node
;
1476 gcc_assert (rank
<= GFC_DTYPE_RANK_MASK
);
1477 size
= TYPE_SIZE_UNIT (etype
);
1479 i
= rank
| (n
<< GFC_DTYPE_TYPE_SHIFT
);
1480 if (size
&& INTEGER_CST_P (size
))
1482 if (tree_int_cst_lt (gfc_max_array_element_size
, size
))
1483 gfc_fatal_error ("Array element size too big at %C");
1485 i
+= TREE_INT_CST_LOW (size
) << GFC_DTYPE_SIZE_SHIFT
;
1487 dtype
= build_int_cst (gfc_array_index_type
, i
);
1489 if (size
&& !INTEGER_CST_P (size
))
1491 tmp
= build_int_cst (gfc_array_index_type
, GFC_DTYPE_SIZE_SHIFT
);
1492 tmp
= fold_build2_loc (input_location
, LSHIFT_EXPR
,
1493 gfc_array_index_type
,
1494 fold_convert (gfc_array_index_type
, size
), tmp
);
1495 dtype
= fold_build2_loc (input_location
, PLUS_EXPR
, gfc_array_index_type
,
1498 /* If we don't know the size we leave it as zero. This should never happen
1499 for anything that is actually used. */
1500 /* TODO: Check this is actually true, particularly when repacking
1501 assumed size parameters. */
1508 gfc_get_dtype (tree type
)
1514 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type
) || GFC_ARRAY_TYPE_P (type
));
1516 if (GFC_TYPE_ARRAY_DTYPE (type
))
1517 return GFC_TYPE_ARRAY_DTYPE (type
);
1519 rank
= GFC_TYPE_ARRAY_RANK (type
);
1520 etype
= gfc_get_element_type (type
);
1521 dtype
= gfc_get_dtype_rank_type (rank
, etype
);
1523 GFC_TYPE_ARRAY_DTYPE (type
) = dtype
;
1528 /* Build an array type for use without a descriptor, packed according
1529 to the value of PACKED. */
1532 gfc_get_nodesc_array_type (tree etype
, gfc_array_spec
* as
, gfc_packed packed
,
1546 mpz_init_set_ui (offset
, 0);
1547 mpz_init_set_ui (stride
, 1);
1550 /* We don't use build_array_type because this does not include include
1551 lang-specific information (i.e. the bounds of the array) when checking
1554 type
= make_node (ARRAY_TYPE
);
1556 type
= build_variant_type_copy (etype
);
1558 GFC_ARRAY_TYPE_P (type
) = 1;
1559 TYPE_LANG_SPECIFIC (type
) = ggc_cleared_alloc
<struct lang_type
> ();
1561 known_stride
= (packed
!= PACKED_NO
);
1563 for (n
= 0; n
< as
->rank
; n
++)
1565 /* Fill in the stride and bound components of the type. */
1567 tmp
= gfc_conv_mpz_to_tree (stride
, gfc_index_integer_kind
);
1570 GFC_TYPE_ARRAY_STRIDE (type
, n
) = tmp
;
1572 expr
= as
->lower
[n
];
1573 if (expr
->expr_type
== EXPR_CONSTANT
)
1575 tmp
= gfc_conv_mpz_to_tree (expr
->value
.integer
,
1576 gfc_index_integer_kind
);
1583 GFC_TYPE_ARRAY_LBOUND (type
, n
) = tmp
;
1587 /* Calculate the offset. */
1588 mpz_mul (delta
, stride
, as
->lower
[n
]->value
.integer
);
1589 mpz_sub (offset
, offset
, delta
);
1594 expr
= as
->upper
[n
];
1595 if (expr
&& expr
->expr_type
== EXPR_CONSTANT
)
1597 tmp
= gfc_conv_mpz_to_tree (expr
->value
.integer
,
1598 gfc_index_integer_kind
);
1605 GFC_TYPE_ARRAY_UBOUND (type
, n
) = tmp
;
1609 /* Calculate the stride. */
1610 mpz_sub (delta
, as
->upper
[n
]->value
.integer
,
1611 as
->lower
[n
]->value
.integer
);
1612 mpz_add_ui (delta
, delta
, 1);
1613 mpz_mul (stride
, stride
, delta
);
1616 /* Only the first stride is known for partial packed arrays. */
1617 if (packed
== PACKED_NO
|| packed
== PACKED_PARTIAL
)
1620 for (n
= as
->rank
; n
< as
->rank
+ as
->corank
; n
++)
1622 expr
= as
->lower
[n
];
1623 if (expr
->expr_type
== EXPR_CONSTANT
)
1624 tmp
= gfc_conv_mpz_to_tree (expr
->value
.integer
,
1625 gfc_index_integer_kind
);
1628 GFC_TYPE_ARRAY_LBOUND (type
, n
) = tmp
;
1630 expr
= as
->upper
[n
];
1631 if (expr
&& expr
->expr_type
== EXPR_CONSTANT
)
1632 tmp
= gfc_conv_mpz_to_tree (expr
->value
.integer
,
1633 gfc_index_integer_kind
);
1636 if (n
< as
->rank
+ as
->corank
- 1)
1637 GFC_TYPE_ARRAY_UBOUND (type
, n
) = tmp
;
1642 GFC_TYPE_ARRAY_OFFSET (type
) =
1643 gfc_conv_mpz_to_tree (offset
, gfc_index_integer_kind
);
1646 GFC_TYPE_ARRAY_OFFSET (type
) = NULL_TREE
;
1650 GFC_TYPE_ARRAY_SIZE (type
) =
1651 gfc_conv_mpz_to_tree (stride
, gfc_index_integer_kind
);
1654 GFC_TYPE_ARRAY_SIZE (type
) = NULL_TREE
;
1656 GFC_TYPE_ARRAY_RANK (type
) = as
->rank
;
1657 GFC_TYPE_ARRAY_CORANK (type
) = as
->corank
;
1658 GFC_TYPE_ARRAY_DTYPE (type
) = NULL_TREE
;
1659 range
= build_range_type (gfc_array_index_type
, gfc_index_zero_node
,
1661 /* TODO: use main type if it is unbounded. */
1662 GFC_TYPE_ARRAY_DATAPTR_TYPE (type
) =
1663 build_pointer_type (build_array_type (etype
, range
));
1665 GFC_TYPE_ARRAY_DATAPTR_TYPE (type
) =
1666 build_qualified_type (GFC_TYPE_ARRAY_DATAPTR_TYPE (type
),
1667 TYPE_QUAL_RESTRICT
);
1671 if (packed
!= PACKED_STATIC
|| flag_coarray
== GFC_FCOARRAY_LIB
)
1673 type
= build_pointer_type (type
);
1676 type
= build_qualified_type (type
, TYPE_QUAL_RESTRICT
);
1678 GFC_ARRAY_TYPE_P (type
) = 1;
1679 TYPE_LANG_SPECIFIC (type
) = TYPE_LANG_SPECIFIC (TREE_TYPE (type
));
1687 mpz_sub_ui (stride
, stride
, 1);
1688 range
= gfc_conv_mpz_to_tree (stride
, gfc_index_integer_kind
);
1693 range
= build_range_type (gfc_array_index_type
, gfc_index_zero_node
, range
);
1694 TYPE_DOMAIN (type
) = range
;
1696 build_pointer_type (etype
);
1697 TREE_TYPE (type
) = etype
;
1705 /* Represent packed arrays as multi-dimensional if they have rank >
1706 1 and with proper bounds, instead of flat arrays. This makes for
1707 better debug info. */
1710 tree gtype
= etype
, rtype
, type_decl
;
1712 for (n
= as
->rank
- 1; n
>= 0; n
--)
1714 rtype
= build_range_type (gfc_array_index_type
,
1715 GFC_TYPE_ARRAY_LBOUND (type
, n
),
1716 GFC_TYPE_ARRAY_UBOUND (type
, n
));
1717 gtype
= build_array_type (gtype
, rtype
);
1719 TYPE_NAME (type
) = type_decl
= build_decl (input_location
,
1720 TYPE_DECL
, NULL
, gtype
);
1721 DECL_ORIGINAL_TYPE (type_decl
) = gtype
;
1724 if (packed
!= PACKED_STATIC
|| !known_stride
1725 || (as
->corank
&& flag_coarray
== GFC_FCOARRAY_LIB
