* tree-if-conv.c: Fix various typos in comments.
[official-gcc.git] / gcc / var-tracking.c
blobda9de28af7b6f0cb38314beae679c97a41a4087b
1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file contains the variable tracking pass. It computes where
21 variables are located (which registers or where in memory) at each position
22 in instruction stream and emits notes describing the locations.
23 Debug information (DWARF2 location lists) is finally generated from
24 these notes.
25 With this debug information, it is possible to show variables
26 even when debugging optimized code.
28 How does the variable tracking pass work?
30 First, it scans RTL code for uses, stores and clobbers (register/memory
31 references in instructions), for call insns and for stack adjustments
32 separately for each basic block and saves them to an array of micro
33 operations.
34 The micro operations of one instruction are ordered so that
35 pre-modifying stack adjustment < use < use with no var < call insn <
36 < clobber < set < post-modifying stack adjustment
38 Then, a forward dataflow analysis is performed to find out how locations
39 of variables change through code and to propagate the variable locations
40 along control flow graph.
41 The IN set for basic block BB is computed as a union of OUT sets of BB's
42 predecessors, the OUT set for BB is copied from the IN set for BB and
43 is changed according to micro operations in BB.
45 The IN and OUT sets for basic blocks consist of a current stack adjustment
46 (used for adjusting offset of variables addressed using stack pointer),
47 the table of structures describing the locations of parts of a variable
48 and for each physical register a linked list for each physical register.
49 The linked list is a list of variable parts stored in the register,
50 i.e. it is a list of triplets (reg, decl, offset) where decl is
51 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
52 effective deleting appropriate variable parts when we set or clobber the
53 register.
55 There may be more than one variable part in a register. The linked lists
56 should be pretty short so it is a good data structure here.
57 For example in the following code, register allocator may assign same
58 register to variables A and B, and both of them are stored in the same
59 register in CODE:
61 if (cond)
62 set A;
63 else
64 set B;
65 CODE;
66 if (cond)
67 use A;
68 else
69 use B;
71 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
72 are emitted to appropriate positions in RTL code. Each such a note describes
73 the location of one variable at the point in instruction stream where the
74 note is. There is no need to emit a note for each variable before each
75 instruction, we only emit these notes where the location of variable changes
76 (this means that we also emit notes for changes between the OUT set of the
77 previous block and the IN set of the current block).
79 The notes consist of two parts:
80 1. the declaration (from REG_EXPR or MEM_EXPR)
81 2. the location of a variable - it is either a simple register/memory
82 reference (for simple variables, for example int),
83 or a parallel of register/memory references (for a large variables
84 which consist of several parts, for example long long).
88 #include "config.h"
89 #include "system.h"
90 #include "coretypes.h"
91 #include "backend.h"
92 #include "cfghooks.h"
93 #include "rtl.h"
94 #include "alias.h"
95 #include "tree.h"
96 #include "varasm.h"
97 #include "stor-layout.h"
98 #include "cfgrtl.h"
99 #include "cfganal.h"
100 #include "tm_p.h"
101 #include "flags.h"
102 #include "insn-config.h"
103 #include "reload.h"
104 #include "alloc-pool.h"
105 #include "regs.h"
106 #include "expmed.h"
107 #include "dojump.h"
108 #include "explow.h"
109 #include "calls.h"
110 #include "emit-rtl.h"
111 #include "stmt.h"
112 #include "expr.h"
113 #include "tree-pass.h"
114 #include "tree-dfa.h"
115 #include "tree-ssa.h"
116 #include "cselib.h"
117 #include "target.h"
118 #include "params.h"
119 #include "diagnostic.h"
120 #include "tree-pretty-print.h"
121 #include "recog.h"
122 #include "rtl-iter.h"
123 #include "fibonacci_heap.h"
125 typedef fibonacci_heap <long, basic_block_def> bb_heap_t;
126 typedef fibonacci_node <long, basic_block_def> bb_heap_node_t;
128 /* var-tracking.c assumes that tree code with the same value as VALUE rtx code
129 has no chance to appear in REG_EXPR/MEM_EXPRs and isn't a decl.
130 Currently the value is the same as IDENTIFIER_NODE, which has such
131 a property. If this compile time assertion ever fails, make sure that
132 the new tree code that equals (int) VALUE has the same property. */
133 extern char check_value_val[(int) VALUE == (int) IDENTIFIER_NODE ? 1 : -1];
135 /* Type of micro operation. */
136 enum micro_operation_type
138 MO_USE, /* Use location (REG or MEM). */
139 MO_USE_NO_VAR,/* Use location which is not associated with a variable
140 or the variable is not trackable. */
141 MO_VAL_USE, /* Use location which is associated with a value. */
142 MO_VAL_LOC, /* Use location which appears in a debug insn. */
143 MO_VAL_SET, /* Set location associated with a value. */
144 MO_SET, /* Set location. */
145 MO_COPY, /* Copy the same portion of a variable from one
146 location to another. */
147 MO_CLOBBER, /* Clobber location. */
148 MO_CALL, /* Call insn. */
149 MO_ADJUST /* Adjust stack pointer. */
153 static const char * const ATTRIBUTE_UNUSED
154 micro_operation_type_name[] = {
155 "MO_USE",
156 "MO_USE_NO_VAR",
157 "MO_VAL_USE",
158 "MO_VAL_LOC",
159 "MO_VAL_SET",
160 "MO_SET",
161 "MO_COPY",
162 "MO_CLOBBER",
163 "MO_CALL",
164 "MO_ADJUST"
167 /* Where shall the note be emitted? BEFORE or AFTER the instruction.
168 Notes emitted as AFTER_CALL are to take effect during the call,
169 rather than after the call. */
170 enum emit_note_where
172 EMIT_NOTE_BEFORE_INSN,
173 EMIT_NOTE_AFTER_INSN,
174 EMIT_NOTE_AFTER_CALL_INSN
177 /* Structure holding information about micro operation. */
178 typedef struct micro_operation_def
180 /* Type of micro operation. */
181 enum micro_operation_type type;
183 /* The instruction which the micro operation is in, for MO_USE,
184 MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
185 instruction or note in the original flow (before any var-tracking
186 notes are inserted, to simplify emission of notes), for MO_SET
187 and MO_CLOBBER. */
188 rtx_insn *insn;
190 union {
191 /* Location. For MO_SET and MO_COPY, this is the SET that
192 performs the assignment, if known, otherwise it is the target
193 of the assignment. For MO_VAL_USE and MO_VAL_SET, it is a
194 CONCAT of the VALUE and the LOC associated with it. For
195 MO_VAL_LOC, it is a CONCAT of the VALUE and the VAR_LOCATION
196 associated with it. */
197 rtx loc;
199 /* Stack adjustment. */
200 HOST_WIDE_INT adjust;
201 } u;
202 } micro_operation;
205 /* A declaration of a variable, or an RTL value being handled like a
206 declaration. */
207 typedef void *decl_or_value;
209 /* Return true if a decl_or_value DV is a DECL or NULL. */
210 static inline bool
211 dv_is_decl_p (decl_or_value dv)
213 return !dv || (int) TREE_CODE ((tree) dv) != (int) VALUE;
216 /* Return true if a decl_or_value is a VALUE rtl. */
217 static inline bool
218 dv_is_value_p (decl_or_value dv)
220 return dv && !dv_is_decl_p (dv);
223 /* Return the decl in the decl_or_value. */
224 static inline tree
225 dv_as_decl (decl_or_value dv)
227 gcc_checking_assert (dv_is_decl_p (dv));
228 return (tree) dv;
231 /* Return the value in the decl_or_value. */
232 static inline rtx
233 dv_as_value (decl_or_value dv)
235 gcc_checking_assert (dv_is_value_p (dv));
236 return (rtx)dv;
239 /* Return the opaque pointer in the decl_or_value. */
240 static inline void *
241 dv_as_opaque (decl_or_value dv)
243 return dv;
247 /* Description of location of a part of a variable. The content of a physical
248 register is described by a chain of these structures.
249 The chains are pretty short (usually 1 or 2 elements) and thus
250 chain is the best data structure. */
251 typedef struct attrs_def
253 /* Pointer to next member of the list. */
254 struct attrs_def *next;
256 /* The rtx of register. */
257 rtx loc;
259 /* The declaration corresponding to LOC. */
260 decl_or_value dv;
262 /* Offset from start of DECL. */
263 HOST_WIDE_INT offset;
264 } *attrs;
266 /* Structure for chaining the locations. */
267 typedef struct location_chain_def
269 /* Next element in the chain. */
270 struct location_chain_def *next;
272 /* The location (REG, MEM or VALUE). */
273 rtx loc;
275 /* The "value" stored in this location. */
276 rtx set_src;
278 /* Initialized? */
279 enum var_init_status init;
280 } *location_chain;
282 /* A vector of loc_exp_dep holds the active dependencies of a one-part
283 DV on VALUEs, i.e., the VALUEs expanded so as to form the current
284 location of DV. Each entry is also part of VALUE' s linked-list of
285 backlinks back to DV. */
286 typedef struct loc_exp_dep_s
288 /* The dependent DV. */
289 decl_or_value dv;
290 /* The dependency VALUE or DECL_DEBUG. */
291 rtx value;
292 /* The next entry in VALUE's backlinks list. */
293 struct loc_exp_dep_s *next;
294 /* A pointer to the pointer to this entry (head or prev's next) in
295 the doubly-linked list. */
296 struct loc_exp_dep_s **pprev;
297 } loc_exp_dep;
300 /* This data structure holds information about the depth of a variable
301 expansion. */
302 typedef struct expand_depth_struct
304 /* This measures the complexity of the expanded expression. It
305 grows by one for each level of expansion that adds more than one
306 operand. */
307 int complexity;
308 /* This counts the number of ENTRY_VALUE expressions in an
309 expansion. We want to minimize their use. */
310 int entryvals;
311 } expand_depth;
313 /* This data structure is allocated for one-part variables at the time
314 of emitting notes. */
315 struct onepart_aux
317 /* Doubly-linked list of dependent DVs. These are DVs whose cur_loc
318 computation used the expansion of this variable, and that ought
319 to be notified should this variable change. If the DV's cur_loc
320 expanded to NULL, all components of the loc list are regarded as
321 active, so that any changes in them give us a chance to get a
322 location. Otherwise, only components of the loc that expanded to
323 non-NULL are regarded as active dependencies. */
324 loc_exp_dep *backlinks;
325 /* This holds the LOC that was expanded into cur_loc. We need only
326 mark a one-part variable as changed if the FROM loc is removed,
327 or if it has no known location and a loc is added, or if it gets
328 a change notification from any of its active dependencies. */
329 rtx from;
330 /* The depth of the cur_loc expression. */
331 expand_depth depth;
332 /* Dependencies actively used when expand FROM into cur_loc. */
333 vec<loc_exp_dep, va_heap, vl_embed> deps;
336 /* Structure describing one part of variable. */
337 typedef struct variable_part_def
339 /* Chain of locations of the part. */
340 location_chain loc_chain;
342 /* Location which was last emitted to location list. */
343 rtx cur_loc;
345 union variable_aux
347 /* The offset in the variable, if !var->onepart. */
348 HOST_WIDE_INT offset;
350 /* Pointer to auxiliary data, if var->onepart and emit_notes. */
351 struct onepart_aux *onepaux;
352 } aux;
353 } variable_part;
355 /* Maximum number of location parts. */
356 #define MAX_VAR_PARTS 16
358 /* Enumeration type used to discriminate various types of one-part
359 variables. */
360 typedef enum onepart_enum
362 /* Not a one-part variable. */
363 NOT_ONEPART = 0,
364 /* A one-part DECL that is not a DEBUG_EXPR_DECL. */
365 ONEPART_VDECL = 1,
366 /* A DEBUG_EXPR_DECL. */
367 ONEPART_DEXPR = 2,
368 /* A VALUE. */
369 ONEPART_VALUE = 3
370 } onepart_enum_t;
372 /* Structure describing where the variable is located. */
373 typedef struct variable_def
375 /* The declaration of the variable, or an RTL value being handled
376 like a declaration. */
377 decl_or_value dv;
379 /* Reference count. */
380 int refcount;
382 /* Number of variable parts. */
383 char n_var_parts;
385 /* What type of DV this is, according to enum onepart_enum. */
386 ENUM_BITFIELD (onepart_enum) onepart : CHAR_BIT;
388 /* True if this variable_def struct is currently in the
389 changed_variables hash table. */
390 bool in_changed_variables;
392 /* The variable parts. */
393 variable_part var_part[1];
394 } *variable;
395 typedef const struct variable_def *const_variable;
397 /* Pointer to the BB's information specific to variable tracking pass. */
398 #define VTI(BB) ((variable_tracking_info) (BB)->aux)
400 /* Macro to access MEM_OFFSET as an HOST_WIDE_INT. Evaluates MEM twice. */
401 #define INT_MEM_OFFSET(mem) (MEM_OFFSET_KNOWN_P (mem) ? MEM_OFFSET (mem) : 0)
403 #if ENABLE_CHECKING && (GCC_VERSION >= 2007)
405 /* Access VAR's Ith part's offset, checking that it's not a one-part
406 variable. */
407 #define VAR_PART_OFFSET(var, i) __extension__ \
408 (*({ variable const __v = (var); \
409 gcc_checking_assert (!__v->onepart); \
410 &__v->var_part[(i)].aux.offset; }))
412 /* Access VAR's one-part auxiliary data, checking that it is a
413 one-part variable. */
414 #define VAR_LOC_1PAUX(var) __extension__ \
415 (*({ variable const __v = (var); \
416 gcc_checking_assert (__v->onepart); \
417 &__v->var_part[0].aux.onepaux; }))
419 #else
420 #define VAR_PART_OFFSET(var, i) ((var)->var_part[(i)].aux.offset)
421 #define VAR_LOC_1PAUX(var) ((var)->var_part[0].aux.onepaux)
422 #endif
424 /* These are accessor macros for the one-part auxiliary data. When
425 convenient for users, they're guarded by tests that the data was
426 allocated. */
427 #define VAR_LOC_DEP_LST(var) (VAR_LOC_1PAUX (var) \
428 ? VAR_LOC_1PAUX (var)->backlinks \
429 : NULL)
430 #define VAR_LOC_DEP_LSTP(var) (VAR_LOC_1PAUX (var) \
431 ? &VAR_LOC_1PAUX (var)->backlinks \
432 : NULL)
433 #define VAR_LOC_FROM(var) (VAR_LOC_1PAUX (var)->from)
434 #define VAR_LOC_DEPTH(var) (VAR_LOC_1PAUX (var)->depth)
435 #define VAR_LOC_DEP_VEC(var) (VAR_LOC_1PAUX (var) \
436 ? &VAR_LOC_1PAUX (var)->deps \
437 : NULL)
441 typedef unsigned int dvuid;
443 /* Return the uid of DV. */
445 static inline dvuid
446 dv_uid (decl_or_value dv)
448 if (dv_is_value_p (dv))
449 return CSELIB_VAL_PTR (dv_as_value (dv))->uid;
450 else
451 return DECL_UID (dv_as_decl (dv));
454 /* Compute the hash from the uid. */
456 static inline hashval_t
457 dv_uid2hash (dvuid uid)
459 return uid;
462 /* The hash function for a mask table in a shared_htab chain. */
464 static inline hashval_t
465 dv_htab_hash (decl_or_value dv)
467 return dv_uid2hash (dv_uid (dv));
470 static void variable_htab_free (void *);
472 /* Variable hashtable helpers. */
474 struct variable_hasher : pointer_hash <variable_def>
476 typedef void *compare_type;
477 static inline hashval_t hash (const variable_def *);
478 static inline bool equal (const variable_def *, const void *);
479 static inline void remove (variable_def *);
482 /* The hash function for variable_htab, computes the hash value
483 from the declaration of variable X. */
485 inline hashval_t
486 variable_hasher::hash (const variable_def *v)
488 return dv_htab_hash (v->dv);
491 /* Compare the declaration of variable X with declaration Y. */
493 inline bool
494 variable_hasher::equal (const variable_def *v, const void *y)
496 decl_or_value dv = CONST_CAST2 (decl_or_value, const void *, y);
498 return (dv_as_opaque (v->dv) == dv_as_opaque (dv));
501 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
503 inline void
504 variable_hasher::remove (variable_def *var)
506 variable_htab_free (var);
509 typedef hash_table<variable_hasher> variable_table_type;
510 typedef variable_table_type::iterator variable_iterator_type;
512 /* Structure for passing some other parameters to function
513 emit_note_insn_var_location. */
514 typedef struct emit_note_data_def
516 /* The instruction which the note will be emitted before/after. */
517 rtx_insn *insn;
519 /* Where the note will be emitted (before/after insn)? */
520 enum emit_note_where where;
522 /* The variables and values active at this point. */
523 variable_table_type *vars;
524 } emit_note_data;
526 /* Structure holding a refcounted hash table. If refcount > 1,
527 it must be first unshared before modified. */
528 typedef struct shared_hash_def
530 /* Reference count. */
531 int refcount;
533 /* Actual hash table. */
534 variable_table_type *htab;
535 } *shared_hash;
537 /* Structure holding the IN or OUT set for a basic block. */
538 typedef struct dataflow_set_def
540 /* Adjustment of stack offset. */
541 HOST_WIDE_INT stack_adjust;
543 /* Attributes for registers (lists of attrs). */
544 attrs regs[FIRST_PSEUDO_REGISTER];
546 /* Variable locations. */
547 shared_hash vars;
549 /* Vars that is being traversed. */
550 shared_hash traversed_vars;
551 } dataflow_set;
553 /* The structure (one for each basic block) containing the information
554 needed for variable tracking. */
555 typedef struct variable_tracking_info_def
557 /* The vector of micro operations. */
558 vec<micro_operation> mos;
560 /* The IN and OUT set for dataflow analysis. */
561 dataflow_set in;
562 dataflow_set out;
564 /* The permanent-in dataflow set for this block. This is used to
565 hold values for which we had to compute entry values. ??? This
566 should probably be dynamically allocated, to avoid using more
567 memory in non-debug builds. */
568 dataflow_set *permp;
570 /* Has the block been visited in DFS? */
571 bool visited;
573 /* Has the block been flooded in VTA? */
574 bool flooded;
576 } *variable_tracking_info;
578 /* Alloc pool for struct attrs_def. */
579 object_allocator<attrs_def> attrs_def_pool ("attrs_def pool", 1024);
581 /* Alloc pool for struct variable_def with MAX_VAR_PARTS entries. */
583 static pool_allocator var_pool
584 ("variable_def pool", 64, sizeof (variable_def) +
585 (MAX_VAR_PARTS - 1) * sizeof (((variable)NULL)->var_part[0]));
587 /* Alloc pool for struct variable_def with a single var_part entry. */
588 static pool_allocator valvar_pool
589 ("small variable_def pool", 256, sizeof (variable_def));
591 /* Alloc pool for struct location_chain_def. */
592 static object_allocator<location_chain_def> location_chain_def_pool
593 ("location_chain_def pool", 1024);
595 /* Alloc pool for struct shared_hash_def. */
596 static object_allocator<shared_hash_def> shared_hash_def_pool
597 ("shared_hash_def pool", 256);
599 /* Alloc pool for struct loc_exp_dep_s for NOT_ONEPART variables. */
600 object_allocator<loc_exp_dep> loc_exp_dep_pool ("loc_exp_dep pool", 64);
602 /* Changed variables, notes will be emitted for them. */
603 static variable_table_type *changed_variables;
605 /* Shall notes be emitted? */
606 static bool emit_notes;
608 /* Values whose dynamic location lists have gone empty, but whose
609 cselib location lists are still usable. Use this to hold the
610 current location, the backlinks, etc, during emit_notes. */
611 static variable_table_type *dropped_values;
613 /* Empty shared hashtable. */
614 static shared_hash empty_shared_hash;
616 /* Scratch register bitmap used by cselib_expand_value_rtx. */
617 static bitmap scratch_regs = NULL;
619 #ifdef HAVE_window_save
620 typedef struct GTY(()) parm_reg {
621 rtx outgoing;
622 rtx incoming;
623 } parm_reg_t;
626 /* Vector of windowed parameter registers, if any. */
627 static vec<parm_reg_t, va_gc> *windowed_parm_regs = NULL;
628 #endif
630 /* Variable used to tell whether cselib_process_insn called our hook. */
631 static bool cselib_hook_called;
633 /* Local function prototypes. */
634 static void stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
635 HOST_WIDE_INT *);
636 static void insn_stack_adjust_offset_pre_post (rtx_insn *, HOST_WIDE_INT *,
637 HOST_WIDE_INT *);
638 static bool vt_stack_adjustments (void);
640 static void init_attrs_list_set (attrs *);
641 static void attrs_list_clear (attrs *);
642 static attrs attrs_list_member (attrs, decl_or_value, HOST_WIDE_INT);
643 static void attrs_list_insert (attrs *, decl_or_value, HOST_WIDE_INT, rtx);
644 static void attrs_list_copy (attrs *, attrs);
645 static void attrs_list_union (attrs *, attrs);
647 static variable_def **unshare_variable (dataflow_set *set, variable_def **slot,
648 variable var, enum var_init_status);
649 static void vars_copy (variable_table_type *, variable_table_type *);
650 static tree var_debug_decl (tree);
651 static void var_reg_set (dataflow_set *, rtx, enum var_init_status, rtx);
652 static void var_reg_delete_and_set (dataflow_set *, rtx, bool,
653 enum var_init_status, rtx);
654 static void var_reg_delete (dataflow_set *, rtx, bool);
655 static void var_regno_delete (dataflow_set *, int);
656 static void var_mem_set (dataflow_set *, rtx, enum var_init_status, rtx);
657 static void var_mem_delete_and_set (dataflow_set *, rtx, bool,
658 enum var_init_status, rtx);
659 static void var_mem_delete (dataflow_set *, rtx, bool);
661 static void dataflow_set_init (dataflow_set *);
662 static void dataflow_set_clear (dataflow_set *);
663 static void dataflow_set_copy (dataflow_set *, dataflow_set *);
664 static int variable_union_info_cmp_pos (const void *, const void *);
665 static void dataflow_set_union (dataflow_set *, dataflow_set *);
666 static location_chain find_loc_in_1pdv (rtx, variable, variable_table_type *);
667 static bool canon_value_cmp (rtx, rtx);
668 static int loc_cmp (rtx, rtx);
669 static bool variable_part_different_p (variable_part *, variable_part *);
670 static bool onepart_variable_different_p (variable, variable);
671 static bool variable_different_p (variable, variable);
672 static bool dataflow_set_different (dataflow_set *, dataflow_set *);
673 static void dataflow_set_destroy (dataflow_set *);
675 static bool contains_symbol_ref (rtx);
676 static bool track_expr_p (tree, bool);
677 static bool same_variable_part_p (rtx, tree, HOST_WIDE_INT);
678 static void add_uses_1 (rtx *, void *);
679 static void add_stores (rtx, const_rtx, void *);
680 static bool compute_bb_dataflow (basic_block);
681 static bool vt_find_locations (void);
683 static void dump_attrs_list (attrs);
684 static void dump_var (variable);
685 static void dump_vars (variable_table_type *);
686 static void dump_dataflow_set (dataflow_set *);
687 static void dump_dataflow_sets (void);
689 static void set_dv_changed (decl_or_value, bool);
690 static void variable_was_changed (variable, dataflow_set *);
691 static variable_def **set_slot_part (dataflow_set *, rtx, variable_def **,
692 decl_or_value, HOST_WIDE_INT,
693 enum var_init_status, rtx);
694 static void set_variable_part (dataflow_set *, rtx,
695 decl_or_value, HOST_WIDE_INT,
696 enum var_init_status, rtx, enum insert_option);
697 static variable_def **clobber_slot_part (dataflow_set *, rtx,
698 variable_def **, HOST_WIDE_INT, rtx);
699 static void clobber_variable_part (dataflow_set *, rtx,
700 decl_or_value, HOST_WIDE_INT, rtx);
701 static variable_def **delete_slot_part (dataflow_set *, rtx, variable_def **,
702 HOST_WIDE_INT);
703 static void delete_variable_part (dataflow_set *, rtx,
704 decl_or_value, HOST_WIDE_INT);
705 static void emit_notes_in_bb (basic_block, dataflow_set *);
706 static void vt_emit_notes (void);
708 static bool vt_get_decl_and_offset (rtx, tree *, HOST_WIDE_INT *);
709 static void vt_add_function_parameters (void);
710 static bool vt_initialize (void);
711 static void vt_finalize (void);
713 /* Callback for stack_adjust_offset_pre_post, called via for_each_inc_dec. */
715 static int
716 stack_adjust_offset_pre_post_cb (rtx, rtx op, rtx dest, rtx src, rtx srcoff,
717 void *arg)
719 if (dest != stack_pointer_rtx)
720 return 0;
722 switch (GET_CODE (op))
724 case PRE_INC:
725 case PRE_DEC:
726 ((HOST_WIDE_INT *)arg)[0] -= INTVAL (srcoff);
727 return 0;
728 case POST_INC:
729 case POST_DEC:
730 ((HOST_WIDE_INT *)arg)[1] -= INTVAL (srcoff);
731 return 0;
732 case PRE_MODIFY:
733 case POST_MODIFY:
734 /* We handle only adjustments by constant amount. */
735 gcc_assert (GET_CODE (src) == PLUS
736 && CONST_INT_P (XEXP (src, 1))
737 && XEXP (src, 0) == stack_pointer_rtx);
738 ((HOST_WIDE_INT *)arg)[GET_CODE (op) == POST_MODIFY]
739 -= INTVAL (XEXP (src, 1));
740 return 0;
741 default:
742 gcc_unreachable ();
746 /* Given a SET, calculate the amount of stack adjustment it contains
747 PRE- and POST-modifying stack pointer.
748 This function is similar to stack_adjust_offset. */
750 static void
751 stack_adjust_offset_pre_post (rtx pattern, HOST_WIDE_INT *pre,
752 HOST_WIDE_INT *post)
754 rtx src = SET_SRC (pattern);
755 rtx dest = SET_DEST (pattern);
756 enum rtx_code code;
758 if (dest == stack_pointer_rtx)
760 /* (set (reg sp) (plus (reg sp) (const_int))) */
761 code = GET_CODE (src);
762 if (! (code == PLUS || code == MINUS)
763 || XEXP (src, 0) != stack_pointer_rtx
764 || !CONST_INT_P (XEXP (src, 1)))
765 return;
767 if (code == MINUS)
768 *post += INTVAL (XEXP (src, 1));
769 else
770 *post -= INTVAL (XEXP (src, 1));
771 return;
773 HOST_WIDE_INT res[2] = { 0, 0 };
774 for_each_inc_dec (pattern, stack_adjust_offset_pre_post_cb, res);
775 *pre += res[0];
776 *post += res[1];
779 /* Given an INSN, calculate the amount of stack adjustment it contains
780 PRE- and POST-modifying stack pointer. */
782 static void
783 insn_stack_adjust_offset_pre_post (rtx_insn *insn, HOST_WIDE_INT *pre,
784 HOST_WIDE_INT *post)
786 rtx pattern;
788 *pre = 0;
789 *post = 0;
791 pattern = PATTERN (insn);
792 if (RTX_FRAME_RELATED_P (insn))
794 rtx expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
795 if (expr)
796 pattern = XEXP (expr, 0);
799 if (GET_CODE (pattern) == SET)
800 stack_adjust_offset_pre_post (pattern, pre, post);
801 else if (GET_CODE (pattern) == PARALLEL
802 || GET_CODE (pattern) == SEQUENCE)
804 int i;
806 /* There may be stack adjustments inside compound insns. Search
807 for them. */
808 for ( i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
809 if (GET_CODE (XVECEXP (pattern, 0, i)) == SET)
810 stack_adjust_offset_pre_post (XVECEXP (pattern, 0, i), pre, post);
814 /* Compute stack adjustments for all blocks by traversing DFS tree.
815 Return true when the adjustments on all incoming edges are consistent.
816 Heavily borrowed from pre_and_rev_post_order_compute. */
818 static bool
819 vt_stack_adjustments (void)
821 edge_iterator *stack;
822 int sp;
824 /* Initialize entry block. */
825 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->visited = true;
826 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->in.stack_adjust
827 = INCOMING_FRAME_SP_OFFSET;
828 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out.stack_adjust
829 = INCOMING_FRAME_SP_OFFSET;
831 /* Allocate stack for back-tracking up CFG. */
832 stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1);
833 sp = 0;
835 /* Push the first edge on to the stack. */
836 stack[sp++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
838 while (sp)
840 edge_iterator ei;
841 basic_block src;
842 basic_block dest;
844 /* Look at the edge on the top of the stack. */
845 ei = stack[sp - 1];
846 src = ei_edge (ei)->src;
847 dest = ei_edge (ei)->dest;
849 /* Check if the edge destination has been visited yet. */
850 if (!VTI (dest)->visited)
852 rtx_insn *insn;
853 HOST_WIDE_INT pre, post, offset;
854 VTI (dest)->visited = true;
855 VTI (dest)->in.stack_adjust = offset = VTI (src)->out.stack_adjust;
857 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
858 for (insn = BB_HEAD (dest);
859 insn != NEXT_INSN (BB_END (dest));
860 insn = NEXT_INSN (insn))
861 if (INSN_P (insn))
863 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
864 offset += pre + post;
867 VTI (dest)->out.stack_adjust = offset;
869 if (EDGE_COUNT (dest->succs) > 0)
870 /* Since the DEST node has been visited for the first
871 time, check its successors. */
872 stack[sp++] = ei_start (dest->succs);
874 else
876 /* We can end up with different stack adjustments for the exit block
877 of a shrink-wrapped function if stack_adjust_offset_pre_post
878 doesn't understand the rtx pattern used to restore the stack
879 pointer in the epilogue. For example, on s390(x), the stack
880 pointer is often restored via a load-multiple instruction
881 and so no stack_adjust offset is recorded for it. This means
882 that the stack offset at the end of the epilogue block is the
883 the same as the offset before the epilogue, whereas other paths
884 to the exit block will have the correct stack_adjust.
886 It is safe to ignore these differences because (a) we never
887 use the stack_adjust for the exit block in this pass and
888 (b) dwarf2cfi checks whether the CFA notes in a shrink-wrapped
889 function are correct.
891 We must check whether the adjustments on other edges are
892 the same though. */
893 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
894 && VTI (dest)->in.stack_adjust != VTI (src)->out.stack_adjust)
896 free (stack);
897 return false;
900 if (! ei_one_before_end_p (ei))
901 /* Go to the next edge. */
902 ei_next (&stack[sp - 1]);
903 else
904 /* Return to previous level if there are no more edges. */
905 sp--;
909 free (stack);
910 return true;
913 /* arg_pointer_rtx resp. frame_pointer_rtx if stack_pointer_rtx or
914 hard_frame_pointer_rtx is being mapped to it and offset for it. */
915 static rtx cfa_base_rtx;
916 static HOST_WIDE_INT cfa_base_offset;
918 /* Compute a CFA-based value for an ADJUSTMENT made to stack_pointer_rtx
919 or hard_frame_pointer_rtx. */
921 static inline rtx
922 compute_cfa_pointer (HOST_WIDE_INT adjustment)
924 return plus_constant (Pmode, cfa_base_rtx, adjustment + cfa_base_offset);
927 /* Adjustment for hard_frame_pointer_rtx to cfa base reg,
928 or -1 if the replacement shouldn't be done. */
929 static HOST_WIDE_INT hard_frame_pointer_adjustment = -1;
931 /* Data for adjust_mems callback. */
933 struct adjust_mem_data
935 bool store;
936 machine_mode mem_mode;
937 HOST_WIDE_INT stack_adjust;
938 rtx_expr_list *side_effects;
941 /* Helper for adjust_mems. Return true if X is suitable for
942 transformation of wider mode arithmetics to narrower mode. */
944 static bool
945 use_narrower_mode_test (rtx x, const_rtx subreg)
947 subrtx_var_iterator::array_type array;
948 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
950 rtx x = *iter;
951 if (CONSTANT_P (x))
952 iter.skip_subrtxes ();
953 else
954 switch (GET_CODE (x))
956 case REG:
957 if (cselib_lookup (x, GET_MODE (SUBREG_REG (subreg)), 0, VOIDmode))
958 return false;
959 if (!validate_subreg (GET_MODE (subreg), GET_MODE (x), x,
960 subreg_lowpart_offset (GET_MODE (subreg),
961 GET_MODE (x))))
962 return false;
963 break;
964 case PLUS:
965 case MINUS:
966 case MULT:
967 break;
968 case ASHIFT:
969 iter.substitute (XEXP (x, 0));
970 break;
971 default:
972 return false;
975 return true;
978 /* Transform X into narrower mode MODE from wider mode WMODE. */
980 static rtx
981 use_narrower_mode (rtx x, machine_mode mode, machine_mode wmode)
983 rtx op0, op1;
984 if (CONSTANT_P (x))
985 return lowpart_subreg (mode, x, wmode);
986 switch (GET_CODE (x))
988 case REG:
989 return lowpart_subreg (mode, x, wmode);
990 case PLUS:
991 case MINUS:
992 case MULT:
993 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
994 op1 = use_narrower_mode (XEXP (x, 1), mode, wmode);
995 return simplify_gen_binary (GET_CODE (x), mode, op0, op1);
996 case ASHIFT:
997 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
998 op1 = XEXP (x, 1);
999 /* Ensure shift amount is not wider than mode. */
1000 if (GET_MODE (op1) == VOIDmode)
1001 op1 = lowpart_subreg (mode, op1, wmode);
1002 else if (GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (GET_MODE (op1)))
1003 op1 = lowpart_subreg (mode, op1, GET_MODE (op1));
1004 return simplify_gen_binary (ASHIFT, mode, op0, op1);
1005 default:
1006 gcc_unreachable ();
1010 /* Helper function for adjusting used MEMs. */
1012 static rtx
1013 adjust_mems (rtx loc, const_rtx old_rtx, void *data)
1015 struct adjust_mem_data *amd = (struct adjust_mem_data *) data;
1016 rtx mem, addr = loc, tem;
1017 machine_mode mem_mode_save;
1018 bool store_save;
1019 switch (GET_CODE (loc))
1021 case REG:
1022 /* Don't do any sp or fp replacements outside of MEM addresses
1023 on the LHS. */
1024 if (amd->mem_mode == VOIDmode && amd->store)
1025 return loc;
1026 if (loc == stack_pointer_rtx
1027 && !frame_pointer_needed
1028 && cfa_base_rtx)
1029 return compute_cfa_pointer (amd->stack_adjust);
1030 else if (loc == hard_frame_pointer_rtx
1031 && frame_pointer_needed
1032 && hard_frame_pointer_adjustment != -1
1033 && cfa_base_rtx)
1034 return compute_cfa_pointer (hard_frame_pointer_adjustment);
1035 gcc_checking_assert (loc != virtual_incoming_args_rtx);
1036 return loc;
1037 case MEM:
1038 mem = loc;
1039 if (!amd->store)
1041 mem = targetm.delegitimize_address (mem);
1042 if (mem != loc && !MEM_P (mem))
1043 return simplify_replace_fn_rtx (mem, old_rtx, adjust_mems, data);
1046 addr = XEXP (mem, 0);
1047 mem_mode_save = amd->mem_mode;
1048 amd->mem_mode = GET_MODE (mem);
1049 store_save = amd->store;
1050 amd->store = false;
1051 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1052 amd->store = store_save;
1053 amd->mem_mode = mem_mode_save;
1054 if (mem == loc)
1055 addr = targetm.delegitimize_address (addr);
1056 if (addr != XEXP (mem, 0))
1057 mem = replace_equiv_address_nv (mem, addr);
1058 if (!amd->store)
1059 mem = avoid_constant_pool_reference (mem);
1060 return mem;
1061 case PRE_INC:
1062 case PRE_DEC:
1063 addr = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1064 gen_int_mode (GET_CODE (loc) == PRE_INC
1065 ? GET_MODE_SIZE (amd->mem_mode)
1066 : -GET_MODE_SIZE (amd->mem_mode),
1067 GET_MODE (loc)));
1068 case POST_INC:
1069 case POST_DEC:
1070 if (addr == loc)
1071 addr = XEXP (loc, 0);
1072 gcc_assert (amd->mem_mode != VOIDmode && amd->mem_mode != BLKmode);
1073 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1074 tem = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1075 gen_int_mode ((GET_CODE (loc) == PRE_INC
1076 || GET_CODE (loc) == POST_INC)
1077 ? GET_MODE_SIZE (amd->mem_mode)
1078 : -GET_MODE_SIZE (amd->mem_mode),
1079 GET_MODE (loc)));
1080 store_save = amd->store;
1081 amd->store = false;
1082 tem = simplify_replace_fn_rtx (tem, old_rtx, adjust_mems, data);
1083 amd->store = store_save;
1084 amd->side_effects = alloc_EXPR_LIST (0,
1085 gen_rtx_SET (XEXP (loc, 0), tem),
1086 amd->side_effects);
1087 return addr;
1088 case PRE_MODIFY:
1089 addr = XEXP (loc, 1);
1090 case POST_MODIFY:
1091 if (addr == loc)
1092 addr = XEXP (loc, 0);
1093 gcc_assert (amd->mem_mode != VOIDmode);
1094 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1095 store_save = amd->store;
1096 amd->store = false;
1097 tem = simplify_replace_fn_rtx (XEXP (loc, 1), old_rtx,
1098 adjust_mems, data);
1099 amd->store = store_save;
1100 amd->side_effects = alloc_EXPR_LIST (0,
1101 gen_rtx_SET (XEXP (loc, 0), tem),
1102 amd->side_effects);
1103 return addr;
1104 case SUBREG:
1105 /* First try without delegitimization of whole MEMs and
1106 avoid_constant_pool_reference, which is more likely to succeed. */
1107 store_save = amd->store;
1108 amd->store = true;
1109 addr = simplify_replace_fn_rtx (SUBREG_REG (loc), old_rtx, adjust_mems,
1110 data);
1111 amd->store = store_save;
1112 mem = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1113 if (mem == SUBREG_REG (loc))
1115 tem = loc;
1116 goto finish_subreg;
1118 tem = simplify_gen_subreg (GET_MODE (loc), mem,
1119 GET_MODE (SUBREG_REG (loc)),
1120 SUBREG_BYTE (loc));
1121 if (tem)
1122 goto finish_subreg;
1123 tem = simplify_gen_subreg (GET_MODE (loc), addr,
1124 GET_MODE (SUBREG_REG (loc)),
1125 SUBREG_BYTE (loc));
1126 if (tem == NULL_RTX)
1127 tem = gen_rtx_raw_SUBREG (GET_MODE (loc), addr, SUBREG_BYTE (loc));
1128 finish_subreg:
1129 if (MAY_HAVE_DEBUG_INSNS
1130 && GET_CODE (tem) == SUBREG
1131 && (GET_CODE (SUBREG_REG (tem)) == PLUS
1132 || GET_CODE (SUBREG_REG (tem)) == MINUS
1133 || GET_CODE (SUBREG_REG (tem)) == MULT
1134 || GET_CODE (SUBREG_REG (tem)) == ASHIFT)
1135 && (GET_MODE_CLASS (GET_MODE (tem)) == MODE_INT
1136 || GET_MODE_CLASS (GET_MODE (tem)) == MODE_PARTIAL_INT)
1137 && (GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem))) == MODE_INT
1138 || GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem))) == MODE_PARTIAL_INT)
1139 && GET_MODE_PRECISION (GET_MODE (tem))
1140 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (tem)))
1141 && subreg_lowpart_p (tem)
1142 && use_narrower_mode_test (SUBREG_REG (tem), tem))
1143 return use_narrower_mode (SUBREG_REG (tem), GET_MODE (tem),
1144 GET_MODE (SUBREG_REG (tem)));
1145 return tem;
1146 case ASM_OPERANDS:
