rewrap comment
[official-gcc.git] / gcc / tree.c
blob9710ed25d6e38ade2eb4a8d27af9f9629cd87521
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c. */
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "flags.h"
37 #include "tree.h"
38 #include "real.h"
39 #include "tm_p.h"
40 #include "function.h"
41 #include "obstack.h"
42 #include "toplev.h"
43 #include "ggc.h"
44 #include "hashtab.h"
45 #include "output.h"
46 #include "target.h"
47 #include "langhooks.h"
49 /* obstack.[ch] explicitly declined to prototype this. */
50 extern int _obstack_allocated_p (struct obstack *h, void *obj);
52 #ifdef GATHER_STATISTICS
53 /* Statistics-gathering stuff. */
55 int tree_node_counts[(int) all_kinds];
56 int tree_node_sizes[(int) all_kinds];
58 /* Keep in sync with tree.h:enum tree_node_kind. */
59 static const char * const tree_node_kind_names[] = {
60 "decls",
61 "types",
62 "blocks",
63 "stmts",
64 "refs",
65 "exprs",
66 "constants",
67 "identifiers",
68 "perm_tree_lists",
69 "temp_tree_lists",
70 "vecs",
71 "random kinds",
72 "lang_decl kinds",
73 "lang_type kinds"
75 #endif /* GATHER_STATISTICS */
77 /* Unique id for next decl created. */
78 static GTY(()) int next_decl_uid;
79 /* Unique id for next type created. */
80 static GTY(()) int next_type_uid = 1;
82 /* Since we cannot rehash a type after it is in the table, we have to
83 keep the hash code. */
85 struct type_hash GTY(())
87 unsigned long hash;
88 tree type;
91 /* Initial size of the hash table (rounded to next prime). */
92 #define TYPE_HASH_INITIAL_SIZE 1000
94 /* Now here is the hash table. When recording a type, it is added to
95 the slot whose index is the hash code. Note that the hash table is
96 used for several kinds of types (function types, array types and
97 array index range types, for now). While all these live in the
98 same table, they are completely independent, and the hash code is
99 computed differently for each of these. */
101 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
102 htab_t type_hash_table;
104 static void set_type_quals (tree, int);
105 static int type_hash_eq (const void *, const void *);
106 static hashval_t type_hash_hash (const void *);
107 static void print_type_hash_statistics (void);
108 static void finish_vector_type (tree);
109 static int type_hash_marked_p (const void *);
110 static unsigned int type_hash_list (tree, hashval_t);
111 static unsigned int attribute_hash_list (tree, hashval_t);
113 tree global_trees[TI_MAX];
114 tree integer_types[itk_none];
116 /* Init tree.c. */
118 void
119 init_ttree (void)
121 /* Initialize the hash table of types. */
122 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
123 type_hash_eq, 0);
127 /* The name of the object as the assembler will see it (but before any
128 translations made by ASM_OUTPUT_LABELREF). Often this is the same
129 as DECL_NAME. It is an IDENTIFIER_NODE. */
130 tree
131 decl_assembler_name (tree decl)
133 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
134 (*lang_hooks.set_decl_assembler_name) (decl);
135 return DECL_CHECK (decl)->decl.assembler_name;
138 /* Compute the number of bytes occupied by 'node'. This routine only
139 looks at TREE_CODE and, if the code is TREE_VEC, TREE_VEC_LENGTH. */
140 size_t
141 tree_size (tree node)
143 enum tree_code code = TREE_CODE (node);
145 switch (TREE_CODE_CLASS (code))
147 case 'd': /* A decl node */
148 return sizeof (struct tree_decl);
150 case 't': /* a type node */
151 return sizeof (struct tree_type);
153 case 'b': /* a lexical block node */
154 return sizeof (struct tree_block);
156 case 'r': /* a reference */
157 case 'e': /* an expression */
158 case 's': /* an expression with side effects */
159 case '<': /* a comparison expression */
160 case '1': /* a unary arithmetic expression */
161 case '2': /* a binary arithmetic expression */
162 return (sizeof (struct tree_exp)
163 + TREE_CODE_LENGTH (code) * sizeof (char *) - sizeof (char *));
165 case 'c': /* a constant */
166 switch (code)
168 case INTEGER_CST: return sizeof (struct tree_int_cst);
169 case REAL_CST: return sizeof (struct tree_real_cst);
170 case COMPLEX_CST: return sizeof (struct tree_complex);
171 case VECTOR_CST: return sizeof (struct tree_vector);
172 case STRING_CST: return sizeof (struct tree_string);
173 default:
174 return (*lang_hooks.tree_size) (code);
177 case 'x': /* something random, like an identifier. */
178 switch (code)
180 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
181 case TREE_LIST: return sizeof (struct tree_list);
182 case TREE_VEC: return (sizeof (struct tree_vec)
183 + TREE_VEC_LENGTH(node) * sizeof(char *)
184 - sizeof (char *));
186 case ERROR_MARK:
187 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
189 default:
190 return (*lang_hooks.tree_size) (code);
193 default:
194 abort ();
198 /* Return a newly allocated node of code CODE.