))
1727 /* For dummy arrays and automatic (heap allocated) arrays we
1728 want a pointer to the array. */
1729 type
= build_pointer_type (type
);
1731 type
= build_qualified_type (type
, TYPE_QUAL_RESTRICT
);
1732 GFC_ARRAY_TYPE_P (type
) = 1;
1733 TYPE_LANG_SPECIFIC (type
) = TYPE_LANG_SPECIFIC (TREE_TYPE (type
));
1739 /* Return or create the base type for an array descriptor. */
1742 gfc_get_array_descriptor_base (int dimen
, int codimen
, bool restricted
,
1743 enum gfc_array_kind akind
)
1745 tree fat_type
, decl
, arraytype
, *chain
= NULL
;
1746 char name
[16 + 2*GFC_RANK_DIGITS
+ 1 + 1];
1749 /* Assumed-rank array. */
1751 dimen
= GFC_MAX_DIMENSIONS
;
1753 idx
= 2 * (codimen
+ dimen
) + restricted
;
1755 gcc_assert (codimen
+ dimen
>= 0 && codimen
+ dimen
<= GFC_MAX_DIMENSIONS
);
1757 if (flag_coarray
== GFC_FCOARRAY_LIB
&& codimen
)
1759 if (gfc_array_descriptor_base_caf
[idx
])
1760 return gfc_array_descriptor_base_caf
[idx
];
1762 else if (gfc_array_descriptor_base
[idx
])
1763 return gfc_array_descriptor_base
[idx
];
1765 /* Build the type node. */
1766 fat_type
= make_node (RECORD_TYPE
);
1768 sprintf (name
, "array_descriptor" GFC_RANK_PRINTF_FORMAT
, dimen
+ codimen
);
1769 TYPE_NAME (fat_type
) = get_identifier (name
);
1770 TYPE_NAMELESS (fat_type
) = 1;
1772 /* Add the data member as the first element of the descriptor. */
1773 decl
= gfc_add_field_to_struct_1 (fat_type
,
1774 get_identifier ("data"),
1777 : ptr_type_node
), &chain
);
1779 /* Add the base component. */
1780 decl
= gfc_add_field_to_struct_1 (fat_type
,
1781 get_identifier ("offset"),
1782 gfc_array_index_type
, &chain
);
1783 TREE_NO_WARNING (decl
) = 1;
1785 /* Add the dtype component. */
1786 decl
= gfc_add_field_to_struct_1 (fat_type
,
1787 get_identifier ("dtype"),
1788 gfc_array_index_type
, &chain
);
1789 TREE_NO_WARNING (decl
) = 1;
1791 /* Build the array type for the stride and bound components. */
1792 if (dimen
+ codimen
> 0)
1795 build_array_type (gfc_get_desc_dim_type (),
1796 build_range_type (gfc_array_index_type
,
1797 gfc_index_zero_node
,
1798 gfc_rank_cst
[codimen
+ dimen
- 1]));
1800 decl
= gfc_add_field_to_struct_1 (fat_type
, get_identifier ("dim"),
1802 TREE_NO_WARNING (decl
) = 1;
1805 if (flag_coarray
== GFC_FCOARRAY_LIB
&& codimen
1806 && akind
== GFC_ARRAY_ALLOCATABLE
)
1808 decl
= gfc_add_field_to_struct_1 (fat_type
,
1809 get_identifier ("token"),
1810 prvoid_type_node
, &chain
);
1811 TREE_NO_WARNING (decl
) = 1;
1814 /* Finish off the type. */
1815 gfc_finish_type (fat_type
);
1816 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (fat_type
)) = 1;
1818 if (flag_coarray
== GFC_FCOARRAY_LIB
&& codimen
1819 && akind
== GFC_ARRAY_ALLOCATABLE
)
1820 gfc_array_descriptor_base_caf
[idx
] = fat_type
;
1822 gfc_array_descriptor_base
[idx
] = fat_type
;
1828 /* Build an array (descriptor) type with given bounds. */
1831 gfc_get_array_type_bounds (tree etype
, int dimen
, int codimen
, tree
* lbound
,
1832 tree
* ubound
, int packed
,
1833 enum gfc_array_kind akind
, bool restricted
)
1835 char name
[8 + 2*GFC_RANK_DIGITS
+ 1 + GFC_MAX_SYMBOL_LEN
];
1836 tree fat_type
, base_type
, arraytype
, lower
, upper
, stride
, tmp
, rtype
;
1837 const char *type_name
;
1840 base_type
= gfc_get_array_descriptor_base (dimen
, codimen
, restricted
, akind
);
1841 fat_type
= build_distinct_type_copy (base_type
);
1842 /* Make sure that nontarget and target array type have the same canonical
1843 type (and same stub decl for debug info). */
1844 base_type
= gfc_get_array_descriptor_base (dimen
, codimen
, false, akind
);
1845 TYPE_CANONICAL (fat_type
) = base_type
;
1846 TYPE_STUB_DECL (fat_type
) = TYPE_STUB_DECL (base_type
);
1848 tmp
= TYPE_NAME (etype
);
1849 if (tmp
&& TREE_CODE (tmp
) == TYPE_DECL
)
1850 tmp
= DECL_NAME (tmp
);
1852 type_name
= IDENTIFIER_POINTER (tmp
);
1854 type_name
= "unknown";
1855 sprintf (name
, "array" GFC_RANK_PRINTF_FORMAT
"_%.*s", dimen
+ codimen
,
1856 GFC_MAX_SYMBOL_LEN
, type_name
);
1857 TYPE_NAME (fat_type
) = get_identifier (name
);
1858 TYPE_NAMELESS (fat_type
) = 1;
1860 GFC_DESCRIPTOR_TYPE_P (fat_type
) = 1;
1861 TYPE_LANG_SPECIFIC (fat_type
) = ggc_cleared_alloc
<struct lang_type
> ();
1863 GFC_TYPE_ARRAY_RANK (fat_type
) = dimen
;
1864 GFC_TYPE_ARRAY_CORANK (fat_type
) = codimen
;
1865 GFC_TYPE_ARRAY_DTYPE (fat_type
) = NULL_TREE
;
1866 GFC_TYPE_ARRAY_AKIND (fat_type
) = akind
;
1868 /* Build an array descriptor record type. */
1870 stride
= gfc_index_one_node
;
1873 for (n
= 0; n
< dimen
+ codimen
; n
++)
1876 GFC_TYPE_ARRAY_STRIDE (fat_type
, n
) = stride
;
1883 if (lower
!= NULL_TREE
)
1885 if (INTEGER_CST_P (lower
))
1886 GFC_TYPE_ARRAY_LBOUND (fat_type
, n
) = lower
;
1891 if (codimen
&& n
== dimen
+ codimen
- 1)
1895 if (upper
!= NULL_TREE
)
1897 if (INTEGER_CST_P (upper
))
1898 GFC_TYPE_ARRAY_UBOUND (fat_type
, n
) = upper
;
1906 if (upper
!= NULL_TREE
&& lower
!= NULL_TREE
&& stride
!= NULL_TREE
)
1908 tmp
= fold_build2_loc (input_location
, MINUS_EXPR
,
1909 gfc_array_index_type
, upper
, lower
);
1910 tmp
= fold_build2_loc (input_location
, PLUS_EXPR
,
1911 gfc_array_index_type
, tmp
,
1912 gfc_index_one_node
);
1913 stride
= fold_build2_loc (input_location
, MULT_EXPR
,
1914 gfc_array_index_type
, tmp
, stride
);
1915 /* Check the folding worked. */
1916 gcc_assert (INTEGER_CST_P (stride
));
1921 GFC_TYPE_ARRAY_SIZE (fat_type
) = stride
;
1923 /* TODO: known offsets for descriptors. */
1924 GFC_TYPE_ARRAY_OFFSET (fat_type
) = NULL_TREE
;
1928 arraytype
= build_pointer_type (etype
);
1930 arraytype
= build_qualified_type (arraytype
, TYPE_QUAL_RESTRICT
);
1932 GFC_TYPE_ARRAY_DATAPTR_TYPE (fat_type
) = arraytype
;
1936 /* We define data as an array with the correct size if possible.