1147 /* Don't do any replacements in second and following
1148 ASM_OPERANDS of inline-asm with multiple sets.
1149 ASM_OPERANDS_INPUT_VEC, ASM_OPERANDS_INPUT_CONSTRAINT_VEC
1150 and ASM_OPERANDS_LABEL_VEC need to be equal between
1151 all the ASM_OPERANDs in the insn and adjust_insn will
1152 fix this up. */
1153 if (ASM_OPERANDS_OUTPUT_IDX (loc) != 0)
1154 return loc;
1155 break;
1156 default:
1157 break;
1159 return NULL_RTX;
1162 /* Helper function for replacement of uses. */
1164 static void
1165 adjust_mem_uses (rtx *x, void *data)
1167 rtx new_x = simplify_replace_fn_rtx (*x, NULL_RTX, adjust_mems, data);
1168 if (new_x != *x)
1169 validate_change (NULL_RTX, x, new_x, true);
1172 /* Helper function for replacement of stores. */
1174 static void
1175 adjust_mem_stores (rtx loc, const_rtx expr, void *data)
1177 if (MEM_P (loc))
1179 rtx new_dest = simplify_replace_fn_rtx (SET_DEST (expr), NULL_RTX,
1180 adjust_mems, data);
1181 if (new_dest != SET_DEST (expr))
1183 rtx xexpr = CONST_CAST_RTX (expr);
1184 validate_change (NULL_RTX, &SET_DEST (xexpr), new_dest, true);
1189 /* Simplify INSN. Remove all {PRE,POST}_{INC,DEC,MODIFY} rtxes,
1190 replace them with their value in the insn and add the side-effects
1191 as other sets to the insn. */
1193 static void
1194 adjust_insn (basic_block bb, rtx_insn *insn)
1196 struct adjust_mem_data amd;
1197 rtx set;
1199 #ifdef HAVE_window_save
1200 /* If the target machine has an explicit window save instruction, the
1201 transformation OUTGOING_REGNO -> INCOMING_REGNO is done there. */
1202 if (RTX_FRAME_RELATED_P (insn)
1203 && find_reg_note (insn, REG_CFA_WINDOW_SAVE, NULL_RTX))
1205 unsigned int i, nregs = vec_safe_length (windowed_parm_regs);
1206 rtx rtl = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (nregs * 2));
1207 parm_reg_t *p;
1209 FOR_EACH_VEC_SAFE_ELT (windowed_parm_regs, i, p)
1211 XVECEXP (rtl, 0, i * 2)
1212 = gen_rtx_SET (p->incoming, p->outgoing);
1213 /* Do not clobber the attached DECL, but only the REG. */
1214 XVECEXP (rtl, 0, i * 2 + 1)
1215 = gen_rtx_CLOBBER (GET_MODE (p->outgoing),
1216 gen_raw_REG (GET_MODE (p->outgoing),
1217 REGNO (p->outgoing)));
1220 validate_change (NULL_RTX, &PATTERN (insn), rtl, true);
1221 return;
1223 #endif
1225 amd.mem_mode = VOIDmode;
1226 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
1227 amd.side_effects = NULL;
1229 amd.store = true;
1230 note_stores (PATTERN (insn), adjust_mem_stores, &amd);
1232 amd.store = false;
1233 if (GET_CODE (PATTERN (insn)) == PARALLEL
1234 && asm_noperands (PATTERN (insn)) > 0
1235 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1237 rtx body, set0;
1238 int i;
1240 /* inline-asm with multiple sets is tiny bit more complicated,
1241 because the 3 vectors in ASM_OPERANDS need to be shared between
1242 all ASM_OPERANDS in the instruction. adjust_mems will
1243 not touch ASM_OPERANDS other than the first one, asm_noperands
1244 test above needs to be called before that (otherwise it would fail)
1245 and afterwards this code fixes it up. */
1246 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1247 body = PATTERN (insn);
1248 set0 = XVECEXP (body, 0, 0);
1249 gcc_checking_assert (GET_CODE (set0) == SET
1250 && GET_CODE (SET_SRC (set0)) == ASM_OPERANDS
1251 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set0)) == 0);
1252 for (i = 1; i < XVECLEN (body, 0); i++)
1253 if (GET_CODE (XVECEXP (body, 0, i)) != SET)
1254 break;
1255 else
1257 set = XVECEXP (body, 0, i);
1258 gcc_checking_assert (GET_CODE (SET_SRC (set)) == ASM_OPERANDS
1259 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set))
1260 == i);
1261 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (set))
1262 != ASM_OPERANDS_INPUT_VEC (SET_SRC (set0))
1263 || ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set))
1264 != ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0))
1265 || ASM_OPERANDS_LABEL_VEC (SET_SRC (set))
1266 != ASM_OPERANDS_LABEL_VEC (SET_SRC (set0)))
1268 rtx newsrc = shallow_copy_rtx (SET_SRC (set));
1269 ASM_OPERANDS_INPUT_VEC (newsrc)
1270 = ASM_OPERANDS_INPUT_VEC (SET_SRC (set0));
1271 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (newsrc)
1272 = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0));
1273 ASM_OPERANDS_LABEL_VEC (newsrc)
1274 = ASM_OPERANDS_LABEL_VEC (SET_SRC (set0));
1275 validate_change (NULL_RTX, &SET_SRC (set), newsrc, true);
1279 else
1280 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1282 /* For read-only MEMs containing some constant, prefer those
1283 constants. */
1284 set = single_set (insn);
1285 if (set && MEM_P (SET_SRC (set)) && MEM_READONLY_P (SET_SRC (set)))
1287 rtx note = find_reg_equal_equiv_note (insn);
1289 if (note && CONSTANT_P (XEXP (note, 0)))
1290 validate_change (NULL_RTX, &SET_SRC (set), XEXP (note, 0), true);
1293 if (amd.side_effects)
1295 rtx *pat, new_pat, s;
1296 int i, oldn, newn;
1298 pat = &PATTERN (insn);
1299 if (GET_CODE (*pat) == COND_EXEC)
1300 pat = &COND_EXEC_CODE (*pat);
1301 if (GET_CODE (*pat) == PARALLEL)
1302 oldn = XVECLEN (*pat, 0);
1303 else
1304 oldn = 1;
1305 for (s = amd.side_effects, newn = 0; s; newn++)
1306 s = XEXP (s, 1);
1307 new_pat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (oldn + newn));
1308 if (GET_CODE (*pat) == PARALLEL)
1309 for (i = 0; i < oldn; i++)
1310 XVECEXP (new_pat, 0, i) = XVECEXP (*pat, 0, i);
1311 else
1312 XVECEXP (new_pat, 0, 0) = *pat;
1313 for (s = amd.side_effects, i = oldn; i < oldn + newn; i++, s = XEXP (s, 1))
1314 XVECEXP (new_pat, 0, i) = XEXP (s, 0);
1315 free_EXPR_LIST_list (&amd.side_effects);
1316 validate_change (NULL_RTX, pat, new_pat, true);
1320 /* Return the DEBUG_EXPR of a DEBUG_EXPR_DECL or the VALUE in DV. */
1321 static inline rtx
1322 dv_as_rtx (decl_or_value dv)
1324 tree decl;
1326 if (dv_is_value_p (dv))
1327 return dv_as_value (dv);
1329 decl = dv_as_decl (dv);
1331 gcc_checking_assert (TREE_CODE (decl) == DEBUG_EXPR_DECL);
1332 return DECL_RTL_KNOWN_SET (decl);
1335 /* Return nonzero if a decl_or_value must not have more than one
1336 variable part. The returned value discriminates among various
1337 kinds of one-part DVs ccording to enum onepart_enum. */
1338 static inline onepart_enum_t
1339 dv_onepart_p (decl_or_value dv)
1341 tree decl;
1343 if (!MAY_HAVE_DEBUG_INSNS)
1344 return NOT_ONEPART;
1346 if (dv_is_value_p (dv))
1347 return ONEPART_VALUE;
1349 decl = dv_as_decl (dv);
1351 if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
1352 return ONEPART_DEXPR;
1354 if (target_for_debug_bind (decl) != NULL_TREE)
1355 return ONEPART_VDECL;
1357 return NOT_ONEPART;
1360 /* Return the variable pool to be used for a dv of type ONEPART. */
1361 static inline pool_allocator &
1362 onepart_pool (onepart_enum_t onepart)
1364 return onepart ? valvar_pool : var_pool;
1367 /* Allocate a variable_def from the corresponding variable pool. */
1368 static inline variable_def *
1369 onepart_pool_allocate (onepart_enum_t onepart)
1371 return (variable_def*) onepart_pool (onepart).allocate ();
1374 /* Build a decl_or_value out of a decl. */
1375 static inline decl_or_value
1376 dv_from_decl (tree decl)
1378 decl_or_value dv;
1379 dv = decl;
1380 gcc_checking_assert (dv_is_decl_p (dv));
1381 return dv;
1384 /* Build a decl_or_value out of a value. */
1385 static inline decl_or_value
1386 dv_from_value (rtx value)
1388 decl_or_value dv;
1389 dv = value;
1390 gcc_checking_assert (dv_is_value_p (dv));
1391 return dv;
1394 /* Return a value or the decl of a debug_expr as a decl_or_value. */
1395 static inline decl_or_value
1396 dv_from_rtx (rtx x)
1398 decl_or_value dv;
1400 switch (GET_CODE (x))
1402 case DEBUG_EXPR:
1403 dv = dv_from_decl (DEBUG_EXPR_TREE_DECL (x));
1404 gcc_checking_assert (DECL_RTL_KNOWN_SET (DEBUG_EXPR_TREE_DECL (x)) == x);
1405 break;
1407 case VALUE:
1408 dv = dv_from_value (x);
1409 break;
1411 default:
1412 gcc_unreachable ();
1415 return dv;
1418 extern void debug_dv (decl_or_value dv);
1420 DEBUG_FUNCTION void
1421 debug_dv (decl_or_value dv)
1423 if (dv_is_value_p (dv))
1424 debug_rtx (dv_as_value (dv));
1425 else
1426 debug_generic_stmt (dv_as_decl (dv));
1429 static void loc_exp_dep_clear (variable var);
1431 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
1433 static void
1434 variable_htab_free (void *elem)
1436 int i;
1437 variable var = (variable) elem;
1438 location_chain node, next;
1440 gcc_checking_assert (var->refcount > 0);
1442 var->refcount--;
1443 if (var->refcount > 0)
1444 return;
1446 for (i = 0; i < var->n_var_parts; i++)
1448 for (node = var->var_part[i].loc_chain; node; node = next)
1450 next = node->next;
1451 delete node;
1453 var->var_part[i].loc_chain = NULL;
1455 if (var->onepart && VAR_LOC_1PAUX (var))
1457 loc_exp_dep_clear (var);
1458 if (VAR_LOC_DEP_LST (var))
1459 VAR_LOC_DEP_LST (var)->pprev = NULL;
1460 XDELETE (VAR_LOC_1PAUX (var));
1461 /* These may be reused across functions, so reset
1462 e.g. NO_LOC_P. */
1463 if (var->onepart == ONEPART_DEXPR)
1464 set_dv_changed (var->dv, true);
1466 onepart_pool (var->onepart).remove (var);
1469 /* Initialize the set (array) SET of attrs to empty lists. */
1471 static void
1472 init_attrs_list_set (attrs *set)
1474 int i;
1476 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1477 set[i] = NULL;
1480 /* Make the list *LISTP empty. */
1482 static void
1483 attrs_list_clear (attrs *listp)
1485 attrs list, next;
1487 for (list = *listp; list; list = next)
1489 next = list->next;
1490 delete list;
1492 *listp = NULL;
1495 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
1497 static attrs
1498 attrs_list_member (attrs list, decl_or_value dv, HOST_WIDE_INT offset)
1500 for (; list; list = list->next)
1501 if (dv_as_opaque (list->dv) == dv_as_opaque (dv) && list->offset == offset)
1502 return list;
1503 return NULL;
1506 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
1508 static void
1509 attrs_list_insert (attrs *listp, decl_or_value dv,
1510 HOST_WIDE_INT offset, rtx loc)
1512 attrs list = new attrs_def;
1513 list->loc = loc;
1514 list->dv = dv;
1515 list->offset = offset;
1516 list->next = *listp;
1517 *listp = list;
1520 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
1522 static void
1523 attrs_list_copy (attrs *dstp, attrs src)
1525 attrs_list_clear (dstp);
1526 for (; src; src = src->next)
1528 attrs n = new attrs_def;
1529 n->loc = src->loc;
1530 n->dv = src->dv;
1531 n->offset = src->offset;
1532 n->next = *dstp;
1533 *dstp = n;
1537 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
1539 static void
1540 attrs_list_union (attrs *dstp, attrs src)
1542 for (; src; src = src->next)
1544 if (!attrs_list_member (*dstp, src->dv, src->offset))
1545 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1549 /* Combine nodes that are not onepart nodes from SRC and SRC2 into
1550 *DSTP. */
1552 static void
1553 attrs_list_mpdv_union (attrs *dstp, attrs src, attrs src2)
1555 gcc_assert (!*dstp);
1556 for (; src; src = src->next)
1558 if (!dv_onepart_p (src->dv))
1559 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1561 for (src = src2; src; src = src->next)
1563 if (!dv_onepart_p (src->dv)
1564 && !attrs_list_member (*dstp, src->dv, src->offset))
1565 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1569 /* Shared hashtable support. */
1571 /* Return true if VARS is shared. */
1573 static inline bool
1574 shared_hash_shared (shared_hash vars)
1576 return vars->refcount > 1;
1579 /* Return the hash table for VARS. */
1581 static inline variable_table_type *
1582 shared_hash_htab (shared_hash vars)
1584 return vars->htab;
1587 /* Return true if VAR is shared, or maybe because VARS is shared. */
1589 static inline bool
1590 shared_var_p (variable var, shared_hash vars)
1592 /* Don't count an entry in the changed_variables table as a duplicate. */
1593 return ((var->refcount > 1 + (int) var->in_changed_variables)
1594 || shared_hash_shared (vars));
1597 /* Copy variables into a new hash table. */
1599 static shared_hash
1600 shared_hash_unshare (shared_hash vars)
1602 shared_hash new_vars = new shared_hash_def;
1603 gcc_assert (vars->refcount > 1);
1604 new_vars->refcount = 1;
1605 new_vars->htab = new variable_table_type (vars->htab->elements () + 3);
1606 vars_copy (new_vars->htab, vars->htab);
1607 vars->refcount--;
1608 return new_vars;
1611 /* Increment reference counter on VARS and return it. */
1613 static inline shared_hash
1614 shared_hash_copy (shared_hash vars)
1616 vars->refcount++;
1617 return vars;
1620 /* Decrement reference counter and destroy hash table if not shared
1621 anymore. */
1623 static void
1624 shared_hash_destroy (shared_hash vars)
1626 gcc_checking_assert (vars->refcount > 0);
1627 if (--vars->refcount == 0)
1629 delete vars->htab;
1630 delete vars;
1634 /* Unshare *PVARS if shared and return slot for DV. If INS is
1635 INSERT, insert it if not already present. */
1637 static inline variable_def **
1638 shared_hash_find_slot_unshare_1 (shared_hash *pvars, decl_or_value dv,
1639 hashval_t dvhash, enum insert_option ins)
1641 if (shared_hash_shared (*pvars))
1642 *pvars = shared_hash_unshare (*pvars);
1643 return shared_hash_htab (*pvars)->find_slot_with_hash (dv, dvhash, ins);
1646 static inline variable_def **
1647 shared_hash_find_slot_unshare (shared_hash *pvars, decl_or_value dv,
1648 enum insert_option ins)
1650 return shared_hash_find_slot_unshare_1 (pvars, dv, dv_htab_hash (dv), ins);
1653 /* Return slot for DV, if it is already present in the hash table.
1654 If it is not present, insert it only VARS is not shared, otherwise
1655 return NULL. */
1657 static inline variable_def **
1658 shared_hash_find_slot_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
1660 return shared_hash_htab (vars)->find_slot_with_hash (dv, dvhash,
1661 shared_hash_shared (vars)
1662 ? NO_INSERT : INSERT);
1665 static inline variable_def **
1666 shared_hash_find_slot (shared_hash vars, decl_or_value dv)
1668 return shared_hash_find_slot_1 (vars, dv, dv_htab_hash (dv));
1671 /* Return slot for DV only if it is already present in the hash table. */
1673 static inline variable_def **
1674 shared_hash_find_slot_noinsert_1 (shared_hash vars, decl_or_value dv,
1675 hashval_t dvhash)
1677 return shared_hash_htab (vars)->find_slot_with_hash (dv, dvhash, NO_INSERT);
1680 static inline variable_def **
1681 shared_hash_find_slot_noinsert (shared_hash vars, decl_or_value dv)
1683 return shared_hash_find_slot_noinsert_1 (vars, dv, dv_htab_hash (dv));
1686 /* Return variable for DV or NULL if not already present in the hash
1687 table. */
1689 static inline variable
1690 shared_hash_find_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
1692 return shared_hash_htab (vars)->find_with_hash (dv, dvhash);
1695 static inline variable
1696 shared_hash_find (shared_hash vars, decl_or_value dv)
1698 return shared_hash_find_1 (vars, dv, dv_htab_hash (dv));
1701 /* Return true if TVAL is better than CVAL as a canonival value. We
1702 choose lowest-numbered VALUEs, using the RTX address as a
1703 tie-breaker. The idea is to arrange them into a star topology,
1704 such that all of them are at most one step away from the canonical
1705 value, and the canonical value has backlinks to all of them, in
1706 addition to all the actual locations. We don't enforce this
1707 topology throughout the entire dataflow analysis, though.
1710 static inline bool
1711 canon_value_cmp (rtx tval, rtx cval)
1713 return !cval
1714 || CSELIB_VAL_PTR (tval)->uid < CSELIB_VAL_PTR (cval)->uid;
1717 static bool dst_can_be_shared;
1719 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
1721 static variable_def **
1722 unshare_variable (dataflow_set *set, variable_def **slot, variable var,
1723 enum var_init_status initialized)
1725 variable new_var;
1726 int i;
1728 new_var = onepart_pool_allocate (var->onepart);
1729 new_var->dv = var->dv;
1730 new_var->refcount = 1;
1731 var->refcount--;
1732 new_var->n_var_parts = var->n_var_parts;
1733 new_var->onepart = var->onepart;
1734 new_var->in_changed_variables = false;
1736 if (! flag_var_tracking_uninit)
1737 initialized = VAR_INIT_STATUS_INITIALIZED;
1739 for (i = 0; i < var->n_var_parts; i++)
1741 location_chain node;
1742 location_chain *nextp;
1744 if (i == 0 && var->onepart)
1746 /* One-part auxiliary data is only used while emitting
1747 notes, so propagate it to the new variable in the active
1748 dataflow set. If we're not emitting notes, this will be
1749 a no-op. */
1750 gcc_checking_assert (!VAR_LOC_1PAUX (var) || emit_notes);
1751 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (var);
1752 VAR_LOC_1PAUX (var) = NULL;
1754 else
1755 VAR_PART_OFFSET (new_var, i) = VAR_PART_OFFSET (var, i);
1756 nextp = &new_var->var_part[i].loc_chain;
1757 for (node = var->var_part[i].loc_chain; node; node = node->next)
1759 location_chain new_lc;
1761 new_lc = new location_chain_def;
1762 new_lc->next = NULL;
1763 if (node->init > initialized)
1764 new_lc->init = node->init;
1765 else
1766 new_lc->init = initialized;
1767 if (node->set_src && !(MEM_P (node->set_src)))
1768 new_lc->set_src = node->set_src;
1769 else
1770 new_lc->set_src = NULL;
1771 new_lc->loc = node->loc;
1773 *nextp = new_lc;
1774 nextp = &new_lc->next;
1777 new_var->var_part[i].cur_loc = var->var_part[i].cur_loc;
1780 dst_can_be_shared = false;
1781 if (shared_hash_shared (set->vars))
1782 slot = shared_hash_find_slot_unshare (&set->vars, var->dv, NO_INSERT);
1783 else if (set->traversed_vars && set->vars != set->traversed_vars)
1784 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
1785 *slot = new_var;
1786 if (var->in_changed_variables)
1788 variable_def **cslot
1789 = changed_variables->find_slot_with_hash (var->dv,
1790 dv_htab_hash (var->dv),
1791 NO_INSERT);
1792 gcc_assert (*cslot == (void *) var);
1793 var->in_changed_variables = false;
1794 variable_htab_free (var);
1795 *cslot = new_var;
1796 new_var->in_changed_variables = true;
1798 return slot;
1801 /* Copy all variables from hash table SRC to hash table DST. */
1803 static void
1804 vars_copy (variable_table_type *dst, variable_table_type *src)
1806 variable_iterator_type hi;
1807 variable var;
1809 FOR_EACH_HASH_TABLE_ELEMENT (*src, var, variable, hi)
1811 variable_def **dstp;
1812 var->refcount++;
1813 dstp = dst->find_slot_with_hash (var->dv, dv_htab_hash (var->dv),
1814 INSERT);
1815 *dstp = var;
1819 /* Map a decl to its main debug decl. */
1821 static inline tree
1822 var_debug_decl (tree decl)
1824 if (decl && TREE_CODE (decl) == VAR_DECL
1825 && DECL_HAS_DEBUG_EXPR_P (decl))
1827 tree debugdecl = DECL_DEBUG_EXPR (decl);
1828 if (DECL_P (debugdecl))
1829 decl = debugdecl;
1832 return decl;
1835 /* Set the register LOC to contain DV, OFFSET. */
1837 static void
1838 var_reg_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1839 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
1840 enum insert_option iopt)
1842 attrs node;
1843 bool decl_p = dv_is_decl_p (dv);
1845 if (decl_p)
1846 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
1848 for (node = set->regs[REGNO (loc)]; node; node = node->next)
1849 if (dv_as_opaque (node->dv) == dv_as_opaque (dv)
1850 && node->offset == offset)
1851 break;
1852 if (!node)
1853 attrs_list_insert (&set->regs[REGNO (loc)], dv, offset, loc);
1854 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
1857 /* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
1859 static void
1860 var_reg_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1861 rtx set_src)
1863 tree decl = REG_EXPR (loc);
1864 HOST_WIDE_INT offset = REG_OFFSET (loc);
1866 var_reg_decl_set (set, loc, initialized,
1867 dv_from_decl (decl), offset, set_src, INSERT);
1870 static enum var_init_status
1871 get_init_value (dataflow_set *set, rtx loc, decl_or_value dv)
1873 variable var;
1874 int i;
1875 enum var_init_status ret_val = VAR_INIT_STATUS_UNKNOWN;
1877 if (! flag_var_tracking_uninit)
1878 return VAR_INIT_STATUS_INITIALIZED;
1880 var = shared_hash_find (set->vars, dv);
1881 if (var)
1883 for (i = 0; i < var->n_var_parts && ret_val == VAR_INIT_STATUS_UNKNOWN; i++)
1885 location_chain nextp;
1886 for (nextp = var->var_part[i].loc_chain; nextp; nextp = nextp->next)
1887 if (rtx_equal_p (nextp->loc, loc))
1889 ret_val = nextp->init;
1890 break;
1895 return ret_val;
1898 /* Delete current content of register LOC in dataflow set SET and set
1899 the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
1900 MODIFY is true, any other live copies of the same variable part are
1901 also deleted from the dataflow set, otherwise the variable part is
1902 assumed to be copied from another location holding the same
1903 part. */
1905 static void
1906 var_reg_delete_and_set (dataflow_set *set, rtx loc, bool modify,
1907 enum var_init_status initialized, rtx set_src)
1909 tree decl = REG_EXPR (loc);
1910 HOST_WIDE_INT offset = REG_OFFSET (loc);
1911 attrs node, next;
1912 attrs *nextp;
1914 decl = var_debug_decl (decl);
1916 if (initialized == VAR_INIT_STATUS_UNKNOWN)
1917 initialized = get_init_value (set, loc, dv_from_decl (decl));
1919 nextp = &set->regs[REGNO (loc)];
1920 for (node = *nextp; node; node = next)
1922 next = node->next;
1923 if (dv_as_opaque (node->dv) != decl || node->offset != offset)
1925 delete_variable_part (set, node->loc, node->dv, node->offset);
1926 delete node;
1927 *nextp = next;
1929 else
1931 node->loc = loc;
1932 nextp = &node->next;
1935 if (modify)
1936 clobber_variable_part (set, loc, dv_from_decl (decl), offset, set_src);
1937 var_reg_set (set, loc, initialized, set_src);
1940 /* Delete the association of register LOC in dataflow set SET with any
1941 variables that aren't onepart. If CLOBBER is true, also delete any
1942 other live copies of the same variable part, and delete the
1943 association with onepart dvs too. */
1945 static void
1946 var_reg_delete (dataflow_set *set, rtx loc, bool clobber)
1948 attrs *nextp = &set->regs[REGNO (loc)];
1949 attrs node, next;
1951 if (clobber)
1953 tree decl = REG_EXPR (loc);
1954 HOST_WIDE_INT offset = REG_OFFSET (loc);
1956 decl = var_debug_decl (decl);
1958 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
1961 for (node = *nextp; node; node = next)
1963 next = node->next;
1964 if (clobber || !dv_onepart_p (node->dv))
1966 delete_variable_part (set, node->loc, node->dv, node->offset);
1967 delete node;
1968 *nextp = next;
1970 else
1971 nextp = &node->next;
1975 /* Delete content of register with number REGNO in dataflow set SET. */
1977 static void
1978 var_regno_delete (dataflow_set *set, int regno)
1980 attrs *reg = &set->regs[regno];
1981 attrs node, next;
1983 for (node = *reg; node; node = next)
1985 next = node->next;
1986 delete_variable_part (set, node->loc, node->dv, node->offset);
1987 delete node;
1989 *reg = NULL;
1992 /* Return true if I is the negated value of a power of two. */
1993 static bool
1994 negative_power_of_two_p (HOST_WIDE_INT i)
1996 unsigned HOST_WIDE_INT x = -(unsigned HOST_WIDE_INT)i;
1997 return x == (x & -x);
2000 /* Strip constant offsets and alignments off of LOC. Return the base
2001 expression. */
2003 static rtx
2004 vt_get_canonicalize_base (rtx loc)
2006 while ((GET_CODE (loc) == PLUS
2007 || GET_CODE (loc) == AND)
2008 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2009 && (GET_CODE (loc) != AND
2010 || negative_power_of_two_p (INTVAL (XEXP (loc, 1)))))
2011 loc = XEXP (loc, 0);
2013 return loc;
2016 /* This caches canonicalized addresses for VALUEs, computed using
2017 information in the global cselib table. */
2018 static hash_map<rtx, rtx> *global_get_addr_cache;
2020 /* This caches canonicalized addresses for VALUEs, computed using
2021 information from the global cache and information pertaining to a
2022 basic block being analyzed. */
2023 static hash_map<rtx, rtx> *local_get_addr_cache;
2025 static rtx vt_canonicalize_addr (dataflow_set *, rtx);
2027 /* Return the canonical address for LOC, that must be a VALUE, using a
2028 cached global equivalence or computing it and storing it in the
2029 global cache. */
2031 static rtx
2032 get_addr_from_global_cache (rtx const loc)
2034 rtx x;
2036 gcc_checking_assert (GET_CODE (loc) == VALUE);
2038 bool existed;
2039 rtx *slot = &global_get_addr_cache->get_or_insert (loc, &existed);
2040 if (existed)
2041 return *slot;
2043 x = canon_rtx (get_addr (loc));
2045 /* Tentative, avoiding infinite recursion. */
2046 *slot = x;
2048 if (x != loc)
2050 rtx nx = vt_canonicalize_addr (NULL, x);
2051 if (nx != x)
2053 /* The table may have moved during recursion, recompute
2054 SLOT. */
2055 *global_get_addr_cache->get (loc) = x = nx;
2059 return x;
2062 /* Return the canonical address for LOC, that must be a VALUE, using a
2063 cached local equivalence or computing it and storing it in the
2064 local cache. */
2066 static rtx
2067 get_addr_from_local_cache (dataflow_set *set, rtx const loc)
2069 rtx x;
2070 decl_or_value dv;
2071 variable var;
2072 location_chain l;
2074 gcc_checking_assert (GET_CODE (loc) == VALUE);
2076 bool existed;
2077 rtx *slot = &local_get_addr_cache->get_or_insert (loc, &existed);
2078 if (existed)
2079 return *slot;
2081 x = get_addr_from_global_cache (loc);
2083 /* Tentative, avoiding infinite recursion. */
2084 *slot = x;
2086 /* Recurse to cache local expansion of X, or if we need to search
2087 for a VALUE in the expansion. */
2088 if (x != loc)
2090 rtx nx = vt_canonicalize_addr (set, x);
2091 if (nx != x)
2093 slot = local_get_addr_cache->get (loc);
2094 *slot = x = nx;
2096 return x;
2099 dv = dv_from_rtx (x);
2100 var = shared_hash_find (set->vars, dv);
2101 if (!var)
2102 return x;
2104 /* Look for an improved equivalent expression. */
2105 for (l = var->var_part[0].loc_chain; l; l = l->next)
2107 rtx base = vt_get_canonicalize_base (l->loc);
2108 if (GET_CODE (base) == VALUE
2109 && canon_value_cmp (base, loc))
2111 rtx nx = vt_canonicalize_addr (set, l->loc);
2112 if (x != nx)
2114 slot = local_get_addr_cache->get (loc);
2115 *slot = x = nx;
2117 break;
2121 return x;
2124 /* Canonicalize LOC using equivalences from SET in addition to those
2125 in the cselib static table. It expects a VALUE-based expression,
2126 and it will only substitute VALUEs with other VALUEs or
2127 function-global equivalences, so that, if two addresses have base
2128 VALUEs that are locally or globally related in ways that
2129 memrefs_conflict_p cares about, they will both canonicalize to
2130 expressions that have the same base VALUE.
2132 The use of VALUEs as canonical base addresses enables the canonical
2133 RTXs to remain unchanged globally, if they resolve to a constant,
2134 or throughout a basic block otherwise, so that they can be cached
2135 and the cache needs not be invalidated when REGs, MEMs or such
2136 change. */
2138 static rtx
2139 vt_canonicalize_addr (dataflow_set *set, rtx oloc)
2141 HOST_WIDE_INT ofst = 0;
2142 machine_mode mode = GET_MODE (oloc);
2143 rtx loc = oloc;
2144 rtx x;
2145 bool retry = true;
2147 while (retry)
2149 while (GET_CODE (loc) == PLUS
2150 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2152 ofst += INTVAL (XEXP (loc, 1));
2153 loc = XEXP (loc, 0);
2156 /* Alignment operations can't normally be combined, so just
2157 canonicalize the base and we're done. We'll normally have
2158 only one stack alignment anyway. */
2159 if (GET_CODE (loc) == AND
2160 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2161 && negative_power_of_two_p (INTVAL (XEXP (loc, 1))))
2163 x = vt_canonicalize_addr (set, XEXP (loc, 0));
2164 if (x != XEXP (loc, 0))
2165 loc = gen_rtx_AND (mode, x, XEXP (loc, 1));
2166 retry = false;
2169 if (GET_CODE (loc) == VALUE)
2171 if (set)
2172 loc = get_addr_from_local_cache (set, loc);
2173 else
2174 loc = get_addr_from_global_cache (loc);
2176 /* Consolidate plus_constants. */
2177 while (ofst && GET_CODE (loc) == PLUS
2178 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2180 ofst += INTVAL (XEXP (loc, 1));
2181 loc = XEXP (loc, 0);
2184 retry = false;
2186 else
2188 x = canon_rtx (loc);
2189 if (retry)
2190 retry = (x != loc);
2191 loc = x;
2195 /* Add OFST back in. */
2196 if (ofst)
2198 /* Don't build new RTL if we can help it. */
2199 if (GET_CODE (oloc) == PLUS
2200 && XEXP (oloc, 0) == loc
2201 && INTVAL (XEXP (oloc, 1)) == ofst)
2202 return oloc;
2204 loc = plus_constant (mode, loc, ofst);
2207 return loc;
2210 /* Return true iff there's a true dependence between MLOC and LOC.
2211 MADDR must be a canonicalized version of MLOC's address. */
2213 static inline bool
2214 vt_canon_true_dep (dataflow_set *set, rtx mloc, rtx maddr, rtx loc)
2216 if (GET_CODE (loc) != MEM)
2217 return false;
2219 rtx addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2220 if (!canon_true_dependence (mloc, GET_MODE (mloc), maddr, loc, addr))
2221 return false;
2223 return true;
2226 /* Hold parameters for the hashtab traversal function
2227 drop_overlapping_mem_locs, see below. */
2229 struct overlapping_mems
2231 dataflow_set *set;
2232 rtx loc, addr;
2235 /* Remove all MEMs that overlap with COMS->LOC from the location list
2236 of a hash table entry for a value. COMS->ADDR must be a
2237 canonicalized form of COMS->LOC's address, and COMS->LOC must be
2238 canonicalized itself. */
2241 drop_overlapping_mem_locs (variable_def **slot, overlapping_mems *coms)
2243 dataflow_set *set = coms->set;
2244 rtx mloc = coms->loc, addr = coms->addr;
2245 variable var = *slot;
2247 if (var->onepart == ONEPART_VALUE)
2249 location_chain loc, *locp;
2250 bool changed = false;
2251 rtx cur_loc;
2253 gcc_assert (var->n_var_parts == 1);
2255 if (shared_var_p (var, set->vars))
2257 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
2258 if (vt_canon_true_dep (set, mloc, addr, loc->loc))
2259 break;
2261 if (!loc)
2262 return 1;
2264 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
2265 var = *slot;
2266 gcc_assert (var->n_var_parts == 1);
2269 if (VAR_LOC_1PAUX (var))
2270 cur_loc = VAR_LOC_FROM (var);
2271 else
2272 cur_loc = var->var_part[0].cur_loc;
2274 for (locp = &var->var_part[0].loc_chain, loc = *locp;
2275 loc; loc = *locp)
2277 if (!vt_canon_true_dep (set, mloc, addr, loc->loc))
2279 locp = &loc->next;
2280 continue;
2283 *locp = loc->next;
2284 /* If we have deleted the location which was last emitted
2285 we have to emit new location so add the variable to set
2286 of changed variables. */
2287 if (cur_loc == loc->loc)
2289 changed = true;
2290 var->var_part[0].cur_loc = NULL;
2291 if (VAR_LOC_1PAUX (var))
2292 VAR_LOC_FROM (var) = NULL;
2294 delete loc;
2297 if (!var->var_part[0].loc_chain)
2299 var->n_var_parts--;
2300 changed = true;
2302 if (changed)
2303 variable_was_changed (var, set);
2306 return 1;
2309 /* Remove from SET all VALUE bindings to MEMs that overlap with LOC. */
2311 static void
2312 clobber_overlapping_mems (dataflow_set *set, rtx loc)
2314 struct overlapping_mems coms;
2316 gcc_checking_assert (GET_CODE (loc) == MEM);
2318 coms.set = set;
2319 coms.loc = canon_rtx (loc);
2320 coms.addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2322 set->traversed_vars = set->vars;
2323 shared_hash_htab (set->vars)
2324 ->traverse <overlapping_mems*, drop_overlapping_mem_locs> (&coms);
2325 set->traversed_vars = NULL;
2328 /* Set the location of DV, OFFSET as the MEM LOC. */
2330 static void
2331 var_mem_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2332 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
2333 enum insert_option iopt)
2335 if (dv_is_decl_p (dv))
2336 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
2338 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
2341 /* Set the location part of variable MEM_EXPR (LOC) in dataflow set
2342 SET to LOC.
2343 Adjust the address first if it is stack pointer based. */
2345 static void
2346 var_mem_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2347 rtx set_src)
2349 tree decl = MEM_EXPR (loc);
2350 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2352 var_mem_decl_set (set, loc, initialized,
2353 dv_from_decl (decl), offset, set_src, INSERT);
2356 /* Delete and set the location part of variable MEM_EXPR (LOC) in
2357 dataflow set SET to LOC. If MODIFY is true, any other live copies
2358 of the same variable part are also deleted from the dataflow set,
2359 otherwise the variable part is assumed to be copied from another
2360 location holding the same part.
2361 Adjust the address first if it is stack pointer based. */
2363 static void
2364 var_mem_delete_and_set (dataflow_set *set, rtx loc, bool modify,
2365 enum var_init_status initialized, rtx set_src)
2367 tree decl = MEM_EXPR (loc);
2368 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2370 clobber_overlapping_mems (set, loc);
2371 decl = var_debug_decl (decl);
2373 if (initialized == VAR_INIT_STATUS_UNKNOWN)
2374 initialized = get_init_value (set, loc, dv_from_decl (decl));
2376 if (modify)
2377 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, set_src);
2378 var_mem_set (set, loc, initialized, set_src);
2381 /* Delete the location part LOC from dataflow set SET. If CLOBBER is
2382 true, also delete any other live copies of the same variable part.