199 For decl and type nodes, some other fields are initialized.
200 The rest of the node is initialized to zero.
202 Achoo! I got a code in the node. */
204 tree
205 make_node_stat (enum tree_code code MEM_STAT_DECL)
207 tree t;
208 int type = TREE_CODE_CLASS (code);
209 size_t length;
210 #ifdef GATHER_STATISTICS
211 tree_node_kind kind;
212 #endif
213 struct tree_common ttmp;
215 /* We can't allocate a TREE_VEC without knowing how many elements
216 it will have. */
217 if (code == TREE_VEC)
218 abort ();
220 TREE_SET_CODE ((tree)&ttmp, code);
221 length = tree_size ((tree)&ttmp);
223 #ifdef GATHER_STATISTICS
224 switch (type)
226 case 'd': /* A decl node */
227 kind = d_kind;
228 break;
230 case 't': /* a type node */
231 kind = t_kind;
232 break;
234 case 'b': /* a lexical block */
235 kind = b_kind;
236 break;
238 case 's': /* an expression with side effects */
239 kind = s_kind;
240 break;
242 case 'r': /* a reference */
243 kind = r_kind;
244 break;
246 case 'e': /* an expression */
247 case '<': /* a comparison expression */
248 case '1': /* a unary arithmetic expression */
249 case '2': /* a binary arithmetic expression */
250 kind = e_kind;
251 break;
253 case 'c': /* a constant */
254 kind = c_kind;
255 break;
257 case 'x': /* something random, like an identifier. */
258 if (code == IDENTIFIER_NODE)
259 kind = id_kind;
260 else if (code == TREE_VEC)
261 kind = vec_kind;
262 else
263 kind = x_kind;
264 break;
266 default:
267 abort ();
270 tree_node_counts[(int) kind]++;
271 tree_node_sizes[(int) kind] += length;
272 #endif
274 t = ggc_alloc_zone_stat (length, tree_zone PASS_MEM_STAT);
276 memset (t, 0, length);
278 TREE_SET_CODE (t, code);
280 switch (type)
282 case 's':
283 TREE_SIDE_EFFECTS (t) = 1;
284 break;
286 case 'd':
287 if (code != FUNCTION_DECL)
288 DECL_ALIGN (t) = 1;
289 DECL_USER_ALIGN (t) = 0;
290 DECL_IN_SYSTEM_HEADER (t) = in_system_header;
291 DECL_SOURCE_LOCATION (t) = input_location;
292 DECL_UID (t) = next_decl_uid++;
294 /* We have not yet computed the alias set for this declaration. */
295 DECL_POINTER_ALIAS_SET (t) = -1;
296 break;
298 case 't':
299 TYPE_UID (t) = next_type_uid++;
300 TYPE_ALIGN (t) = char_type_node ? TYPE_ALIGN (char_type_node) : 0;
301 TYPE_USER_ALIGN (t) = 0;
302 TYPE_MAIN_VARIANT (t) = t;
304 /* Default to no attributes for type, but let target change that. */
305 TYPE_ATTRIBUTES (t) = NULL_TREE;
306 (*targetm.set_default_type_attributes) (t);
308 /* We have not yet computed the alias set for this type. */
309 TYPE_ALIAS_SET (t) = -1;
310 break;
312 case 'c':
313 TREE_CONSTANT (t) = 1;
314 break;
316 case 'e':
317 switch (code)
319 case INIT_EXPR:
320 case MODIFY_EXPR:
321 case VA_ARG_EXPR:
322 case RTL_EXPR:
323 case PREDECREMENT_EXPR:
324 case PREINCREMENT_EXPR:
325 case POSTDECREMENT_EXPR:
326 case POSTINCREMENT_EXPR:
327 /* All of these have side-effects, no matter what their
328 operands are. */
329 TREE_SIDE_EFFECTS (t) = 1;
330 break;
332 default:
333 break;
335 break;
338 return t;
341 /* Return a new node with the same contents as NODE except that its
342 TREE_CHAIN is zero and it has a fresh uid. */
344 tree
345 copy_node_stat (tree node MEM_STAT_DECL)
347 tree t;
348 enum tree_code code = TREE_CODE (node);
349 size_t length;
351 length = tree_size (node);
352 t = ggc_alloc_zone_stat (length, tree_zone PASS_MEM_STAT);
353 memcpy (t, node, length);
355 TREE_CHAIN (t) = 0;
356 TREE_ASM_WRITTEN (t) = 0;
358 if (TREE_CODE_CLASS (code) == 'd')
359 DECL_UID (t) = next_decl_uid++;
360 else if (TREE_CODE_CLASS (code) == 't')
362 TYPE_UID (t) = next_type_uid++;
363 /* The following is so that the debug code for
364 the copy is different from the original type.