1937 Much better than doing pointer arithmetic. */
1939 rtype
= build_range_type (gfc_array_index_type
, gfc_index_zero_node
,
1940 int_const_binop (MINUS_EXPR
, stride
,
1941 build_int_cst (TREE_TYPE (stride
), 1)));
1943 rtype
= gfc_array_range_type
;
1944 arraytype
= build_array_type (etype
, rtype
);
1945 arraytype
= build_pointer_type (arraytype
);
1947 arraytype
= build_qualified_type (arraytype
, TYPE_QUAL_RESTRICT
);
1948 GFC_TYPE_ARRAY_DATAPTR_TYPE (fat_type
) = arraytype
;
1950 /* This will generate the base declarations we need to emit debug
1951 information for this type. FIXME: there must be a better way to
1952 avoid divergence between compilations with and without debug
1955 struct array_descr_info info
;
1956 gfc_get_array_descr_info (fat_type
, &info
);
1957 gfc_get_array_descr_info (build_pointer_type (fat_type
), &info
);
1963 /* Build a pointer type. This function is called from gfc_sym_type(). */
1966 gfc_build_pointer_type (gfc_symbol
* sym
, tree type
)
1968 /* Array pointer types aren't actually pointers. */
1969 if (sym
->attr
.dimension
)
1972 return build_pointer_type (type
);
1975 static tree
gfc_nonrestricted_type (tree t
);
1976 /* Given two record or union type nodes TO and FROM, ensure
1977 that all fields in FROM have a corresponding field in TO,
1978 their type being nonrestrict variants. This accepts a TO
1979 node that already has a prefix of the fields in FROM. */
1981 mirror_fields (tree to
, tree from
)
1986 /* Forward to the end of TOs fields. */
1987 fto
= TYPE_FIELDS (to
);
1988 ffrom
= TYPE_FIELDS (from
);
1989 chain
= &TYPE_FIELDS (to
);
1992 gcc_assert (ffrom
&& DECL_NAME (fto
) == DECL_NAME (ffrom
));
1993 chain
= &DECL_CHAIN (fto
);
1994 fto
= DECL_CHAIN (fto
);
1995 ffrom
= DECL_CHAIN (ffrom
);
1998 /* Now add all fields remaining in FROM (starting with ffrom). */
1999 for (; ffrom
; ffrom
= DECL_CHAIN (ffrom
))
2001 tree newfield
= copy_node (ffrom
);
2002 DECL_CONTEXT (newfield
) = to
;
2003 /* The store to DECL_CHAIN might seem redundant with the
2004 stores to *chain, but not clearing it here would mean
2005 leaving a chain into the old fields. If ever
2006 our called functions would look at them confusion
2008 DECL_CHAIN (newfield
) = NULL_TREE
;
2010 chain
= &DECL_CHAIN (newfield
);
2012 if (TREE_CODE (ffrom
) == FIELD_DECL
)
2014 tree elemtype
= gfc_nonrestricted_type (TREE_TYPE (ffrom
));
2015 TREE_TYPE (newfield
) = elemtype
;
2021 /* Given a type T, returns a different type of the same structure,
2022 except that all types it refers to (recursively) are always
2023 non-restrict qualified types. */
2025 gfc_nonrestricted_type (tree t
)
2029 /* If the type isn't laid out yet, don't copy it. If something
2030 needs it for real it should wait until the type got finished. */
2034 if (!TYPE_LANG_SPECIFIC (t
))
2035 TYPE_LANG_SPECIFIC (t
) = ggc_cleared_alloc
<struct lang_type
> ();
2036 /* If we're dealing with this very node already further up
2037 the call chain (recursion via pointers and struct members)
2038 we haven't yet determined if we really need a new type node.
2039 Assume we don't, return T itself. */
2040 if (TYPE_LANG_SPECIFIC (t
)->nonrestricted_type
== error_mark_node
)
2043 /* If we have calculated this all already, just return it. */
2044 if (TYPE_LANG_SPECIFIC (t
)->nonrestricted_type
)
2045 return TYPE_LANG_SPECIFIC (t
)->nonrestricted_type
;
2047 /* Mark this type. */
2048 TYPE_LANG_SPECIFIC (t
)->nonrestricted_type
= error_mark_node
;
2050 switch (TREE_CODE (t
))
2056 case REFERENCE_TYPE
:
2058 tree totype
= gfc_nonrestricted_type (TREE_TYPE (t
));
2059 if (totype
== TREE_TYPE (t
))
2061 else if (TREE_CODE (t
) == POINTER_TYPE
)
2062 ret
= build_pointer_type (totype
);
2064 ret
= build_reference_type (totype
);
2065 ret
= build_qualified_type (ret
,
2066 TYPE_QUALS (t
) & ~TYPE_QUAL_RESTRICT
);
2072 tree elemtype
= gfc_nonrestricted_type (TREE_TYPE (t
));
2073 if (elemtype
== TREE_TYPE (t
))
2077 ret
= build_variant_type_copy (t
);
2078 TREE_TYPE (ret
) = elemtype
;
2079 if (TYPE_LANG_SPECIFIC (t
)
2080 && GFC_TYPE_ARRAY_DATAPTR_TYPE (t
))
2082 tree dataptr_type
= GFC_TYPE_ARRAY_DATAPTR_TYPE (t
);
2083 dataptr_type
= gfc_nonrestricted_type (dataptr_type
);
2084 if (dataptr_type
!= GFC_TYPE_ARRAY_DATAPTR_TYPE (t
))
2086 TYPE_LANG_SPECIFIC (ret
)
2087 = ggc_cleared_alloc
<struct lang_type
> ();
2088 *TYPE_LANG_SPECIFIC (ret
) = *TYPE_LANG_SPECIFIC (t
);
2089 GFC_TYPE_ARRAY_DATAPTR_TYPE (ret
) = dataptr_type
;
2098 case QUAL_UNION_TYPE
:
2101 /* First determine if we need a new type at all.
2102 Careful, the two calls to gfc_nonrestricted_type per field
2103 might return different values. That happens exactly when
2104 one of the fields reaches back to this very record type
2105 (via pointers). The first calls will assume that we don't
2106 need to copy T (see the error_mark_node marking). If there
2107 are any reasons for copying T apart from having to copy T,
2108 we'll indeed copy it, and the second calls to
2109 gfc_nonrestricted_type will use that new node if they
2111 for (field
= TYPE_FIELDS (t
); field
; field
= DECL_CHAIN (field
))
2112 if (TREE_CODE (field
) == FIELD_DECL
)
2114 tree elemtype
= gfc_nonrestricted_type (TREE_TYPE (field
));
2115 if (elemtype
!= TREE_TYPE (field
))
2120 ret
= build_variant_type_copy (t
);
2121 TYPE_FIELDS (ret
) = NULL_TREE
;
2123 /* Here we make sure that as soon as we know we have to copy
2124 T, that also fields reaching back to us will use the new
2125 copy. It's okay if that copy still contains the old fields,
2126 we won't look at them. */
2127 TYPE_LANG_SPECIFIC (t
)->nonrestricted_type
= ret
;
2128 mirror_fields (ret
, t
);
2133 TYPE_LANG_SPECIFIC (t
)->nonrestricted_type
= ret
;
2138 /* Return the type for a symbol. Special handling is required for character
2139 types to get the correct level of indirection.