2383 Adjust the address first if it is stack pointer based. */
2385 static void
2386 var_mem_delete (dataflow_set *set, rtx loc, bool clobber)
2388 tree decl = MEM_EXPR (loc);
2389 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2391 clobber_overlapping_mems (set, loc);
2392 decl = var_debug_decl (decl);
2393 if (clobber)
2394 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
2395 delete_variable_part (set, loc, dv_from_decl (decl), offset);
2398 /* Return true if LOC should not be expanded for location expressions,
2399 or used in them. */
2401 static inline bool
2402 unsuitable_loc (rtx loc)
2404 switch (GET_CODE (loc))
2406 case PC:
2407 case SCRATCH:
2408 case CC0:
2409 case ASM_INPUT:
2410 case ASM_OPERANDS:
2411 return true;
2413 default:
2414 return false;
2418 /* Bind VAL to LOC in SET. If MODIFIED, detach LOC from any values
2419 bound to it. */
2421 static inline void
2422 val_bind (dataflow_set *set, rtx val, rtx loc, bool modified)
2424 if (REG_P (loc))
2426 if (modified)
2427 var_regno_delete (set, REGNO (loc));
2428 var_reg_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2429 dv_from_value (val), 0, NULL_RTX, INSERT);
2431 else if (MEM_P (loc))
2433 struct elt_loc_list *l = CSELIB_VAL_PTR (val)->locs;
2435 if (modified)
2436 clobber_overlapping_mems (set, loc);
2438 if (l && GET_CODE (l->loc) == VALUE)
2439 l = canonical_cselib_val (CSELIB_VAL_PTR (l->loc))->locs;
2441 /* If this MEM is a global constant, we don't need it in the
2442 dynamic tables. ??? We should test this before emitting the
2443 micro-op in the first place. */
2444 while (l)
2445 if (GET_CODE (l->loc) == MEM && XEXP (l->loc, 0) == XEXP (loc, 0))
2446 break;
2447 else
2448 l = l->next;
2450 if (!l)
2451 var_mem_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2452 dv_from_value (val), 0, NULL_RTX, INSERT);
2454 else
2456 /* Other kinds of equivalences are necessarily static, at least
2457 so long as we do not perform substitutions while merging
2458 expressions. */
2459 gcc_unreachable ();
2460 set_variable_part (set, loc, dv_from_value (val), 0,
2461 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2465 /* Bind a value to a location it was just stored in. If MODIFIED
2466 holds, assume the location was modified, detaching it from any
2467 values bound to it. */
2469 static void
2470 val_store (dataflow_set *set, rtx val, rtx loc, rtx_insn *insn,
2471 bool modified)
2473 cselib_val *v = CSELIB_VAL_PTR (val);
2475 gcc_assert (cselib_preserved_value_p (v));
2477 if (dump_file)
2479 fprintf (dump_file, "%i: ", insn ? INSN_UID (insn) : 0);
2480 print_inline_rtx (dump_file, loc, 0);
2481 fprintf (dump_file, " evaluates to ");
2482 print_inline_rtx (dump_file, val, 0);
2483 if (v->locs)
2485 struct elt_loc_list *l;
2486 for (l = v->locs; l; l = l->next)
2488 fprintf (dump_file, "\n%i: ", INSN_UID (l->setting_insn));
2489 print_inline_rtx (dump_file, l->loc, 0);
2492 fprintf (dump_file, "\n");
2495 gcc_checking_assert (!unsuitable_loc (loc));
2497 val_bind (set, val, loc, modified);
2500 /* Clear (canonical address) slots that reference X. */
2502 bool
2503 local_get_addr_clear_given_value (rtx const &, rtx *slot, rtx x)
2505 if (vt_get_canonicalize_base (*slot) == x)
2506 *slot = NULL;
2507 return true;
2510 /* Reset this node, detaching all its equivalences. Return the slot
2511 in the variable hash table that holds dv, if there is one. */
2513 static void
2514 val_reset (dataflow_set *set, decl_or_value dv)
2516 variable var = shared_hash_find (set->vars, dv) ;
2517 location_chain node;
2518 rtx cval;
2520 if (!var || !var->n_var_parts)
2521 return;
2523 gcc_assert (var->n_var_parts == 1);
2525 if (var->onepart == ONEPART_VALUE)
2527 rtx x = dv_as_value (dv);
2529 /* Relationships in the global cache don't change, so reset the
2530 local cache entry only. */
2531 rtx *slot = local_get_addr_cache->get (x);
2532 if (slot)
2534 /* If the value resolved back to itself, odds are that other
2535 values may have cached it too. These entries now refer
2536 to the old X, so detach them too. Entries that used the
2537 old X but resolved to something else remain ok as long as
2538 that something else isn't also reset. */
2539 if (*slot == x)
2540 local_get_addr_cache
2541 ->traverse<rtx, local_get_addr_clear_given_value> (x);
2542 *slot = NULL;
2546 cval = NULL;
2547 for (node = var->var_part[0].loc_chain; node; node = node->next)
2548 if (GET_CODE (node->loc) == VALUE
2549 && canon_value_cmp (node->loc, cval))
2550 cval = node->loc;
2552 for (node = var->var_part[0].loc_chain; node; node = node->next)
2553 if (GET_CODE (node->loc) == VALUE && cval != node->loc)
2555 /* Redirect the equivalence link to the new canonical
2556 value, or simply remove it if it would point at
2557 itself. */
2558 if (cval)
2559 set_variable_part (set, cval, dv_from_value (node->loc),
2560 0, node->init, node->set_src, NO_INSERT);
2561 delete_variable_part (set, dv_as_value (dv),
2562 dv_from_value (node->loc), 0);
2565 if (cval)
2567 decl_or_value cdv = dv_from_value (cval);
2569 /* Keep the remaining values connected, accummulating links
2570 in the canonical value. */
2571 for (node = var->var_part[0].loc_chain; node; node = node->next)
2573 if (node->loc == cval)
2574 continue;
2575 else if (GET_CODE (node->loc) == REG)
2576 var_reg_decl_set (set, node->loc, node->init, cdv, 0,
2577 node->set_src, NO_INSERT);
2578 else if (GET_CODE (node->loc) == MEM)
2579 var_mem_decl_set (set, node->loc, node->init, cdv, 0,
2580 node->set_src, NO_INSERT);
2581 else
2582 set_variable_part (set, node->loc, cdv, 0,
2583 node->init, node->set_src, NO_INSERT);
2587 /* We remove this last, to make sure that the canonical value is not
2588 removed to the point of requiring reinsertion. */
2589 if (cval)
2590 delete_variable_part (set, dv_as_value (dv), dv_from_value (cval), 0);
2592 clobber_variable_part (set, NULL, dv, 0, NULL);
2595 /* Find the values in a given location and map the val to another
2596 value, if it is unique, or add the location as one holding the
2597 value. */
2599 static void
2600 val_resolve (dataflow_set *set, rtx val, rtx loc, rtx_insn *insn)
2602 decl_or_value dv = dv_from_value (val);
2604 if (dump_file && (dump_flags & TDF_DETAILS))
2606 if (insn)
2607 fprintf (dump_file, "%i: ", INSN_UID (insn));
2608 else
2609 fprintf (dump_file, "head: ");
2610 print_inline_rtx (dump_file, val, 0);
2611 fputs (" is at ", dump_file);
2612 print_inline_rtx (dump_file, loc, 0);
2613 fputc ('\n', dump_file);
2616 val_reset (set, dv);
2618 gcc_checking_assert (!unsuitable_loc (loc));
2620 if (REG_P (loc))
2622 attrs node, found = NULL;
2624 for (node = set->regs[REGNO (loc)]; node; node = node->next)
2625 if (dv_is_value_p (node->dv)
2626 && GET_MODE (dv_as_value (node->dv)) == GET_MODE (loc))
2628 found = node;
2630 /* Map incoming equivalences. ??? Wouldn't it be nice if
2631 we just started sharing the location lists? Maybe a
2632 circular list ending at the value itself or some
2633 such. */
2634 set_variable_part (set, dv_as_value (node->dv),
2635 dv_from_value (val), node->offset,
2636 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2637 set_variable_part (set, val, node->dv, node->offset,
2638 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2641 /* If we didn't find any equivalence, we need to remember that
2642 this value is held in the named register. */
2643 if (found)
2644 return;
2646 /* ??? Attempt to find and merge equivalent MEMs or other
2647 expressions too. */
2649 val_bind (set, val, loc, false);
2652 /* Initialize dataflow set SET to be empty.
2653 VARS_SIZE is the initial size of hash table VARS. */
2655 static void
2656 dataflow_set_init (dataflow_set *set)
2658 init_attrs_list_set (set->regs);
2659 set->vars = shared_hash_copy (empty_shared_hash);
2660 set->stack_adjust = 0;
2661 set->traversed_vars = NULL;
2664 /* Delete the contents of dataflow set SET. */
2666 static void
2667 dataflow_set_clear (dataflow_set *set)
2669 int i;
2671 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2672 attrs_list_clear (&set->regs[i]);
2674 shared_hash_destroy (set->vars);
2675 set->vars = shared_hash_copy (empty_shared_hash);
2678 /* Copy the contents of dataflow set SRC to DST. */
2680 static void
2681 dataflow_set_copy (dataflow_set *dst, dataflow_set *src)
2683 int i;
2685 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2686 attrs_list_copy (&dst->regs[i], src->regs[i]);
2688 shared_hash_destroy (dst->vars);
2689 dst->vars = shared_hash_copy (src->vars);
2690 dst->stack_adjust = src->stack_adjust;
2693 /* Information for merging lists of locations for a given offset of variable.
2695 struct variable_union_info
2697 /* Node of the location chain. */
2698 location_chain lc;
2700 /* The sum of positions in the input chains. */
2701 int pos;
2703 /* The position in the chain of DST dataflow set. */
2704 int pos_dst;
2707 /* Buffer for location list sorting and its allocated size. */
2708 static struct variable_union_info *vui_vec;
2709 static int vui_allocated;
2711 /* Compare function for qsort, order the structures by POS element. */
2713 static int
2714 variable_union_info_cmp_pos (const void *n1, const void *n2)
2716 const struct variable_union_info *const i1 =
2717 (const struct variable_union_info *) n1;
2718 const struct variable_union_info *const i2 =
2719 ( const struct variable_union_info *) n2;
2721 if (i1->pos != i2->pos)
2722 return i1->pos - i2->pos;
2724 return (i1->pos_dst - i2->pos_dst);
2727 /* Compute union of location parts of variable *SLOT and the same variable
2728 from hash table DATA. Compute "sorted" union of the location chains
2729 for common offsets, i.e. the locations of a variable part are sorted by
2730 a priority where the priority is the sum of the positions in the 2 chains
2731 (if a location is only in one list the position in the second list is
2732 defined to be larger than the length of the chains).
2733 When we are updating the location parts the newest location is in the
2734 beginning of the chain, so when we do the described "sorted" union
2735 we keep the newest locations in the beginning. */
2737 static int
2738 variable_union (variable src, dataflow_set *set)
2740 variable dst;
2741 variable_def **dstp;
2742 int i, j, k;
2744 dstp = shared_hash_find_slot (set->vars, src->dv);
2745 if (!dstp || !*dstp)
2747 src->refcount++;
2749 dst_can_be_shared = false;
2750 if (!dstp)
2751 dstp = shared_hash_find_slot_unshare (&set->vars, src->dv, INSERT);
2753 *dstp = src;
2755 /* Continue traversing the hash table. */
2756 return 1;
2758 else
2759 dst = *dstp;
2761 gcc_assert (src->n_var_parts);
2762 gcc_checking_assert (src->onepart == dst->onepart);
2764 /* We can combine one-part variables very efficiently, because their
2765 entries are in canonical order. */
2766 if (src->onepart)
2768 location_chain *nodep, dnode, snode;
2770 gcc_assert (src->n_var_parts == 1
2771 && dst->n_var_parts == 1);
2773 snode = src->var_part[0].loc_chain;
2774 gcc_assert (snode);
2776 restart_onepart_unshared:
2777 nodep = &dst->var_part[0].loc_chain;
2778 dnode = *nodep;
2779 gcc_assert (dnode);
2781 while (snode)
2783 int r = dnode ? loc_cmp (dnode->loc, snode->loc) : 1;
2785 if (r > 0)
2787 location_chain nnode;
2789 if (shared_var_p (dst, set->vars))
2791 dstp = unshare_variable (set, dstp, dst,
2792 VAR_INIT_STATUS_INITIALIZED);
2793 dst = *dstp;
2794 goto restart_onepart_unshared;
2797 *nodep = nnode = new location_chain_def;
2798 nnode->loc = snode->loc;
2799 nnode->init = snode->init;
2800 if (!snode->set_src || MEM_P (snode->set_src))
2801 nnode->set_src = NULL;
2802 else
2803 nnode->set_src = snode->set_src;
2804 nnode->next = dnode;
2805 dnode = nnode;
2807 else if (r == 0)
2808 gcc_checking_assert (rtx_equal_p (dnode->loc, snode->loc));
2810 if (r >= 0)
2811 snode = snode->next;
2813 nodep = &dnode->next;
2814 dnode = *nodep;
2817 return 1;
2820 gcc_checking_assert (!src->onepart);
2822 /* Count the number of location parts, result is K. */
2823 for (i = 0, j = 0, k = 0;
2824 i < src->n_var_parts && j < dst->n_var_parts; k++)
2826 if (VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2828 i++;
2829 j++;
2831 else if (VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
2832 i++;
2833 else
2834 j++;
2836 k += src->n_var_parts - i;
2837 k += dst->n_var_parts - j;
2839 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2840 thus there are at most MAX_VAR_PARTS different offsets. */
2841 gcc_checking_assert (dst->onepart ? k == 1 : k <= MAX_VAR_PARTS);
2843 if (dst->n_var_parts != k && shared_var_p (dst, set->vars))
2845 dstp = unshare_variable (set, dstp, dst, VAR_INIT_STATUS_UNKNOWN);
2846 dst = *dstp;
2849 i = src->n_var_parts - 1;
2850 j = dst->n_var_parts - 1;
2851 dst->n_var_parts = k;
2853 for (k--; k >= 0; k--)
2855 location_chain node, node2;
2857 if (i >= 0 && j >= 0
2858 && VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2860 /* Compute the "sorted" union of the chains, i.e. the locations which
2861 are in both chains go first, they are sorted by the sum of
2862 positions in the chains. */
2863 int dst_l, src_l;
2864 int ii, jj, n;
2865 struct variable_union_info *vui;
2867 /* If DST is shared compare the location chains.
2868 If they are different we will modify the chain in DST with
2869 high probability so make a copy of DST. */
2870 if (shared_var_p (dst, set->vars))
2872 for (node = src->var_part[i].loc_chain,
2873 node2 = dst->var_part[j].loc_chain; node && node2;
2874 node = node->next, node2 = node2->next)
2876 if (!((REG_P (node2->loc)
2877 && REG_P (node->loc)
2878 && REGNO (node2->loc) == REGNO (node->loc))
2879 || rtx_equal_p (node2->loc, node->loc)))
2881 if (node2->init < node->init)
2882 node2->init = node->init;
2883 break;
2886 if (node || node2)
2888 dstp = unshare_variable (set, dstp, dst,
2889 VAR_INIT_STATUS_UNKNOWN);
2890 dst = (variable)*dstp;
2894 src_l = 0;
2895 for (node = src->var_part[i].loc_chain; node; node = node->next)
2896 src_l++;
2897 dst_l = 0;
2898 for (node = dst->var_part[j].loc_chain; node; node = node->next)
2899 dst_l++;
2901 if (dst_l == 1)
2903 /* The most common case, much simpler, no qsort is needed. */
2904 location_chain dstnode = dst->var_part[j].loc_chain;
2905 dst->var_part[k].loc_chain = dstnode;
2906 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
2907 node2 = dstnode;
2908 for (node = src->var_part[i].loc_chain; node; node = node->next)
2909 if (!((REG_P (dstnode->loc)
2910 && REG_P (node->loc)
2911 && REGNO (dstnode->loc) == REGNO (node->loc))
2912 || rtx_equal_p (dstnode->loc, node->loc)))
2914 location_chain new_node;
2916 /* Copy the location from SRC. */
2917 new_node = new location_chain_def;
2918 new_node->loc = node->loc;
2919 new_node->init = node->init;
2920 if (!node->set_src || MEM_P (node->set_src))
2921 new_node->set_src = NULL;
2922 else
2923 new_node->set_src = node->set_src;
2924 node2->next = new_node;
2925 node2 = new_node;
2927 node2->next = NULL;
2929 else
2931 if (src_l + dst_l > vui_allocated)
2933 vui_allocated = MAX (vui_allocated * 2, src_l + dst_l);
2934 vui_vec = XRESIZEVEC (struct variable_union_info, vui_vec,
2935 vui_allocated);
2937 vui = vui_vec;
2939 /* Fill in the locations from DST. */
2940 for (node = dst->var_part[j].loc_chain, jj = 0; node;
2941 node = node->next, jj++)
2943 vui[jj].lc = node;
2944 vui[jj].pos_dst = jj;
2946 /* Pos plus value larger than a sum of 2 valid positions. */
2947 vui[jj].pos = jj + src_l + dst_l;
2950 /* Fill in the locations from SRC. */
2951 n = dst_l;
2952 for (node = src->var_part[i].loc_chain, ii = 0; node;
2953 node = node->next, ii++)
2955 /* Find location from NODE. */
2956 for (jj = 0; jj < dst_l; jj++)
2958 if ((REG_P (vui[jj].lc->loc)
2959 && REG_P (node->loc)
2960 && REGNO (vui[jj].lc->loc) == REGNO (node->loc))
2961 || rtx_equal_p (vui[jj].lc->loc, node->loc))
2963 vui[jj].pos = jj + ii;
2964 break;
2967 if (jj >= dst_l) /* The location has not been found. */
2969 location_chain new_node;
2971 /* Copy the location from SRC. */
2972 new_node = new location_chain_def;
2973 new_node->loc = node->loc;
2974 new_node->init = node->init;
2975 if (!node->set_src || MEM_P (node->set_src))
2976 new_node->set_src = NULL;
2977 else
2978 new_node->set_src = node->set_src;
2979 vui[n].lc = new_node;
2980 vui[n].pos_dst = src_l + dst_l;
2981 vui[n].pos = ii + src_l + dst_l;
2982 n++;
2986 if (dst_l == 2)
2988 /* Special case still very common case. For dst_l == 2
2989 all entries dst_l ... n-1 are sorted, with for i >= dst_l
2990 vui[i].pos == i + src_l + dst_l. */
2991 if (vui[0].pos > vui[1].pos)
2993 /* Order should be 1, 0, 2... */
2994 dst->var_part[k].loc_chain = vui[1].lc;
2995 vui[1].lc->next = vui[0].lc;
2996 if (n >= 3)
2998 vui[0].lc->next = vui[2].lc;
2999 vui[n - 1].lc->next = NULL;
3001 else
3002 vui[0].lc->next = NULL;
3003 ii = 3;
3005 else
3007 dst->var_part[k].loc_chain = vui[0].lc;
3008 if (n >= 3 && vui[2].pos < vui[1].pos)
3010 /* Order should be 0, 2, 1, 3... */
3011 vui[0].lc->next = vui[2].lc;
3012 vui[2].lc->next = vui[1].lc;
3013 if (n >= 4)
3015 vui[1].lc->next = vui[3].lc;
3016 vui[n - 1].lc->next = NULL;
3018 else
3019 vui[1].lc->next = NULL;
3020 ii = 4;
3022 else
3024 /* Order should be 0, 1, 2... */
3025 ii = 1;
3026 vui[n - 1].lc->next = NULL;
3029 for (; ii < n; ii++)
3030 vui[ii - 1].lc->next = vui[ii].lc;
3032 else
3034 qsort (vui, n, sizeof (struct variable_union_info),
3035 variable_union_info_cmp_pos);
3037 /* Reconnect the nodes in sorted order. */
3038 for (ii = 1; ii < n; ii++)
3039 vui[ii - 1].lc->next = vui[ii].lc;
3040 vui[n - 1].lc->next = NULL;
3041 dst->var_part[k].loc_chain = vui[0].lc;
3044 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
3046 i--;
3047 j--;
3049 else if ((i >= 0 && j >= 0
3050 && VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
3051 || i < 0)
3053 dst->var_part[k] = dst->var_part[j];
3054 j--;
3056 else if ((i >= 0 && j >= 0
3057 && VAR_PART_OFFSET (src, i) > VAR_PART_OFFSET (dst, j))
3058 || j < 0)
3060 location_chain *nextp;
3062 /* Copy the chain from SRC. */
3063 nextp = &dst->var_part[k].loc_chain;
3064 for (node = src->var_part[i].loc_chain; node; node = node->next)
3066 location_chain new_lc;
3068 new_lc = new location_chain_def;
3069 new_lc->next = NULL;
3070 new_lc->init = node->init;
3071 if (!node->set_src || MEM_P (node->set_src))
3072 new_lc->set_src = NULL;
3073 else
3074 new_lc->set_src = node->set_src;
3075 new_lc->loc = node->loc;
3077 *nextp = new_lc;
3078 nextp = &new_lc->next;
3081 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (src, i);
3082 i--;
3084 dst->var_part[k].cur_loc = NULL;
3087 if (flag_var_tracking_uninit)
3088 for (i = 0; i < src->n_var_parts && i < dst->n_var_parts; i++)
3090 location_chain node, node2;
3091 for (node = src->var_part[i].loc_chain; node; node = node->next)
3092 for (node2 = dst->var_part[i].loc_chain; node2; node2 = node2->next)
3093 if (rtx_equal_p (node->loc, node2->loc))
3095 if (node->init > node2->init)
3096 node2->init = node->init;
3100 /* Continue traversing the hash table. */
3101 return 1;
3104 /* Compute union of dataflow sets SRC and DST and store it to DST. */
3106 static void
3107 dataflow_set_union (dataflow_set *dst, dataflow_set *src)
3109 int i;
3111 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3112 attrs_list_union (&dst->regs[i], src->regs[i]);
3114 if (dst->vars == empty_shared_hash)
3116 shared_hash_destroy (dst->vars);
3117 dst->vars = shared_hash_copy (src->vars);
3119 else
3121 variable_iterator_type hi;
3122 variable var;
3124 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (src->vars),
3125 var, variable, hi)
3126 variable_union (var, dst);
3130 /* Whether the value is currently being expanded. */
3131 #define VALUE_RECURSED_INTO(x) \
3132 (RTL_FLAG_CHECK2 ("VALUE_RECURSED_INTO", (x), VALUE, DEBUG_EXPR)->used)
3134 /* Whether no expansion was found, saving useless lookups.
3135 It must only be set when VALUE_CHANGED is clear. */
3136 #define NO_LOC_P(x) \
3137 (RTL_FLAG_CHECK2 ("NO_LOC_P", (x), VALUE, DEBUG_EXPR)->return_val)
3139 /* Whether cur_loc in the value needs to be (re)computed. */
3140 #define VALUE_CHANGED(x) \
3141 (RTL_FLAG_CHECK1 ("VALUE_CHANGED", (x), VALUE)->frame_related)
3142 /* Whether cur_loc in the decl needs to be (re)computed. */
3143 #define DECL_CHANGED(x) TREE_VISITED (x)
3145 /* Record (if NEWV) that DV needs to have its cur_loc recomputed. For
3146 user DECLs, this means they're in changed_variables. Values and
3147 debug exprs may be left with this flag set if no user variable
3148 requires them to be evaluated. */
3150 static inline void
3151 set_dv_changed (decl_or_value dv, bool newv)
3153 switch (dv_onepart_p (dv))
3155 case ONEPART_VALUE:
3156 if (newv)
3157 NO_LOC_P (dv_as_value (dv)) = false;
3158 VALUE_CHANGED (dv_as_value (dv)) = newv;
3159 break;
3161 case ONEPART_DEXPR:
3162 if (newv)
3163 NO_LOC_P (DECL_RTL_KNOWN_SET (dv_as_decl (dv))) = false;
3164 /* Fall through... */
3166 default:
3167 DECL_CHANGED (dv_as_decl (dv)) = newv;
3168 break;
3172 /* Return true if DV needs to have its cur_loc recomputed. */
3174 static inline bool
3175 dv_changed_p (decl_or_value dv)
3177 return (dv_is_value_p (dv)
3178 ? VALUE_CHANGED (dv_as_value (dv))
3179 : DECL_CHANGED (dv_as_decl (dv)));
3182 /* Return a location list node whose loc is rtx_equal to LOC, in the
3183 location list of a one-part variable or value VAR, or in that of
3184 any values recursively mentioned in the location lists. VARS must
3185 be in star-canonical form. */
3187 static location_chain
3188 find_loc_in_1pdv (rtx loc, variable var, variable_table_type *vars)
3190 location_chain node;
3191 enum rtx_code loc_code;
3193 if (!var)
3194 return NULL;
3196 gcc_checking_assert (var->onepart);
3198 if (!var->n_var_parts)
3199 return NULL;
3201 gcc_checking_assert (loc != dv_as_opaque (var->dv));
3203 loc_code = GET_CODE (loc);
3204 for (node = var->var_part[0].loc_chain; node; node = node->next)
3206 decl_or_value dv;
3207 variable rvar;
3209 if (GET_CODE (node->loc) != loc_code)
3211 if (GET_CODE (node->loc) != VALUE)
3212 continue;
3214 else if (loc == node->loc)
3215 return node;
3216 else if (loc_code != VALUE)
3218 if (rtx_equal_p (loc, node->loc))
3219 return node;
3220 continue;
3223 /* Since we're in star-canonical form, we don't need to visit
3224 non-canonical nodes: one-part variables and non-canonical
3225 values would only point back to the canonical node. */
3226 if (dv_is_value_p (var->dv)
3227 && !canon_value_cmp (node->loc, dv_as_value (var->dv)))
3229 /* Skip all subsequent VALUEs. */
3230 while (node->next && GET_CODE (node->next->loc) == VALUE)
3232 node = node->next;
3233 gcc_checking_assert (!canon_value_cmp (node->loc,
3234 dv_as_value (var->dv)));
3235 if (loc == node->loc)
3236 return node;
3238 continue;
3241 gcc_checking_assert (node == var->var_part[0].loc_chain);
3242 gcc_checking_assert (!node->next);
3244 dv = dv_from_value (node->loc);
3245 rvar = vars->find_with_hash (dv, dv_htab_hash (dv));
3246 return find_loc_in_1pdv (loc, rvar, vars);
3249 /* ??? Gotta look in cselib_val locations too. */
3251 return NULL;
3254 /* Hash table iteration argument passed to variable_merge. */
3255 struct dfset_merge
3257 /* The set in which the merge is to be inserted. */
3258 dataflow_set *dst;
3259 /* The set that we're iterating in. */
3260 dataflow_set *cur;
3261 /* The set that may contain the other dv we are to merge with. */
3262 dataflow_set *src;
3263 /* Number of onepart dvs in src. */
3264 int src_onepart_cnt;
3267 /* Insert LOC in *DNODE, if it's not there yet. The list must be in
3268 loc_cmp order, and it is maintained as such. */
3270 static void
3271 insert_into_intersection (location_chain *nodep, rtx loc,
3272 enum var_init_status status)
3274 location_chain node;
3275 int r;
3277 for (node = *nodep; node; nodep = &node->next, node = *nodep)
3278 if ((r = loc_cmp (node->loc, loc)) == 0)
3280 node->init = MIN (node->init, status);
3281 return;
3283 else if (r > 0)
3284 break;
3286 node = new location_chain_def;
3288 node->loc = loc;
3289 node->set_src = NULL;
3290 node->init = status;
3291 node->next = *nodep;
3292 *nodep = node;
3295 /* Insert in DEST the intersection of the locations present in both
3296 S1NODE and S2VAR, directly or indirectly. S1NODE is from a
3297 variable in DSM->cur, whereas S2VAR is from DSM->src. dvar is in
3298 DSM->dst. */
3300 static void
3301 intersect_loc_chains (rtx val, location_chain *dest, struct dfset_merge *dsm,
3302 location_chain s1node, variable s2var)
3304 dataflow_set *s1set = dsm->cur;
3305 dataflow_set *s2set = dsm->src;
3306 location_chain found;
3308 if (s2var)
3310 location_chain s2node;
3312 gcc_checking_assert (s2var->onepart);
3314 if (s2var->n_var_parts)
3316 s2node = s2var->var_part[0].loc_chain;
3318 for (; s1node && s2node;
3319 s1node = s1node->next, s2node = s2node->next)
3320 if (s1node->loc != s2node->loc)
3321 break;
3322 else if (s1node->loc == val)
3323 continue;
3324 else
3325 insert_into_intersection (dest, s1node->loc,
3326 MIN (s1node->init, s2node->init));
3330 for (; s1node; s1node = s1node->next)
3332 if (s1node->loc == val)
3333 continue;
3335 if ((found = find_loc_in_1pdv (s1node->loc, s2var,
3336 shared_hash_htab (s2set->vars))))
3338 insert_into_intersection (dest, s1node->loc,
3339 MIN (s1node->init, found->init));
3340 continue;
3343 if (GET_CODE (s1node->loc) == VALUE
3344 && !VALUE_RECURSED_INTO (s1node->loc))
3346 decl_or_value dv = dv_from_value (s1node->loc);
3347 variable svar = shared_hash_find (s1set->vars, dv);
3348 if (svar)
3350 if (svar->n_var_parts == 1)
3352 VALUE_RECURSED_INTO (s1node->loc) = true;
3353 intersect_loc_chains (val, dest, dsm,
3354 svar->var_part[0].loc_chain,
3355 s2var);
3356 VALUE_RECURSED_INTO (s1node->loc) = false;
3361 /* ??? gotta look in cselib_val locations too. */
3363 /* ??? if the location is equivalent to any location in src,
3364 searched recursively
3366 add to dst the values needed to represent the equivalence
3368 telling whether locations S is equivalent to another dv's
3369 location list:
3371 for each location D in the list
3373 if S and D satisfy rtx_equal_p, then it is present
3375 else if D is a value, recurse without cycles
3377 else if S and D have the same CODE and MODE
3379 for each operand oS and the corresponding oD
3381 if oS and oD are not equivalent, then S an D are not equivalent
3383 else if they are RTX vectors
3385 if any vector oS element is not equivalent to its respective oD,
3386 then S and D are not equivalent
3394 /* Return -1 if X should be before Y in a location list for a 1-part
3395 variable, 1 if Y should be before X, and 0 if they're equivalent
3396 and should not appear in the list. */
3398 static int
3399 loc_cmp (rtx x, rtx y)
3401 int i, j, r;
3402 RTX_CODE code = GET_CODE (x);
3403 const char *fmt;
3405 if (x == y)
3406 return 0;
3408 if (REG_P (x))
3410 if (!REG_P (y))
3411 return -1;
3412 gcc_assert (GET_MODE (x) == GET_MODE (y));
3413 if (REGNO (x) == REGNO (y))
3414 return 0;
3415 else if (REGNO (x) < REGNO (y))
3416 return -1;
3417 else
3418 return 1;
3421 if (REG_P (y))
3422 return 1;
3424 if (MEM_P (x))
3426 if (!MEM_P (y))
3427 return -1;
3428 gcc_assert (GET_MODE (x) == GET_MODE (y));
3429 return loc_cmp (XEXP (x, 0), XEXP (y, 0));
3432 if (MEM_P (y))
3433 return 1;
3435 if (GET_CODE (x) == VALUE)
3437 if (GET_CODE (y) != VALUE)
3438 return -1;
3439 /* Don't assert the modes are the same, that is true only
3440 when not recursing. (subreg:QI (value:SI 1:1) 0)
3441 and (subreg:QI (value:DI 2:2) 0) can be compared,
3442 even when the modes are different. */
3443 if (canon_value_cmp (x, y))
3444 return -1;
3445 else
3446 return 1;
3449 if (GET_CODE (y) == VALUE)
3450 return 1;
3452 /* Entry value is the least preferable kind of expression. */
3453 if (GET_CODE (x) == ENTRY_VALUE)
3455 if (GET_CODE (y) != ENTRY_VALUE)
3456 return 1;
3457 gcc_assert (GET_MODE (x) == GET_MODE (y));
3458 return loc_cmp (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
3461 if (GET_CODE (y) == ENTRY_VALUE)
3462 return -1;
3464 if (GET_CODE (x) == GET_CODE (y))
3465 /* Compare operands below. */;
3466 else if (GET_CODE (x) < GET_CODE (y))
3467 return -1;
3468 else
3469 return 1;
3471 gcc_assert (GET_MODE (x) == GET_MODE (y));
3473 if (GET_CODE (x) == DEBUG_EXPR)
3475 if (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3476 < DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)))
3477 return -1;
3478 gcc_checking_assert (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3479 > DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)));
3480 return 1;
3483 fmt = GET_RTX_FORMAT (code);
3484 for (i = 0; i < GET_RTX_LENGTH (code); i++)
3485 switch (fmt[i])
3487 case 'w':
3488 if (XWINT (x, i) == XWINT (y, i))
3489 break;
3490 else if (XWINT (x, i) < XWINT (y, i))
3491 return -1;
3492 else
3493 return 1;
3495 case 'n':
3496 case 'i':
3497 if (XINT (x, i) == XINT (y, i))
3498 break;
3499 else if (XINT (x, i) < XINT (y, i))
3500 return -1;
3501 else
3502 return 1;
3504 case 'V':
3505 case 'E':
3506 /* Compare the vector length first. */
3507 if (XVECLEN (x, i) == XVECLEN (y, i))
3508 /* Compare the vectors elements. */;
3509 else if (XVECLEN (x, i) < XVECLEN (y, i))
3510 return -1;
3511 else
3512 return 1;
3514 for (j = 0; j < XVECLEN (x, i); j++)
3515 if ((r = loc_cmp (XVECEXP (x, i, j),
3516 XVECEXP (y, i, j))))
3517 return r;
3518 break;
3520 case 'e':
3521 if ((r = loc_cmp (XEXP (x, i), XEXP (y, i))))
3522 return r;
3523 break;
3525 case 'S':
3526 case 's':
3527 if (XSTR (x, i) == XSTR (y, i))
3528 break;
3529 if (!XSTR (x, i))
3530 return -1;
3531 if (!XSTR (y, i))
3532 return 1;
3533 if ((r = strcmp (XSTR (x, i), XSTR (y, i))) == 0)
3534 break;
3535 else if (r < 0)
3536 return -1;
3537 else
3538 return 1;
3540 case 'u':
3541 /* These are just backpointers, so they don't matter. */
3542 break;
3544 case '0':
3545 case 't':
3546 break;
3548 /* It is believed that rtx's at this level will never
3549 contain anything but integers and other rtx's,
3550 except for within LABEL_REFs and SYMBOL_REFs. */
3551 default:
3552 gcc_unreachable ();
3554 if (CONST_WIDE_INT_P (x))
3556 /* Compare the vector length first. */
3557 if (CONST_WIDE_INT_NUNITS (x) >= CONST_WIDE_INT_NUNITS (y))
3558 return 1;
3559 else if (CONST_WIDE_INT_NUNITS (x) < CONST_WIDE_INT_NUNITS (y))
3560 return -1;
3562 /* Compare the vectors elements. */;
3563 for (j = CONST_WIDE_INT_NUNITS (x) - 1; j >= 0 ; j--)
3565 if (CONST_WIDE_INT_ELT (x, j) < CONST_WIDE_INT_ELT (y, j))
3566 return -1;
3567 if (CONST_WIDE_INT_ELT (x, j) > CONST_WIDE_INT_ELT (y, j))
3568 return 1;
3572 return 0;
3575 #if ENABLE_CHECKING
3576 /* Check the order of entries in one-part variables. */
3579 canonicalize_loc_order_check (variable_def **slot,
3580 dataflow_set *data ATTRIBUTE_UNUSED)
3582 variable var = *slot;
3583 location_chain node, next;
3585 #ifdef ENABLE_RTL_CHECKING
3586 int i;
3587 for (i = 0; i < var->n_var_parts; i++)
3588 gcc_assert (var->var_part[0].cur_loc == NULL);
3589 gcc_assert (!var->in_changed_variables);
3590 #endif
3592 if (!var->onepart)
3593 return 1;
3595 gcc_assert (var->n_var_parts == 1);
3596 node = var->var_part[0].loc_chain;
3597 gcc_assert (node);
3599 while ((next = node->next))
3601 gcc_assert (loc_cmp (node->loc, next->loc) < 0);
3602 node = next;
3605 return 1;
3607 #endif
3609 /* Mark with VALUE_RECURSED_INTO values that have neighbors that are
3610 more likely to be chosen as canonical for an equivalence set.
3611 Ensure less likely values can reach more likely neighbors, making
3612 the connections bidirectional. */
3615 canonicalize_values_mark (variable_def **slot, dataflow_set *set)
3617 variable var = *slot;
3618 decl_or_value dv = var->dv;
3619 rtx val;
3620 location_chain node;
3622 if (!dv_is_value_p (dv))
3623 return 1;
3625 gcc_checking_assert (var->n_var_parts == 1);
3627 val = dv_as_value (dv);
3629 for (node = var->var_part[0].loc_chain; node; node = node->next)
3630 if (GET_CODE (node->loc) == VALUE)
3632 if (canon_value_cmp (node->loc, val))
3633 VALUE_RECURSED_INTO (val) = true;
3634 else
3636 decl_or_value odv = dv_from_value (node->loc);
3637 variable_def **oslot;
3638 oslot = shared_hash_find_slot_noinsert (set->vars, odv);
3640 set_slot_part (set, val, oslot, odv, 0,
3641 node->init, NULL_RTX);
3643 VALUE_RECURSED_INTO (node->loc) = true;
3647 return 1;
3650 /* Remove redundant entries from equivalence lists in onepart
3651 variables, canonicalizing equivalence sets into star shapes. */
3654 canonicalize_values_star (variable_def **slot, dataflow_set *set)
3656 variable var = *slot;
3657 decl_or_value dv = var->dv;
3658 location_chain node;
3659 decl_or_value cdv;
3660 rtx val, cval;
3661 variable_def **cslot;
3662 bool has_value;
3663 bool has_marks;
3665 if (!var->onepart)
3666 return 1;
3668 gcc_checking_assert (var->n_var_parts == 1);
3670 if (dv_is_value_p (dv))
3672 cval = dv_as_value (dv);
3673 if (!VALUE_RECURSED_INTO (cval))
3674 return 1;
3675 VALUE_RECURSED_INTO (cval) = false;
3677 else
3678 cval = NULL_RTX;
3680 restart:
3681 val = cval;
3682 has_value = false;
3683 has_marks = false;
3685 gcc_assert (var->n_var_parts == 1);
3687 for (node = var->var_part[0].loc_chain; node; node = node->next)
3688 if (GET_CODE (node->loc) == VALUE)
3690 has_value = true;
3691 if (VALUE_RECURSED_INTO (node->loc))
3692 has_marks = true;
3693 if (canon_value_cmp (node->loc, cval))
3694 cval = node->loc;
3697 if (!has_value)
3698 return 1;
3700 if (cval == val)
3702 if (!has_marks || dv_is_decl_p (dv))
3703 return 1;
3705 /* Keep it marked so that we revisit it, either after visiting a
3706 child node, or after visiting a new parent that might be
3707 found out. */
3708 VALUE_RECURSED_INTO (val) = true;
3710 for (node = var->var_part[0].loc_chain; node; node = node->next)
3711 if (GET_CODE (node->loc) == VALUE
3712 && VALUE_RECURSED_INTO (node->loc))
3714 cval = node->loc;
3715 restart_with_cval:
3716 VALUE_RECURSED_INTO (cval) = false;
3717 dv = dv_from_value (cval);
3718 slot = shared_hash_find_slot_noinsert (set->vars, dv);
3719 if (!slot)
3721 gcc_assert (dv_is_decl_p (var->dv));
3722 /* The canonical value was reset and dropped.