2140 For functions return the return type.
2141 For subroutines return void_type_node.
2142 Calling this multiple times for the same symbol should be avoided,
2143 especially for character and array types. */
2146 gfc_sym_type (gfc_symbol
* sym
)
2152 /* Procedure Pointers inside COMMON blocks. */
2153 if (sym
->attr
.proc_pointer
&& sym
->attr
.in_common
)
2155 /* Unset proc_pointer as gfc_get_function_type calls gfc_sym_type. */
2156 sym
->attr
.proc_pointer
= 0;
2157 type
= build_pointer_type (gfc_get_function_type (sym
));
2158 sym
->attr
.proc_pointer
= 1;
2162 if (sym
->attr
.flavor
== FL_PROCEDURE
&& !sym
->attr
.function
)
2163 return void_type_node
;
2165 /* In the case of a function the fake result variable may have a
2166 type different from the function type, so don't return early in
2168 if (sym
->backend_decl
&& !sym
->attr
.function
)
2169 return TREE_TYPE (sym
->backend_decl
);
2171 if (sym
->ts
.type
== BT_CHARACTER
2172 && ((sym
->attr
.function
&& sym
->attr
.is_bind_c
)
2173 || (sym
->attr
.result
2174 && sym
->ns
->proc_name
2175 && sym
->ns
->proc_name
->attr
.is_bind_c
)
2176 || (sym
->ts
.deferred
&& (!sym
->ts
.u
.cl
2177 || !sym
->ts
.u
.cl
->backend_decl
))))
2178 type
= gfc_character1_type_node
;
2180 type
= gfc_typenode_for_spec (&sym
->ts
);
2182 if (sym
->attr
.dummy
&& !sym
->attr
.function
&& !sym
->attr
.value
)
2187 restricted
= !sym
->attr
.target
&& !sym
->attr
.pointer
2188 && !sym
->attr
.proc_pointer
&& !sym
->attr
.cray_pointee
;
2190 type
= gfc_nonrestricted_type (type
);
2192 if (sym
->attr
.dimension
|| sym
->attr
.codimension
)
2194 if (gfc_is_nodesc_array (sym
))
2196 /* If this is a character argument of unknown length, just use the
2198 if (sym
->ts
.type
!= BT_CHARACTER
2199 || !(sym
->attr
.dummy
|| sym
->attr
.function
)
2200 || sym
->ts
.u
.cl
->backend_decl
)
2202 type
= gfc_get_nodesc_array_type (type
, sym
->as
,
2211 enum gfc_array_kind akind
= GFC_ARRAY_UNKNOWN
;
2212 if (sym
->attr
.pointer
)
2213 akind
= sym
->attr
.contiguous
? GFC_ARRAY_POINTER_CONT
2214 : GFC_ARRAY_POINTER
;
2215 else if (sym
->attr
.allocatable
)
2216 akind
= GFC_ARRAY_ALLOCATABLE
;
2217 type
= gfc_build_array_type (type
, sym
->as
, akind
, restricted
,
2218 sym
->attr
.contiguous
);
2223 if (sym
->attr
.allocatable
|| sym
->attr
.pointer
2224 || gfc_is_associate_pointer (sym
))
2225 type
= gfc_build_pointer_type (sym
, type
);
2228 /* We currently pass all parameters by reference.
2229 See f95_get_function_decl. For dummy function parameters return the
2233 /* We must use pointer types for potentially absent variables. The
2234 optimizers assume a reference type argument is never NULL. */
2235 if (sym
->attr
.optional
2236 || (sym
->ns
->proc_name
&& sym
->ns
->proc_name
->attr
.entry_master
))
2237 type
= build_pointer_type (type
);
2240 type
= build_reference_type (type
);
2242 type
= build_qualified_type (type
, TYPE_QUAL_RESTRICT
);
2249 /* Layout and output debug info for a record type. */
2252 gfc_finish_type (tree type
)
2256 decl
= build_decl (input_location
,
2257 TYPE_DECL
, NULL_TREE
, type
);
2258 TYPE_STUB_DECL (type
) = decl
;
2260 rest_of_type_compilation (type
, 1);
2261 rest_of_decl_compilation (decl
, 1, 0);
2264 /* Add a field of given NAME and TYPE to the context of a UNION_TYPE
2265 or RECORD_TYPE pointed to by CONTEXT. The new field is chained
2266 to the end of the field list pointed to by *CHAIN.
2268 Returns a pointer to the new field. */
2271 gfc_add_field_to_struct_1 (tree context
, tree name
, tree type
, tree
**chain
)
2273 tree decl
= build_decl (input_location
, FIELD_DECL
, name
, type
);
2275 DECL_CONTEXT (decl
) = context
;
2276 DECL_CHAIN (decl
) = NULL_TREE
;
2277 if (TYPE_FIELDS (context
) == NULL_TREE
)
2278 TYPE_FIELDS (context
) = decl
;
2283 *chain
= &DECL_CHAIN (decl
);
2289 /* Like `gfc_add_field_to_struct_1', but adds alignment
2293 gfc_add_field_to_struct (tree context
, tree name
, tree type
, tree
**chain
)
2295 tree decl
= gfc_add_field_to_struct_1 (context
, name
, type
, chain
);
2297 DECL_INITIAL (decl
) = 0;
2298 DECL_ALIGN (decl
) = 0;
2299 DECL_USER_ALIGN (decl
) = 0;
2305 /* Copy the backend_decl and component backend_decls if
2306 the two derived type symbols are "equal", as described
2307 in 4.4.2 and resolved by gfc_compare_derived_types. */
2310 gfc_copy_dt_decls_ifequal (gfc_symbol
*from
, gfc_symbol
*to
,
2313 gfc_component
*to_cm
;
2314 gfc_component
*from_cm
;
2319 if (from
->backend_decl
== NULL
2320 || !gfc_compare_derived_types (from
, to
))
2323 to
->backend_decl
= from
->backend_decl
;
2325 to_cm
= to
->components
;
2326 from_cm
= from
->components
;
2328 /* Copy the component declarations. If a component is itself
2329 a derived type, we need a copy of its component declarations.
2330 This is done by recursing into gfc_get_derived_type and
2331 ensures that the component's component declarations have
2332 been built. If it is a character, we need the character
2334 for (; to_cm
; to_cm
= to_cm
->next
, from_cm
= from_cm
->next
)
2336 to_cm
->backend_decl
= from_cm
->backend_decl
;
2337 if (from_cm
->ts
.type
== BT_DERIVED
2338 && (!from_cm
->attr
.pointer
|| from_gsym
))
2339 gfc_get_derived_type (to_cm
->ts
.u
.derived
);
2340 else if (from_cm
->ts
.type
== BT_CLASS
2341 && (!CLASS_DATA (from_cm
)->attr
.class_pointer
|| from_gsym
))
2342 gfc_get_derived_type (to_cm
->ts
.u
.derived
);
2343 else if (from_cm
->ts
.type
== BT_CHARACTER
)
2344 to_cm
->ts
.u
.cl
->backend_decl
= from_cm
->ts
.u
.cl
->backend_decl
;
2351 /* Build a tree node for a procedure pointer component. */
2354 gfc_get_ppc_type (gfc_component
* c
)
2358 /* Explicit interface. */
2359 if (c
->attr
.if_source
!= IFSRC_UNKNOWN
&& c
->ts
.interface
)
2360 return build_pointer_type (gfc_get_function_type (c
->ts
.interface
));
2362 /* Implicit interface (only return value may be known). */
2363 if (c
->attr
.function
&& !c
->attr
.dimension
&& c
->ts
.type
!= BT_CHARACTER
)
2364 t
= gfc_typenode_for_spec (&c
->ts
);
2368 return build_pointer_type (build_function_type_list (t
, NULL_TREE
));
2372 /* Build a tree node for a derived type. If there are equal
2373 derived types, with different local names, these are built
2374 at the same time. If an equal derived type has been built
2375 in a parent namespace, this is used. */
2378 gfc_get_derived_type (gfc_symbol
* derived
)
2380 tree typenode
= NULL
, field
= NULL
, field_type
= NULL
;
2381 tree canonical
= NULL_TREE
;
2383 bool got_canonical
= false;
2384 bool unlimited_entity
= false;
2389 if (derived
->attr
.unlimited_polymorphic
2390 || (flag_coarray
== GFC_FCOARRAY_LIB
2391 && derived
->from_intmod
== INTMOD_ISO_FORTRAN_ENV
2392 && derived
->intmod_sym_id
== ISOFORTRAN_LOCK_TYPE
))
2393 return ptr_type_node
;
2395 if (derived
&& derived
->attr
.flavor
== FL_PROCEDURE
2396 && derived
->attr
.generic
)
2397 derived
= gfc_find_dt_in_generic (derived
);
2399 /* See if it's one of the iso_c_binding derived types. */
2400 if (derived
->attr
.is_iso_c
== 1 || derived
->ts
.f90_type
== BT_VOID
)
2402 if (derived
->backend_decl
)
2403 return derived
->backend_decl
;
2405 if (derived
->intmod_sym_id
== ISOCBINDING_PTR
)
2406 derived
->backend_decl
= ptr_type_node
;
2408 derived
->backend_decl
= pfunc_type_node
;
2410 derived
->ts
.kind
= gfc_index_integer_kind
;
2411 derived
->ts
.type
= BT_INTEGER
;
2412 /* Set the f90_type to BT_VOID as a way to recognize something of type
2413 BT_INTEGER that needs to fit a void * for the purpose of the
2414 iso_c_binding derived types. */
2415 derived
->ts
.f90_type
= BT_VOID
;
2417 return derived
->backend_decl
;
2420 /* If use associated, use the module type for this one. */
2421 if (derived
->backend_decl
== NULL
2422 && derived
->attr
.use_assoc
2424 && gfc_get_module_backend_decl (derived
))
2425 goto copy_derived_types
;
2427 /* The derived types from an earlier namespace can be used as the
2429 if (derived
->backend_decl
== NULL
&& !derived
->attr
.use_assoc
2430 && gfc_global_ns_list
)
2432 for (ns
= gfc_global_ns_list
;
2433 ns
->translated
&& !got_canonical
;
2436 dt
= ns
->derived_types
;
2437 for (; dt
&& !canonical
; dt
= dt
->next
)
2439 gfc_copy_dt_decls_ifequal (dt
->derived
, derived
, true);
2440 if (derived
->backend_decl
)
2441 got_canonical
= true;
2446 /* Store up the canonical type to be added to this one. */
2449 if (TYPE_CANONICAL (derived
->backend_decl
))
2450 canonical
= TYPE_CANONICAL (derived
->backend_decl
);
2452 canonical
= derived
->backend_decl
;
2454 derived
->backend_decl
= NULL_TREE
;
2457 /* derived->backend_decl != 0 means we saw it before, but its
2458 components' backend_decl may have not been built. */
2459 if (derived
->backend_decl
)
2461 /* Its components' backend_decl have been built or we are
2462 seeing recursion through the formal arglist of a procedure
2463 pointer component. */
2464 if (TYPE_FIELDS (derived
->backend_decl
))
2465 return derived
->backend_decl
;
2466 else if (derived
->attr
.abstract
2467 && derived
->attr
.proc_pointer_comp
)
2469 /* If an abstract derived type with procedure pointer
2470 components has no other type of component, return the
2471 backend_decl. Otherwise build the components if any of the
2472 non-procedure pointer components have no backend_decl. */
2473 for (c
= derived
->components
; c
; c
= c
->next
)
2475 if (!c
->attr
.proc_pointer
&& c
->backend_decl
== NULL
)
2477 else if (c
->next
== NULL
)
2478 return derived
->backend_decl
;
2480 typenode
= derived
->backend_decl
;
2483 typenode
= derived
->backend_decl
;
2487 /* We see this derived type first time, so build the type node. */
2488 typenode
= make_node (RECORD_TYPE
);
2489 TYPE_NAME (typenode
) = get_identifier (derived
->name
);
2490 TYPE_PACKED (typenode
) = flag_pack_derived
;
2491 derived
->backend_decl
= typenode
;
2494 if (derived
->components
2495 && derived
->components
->ts
.type
== BT_DERIVED
2496 && strcmp (derived
->components
->name
, "_data") == 0
2497 && derived
->components
->ts
.u
.derived
->attr
.unlimited_polymorphic
)
2498 unlimited_entity
= true;
2500 /* Go through the derived type components, building them as
2501 necessary. The reason for doing this now is that it is
2502 possible to recurse back to this derived type through a
2503 pointer component (PR24092). If this happens, the fields
2504 will be built and so we can return the type. */
2505 for (c
= derived
->components
; c
; c
= c
->next
)
2507 if (c
->ts
.type
!= BT_DERIVED
&& c
->ts
.type
!= BT_CLASS
)
2510 if ((!c
->attr
.pointer
&& !c
->attr
.proc_pointer
)
2511 || c
->ts
.u
.derived
->backend_decl
== NULL
)
2512 c
->ts
.u
.derived
->backend_decl
= gfc_get_derived_type (c
->ts
.u
.derived
);
2514 if (c
->ts
.u
.derived
->attr
.is_iso_c
)
2516 /* Need to copy the modified ts from the derived type. The
2517 typespec was modified because C_PTR/C_FUNPTR are translated
2518 into (void *) from derived types. */
2519 c
->ts
.type
= c
->ts
.u
.derived
->ts
.type
;
2520 c
->ts
.kind
= c
->ts
.u
.derived
->ts
.kind
;
2521 c
->ts
.f90_type
= c
->ts
.u
.derived
->ts
.f90_type
;
2524 c
->initializer
->ts
.type
= c
->ts
.type
;
2525 c
->initializer
->ts
.kind
= c
->ts
.kind
;
2526 c
->initializer
->ts
.f90_type
= c
->ts
.f90_type
;
2527 c
->initializer
->expr_type
= EXPR_NULL
;
2532 if (TYPE_FIELDS (derived
->backend_decl
))
2533 return derived
->backend_decl
;
2535 /* Build the type member list. Install the newly created RECORD_TYPE
2536 node as DECL_CONTEXT of each FIELD_DECL. */
2537 for (c
= derived
->components
; c
; c
= c
->next
)
2539 if (c
->attr
.proc_pointer
)
2540 field_type
= gfc_get_ppc_type (c
);
2541 else if (c
->ts
.type
== BT_DERIVED
|| c
->ts
.type
== BT_CLASS
)
2542 field_type
= c
->ts
.u
.derived
->backend_decl
;
2545 if (c
->ts
.type
== BT_CHARACTER
&& !c
->ts
.deferred
)
2547 /* Evaluate the string length. */
2548 gfc_conv_const_charlen (c
->ts
.u
.cl
);
2549 gcc_assert (c
->ts
.u
.cl
->backend_decl
);
2551 else if (c
->ts
.type
== BT_CHARACTER
)
2552 c
->ts
.u
.cl
->backend_decl
2553 = build_int_cst (gfc_charlen_type_node
, 0);
2555 field_type
= gfc_typenode_for_spec (&c
->ts
);
2558 /* This returns an array descriptor type. Initialization may be
2560 if ((c
->attr
.dimension
|| c
->attr
.codimension
) && !c
->attr
.proc_pointer
)
2562 if (c
->attr
.pointer
|| c
->attr
.allocatable
)
2564 enum gfc_array_kind akind
;
2565 if (c
->attr
.pointer
)
2566 akind
= c
->attr
.contiguous
? GFC_ARRAY_POINTER_CONT
2567 : GFC_ARRAY_POINTER
;
2569 akind
= GFC_ARRAY_ALLOCATABLE
;
2570 /* Pointers to arrays aren't actually pointer types. The
2571 descriptors are separate, but the data is common. */
2572 field_type
= gfc_build_array_type (field_type
, c
->as
, akind
,
2574 && !c
->attr
.pointer
,
2575 c
->attr
.contiguous
);
2578 field_type
= gfc_get_nodesc_array_type (field_type
, c
->as
,
2582 else if ((c
->attr
.pointer
|| c
->attr
.allocatable
)
2583 && !c
->attr
.proc_pointer
2584 && !(unlimited_entity
&& c
== derived
->components
))
2585 field_type
= build_pointer_type (field_type
);
2587 if (c
->attr
.pointer
)
2588 field_type
= gfc_nonrestricted_type (field_type
);
2590 /* vtype fields can point to different types to the base type. */
2591 if (c
->ts
.type
== BT_DERIVED
2592 && c
->ts
.u
.derived
&& c
->ts
.u
.derived
->attr
.vtype
)
2593 field_type
= build_pointer_type_for_mode (TREE_TYPE (field_type
),
2596 /* Ensure that the CLASS language specific flag is set. */
2597 if (c
->ts
.type
== BT_CLASS
)
2599 if (POINTER_TYPE_P (field_type
))
2600 GFC_CLASS_TYPE_P (TREE_TYPE (field_type
)) = 1;
2602 GFC_CLASS_TYPE_P (field_type
) = 1;
2605 field
= gfc_add_field_to_struct (typenode
,
2606 get_identifier (c
->name
),
2607 field_type
, &chain
);
2609 gfc_set_decl_location (field
, &c
->loc
);
2610 else if (derived
->declared_at
.lb
)
2611 gfc_set_decl_location (field
, &derived
->declared_at
);
2613 gfc_finish_decl_attrs (field
, &c
->attr
);
2615 DECL_PACKED (field
) |= TYPE_PACKED (typenode
);
2618 if (!c
->backend_decl
)
2619 c
->backend_decl
= field
;
2622 /* Now lay out the derived type, including the fields. */
2624 TYPE_CANONICAL (typenode
) = canonical
;
2626 gfc_finish_type (typenode
);
2627 gfc_set_decl_location (TYPE_STUB_DECL (typenode
), &derived
->declared_at
);
2628 if (derived
->module
&& derived
->ns
->proc_name
2629 && derived
->ns
->proc_name
->attr
.flavor
== FL_MODULE
)
2631 if (derived
->ns
->proc_name
->backend_decl
2632 && TREE_CODE (derived
->ns
->proc_name
->backend_decl
)
2635 TYPE_CONTEXT (typenode
) = derived
->ns
->proc_name
->backend_decl
;
2636 DECL_CONTEXT (TYPE_STUB_DECL (typenode
))
2637 = derived
->ns
->proc_name
->backend_decl
;
2641 derived
->backend_decl
= typenode
;
2645 for (dt
= gfc_derived_types
; dt
; dt
= dt
->next
)
2646 gfc_copy_dt_decls_ifequal (derived
, dt
->derived
, false);
2648 return derived
->backend_decl
;
2653 gfc_return_by_reference (gfc_symbol
* sym
)
2655 if (!sym
->attr
.function
)
2658 if (sym
->attr
.dimension
)
2661 if (sym
->ts
.type
== BT_CHARACTER
2662 && !sym
->attr
.is_bind_c
2663 && (!sym
->attr
.result
2664 || !sym
->ns
->proc_name
2665 || !sym
->ns
->proc_name
->attr
.is_bind_c
))
2668 /* Possibly return complex numbers by reference for g77 compatibility.