3723 Remove it. */
3724 clobber_variable_part (set, NULL, var->dv, 0, NULL);
3725 return 1;
3727 var = *slot;
3728 gcc_assert (dv_is_value_p (var->dv));
3729 if (var->n_var_parts == 0)
3730 return 1;
3731 gcc_assert (var->n_var_parts == 1);
3732 goto restart;
3735 VALUE_RECURSED_INTO (val) = false;
3737 return 1;
3740 /* Push values to the canonical one. */
3741 cdv = dv_from_value (cval);
3742 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3744 for (node = var->var_part[0].loc_chain; node; node = node->next)
3745 if (node->loc != cval)
3747 cslot = set_slot_part (set, node->loc, cslot, cdv, 0,
3748 node->init, NULL_RTX);
3749 if (GET_CODE (node->loc) == VALUE)
3751 decl_or_value ndv = dv_from_value (node->loc);
3753 set_variable_part (set, cval, ndv, 0, node->init, NULL_RTX,
3754 NO_INSERT);
3756 if (canon_value_cmp (node->loc, val))
3758 /* If it could have been a local minimum, it's not any more,
3759 since it's now neighbor to cval, so it may have to push
3760 to it. Conversely, if it wouldn't have prevailed over
3761 val, then whatever mark it has is fine: if it was to
3762 push, it will now push to a more canonical node, but if
3763 it wasn't, then it has already pushed any values it might
3764 have to. */
3765 VALUE_RECURSED_INTO (node->loc) = true;
3766 /* Make sure we visit node->loc by ensuring we cval is
3767 visited too. */
3768 VALUE_RECURSED_INTO (cval) = true;
3770 else if (!VALUE_RECURSED_INTO (node->loc))
3771 /* If we have no need to "recurse" into this node, it's
3772 already "canonicalized", so drop the link to the old
3773 parent. */
3774 clobber_variable_part (set, cval, ndv, 0, NULL);
3776 else if (GET_CODE (node->loc) == REG)
3778 attrs list = set->regs[REGNO (node->loc)], *listp;
3780 /* Change an existing attribute referring to dv so that it
3781 refers to cdv, removing any duplicate this might
3782 introduce, and checking that no previous duplicates
3783 existed, all in a single pass. */
3785 while (list)
3787 if (list->offset == 0
3788 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3789 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3790 break;
3792 list = list->next;
3795 gcc_assert (list);
3796 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3798 list->dv = cdv;
3799 for (listp = &list->next; (list = *listp); listp = &list->next)
3801 if (list->offset)
3802 continue;
3804 if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3806 *listp = list->next;
3807 delete list;
3808 list = *listp;
3809 break;
3812 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (dv));
3815 else if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3817 for (listp = &list->next; (list = *listp); listp = &list->next)
3819 if (list->offset)
3820 continue;
3822 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3824 *listp = list->next;
3825 delete list;
3826 list = *listp;
3827 break;
3830 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (cdv));
3833 else
3834 gcc_unreachable ();
3836 #if ENABLE_CHECKING
3837 while (list)
3839 if (list->offset == 0
3840 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3841 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3842 gcc_unreachable ();
3844 list = list->next;
3846 #endif
3850 if (val)
3851 set_slot_part (set, val, cslot, cdv, 0,
3852 VAR_INIT_STATUS_INITIALIZED, NULL_RTX);
3854 slot = clobber_slot_part (set, cval, slot, 0, NULL);
3856 /* Variable may have been unshared. */
3857 var = *slot;
3858 gcc_checking_assert (var->n_var_parts && var->var_part[0].loc_chain->loc == cval
3859 && var->var_part[0].loc_chain->next == NULL);
3861 if (VALUE_RECURSED_INTO (cval))
3862 goto restart_with_cval;
3864 return 1;
3867 /* Bind one-part variables to the canonical value in an equivalence
3868 set. Not doing this causes dataflow convergence failure in rare
3869 circumstances, see PR42873. Unfortunately we can't do this
3870 efficiently as part of canonicalize_values_star, since we may not
3871 have determined or even seen the canonical value of a set when we
3872 get to a variable that references another member of the set. */
3875 canonicalize_vars_star (variable_def **slot, dataflow_set *set)
3877 variable var = *slot;
3878 decl_or_value dv = var->dv;
3879 location_chain node;
3880 rtx cval;
3881 decl_or_value cdv;
3882 variable_def **cslot;
3883 variable cvar;
3884 location_chain cnode;
3886 if (!var->onepart || var->onepart == ONEPART_VALUE)
3887 return 1;
3889 gcc_assert (var->n_var_parts == 1);
3891 node = var->var_part[0].loc_chain;
3893 if (GET_CODE (node->loc) != VALUE)
3894 return 1;
3896 gcc_assert (!node->next);
3897 cval = node->loc;
3899 /* Push values to the canonical one. */
3900 cdv = dv_from_value (cval);
3901 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3902 if (!cslot)
3903 return 1;
3904 cvar = *cslot;
3905 gcc_assert (cvar->n_var_parts == 1);
3907 cnode = cvar->var_part[0].loc_chain;
3909 /* CVAL is canonical if its value list contains non-VALUEs or VALUEs
3910 that are not “more canonical” than it. */
3911 if (GET_CODE (cnode->loc) != VALUE
3912 || !canon_value_cmp (cnode->loc, cval))
3913 return 1;
3915 /* CVAL was found to be non-canonical. Change the variable to point
3916 to the canonical VALUE. */
3917 gcc_assert (!cnode->next);
3918 cval = cnode->loc;
3920 slot = set_slot_part (set, cval, slot, dv, 0,
3921 node->init, node->set_src);
3922 clobber_slot_part (set, cval, slot, 0, node->set_src);
3924 return 1;
3927 /* Combine variable or value in *S1SLOT (in DSM->cur) with the
3928 corresponding entry in DSM->src. Multi-part variables are combined
3929 with variable_union, whereas onepart dvs are combined with
3930 intersection. */
3932 static int
3933 variable_merge_over_cur (variable s1var, struct dfset_merge *dsm)
3935 dataflow_set *dst = dsm->dst;
3936 variable_def **dstslot;
3937 variable s2var, dvar = NULL;
3938 decl_or_value dv = s1var->dv;
3939 onepart_enum_t onepart = s1var->onepart;
3940 rtx val;
3941 hashval_t dvhash;
3942 location_chain node, *nodep;
3944 /* If the incoming onepart variable has an empty location list, then
3945 the intersection will be just as empty. For other variables,
3946 it's always union. */
3947 gcc_checking_assert (s1var->n_var_parts
3948 && s1var->var_part[0].loc_chain);
3950 if (!onepart)
3951 return variable_union (s1var, dst);
3953 gcc_checking_assert (s1var->n_var_parts == 1);
3955 dvhash = dv_htab_hash (dv);
3956 if (dv_is_value_p (dv))
3957 val = dv_as_value (dv);
3958 else
3959 val = NULL;
3961 s2var = shared_hash_find_1 (dsm->src->vars, dv, dvhash);
3962 if (!s2var)
3964 dst_can_be_shared = false;
3965 return 1;
3968 dsm->src_onepart_cnt--;
3969 gcc_assert (s2var->var_part[0].loc_chain
3970 && s2var->onepart == onepart
3971 && s2var->n_var_parts == 1);
3973 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
3974 if (dstslot)
3976 dvar = *dstslot;
3977 gcc_assert (dvar->refcount == 1
3978 && dvar->onepart == onepart
3979 && dvar->n_var_parts == 1);
3980 nodep = &dvar->var_part[0].loc_chain;
3982 else
3984 nodep = &node;
3985 node = NULL;
3988 if (!dstslot && !onepart_variable_different_p (s1var, s2var))
3990 dstslot = shared_hash_find_slot_unshare_1 (&dst->vars, dv,
3991 dvhash, INSERT);
3992 *dstslot = dvar = s2var;
3993 dvar->refcount++;
3995 else
3997 dst_can_be_shared = false;
3999 intersect_loc_chains (val, nodep, dsm,
4000 s1var->var_part[0].loc_chain, s2var);
4002 if (!dstslot)
4004 if (node)
4006 dvar = onepart_pool_allocate (onepart);
4007 dvar->dv = dv;
4008 dvar->refcount = 1;
4009 dvar->n_var_parts = 1;
4010 dvar->onepart = onepart;
4011 dvar->in_changed_variables = false;
4012 dvar->var_part[0].loc_chain = node;
4013 dvar->var_part[0].cur_loc = NULL;
4014 if (onepart)
4015 VAR_LOC_1PAUX (dvar) = NULL;
4016 else
4017 VAR_PART_OFFSET (dvar, 0) = 0;
4019 dstslot
4020 = shared_hash_find_slot_unshare_1 (&dst->vars, dv, dvhash,
4021 INSERT);
4022 gcc_assert (!*dstslot);
4023 *dstslot = dvar;
4025 else
4026 return 1;
4030 nodep = &dvar->var_part[0].loc_chain;
4031 while ((node = *nodep))
4033 location_chain *nextp = &node->next;
4035 if (GET_CODE (node->loc) == REG)
4037 attrs list;
4039 for (list = dst->regs[REGNO (node->loc)]; list; list = list->next)
4040 if (GET_MODE (node->loc) == GET_MODE (list->loc)
4041 && dv_is_value_p (list->dv))
4042 break;
4044 if (!list)
4045 attrs_list_insert (&dst->regs[REGNO (node->loc)],
4046 dv, 0, node->loc);
4047 /* If this value became canonical for another value that had
4048 this register, we want to leave it alone. */
4049 else if (dv_as_value (list->dv) != val)
4051 dstslot = set_slot_part (dst, dv_as_value (list->dv),
4052 dstslot, dv, 0,
4053 node->init, NULL_RTX);
4054 dstslot = delete_slot_part (dst, node->loc, dstslot, 0);
4056 /* Since nextp points into the removed node, we can't
4057 use it. The pointer to the next node moved to nodep.
4058 However, if the variable we're walking is unshared
4059 during our walk, we'll keep walking the location list
4060 of the previously-shared variable, in which case the
4061 node won't have been removed, and we'll want to skip
4062 it. That's why we test *nodep here. */
4063 if (*nodep != node)
4064 nextp = nodep;
4067 else
4068 /* Canonicalization puts registers first, so we don't have to
4069 walk it all. */
4070 break;
4071 nodep = nextp;
4074 if (dvar != *dstslot)
4075 dvar = *dstslot;
4076 nodep = &dvar->var_part[0].loc_chain;
4078 if (val)
4080 /* Mark all referenced nodes for canonicalization, and make sure
4081 we have mutual equivalence links. */
4082 VALUE_RECURSED_INTO (val) = true;
4083 for (node = *nodep; node; node = node->next)
4084 if (GET_CODE (node->loc) == VALUE)
4086 VALUE_RECURSED_INTO (node->loc) = true;
4087 set_variable_part (dst, val, dv_from_value (node->loc), 0,
4088 node->init, NULL, INSERT);
4091 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4092 gcc_assert (*dstslot == dvar);
4093 canonicalize_values_star (dstslot, dst);
4094 gcc_checking_assert (dstslot
4095 == shared_hash_find_slot_noinsert_1 (dst->vars,
4096 dv, dvhash));
4097 dvar = *dstslot;
4099 else
4101 bool has_value = false, has_other = false;
4103 /* If we have one value and anything else, we're going to
4104 canonicalize this, so make sure all values have an entry in
4105 the table and are marked for canonicalization. */
4106 for (node = *nodep; node; node = node->next)
4108 if (GET_CODE (node->loc) == VALUE)
4110 /* If this was marked during register canonicalization,
4111 we know we have to canonicalize values. */
4112 if (has_value)
4113 has_other = true;
4114 has_value = true;
4115 if (has_other)
4116 break;
4118 else
4120 has_other = true;
4121 if (has_value)
4122 break;
4126 if (has_value && has_other)
4128 for (node = *nodep; node; node = node->next)
4130 if (GET_CODE (node->loc) == VALUE)
4132 decl_or_value dv = dv_from_value (node->loc);
4133 variable_def **slot = NULL;
4135 if (shared_hash_shared (dst->vars))
4136 slot = shared_hash_find_slot_noinsert (dst->vars, dv);
4137 if (!slot)
4138 slot = shared_hash_find_slot_unshare (&dst->vars, dv,
4139 INSERT);
4140 if (!*slot)
4142 variable var = onepart_pool_allocate (ONEPART_VALUE);
4143 var->dv = dv;
4144 var->refcount = 1;
4145 var->n_var_parts = 1;
4146 var->onepart = ONEPART_VALUE;
4147 var->in_changed_variables = false;
4148 var->var_part[0].loc_chain = NULL;
4149 var->var_part[0].cur_loc = NULL;
4150 VAR_LOC_1PAUX (var) = NULL;
4151 *slot = var;
4154 VALUE_RECURSED_INTO (node->loc) = true;
4158 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4159 gcc_assert (*dstslot == dvar);
4160 canonicalize_values_star (dstslot, dst);
4161 gcc_checking_assert (dstslot
4162 == shared_hash_find_slot_noinsert_1 (dst->vars,
4163 dv, dvhash));
4164 dvar = *dstslot;
4168 if (!onepart_variable_different_p (dvar, s2var))
4170 variable_htab_free (dvar);
4171 *dstslot = dvar = s2var;
4172 dvar->refcount++;
4174 else if (s2var != s1var && !onepart_variable_different_p (dvar, s1var))
4176 variable_htab_free (dvar);
4177 *dstslot = dvar = s1var;
4178 dvar->refcount++;
4179 dst_can_be_shared = false;
4181 else
4182 dst_can_be_shared = false;
4184 return 1;
4187 /* Copy s2slot (in DSM->src) to DSM->dst if the variable is a
4188 multi-part variable. Unions of multi-part variables and
4189 intersections of one-part ones will be handled in
4190 variable_merge_over_cur(). */
4192 static int
4193 variable_merge_over_src (variable s2var, struct dfset_merge *dsm)
4195 dataflow_set *dst = dsm->dst;
4196 decl_or_value dv = s2var->dv;
4198 if (!s2var->onepart)
4200 variable_def **dstp = shared_hash_find_slot (dst->vars, dv);
4201 *dstp = s2var;
4202 s2var->refcount++;
4203 return 1;
4206 dsm->src_onepart_cnt++;
4207 return 1;
4210 /* Combine dataflow set information from SRC2 into DST, using PDST
4211 to carry over information across passes. */
4213 static void
4214 dataflow_set_merge (dataflow_set *dst, dataflow_set *src2)
4216 dataflow_set cur = *dst;
4217 dataflow_set *src1 = &cur;
4218 struct dfset_merge dsm;
4219 int i;
4220 size_t src1_elems, src2_elems;
4221 variable_iterator_type hi;
4222 variable var;
4224 src1_elems = shared_hash_htab (src1->vars)->elements ();
4225 src2_elems = shared_hash_htab (src2->vars)->elements ();
4226 dataflow_set_init (dst);
4227 dst->stack_adjust = cur.stack_adjust;
4228 shared_hash_destroy (dst->vars);
4229 dst->vars = new shared_hash_def;
4230 dst->vars->refcount = 1;
4231 dst->vars->htab = new variable_table_type (MAX (src1_elems, src2_elems));
4233 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4234 attrs_list_mpdv_union (&dst->regs[i], src1->regs[i], src2->regs[i]);
4236 dsm.dst = dst;
4237 dsm.src = src2;
4238 dsm.cur = src1;
4239 dsm.src_onepart_cnt = 0;
4241 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm.src->vars),
4242 var, variable, hi)
4243 variable_merge_over_src (var, &dsm);
4244 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm.cur->vars),
4245 var, variable, hi)
4246 variable_merge_over_cur (var, &dsm);
4248 if (dsm.src_onepart_cnt)
4249 dst_can_be_shared = false;
4251 dataflow_set_destroy (src1);
4254 /* Mark register equivalences. */
4256 static void
4257 dataflow_set_equiv_regs (dataflow_set *set)
4259 int i;
4260 attrs list, *listp;
4262 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4264 rtx canon[NUM_MACHINE_MODES];
4266 /* If the list is empty or one entry, no need to canonicalize
4267 anything. */
4268 if (set->regs[i] == NULL || set->regs[i]->next == NULL)
4269 continue;
4271 memset (canon, 0, sizeof (canon));
4273 for (list = set->regs[i]; list; list = list->next)
4274 if (list->offset == 0 && dv_is_value_p (list->dv))
4276 rtx val = dv_as_value (list->dv);
4277 rtx *cvalp = &canon[(int)GET_MODE (val)];
4278 rtx cval = *cvalp;
4280 if (canon_value_cmp (val, cval))
4281 *cvalp = val;
4284 for (list = set->regs[i]; list; list = list->next)
4285 if (list->offset == 0 && dv_onepart_p (list->dv))
4287 rtx cval = canon[(int)GET_MODE (list->loc)];
4289 if (!cval)
4290 continue;
4292 if (dv_is_value_p (list->dv))
4294 rtx val = dv_as_value (list->dv);
4296 if (val == cval)
4297 continue;
4299 VALUE_RECURSED_INTO (val) = true;
4300 set_variable_part (set, val, dv_from_value (cval), 0,
4301 VAR_INIT_STATUS_INITIALIZED,
4302 NULL, NO_INSERT);
4305 VALUE_RECURSED_INTO (cval) = true;
4306 set_variable_part (set, cval, list->dv, 0,
4307 VAR_INIT_STATUS_INITIALIZED, NULL, NO_INSERT);
4310 for (listp = &set->regs[i]; (list = *listp);
4311 listp = list ? &list->next : listp)
4312 if (list->offset == 0 && dv_onepart_p (list->dv))
4314 rtx cval = canon[(int)GET_MODE (list->loc)];
4315 variable_def **slot;
4317 if (!cval)
4318 continue;
4320 if (dv_is_value_p (list->dv))
4322 rtx val = dv_as_value (list->dv);
4323 if (!VALUE_RECURSED_INTO (val))
4324 continue;
4327 slot = shared_hash_find_slot_noinsert (set->vars, list->dv);
4328 canonicalize_values_star (slot, set);
4329 if (*listp != list)
4330 list = NULL;
4335 /* Remove any redundant values in the location list of VAR, which must
4336 be unshared and 1-part. */
4338 static void
4339 remove_duplicate_values (variable var)
4341 location_chain node, *nodep;
4343 gcc_assert (var->onepart);
4344 gcc_assert (var->n_var_parts == 1);
4345 gcc_assert (var->refcount == 1);
4347 for (nodep = &var->var_part[0].loc_chain; (node = *nodep); )
4349 if (GET_CODE (node->loc) == VALUE)
4351 if (VALUE_RECURSED_INTO (node->loc))
4353 /* Remove duplicate value node. */
4354 *nodep = node->next;
4355 delete node;
4356 continue;
4358 else
4359 VALUE_RECURSED_INTO (node->loc) = true;
4361 nodep = &node->next;
4364 for (node = var->var_part[0].loc_chain; node; node = node->next)
4365 if (GET_CODE (node->loc) == VALUE)
4367 gcc_assert (VALUE_RECURSED_INTO (node->loc));
4368 VALUE_RECURSED_INTO (node->loc) = false;
4373 /* Hash table iteration argument passed to variable_post_merge. */
4374 struct dfset_post_merge
4376 /* The new input set for the current block. */
4377 dataflow_set *set;
4378 /* Pointer to the permanent input set for the current block, or
4379 NULL. */
4380 dataflow_set **permp;
4383 /* Create values for incoming expressions associated with one-part
4384 variables that don't have value numbers for them. */
4387 variable_post_merge_new_vals (variable_def **slot, dfset_post_merge *dfpm)
4389 dataflow_set *set = dfpm->set;
4390 variable var = *slot;
4391 location_chain node;
4393 if (!var->onepart || !var->n_var_parts)
4394 return 1;
4396 gcc_assert (var->n_var_parts == 1);
4398 if (dv_is_decl_p (var->dv))
4400 bool check_dupes = false;
4402 restart:
4403 for (node = var->var_part[0].loc_chain; node; node = node->next)
4405 if (GET_CODE (node->loc) == VALUE)
4406 gcc_assert (!VALUE_RECURSED_INTO (node->loc));
4407 else if (GET_CODE (node->loc) == REG)
4409 attrs att, *attp, *curp = NULL;
4411 if (var->refcount != 1)
4413 slot = unshare_variable (set, slot, var,
4414 VAR_INIT_STATUS_INITIALIZED);
4415 var = *slot;
4416 goto restart;
4419 for (attp = &set->regs[REGNO (node->loc)]; (att = *attp);
4420 attp = &att->next)
4421 if (att->offset == 0
4422 && GET_MODE (att->loc) == GET_MODE (node->loc))
4424 if (dv_is_value_p (att->dv))
4426 rtx cval = dv_as_value (att->dv);
4427 node->loc = cval;
4428 check_dupes = true;
4429 break;
4431 else if (dv_as_opaque (att->dv) == dv_as_opaque (var->dv))
4432 curp = attp;
4435 if (!curp)
4437 curp = attp;
4438 while (*curp)
4439 if ((*curp)->offset == 0
4440 && GET_MODE ((*curp)->loc) == GET_MODE (node->loc)
4441 && dv_as_opaque ((*curp)->dv) == dv_as_opaque (var->dv))
4442 break;
4443 else
4444 curp = &(*curp)->next;
4445 gcc_assert (*curp);
4448 if (!att)
4450 decl_or_value cdv;
4451 rtx cval;
4453 if (!*dfpm->permp)
4455 *dfpm->permp = XNEW (dataflow_set);
4456 dataflow_set_init (*dfpm->permp);
4459 for (att = (*dfpm->permp)->regs[REGNO (node->loc)];
4460 att; att = att->next)
4461 if (GET_MODE (att->loc) == GET_MODE (node->loc))
4463 gcc_assert (att->offset == 0
4464 && dv_is_value_p (att->dv));
4465 val_reset (set, att->dv);
4466 break;
4469 if (att)
4471 cdv = att->dv;
4472 cval = dv_as_value (cdv);
4474 else
4476 /* Create a unique value to hold this register,
4477 that ought to be found and reused in
4478 subsequent rounds. */
4479 cselib_val *v;
4480 gcc_assert (!cselib_lookup (node->loc,
4481 GET_MODE (node->loc), 0,
4482 VOIDmode));
4483 v = cselib_lookup (node->loc, GET_MODE (node->loc), 1,
4484 VOIDmode);
4485 cselib_preserve_value (v);
4486 cselib_invalidate_rtx (node->loc);
4487 cval = v->val_rtx;
4488 cdv = dv_from_value (cval);
4489 if (dump_file)
4490 fprintf (dump_file,
4491 "Created new value %u:%u for reg %i\n",
4492 v->uid, v->hash, REGNO (node->loc));
4495 var_reg_decl_set (*dfpm->permp, node->loc,
4496 VAR_INIT_STATUS_INITIALIZED,
4497 cdv, 0, NULL, INSERT);
4499 node->loc = cval;
4500 check_dupes = true;
4503 /* Remove attribute referring to the decl, which now
4504 uses the value for the register, already existing or
4505 to be added when we bring perm in. */
4506 att = *curp;
4507 *curp = att->next;
4508 delete att;
4512 if (check_dupes)
4513 remove_duplicate_values (var);
4516 return 1;
4519 /* Reset values in the permanent set that are not associated with the
4520 chosen expression. */
4523 variable_post_merge_perm_vals (variable_def **pslot, dfset_post_merge *dfpm)
4525 dataflow_set *set = dfpm->set;
4526 variable pvar = *pslot, var;
4527 location_chain pnode;
4528 decl_or_value dv;
4529 attrs att;
4531 gcc_assert (dv_is_value_p (pvar->dv)
4532 && pvar->n_var_parts == 1);
4533 pnode = pvar->var_part[0].loc_chain;
4534 gcc_assert (pnode
4535 && !pnode->next
4536 && REG_P (pnode->loc));
4538 dv = pvar->dv;
4540 var = shared_hash_find (set->vars, dv);
4541 if (var)
4543 /* Although variable_post_merge_new_vals may have made decls
4544 non-star-canonical, values that pre-existed in canonical form
4545 remain canonical, and newly-created values reference a single
4546 REG, so they are canonical as well. Since VAR has the
4547 location list for a VALUE, using find_loc_in_1pdv for it is
4548 fine, since VALUEs don't map back to DECLs. */
4549 if (find_loc_in_1pdv (pnode->loc, var, shared_hash_htab (set->vars)))
4550 return 1;
4551 val_reset (set, dv);
4554 for (att = set->regs[REGNO (pnode->loc)]; att; att = att->next)
4555 if (att->offset == 0
4556 && GET_MODE (att->loc) == GET_MODE (pnode->loc)
4557 && dv_is_value_p (att->dv))
4558 break;
4560 /* If there is a value associated with this register already, create
4561 an equivalence. */
4562 if (att && dv_as_value (att->dv) != dv_as_value (dv))
4564 rtx cval = dv_as_value (att->dv);
4565 set_variable_part (set, cval, dv, 0, pnode->init, NULL, INSERT);
4566 set_variable_part (set, dv_as_value (dv), att->dv, 0, pnode->init,
4567 NULL, INSERT);
4569 else if (!att)
4571 attrs_list_insert (&set->regs[REGNO (pnode->loc)],
4572 dv, 0, pnode->loc);
4573 variable_union (pvar, set);
4576 return 1;
4579 /* Just checking stuff and registering register attributes for
4580 now. */
4582 static void
4583 dataflow_post_merge_adjust (dataflow_set *set, dataflow_set **permp)
4585 struct dfset_post_merge dfpm;
4587 dfpm.set = set;
4588 dfpm.permp = permp;
4590 shared_hash_htab (set->vars)
4591 ->traverse <dfset_post_merge*, variable_post_merge_new_vals> (&dfpm);
4592 if (*permp)
4593 shared_hash_htab ((*permp)->vars)
4594 ->traverse <dfset_post_merge*, variable_post_merge_perm_vals> (&dfpm);
4595 shared_hash_htab (set->vars)
4596 ->traverse <dataflow_set *, canonicalize_values_star> (set);
4597 shared_hash_htab (set->vars)
4598 ->traverse <dataflow_set *, canonicalize_vars_star> (set);
4601 /* Return a node whose loc is a MEM that refers to EXPR in the
4602 location list of a one-part variable or value VAR, or in that of
4603 any values recursively mentioned in the location lists. */
4605 static location_chain
4606 find_mem_expr_in_1pdv (tree expr, rtx val, variable_table_type *vars)
4608 location_chain node;
4609 decl_or_value dv;
4610 variable var;
4611 location_chain where = NULL;
4613 if (!val)
4614 return NULL;
4616 gcc_assert (GET_CODE (val) == VALUE
4617 && !VALUE_RECURSED_INTO (val));
4619 dv = dv_from_value (val);
4620 var = vars->find_with_hash (dv, dv_htab_hash (dv));
4622 if (!var)
4623 return NULL;
4625 gcc_assert (var->onepart);
4627 if (!var->n_var_parts)
4628 return NULL;
4630 VALUE_RECURSED_INTO (val) = true;
4632 for (node = var->var_part[0].loc_chain; node; node = node->next)
4633 if (MEM_P (node->loc)
4634 && MEM_EXPR (node->loc) == expr
4635 && INT_MEM_OFFSET (node->loc) == 0)
4637 where = node;
4638 break;
4640 else if (GET_CODE (node->loc) == VALUE
4641 && !VALUE_RECURSED_INTO (node->loc)
4642 && (where = find_mem_expr_in_1pdv (expr, node->loc, vars)))
4643 break;
4645 VALUE_RECURSED_INTO (val) = false;
4647 return where;
4650 /* Return TRUE if the value of MEM may vary across a call. */
4652 static bool
4653 mem_dies_at_call (rtx mem)
4655 tree expr = MEM_EXPR (mem);
4656 tree decl;
4658 if (!expr)
4659 return true;
4661 decl = get_base_address (expr);
4663 if (!decl)
4664 return true;
4666 if (!DECL_P (decl))
4667 return true;
4669 return (may_be_aliased (decl)
4670 || (!TREE_READONLY (decl) && is_global_var (decl)));
4673 /* Remove all MEMs from the location list of a hash table entry for a
4674 one-part variable, except those whose MEM attributes map back to
4675 the variable itself, directly or within a VALUE. */
4678 dataflow_set_preserve_mem_locs (variable_def **slot, dataflow_set *set)
4680 variable var = *slot;
4682 if (var->onepart == ONEPART_VDECL || var->onepart == ONEPART_DEXPR)
4684 tree decl = dv_as_decl (var->dv);
4685 location_chain loc, *locp;
4686 bool changed = false;
4688 if (!var->n_var_parts)
4689 return 1;
4691 gcc_assert (var->n_var_parts == 1);
4693 if (shared_var_p (var, set->vars))
4695 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4697 /* We want to remove dying MEMs that doesn't refer to DECL. */
4698 if (GET_CODE (loc->loc) == MEM
4699 && (MEM_EXPR (loc->loc) != decl
4700 || INT_MEM_OFFSET (loc->loc) != 0)
4701 && !mem_dies_at_call (loc->loc))
4702 break;
4703 /* We want to move here MEMs that do refer to DECL. */
4704 else if (GET_CODE (loc->loc) == VALUE
4705 && find_mem_expr_in_1pdv (decl, loc->loc,
4706 shared_hash_htab (set->vars)))
4707 break;
4710 if (!loc)
4711 return 1;
4713 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4714 var = *slot;
4715 gcc_assert (var->n_var_parts == 1);
4718 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4719 loc; loc = *locp)
4721 rtx old_loc = loc->loc;
4722 if (GET_CODE (old_loc) == VALUE)
4724 location_chain mem_node
4725 = find_mem_expr_in_1pdv (decl, loc->loc,
4726 shared_hash_htab (set->vars));
4728 /* ??? This picks up only one out of multiple MEMs that
4729 refer to the same variable. Do we ever need to be
4730 concerned about dealing with more than one, or, given
4731 that they should all map to the same variable
4732 location, their addresses will have been merged and
4733 they will be regarded as equivalent? */
4734 if (mem_node)
4736 loc->loc = mem_node->loc;
4737 loc->set_src = mem_node->set_src;
4738 loc->init = MIN (loc->init, mem_node->init);
4742 if (GET_CODE (loc->loc) != MEM
4743 || (MEM_EXPR (loc->loc) == decl
4744 && INT_MEM_OFFSET (loc->loc) == 0)
4745 || !mem_dies_at_call (loc->loc))
4747 if (old_loc != loc->loc && emit_notes)
4749 if (old_loc == var->var_part[0].cur_loc)
4751 changed = true;
4752 var->var_part[0].cur_loc = NULL;
4755 locp = &loc->next;
4756 continue;
4759 if (emit_notes)
4761 if (old_loc == var->var_part[0].cur_loc)
4763 changed = true;
4764 var->var_part[0].cur_loc = NULL;
4767 *locp = loc->next;
4768 delete loc;
4771 if (!var->var_part[0].loc_chain)
4773 var->n_var_parts--;
4774 changed = true;
4776 if (changed)
4777 variable_was_changed (var, set);
4780 return 1;
4783 /* Remove all MEMs from the location list of a hash table entry for a
4784 value. */
4787 dataflow_set_remove_mem_locs (variable_def **slot, dataflow_set *set)
4789 variable var = *slot;
4791 if (var->onepart == ONEPART_VALUE)
4793 location_chain loc, *locp;
4794 bool changed = false;
4795 rtx cur_loc;
4797 gcc_assert (var->n_var_parts == 1);
4799 if (shared_var_p (var, set->vars))
4801 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4802 if (GET_CODE (loc->loc) == MEM
4803 && mem_dies_at_call (loc->loc))
4804 break;
4806 if (!loc)
4807 return 1;
4809 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4810 var = *slot;
4811 gcc_assert (var->n_var_parts == 1);
4814 if (VAR_LOC_1PAUX (var))
4815 cur_loc = VAR_LOC_FROM (var);
4816 else
4817 cur_loc = var->var_part[0].cur_loc;
4819 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4820 loc; loc = *locp)
4822 if (GET_CODE (loc->loc) != MEM
4823 || !mem_dies_at_call (loc->loc))
4825 locp = &loc->next;
4826 continue;
4829 *locp = loc->next;
4830 /* If we have deleted the location which was last emitted
4831 we have to emit new location so add the variable to set
4832 of changed variables. */
4833 if (cur_loc == loc->loc)
4835 changed = true;
4836 var->var_part[0].cur_loc = NULL;
4837 if (VAR_LOC_1PAUX (var))
4838 VAR_LOC_FROM (var) = NULL;
4840 delete loc;
4843 if (!var->var_part[0].loc_chain)
4845 var->n_var_parts--;
4846 changed = true;
4848 if (changed)
4849 variable_was_changed (var, set);
4852 return 1;
4855 /* Remove all variable-location information about call-clobbered
4856 registers, as well as associations between MEMs and VALUEs. */
4858 static void
4859 dataflow_set_clear_at_call (dataflow_set *set)
4861 unsigned int r;
4862 hard_reg_set_iterator hrsi;
4864 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, r, hrsi)
4865 var_regno_delete (set, r);
4867 if (MAY_HAVE_DEBUG_INSNS)
4869 set->traversed_vars = set->vars;
4870 shared_hash_htab (set->vars)
4871 ->traverse <dataflow_set *, dataflow_set_preserve_mem_locs> (set);
4872 set->traversed_vars = set->vars;
4873 shared_hash_htab (set->vars)
4874 ->traverse <dataflow_set *, dataflow_set_remove_mem_locs> (set);
4875 set->traversed_vars = NULL;
4879 static bool
4880 variable_part_different_p (variable_part *vp1, variable_part *vp2)
4882 location_chain lc1, lc2;
4884 for (lc1 = vp1->loc_chain; lc1; lc1 = lc1->next)
4886 for (lc2 = vp2->loc_chain; lc2; lc2 = lc2->next)
4888 if (REG_P (lc1->loc) && REG_P (lc2->loc))
4890 if (REGNO (lc1->loc) == REGNO (lc2->loc))
4891 break;
4893 if (rtx_equal_p (lc1->loc, lc2->loc))
4894 break;
4896 if (!lc2)
4897 return true;
4899 return false;
4902 /* Return true if one-part variables VAR1 and VAR2 are different.
4903 They must be in canonical order. */
4905 static bool
4906 onepart_variable_different_p (variable var1, variable var2)
4908 location_chain lc1, lc2;
4910 if (var1 == var2)
4911 return false;
4913 gcc_assert (var1->n_var_parts == 1
4914 && var2->n_var_parts == 1);
4916 lc1 = var1->var_part[0].loc_chain;
4917 lc2 = var2->var_part[0].loc_chain;
4919 gcc_assert (lc1 && lc2);
4921 while (lc1 && lc2)
4923 if (loc_cmp (lc1->loc, lc2->loc))
4924 return true;
4925 lc1 = lc1->next;
4926 lc2 = lc2->next;
4929 return lc1 != lc2;
4932 /* Return true if variables VAR1 and VAR2 are different. */
4934 static bool
4935 variable_different_p (variable var1, variable var2)
4937 int i;
4939 if (var1 == var2)
4940 return false;
4942 if (var1->onepart != var2->onepart)
4943 return true;
4945 if (var1->n_var_parts != var2->n_var_parts)
4946 return true;
4948 if (var1->onepart && var1->n_var_parts)
4950 gcc_checking_assert (dv_as_opaque (var1->dv) == dv_as_opaque (var2->dv)
4951 && var1->n_var_parts == 1);
4952 /* One-part values have locations in a canonical order. */
4953 return onepart_variable_different_p (var1, var2);
4956 for (i = 0; i < var1->n_var_parts; i++)
4958 if (VAR_PART_OFFSET (var1, i) != VAR_PART_OFFSET (var2, i))
4959 return true;
4960 if (variable_part_different_p (&var1->var_part[i], &var2->var_part[i]))
4961 return true;
4962 if (variable_part_different_p (&var2->var_part[i], &var1->var_part[i]))
4963 return true;
4965 return false;
4968 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
4970 static bool
4971 dataflow_set_different (dataflow_set *old_set, dataflow_set *new_set)
4973 variable_iterator_type hi;
4974 variable var1;
4976 if (old_set->vars == new_set->vars)
4977 return false;
4979 if (shared_hash_htab (old_set->vars)->elements ()
4980 != shared_hash_htab (new_set->vars)->elements ())
4981 return true;
4983 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (old_set->vars),
4984 var1, variable, hi)
4986 variable_table_type *htab = shared_hash_htab (new_set->vars);
4987 variable var2 = htab->find_with_hash (var1->dv, dv_htab_hash (var1->dv));
4988 if (!var2)
4990 if (dump_file && (dump_flags & TDF_DETAILS))
4992 fprintf (dump_file, "dataflow difference found: removal of:\n");
4993 dump_var (var1);
4995 return true;
4998 if (variable_different_p (var1, var2))
5000 if (dump_file && (dump_flags & TDF_DETAILS))
5002 fprintf (dump_file, "dataflow difference found: "
5003 "old and new follow:\n");
5004 dump_var (var1);
5005 dump_var (var2);
5007 return true;
5011 /* No need to traverse the second hashtab, if both have the same number
5012 of elements and the second one had all entries found in the first one,
5013 then it can't have any extra entries. */
5014 return false;
5017 /* Free the contents of dataflow set SET. */
5019 static void
5020 dataflow_set_destroy (dataflow_set *set)
5022 int i;
5024 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5025 attrs_list_clear (&set->regs[i]);
5027 shared_hash_destroy (set->vars);
5028 set->vars = NULL;
5031 /* Return true if RTL X contains a SYMBOL_REF. */
5033 static bool
5034 contains_symbol_ref (rtx x)
5036 const char *fmt;
5037 RTX_CODE code;
5038 int i;
5040 if (!x)
5041 return false;
5043 code = GET_CODE (x);
5044 if (code == SYMBOL_REF)
5045 return true;
5047 fmt = GET_RTX_FORMAT (code);
5048 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5050 if (fmt[i] == 'e')
5052 if (contains_symbol_ref (XEXP (x, i)))
5053 return true;
5055 else if (fmt[i] == 'E')
5057 int j;
5058 for (j = 0; j < XVECLEN (x, i); j++)
5059 if (contains_symbol_ref (XVECEXP (x, i, j)))
5060 return true;
5064 return false;
5067 /* Shall EXPR be tracked? */
5069 static bool
5070 track_expr_p (tree expr, bool need_rtl)
5072 rtx decl_rtl;
5073 tree realdecl;
5075 if (TREE_CODE (expr) == DEBUG_EXPR_DECL)
5076 return DECL_RTL_SET_P (expr);
5078 /* If EXPR is not a parameter or a variable do not track it. */
5079 if (TREE_CODE (expr) != VAR_DECL && TREE_CODE (expr) != PARM_DECL)
5080 return 0;
5082 /* It also must have a name... */
5083 if (!DECL_NAME (expr) && need_rtl)
5084 return 0;
5086 /* ... and a RTL assigned to it. */
5087 decl_rtl = DECL_RTL_IF_SET (expr);
5088 if (!decl_rtl && need_rtl)
5089 return 0;
5091 /* If this expression is really a debug alias of some other declaration, we
5092 don't need to track this expression if the ultimate declaration is
5093 ignored. */
5094 realdecl = expr;
5095 if (TREE_CODE (realdecl) == VAR_DECL && DECL_HAS_DEBUG_EXPR_P (realdecl))
5097 realdecl = DECL_DEBUG_EXPR (realdecl);
5098 if (!DECL_P (realdecl))
5100 if (handled_component_p (realdecl)
5101 || (TREE_CODE (realdecl) == MEM_REF
5102 && TREE_CODE (TREE_OPERAND (realdecl, 0)) == ADDR_EXPR))
5104 HOST_WIDE_INT bitsize, bitpos, maxsize;
5105 tree innerdecl
5106 = get_ref_base_and_extent (realdecl, &bitpos, &bitsize,
5107 &maxsize);
5108 if (!DECL_P (innerdecl)
5109 || DECL_IGNORED_P (innerdecl)
5110 /* Do not track declarations for parts of tracked parameters
5111 since we want to track them as a whole instead. */
5112 || (TREE_CODE (innerdecl) == PARM_DECL
5113 && DECL_MODE (innerdecl) != BLKmode
5114 && TREE_CODE (TREE_TYPE (innerdecl)) != UNION_TYPE)
5115 || TREE_STATIC (innerdecl)
5116 || bitsize <= 0
5117 || bitpos + bitsize > 256
5118 || bitsize != maxsize)
5119 return 0;
5120 else
5121 realdecl = expr;
5123 else
5124 return 0;
5128 /* Do not track EXPR if REALDECL it should be ignored for debugging
5129 purposes. */
5130 if (DECL_IGNORED_P (realdecl))
5131 return 0;
5133 /* Do not track global variables until we are able to emit correct location
5134 list for them. */
5135 if (TREE_STATIC (realdecl))
5136 return 0;
5138 /* When the EXPR is a DECL for alias of some variable (see example)
5139 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
5140 DECL_RTL contains SYMBOL_REF.
5142 Example:
5143 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
5144 char **_dl_argv;
5146 if (decl_rtl && MEM_P (decl_rtl)
5147 && contains_symbol_ref (XEXP (decl_rtl, 0)))
5148 return 0;
5150 /* If RTX is a memory it should not be very large (because it would be
5151 an array or struct). */
5152 if (decl_rtl && MEM_P (decl_rtl))
5154 /* Do not track structures and arrays. */
5155 if (GET_MODE (decl_rtl) == BLKmode
5156 || AGGREGATE_TYPE_P (TREE_TYPE (realdecl)))
5157 return 0;
5158 if (MEM_SIZE_KNOWN_P (decl_rtl)
5159 && MEM_SIZE (decl_rtl) > MAX_VAR_PARTS)
5160 return 0;
5163 DECL_CHANGED (expr) = 0;
5164 DECL_CHANGED (realdecl) = 0;
5165 return 1;
5168 /* Determine whether a given LOC refers to the same variable part as
5169 EXPR+OFFSET. */
5171 static bool
5172 same_variable_part_p (rtx loc, tree expr, HOST_WIDE_INT offset)
5174 tree expr2;
5175 HOST_WIDE_INT offset2;
5177 if (! DECL_P (expr))
5178 return false;
5180 if (REG_P (loc))
5182 expr2 = REG_EXPR (loc);
5183 offset2 = REG_OFFSET (loc);
5185 else if (MEM_P (loc))
5187 expr2 = MEM_EXPR (loc);
5188 offset2 = INT_MEM_OFFSET (loc);
5190 else
5191 return false;
5193 if (! expr2 || ! DECL_P (expr2))
5194 return false;
5196 expr = var_debug_decl (expr);
5197 expr2 = var_debug_decl (expr2);
5199 return (expr == expr2 && offset == offset2);
5202 /* LOC is a REG or MEM that we would like to track if possible.
5203 If EXPR is null, we don't know what expression LOC refers to,
5204 otherwise it refers to EXPR + OFFSET. STORE_REG_P is true if
5205 LOC is an lvalue register.
5207 Return true if EXPR is nonnull and if LOC, or some lowpart of it,
5208 is something we can track. When returning true, store the mode of
5209 the lowpart we can track in *MODE_OUT (if nonnull) and its offset
5210 from EXPR in *OFFSET_OUT (if nonnull). */
5212 static bool
5213 track_loc_p (rtx loc, tree expr, HOST_WIDE_INT offset, bool store_reg_p,
5214 machine_mode *mode_out, HOST_WIDE_INT *offset_out)
5216 machine_mode mode;
5218 if (expr == NULL || !track_expr_p (expr, true))
5219 return false;
5221 /* If REG was a paradoxical subreg, its REG_ATTRS will describe the
5222 whole subreg, but only the old inner part is really relevant. */
5223 mode = GET_MODE (loc);
5224 if (REG_P (loc) && !HARD_REGISTER_NUM_P (ORIGINAL_REGNO (loc)))
5226 machine_mode pseudo_mode;
5228 pseudo_mode = PSEUDO_REGNO_MODE (ORIGINAL_REGNO (loc));
5229 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (pseudo_mode))
5231 offset += byte_lowpart_offset (pseudo_mode, mode);
5232 mode = pseudo_mode;
5236 /* If LOC is a paradoxical lowpart of EXPR, refer to EXPR itself.