2669 We don't do this for calls to intrinsics (as the library uses the
2670 -fno-f2c calling convention), nor for calls to functions which always
2671 require an explicit interface, as no compatibility problems can
2673 if (flag_f2c
&& sym
->ts
.type
== BT_COMPLEX
2674 && !sym
->attr
.intrinsic
&& !sym
->attr
.always_explicit
)
2681 gfc_get_mixed_entry_union (gfc_namespace
*ns
)
2685 char name
[GFC_MAX_SYMBOL_LEN
+ 1];
2686 gfc_entry_list
*el
, *el2
;
2688 gcc_assert (ns
->proc_name
->attr
.mixed_entry_master
);
2689 gcc_assert (memcmp (ns
->proc_name
->name
, "master.", 7) == 0);
2691 snprintf (name
, GFC_MAX_SYMBOL_LEN
, "munion.%s", ns
->proc_name
->name
+ 7);
2693 /* Build the type node. */
2694 type
= make_node (UNION_TYPE
);
2696 TYPE_NAME (type
) = get_identifier (name
);
2698 for (el
= ns
->entries
; el
; el
= el
->next
)
2700 /* Search for duplicates. */
2701 for (el2
= ns
->entries
; el2
!= el
; el2
= el2
->next
)
2702 if (el2
->sym
->result
== el
->sym
->result
)
2706 gfc_add_field_to_struct_1 (type
,
2707 get_identifier (el
->sym
->result
->name
),
2708 gfc_sym_type (el
->sym
->result
), &chain
);
2711 /* Finish off the type. */
2712 gfc_finish_type (type
);
2713 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type
)) = 1;
2717 /* Create a "fn spec" based on the formal arguments;
2718 cf. create_function_arglist. */
2721 create_fn_spec (gfc_symbol
*sym
, tree fntype
)
2725 gfc_formal_arglist
*f
;
2728 memset (&spec
, 0, sizeof (spec
));
2732 if (sym
->attr
.entry_master
)
2733 spec
[spec_len
++] = 'R';
2734 if (gfc_return_by_reference (sym
))
2736 gfc_symbol
*result
= sym
->result
? sym
->result
: sym
;
2738 if (result
->attr
.pointer
|| sym
->attr
.proc_pointer
)
2739 spec
[spec_len
++] = '.';
2741 spec
[spec_len
++] = 'w';
2742 if (sym
->ts
.type
== BT_CHARACTER
)
2743 spec
[spec_len
++] = 'R';
2746 for (f
= gfc_sym_get_dummy_args (sym
); f
; f
= f
->next
)
2747 if (spec_len
< sizeof (spec
))
2749 if (!f
->sym
|| f
->sym
->attr
.pointer
|| f
->sym
->attr
.target
2750 || f
->sym
->attr
.external
|| f
->sym
->attr
.cray_pointer
2751 || (f
->sym
->ts
.type
== BT_DERIVED
2752 && (f
->sym
->ts
.u
.derived
->attr
.proc_pointer_comp
2753 || f
->sym
->ts
.u
.derived
->attr
.pointer_comp
))
2754 || (f
->sym
->ts
.type
== BT_CLASS
2755 && (CLASS_DATA (f
->sym
)->ts
.u
.derived
->attr
.proc_pointer_comp
2756 || CLASS_DATA (f
->sym
)->ts
.u
.derived
->attr
.pointer_comp
)))
2757 spec
[spec_len
++] = '.';
2758 else if (f
->sym
->attr
.intent
== INTENT_IN
)
2759 spec
[spec_len
++] = 'r';
2761 spec
[spec_len
++] = 'w';
2764 tmp
= build_tree_list (NULL_TREE
, build_string (spec_len
, spec
));
2765 tmp
= tree_cons (get_identifier ("fn spec"), tmp
, TYPE_ATTRIBUTES (fntype
));
2766 return build_type_attribute_variant (fntype
, tmp
);
2771 gfc_get_function_type (gfc_symbol
* sym
)
2774 vec
<tree
, va_gc
> *typelist
= NULL
;
2775 gfc_formal_arglist
*f
;
2777 int alternate_return
= 0;
2778 bool is_varargs
= true;
2780 /* Make sure this symbol is a function, a subroutine or the main
2782 gcc_assert (sym
->attr
.flavor
== FL_PROCEDURE
2783 || sym
->attr
.flavor
== FL_PROGRAM
);
2785 /* To avoid recursing infinitely on recursive types, we use error_mark_node
2786 so that they can be detected here and handled further down. */
2787 if (sym
->backend_decl
== NULL
)
2788 sym
->backend_decl
= error_mark_node
;
2789 else if (sym
->backend_decl
== error_mark_node
)
2790 goto arg_type_list_done
;
2791 else if (sym
->attr
.proc_pointer
)
2792 return TREE_TYPE (TREE_TYPE (sym
->backend_decl
));
2794 return TREE_TYPE (sym
->backend_decl
);
2796 if (sym
->attr
.entry_master
)
2797 /* Additional parameter for selecting an entry point. */
2798 vec_safe_push (typelist
, gfc_array_index_type
);
2805 if (arg
->ts
.type
== BT_CHARACTER
)
2806 gfc_conv_const_charlen (arg
->ts
.u
.cl
);
2808 /* Some functions we use an extra parameter for the return value. */
2809 if (gfc_return_by_reference (sym
))
2811 type
= gfc_sym_type (arg
);
2812 if (arg
->ts
.type
== BT_COMPLEX
2813 || arg
->attr
.dimension
2814 || arg
->ts
.type
== BT_CHARACTER
)
2815 type
= build_reference_type (type
);
2817 vec_safe_push (typelist
, type
);
2818 if (arg
->ts
.type
== BT_CHARACTER
)
2820 if (!arg
->ts
.deferred
)
2821 /* Transfer by value. */
2822 vec_safe_push (typelist
, gfc_charlen_type_node
);
2824 /* Deferred character lengths are transferred by reference
2825 so that the value can be returned. */
2826 vec_safe_push (typelist
, build_pointer_type(gfc_charlen_type_node
));
2830 /* Build the argument types for the function. */
2831 for (f
= gfc_sym_get_dummy_args (sym
); f
; f
= f
->next
)
2836 /* Evaluate constant character lengths here so that they can be
2837 included in the type. */
2838 if (arg
->ts
.type
== BT_CHARACTER
)
2839 gfc_conv_const_charlen (arg
->ts
.u
.cl
);
2841 if (arg
->attr
.flavor
== FL_PROCEDURE
)
2843 type
= gfc_get_function_type (arg
);
2844 type
= build_pointer_type (type
);
2847 type
= gfc_sym_type (arg
);
2849 /* Parameter Passing Convention
2851 We currently pass all parameters by reference.
2852 Parameters with INTENT(IN) could be passed by value.
2853 The problem arises if a function is called via an implicit
2854 prototype. In this situation the INTENT is not known.
2855 For this reason all parameters to global functions must be
2856 passed by reference. Passing by value would potentially
2857 generate bad code. Worse there would be no way of telling that
2858 this code was bad, except that it would give incorrect results.
2860 Contained procedures could pass by value as these are never
2861 used without an explicit interface, and cannot be passed as
2862 actual parameters for a dummy procedure. */
2864 vec_safe_push (typelist
, type
);
2868 if (sym
->attr
.subroutine
)
2869 alternate_return
= 1;
2873 /* Add hidden string length parameters. */
2874 for (f
= gfc_sym_get_dummy_args (sym
); f
; f
= f
->next
)
2877 if (arg
&& arg
->ts
.type
== BT_CHARACTER
&& !sym
->attr
.is_bind_c
)
2879 if (!arg
->ts
.deferred
)
2880 /* Transfer by value. */
2881 type
= gfc_charlen_type_node
;
2883 /* Deferred character lengths are transferred by reference
2884 so that the value can be returned. */
2885 type
= build_pointer_type (gfc_charlen_type_node
);
2887 vec_safe_push (typelist
, type
);
2891 if (!vec_safe_is_empty (typelist
)
2892 || sym
->attr
.is_main_program
2893 || sym
->attr
.if_source
!= IFSRC_UNKNOWN
)
2896 if (sym
->backend_decl
== error_mark_node
)
2897 sym
->backend_decl
= NULL_TREE
;
2901 if (alternate_return
)
2902 type
= integer_type_node
;
2903 else if (!sym
->attr
.function
|| gfc_return_by_reference (sym
))
2904 type
= void_type_node
;
2905 else if (sym
->attr
.mixed_entry_master
)
2906 type
= gfc_get_mixed_entry_union (sym
->ns
);
2907 else if (flag_f2c
&& sym
->ts
.type
== BT_REAL
2908 && sym
->ts
.kind
== gfc_default_real_kind
2909 && !sym
->attr
.always_explicit
)
2911 /* Special case: f2c calling conventions require that (scalar)
2912 default REAL functions return the C type double instead. f2c
2913 compatibility is only an issue with functions that don't
2914 require an explicit interface, as only these could be
2915 implemented in Fortran 77. */
2916 sym
->ts
.kind
= gfc_default_double_kind
;
2917 type
= gfc_typenode_for_spec (&sym
->ts
);
2918 sym
->ts
.kind
= gfc_default_real_kind
;
2920 else if (sym
->result
&& sym
->result
->attr
.proc_pointer
)
2921 /* Procedure pointer return values. */
2923 if (sym
->result
->attr
.result
&& strcmp (sym
->name
,"ppr@") != 0)
2925 /* Unset proc_pointer as gfc_get_function_type
2926 is called recursively. */
2927 sym
->result
->attr
.proc_pointer
= 0;
2928 type
= build_pointer_type (gfc_get_function_type (sym
->result
));
2929 sym
->result
->attr
.proc_pointer
= 1;
2932 type
= gfc_sym_type (sym
->result
);
2935 type
= gfc_sym_type (sym
);
2938 type
= build_varargs_function_type_vec (type
, typelist
);
2940 type
= build_function_type_vec (type
, typelist
);
2941 type
= create_fn_spec (sym
, type
);
2946 /* Language hooks for middle-end access to type nodes. */
2948 /* Return an integer type with BITS bits of precision,
2949 that is unsigned if UNSIGNEDP is nonzero, otherwise signed. */
2952 gfc_type_for_size (unsigned bits
, int unsignedp
)
2957 for (i
= 0; i
<= MAX_INT_KINDS
; ++i
)
2959 tree type
= gfc_integer_types
[i
];
2960 if (type
&& bits
== TYPE_PRECISION (type
))
2964 /* Handle TImode as a special case because it is used by some backends
2965 (e.g. ARM) even though it is not available for normal use. */
2966 #if HOST_BITS_PER_WIDE_INT >= 64
2967 if (bits
== TYPE_PRECISION (intTI_type_node
))
2968 return intTI_type_node
;
2971 if (bits
<= TYPE_PRECISION (intQI_type_node
))
2972 return intQI_type_node
;
2973 if (bits
<= TYPE_PRECISION (intHI_type_node
))
2974 return intHI_type_node
;
2975 if (bits
<= TYPE_PRECISION (intSI_type_node
))
2976 return intSI_type_node
;
2977 if (bits
<= TYPE_PRECISION (intDI_type_node
))
2978 return intDI_type_node
;
2979 if (bits
<= TYPE_PRECISION (intTI_type_node
))
2980 return intTI_type_node
;
2984 if (bits
<= TYPE_PRECISION (unsigned_intQI_type_node
))
2985 return unsigned_intQI_type_node
;
2986 if (bits
<= TYPE_PRECISION (unsigned_intHI_type_node
))
2987 return unsigned_intHI_type_node
;
2988 if (bits
<= TYPE_PRECISION (unsigned_intSI_type_node
))
2989 return unsigned_intSI_type_node
;
2990 if (bits
<= TYPE_PRECISION (unsigned_intDI_type_node
))
2991 return unsigned_intDI_type_node
;
2992 if (bits
<= TYPE_PRECISION (unsigned_intTI_type_node
))
2993 return unsigned_intTI_type_node
;
2999 /* Return a data type that has machine mode MODE. If the mode is an
3000 integer, then UNSIGNEDP selects between signed and unsigned types. */
3003 gfc_type_for_mode (machine_mode mode
, int unsignedp
)
3008 if (GET_MODE_CLASS (mode
) == MODE_FLOAT
)
3009 base
= gfc_real_types
;
3010 else if (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
)
3011 base
= gfc_complex_types
;
3012 else if (SCALAR_INT_MODE_P (mode
))
3014 tree type
= gfc_type_for_size (GET_MODE_PRECISION (mode
), unsignedp
);
3015 return type
!= NULL_TREE
&& mode
== TYPE_MODE (type
) ? type
: NULL_TREE
;
3017 else if (VECTOR_MODE_P (mode
))
3019 machine_mode inner_mode
= GET_MODE_INNER (mode
);
3020 tree inner_type
= gfc_type_for_mode (inner_mode
, unsignedp
);
3021 if (inner_type
!= NULL_TREE
)
3022 return build_vector_type_for_mode (inner_type
, mode
);
3028 for (i
= 0; i
<= MAX_REAL_KINDS
; ++i
)
3030 tree type
= base
[i
];
3031 if (type
&& mode
== TYPE_MODE (type
))
3038 /* Return TRUE if TYPE is a type with a hidden descriptor, fill in INFO
3042 gfc_get_array_descr_info (const_tree type
, struct array_descr_info
*info
)
3045 bool indirect
= false;
3046 tree etype
, ptype
, field
, t
, base_decl
;
3047 tree data_off
, dim_off
, dim_size
, elem_size
;
3048 tree lower_suboff
, upper_suboff
, stride_suboff
;
3050 if (! GFC_DESCRIPTOR_TYPE_P (type
))
3052 if (! POINTER_TYPE_P (type
))
3054 type
= TREE_TYPE (type
);
3055 if (! GFC_DESCRIPTOR_TYPE_P (type
))
3060 rank
= GFC_TYPE_ARRAY_RANK (type
);
3061 if (rank
>= (int) (sizeof (info
->dimen
) / sizeof (info
->dimen
[0])))
3064 etype
= GFC_TYPE_ARRAY_DATAPTR_TYPE (type
);
3065 gcc_assert (POINTER_TYPE_P (etype
));
3066 etype
= TREE_TYPE (etype
);
3068 /* If the type is not a scalar coarray. */
3069 if (TREE_CODE (etype
) == ARRAY_TYPE
)
3070 etype
= TREE_TYPE (etype
);
3072 /* Can't handle variable sized elements yet. */
3073 if (int_size_in_bytes (etype
) <= 0)
3075 /* Nor non-constant lower bounds in assumed shape arrays. */
3076 if (GFC_TYPE_ARRAY_AKIND (type
) == GFC_ARRAY_ASSUMED_SHAPE
3077 || GFC_TYPE_ARRAY_AKIND (type
) == GFC_ARRAY_ASSUMED_SHAPE_CONT
)
3079 for (dim
= 0; dim
< rank
; dim
++)
3080 if (GFC_TYPE_ARRAY_LBOUND (type
, dim
) == NULL_TREE
3081 || TREE_CODE (GFC_TYPE_ARRAY_LBOUND (type