5237 Do the same if we are storing to a register and EXPR occupies
5238 the whole of register LOC; in that case, the whole of EXPR is
5239 being changed. We exclude complex modes from the second case
5240 because the real and imaginary parts are represented as separate
5241 pseudo registers, even if the whole complex value fits into one
5242 hard register. */
5243 if ((GET_MODE_SIZE (mode) > GET_MODE_SIZE (DECL_MODE (expr))
5244 || (store_reg_p
5245 && !COMPLEX_MODE_P (DECL_MODE (expr))
5246 && hard_regno_nregs[REGNO (loc)][DECL_MODE (expr)] == 1))
5247 && offset + byte_lowpart_offset (DECL_MODE (expr), mode) == 0)
5249 mode = DECL_MODE (expr);
5250 offset = 0;
5253 if (offset < 0 || offset >= MAX_VAR_PARTS)
5254 return false;
5256 if (mode_out)
5257 *mode_out = mode;
5258 if (offset_out)
5259 *offset_out = offset;
5260 return true;
5263 /* Return the MODE lowpart of LOC, or null if LOC is not something we
5264 want to track. When returning nonnull, make sure that the attributes
5265 on the returned value are updated. */
5267 static rtx
5268 var_lowpart (machine_mode mode, rtx loc)
5270 unsigned int offset, reg_offset, regno;
5272 if (GET_MODE (loc) == mode)
5273 return loc;
5275 if (!REG_P (loc) && !MEM_P (loc))
5276 return NULL;
5278 offset = byte_lowpart_offset (mode, GET_MODE (loc));
5280 if (MEM_P (loc))
5281 return adjust_address_nv (loc, mode, offset);
5283 reg_offset = subreg_lowpart_offset (mode, GET_MODE (loc));
5284 regno = REGNO (loc) + subreg_regno_offset (REGNO (loc), GET_MODE (loc),
5285 reg_offset, mode);
5286 return gen_rtx_REG_offset (loc, mode, regno, offset);
5289 /* Carry information about uses and stores while walking rtx. */
5291 struct count_use_info
5293 /* The insn where the RTX is. */
5294 rtx_insn *insn;
5296 /* The basic block where insn is. */
5297 basic_block bb;
5299 /* The array of n_sets sets in the insn, as determined by cselib. */
5300 struct cselib_set *sets;
5301 int n_sets;
5303 /* True if we're counting stores, false otherwise. */
5304 bool store_p;
5307 /* Find a VALUE corresponding to X. */
5309 static inline cselib_val *
5310 find_use_val (rtx x, machine_mode mode, struct count_use_info *cui)
5312 int i;
5314 if (cui->sets)
5316 /* This is called after uses are set up and before stores are
5317 processed by cselib, so it's safe to look up srcs, but not
5318 dsts. So we look up expressions that appear in srcs or in
5319 dest expressions, but we search the sets array for dests of
5320 stores. */
5321 if (cui->store_p)
5323 /* Some targets represent memset and memcpy patterns
5324 by (set (mem:BLK ...) (reg:[QHSD]I ...)) or
5325 (set (mem:BLK ...) (const_int ...)) or
5326 (set (mem:BLK ...) (mem:BLK ...)). Don't return anything
5327 in that case, otherwise we end up with mode mismatches. */
5328 if (mode == BLKmode && MEM_P (x))
5329 return NULL;
5330 for (i = 0; i < cui->n_sets; i++)
5331 if (cui->sets[i].dest == x)
5332 return cui->sets[i].src_elt;
5334 else
5335 return cselib_lookup (x, mode, 0, VOIDmode);
5338 return NULL;
5341 /* Replace all registers and addresses in an expression with VALUE
5342 expressions that map back to them, unless the expression is a
5343 register. If no mapping is or can be performed, returns NULL. */
5345 static rtx
5346 replace_expr_with_values (rtx loc)
5348 if (REG_P (loc) || GET_CODE (loc) == ENTRY_VALUE)
5349 return NULL;
5350 else if (MEM_P (loc))
5352 cselib_val *addr = cselib_lookup (XEXP (loc, 0),
5353 get_address_mode (loc), 0,
5354 GET_MODE (loc));
5355 if (addr)
5356 return replace_equiv_address_nv (loc, addr->val_rtx);
5357 else
5358 return NULL;
5360 else
5361 return cselib_subst_to_values (loc, VOIDmode);
5364 /* Return true if X contains a DEBUG_EXPR. */
5366 static bool
5367 rtx_debug_expr_p (const_rtx x)
5369 subrtx_iterator::array_type array;
5370 FOR_EACH_SUBRTX (iter, array, x, ALL)
5371 if (GET_CODE (*iter) == DEBUG_EXPR)
5372 return true;
5373 return false;
5376 /* Determine what kind of micro operation to choose for a USE. Return
5377 MO_CLOBBER if no micro operation is to be generated. */
5379 static enum micro_operation_type
5380 use_type (rtx loc, struct count_use_info *cui, machine_mode *modep)
5382 tree expr;
5384 if (cui && cui->sets)
5386 if (GET_CODE (loc) == VAR_LOCATION)
5388 if (track_expr_p (PAT_VAR_LOCATION_DECL (loc), false))
5390 rtx ploc = PAT_VAR_LOCATION_LOC (loc);
5391 if (! VAR_LOC_UNKNOWN_P (ploc))
5393 cselib_val *val = cselib_lookup (ploc, GET_MODE (loc), 1,
5394 VOIDmode);
5396 /* ??? flag_float_store and volatile mems are never
5397 given values, but we could in theory use them for
5398 locations. */
5399 gcc_assert (val || 1);
5401 return MO_VAL_LOC;
5403 else
5404 return MO_CLOBBER;
5407 if (REG_P (loc) || MEM_P (loc))
5409 if (modep)
5410 *modep = GET_MODE (loc);
5411 if (cui->store_p)
5413 if (REG_P (loc)
5414 || (find_use_val (loc, GET_MODE (loc), cui)
5415 && cselib_lookup (XEXP (loc, 0),
5416 get_address_mode (loc), 0,
5417 GET_MODE (loc))))
5418 return MO_VAL_SET;
5420 else
5422 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5424 if (val && !cselib_preserved_value_p (val))
5425 return MO_VAL_USE;
5430 if (REG_P (loc))
5432 gcc_assert (REGNO (loc) < FIRST_PSEUDO_REGISTER);
5434 if (loc == cfa_base_rtx)
5435 return MO_CLOBBER;
5436 expr = REG_EXPR (loc);
5438 if (!expr)
5439 return MO_USE_NO_VAR;
5440 else if (target_for_debug_bind (var_debug_decl (expr)))
5441 return MO_CLOBBER;
5442 else if (track_loc_p (loc, expr, REG_OFFSET (loc),
5443 false, modep, NULL))
5444 return MO_USE;
5445 else
5446 return MO_USE_NO_VAR;
5448 else if (MEM_P (loc))
5450 expr = MEM_EXPR (loc);
5452 if (!expr)
5453 return MO_CLOBBER;
5454 else if (target_for_debug_bind (var_debug_decl (expr)))
5455 return MO_CLOBBER;
5456 else if (track_loc_p (loc, expr, INT_MEM_OFFSET (loc),
5457 false, modep, NULL)
5458 /* Multi-part variables shouldn't refer to one-part
5459 variable names such as VALUEs (never happens) or
5460 DEBUG_EXPRs (only happens in the presence of debug
5461 insns). */
5462 && (!MAY_HAVE_DEBUG_INSNS
5463 || !rtx_debug_expr_p (XEXP (loc, 0))))
5464 return MO_USE;
5465 else
5466 return MO_CLOBBER;
5469 return MO_CLOBBER;
5472 /* Log to OUT information about micro-operation MOPT involving X in
5473 INSN of BB. */
5475 static inline void
5476 log_op_type (rtx x, basic_block bb, rtx_insn *insn,
5477 enum micro_operation_type mopt, FILE *out)
5479 fprintf (out, "bb %i op %i insn %i %s ",
5480 bb->index, VTI (bb)->mos.length (),
5481 INSN_UID (insn), micro_operation_type_name[mopt]);
5482 print_inline_rtx (out, x, 2);
5483 fputc ('\n', out);
5486 /* Tell whether the CONCAT used to holds a VALUE and its location
5487 needs value resolution, i.e., an attempt of mapping the location
5488 back to other incoming values. */
5489 #define VAL_NEEDS_RESOLUTION(x) \
5490 (RTL_FLAG_CHECK1 ("VAL_NEEDS_RESOLUTION", (x), CONCAT)->volatil)
5491 /* Whether the location in the CONCAT is a tracked expression, that
5492 should also be handled like a MO_USE. */
5493 #define VAL_HOLDS_TRACK_EXPR(x) \
5494 (RTL_FLAG_CHECK1 ("VAL_HOLDS_TRACK_EXPR", (x), CONCAT)->used)
5495 /* Whether the location in the CONCAT should be handled like a MO_COPY
5496 as well. */
5497 #define VAL_EXPR_IS_COPIED(x) \
5498 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_COPIED", (x), CONCAT)->jump)
5499 /* Whether the location in the CONCAT should be handled like a
5500 MO_CLOBBER as well. */
5501 #define VAL_EXPR_IS_CLOBBERED(x) \
5502 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_CLOBBERED", (x), CONCAT)->unchanging)
5504 /* All preserved VALUEs. */
5505 static vec<rtx> preserved_values;
5507 /* Ensure VAL is preserved and remember it in a vector for vt_emit_notes. */
5509 static void
5510 preserve_value (cselib_val *val)
5512 cselib_preserve_value (val);
5513 preserved_values.safe_push (val->val_rtx);
5516 /* Helper function for MO_VAL_LOC handling. Return non-zero if
5517 any rtxes not suitable for CONST use not replaced by VALUEs
5518 are discovered. */
5520 static bool
5521 non_suitable_const (const_rtx x)
5523 subrtx_iterator::array_type array;
5524 FOR_EACH_SUBRTX (iter, array, x, ALL)
5526 const_rtx x = *iter;
5527 switch (GET_CODE (x))
5529 case REG:
5530 case DEBUG_EXPR:
5531 case PC:
5532 case SCRATCH:
5533 case CC0:
5534 case ASM_INPUT:
5535 case ASM_OPERANDS:
5536 return true;
5537 case MEM:
5538 if (!MEM_READONLY_P (x))
5539 return true;
5540 break;
5541 default:
5542 break;
5545 return false;
5548 /* Add uses (register and memory references) LOC which will be tracked
5549 to VTI (bb)->mos. */
5551 static void
5552 add_uses (rtx loc, struct count_use_info *cui)
5554 machine_mode mode = VOIDmode;
5555 enum micro_operation_type type = use_type (loc, cui, &mode);
5557 if (type != MO_CLOBBER)
5559 basic_block bb = cui->bb;
5560 micro_operation mo;
5562 mo.type = type;
5563 mo.u.loc = type == MO_USE ? var_lowpart (mode, loc) : loc;
5564 mo.insn = cui->insn;
5566 if (type == MO_VAL_LOC)
5568 rtx oloc = loc;
5569 rtx vloc = PAT_VAR_LOCATION_LOC (oloc);
5570 cselib_val *val;
5572 gcc_assert (cui->sets);
5574 if (MEM_P (vloc)
5575 && !REG_P (XEXP (vloc, 0))
5576 && !MEM_P (XEXP (vloc, 0)))
5578 rtx mloc = vloc;
5579 machine_mode address_mode = get_address_mode (mloc);
5580 cselib_val *val
5581 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5582 GET_MODE (mloc));
5584 if (val && !cselib_preserved_value_p (val))
5585 preserve_value (val);
5588 if (CONSTANT_P (vloc)
5589 && (GET_CODE (vloc) != CONST || non_suitable_const (vloc)))
5590 /* For constants don't look up any value. */;
5591 else if (!VAR_LOC_UNKNOWN_P (vloc) && !unsuitable_loc (vloc)
5592 && (val = find_use_val (vloc, GET_MODE (oloc), cui)))
5594 machine_mode mode2;
5595 enum micro_operation_type type2;
5596 rtx nloc = NULL;
5597 bool resolvable = REG_P (vloc) || MEM_P (vloc);
5599 if (resolvable)
5600 nloc = replace_expr_with_values (vloc);
5602 if (nloc)
5604 oloc = shallow_copy_rtx (oloc);
5605 PAT_VAR_LOCATION_LOC (oloc) = nloc;
5608 oloc = gen_rtx_CONCAT (mode, val->val_rtx, oloc);
5610 type2 = use_type (vloc, 0, &mode2);
5612 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5613 || type2 == MO_CLOBBER);
5615 if (type2 == MO_CLOBBER
5616 && !cselib_preserved_value_p (val))
5618 VAL_NEEDS_RESOLUTION (oloc) = resolvable;
5619 preserve_value (val);
5622 else if (!VAR_LOC_UNKNOWN_P (vloc))
5624 oloc = shallow_copy_rtx (oloc);
5625 PAT_VAR_LOCATION_LOC (oloc) = gen_rtx_UNKNOWN_VAR_LOC ();
5628 mo.u.loc = oloc;
5630 else if (type == MO_VAL_USE)
5632 machine_mode mode2 = VOIDmode;
5633 enum micro_operation_type type2;
5634 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5635 rtx vloc, oloc = loc, nloc;
5637 gcc_assert (cui->sets);
5639 if (MEM_P (oloc)
5640 && !REG_P (XEXP (oloc, 0))
5641 && !MEM_P (XEXP (oloc, 0)))
5643 rtx mloc = oloc;
5644 machine_mode address_mode = get_address_mode (mloc);
5645 cselib_val *val
5646 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5647 GET_MODE (mloc));
5649 if (val && !cselib_preserved_value_p (val))
5650 preserve_value (val);
5653 type2 = use_type (loc, 0, &mode2);
5655 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5656 || type2 == MO_CLOBBER);
5658 if (type2 == MO_USE)
5659 vloc = var_lowpart (mode2, loc);
5660 else
5661 vloc = oloc;
5663 /* The loc of a MO_VAL_USE may have two forms:
5665 (concat val src): val is at src, a value-based
5666 representation.
5668 (concat (concat val use) src): same as above, with use as
5669 the MO_USE tracked value, if it differs from src.
5673 gcc_checking_assert (REG_P (loc) || MEM_P (loc));
5674 nloc = replace_expr_with_values (loc);
5675 if (!nloc)
5676 nloc = oloc;
5678 if (vloc != nloc)
5679 oloc = gen_rtx_CONCAT (mode2, val->val_rtx, vloc);
5680 else
5681 oloc = val->val_rtx;
5683 mo.u.loc = gen_rtx_CONCAT (mode, oloc, nloc);
5685 if (type2 == MO_USE)
5686 VAL_HOLDS_TRACK_EXPR (mo.u.loc) = 1;
5687 if (!cselib_preserved_value_p (val))
5689 VAL_NEEDS_RESOLUTION (mo.u.loc) = 1;
5690 preserve_value (val);
5693 else
5694 gcc_assert (type == MO_USE || type == MO_USE_NO_VAR);
5696 if (dump_file && (dump_flags & TDF_DETAILS))
5697 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
5698 VTI (bb)->mos.safe_push (mo);
5702 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
5704 static void
5705 add_uses_1 (rtx *x, void *cui)
5707 subrtx_var_iterator::array_type array;
5708 FOR_EACH_SUBRTX_VAR (iter, array, *x, NONCONST)
5709 add_uses (*iter, (struct count_use_info *) cui);
5712 /* This is the value used during expansion of locations. We want it
5713 to be unbounded, so that variables expanded deep in a recursion
5714 nest are fully evaluated, so that their values are cached
5715 correctly. We avoid recursion cycles through other means, and we
5716 don't unshare RTL, so excess complexity is not a problem. */
5717 #define EXPR_DEPTH (INT_MAX)
5718 /* We use this to keep too-complex expressions from being emitted as
5719 location notes, and then to debug information. Users can trade
5720 compile time for ridiculously complex expressions, although they're
5721 seldom useful, and they may often have to be discarded as not
5722 representable anyway. */
5723 #define EXPR_USE_DEPTH (PARAM_VALUE (PARAM_MAX_VARTRACK_EXPR_DEPTH))
5725 /* Attempt to reverse the EXPR operation in the debug info and record
5726 it in the cselib table. Say for reg1 = reg2 + 6 even when reg2 is
5727 no longer live we can express its value as VAL - 6. */
5729 static void
5730 reverse_op (rtx val, const_rtx expr, rtx_insn *insn)
5732 rtx src, arg, ret;
5733 cselib_val *v;
5734 struct elt_loc_list *l;
5735 enum rtx_code code;
5736 int count;
5738 if (GET_CODE (expr) != SET)
5739 return;
5741 if (!REG_P (SET_DEST (expr)) || GET_MODE (val) != GET_MODE (SET_DEST (expr)))
5742 return;
5744 src = SET_SRC (expr);
5745 switch (GET_CODE (src))
5747 case PLUS:
5748 case MINUS:
5749 case XOR:
5750 case NOT:
5751 case NEG:
5752 if (!REG_P (XEXP (src, 0)))
5753 return;
5754 break;
5755 case SIGN_EXTEND:
5756 case ZERO_EXTEND:
5757 if (!REG_P (XEXP (src, 0)) && !MEM_P (XEXP (src, 0)))
5758 return;
5759 break;
5760 default:
5761 return;
5764 if (!SCALAR_INT_MODE_P (GET_MODE (src)) || XEXP (src, 0) == cfa_base_rtx)
5765 return;
5767 v = cselib_lookup (XEXP (src, 0), GET_MODE (XEXP (src, 0)), 0, VOIDmode);
5768 if (!v || !cselib_preserved_value_p (v))
5769 return;
5771 /* Use canonical V to avoid creating multiple redundant expressions
5772 for different VALUES equivalent to V. */
5773 v = canonical_cselib_val (v);
5775 /* Adding a reverse op isn't useful if V already has an always valid
5776 location. Ignore ENTRY_VALUE, while it is always constant, we should
5777 prefer non-ENTRY_VALUE locations whenever possible. */
5778 for (l = v->locs, count = 0; l; l = l->next, count++)
5779 if (CONSTANT_P (l->loc)
5780 && (GET_CODE (l->loc) != CONST || !references_value_p (l->loc, 0)))
5781 return;
5782 /* Avoid creating too large locs lists. */
5783 else if (count == PARAM_VALUE (PARAM_MAX_VARTRACK_REVERSE_OP_SIZE))
5784 return;
5786 switch (GET_CODE (src))
5788 case NOT:
5789 case NEG:
5790 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5791 return;
5792 ret = gen_rtx_fmt_e (GET_CODE (src), GET_MODE (val), val);
5793 break;
5794 case SIGN_EXTEND:
5795 case ZERO_EXTEND:
5796 ret = gen_lowpart_SUBREG (GET_MODE (v->val_rtx), val);
5797 break;
5798 case XOR:
5799 code = XOR;
5800 goto binary;
5801 case PLUS:
5802 code = MINUS;
5803 goto binary;
5804 case MINUS:
5805 code = PLUS;
5806 goto binary;
5807 binary:
5808 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5809 return;
5810 arg = XEXP (src, 1);
5811 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5813 arg = cselib_expand_value_rtx (arg, scratch_regs, 5);
5814 if (arg == NULL_RTX)
5815 return;
5816 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5817 return;
5819 ret = simplify_gen_binary (code, GET_MODE (val), val, arg);
5820 if (ret == val)
5821 /* Ensure ret isn't VALUE itself (which can happen e.g. for
5822 (plus (reg1) (reg2)) when reg2 is known to be 0), as that
5823 breaks a lot of routines during var-tracking. */
5824 ret = gen_rtx_fmt_ee (PLUS, GET_MODE (val), val, const0_rtx);
5825 break;
5826 default:
5827 gcc_unreachable ();
5830 cselib_add_permanent_equiv (v, ret, insn);
5833 /* Add stores (register and memory references) LOC which will be tracked
5834 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
5835 CUIP->insn is instruction which the LOC is part of. */
5837 static void
5838 add_stores (rtx loc, const_rtx expr, void *cuip)
5840 machine_mode mode = VOIDmode, mode2;
5841 struct count_use_info *cui = (struct count_use_info *)cuip;
5842 basic_block bb = cui->bb;
5843 micro_operation mo;
5844 rtx oloc = loc, nloc, src = NULL;
5845 enum micro_operation_type type = use_type (loc, cui, &mode);
5846 bool track_p = false;
5847 cselib_val *v;
5848 bool resolve, preserve;
5850 if (type == MO_CLOBBER)
5851 return;
5853 mode2 = mode;
5855 if (REG_P (loc))
5857 gcc_assert (loc != cfa_base_rtx);
5858 if ((GET_CODE (expr) == CLOBBER && type != MO_VAL_SET)
5859 || !(track_p = use_type (loc, NULL, &mode2) == MO_USE)
5860 || GET_CODE (expr) == CLOBBER)
5862 mo.type = MO_CLOBBER;
5863 mo.u.loc = loc;
5864 if (GET_CODE (expr) == SET
5865 && SET_DEST (expr) == loc
5866 && !unsuitable_loc (SET_SRC (expr))
5867 && find_use_val (loc, mode, cui))
5869 gcc_checking_assert (type == MO_VAL_SET);
5870 mo.u.loc = gen_rtx_SET (loc, SET_SRC (expr));
5873 else
5875 if (GET_CODE (expr) == SET
5876 && SET_DEST (expr) == loc
5877 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5878 src = var_lowpart (mode2, SET_SRC (expr));
5879 loc = var_lowpart (mode2, loc);
5881 if (src == NULL)
5883 mo.type = MO_SET;
5884 mo.u.loc = loc;
5886 else
5888 rtx xexpr = gen_rtx_SET (loc, src);
5889 if (same_variable_part_p (src, REG_EXPR (loc), REG_OFFSET (loc)))
5891 /* If this is an instruction copying (part of) a parameter
5892 passed by invisible reference to its register location,
5893 pretend it's a SET so that the initial memory location
5894 is discarded, as the parameter register can be reused
5895 for other purposes and we do not track locations based
5896 on generic registers. */
5897 if (MEM_P (src)
5898 && REG_EXPR (loc)
5899 && TREE_CODE (REG_EXPR (loc)) == PARM_DECL
5900 && DECL_MODE (REG_EXPR (loc)) != BLKmode
5901 && MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
5902 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0)
5903 != arg_pointer_rtx)
5904 mo.type = MO_SET;
5905 else
5906 mo.type = MO_COPY;
5908 else
5909 mo.type = MO_SET;
5910 mo.u.loc = xexpr;
5913 mo.insn = cui->insn;
5915 else if (MEM_P (loc)
5916 && ((track_p = use_type (loc, NULL, &mode2) == MO_USE)
5917 || cui->sets))
5919 if (MEM_P (loc) && type == MO_VAL_SET
5920 && !REG_P (XEXP (loc, 0))
5921 && !MEM_P (XEXP (loc, 0)))
5923 rtx mloc = loc;
5924 machine_mode address_mode = get_address_mode (mloc);
5925 cselib_val *val = cselib_lookup (XEXP (mloc, 0),
5926 address_mode, 0,
5927 GET_MODE (mloc));
5929 if (val && !cselib_preserved_value_p (val))
5930 preserve_value (val);
5933 if (GET_CODE (expr) == CLOBBER || !track_p)
5935 mo.type = MO_CLOBBER;
5936 mo.u.loc = track_p ? var_lowpart (mode2, loc) : loc;
5938 else
5940 if (GET_CODE (expr) == SET
5941 && SET_DEST (expr) == loc
5942 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5943 src = var_lowpart (mode2, SET_SRC (expr));
5944 loc = var_lowpart (mode2, loc);
5946 if (src == NULL)
5948 mo.type = MO_SET;
5949 mo.u.loc = loc;
5951 else
5953 rtx xexpr = gen_rtx_SET (loc, src);
5954 if (same_variable_part_p (SET_SRC (xexpr),
5955 MEM_EXPR (loc),
5956 INT_MEM_OFFSET (loc)))
5957 mo.type = MO_COPY;
5958 else
5959 mo.type = MO_SET;
5960 mo.u.loc = xexpr;
5963 mo.insn = cui->insn;
5965 else
5966 return;
5968 if (type != MO_VAL_SET)
5969 goto log_and_return;
5971 v = find_use_val (oloc, mode, cui);
5973 if (!v)
5974 goto log_and_return;
5976 resolve = preserve = !cselib_preserved_value_p (v);
5978 /* We cannot track values for multiple-part variables, so we track only
5979 locations for tracked parameters passed either by invisible reference
5980 or directly in multiple locations. */
5981 if (track_p
5982 && REG_P (loc)
5983 && REG_EXPR (loc)
5984 && TREE_CODE (REG_EXPR (loc)) == PARM_DECL
5985 && DECL_MODE (REG_EXPR (loc)) != BLKmode
5986 && TREE_CODE (TREE_TYPE (REG_EXPR (loc))) != UNION_TYPE
5987 && ((MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
5988 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0) != arg_pointer_rtx)
5989 || (GET_CODE (DECL_INCOMING_RTL (REG_EXPR (loc))) == PARALLEL
5990 && XVECLEN (DECL_INCOMING_RTL (REG_EXPR (loc)), 0) > 1)))
5992 /* Although we don't use the value here, it could be used later by the
5993 mere virtue of its existence as the operand of the reverse operation
5994 that gave rise to it (typically extension/truncation). Make sure it
5995 is preserved as required by vt_expand_var_loc_chain. */
5996 if (preserve)
5997 preserve_value (v);
5998 goto log_and_return;
6001 if (loc == stack_pointer_rtx
6002 && hard_frame_pointer_adjustment != -1
6003 && preserve)
6004 cselib_set_value_sp_based (v);
6006 nloc = replace_expr_with_values (oloc);
6007 if (nloc)
6008 oloc = nloc;
6010 if (GET_CODE (PATTERN (cui->insn)) == COND_EXEC)
6012 cselib_val *oval = cselib_lookup (oloc, GET_MODE (oloc), 0, VOIDmode);
6014 if (oval == v)
6015 return;
6016 gcc_assert (REG_P (oloc) || MEM_P (oloc));
6018 if (oval && !cselib_preserved_value_p (oval))
6020 micro_operation moa;
6022 preserve_value (oval);
6024 moa.type = MO_VAL_USE;
6025 moa.u.loc = gen_rtx_CONCAT (mode, oval->val_rtx, oloc);
6026 VAL_NEEDS_RESOLUTION (moa.u.loc) = 1;
6027 moa.insn = cui->insn;
6029 if (dump_file && (dump_flags & TDF_DETAILS))
6030 log_op_type (moa.u.loc, cui->bb, cui->insn,
6031 moa.type, dump_file);
6032 VTI (bb)->mos.safe_push (moa);
6035 resolve = false;
6037 else if (resolve && GET_CODE (mo.u.loc) == SET)
6039 if (REG_P (SET_SRC (expr)) || MEM_P (SET_SRC (expr)))
6040 nloc = replace_expr_with_values (SET_SRC (expr));
6041 else
6042 nloc = NULL_RTX;
6044 /* Avoid the mode mismatch between oexpr and expr. */
6045 if (!nloc && mode != mode2)
6047 nloc = SET_SRC (expr);
6048 gcc_assert (oloc == SET_DEST (expr));
6051 if (nloc && nloc != SET_SRC (mo.u.loc))
6052 oloc = gen_rtx_SET (oloc, nloc);
6053 else
6055 if (oloc == SET_DEST (mo.u.loc))
6056 /* No point in duplicating. */
6057 oloc = mo.u.loc;
6058 if (!REG_P (SET_SRC (mo.u.loc)))
6059 resolve = false;
6062 else if (!resolve)
6064 if (GET_CODE (mo.u.loc) == SET
6065 && oloc == SET_DEST (mo.u.loc))
6066 /* No point in duplicating. */
6067 oloc = mo.u.loc;
6069 else
6070 resolve = false;
6072 loc = gen_rtx_CONCAT (mode, v->val_rtx, oloc);
6074 if (mo.u.loc != oloc)
6075 loc = gen_rtx_CONCAT (GET_MODE (mo.u.loc), loc, mo.u.loc);
6077 /* The loc of a MO_VAL_SET may have various forms:
6079 (concat val dst): dst now holds val
6081 (concat val (set dst src)): dst now holds val, copied from src
6083 (concat (concat val dstv) dst): dst now holds val; dstv is dst
6084 after replacing mems and non-top-level regs with values.
6086 (concat (concat val dstv) (set dst src)): dst now holds val,
6087 copied from src. dstv is a value-based representation of dst, if
6088 it differs from dst. If resolution is needed, src is a REG, and
6089 its mode is the same as that of val.
6091 (concat (concat val (set dstv srcv)) (set dst src)): src
6092 copied to dst, holding val. dstv and srcv are value-based
6093 representations of dst and src, respectively.
6097 if (GET_CODE (PATTERN (cui->insn)) != COND_EXEC)
6098 reverse_op (v->val_rtx, expr, cui->insn);
6100 mo.u.loc = loc;
6102 if (track_p)
6103 VAL_HOLDS_TRACK_EXPR (loc) = 1;
6104 if (preserve)
6106 VAL_NEEDS_RESOLUTION (loc) = resolve;
6107 preserve_value (v);
6109 if (mo.type == MO_CLOBBER)
6110 VAL_EXPR_IS_CLOBBERED (loc) = 1;
6111 if (mo.type == MO_COPY)
6112 VAL_EXPR_IS_COPIED (loc) = 1;
6114 mo.type = MO_VAL_SET;
6116 log_and_return:
6117 if (dump_file && (dump_flags & TDF_DETAILS))
6118 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
6119 VTI (bb)->mos.safe_push (mo);
6122 /* Arguments to the call. */
6123 static rtx call_arguments;
6125 /* Compute call_arguments. */
6127 static void
6128 prepare_call_arguments (basic_block bb, rtx_insn *insn)
6130 rtx link, x, call;
6131 rtx prev, cur, next;
6132 rtx this_arg = NULL_RTX;
6133 tree type = NULL_TREE, t, fndecl = NULL_TREE;
6134 tree obj_type_ref = NULL_TREE;
6135 CUMULATIVE_ARGS args_so_far_v;
6136 cumulative_args_t args_so_far;
6138 memset (&args_so_far_v, 0, sizeof (args_so_far_v));
6139 args_so_far = pack_cumulative_args (&args_so_far_v);
6140 call = get_call_rtx_from (insn);
6141 if (call)
6143 if (GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
6145 rtx symbol = XEXP (XEXP (call, 0), 0);
6146 if (SYMBOL_REF_DECL (symbol))
6147 fndecl = SYMBOL_REF_DECL (symbol);
6149 if (fndecl == NULL_TREE)
6150 fndecl = MEM_EXPR (XEXP (call, 0));
6151 if (fndecl
6152 && TREE_CODE (TREE_TYPE (fndecl)) != FUNCTION_TYPE
6153 && TREE_CODE (TREE_TYPE (fndecl)) != METHOD_TYPE)
6154 fndecl = NULL_TREE;
6155 if (fndecl && TYPE_ARG_TYPES (TREE_TYPE (fndecl)))
6156 type = TREE_TYPE (fndecl);
6157 if (fndecl && TREE_CODE (fndecl) != FUNCTION_DECL)
6159 if (TREE_CODE (fndecl) == INDIRECT_REF
6160 && TREE_CODE (TREE_OPERAND (fndecl, 0)) == OBJ_TYPE_REF)
6161 obj_type_ref = TREE_OPERAND (fndecl, 0);
6162 fndecl = NULL_TREE;
6164 if (type)
6166 for (t = TYPE_ARG_TYPES (type); t && t != void_list_node;
6167 t = TREE_CHAIN (t))
6168 if (TREE_CODE (TREE_VALUE (t)) == REFERENCE_TYPE
6169 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_VALUE (t))))
6170 break;
6171 if ((t == NULL || t == void_list_node) && obj_type_ref == NULL_TREE)
6172 type = NULL;
6173 else
6175 int nargs ATTRIBUTE_UNUSED = list_length (TYPE_ARG_TYPES (type));
6176 link = CALL_INSN_FUNCTION_USAGE (insn);
6177 #ifndef PCC_STATIC_STRUCT_RETURN
6178 if (aggregate_value_p (TREE_TYPE (type), type)
6179 && targetm.calls.struct_value_rtx (type, 0) == 0)
6181 tree struct_addr = build_pointer_type (TREE_TYPE (type));
6182 machine_mode mode = TYPE_MODE (struct_addr);
6183 rtx reg;
6184 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6185 nargs + 1);
6186 reg = targetm.calls.function_arg (args_so_far, mode,
6187 struct_addr, true);
6188 targetm.calls.function_arg_advance (args_so_far, mode,
6189 struct_addr, true);
6190 if (reg == NULL_RTX)
6192 for (; link; link = XEXP (link, 1))
6193 if (GET_CODE (XEXP (link, 0)) == USE
6194 && MEM_P (XEXP (XEXP (link, 0), 0)))
6196 link = XEXP (link, 1);
6197 break;
6201 else
6202 #endif
6203 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6204 nargs);
6205 if (obj_type_ref && TYPE_ARG_TYPES (type) != void_list_node)
6207 machine_mode mode;
6208 t = TYPE_ARG_TYPES (type);
6209 mode = TYPE_MODE (TREE_VALUE (t));
6210 this_arg = targetm.calls.function_arg (args_so_far, mode,
6211 TREE_VALUE (t), true);
6212 if (this_arg && !REG_P (this_arg))
6213 this_arg = NULL_RTX;
6214 else if (this_arg == NULL_RTX)
6216 for (; link; link = XEXP (link, 1))
6217 if (GET_CODE (XEXP (link, 0)) == USE
6218 && MEM_P (XEXP (XEXP (link, 0), 0)))
6220 this_arg = XEXP (XEXP (link, 0), 0);
6221 break;
6228 t = type ? TYPE_ARG_TYPES (type) : NULL_TREE;
6230 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
6231 if (GET_CODE (XEXP (link, 0)) == USE)
6233 rtx item = NULL_RTX;
6234 x = XEXP (XEXP (link, 0), 0);
6235 if (GET_MODE (link) == VOIDmode
6236 || GET_MODE (link) == BLKmode
6237 || (GET_MODE (link) != GET_MODE (x)
6238 && ((GET_MODE_CLASS (GET_MODE (link)) != MODE_INT
6239 && GET_MODE_CLASS (GET_MODE (link)) != MODE_PARTIAL_INT)
6240 || (GET_MODE_CLASS (GET_MODE (x)) != MODE_INT
6241 && GET_MODE_CLASS (GET_MODE (x)) != MODE_PARTIAL_INT))))
6242 /* Can't do anything for these, if the original type mode
6243 isn't known or can't be converted. */;
6244 else if (REG_P (x))
6246 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6247 if (val && cselib_preserved_value_p (val))
6248 item = val->val_rtx;
6249 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
6250 || GET_MODE_CLASS (GET_MODE (x)) == MODE_PARTIAL_INT)
6252 machine_mode mode = GET_MODE (x);
6254 while ((mode = GET_MODE_WIDER_MODE (mode)) != VOIDmode
6255 && GET_MODE_BITSIZE (mode) <= BITS_PER_WORD)
6257 rtx reg = simplify_subreg (mode, x, GET_MODE (x), 0);
6259 if (reg == NULL_RTX || !REG_P (reg))
6260 continue;
6261 val = cselib_lookup (reg, mode, 0, VOIDmode);
6262 if (val && cselib_preserved_value_p (val))
6264 item = val->val_rtx;
6265 break;
6270 else if (MEM_P (x))
6272 rtx mem = x;
6273 cselib_val *val;
6275 if (!frame_pointer_needed)
6277 struct adjust_mem_data amd;
6278 amd.mem_mode = VOIDmode;
6279 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
6280 amd.side_effects = NULL;
6281 amd.store = true;
6282 mem = simplify_replace_fn_rtx (mem, NULL_RTX, adjust_mems,
6283 &amd);
6284 gcc_assert (amd.side_effects == NULL_RTX);
6286 val = cselib_lookup (mem, GET_MODE (mem), 0, VOIDmode);
6287 if (val && cselib_preserved_value_p (val))
6288 item = val->val_rtx;
6289 else if (GET_MODE_CLASS (GET_MODE (mem)) != MODE_INT
6290 && GET_MODE_CLASS (GET_MODE (mem)) != MODE_PARTIAL_INT)
6292 /* For non-integer stack argument see also if they weren't
6293 initialized by integers. */
6294 machine_mode imode = int_mode_for_mode (GET_MODE (mem));
6295 if (imode != GET_MODE (mem) && imode != BLKmode)
6297 val = cselib_lookup (adjust_address_nv (mem, imode, 0),
6298 imode, 0, VOIDmode);
6299 if (val && cselib_preserved_value_p (val))
6300 item = lowpart_subreg (GET_MODE (x), val->val_rtx,
6301 imode);
6305 if (item)
6307 rtx x2 = x;
6308 if (GET_MODE (item) != GET_MODE (link))
6309 item = lowpart_subreg (GET_MODE (link), item, GET_MODE (item));
6310 if (GET_MODE (x2) != GET_MODE (link))
6311 x2 = lowpart_subreg (GET_MODE (link), x2, GET_MODE (x2));
6312 item = gen_rtx_CONCAT (GET_MODE (link), x2, item);
6313 call_arguments
6314 = gen_rtx_EXPR_LIST (VOIDmode, item, call_arguments);
6316 if (t && t != void_list_node)
6318 tree argtype = TREE_VALUE (t);
6319 machine_mode mode = TYPE_MODE (argtype);
6320 rtx reg;
6321 if (pass_by_reference (&args_so_far_v, mode, argtype, true))
6323 argtype = build_pointer_type (argtype);
6324 mode = TYPE_MODE (argtype);
6326 reg = targetm.calls.function_arg (args_so_far, mode,
6327 argtype, true);
6328 if (TREE_CODE (argtype) == REFERENCE_TYPE
6329 && INTEGRAL_TYPE_P (TREE_TYPE (argtype))
6330 && reg
6331 && REG_P (reg)
6332 && GET_MODE (reg) == mode
6333 && (GET_MODE_CLASS (mode) == MODE_INT
6334 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
6335 && REG_P (x)
6336 && REGNO (x) == REGNO (reg)
6337 && GET_MODE (x) == mode
6338 && item)
6340 machine_mode indmode
6341 = TYPE_MODE (TREE_TYPE (argtype));
6342 rtx mem = gen_rtx_MEM (indmode, x);
6343 cselib_val *val = cselib_lookup (mem, indmode, 0, VOIDmode);
6344 if (val && cselib_preserved_value_p (val))
6346 item = gen_rtx_CONCAT (indmode, mem, val->val_rtx);
6347 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6348 call_arguments);
6350 else
6352 struct elt_loc_list *l;
6353 tree initial;
6355 /* Try harder, when passing address of a constant
6356 pool integer it can be easily read back. */
6357 item = XEXP (item, 1);
6358 if (GET_CODE (item) == SUBREG)
6359 item = SUBREG_REG (item);
6360 gcc_assert (GET_CODE (item) == VALUE);
6361 val = CSELIB_VAL_PTR (item);
6362 for (l = val->locs; l; l = l->next)
6363 if (GET_CODE (l->loc) == SYMBOL_REF
6364 && TREE_CONSTANT_POOL_ADDRESS_P (l->loc)
6365 && SYMBOL_REF_DECL (l->loc)
6366 && DECL_INITIAL (SYMBOL_REF_DECL (l->loc)))
6368 initial = DECL_INITIAL (SYMBOL_REF_DECL (l->loc));
6369 if (tree_fits_shwi_p (initial))
6371 item = GEN_INT (tree_to_shwi (initial));
6372 item = gen_rtx_CONCAT (indmode, mem, item);
6373 call_arguments
6374 = gen_rtx_EXPR_LIST (VOIDmode, item,
6375 call_arguments);
6377 break;
6381 targetm.calls.function_arg_advance (args_so_far, mode,
6382 argtype, true);
6383 t = TREE_CHAIN (t);
6387 /* Add debug arguments. */
6388 if (fndecl
6389 && TREE_CODE (fndecl) == FUNCTION_DECL
6390 && DECL_HAS_DEBUG_ARGS_P (fndecl))
6392 vec<tree, va_gc> **debug_args = decl_debug_args_lookup (fndecl);
6393 if (debug_args)
6395 unsigned int ix;
6396 tree param;
6397 for (ix = 0; vec_safe_iterate (*debug_args, ix, &param); ix += 2)
6399 rtx item;
6400 tree dtemp = (**debug_args)[ix + 1];
6401 machine_mode mode = DECL_MODE (dtemp);
6402 item = gen_rtx_DEBUG_PARAMETER_REF (mode, param);
6403 item = gen_rtx_CONCAT (mode, item, DECL_RTL_KNOWN_SET (dtemp));
6404 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6405 call_arguments);
6410 /* Reverse call_arguments chain. */
6411 prev = NULL_RTX;
6412 for (cur = call_arguments; cur; cur = next)
6414 next = XEXP (cur, 1);
6415 XEXP (cur, 1) = prev;
6416 prev = cur;
6418 call_arguments = prev;
6420 x = get_call_rtx_from (insn);
6421 if (x)
6423 x = XEXP (XEXP (x, 0), 0);
6424 if (GET_CODE (x) == SYMBOL_REF)
6425 /* Don't record anything. */;
6426 else if (CONSTANT_P (x))
6428 x = gen_rtx_CONCAT (GET_MODE (x) == VOIDmode ? Pmode : GET_MODE (x),
6429 pc_rtx, x);
6430 call_arguments
6431 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6433 else
6435 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6436 if (val && cselib_preserved_value_p (val))
6438 x = gen_rtx_CONCAT (GET_MODE (x), pc_rtx, val->val_rtx);
6439 call_arguments
6440 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6444 if (this_arg)
6446 machine_mode mode
6447 = TYPE_MODE (TREE_TYPE (OBJ_TYPE_REF_EXPR (obj_type_ref)));
6448 rtx clobbered = gen_rtx_MEM (mode, this_arg);
6449 HOST_WIDE_INT token
6450 = tree_to_shwi (OBJ_TYPE_REF_TOKEN (obj_type_ref));
6451 if (token)
6452 clobbered = plus_constant (mode, clobbered,
6453 token * GET_MODE_SIZE (mode));
6454 clobbered = gen_rtx_MEM (mode, clobbered);
6455 x = gen_rtx_CONCAT (mode, gen_rtx_CLOBBER (VOIDmode, pc_rtx), clobbered);
6456 call_arguments
6457 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6461 /* Callback for cselib_record_sets_hook, that records as micro
6462 operations uses and stores in an insn after cselib_record_sets has
6463 analyzed the sets in an insn, but before it modifies the stored
6464 values in the internal tables, unless cselib_record_sets doesn't
6465 call it directly (perhaps because we're not doing cselib in the
6466 first place, in which case sets and n_sets will be 0). */
6468 static void
6469 add_with_sets (rtx_insn *insn, struct cselib_set *sets, int n_sets)
6471 basic_block bb = BLOCK_FOR_INSN (insn);
6472 int n1, n2;
6473 struct count_use_info cui;
6474 micro_operation *mos;
6476 cselib_hook_called = true;
6478 cui.insn = insn;
6479 cui.bb = bb;
6480 cui.sets = sets;
6481 cui.n_sets = n_sets;
6483 n1 = VTI (bb)->mos.length ();
6484 cui.store_p = false;
6485 note_uses (&PATTERN (insn), add_uses_1, &cui);
6486 n2 = VTI (bb)->mos.length () - 1;
6487 mos = VTI (bb)->mos.address ();
6489 /* Order the MO_USEs to be before MO_USE_NO_VARs and MO_VAL_USE, and
6490 MO_VAL_LOC last. */
6491 while (n1 < n2)
6493 while (n1 < n2 && mos[n1].type == MO_USE)
6494 n1++;
6495 while (n1 < n2 && mos[n2].type != MO_USE)
6496 n2--;
6497 if (n1 < n2)
6498 std::swap (mos[n1], mos[n2]);
6501 n2 = VTI (bb)->mos.length () - 1;
6502 while (n1 < n2)
6504 while (n1 < n2 && mos[n1].type != MO_VAL_LOC)
6505 n1++;
6506 while (n1 < n2 && mos[n2].type == MO_VAL_LOC)
6507 n2--;
6508 if (n1 < n2)
6509 std::swap (mos[n1], mos[n2]);
6512 if (CALL_P (insn))
6514 micro_operation mo;
6516 mo.type = MO_CALL;
6517 mo.insn = insn;
6518 mo.u.loc = call_arguments;
6519 call_arguments = NULL_RTX;
6521 if (dump_file && (dump_flags & TDF_DETAILS))
6522 log_op_type (PATTERN (insn), bb, insn, mo.type, dump_file);
6523 VTI (bb)->mos.safe_push (mo);
6526 n1 = VTI (bb)->mos.length ();
6527 /* This will record NEXT_INSN (insn), such that we can
6528 insert notes before it without worrying about any
6529 notes that MO_USEs might emit after the insn. */
6530 cui.store_p = true;
6531 note_stores (PATTERN (insn), add_stores, &cui);
6532 n2 = VTI (bb)->mos.length () - 1;
6533 mos = VTI (bb)->mos.address ();
6535 /* Order the MO_VAL_USEs first (note_stores does nothing
6536 on DEBUG_INSNs, so there are no MO_VAL_LOCs from this
6537 insn), then MO_CLOBBERs, then MO_SET/MO_COPY/MO_VAL_SET. */
6538 while (n1 < n2)
6540 while (n1 < n2 && mos[n1].type == MO_VAL_USE)
6541 n1++;
6542 while (n1 < n2 && mos[n2].type != MO_VAL_USE)
6543 n2--;
6544 if (n1 < n2)
6545 std::swap (mos[n1], mos[n2]);
6548 n2 = VTI (bb)->mos.length () - 1;
6549 while (n1 < n2)
6551 while (n1 < n2 && mos[n1].type == MO_CLOBBER)
6552 n1++;
6553 while (n1 < n2 && mos[n2].type != MO_CLOBBER)
6554 n2--;
6555 if (n1 < n2)
6556 std::swap (mos[n1], mos[n2]);
6560 static enum var_init_status
6561 find_src_status (dataflow_set *in, rtx src)
6563 tree decl = NULL_TREE;
6564 enum var_init_status status = VAR_INIT_STATUS_UNINITIALIZED;
6566 if (! flag_var_tracking_uninit)
6567 status = VAR_INIT_STATUS_INITIALIZED;
6569 if (src && REG_P (src))
6570 decl = var_debug_decl (REG_EXPR (src));
6571 else if (src && MEM_P (src))
6572 decl = var_debug_decl (MEM_EXPR (src));
6574 if (src && decl)
6575 status = get_init_value (in, src, dv_from_decl (decl));
6577 return status;
6580 /* SRC is the source of an assignment. Use SET to try to find what
6581 was ultimately assigned to SRC. Return that value if known,
6582 otherwise return SRC itself. */
6584 static rtx
6585 find_src_set_src (dataflow_set *set, rtx src)
6587 tree decl = NULL_TREE; /* The variable being copied around. */
6588 rtx set_src = NULL_RTX; /* The value for "decl" stored in "src". */
6589 variable var;
6590 location_chain nextp;
6591 int i;
6592 bool found;
6594 if (src && REG_P (src))
6595 decl = var_debug_decl (REG_EXPR (src));
6596 else if (src && MEM_P (src))
6597 decl = var_debug_decl (MEM_EXPR (src));
6599 if (src && decl)
6601 decl_or_value dv = dv_from_decl (decl);
6603 var = shared_hash_find (set->vars, dv);
6604 if (var)
6606 found = false;
6607 for (i = 0; i < var->n_var_parts && !found; i++)
6608 for (nextp = var->var_part[i].loc_chain; nextp && !found;
6609 nextp = nextp->next)
6610 if (rtx_equal_p (nextp->loc, src))
6612 set_src = nextp->set_src;
6613 found = true;
6619 return set_src;
6622 /* Compute the changes of variable locations in the basic block BB. */
6624 static bool
6625 compute_bb_dataflow (basic_block bb)
6627 unsigned int i;
6628 micro_operation *mo;
6629 bool changed;
6630 dataflow_set old_out;
6631 dataflow_set *in = &VTI (bb)->in;
6632 dataflow_set *out = &VTI (bb)->out;
6634 dataflow_set_init (&old_out);
6635 dataflow_set_copy (&old_out, out);
6636 dataflow_set_copy (out, in);
6638 if (MAY_HAVE_DEBUG_INSNS)
6639 local_get_addr_cache = new hash_map<rtx, rtx>;
6641 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
6643 rtx_insn *insn = mo->insn;
6645 switch (mo->type)
6647 case MO_CALL:
6648 dataflow_set_clear_at_call (out);
6649 break;
6651 case MO_USE:
6653 rtx loc = mo->u.loc;
6655 if (REG_P (loc))
6656 var_reg_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6657 else if (MEM_P (loc))
6658 var_mem_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6660 break;
6662 case MO_VAL_LOC:
6664 rtx loc = mo->u.loc;
6665 rtx val, vloc;
6666 tree var;
6668 if (GET_CODE (loc) == CONCAT)
6670 val = XEXP (loc, 0);
6671 vloc = XEXP (loc, 1);
6673 else
6675 val = NULL_RTX;
6676 vloc = loc;
6679 var = PAT_VAR_LOCATION_DECL (vloc);
6681 clobber_variable_part (out, NULL_RTX,
6682 dv_from_decl (var), 0, NULL_RTX);
6683 if (val)
6685 if (VAL_NEEDS_RESOLUTION (loc))
6686 val_resolve (out, val, PAT_VAR_LOCATION_LOC (vloc), insn);
6687 set_variable_part (out, val, dv_from_decl (var), 0,
6688 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6689 INSERT);
6691 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
6692 set_variable_part (out, PAT_VAR_LOCATION_LOC (vloc),
6693 dv_from_decl (var), 0,
6694 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6695 INSERT);
6697 break;
6699 case MO_VAL_USE:
6701 rtx loc = mo->u.loc;
6702 rtx val, vloc, uloc;
6704 vloc = uloc = XEXP (loc, 1);
6705 val = XEXP (loc, 0);
6707 if (GET_CODE (val) == CONCAT)
6709 uloc = XEXP (val, 1);
6710 val = XEXP (val, 0);
6713 if (VAL_NEEDS_RESOLUTION (loc))
6714 val_resolve (out, val, vloc, insn);
6715 else
6716 val_store (out, val, uloc, insn, false);
6718 if (VAL_HOLDS_TRACK_EXPR (loc))
6720 if (GET_CODE (uloc) == REG)
6721 var_reg_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6722 NULL);
6723 else if (GET_CODE (uloc) == MEM)
6724 var_mem_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6725 NULL);
6728 break;
6730 case MO_VAL_SET:
6732 rtx loc = mo->u.loc;
6733 rtx val, vloc, uloc;
6734 rtx dstv, srcv;
6736 vloc = loc;
6737 uloc = XEXP (vloc, 1);
6738 val = XEXP (vloc, 0);
6739 vloc = uloc;
6741 if (GET_CODE (uloc) == SET)
6743 dstv = SET_DEST (uloc);
6744 srcv = SET_SRC (uloc);
6746 else
6748 dstv = uloc;
6749 srcv = NULL;
6752 if (GET_CODE (val) == CONCAT)
6754 dstv = vloc = XEXP (val, 1);
6755 val = XEXP (val, 0);
6758 if (GET_CODE (vloc) == SET)
6760 srcv = SET_SRC (vloc);
6762 gcc_assert (val != srcv);
6763 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
6765 dstv = vloc = SET_DEST (vloc);
6767 if (VAL_NEEDS_RESOLUTION (loc))
6768 val_resolve (out, val, srcv, insn);
6770 else if (VAL_NEEDS_RESOLUTION (loc))
6772 gcc_assert (GET_CODE (uloc) == SET
6773 && GET_CODE (SET_SRC (uloc)) == REG);
6774 val_resolve (out, val, SET_SRC (uloc), insn);
6777 if (VAL_HOLDS_TRACK_EXPR (loc))
6779 if (VAL_EXPR_IS_CLOBBERED (loc))
6781 if (REG_P (uloc))
6782 var_reg_delete (out, uloc, true);
6783 else if (MEM_P (uloc))
6785 gcc_assert (MEM_P (dstv));
6786 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
6787 var_mem_delete (out, dstv, true);
6790 else
6792 bool copied_p = VAL_EXPR_IS_COPIED (loc);
6793 rtx src = NULL, dst = uloc;
6794 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
6796 if (GET_CODE (uloc) == SET)
6798 src = SET_SRC (uloc);
6799 dst = SET_DEST (uloc);
6802 if (copied_p)
6804 if (flag_var_tracking_uninit)
6806 status = find_src_status (in, src);
6808 if (status == VAR_INIT_STATUS_UNKNOWN)
6809 status = find_src_status (out, src);
6812 src = find_src_set_src (in, src);
6815 if (REG_P (dst))
6816 var_reg_delete_and_set (out, dst, !copied_p,
6817 status, srcv);
6818 else if (MEM_P (dst))
6820 gcc_assert (MEM_P (dstv));
6821 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
6822 var_mem_delete_and_set (out, dstv, !copied_p,
6823 status, srcv);
6827 else if (REG_P (uloc))
6828 var_regno_delete (out, REGNO (uloc));
6829 else if (MEM_P (uloc))
6831 gcc_checking_assert (GET_CODE (vloc) == MEM);
6832 gcc_checking_assert (dstv == vloc);
6833 if (dstv != vloc)
6834 clobber_overlapping_mems (out, vloc);
6837 val_store (out, val, dstv, insn, true);
6839 break;
6841 case MO_SET:
6843 rtx loc = mo->u.loc;
6844 rtx set_src = NULL;
6846 if (GET_CODE (loc) == SET)
6848 set_src = SET_SRC (loc);
6849 loc = SET_DEST (loc);
6852 if (REG_P (loc))
6853 var_reg_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6854 set_src);
6855 else if (MEM_P (loc))
6856 var_mem_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6857 set_src);
6859 break;
6861 case MO_COPY:
6863 rtx loc = mo->u.loc;
6864 enum var_init_status src_status;
6865 rtx set_src = NULL;
6867 if (GET_CODE (loc) == SET)
6869 set_src = SET_SRC (loc);
6870 loc = SET_DEST (loc);
6873 if (! flag_var_tracking_uninit)
6874 src_status = VAR_INIT_STATUS_INITIALIZED;
6875 else
6877 src_status = find_src_status (in, set_src);
6879 if (src_status == VAR_INIT_STATUS_UNKNOWN)
6880 src_status = find_src_status (out, set_src);
6883 set_src = find_src_set_src (in, set_src);
6885 if (REG_P (loc))
6886 var_reg_delete_and_set (out, loc, false, src_status, set_src);
6887 else if (MEM_P (loc))
6888 var_mem_delete_and_set (out, loc, false, src_status, set_src);
6890 break;
6892 case MO_USE_NO_VAR:
6894 rtx loc = mo->u.loc;
6896 if (REG_P (loc))
6897 var_reg_delete (out, loc, false);
6898 else if (MEM_P (loc))
6899 var_mem_delete (out, loc, false);
6901 break;
6903 case MO_CLOBBER:
6905 rtx loc = mo->u.loc;
6907 if (REG_P (loc))
6908 var_reg_delete (out, loc, true);
6909 else if (MEM_P (loc))
6910 var_mem_delete (out, loc, true);
6912 break;
6914 case MO_ADJUST:
6915 out->stack_adjust += mo->u.adjust;
6916 break;
6920 if (MAY_HAVE_DEBUG_INSNS)
6922 delete local_get_addr_cache;
6923 local_get_addr_cache = NULL;
6925 dataflow_set_equiv_regs (out);
6926 shared_hash_htab (out->vars)
6927 ->traverse <dataflow_set *, canonicalize_values_mark> (out);
6928 shared_hash_htab (out->vars)
6929 ->traverse <dataflow_set *, canonicalize_values_star> (out);
6930 #if ENABLE_CHECKING
6931 shared_hash_htab (out->vars)
6932 ->traverse <dataflow_set *, canonicalize_loc_order_check> (out);
6933 #endif
6935 changed = dataflow_set_different (&old_out, out);
6936 dataflow_set_destroy (&old_out);
6937 return changed;
6940 /* Find the locations of variables in the whole function. */
6942 static bool
6943 vt_find_locations (void)
6945 bb_heap_t *worklist = new bb_heap_t (LONG_MIN);
6946 bb_heap_t *pending = new bb_heap_t (LONG_MIN);
6947 sbitmap visited, in_worklist, in_pending;
6948 basic_block bb;
6949 edge e;
6950 int *bb_order;
6951 int *rc_order;
6952 int i;
6953 int htabsz = 0;
6954 int htabmax = PARAM_VALUE (PARAM_MAX_VARTRACK_SIZE);
6955 bool success = true;
6957 timevar_push (TV_VAR_TRACKING_DATAFLOW);
6958 /* Compute reverse completion order of depth first search of the CFG
6959 so that the data-flow runs faster. */
6960 rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
6961 bb_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
6962 pre_and_rev_post_order_compute (NULL, rc_order, false);
6963 for (i = 0; i < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; i++)
6964 bb_order[rc_order[i]] = i;
6965 free (rc_order);
6967 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
6968 in_worklist = sbitmap_alloc (last_basic_block_for_fn (cfun));
6969 in_pending = sbitmap_alloc (last_basic_block_for_fn (cfun));
6970 bitmap_clear (in_worklist);
6972 FOR_EACH_BB_FN (bb, cfun)
6973 pending->insert (bb_order[bb->index], bb);
6974 bitmap_ones (in_pending);
6976 while (success && !pending->empty ())
6978 std::swap (worklist, pending);
6979 std::swap (in_worklist, in_pending);
6981 bitmap_clear (visited);
6983 while (!worklist->empty ())
6985 bb = worklist->extract_min ();
6986 bitmap_clear_bit (in_worklist, bb->index);
6987 gcc_assert (!bitmap_bit_p (visited, bb->index));
6988 if (!bitmap_bit_p (visited, bb->index))
6990 bool changed;
6991 edge_iterator ei;
6992 int oldinsz, oldoutsz;
6994 bitmap_set_bit (visited, bb->index);
6996 if (VTI (bb)->in.vars)
6998 htabsz
6999 -= shared_hash_htab (VTI (bb)->in.vars)->size ()
7000 + shared_hash_htab (VTI (bb)->out.vars)->size ();
7001 oldinsz = shared_hash_htab (VTI (bb)->in.vars)->elements ();
7002 oldoutsz
7003 = shared_hash_htab (VTI (bb)->out.vars)->elements ();
7005 else
7006 oldinsz = oldoutsz = 0;
7008 if (MAY_HAVE_DEBUG_INSNS)
7010 dataflow_set *in = &VTI (bb)->in, *first_out = NULL;
7011 bool first = true, adjust = false;
7013 /* Calculate the IN set as the intersection of
7014 predecessor OUT sets. */
7016 dataflow_set_clear (in);
7017 dst_can_be_shared = true;
7019 FOR_EACH_EDGE (e, ei, bb->preds)
7020 if (!VTI (e->src)->flooded)
7021 gcc_assert (bb_order[bb->index]
7022 <= bb_order[e->src->index]);
7023 else if (first)
7025 dataflow_set_copy (in, &VTI (e->src)->out);
7026 first_out = &VTI (e->src)->out;
7027 first = false;
7029 else
7031 dataflow_set_merge (in, &VTI (e->src)->out);
7032 adjust = true;
7035 if (adjust)
7037 dataflow_post_merge_adjust (in, &VTI (bb)->permp);
7038 #if ENABLE_CHECKING
7039 /* Merge and merge_adjust should keep entries in
7040 canonical order. */
7041 shared_hash_htab (in->vars)
7042 ->traverse <dataflow_set *,
7043 canonicalize_loc_order_check> (in);
7044 #endif
7045 if (dst_can_be_shared)
7047 shared_hash_destroy (in->vars);
7048 in->vars = shared_hash_copy (first_out->vars);
7052 VTI (bb)->flooded = true;
7054 else
7056 /* Calculate the IN set as union of predecessor OUT sets. */
7057 dataflow_set_clear (&VTI (bb)->in);
7058 FOR_EACH_EDGE (e, ei, bb->preds)
7059 dataflow_set_union (&VTI (bb)->in, &VTI (e->src)->out);
7062 changed = compute_bb_dataflow (bb);
7063 htabsz += shared_hash_htab (VTI (bb)->in.vars)->size ()
7064 + shared_hash_htab (VTI (bb)->out.vars)->size ();
7066 if (htabmax && htabsz > htabmax)
7068 if (MAY_HAVE_DEBUG_INSNS)
7069 inform (DECL_SOURCE_LOCATION (cfun->decl),
7070 "variable tracking size limit exceeded with "
7071 "-fvar-tracking-assignments, retrying without");
7072 else
7073 inform (DECL_SOURCE_LOCATION (cfun->decl),
7074 "variable tracking size limit exceeded");
7075 success = false;
7076 break;
7079 if (changed)
7081 FOR_EACH_EDGE (e, ei, bb->succs)
7083 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
7084 continue;
7086 if (bitmap_bit_p (visited, e->dest->index))
7088 if (!bitmap_bit_p (in_pending, e->dest->index))
7090 /* Send E->DEST to next round. */
7091 bitmap_set_bit (in_pending, e->dest->index);
7092 pending->insert (bb_order[e->dest->index],
7093 e->dest);
7096 else if (!bitmap_bit_p (in_worklist, e->dest->index))
7098 /* Add E->DEST to current round. */
7099 bitmap_set_bit (in_worklist, e->dest->index);
7100 worklist->insert (bb_order[e->dest->index],
7101 e->dest);
7106 if (dump_file)
7107 fprintf (dump_file,
7108 "BB %i: in %i (was %i), out %i (was %i), rem %i + %i, tsz %i\n",
7109 bb->index,
7110 (int)shared_hash_htab (VTI (bb)->in.vars)->size (),
7111 oldinsz,
7112 (int)shared_hash_htab (VTI (bb)->out.vars)->size (),
7113 oldoutsz,
7114 (int)worklist->nodes (), (int)pending->nodes (),
7115 htabsz);
7117 if (dump_file && (dump_flags & TDF_DETAILS))
7119 fprintf (dump_file, "BB %i IN:\n", bb->index);
7120 dump_dataflow_set (&VTI (bb)->in);
7121 fprintf (dump_file, "BB %i OUT:\n", bb->index);
7122 dump_dataflow_set (&VTI (bb)->out);
7128 if (success && MAY_HAVE_DEBUG_INSNS)
7129 FOR_EACH_BB_FN (bb, cfun)
7130 gcc_assert (VTI (bb)->flooded);
7132 free (bb_order);
7133 delete worklist;
7134 delete pending;
7135 sbitmap_free (visited);
7136 sbitmap_free (in_worklist);
7137 sbitmap_free (in_pending);
7139 timevar_pop (TV_VAR_TRACKING_DATAFLOW);
7140 return success;
7143 /* Print the content of the LIST to dump file. */
7145 static void
7146 dump_attrs_list (attrs list)
7148 for (; list; list = list->next)
7150 if (dv_is_decl_p (list->dv))
7151 print_mem_expr (dump_file, dv_as_decl (list->dv));
7152 else
7153 print_rtl_single (dump_file, dv_as_value (list->dv));
7154 fprintf (dump_file, "+" HOST_WIDE_INT_PRINT_DEC, list->offset);
7156 fprintf (dump_file, "\n");
7159 /* Print the information about variable *SLOT to dump file. */
7162 dump_var_tracking_slot (variable_def **slot, void *data ATTRIBUTE_UNUSED)
7164 variable var = *slot;
7166 dump_var (var);
7168 /* Continue traversing the hash table. */
7169 return 1;
7172 /* Print the information about variable VAR to dump file. */
7174 static void
7175 dump_var (variable var)
7177 int i;
7178 location_chain node;
7180 if (dv_is_decl_p (var->dv))
7182 const_tree decl = dv_as_decl (var->dv);
7184 if (DECL_NAME (decl))
7186 fprintf (dump_file, " name: %s",
7187 IDENTIFIER_POINTER (DECL_NAME (decl)));
7188 if (dump_flags & TDF_UID)
7189 fprintf (dump_file, "D.%u", DECL_UID (decl));
7191 else if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
7192 fprintf (dump_file, " name: D#%u", DEBUG_TEMP_UID (decl));
7193 else
7194 fprintf (dump_file, " name: D.%u", DECL_UID (decl));
7195 fprintf (dump_file, "\n");
7197 else
7199 fputc (' ', dump_file);
7200 print_rtl_single (dump_file, dv_as_value (var->dv));
7203 for (i = 0; i < var->n_var_parts; i++)
7205 fprintf (dump_file, " offset %ld\n",
7206 (long)(var->onepart ? 0 : VAR_PART_OFFSET (var, i)));
7207 for (node = var->var_part[i].loc_chain; node; node = node->next)
7209 fprintf (dump_file, " ");
7210 if (node->init == VAR_INIT_STATUS_UNINITIALIZED)
7211 fprintf (dump_file, "[uninit]");
7212 print_rtl_single (dump_file, node->loc);
7217 /* Print the information about variables from hash table VARS to dump file. */
7219 static void
7220 dump_vars (variable_table_type *vars)
7222 if (vars->elements () > 0)
7224 fprintf (dump_file, "Variables:\n");
7225 vars->traverse <void *, dump_var_tracking_slot> (NULL);
7229 /* Print the dataflow set SET to dump file. */
7231 static void
7232 dump_dataflow_set (dataflow_set *set)
7234 int i;
7236 fprintf (dump_file, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC "\n",
7237 set->stack_adjust);
7238 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
7240 if (set->regs[i])
7242 fprintf (dump_file, "Reg %d:", i);
7243 dump_attrs_list (set->regs[i]);
7246 dump_vars (shared_hash_htab (set->vars));
7247 fprintf (dump_file, "\n");
7250 /* Print the IN and OUT sets for each basic block to dump file. */
7252 static void
7253 dump_dataflow_sets (void)
7255 basic_block bb;
7257 FOR_EACH_BB_FN (bb, cfun)
7259 fprintf (dump_file, "\nBasic block %d:\n", bb->index);
7260 fprintf (dump_file, "IN:\n");
7261 dump_dataflow_set (&VTI (bb)->in);
7262 fprintf (dump_file, "OUT:\n");
7263 dump_dataflow_set (&VTI (bb)->out);
7267 /* Return the variable for DV in dropped_values, inserting one if
7268 requested with INSERT. */
7270 static inline variable
7271 variable_from_dropped (decl_or_value dv, enum insert_option insert)
7273 variable_def **slot;
7274 variable empty_var;
7275 onepart_enum_t onepart;
7277 slot = dropped_values->find_slot_with_hash (dv, dv_htab_hash (dv), insert);
7279 if (!slot)
7280 return NULL;
7282 if (*slot)
7283 return *slot;
7285 gcc_checking_assert (insert == INSERT);
7287 onepart = dv_onepart_p (dv);
7289 gcc_checking_assert (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR);
7291 empty_var = onepart_pool_allocate (onepart);
7292 empty_var->dv = dv;
7293 empty_var->refcount = 1;
7294 empty_var->n_var_parts = 0;
7295 empty_var->onepart = onepart;
7296 empty_var->in_changed_variables = false;
7297 empty_var->var_part[0].loc_chain = NULL;
7298 empty_var->var_part[0].cur_loc = NULL;
7299 VAR_LOC_1PAUX (empty_var) = NULL;
7300 set_dv_changed (dv, true);
7302 *slot = empty_var;
7304 return empty_var;
7307 /* Recover the one-part aux from dropped_values. */
7309 static struct onepart_aux *
7310 recover_dropped_1paux (variable var)
7312 variable dvar;
7314 gcc_checking_assert (var->onepart);
7316 if (VAR_LOC_1PAUX (var))
7317 return VAR_LOC_1PAUX (var);
7319 if (var->onepart == ONEPART_VDECL)
7320 return NULL;
7322 dvar = variable_from_dropped (var->dv, NO_INSERT);
7324 if (!dvar)
7325 return NULL;
7327 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (dvar);
7328 VAR_LOC_1PAUX (dvar) = NULL;
7330 return VAR_LOC_1PAUX (var);
7333 /* Add variable VAR to the hash table of changed variables and
7334 if it has no locations delete it from SET's hash table. */
7336 static void
7337 variable_was_changed (variable var, dataflow_set *set)
7339 hashval_t hash = dv_htab_hash (var->dv);
7341 if (emit_notes)
7343 variable_def **slot;
7345 /* Remember this decl or VALUE has been added to changed_variables. */
7346 set_dv_changed (var->dv, true);
7348 slot = changed_variables->find_slot_with_hash (var->dv, hash, INSERT);
7350 if (*slot)
7352 variable old_var = *slot;
7353 gcc_assert (old_var->in_changed_variables);
7354 old_var->in_changed_variables = false;
7355 if (var != old_var && var->onepart)
7357 /* Restore the auxiliary info from an empty variable
7358 previously created for changed_variables, so it is
7359 not lost. */
7360 gcc_checking_assert (!VAR_LOC_1PAUX (var));
7361 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (old_var);
7362 VAR_LOC_1PAUX (old_var) = NULL;
7364 variable_htab_free (*slot);
7367 if (set && var->n_var_parts == 0)
7369 onepart_enum_t onepart = var->onepart;
7370 variable empty_var = NULL;
7371 variable_def **dslot = NULL;
7373 if (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR)
7375 dslot = dropped_values->find_slot_with_hash (var->dv,
7376 dv_htab_hash (var->dv),
7377 INSERT);
7378 empty_var = *dslot;
7380 if (empty_var)
7382 gcc_checking_assert (!empty_var->in_changed_variables);
7383 if (!VAR_LOC_1PAUX (var))
7385 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (empty_var);
7386 VAR_LOC_1PAUX (empty_var) = NULL;
7388 else
7389 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
7393 if (!empty_var)
7395 empty_var = onepart_pool_allocate (onepart);
7396 empty_var->dv = var->dv;
7397 empty_var->refcount = 1;
7398 empty_var->n_var_parts = 0;
7399 empty_var->onepart = onepart;
7400 if (dslot)
7402 empty_var->refcount++;
7403 *dslot = empty_var;
7406 else
7407 empty_var->refcount++;
7408 empty_var->in_changed_variables = true;
7409 *slot = empty_var;
7410 if (onepart)
7412 empty_var->var_part[0].loc_chain = NULL;
7413 empty_var->var_part[0].cur_loc = NULL;
7414 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (var);
7415 VAR_LOC_1PAUX (var) = NULL;
7417 goto drop_var;
7419 else
7421 if (var->onepart && !VAR_LOC_1PAUX (var))
7422 recover_dropped_1paux (var);
7423 var->refcount++;
7424 var->in_changed_variables = true;
7425 *slot = var;
7428 else
7430 gcc_assert (set);
7431 if (var->n_var_parts == 0)
7433 variable_def **slot;
7435 drop_var:
7436 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
7437 if (slot)
7439 if (shared_hash_shared (set->vars))
7440 slot = shared_hash_find_slot_unshare (&set->vars, var->dv,
7441 NO_INSERT);
7442 shared_hash_htab (set->vars)->clear_slot (slot);
7448 /* Look for the index in VAR->var_part corresponding to OFFSET.
7449 Return -1 if not found. If INSERTION_POINT is non-NULL, the
7450 referenced int will be set to the index that the part has or should
7451 have, if it should be inserted. */
7453 static inline int
7454 find_variable_location_part (variable var, HOST_WIDE_INT offset,
7455 int *insertion_point)
7457 int pos, low, high;
7459 if (var->onepart)
7461 if (offset != 0)
7462 return -1;
7464 if (insertion_point)
7465 *insertion_point = 0;
7467 return var->n_var_parts - 1;
7470 /* Find the location part. */
7471 low = 0;
7472 high = var->n_var_parts;
7473 while (low != high)
7475 pos = (low + high) / 2;
7476 if (VAR_PART_OFFSET (var, pos) < offset)
7477 low = pos + 1;
7478 else
7479 high = pos;
7481 pos = low;
7483 if (insertion_point)
7484 *insertion_point = pos;
7486 if (pos < var->n_var_parts && VAR_PART_OFFSET (var, pos) == offset)
7487 return pos;
7489 return -1;
7492 static variable_def **
7493 set_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7494 decl_or_value dv, HOST_WIDE_INT offset,
7495 enum var_init_status initialized, rtx set_src)
7497 int pos;
7498 location_chain node, next;
7499 location_chain *nextp;
7500 variable var;
7501 onepart_enum_t onepart;
7503 var = *slot;
7505 if (var)
7506 onepart = var->onepart;
7507 else
7508 onepart = dv_onepart_p (dv);
7510 gcc_checking_assert (offset == 0 || !onepart);
7511 gcc_checking_assert (loc != dv_as_opaque (dv));
7513 if (! flag_var_tracking_uninit)
7514 initialized = VAR_INIT_STATUS_INITIALIZED;
7516 if (!var)
7518 /* Create new variable information. */
7519 var = onepart_pool_allocate (onepart);
7520 var->dv = dv;
7521 var->refcount = 1;
7522 var->n_var_parts = 1;
7523 var->onepart = onepart;
7524 var->in_changed_variables = false;
7525 if (var->onepart)
7526 VAR_LOC_1PAUX (var) = NULL;
7527 else
7528 VAR_PART_OFFSET (var, 0) = offset;
7529 var->var_part[0].loc_chain = NULL;
7530 var->var_part[0].cur_loc = NULL;
7531 *slot = var;
7532 pos = 0;
7533 nextp = &var->var_part[0].loc_chain;
7535 else if (onepart)
7537 int r = -1, c = 0;
7539 gcc_assert (dv_as_opaque (var->dv) == dv_as_opaque (dv));
7541 pos = 0;
7543 if (GET_CODE (loc) == VALUE)
7545 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7546 nextp = &node->next)
7547 if (GET_CODE (node->loc) == VALUE)
7549 if (node->loc == loc)
7551 r = 0;
7552 break;
7554 if (canon_value_cmp (node->loc, loc))
7555 c++;
7556 else
7558 r = 1;
7559 break;
7562 else if (REG_P (node->loc) || MEM_P (node->loc))
7563 c++;
7564 else
7566 r = 1;
7567 break;
7570 else if (REG_P (loc))
7572 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7573 nextp = &node->next)
7574 if (REG_P (node->loc))
7576 if (REGNO (node->loc) < REGNO (loc))
7577 c++;
7578 else
7580 if (REGNO (node->loc) == REGNO (loc))
7581 r = 0;
7582 else
7583 r = 1;
7584 break;
7587 else
7589 r = 1;
7590 break;
7593 else if (MEM_P (loc))
7595 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7596 nextp = &node->next)
7597 if (REG_P (node->loc))
7598 c++;
7599 else if (MEM_P (node->loc))
7601 if ((r = loc_cmp (XEXP (node->loc, 0), XEXP (loc, 0))) >= 0)
7602 break;
7603 else
7604 c++;
7606 else
7608 r = 1;
7609 break;
7612 else
7613 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7614 nextp = &node->next)
7615 if ((r = loc_cmp (node->loc, loc)) >= 0)
7616 break;
7617 else
7618 c++;
7620 if (r == 0)
7621 return slot;
7623 if (shared_var_p (var, set->vars))
7625 slot = unshare_variable (set, slot, var, initialized);
7626 var = *slot;
7627 for (nextp = &var->var_part[0].loc_chain; c;
7628 nextp = &(*nextp)->next)
7629 c--;
7630 gcc_assert ((!node && !*nextp) || node->loc == (*nextp)->loc);
7633 else
7635 int inspos = 0;
7637 gcc_assert (dv_as_decl (var->dv) == dv_as_decl (dv));
7639 pos = find_variable_location_part (var, offset, &inspos);
7641 if (pos >= 0)
7643 node = var->var_part[pos].loc_chain;
7645 if (node
7646 && ((REG_P (node->loc) && REG_P (loc)
7647 && REGNO (node->loc) == REGNO (loc))
7648 || rtx_equal_p (node->loc, loc)))
7650 /* LOC is in the beginning of the chain so we have nothing
7651 to do. */
7652 if (node->init < initialized)
7653 node->init = initialized;
7654 if (set_src != NULL)
7655 node->set_src = set_src;
7657 return slot;
7659 else
7661 /* We have to make a copy of a shared variable. */
7662 if (shared_var_p (var, set->vars))
7664 slot = unshare_variable (set, slot, var, initialized);
7665 var = *slot;
7669 else
7671 /* We have not found the location part, new one will be created. */
7673 /* We have to make a copy of the shared variable. */
7674 if (shared_var_p (var, set->vars))
7676 slot = unshare_variable (set, slot, var, initialized);
7677 var = *slot;
7680 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
7681 thus there are at most MAX_VAR_PARTS different offsets. */
7682 gcc_assert (var->n_var_parts < MAX_VAR_PARTS
7683 && (!var->n_var_parts || !onepart));
7685 /* We have to move the elements of array starting at index
7686 inspos to the next position. */
7687 for (pos = var->n_var_parts; pos > inspos; pos--)
7688 var->var_part[pos] = var->var_part[pos - 1];
7690 var->n_var_parts++;
7691 gcc_checking_assert (!onepart);
7692 VAR_PART_OFFSET (var, pos) = offset;
7693 var->var_part[pos].loc_chain = NULL;
7694 var->var_part[pos].cur_loc = NULL;
7697 /* Delete the location from the list. */
7698 nextp = &var->var_part[pos].loc_chain;
7699 for (node = var->var_part[pos].loc_chain; node; node = next)
7701 next = node->next;
7702 if ((REG_P (node->loc) && REG_P (loc)
7703 && REGNO (node->loc) == REGNO (loc))
7704 || rtx_equal_p (node->loc, loc))
7706 /* Save these values, to assign to the new node, before
7707 deleting this one. */
7708 if (node->init > initialized)
7709 initialized = node->init;
7710 if (node->set_src != NULL && set_src == NULL)
7711 set_src = node->set_src;
7712 if (var->var_part[pos].cur_loc == node->loc)
7713 var->var_part[pos].cur_loc = NULL;
7714 delete node;
7715 *nextp = next;
7716 break;
7718 else
7719 nextp = &node->next;
7722 nextp = &var->var_part[pos].loc_chain;
7725 /* Add the location to the beginning. */
7726 node = new location_chain_def;
7727 node->loc = loc;
7728 node->init = initialized;
7729 node->set_src = set_src;
7730 node->next = *nextp;
7731 *nextp = node;
7733 /* If no location was emitted do so. */
7734 if (var->var_part[pos].cur_loc == NULL)
7735 variable_was_changed (var, set);
7737 return slot;
7740 /* Set the part of variable's location in the dataflow set SET. The
7741 variable part is specified by variable's declaration in DV and
7742 offset OFFSET and the part's location by LOC. IOPT should be
7743 NO_INSERT if the variable is known to be in SET already and the
7744 variable hash table must not be resized, and INSERT otherwise. */
7746 static void
7747 set_variable_part (dataflow_set *set, rtx loc,
7748 decl_or_value dv, HOST_WIDE_INT offset,
7749 enum var_init_status initialized, rtx set_src,
7750 enum insert_option iopt)
7752 variable_def **slot;
7754 if (iopt == NO_INSERT)
7755 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7756 else
7758 slot = shared_hash_find_slot (set->vars, dv);
7759 if (!slot)
7760 slot = shared_hash_find_slot_unshare (&set->vars, dv, iopt);
7762 set_slot_part (set, loc, slot, dv, offset, initialized, set_src);
7765 /* Remove all recorded register locations for the given variable part
7766 from dataflow set SET, except for those that are identical to loc.
7767 The variable part is specified by variable's declaration or value
7768 DV and offset OFFSET. */
7770 static variable_def **
7771 clobber_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7772 HOST_WIDE_INT offset, rtx set_src)
7774 variable var = *slot;
7775 int pos = find_variable_location_part (var, offset, NULL);
7777 if (pos >= 0)
7779 location_chain node, next;
7781 /* Remove the register locations from the dataflow set. */
7782 next = var->var_part[pos].loc_chain;
7783 for (node = next; node; node = next)
7785 next = node->next;
7786 if (node->loc != loc
7787 && (!flag_var_tracking_uninit
7788 || !set_src
7789 || MEM_P (set_src)
7790 || !rtx_equal_p (set_src, node->set_src)))
7792 if (REG_P (node->loc))
7794 attrs anode, anext;
7795 attrs *anextp;
7797 /* Remove the variable part from the register's
7798 list, but preserve any other variable parts
7799 that might be regarded as live in that same
7800 register. */
7801 anextp = &set->regs[REGNO (node->loc)];
7802 for (anode = *anextp; anode; anode = anext)
7804 anext = anode->next;
7805 if (dv_as_opaque (anode->dv) == dv_as_opaque (var->dv)
7806 && anode->offset == offset)
7808 delete anode;
7809 *anextp = anext;
7811 else
7812 anextp = &anode->next;
7816 slot = delete_slot_part (set, node->loc, slot, offset);
7821 return slot;
7824 /* Remove all recorded register locations for the given variable part
7825 from dataflow set SET, except for those that are identical to loc.