, dim
)) != INTEGER_CST
)
3085 memset (info
, '\0', sizeof (*info
));
3086 info
->ndimensions
= rank
;
3087 info
->ordering
= array_descr_ordering_column_major
;
3088 info
->element_type
= etype
;
3089 ptype
= build_pointer_type (gfc_array_index_type
);
3090 base_decl
= GFC_TYPE_ARRAY_BASE_DECL (type
, indirect
);
3093 base_decl
= make_node (DEBUG_EXPR_DECL
);
3094 DECL_ARTIFICIAL (base_decl
) = 1;
3095 TREE_TYPE (base_decl
) = indirect
? build_pointer_type (ptype
) : ptype
;
3096 DECL_MODE (base_decl
) = TYPE_MODE (TREE_TYPE (base_decl
));
3097 GFC_TYPE_ARRAY_BASE_DECL (type
, indirect
) = base_decl
;
3099 info
->base_decl
= base_decl
;
3101 base_decl
= build1 (INDIRECT_REF
, ptype
, base_decl
);
3103 if (GFC_TYPE_ARRAY_SPAN (type
))
3104 elem_size
= GFC_TYPE_ARRAY_SPAN (type
);
3106 elem_size
= fold_convert (gfc_array_index_type
, TYPE_SIZE_UNIT (etype
));
3107 field
= TYPE_FIELDS (TYPE_MAIN_VARIANT (type
));
3108 data_off
= byte_position (field
);
3109 field
= DECL_CHAIN (field
);
3110 field
= DECL_CHAIN (field
);
3111 field
= DECL_CHAIN (field
);
3112 dim_off
= byte_position (field
);
3113 dim_size
= TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (field
)));
3114 field
= TYPE_FIELDS (TREE_TYPE (TREE_TYPE (field
)));
3115 stride_suboff
= byte_position (field
);
3116 field
= DECL_CHAIN (field
);
3117 lower_suboff
= byte_position (field
);
3118 field
= DECL_CHAIN (field
);
3119 upper_suboff
= byte_position (field
);
3122 if (!integer_zerop (data_off
))
3123 t
= fold_build_pointer_plus (t
, data_off
);
3124 t
= build1 (NOP_EXPR
, build_pointer_type (ptr_type_node
), t
);
3125 info
->data_location
= build1 (INDIRECT_REF
, ptr_type_node
, t
);
3126 if (GFC_TYPE_ARRAY_AKIND (type
) == GFC_ARRAY_ALLOCATABLE
)
3127 info
->allocated
= build2 (NE_EXPR
, boolean_type_node
,
3128 info
->data_location
, null_pointer_node
);
3129 else if (GFC_TYPE_ARRAY_AKIND (type
) == GFC_ARRAY_POINTER
3130 || GFC_TYPE_ARRAY_AKIND (type
) == GFC_ARRAY_POINTER_CONT
)
3131 info
->associated
= build2 (NE_EXPR
, boolean_type_node
,
3132 info
->data_location
, null_pointer_node
);
3134 for (dim
= 0; dim
< rank
; dim
++)
3136 t
= fold_build_pointer_plus (base_decl
,
3137 size_binop (PLUS_EXPR
,
3138 dim_off
, lower_suboff
));
3139 t
= build1 (INDIRECT_REF
, gfc_array_index_type
, t
);
3140 info
->dimen
[dim
].lower_bound
= t
;
3141 t
= fold_build_pointer_plus (base_decl
,
3142 size_binop (PLUS_EXPR
,
3143 dim_off
, upper_suboff
));
3144 t
= build1 (INDIRECT_REF
, gfc_array_index_type
, t
);
3145 info
->dimen
[dim
].upper_bound
= t
;
3146 if (GFC_TYPE_ARRAY_AKIND (type
) == GFC_ARRAY_ASSUMED_SHAPE
3147 || GFC_TYPE_ARRAY_AKIND (type
) == GFC_ARRAY_ASSUMED_SHAPE_CONT
)
3149 /* Assumed shape arrays have known lower bounds. */
3150 info
->dimen
[dim
].upper_bound
3151 = build2 (MINUS_EXPR
, gfc_array_index_type
,
3152 info
->dimen
[dim
].upper_bound
,
3153 info
->dimen
[dim
].lower_bound
);
3154 info
->dimen
[dim
].lower_bound
3155 = fold_convert (gfc_array_index_type
,
3156 GFC_TYPE_ARRAY_LBOUND (type
, dim
));
3157 info
->dimen
[dim
].upper_bound
3158 = build2 (PLUS_EXPR
, gfc_array_index_type
,
3159 info
->dimen
[dim
].lower_bound
,
3160 info
->dimen
[dim
].upper_bound
);
3162 t
= fold_build_pointer_plus (base_decl
,
3163 size_binop (PLUS_EXPR
,
3164 dim_off
, stride_suboff
));
3165 t
= build1 (INDIRECT_REF
, gfc_array_index_type
, t
);
3166 t
= build2 (MULT_EXPR
, gfc_array_index_type
, t
, elem_size
);
3167 info
->dimen
[dim
].stride
= t
;
3168 dim_off
= size_binop (PLUS_EXPR
, dim_off
, dim_size
);
3175 /* Create a type to handle vector subscripts for coarray library calls. It
3177 struct caf_vector_t {
3178 size_t nvec; // size of the vector
3185 ptrdiff_t lower_bound;
3186 ptrdiff_t upper_bound;
3191 where nvec == 0 for DIMEN_ELEMENT or DIMEN_RANGE and nvec being the vector
3192 size in case of DIMEN_VECTOR, where kind is the integer type of the vector. */
3195 gfc_get_caf_vector_type (int dim
)
3197 static tree vector_types
[GFC_MAX_DIMENSIONS
];
3198 static tree vec_type
= NULL_TREE
;
3199 tree triplet_struct_type
, vect_struct_type
, union_type
, tmp
, *chain
;
3201 if (vector_types
[dim
-1] != NULL_TREE
)
3202 return vector_types
[dim
-1];
3204 if (vec_type
== NULL_TREE
)
3207 vect_struct_type
= make_node (RECORD_TYPE
);
3208 tmp
= gfc_add_field_to_struct_1 (vect_struct_type
,
3209 get_identifier ("vector"),
3210 pvoid_type_node
, &chain
);
3211 TREE_NO_WARNING (tmp
) = 1;
3212 tmp
= gfc_add_field_to_struct_1 (vect_struct_type
,
3213 get_identifier ("kind"),
3214 integer_type_node
, &chain
);
3215 TREE_NO_WARNING (tmp
) = 1;
3216 gfc_finish_type (vect_struct_type
);
3219 triplet_struct_type
= make_node (RECORD_TYPE
);
3220 tmp
= gfc_add_field_to_struct_1 (triplet_struct_type
,
3221 get_identifier ("lower_bound"),
3222 gfc_array_index_type
, &chain
);
3223 TREE_NO_WARNING (tmp
) = 1;
3224 tmp
= gfc_add_field_to_struct_1 (triplet_struct_type
,
3225 get_identifier ("upper_bound"),
3226 gfc_array_index_type
, &chain
);
3227 TREE_NO_WARNING (tmp
) = 1;
3228 tmp
= gfc_add_field_to_struct_1 (triplet_struct_type
, get_identifier ("stride"),
3229 gfc_array_index_type
, &chain
);
3230 TREE_NO_WARNING (tmp
) = 1;
3231 gfc_finish_type (triplet_struct_type
);
3234 union_type
= make_node (UNION_TYPE
);
3235 tmp
= gfc_add_field_to_struct_1 (union_type
, get_identifier ("v"),
3236 vect_struct_type
, &chain
);
3237 TREE_NO_WARNING (tmp
) = 1;
3238 tmp
= gfc_add_field_to_struct_1 (union_type
, get_identifier ("triplet"),
3239 triplet_struct_type
, &chain
);
3240 TREE_NO_WARNING (tmp
) = 1;
3241 gfc_finish_type (union_type
);
3244 vec_type
= make_node (RECORD_TYPE
);
3245 tmp
= gfc_add_field_to_struct_1 (vec_type
, get_identifier ("nvec"),
3246 size_type_node
, &chain
);
3247 TREE_NO_WARNING (tmp
) = 1;
3248 tmp
= gfc_add_field_to_struct_1 (vec_type
, get_identifier ("u"),
3249 union_type
, &chain
);
3250 TREE_NO_WARNING (tmp
) = 1;
3251 gfc_finish_type (vec_type
);
3252 TYPE_NAME (vec_type
) = get_identifier ("caf_vector_t");
3255 tmp
= build_range_type (gfc_array_index_type
, gfc_index_zero_node
,
3256 gfc_rank_cst
[dim
-1]);
3257 vector_types
[dim
-1] = build_array_type (vec_type
, tmp
);
3258 return vector_types
[dim
-1];
3261 #include "gt-fortran-trans-types.h"