7826 The variable part is specified by variable's declaration or value
7827 DV and offset OFFSET. */
7829 static void
7830 clobber_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7831 HOST_WIDE_INT offset, rtx set_src)
7833 variable_def **slot;
7835 if (!dv_as_opaque (dv)
7836 || (!dv_is_value_p (dv) && ! DECL_P (dv_as_decl (dv))))
7837 return;
7839 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7840 if (!slot)
7841 return;
7843 clobber_slot_part (set, loc, slot, offset, set_src);
7846 /* Delete the part of variable's location from dataflow set SET. The
7847 variable part is specified by its SET->vars slot SLOT and offset
7848 OFFSET and the part's location by LOC. */
7850 static variable_def **
7851 delete_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7852 HOST_WIDE_INT offset)
7854 variable var = *slot;
7855 int pos = find_variable_location_part (var, offset, NULL);
7857 if (pos >= 0)
7859 location_chain node, next;
7860 location_chain *nextp;
7861 bool changed;
7862 rtx cur_loc;
7864 if (shared_var_p (var, set->vars))
7866 /* If the variable contains the location part we have to
7867 make a copy of the variable. */
7868 for (node = var->var_part[pos].loc_chain; node;
7869 node = node->next)
7871 if ((REG_P (node->loc) && REG_P (loc)
7872 && REGNO (node->loc) == REGNO (loc))
7873 || rtx_equal_p (node->loc, loc))
7875 slot = unshare_variable (set, slot, var,
7876 VAR_INIT_STATUS_UNKNOWN);
7877 var = *slot;
7878 break;
7883 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7884 cur_loc = VAR_LOC_FROM (var);
7885 else
7886 cur_loc = var->var_part[pos].cur_loc;
7888 /* Delete the location part. */
7889 changed = false;
7890 nextp = &var->var_part[pos].loc_chain;
7891 for (node = *nextp; node; node = next)
7893 next = node->next;
7894 if ((REG_P (node->loc) && REG_P (loc)
7895 && REGNO (node->loc) == REGNO (loc))
7896 || rtx_equal_p (node->loc, loc))
7898 /* If we have deleted the location which was last emitted
7899 we have to emit new location so add the variable to set
7900 of changed variables. */
7901 if (cur_loc == node->loc)
7903 changed = true;
7904 var->var_part[pos].cur_loc = NULL;
7905 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7906 VAR_LOC_FROM (var) = NULL;
7908 delete node;
7909 *nextp = next;
7910 break;
7912 else
7913 nextp = &node->next;
7916 if (var->var_part[pos].loc_chain == NULL)
7918 changed = true;
7919 var->n_var_parts--;
7920 while (pos < var->n_var_parts)
7922 var->var_part[pos] = var->var_part[pos + 1];
7923 pos++;
7926 if (changed)
7927 variable_was_changed (var, set);
7930 return slot;
7933 /* Delete the part of variable's location from dataflow set SET. The
7934 variable part is specified by variable's declaration or value DV
7935 and offset OFFSET and the part's location by LOC. */
7937 static void
7938 delete_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7939 HOST_WIDE_INT offset)
7941 variable_def **slot = shared_hash_find_slot_noinsert (set->vars, dv);
7942 if (!slot)
7943 return;
7945 delete_slot_part (set, loc, slot, offset);
7949 /* Structure for passing some other parameters to function
7950 vt_expand_loc_callback. */
7951 struct expand_loc_callback_data
7953 /* The variables and values active at this point. */
7954 variable_table_type *vars;
7956 /* Stack of values and debug_exprs under expansion, and their
7957 children. */
7958 auto_vec<rtx, 4> expanding;
7960 /* Stack of values and debug_exprs whose expansion hit recursion
7961 cycles. They will have VALUE_RECURSED_INTO marked when added to
7962 this list. This flag will be cleared if any of its dependencies
7963 resolves to a valid location. So, if the flag remains set at the
7964 end of the search, we know no valid location for this one can
7965 possibly exist. */
7966 auto_vec<rtx, 4> pending;
7968 /* The maximum depth among the sub-expressions under expansion.
7969 Zero indicates no expansion so far. */
7970 expand_depth depth;
7973 /* Allocate the one-part auxiliary data structure for VAR, with enough
7974 room for COUNT dependencies. */
7976 static void
7977 loc_exp_dep_alloc (variable var, int count)
7979 size_t allocsize;
7981 gcc_checking_assert (var->onepart);
7983 /* We can be called with COUNT == 0 to allocate the data structure
7984 without any dependencies, e.g. for the backlinks only. However,
7985 if we are specifying a COUNT, then the dependency list must have
7986 been emptied before. It would be possible to adjust pointers or
7987 force it empty here, but this is better done at an earlier point
7988 in the algorithm, so we instead leave an assertion to catch
7989 errors. */
7990 gcc_checking_assert (!count
7991 || VAR_LOC_DEP_VEC (var) == NULL
7992 || VAR_LOC_DEP_VEC (var)->is_empty ());
7994 if (VAR_LOC_1PAUX (var) && VAR_LOC_DEP_VEC (var)->space (count))
7995 return;
7997 allocsize = offsetof (struct onepart_aux, deps)
7998 + vec<loc_exp_dep, va_heap, vl_embed>::embedded_size (count);
8000 if (VAR_LOC_1PAUX (var))
8002 VAR_LOC_1PAUX (var) = XRESIZEVAR (struct onepart_aux,
8003 VAR_LOC_1PAUX (var), allocsize);
8004 /* If the reallocation moves the onepaux structure, the
8005 back-pointer to BACKLINKS in the first list member will still
8006 point to its old location. Adjust it. */
8007 if (VAR_LOC_DEP_LST (var))
8008 VAR_LOC_DEP_LST (var)->pprev = VAR_LOC_DEP_LSTP (var);
8010 else
8012 VAR_LOC_1PAUX (var) = XNEWVAR (struct onepart_aux, allocsize);
8013 *VAR_LOC_DEP_LSTP (var) = NULL;
8014 VAR_LOC_FROM (var) = NULL;
8015 VAR_LOC_DEPTH (var).complexity = 0;
8016 VAR_LOC_DEPTH (var).entryvals = 0;
8018 VAR_LOC_DEP_VEC (var)->embedded_init (count);
8021 /* Remove all entries from the vector of active dependencies of VAR,
8022 removing them from the back-links lists too. */
8024 static void
8025 loc_exp_dep_clear (variable var)
8027 while (VAR_LOC_DEP_VEC (var) && !VAR_LOC_DEP_VEC (var)->is_empty ())
8029 loc_exp_dep *led = &VAR_LOC_DEP_VEC (var)->last ();
8030 if (led->next)
8031 led->next->pprev = led->pprev;
8032 if (led->pprev)
8033 *led->pprev = led->next;
8034 VAR_LOC_DEP_VEC (var)->pop ();
8038 /* Insert an active dependency from VAR on X to the vector of
8039 dependencies, and add the corresponding back-link to X's list of
8040 back-links in VARS. */
8042 static void
8043 loc_exp_insert_dep (variable var, rtx x, variable_table_type *vars)
8045 decl_or_value dv;
8046 variable xvar;
8047 loc_exp_dep *led;
8049 dv = dv_from_rtx (x);
8051 /* ??? Build a vector of variables parallel to EXPANDING, to avoid
8052 an additional look up? */
8053 xvar = vars->find_with_hash (dv, dv_htab_hash (dv));
8055 if (!xvar)
8057 xvar = variable_from_dropped (dv, NO_INSERT);
8058 gcc_checking_assert (xvar);
8061 /* No point in adding the same backlink more than once. This may
8062 arise if say the same value appears in two complex expressions in
8063 the same loc_list, or even more than once in a single
8064 expression. */
8065 if (VAR_LOC_DEP_LST (xvar) && VAR_LOC_DEP_LST (xvar)->dv == var->dv)
8066 return;
8068 if (var->onepart == NOT_ONEPART)
8069 led = new loc_exp_dep;
8070 else
8072 loc_exp_dep empty;
8073 memset (&empty, 0, sizeof (empty));
8074 VAR_LOC_DEP_VEC (var)->quick_push (empty);
8075 led = &VAR_LOC_DEP_VEC (var)->last ();
8077 led->dv = var->dv;
8078 led->value = x;
8080 loc_exp_dep_alloc (xvar, 0);
8081 led->pprev = VAR_LOC_DEP_LSTP (xvar);
8082 led->next = *led->pprev;
8083 if (led->next)
8084 led->next->pprev = &led->next;
8085 *led->pprev = led;
8088 /* Create active dependencies of VAR on COUNT values starting at
8089 VALUE, and corresponding back-links to the entries in VARS. Return
8090 true if we found any pending-recursion results. */
8092 static bool
8093 loc_exp_dep_set (variable var, rtx result, rtx *value, int count,
8094 variable_table_type *vars)
8096 bool pending_recursion = false;
8098 gcc_checking_assert (VAR_LOC_DEP_VEC (var) == NULL
8099 || VAR_LOC_DEP_VEC (var)->is_empty ());
8101 /* Set up all dependencies from last_child (as set up at the end of
8102 the loop above) to the end. */
8103 loc_exp_dep_alloc (var, count);
8105 while (count--)
8107 rtx x = *value++;
8109 if (!pending_recursion)
8110 pending_recursion = !result && VALUE_RECURSED_INTO (x);
8112 loc_exp_insert_dep (var, x, vars);
8115 return pending_recursion;
8118 /* Notify the back-links of IVAR that are pending recursion that we
8119 have found a non-NIL value for it, so they are cleared for another
8120 attempt to compute a current location. */
8122 static void
8123 notify_dependents_of_resolved_value (variable ivar, variable_table_type *vars)
8125 loc_exp_dep *led, *next;
8127 for (led = VAR_LOC_DEP_LST (ivar); led; led = next)
8129 decl_or_value dv = led->dv;
8130 variable var;
8132 next = led->next;
8134 if (dv_is_value_p (dv))
8136 rtx value = dv_as_value (dv);
8138 /* If we have already resolved it, leave it alone. */
8139 if (!VALUE_RECURSED_INTO (value))
8140 continue;
8142 /* Check that VALUE_RECURSED_INTO, true from the test above,
8143 implies NO_LOC_P. */
8144 gcc_checking_assert (NO_LOC_P (value));
8146 /* We won't notify variables that are being expanded,
8147 because their dependency list is cleared before
8148 recursing. */
8149 NO_LOC_P (value) = false;
8150 VALUE_RECURSED_INTO (value) = false;
8152 gcc_checking_assert (dv_changed_p (dv));
8154 else
8156 gcc_checking_assert (dv_onepart_p (dv) != NOT_ONEPART);
8157 if (!dv_changed_p (dv))
8158 continue;
8161 var = vars->find_with_hash (dv, dv_htab_hash (dv));
8163 if (!var)
8164 var = variable_from_dropped (dv, NO_INSERT);
8166 if (var)
8167 notify_dependents_of_resolved_value (var, vars);
8169 if (next)
8170 next->pprev = led->pprev;
8171 if (led->pprev)
8172 *led->pprev = next;
8173 led->next = NULL;
8174 led->pprev = NULL;
8178 static rtx vt_expand_loc_callback (rtx x, bitmap regs,
8179 int max_depth, void *data);
8181 /* Return the combined depth, when one sub-expression evaluated to
8182 BEST_DEPTH and the previous known depth was SAVED_DEPTH. */
8184 static inline expand_depth
8185 update_depth (expand_depth saved_depth, expand_depth best_depth)
8187 /* If we didn't find anything, stick with what we had. */
8188 if (!best_depth.complexity)
8189 return saved_depth;
8191 /* If we found hadn't found anything, use the depth of the current
8192 expression. Do NOT add one extra level, we want to compute the
8193 maximum depth among sub-expressions. We'll increment it later,
8194 if appropriate. */
8195 if (!saved_depth.complexity)
8196 return best_depth;
8198 /* Combine the entryval count so that regardless of which one we
8199 return, the entryval count is accurate. */
8200 best_depth.entryvals = saved_depth.entryvals
8201 = best_depth.entryvals + saved_depth.entryvals;
8203 if (saved_depth.complexity < best_depth.complexity)
8204 return best_depth;
8205 else
8206 return saved_depth;
8209 /* Expand VAR to a location RTX, updating its cur_loc. Use REGS and
8210 DATA for cselib expand callback. If PENDRECP is given, indicate in
8211 it whether any sub-expression couldn't be fully evaluated because
8212 it is pending recursion resolution. */
8214 static inline rtx
8215 vt_expand_var_loc_chain (variable var, bitmap regs, void *data, bool *pendrecp)
8217 struct expand_loc_callback_data *elcd
8218 = (struct expand_loc_callback_data *) data;
8219 location_chain loc, next;
8220 rtx result = NULL;
8221 int first_child, result_first_child, last_child;
8222 bool pending_recursion;
8223 rtx loc_from = NULL;
8224 struct elt_loc_list *cloc = NULL;
8225 expand_depth depth = { 0, 0 }, saved_depth = elcd->depth;
8226 int wanted_entryvals, found_entryvals = 0;
8228 /* Clear all backlinks pointing at this, so that we're not notified
8229 while we're active. */
8230 loc_exp_dep_clear (var);
8232 retry:
8233 if (var->onepart == ONEPART_VALUE)
8235 cselib_val *val = CSELIB_VAL_PTR (dv_as_value (var->dv));
8237 gcc_checking_assert (cselib_preserved_value_p (val));
8239 cloc = val->locs;
8242 first_child = result_first_child = last_child
8243 = elcd->expanding.length ();
8245 wanted_entryvals = found_entryvals;
8247 /* Attempt to expand each available location in turn. */
8248 for (next = loc = var->n_var_parts ? var->var_part[0].loc_chain : NULL;
8249 loc || cloc; loc = next)
8251 result_first_child = last_child;
8253 if (!loc)
8255 loc_from = cloc->loc;
8256 next = loc;
8257 cloc = cloc->next;
8258 if (unsuitable_loc (loc_from))
8259 continue;
8261 else
8263 loc_from = loc->loc;
8264 next = loc->next;
8267 gcc_checking_assert (!unsuitable_loc (loc_from));
8269 elcd->depth.complexity = elcd->depth.entryvals = 0;
8270 result = cselib_expand_value_rtx_cb (loc_from, regs, EXPR_DEPTH,
8271 vt_expand_loc_callback, data);
8272 last_child = elcd->expanding.length ();
8274 if (result)
8276 depth = elcd->depth;
8278 gcc_checking_assert (depth.complexity
8279 || result_first_child == last_child);
8281 if (last_child - result_first_child != 1)
8283 if (!depth.complexity && GET_CODE (result) == ENTRY_VALUE)
8284 depth.entryvals++;
8285 depth.complexity++;
8288 if (depth.complexity <= EXPR_USE_DEPTH)
8290 if (depth.entryvals <= wanted_entryvals)
8291 break;
8292 else if (!found_entryvals || depth.entryvals < found_entryvals)
8293 found_entryvals = depth.entryvals;
8296 result = NULL;
8299 /* Set it up in case we leave the loop. */
8300 depth.complexity = depth.entryvals = 0;
8301 loc_from = NULL;
8302 result_first_child = first_child;
8305 if (!loc_from && wanted_entryvals < found_entryvals)
8307 /* We found entries with ENTRY_VALUEs and skipped them. Since
8308 we could not find any expansions without ENTRY_VALUEs, but we
8309 found at least one with them, go back and get an entry with
8310 the minimum number ENTRY_VALUE count that we found. We could
8311 avoid looping, but since each sub-loc is already resolved,
8312 the re-expansion should be trivial. ??? Should we record all
8313 attempted locs as dependencies, so that we retry the
8314 expansion should any of them change, in the hope it can give
8315 us a new entry without an ENTRY_VALUE? */
8316 elcd->expanding.truncate (first_child);
8317 goto retry;
8320 /* Register all encountered dependencies as active. */
8321 pending_recursion = loc_exp_dep_set
8322 (var, result, elcd->expanding.address () + result_first_child,
8323 last_child - result_first_child, elcd->vars);
8325 elcd->expanding.truncate (first_child);
8327 /* Record where the expansion came from. */
8328 gcc_checking_assert (!result || !pending_recursion);
8329 VAR_LOC_FROM (var) = loc_from;
8330 VAR_LOC_DEPTH (var) = depth;
8332 gcc_checking_assert (!depth.complexity == !result);
8334 elcd->depth = update_depth (saved_depth, depth);
8336 /* Indicate whether any of the dependencies are pending recursion
8337 resolution. */
8338 if (pendrecp)
8339 *pendrecp = pending_recursion;
8341 if (!pendrecp || !pending_recursion)
8342 var->var_part[0].cur_loc = result;
8344 return result;
8347 /* Callback for cselib_expand_value, that looks for expressions
8348 holding the value in the var-tracking hash tables. Return X for
8349 standard processing, anything else is to be used as-is. */
8351 static rtx
8352 vt_expand_loc_callback (rtx x, bitmap regs,
8353 int max_depth ATTRIBUTE_UNUSED,
8354 void *data)
8356 struct expand_loc_callback_data *elcd
8357 = (struct expand_loc_callback_data *) data;
8358 decl_or_value dv;
8359 variable var;
8360 rtx result, subreg;
8361 bool pending_recursion = false;
8362 bool from_empty = false;
8364 switch (GET_CODE (x))
8366 case SUBREG:
8367 subreg = cselib_expand_value_rtx_cb (SUBREG_REG (x), regs,
8368 EXPR_DEPTH,
8369 vt_expand_loc_callback, data);
8371 if (!subreg)
8372 return NULL;
8374 result = simplify_gen_subreg (GET_MODE (x), subreg,
8375 GET_MODE (SUBREG_REG (x)),
8376 SUBREG_BYTE (x));
8378 /* Invalid SUBREGs are ok in debug info. ??? We could try
8379 alternate expansions for the VALUE as well. */
8380 if (!result)
8381 result = gen_rtx_raw_SUBREG (GET_MODE (x), subreg, SUBREG_BYTE (x));
8383 return result;
8385 case DEBUG_EXPR:
8386 case VALUE:
8387 dv = dv_from_rtx (x);
8388 break;
8390 default:
8391 return x;
8394 elcd->expanding.safe_push (x);
8396 /* Check that VALUE_RECURSED_INTO implies NO_LOC_P. */
8397 gcc_checking_assert (!VALUE_RECURSED_INTO (x) || NO_LOC_P (x));
8399 if (NO_LOC_P (x))
8401 gcc_checking_assert (VALUE_RECURSED_INTO (x) || !dv_changed_p (dv));
8402 return NULL;
8405 var = elcd->vars->find_with_hash (dv, dv_htab_hash (dv));
8407 if (!var)
8409 from_empty = true;
8410 var = variable_from_dropped (dv, INSERT);
8413 gcc_checking_assert (var);
8415 if (!dv_changed_p (dv))
8417 gcc_checking_assert (!NO_LOC_P (x));
8418 gcc_checking_assert (var->var_part[0].cur_loc);
8419 gcc_checking_assert (VAR_LOC_1PAUX (var));
8420 gcc_checking_assert (VAR_LOC_1PAUX (var)->depth.complexity);
8422 elcd->depth = update_depth (elcd->depth, VAR_LOC_1PAUX (var)->depth);
8424 return var->var_part[0].cur_loc;
8427 VALUE_RECURSED_INTO (x) = true;
8428 /* This is tentative, but it makes some tests simpler. */
8429 NO_LOC_P (x) = true;
8431 gcc_checking_assert (var->n_var_parts == 1 || from_empty);
8433 result = vt_expand_var_loc_chain (var, regs, data, &pending_recursion);
8435 if (pending_recursion)
8437 gcc_checking_assert (!result);
8438 elcd->pending.safe_push (x);
8440 else
8442 NO_LOC_P (x) = !result;
8443 VALUE_RECURSED_INTO (x) = false;
8444 set_dv_changed (dv, false);
8446 if (result)
8447 notify_dependents_of_resolved_value (var, elcd->vars);
8450 return result;
8453 /* While expanding variables, we may encounter recursion cycles
8454 because of mutual (possibly indirect) dependencies between two
8455 particular variables (or values), say A and B. If we're trying to
8456 expand A when we get to B, which in turn attempts to expand A, if
8457 we can't find any other expansion for B, we'll add B to this
8458 pending-recursion stack, and tentatively return NULL for its
8459 location. This tentative value will be used for any other
8460 occurrences of B, unless A gets some other location, in which case
8461 it will notify B that it is worth another try at computing a
8462 location for it, and it will use the location computed for A then.
8463 At the end of the expansion, the tentative NULL locations become
8464 final for all members of PENDING that didn't get a notification.
8465 This function performs this finalization of NULL locations. */
8467 static void
8468 resolve_expansions_pending_recursion (vec<rtx, va_heap> *pending)
8470 while (!pending->is_empty ())
8472 rtx x = pending->pop ();
8473 decl_or_value dv;
8475 if (!VALUE_RECURSED_INTO (x))
8476 continue;
8478 gcc_checking_assert (NO_LOC_P (x));
8479 VALUE_RECURSED_INTO (x) = false;
8480 dv = dv_from_rtx (x);
8481 gcc_checking_assert (dv_changed_p (dv));
8482 set_dv_changed (dv, false);
8486 /* Initialize expand_loc_callback_data D with variable hash table V.
8487 It must be a macro because of alloca (vec stack). */
8488 #define INIT_ELCD(d, v) \
8489 do \
8491 (d).vars = (v); \
8492 (d).depth.complexity = (d).depth.entryvals = 0; \
8494 while (0)
8495 /* Finalize expand_loc_callback_data D, resolved to location L. */
8496 #define FINI_ELCD(d, l) \
8497 do \
8499 resolve_expansions_pending_recursion (&(d).pending); \
8500 (d).pending.release (); \
8501 (d).expanding.release (); \
8503 if ((l) && MEM_P (l)) \
8504 (l) = targetm.delegitimize_address (l); \
8506 while (0)
8508 /* Expand VALUEs and DEBUG_EXPRs in LOC to a location, using the
8509 equivalences in VARS, updating their CUR_LOCs in the process. */
8511 static rtx
8512 vt_expand_loc (rtx loc, variable_table_type *vars)
8514 struct expand_loc_callback_data data;
8515 rtx result;
8517 if (!MAY_HAVE_DEBUG_INSNS)
8518 return loc;
8520 INIT_ELCD (data, vars);
8522 result = cselib_expand_value_rtx_cb (loc, scratch_regs, EXPR_DEPTH,
8523 vt_expand_loc_callback, &data);
8525 FINI_ELCD (data, result);
8527 return result;
8530 /* Expand the one-part VARiable to a location, using the equivalences
8531 in VARS, updating their CUR_LOCs in the process. */
8533 static rtx
8534 vt_expand_1pvar (variable var, variable_table_type *vars)
8536 struct expand_loc_callback_data data;
8537 rtx loc;
8539 gcc_checking_assert (var->onepart && var->n_var_parts == 1);
8541 if (!dv_changed_p (var->dv))
8542 return var->var_part[0].cur_loc;
8544 INIT_ELCD (data, vars);
8546 loc = vt_expand_var_loc_chain (var, scratch_regs, &data, NULL);
8548 gcc_checking_assert (data.expanding.is_empty ());
8550 FINI_ELCD (data, loc);
8552 return loc;
8555 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
8556 additional parameters: WHERE specifies whether the note shall be emitted
8557 before or after instruction INSN. */
8560 emit_note_insn_var_location (variable_def **varp, emit_note_data *data)
8562 variable var = *varp;
8563 rtx_insn *insn = data->insn;
8564 enum emit_note_where where = data->where;
8565 variable_table_type *vars = data->vars;
8566 rtx_note *note;
8567 rtx note_vl;
8568 int i, j, n_var_parts;
8569 bool complete;
8570 enum var_init_status initialized = VAR_INIT_STATUS_UNINITIALIZED;
8571 HOST_WIDE_INT last_limit;
8572 tree type_size_unit;
8573 HOST_WIDE_INT offsets[MAX_VAR_PARTS];
8574 rtx loc[MAX_VAR_PARTS];
8575 tree decl;
8576 location_chain lc;
8578 gcc_checking_assert (var->onepart == NOT_ONEPART
8579 || var->onepart == ONEPART_VDECL);
8581 decl = dv_as_decl (var->dv);
8583 complete = true;
8584 last_limit = 0;
8585 n_var_parts = 0;
8586 if (!var->onepart)
8587 for (i = 0; i < var->n_var_parts; i++)
8588 if (var->var_part[i].cur_loc == NULL && var->var_part[i].loc_chain)
8589 var->var_part[i].cur_loc = var->var_part[i].loc_chain->loc;
8590 for (i = 0; i < var->n_var_parts; i++)
8592 machine_mode mode, wider_mode;
8593 rtx loc2;
8594 HOST_WIDE_INT offset;
8596 if (i == 0 && var->onepart)
8598 gcc_checking_assert (var->n_var_parts == 1);
8599 offset = 0;
8600 initialized = VAR_INIT_STATUS_INITIALIZED;
8601 loc2 = vt_expand_1pvar (var, vars);
8603 else
8605 if (last_limit < VAR_PART_OFFSET (var, i))
8607 complete = false;
8608 break;
8610 else if (last_limit > VAR_PART_OFFSET (var, i))
8611 continue;
8612 offset = VAR_PART_OFFSET (var, i);
8613 loc2 = var->var_part[i].cur_loc;
8614 if (loc2 && GET_CODE (loc2) == MEM
8615 && GET_CODE (XEXP (loc2, 0)) == VALUE)
8617 rtx depval = XEXP (loc2, 0);
8619 loc2 = vt_expand_loc (loc2, vars);
8621 if (loc2)
8622 loc_exp_insert_dep (var, depval, vars);
8624 if (!loc2)
8626 complete = false;
8627 continue;
8629 gcc_checking_assert (GET_CODE (loc2) != VALUE);
8630 for (lc = var->var_part[i].loc_chain; lc; lc = lc->next)
8631 if (var->var_part[i].cur_loc == lc->loc)
8633 initialized = lc->init;
8634 break;
8636 gcc_assert (lc);
8639 offsets[n_var_parts] = offset;
8640 if (!loc2)
8642 complete = false;
8643 continue;
8645 loc[n_var_parts] = loc2;
8646 mode = GET_MODE (var->var_part[i].cur_loc);
8647 if (mode == VOIDmode && var->onepart)
8648 mode = DECL_MODE (decl);
8649 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8651 /* Attempt to merge adjacent registers or memory. */
8652 wider_mode = GET_MODE_WIDER_MODE (mode);
8653 for (j = i + 1; j < var->n_var_parts; j++)
8654 if (last_limit <= VAR_PART_OFFSET (var, j))
8655 break;
8656 if (j < var->n_var_parts
8657 && wider_mode != VOIDmode
8658 && var->var_part[j].cur_loc
8659 && mode == GET_MODE (var->var_part[j].cur_loc)
8660 && (REG_P (loc[n_var_parts]) || MEM_P (loc[n_var_parts]))
8661 && last_limit == (var->onepart ? 0 : VAR_PART_OFFSET (var, j))
8662 && (loc2 = vt_expand_loc (var->var_part[j].cur_loc, vars))
8663 && GET_CODE (loc[n_var_parts]) == GET_CODE (loc2))
8665 rtx new_loc = NULL;
8667 if (REG_P (loc[n_var_parts])
8668 && hard_regno_nregs[REGNO (loc[n_var_parts])][mode] * 2
8669 == hard_regno_nregs[REGNO (loc[n_var_parts])][wider_mode]
8670 && end_hard_regno (mode, REGNO (loc[n_var_parts]))
8671 == REGNO (loc2))
8673 if (! WORDS_BIG_ENDIAN && ! BYTES_BIG_ENDIAN)
8674 new_loc = simplify_subreg (wider_mode, loc[n_var_parts],
8675 mode, 0);
8676 else if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
8677 new_loc = simplify_subreg (wider_mode, loc2, mode, 0);
8678 if (new_loc)
8680 if (!REG_P (new_loc)
8681 || REGNO (new_loc) != REGNO (loc[n_var_parts]))
8682 new_loc = NULL;
8683 else
8684 REG_ATTRS (new_loc) = REG_ATTRS (loc[n_var_parts]);
8687 else if (MEM_P (loc[n_var_parts])
8688 && GET_CODE (XEXP (loc2, 0)) == PLUS
8689 && REG_P (XEXP (XEXP (loc2, 0), 0))
8690 && CONST_INT_P (XEXP (XEXP (loc2, 0), 1)))
8692 if ((REG_P (XEXP (loc[n_var_parts], 0))
8693 && rtx_equal_p (XEXP (loc[n_var_parts], 0),
8694 XEXP (XEXP (loc2, 0), 0))
8695 && INTVAL (XEXP (XEXP (loc2, 0), 1))
8696 == GET_MODE_SIZE (mode))
8697 || (GET_CODE (XEXP (loc[n_var_parts], 0)) == PLUS
8698 && CONST_INT_P (XEXP (XEXP (loc[n_var_parts], 0), 1))
8699 && rtx_equal_p (XEXP (XEXP (loc[n_var_parts], 0), 0),
8700 XEXP (XEXP (loc2, 0), 0))
8701 && INTVAL (XEXP (XEXP (loc[n_var_parts], 0), 1))
8702 + GET_MODE_SIZE (mode)
8703 == INTVAL (XEXP (XEXP (loc2, 0), 1))))
8704 new_loc = adjust_address_nv (loc[n_var_parts],
8705 wider_mode, 0);
8708 if (new_loc)
8710 loc[n_var_parts] = new_loc;
8711 mode = wider_mode;
8712 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8713 i = j;
8716 ++n_var_parts;
8718 type_size_unit = TYPE_SIZE_UNIT (TREE_TYPE (decl));
8719 if ((unsigned HOST_WIDE_INT) last_limit < TREE_INT_CST_LOW (type_size_unit))
8720 complete = false;
8722 if (! flag_var_tracking_uninit)
8723 initialized = VAR_INIT_STATUS_INITIALIZED;
8725 note_vl = NULL_RTX;
8726 if (!complete)
8727 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, NULL_RTX, initialized);
8728 else if (n_var_parts == 1)
8730 rtx expr_list;
8732 if (offsets[0] || GET_CODE (loc[0]) == PARALLEL)
8733 expr_list = gen_rtx_EXPR_LIST (VOIDmode, loc[0], GEN_INT (offsets[0]));
8734 else
8735 expr_list = loc[0];
8737 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, expr_list, initialized);
8739 else if (n_var_parts)
8741 rtx parallel;
8743 for (i = 0; i < n_var_parts; i++)
8744 loc[i]
8745 = gen_rtx_EXPR_LIST (VOIDmode, loc[i], GEN_INT (offsets[i]));
8747 parallel = gen_rtx_PARALLEL (VOIDmode,
8748 gen_rtvec_v (n_var_parts, loc));
8749 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl,
8750 parallel, initialized);
8753 if (where != EMIT_NOTE_BEFORE_INSN)
8755 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8756 if (where == EMIT_NOTE_AFTER_CALL_INSN)
8757 NOTE_DURING_CALL_P (note) = true;
8759 else
8761 /* Make sure that the call related notes come first. */
8762 while (NEXT_INSN (insn)
8763 && NOTE_P (insn)
8764 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8765 && NOTE_DURING_CALL_P (insn))
8766 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8767 insn = NEXT_INSN (insn);
8768 if (NOTE_P (insn)
8769 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8770 && NOTE_DURING_CALL_P (insn))
8771 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8772 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8773 else
8774 note = emit_note_before (NOTE_INSN_VAR_LOCATION, insn);
8776 NOTE_VAR_LOCATION (note) = note_vl;
8778 set_dv_changed (var->dv, false);
8779 gcc_assert (var->in_changed_variables);
8780 var->in_changed_variables = false;
8781 changed_variables->clear_slot (varp);
8783 /* Continue traversing the hash table. */
8784 return 1;
8787 /* While traversing changed_variables, push onto DATA (a stack of RTX
8788 values) entries that aren't user variables. */
8791 var_track_values_to_stack (variable_def **slot,
8792 vec<rtx, va_heap> *changed_values_stack)
8794 variable var = *slot;
8796 if (var->onepart == ONEPART_VALUE)
8797 changed_values_stack->safe_push (dv_as_value (var->dv));
8798 else if (var->onepart == ONEPART_DEXPR)
8799 changed_values_stack->safe_push (DECL_RTL_KNOWN_SET (dv_as_decl (var->dv)));
8801 return 1;
8804 /* Remove from changed_variables the entry whose DV corresponds to
8805 value or debug_expr VAL. */
8806 static void
8807 remove_value_from_changed_variables (rtx val)
8809 decl_or_value dv = dv_from_rtx (val);
8810 variable_def **slot;
8811 variable var;
8813 slot = changed_variables->find_slot_with_hash (dv, dv_htab_hash (dv),
8814 NO_INSERT);
8815 var = *slot;
8816 var->in_changed_variables = false;
8817 changed_variables->clear_slot (slot);
8820 /* If VAL (a value or debug_expr) has backlinks to variables actively
8821 dependent on it in HTAB or in CHANGED_VARIABLES, mark them as
8822 changed, adding to CHANGED_VALUES_STACK any dependencies that may
8823 have dependencies of their own to notify. */
8825 static void
8826 notify_dependents_of_changed_value (rtx val, variable_table_type *htab,
8827 vec<rtx, va_heap> *changed_values_stack)
8829 variable_def **slot;
8830 variable var;
8831 loc_exp_dep *led;
8832 decl_or_value dv = dv_from_rtx (val);
8834 slot = changed_variables->find_slot_with_hash (dv, dv_htab_hash (dv),
8835 NO_INSERT);
8836 if (!slot)
8837 slot = htab->find_slot_with_hash (dv, dv_htab_hash (dv), NO_INSERT);
8838 if (!slot)
8839 slot = dropped_values->find_slot_with_hash (dv, dv_htab_hash (dv),
8840 NO_INSERT);
8841 var = *slot;
8843 while ((led = VAR_LOC_DEP_LST (var)))
8845 decl_or_value ldv = led->dv;
8846 variable ivar;
8848 /* Deactivate and remove the backlink, as it was “used up”. It
8849 makes no sense to attempt to notify the same entity again:
8850 either it will be recomputed and re-register an active
8851 dependency, or it will still have the changed mark. */
8852 if (led->next)
8853 led->next->pprev = led->pprev;
8854 if (led->pprev)
8855 *led->pprev = led->next;
8856 led->next = NULL;
8857 led->pprev = NULL;
8859 if (dv_changed_p (ldv))
8860 continue;
8862 switch (dv_onepart_p (ldv))
8864 case ONEPART_VALUE:
8865 case ONEPART_DEXPR:
8866 set_dv_changed (ldv, true);
8867 changed_values_stack->safe_push (dv_as_rtx (ldv));
8868 break;
8870 case ONEPART_VDECL:
8871 ivar = htab->find_with_hash (ldv, dv_htab_hash (ldv));
8872 gcc_checking_assert (!VAR_LOC_DEP_LST (ivar));
8873 variable_was_changed (ivar, NULL);
8874 break;
8876 case NOT_ONEPART:
8877 delete led;
8878 ivar = htab->find_with_hash (ldv, dv_htab_hash (ldv));
8879 if (ivar)
8881 int i = ivar->n_var_parts;
8882 while (i--)
8884 rtx loc = ivar->var_part[i].cur_loc;
8886 if (loc && GET_CODE (loc) == MEM
8887 && XEXP (loc, 0) == val)
8889 variable_was_changed (ivar, NULL);
8890 break;
8894 break;
8896 default:
8897 gcc_unreachable ();
8902 /* Take out of changed_variables any entries that don't refer to use
8903 variables. Back-propagate change notifications from values and
8904 debug_exprs to their active dependencies in HTAB or in
8905 CHANGED_VARIABLES. */
8907 static void
8908 process_changed_values (variable_table_type *htab)
8910 int i, n;
8911 rtx val;
8912 auto_vec<rtx, 20> changed_values_stack;
8914 /* Move values from changed_variables to changed_values_stack. */
8915 changed_variables
8916 ->traverse <vec<rtx, va_heap>*, var_track_values_to_stack>
8917 (&changed_values_stack);
8919 /* Back-propagate change notifications in values while popping
8920 them from the stack. */
8921 for (n = i = changed_values_stack.length ();
8922 i > 0; i = changed_values_stack.length ())
8924 val = changed_values_stack.pop ();
8925 notify_dependents_of_changed_value (val, htab, &changed_values_stack);
8927 /* This condition will hold when visiting each of the entries
8928 originally in changed_variables. We can't remove them
8929 earlier because this could drop the backlinks before we got a
8930 chance to use them. */
8931 if (i == n)
8933 remove_value_from_changed_variables (val);
8934 n--;
8939 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
8940 CHANGED_VARIABLES and delete this chain. WHERE specifies whether
8941 the notes shall be emitted before of after instruction INSN. */
8943 static void
8944 emit_notes_for_changes (rtx_insn *insn, enum emit_note_where where,
8945 shared_hash vars)
8947 emit_note_data data;
8948 variable_table_type *htab = shared_hash_htab (vars);
8950 if (!changed_variables->elements ())
8951 return;
8953 if (MAY_HAVE_DEBUG_INSNS)
8954 process_changed_values (htab);
8956 data.insn = insn;
8957 data.where = where;
8958 data.vars = htab;
8960 changed_variables
8961 ->traverse <emit_note_data*, emit_note_insn_var_location> (&data);
8964 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
8965 same variable in hash table DATA or is not there at all. */
8968 emit_notes_for_differences_1 (variable_def **slot, variable_table_type *new_vars)
8970 variable old_var, new_var;
8972 old_var = *slot;
8973 new_var = new_vars->find_with_hash (old_var->dv, dv_htab_hash (old_var->dv));
8975 if (!new_var)
8977 /* Variable has disappeared. */
8978 variable empty_var = NULL;
8980 if (old_var->onepart == ONEPART_VALUE
8981 || old_var->onepart == ONEPART_DEXPR)
8983 empty_var = variable_from_dropped (old_var->dv, NO_INSERT);
8984 if (empty_var)
8986 gcc_checking_assert (!empty_var->in_changed_variables);
8987 if (!VAR_LOC_1PAUX (old_var))
8989 VAR_LOC_1PAUX (old_var) = VAR_LOC_1PAUX (empty_var);
8990 VAR_LOC_1PAUX (empty_var) = NULL;
8992 else
8993 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
8997 if (!empty_var)
8999 empty_var = onepart_pool_allocate (old_var->onepart);
9000 empty_var->dv = old_var->dv;
9001 empty_var->refcount = 0;
9002 empty_var->n_var_parts = 0;
9003 empty_var->onepart = old_var->onepart;
9004 empty_var->in_changed_variables = false;
9007 if (empty_var->onepart)
9009 /* Propagate the auxiliary data to (ultimately)
9010 changed_variables. */
9011 empty_var->var_part[0].loc_chain = NULL;
9012 empty_var->var_part[0].cur_loc = NULL;
9013 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (old_var);
9014 VAR_LOC_1PAUX (old_var) = NULL;
9016 variable_was_changed (empty_var, NULL);
9017 /* Continue traversing the hash table. */
9018 return 1;
9020 /* Update cur_loc and one-part auxiliary data, before new_var goes
9021 through variable_was_changed. */
9022 if (old_var != new_var && new_var->onepart)
9024 gcc_checking_assert (VAR_LOC_1PAUX (new_var) == NULL);
9025 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (old_var);
9026 VAR_LOC_1PAUX (old_var) = NULL;
9027 new_var->var_part[0].cur_loc = old_var->var_part[0].cur_loc;
9029 if (variable_different_p (old_var, new_var))
9030 variable_was_changed (new_var, NULL);
9032 /* Continue traversing the hash table. */
9033 return 1;
9036 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
9037 table DATA. */
9040 emit_notes_for_differences_2 (variable_def **slot, variable_table_type *old_vars)
9042 variable old_var, new_var;
9044 new_var = *slot;
9045 old_var = old_vars->find_with_hash (new_var->dv, dv_htab_hash (new_var->dv));
9046 if (!old_var)
9048 int i;
9049 for (i = 0; i < new_var->n_var_parts; i++)
9050 new_var->var_part[i].cur_loc = NULL;
9051 variable_was_changed (new_var, NULL);
9054 /* Continue traversing the hash table. */
9055 return 1;
9058 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
9059 NEW_SET. */
9061 static void
9062 emit_notes_for_differences (rtx_insn *insn, dataflow_set *old_set,
9063 dataflow_set *new_set)
9065 shared_hash_htab (old_set->vars)
9066 ->traverse <variable_table_type *, emit_notes_for_differences_1>
9067 (shared_hash_htab (new_set->vars));
9068 shared_hash_htab (new_set->vars)
9069 ->traverse <variable_table_type *, emit_notes_for_differences_2>
9070 (shared_hash_htab (old_set->vars));
9071 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, new_set->vars);
9074 /* Return the next insn after INSN that is not a NOTE_INSN_VAR_LOCATION. */
9076 static rtx_insn *
9077 next_non_note_insn_var_location (rtx_insn *insn)
9079 while (insn)
9081 insn = NEXT_INSN (insn);
9082 if (insn == 0
9083 || !NOTE_P (insn)
9084 || NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION)
9085 break;
9088 return insn;
9091 /* Emit the notes for changes of location parts in the basic block BB. */
9093 static void
9094 emit_notes_in_bb (basic_block bb, dataflow_set *set)
9096 unsigned int i;
9097 micro_operation *mo;
9099 dataflow_set_clear (set);
9100 dataflow_set_copy (set, &VTI (bb)->in);
9102 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
9104 rtx_insn *insn = mo->insn;
9105 rtx_insn *next_insn = next_non_note_insn_var_location (insn);
9107 switch (mo->type)
9109 case MO_CALL:
9110 dataflow_set_clear_at_call (set);
9111 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_CALL_INSN, set->vars);
9113 rtx arguments = mo->u.loc, *p = &arguments;
9114 rtx_note *note;
9115 while (*p)
9117 XEXP (XEXP (*p, 0), 1)
9118 = vt_expand_loc (XEXP (XEXP (*p, 0), 1),
9119 shared_hash_htab (set->vars));
9120 /* If expansion is successful, keep it in the list. */
9121 if (XEXP (XEXP (*p, 0), 1))
9122 p = &XEXP (*p, 1);
9123 /* Otherwise, if the following item is data_value for it,
9124 drop it too too. */
9125 else if (XEXP (*p, 1)
9126 && REG_P (XEXP (XEXP (*p, 0), 0))
9127 && MEM_P (XEXP (XEXP (XEXP (*p, 1), 0), 0))
9128 && REG_P (XEXP (XEXP (XEXP (XEXP (*p, 1), 0), 0),
9130 && REGNO (XEXP (XEXP (*p, 0), 0))
9131 == REGNO (XEXP (XEXP (XEXP (XEXP (*p, 1), 0),
9132 0), 0)))
9133 *p = XEXP (XEXP (*p, 1), 1);
9134 /* Just drop this item. */
9135 else
9136 *p = XEXP (*p, 1);
9138 note = emit_note_after (NOTE_INSN_CALL_ARG_LOCATION, insn);
9139 NOTE_VAR_LOCATION (note) = arguments;
9141 break;
9143 case MO_USE:
9145 rtx loc = mo->u.loc;
9147 if (REG_P (loc))
9148 var_reg_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9149 else
9150 var_mem_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9152 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9154 break;
9156 case MO_VAL_LOC:
9158 rtx loc = mo->u.loc;
9159 rtx val, vloc;
9160 tree var;
9162 if (GET_CODE (loc) == CONCAT)
9164 val = XEXP (loc, 0);
9165 vloc = XEXP (loc, 1);
9167 else
9169 val = NULL_RTX;
9170 vloc = loc;
9173 var = PAT_VAR_LOCATION_DECL (vloc);
9175 clobber_variable_part (set, NULL_RTX,
9176 dv_from_decl (var), 0, NULL_RTX);
9177 if (val)
9179 if (VAL_NEEDS_RESOLUTION (loc))
9180 val_resolve (set, val, PAT_VAR_LOCATION_LOC (vloc), insn);
9181 set_variable_part (set, val, dv_from_decl (var), 0,
9182 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9183 INSERT);
9185 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
9186 set_variable_part (set, PAT_VAR_LOCATION_LOC (vloc),
9187 dv_from_decl (var), 0,
9188 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9189 INSERT);
9191 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9193 break;
9195 case MO_VAL_USE:
9197 rtx loc = mo->u.loc;
9198 rtx val, vloc, uloc;
9200 vloc = uloc = XEXP (loc, 1);
9201 val = XEXP (loc, 0);
9203 if (GET_CODE (val) == CONCAT)
9205 uloc = XEXP (val, 1);
9206 val = XEXP (val, 0);
9209 if (VAL_NEEDS_RESOLUTION (loc))
9210 val_resolve (set, val, vloc, insn);
9211 else
9212 val_store (set, val, uloc, insn, false);
9214 if (VAL_HOLDS_TRACK_EXPR (loc))
9216 if (GET_CODE (uloc) == REG)
9217 var_reg_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9218 NULL);
9219 else if (GET_CODE (uloc) == MEM)
9220 var_mem_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9221 NULL);
9224 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9226 break;
9228 case MO_VAL_SET:
9230 rtx loc = mo->u.loc;
9231 rtx val, vloc, uloc;
9232 rtx dstv, srcv;
9234 vloc = loc;
9235 uloc = XEXP (vloc, 1);
9236 val = XEXP (vloc, 0);
9237 vloc = uloc;
9239 if (GET_CODE (uloc) == SET)
9241 dstv = SET_DEST (uloc);
9242 srcv = SET_SRC (uloc);
9244 else
9246 dstv = uloc;
9247 srcv = NULL;
9250 if (GET_CODE (val) == CONCAT)
9252 dstv = vloc = XEXP (val, 1);
9253 val = XEXP (val, 0);
9256 if (GET_CODE (vloc) == SET)
9258 srcv = SET_SRC (vloc);
9260 gcc_assert (val != srcv);
9261 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
9263 dstv = vloc = SET_DEST (vloc);
9265 if (VAL_NEEDS_RESOLUTION (loc))
9266 val_resolve (set, val, srcv, insn);
9268 else if (VAL_NEEDS_RESOLUTION (loc))
9270 gcc_assert (GET_CODE (uloc) == SET
9271 && GET_CODE (SET_SRC (uloc)) == REG);
9272 val_resolve (set, val, SET_SRC (uloc), insn);
9275 if (VAL_HOLDS_TRACK_EXPR (loc))
9277 if (VAL_EXPR_IS_CLOBBERED (loc))
9279 if (REG_P (uloc))
9280 var_reg_delete (set, uloc, true);
9281 else if (MEM_P (uloc))
9283 gcc_assert (MEM_P (dstv));
9284 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
9285 var_mem_delete (set, dstv, true);
9288 else
9290 bool copied_p = VAL_EXPR_IS_COPIED (loc);
9291 rtx src = NULL, dst = uloc;
9292 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
9294 if (GET_CODE (uloc) == SET)
9296 src = SET_SRC (uloc);
9297 dst = SET_DEST (uloc);
9300 if (copied_p)
9302 status = find_src_status (set, src);
9304 src = find_src_set_src (set, src);
9307 if (REG_P (dst))
9308 var_reg_delete_and_set (set, dst, !copied_p,
9309 status, srcv);
9310 else if (MEM_P (dst))
9312 gcc_assert (MEM_P (dstv));
9313 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
9314 var_mem_delete_and_set (set, dstv, !copied_p,
9315 status, srcv);
9319 else if (REG_P (uloc))
9320 var_regno_delete (set, REGNO (uloc));
9321 else if (MEM_P (uloc))
9323 gcc_checking_assert (GET_CODE (vloc) == MEM);
9324 gcc_checking_assert (vloc == dstv);
9325 if (vloc != dstv)
9326 clobber_overlapping_mems (set, vloc);
9329 val_store (set, val, dstv, insn, true);
9331 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9332 set->vars);
9334 break;
9336 case MO_SET:
9338 rtx loc = mo->u.loc;
9339 rtx set_src = NULL;
9341 if (GET_CODE (loc) == SET)
9343 set_src = SET_SRC (loc);
9344 loc = SET_DEST (loc);
9347 if (REG_P (loc))
9348 var_reg_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9349 set_src);
9350 else
9351 var_mem_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9352 set_src);
9354 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9355 set->vars);
9357 break;
9359 case MO_COPY:
9361 rtx loc = mo->u.loc;
9362 enum var_init_status src_status;
9363 rtx set_src = NULL;
9365 if (GET_CODE (loc) == SET)
9367 set_src = SET_SRC (loc);
9368 loc = SET_DEST (loc);
9371 src_status = find_src_status (set, set_src);
9372 set_src = find_src_set_src (set, set_src);
9374 if (REG_P (loc))
9375 var_reg_delete_and_set (set, loc, false, src_status, set_src);
9376 else
9377 var_mem_delete_and_set (set, loc, false, src_status, set_src);
9379 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9380 set->vars);
9382 break;
9384 case MO_USE_NO_VAR:
9386 rtx loc = mo->u.loc;
9388 if (REG_P (loc))
9389 var_reg_delete (set, loc, false);
9390 else
9391 var_mem_delete (set, loc, false);
9393 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9395 break;
9397 case MO_CLOBBER:
9399 rtx loc = mo->u.loc;
9401 if (REG_P (loc))
9402 var_reg_delete (set, loc, true);
9403 else
9404 var_mem_delete (set, loc, true);
9406 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9407 set->vars);
9409 break;
9411 case MO_ADJUST:
9412 set->stack_adjust += mo->u.adjust;
9413 break;
9418 /* Emit notes for the whole function. */
9420 static void
9421 vt_emit_notes (void)
9423 basic_block bb;
9424 dataflow_set cur;
9426 gcc_assert (!changed_variables->elements ());
9428 /* Free memory occupied by the out hash tables, as they aren't used
9429 anymore. */
9430 FOR_EACH_BB_FN (bb, cfun)
9431 dataflow_set_clear (&VTI (bb)->out);
9433 /* Enable emitting notes by functions (mainly by set_variable_part and
9434 delete_variable_part). */
9435 emit_notes = true;
9437 if (MAY_HAVE_DEBUG_INSNS)
9439 dropped_values = new variable_table_type (cselib_get_next_uid () * 2);
9442 dataflow_set_init (&cur);
9444 FOR_EACH_BB_FN (bb, cfun)
9446 /* Emit the notes for changes of variable locations between two
9447 subsequent basic blocks. */
9448 emit_notes_for_differences (BB_HEAD (bb), &cur, &VTI (bb)->in);
9450 if (MAY_HAVE_DEBUG_INSNS)
9451 local_get_addr_cache = new hash_map<rtx, rtx>;
9453 /* Emit the notes for the changes in the basic block itself. */
9454 emit_notes_in_bb (bb, &cur);
9456 if (MAY_HAVE_DEBUG_INSNS)
9457 delete local_get_addr_cache;
9458 local_get_addr_cache = NULL;
9460 /* Free memory occupied by the in hash table, we won't need it
9461 again. */
9462 dataflow_set_clear (&VTI (bb)->in);
9464 #ifdef ENABLE_CHECKING
9465 shared_hash_htab (cur.vars)
9466 ->traverse <variable_table_type *, emit_notes_for_differences_1>
9467 (shared_hash_htab (empty_shared_hash));
9468 #endif
9469 dataflow_set_destroy (&cur);
9471 if (MAY_HAVE_DEBUG_INSNS)
9472 delete dropped_values;
9473 dropped_values = NULL;
9475 emit_notes = false;
9478 /* If there is a declaration and offset associated with register/memory RTL
9479 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
9481 static bool
9482 vt_get_decl_and_offset (rtx rtl, tree *declp, HOST_WIDE_INT *offsetp)
9484 if (REG_P (rtl))
9486 if (REG_ATTRS (rtl))
9488 *declp = REG_EXPR (rtl);
9489 *offsetp = REG_OFFSET (rtl);
9490 return true;
9493 else if (GET_CODE (rtl) == PARALLEL)
9495 tree decl = NULL_TREE;
9496 HOST_WIDE_INT offset = MAX_VAR_PARTS;
9497 int len = XVECLEN (rtl, 0), i;
9499 for (i = 0; i < len; i++)
9501 rtx reg = XEXP (XVECEXP (rtl, 0, i), 0);
9502 if (!REG_P (reg) || !REG_ATTRS (reg))
9503 break;
9504 if (!decl)
9505 decl = REG_EXPR (reg);
9506 if (REG_EXPR (reg) != decl)
9507 break;
9508 if (REG_OFFSET (reg) < offset)
9509 offset = REG_OFFSET (reg);
9512 if (i == len)
9514 *declp = decl;
9515 *offsetp = offset;
9516 return true;
9519 else if (MEM_P (rtl))
9521 if (MEM_ATTRS (rtl))
9523 *declp = MEM_EXPR (rtl);
9524 *offsetp = INT_MEM_OFFSET (rtl);
9525 return true;
9528 return false;
9531 /* Record the value for the ENTRY_VALUE of RTL as a global equivalence
9532 of VAL. */
9534 static void
9535 record_entry_value (cselib_val *val, rtx rtl)
9537 rtx ev = gen_rtx_ENTRY_VALUE (GET_MODE (rtl));
9539 ENTRY_VALUE_EXP (ev) = rtl;
9541 cselib_add_permanent_equiv (val, ev, get_insns ());
9544 /* Insert function parameter PARM in IN and OUT sets of ENTRY_BLOCK. */
9546 static void
9547 vt_add_function_parameter (tree parm)
9549 rtx decl_rtl = DECL_RTL_IF_SET (parm);
9550 rtx incoming = DECL_INCOMING_RTL (parm);
9551 tree decl;
9552 machine_mode mode;
9553 HOST_WIDE_INT offset;
9554 dataflow_set *out;
9555 decl_or_value dv;
9557 if (TREE_CODE (parm) != PARM_DECL)
9558 return;
9560 if (!decl_rtl || !incoming)
9561 return;
9563 if (GET_MODE (decl_rtl) == BLKmode || GET_MODE (incoming) == BLKmode)
9564 return;
9566 /* If there is a DRAP register or a pseudo in internal_arg_pointer,
9567 rewrite the incoming location of parameters passed on the stack
9568 into MEMs based on the argument pointer, so that incoming doesn't
9569 depend on a pseudo. */
9570 if (MEM_P (incoming)
9571 && (XEXP (incoming, 0) == crtl->args.internal_arg_pointer
9572 || (GET_CODE (XEXP (incoming, 0)) == PLUS
9573 && XEXP (XEXP (incoming, 0), 0)
9574 == crtl->args.internal_arg_pointer
9575 && CONST_INT_P (XEXP (XEXP (incoming, 0), 1)))))
9577 HOST_WIDE_INT off = -FIRST_PARM_OFFSET (current_function_decl);
9578 if (GET_CODE (XEXP (incoming, 0)) == PLUS)
9579 off += INTVAL (XEXP (XEXP (incoming, 0), 1));
9580 incoming
9581 = replace_equiv_address_nv (incoming,
9582 plus_constant (Pmode,
9583 arg_pointer_rtx, off));
9586 #ifdef HAVE_window_save
9587 /* DECL_INCOMING_RTL uses the INCOMING_REGNO of parameter registers.
9588 If the target machine has an explicit window save instruction, the
9589 actual entry value is the corresponding OUTGOING_REGNO instead. */
9590 if (HAVE_window_save && !crtl->uses_only_leaf_regs)
9592 if (REG_P (incoming)
9593 && HARD_REGISTER_P (incoming)
9594 && OUTGOING_REGNO (REGNO (incoming)) != REGNO (incoming))
9596 parm_reg_t p;
9597 p.incoming = incoming;
9598 incoming
9599 = gen_rtx_REG_offset (incoming, GET_MODE (incoming),
9600 OUTGOING_REGNO (REGNO (incoming)), 0);
9601 p.outgoing = incoming;
9602 vec_safe_push (windowed_parm_regs, p);
9604 else if (GET_CODE (incoming) == PARALLEL)
9606 rtx outgoing
9607 = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (XVECLEN (incoming, 0)));
9608 int i;
9610 for (i = 0; i < XVECLEN (incoming, 0); i++)
9612 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9613 parm_reg_t p;
9614 p.incoming = reg;
9615 reg = gen_rtx_REG_offset (reg, GET_MODE (reg),
9616 OUTGOING_REGNO (REGNO (reg)), 0);
9617 p.outgoing = reg;
9618 XVECEXP (outgoing, 0, i)
9619 = gen_rtx_EXPR_LIST (VOIDmode, reg,
9620 XEXP (XVECEXP (incoming, 0, i), 1));
9621 vec_safe_push (windowed_parm_regs, p);
9624 incoming = outgoing;
9626 else if (MEM_P (incoming)
9627 && REG_P (XEXP (incoming, 0))
9628 && HARD_REGISTER_P (XEXP (incoming, 0)))
9630 rtx reg = XEXP (incoming, 0);
9631 if (OUTGOING_REGNO (REGNO (reg)) != REGNO (reg))
9633 parm_reg_t p;
9634 p.incoming = reg;
9635 reg = gen_raw_REG (GET_MODE (reg), OUTGOING_REGNO (REGNO (reg)));
9636 p.outgoing = reg;
9637 vec_safe_push (windowed_parm_regs, p);
9638 incoming = replace_equiv_address_nv (incoming, reg);
9642 #endif
9644 if (!vt_get_decl_and_offset (incoming, &decl, &offset))
9646 if (MEM_P (incoming))
9648 /* This means argument is passed by invisible reference. */
9649 offset = 0;
9650 decl = parm;
9652 else
9654 if (!vt_get_decl_and_offset (decl_rtl, &decl, &offset))
9655 return;
9656 offset += byte_lowpart_offset (GET_MODE (incoming),
9657 GET_MODE (decl_rtl));
9661 if (!decl)
9662 return;
9664 if (parm != decl)
9666 /* If that DECL_RTL wasn't a pseudo that got spilled to
9667 memory, bail out. Otherwise, the spill slot sharing code
9668 will force the memory to reference spill_slot_decl (%sfp),
9669 so we don't match above. That's ok, the pseudo must have
9670 referenced the entire parameter, so just reset OFFSET. */
9671 if (decl != get_spill_slot_decl (false))
9672 return;
9673 offset = 0;
9676 if (!track_loc_p (incoming, parm, offset, false, &mode, &offset))
9677 return;
9679 out = &VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out;
9681 dv = dv_from_decl (parm);
9683 if (target_for_debug_bind (parm)
9684 /* We can't deal with these right now, because this kind of
9685 variable is single-part. ??? We could handle parallels
9686 that describe multiple locations for the same single
9687 value, but ATM we don't. */
9688 && GET_CODE (incoming) != PARALLEL)
9690 cselib_val *val;
9691 rtx lowpart;
9693 /* ??? We shouldn't ever hit this, but it may happen because
9694 arguments passed by invisible reference aren't dealt with
9695 above: incoming-rtl will have Pmode rather than the
9696 expected mode for the type. */
9697 if (offset)
9698 return;
9700 lowpart = var_lowpart (mode, incoming);
9701 if (!lowpart)
9702 return;
9704 val = cselib_lookup_from_insn (lowpart, mode, true,
9705 VOIDmode, get_insns ());
9707 /* ??? Float-typed values in memory are not handled by
9708 cselib. */
9709 if (val)
9711 preserve_value (val);
9712 set_variable_part (out, val->val_rtx, dv, offset,
9713 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9714 dv = dv_from_value (val->val_rtx);
9717 if (MEM_P (incoming))
9719 val = cselib_lookup_from_insn (XEXP (incoming, 0), mode, true,
9720 VOIDmode, get_insns ());
9721 if (val)
9723 preserve_value (val);
9724 incoming = replace_equiv_address_nv (incoming, val->val_rtx);
9729 if (REG_P (incoming))
9731 incoming = var_lowpart (mode, incoming);
9732 gcc_assert (REGNO (incoming) < FIRST_PSEUDO_REGISTER);
9733 attrs_list_insert (&out->regs[REGNO (incoming)], dv, offset,
9734 incoming);
9735 set_variable_part (out, incoming, dv, offset,
9736 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9737 if (dv_is_value_p (dv))
9739 record_entry_value (CSELIB_VAL_PTR (dv_as_value (dv)), incoming);
9740 if (TREE_CODE (TREE_TYPE (parm)) == REFERENCE_TYPE
9741 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (parm))))
9743 machine_mode indmode
9744 = TYPE_MODE (TREE_TYPE (TREE_TYPE (parm)));
9745 rtx mem = gen_rtx_MEM (indmode, incoming);
9746 cselib_val *val = cselib_lookup_from_insn (mem, indmode, true,
9747 VOIDmode,
9748 get_insns ());
9749 if (val)
9751 preserve_value (val);
9752 record_entry_value (val, mem);
9753 set_variable_part (out, mem, dv_from_value (val->val_rtx), 0,
9754 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9759 else if (GET_CODE (incoming) == PARALLEL && !dv_onepart_p (dv))
9761 int i;
9763 for (i = 0; i < XVECLEN (incoming, 0); i++)
9765 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9766 offset = REG_OFFSET (reg);
9767 gcc_assert (REGNO (reg) < FIRST_PSEUDO_REGISTER);
9768 attrs_list_insert (&out->regs[REGNO (reg)], dv, offset, reg);
9769 set_variable_part (out, reg, dv, offset,
9770 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9773 else if (MEM_P (incoming))
9775 incoming = var_lowpart (mode, incoming);
9776 set_variable_part (out, incoming, dv, offset,
9777 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9781 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
9783 static void
9784 vt_add_function_parameters (void)
9786 tree parm;
9788 for (parm = DECL_ARGUMENTS (current_function_decl);
9789 parm; parm = DECL_CHAIN (parm))
9790 if (!POINTER_BOUNDS_P (parm))
9791 vt_add_function_parameter (parm);
9793 if (DECL_HAS_VALUE_EXPR_P (DECL_RESULT (current_function_decl)))
9795 tree vexpr = DECL_VALUE_EXPR (DECL_RESULT (current_function_decl));
9797 if (TREE_CODE (vexpr) == INDIRECT_REF)
9798 vexpr = TREE_OPERAND (vexpr, 0);
9800 if (TREE_CODE (vexpr) == PARM_DECL
9801 && DECL_ARTIFICIAL (vexpr)
9802 && !DECL_IGNORED_P (vexpr)
9803 && DECL_NAMELESS (vexpr))
9804 vt_add_function_parameter (vexpr);
9808 /* Initialize cfa_base_rtx, create a preserved VALUE for it and
9809 ensure it isn't flushed during cselib_reset_table.
9810 Can be called only if frame_pointer_rtx resp. arg_pointer_rtx
9811 has been eliminated. */
9813 static void
9814 vt_init_cfa_base (void)
9816 cselib_val *val;
9818 #ifdef FRAME_POINTER_CFA_OFFSET
9819 cfa_base_rtx = frame_pointer_rtx;
9820 cfa_base_offset = -FRAME_POINTER_CFA_OFFSET (current_function_decl);
9821 #else
9822 cfa_base_rtx = arg_pointer_rtx;
9823 cfa_base_offset = -ARG_POINTER_CFA_OFFSET (current_function_decl);
9824 #endif
9825 if (cfa_base_rtx == hard_frame_pointer_rtx
9826 || !fixed_regs[REGNO (cfa_base_rtx)])
9828 cfa_base_rtx = NULL_RTX;
9829 return;
9831 if (!MAY_HAVE_DEBUG_INSNS)
9832 return;
9834 /* Tell alias analysis that cfa_base_rtx should share
9835 find_base_term value with stack pointer or hard frame pointer. */
9836 if (!frame_pointer_needed)
9837 vt_equate_reg_base_value (cfa_base_rtx, stack_pointer_rtx);
9838 else if (!crtl->stack_realign_tried)
9839 vt_equate_reg_base_value (cfa_base_rtx, hard_frame_pointer_rtx);
9841 val = cselib_lookup_from_insn (cfa_base_rtx, GET_MODE (cfa_base_rtx), 1,
9842 VOIDmode, get_insns ());
9843 preserve_value (val);
9844 cselib_preserve_cfa_base_value (val, REGNO (cfa_base_rtx));
9847 /* Allocate and initialize the data structures for variable tracking
9848 and parse the RTL to get the micro operations. */
9850 static bool
9851 vt_initialize (void)
9853 basic_block bb;
9854 HOST_WIDE_INT fp_cfa_offset = -1;
9856 alloc_aux_for_blocks (sizeof (struct variable_tracking_info_def));
9858 empty_shared_hash = new shared_hash_def;
9859 empty_shared_hash->refcount = 1;
9860 empty_shared_hash->htab = new variable_table_type (1);
9861 changed_variables = new variable_table_type (10);
9863 /* Init the IN and OUT sets. */
9864 FOR_ALL_BB_FN (bb, cfun)
9866 VTI (bb)->visited = false;
9867 VTI (bb)->flooded = false;
9868 dataflow_set_init (&VTI (bb)->in);
9869 dataflow_set_init (&VTI (bb)->out);
9870 VTI (bb)->permp = NULL;
9873 if (MAY_HAVE_DEBUG_INSNS)
9875 cselib_init (CSELIB_RECORD_MEMORY | CSELIB_PRESERVE_CONSTANTS);
9876 scratch_regs = BITMAP_ALLOC (NULL);
9877 preserved_values.create (256);
9878 global_get_addr_cache = new hash_map<rtx, rtx>;
9880 else
9882 scratch_regs = NULL;
9883 global_get_addr_cache = NULL;
9886 if (MAY_HAVE_DEBUG_INSNS)
9888 rtx reg, expr;
9889 int ofst;
9890 cselib_val *val;
9892 #ifdef FRAME_POINTER_CFA_OFFSET
9893 reg = frame_pointer_rtx;
9894 ofst = FRAME_POINTER_CFA_OFFSET (current_function_decl);
9895 #else
9896 reg = arg_pointer_rtx;
9897 ofst = ARG_POINTER_CFA_OFFSET (current_function_decl);
9898 #endif
9900 ofst -= INCOMING_FRAME_SP_OFFSET;
9902 val = cselib_lookup_from_insn (reg, GET_MODE (reg), 1,
9903 VOIDmode, get_insns ());
9904 preserve_value (val);
9905 if (reg != hard_frame_pointer_rtx && fixed_regs[REGNO (reg)])
9906 cselib_preserve_cfa_base_value (val, REGNO (reg));
9907 expr = plus_constant (GET_MODE (stack_pointer_rtx),
9908 stack_pointer_rtx, -ofst);
9909 cselib_add_permanent_equiv (val, expr, get_insns ());
9911 if (ofst)
9913 val = cselib_lookup_from_insn (stack_pointer_rtx,
9914 GET_MODE (stack_pointer_rtx), 1,
9915 VOIDmode, get_insns ());
9916 preserve_value (val);
9917 expr = plus_constant (GET_MODE (reg), reg, ofst);
9918 cselib_add_permanent_equiv (val, expr, get_insns ());
9922 /* In order to factor out the adjustments made to the stack pointer or to
9923 the hard frame pointer and thus be able to use DW_OP_fbreg operations
9924 instead of individual location lists, we're going to rewrite MEMs based
9925 on them into MEMs based on the CFA by de-eliminating stack_pointer_rtx
9926 or hard_frame_pointer_rtx to the virtual CFA pointer frame_pointer_rtx
9927 resp. arg_pointer_rtx. We can do this either when there is no frame
9928 pointer in the function and stack adjustments are consistent for all
9929 basic blocks or when there is a frame pointer and no stack realignment.
9930 But we first have to check that frame_pointer_rtx resp. arg_pointer_rtx
9931 has been eliminated. */
9932 if (!frame_pointer_needed)
9934 rtx reg, elim;
9936 if (!vt_stack_adjustments ())
9937 return false;
9939 #ifdef FRAME_POINTER_CFA_OFFSET
9940 reg = frame_pointer_rtx;
9941 #else
9942 reg = arg_pointer_rtx;
9943 #endif
9944 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
9945 if (elim != reg)
9947 if (GET_CODE (elim) == PLUS)
9948 elim = XEXP (elim, 0);
9949 if (elim == stack_pointer_rtx)
9950 vt_init_cfa_base ();
9953 else if (!crtl->stack_realign_tried)
9955 rtx reg, elim;
9957 #ifdef FRAME_POINTER_CFA_OFFSET
9958 reg = frame_pointer_rtx;
9959 fp_cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
9960 #else
9961 reg = arg_pointer_rtx;
9962 fp_cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
9963 #endif
9964 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
9965 if (elim != reg)
9967 if (GET_CODE (elim) == PLUS)
9969 fp_cfa_offset -= INTVAL (XEXP (elim, 1));
9970 elim = XEXP (elim, 0);
9972 if (elim != hard_frame_pointer_rtx)
9973 fp_cfa_offset = -1;
9975 else
9976 fp_cfa_offset = -1;
9979 /* If the stack is realigned and a DRAP register is used, we're going to
9980 rewrite MEMs based on it representing incoming locations of parameters
9981 passed on the stack into MEMs based on the argument pointer. Although
9982 we aren't going to rewrite other MEMs, we still need to initialize the
9983 virtual CFA pointer in order to ensure that the argument pointer will
9984 be seen as a constant throughout the function.
9986 ??? This doesn't work if FRAME_POINTER_CFA_OFFSET is defined. */
9987 else if (stack_realign_drap)
9989 rtx reg, elim;
9991 #ifdef FRAME_POINTER_CFA_OFFSET
9992 reg = frame_pointer_rtx;
9993 #else
9994 reg = arg_pointer_rtx;
9995 #endif
9996 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
9997 if (elim != reg)
9999 if (GET_CODE (elim) == PLUS)
10000 elim = XEXP (elim, 0);
10001 if (elim == hard_frame_pointer_rtx)
10002 vt_init_cfa_base ();
10006 hard_frame_pointer_adjustment = -1;
10008 vt_add_function_parameters ();
10010 FOR_EACH_BB_FN (bb, cfun)
10012 rtx_insn *insn;
10013 HOST_WIDE_INT pre, post = 0;
10014 basic_block first_bb, last_bb;
10016 if (MAY_HAVE_DEBUG_INSNS)
10018 cselib_record_sets_hook = add_with_sets;
10019 if (dump_file && (dump_flags & TDF_DETAILS))
10020 fprintf (dump_file, "first value: %i\n",
10021 cselib_get_next_uid ());
10024 first_bb = bb;
10025 for (;;)
10027 edge e;
10028 if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
10029 || ! single_pred_p (bb->next_bb))
10030 break;
10031 e = find_edge (bb, bb->next_bb);
10032 if (! e || (e->flags & EDGE_FALLTHRU) == 0)
10033 break;
10034 bb = bb->next_bb;
10036 last_bb = bb;
10038 /* Add the micro-operations to the vector. */
10039 FOR_BB_BETWEEN (bb, first_bb, last_bb->next_bb, next_bb)
10041 HOST_WIDE_INT offset = VTI (bb)->out.stack_adjust;
10042 VTI (bb)->out.stack_adjust = VTI (bb)->in.stack_adjust;
10043 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
10044 insn = NEXT_INSN (insn))
10046 if (INSN_P (insn))
10048 if (!frame_pointer_needed)
10050 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
10051 if (pre)
10053 micro_operation mo;
10054 mo.type = MO_ADJUST;
10055 mo.u.adjust = pre;
10056 mo.insn = insn;
10057 if (dump_file && (dump_flags & TDF_DETAILS))
10058 log_op_type (PATTERN (insn), bb, insn,
10059 MO_ADJUST, dump_file);
10060 VTI (bb)->mos.safe_push (mo);
10061 VTI (bb)->out.stack_adjust += pre;
10065 cselib_hook_called = false;
10066 adjust_insn (bb, insn);
10067 if (MAY_HAVE_DEBUG_INSNS)
10069 if (CALL_P (insn))
10070 prepare_call_arguments (bb, insn);
10071 cselib_process_insn (insn);
10072 if (dump_file && (dump_flags & TDF_DETAILS))
10074 print_rtl_single (dump_file, insn);
10075 dump_cselib_table (dump_file);
10078 if (!cselib_hook_called)
10079 add_with_sets (insn, 0, 0);
10080 cancel_changes (0);
10082 if (!frame_pointer_needed && post)
10084 micro_operation mo;
10085 mo.type = MO_ADJUST;
10086 mo.u.adjust = post;
10087 mo.insn = insn;
10088 if (dump_file && (dump_flags & TDF_DETAILS))
10089 log_op_type (PATTERN (insn), bb, insn,
10090 MO_ADJUST, dump_file);
10091 VTI (bb)->mos.safe_push (mo);
10092 VTI (bb)->out.stack_adjust += post;
10095 if (fp_cfa_offset != -1
10096 && hard_frame_pointer_adjustment == -1
10097 && fp_setter_insn (insn))
10099 vt_init_cfa_base ();
10100 hard_frame_pointer_adjustment = fp_cfa_offset;
10101 /* Disassociate sp from fp now. */
10102 if (MAY_HAVE_DEBUG_INSNS)
10104 cselib_val *v;
10105 cselib_invalidate_rtx (stack_pointer_rtx);
10106 v = cselib_lookup (stack_pointer_rtx, Pmode, 1,
10107 VOIDmode);
10108 if (v && !cselib_preserved_value_p (v))
10110 cselib_set_value_sp_based (v);
10111 preserve_value (v);
10117 gcc_assert (offset == VTI (bb)->out.stack_adjust);
10120 bb = last_bb;
10122 if (MAY_HAVE_DEBUG_INSNS)
10124 cselib_preserve_only_values ();
10125 cselib_reset_table (cselib_get_next_uid ());
10126 cselib_record_sets_hook = NULL;
10130 hard_frame_pointer_adjustment = -1;
10131 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->flooded = true;
10132 cfa_base_rtx = NULL_RTX;
10133 return true;
10136 /* This is *not* reset after each function. It gives each
10137 NOTE_INSN_DELETED_DEBUG_LABEL in the entire compilation
10138 a unique label number. */
10140 static int debug_label_num = 1;
10142 /* Get rid of all debug insns from the insn stream. */
10144 static void
10145 delete_debug_insns (void)
10147 basic_block bb;
10148 rtx_insn *insn, *next;
10150 if (!MAY_HAVE_DEBUG_INSNS)
10151 return;
10153 FOR_EACH_BB_FN (bb, cfun)
10155 FOR_BB_INSNS_SAFE (bb, insn, next)
10156 if (DEBUG_INSN_P (insn))
10158 tree decl = INSN_VAR_LOCATION_DECL (insn);
10159 if (TREE_CODE (decl) == LABEL_DECL
10160 && DECL_NAME (decl)
10161 && !DECL_RTL_SET_P (decl))
10163 PUT_CODE (insn, NOTE);
10164 NOTE_KIND (insn) = NOTE_INSN_DELETED_DEBUG_LABEL;
10165 NOTE_DELETED_LABEL_NAME (insn)
10166 = IDENTIFIER_POINTER (DECL_NAME (decl));
10167 SET_DECL_RTL (decl, insn);
10168 CODE_LABEL_NUMBER (insn) = debug_label_num++;
10170 else
10171 delete_insn (insn);
10176 /* Run a fast, BB-local only version of var tracking, to take care of
10177 information that we don't do global analysis on, such that not all
10178 information is lost. If SKIPPED holds, we're skipping the global
10179 pass entirely, so we should try to use information it would have
10180 handled as well.. */
10182 static void
10183 vt_debug_insns_local (bool skipped ATTRIBUTE_UNUSED)
10185 /* ??? Just skip it all for now. */
10186 delete_debug_insns ();
10189 /* Free the data structures needed for variable tracking. */
10191 static void
10192 vt_finalize (void)
10194 basic_block bb;
10196 FOR_EACH_BB_FN (bb, cfun)
10198 VTI (bb)->mos.release ();
10201 FOR_ALL_BB_FN (bb, cfun)
10203 dataflow_set_destroy (&VTI (bb)->in);
10204 dataflow_set_destroy (&VTI (bb)->out);
10205 if (VTI (bb)->permp)
10207 dataflow_set_destroy (VTI (bb)->permp);
10208 XDELETE (VTI (bb)->permp);
10211 free_aux_for_blocks ();
10212 delete empty_shared_hash->htab;
10213 empty_shared_hash->htab = NULL;
10214 delete changed_variables;
10215 changed_variables = NULL;
10216 attrs_def_pool.release ();
10217 var_pool.release ();
10218 location_chain_def_pool.release ();
10219 shared_hash_def_pool.release ();
10221 if (MAY_HAVE_DEBUG_INSNS)
10223 if (global_get_addr_cache)
10224 delete global_get_addr_cache;
10225 global_get_addr_cache = NULL;
10226 loc_exp_dep_pool.release ();
10227 valvar_pool.release ();
10228 preserved_values.release ();
10229 cselib_finish ();
10230 BITMAP_FREE (scratch_regs);
10231 scratch_regs = NULL;
10234 #ifdef HAVE_window_save
10235 vec_free (windowed_parm_regs);
10236 #endif
10238 if (vui_vec)
10239 XDELETEVEC (vui_vec);
10240 vui_vec = NULL;
10241 vui_allocated = 0;
10244 /* The entry point to variable tracking pass. */
10246 static inline unsigned int
10247 variable_tracking_main_1 (void)
10249 bool success;
10251 if (flag_var_tracking_assignments < 0
10252 /* Var-tracking right now assumes the IR doesn't contain
10253 any pseudos at this point. */
10254 || targetm.no_register_allocation)
10256 delete_debug_insns ();
10257 return 0;
10260 if (n_basic_blocks_for_fn (cfun) > 500 &&
10261 n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun) >= 20)
10263 vt_debug_insns_local (true);
10264 return 0;
10267 mark_dfs_back_edges ();
10268 if (!vt_initialize ())
10270 vt_finalize ();
10271 vt_debug_insns_local (true);
10272 return 0;
10275 success = vt_find_locations ();
10277 if (!success && flag_var_tracking_assignments > 0)
10279 vt_finalize ();
10281 delete_debug_insns ();
10283 /* This is later restored by our caller. */
10284 flag_var_tracking_assignments = 0;
10286 success = vt_initialize ();
10287 gcc_assert (success);
10289 success = vt_find_locations ();
10292 if (!success)
10294 vt_finalize ();
10295 vt_debug_insns_local (false);
10296 return 0;
10299 if (dump_file && (dump_flags & TDF_DETAILS))
10301 dump_dataflow_sets ();
10302 dump_reg_info (dump_file);
10303 dump_flow_info (dump_file, dump_flags);
10306 timevar_push (TV_VAR_TRACKING_EMIT);
10307 vt_emit_notes ();
10308 timevar_pop (TV_VAR_TRACKING_EMIT);
10310 vt_finalize ();
10311 vt_debug_insns_local (false);
10312 return 0;
10315 unsigned int
10316 variable_tracking_main (void)
10318 unsigned int ret;
10319 int save = flag_var_tracking_assignments;
10321 ret = variable_tracking_main_1 ();
10323 flag_var_tracking_assignments = save;
10325 return ret;
10328 namespace {
10330 const pass_data pass_data_variable_tracking =
10332 RTL_PASS, /* type */
10333 "vartrack", /* name */
10334 OPTGROUP_NONE, /* optinfo_flags */
10335 TV_VAR_TRACKING, /* tv_id */
10336 0, /* properties_required */
10337 0, /* properties_provided */
10338 0, /* properties_destroyed */
10339 0, /* todo_flags_start */
10340 0, /* todo_flags_finish */
10343 class pass_variable_tracking : public rtl_opt_pass
10345 public:
10346 pass_variable_tracking (gcc::context *ctxt)
10347 : rtl_opt_pass (pass_data_variable_tracking, ctxt)
10350 /* opt_pass methods: */
10351 virtual bool gate (function *)
10353 return (flag_var_tracking && !targetm.delay_vartrack);
10356 virtual unsigned int execute (function *)
10358 return variable_tracking_main ();
10361 }; // class pass_variable_tracking
10363 } // anon namespace
10365 rtl_opt_pass *
10366 make_pass_variable_tracking (gcc::context *ctxt)
10368 return new pass_variable_tracking (ctxt);