365 The two statements usually duplicate each other
366 (because they clear fields of the same union),
367 but the optimizer should catch that. */
368 TYPE_SYMTAB_POINTER (t) = 0;
369 TYPE_SYMTAB_ADDRESS (t) = 0;
372 return t;
375 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
376 For example, this can copy a list made of TREE_LIST nodes. */
378 tree
379 copy_list (tree list)
381 tree head;
382 tree prev, next;
384 if (list == 0)
385 return 0;
387 head = prev = copy_node (list);
388 next = TREE_CHAIN (list);
389 while (next)
391 TREE_CHAIN (prev) = copy_node (next);
392 prev = TREE_CHAIN (prev);
393 next = TREE_CHAIN (next);
395 return head;
399 /* Return a newly constructed INTEGER_CST node whose constant value
400 is specified by the two ints LOW and HI.
401 The TREE_TYPE is set to `int'.
403 This function should be used via the `build_int_2' macro. */
405 tree
406 build_int_2_wide (unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
408 tree t = make_node (INTEGER_CST);
410 TREE_INT_CST_LOW (t) = low;
411 TREE_INT_CST_HIGH (t) = hi;
412 TREE_TYPE (t) = integer_type_node;
413 return t;
416 /* Return a new VECTOR_CST node whose type is TYPE and whose values
417 are in a list pointed by VALS. */
419 tree
420 build_vector (tree type, tree vals)
422 tree v = make_node (VECTOR_CST);
423 int over1 = 0, over2 = 0;
424 tree link;
426 TREE_VECTOR_CST_ELTS (v) = vals;
427 TREE_TYPE (v) = type;
429 /* Iterate through elements and check for overflow. */
430 for (link = vals; link; link = TREE_CHAIN (link))
432 tree value = TREE_VALUE (link);
434 over1 |= TREE_OVERFLOW (value);
435 over2 |= TREE_CONSTANT_OVERFLOW (value);
438 TREE_OVERFLOW (v) = over1;
439 TREE_CONSTANT_OVERFLOW (v) = over2;
441 return v;
444 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
445 are in a list pointed to by VALS. */
446 tree
447 build_constructor (tree type, tree vals)
449 tree c = make_node (CONSTRUCTOR);
450 TREE_TYPE (c) = type;
451 CONSTRUCTOR_ELTS (c) = vals;
453 /* ??? May not be necessary. Mirrors what build does. */
454 if (vals)
456 TREE_SIDE_EFFECTS (c) = TREE_SIDE_EFFECTS (vals);
457 TREE_READONLY (c) = TREE_READONLY (vals);
458 TREE_CONSTANT (c) = TREE_CONSTANT (vals);
460 else
461 TREE_CONSTANT (c) = 0; /* safe side */
463 return c;
466 /* Return a new REAL_CST node whose type is TYPE and value is D. */
468 tree
469 build_real (tree type, REAL_VALUE_TYPE d)
471 tree v;
472 REAL_VALUE_TYPE *dp;
473 int overflow = 0;
475 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
476 Consider doing it via real_convert now. */
478 v = make_node (REAL_CST);
479 dp = ggc_alloc (sizeof (REAL_VALUE_TYPE));
480 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
482 TREE_TYPE (v) = type;
483 TREE_REAL_CST_PTR (v) = dp;
484 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
485 return v;
488 /* Return a new REAL_CST node whose type is TYPE
489 and whose value is the integer value of the INTEGER_CST node I. */
491 REAL_VALUE_TYPE
492 real_value_from_int_cst (tree type, tree i)
494 REAL_VALUE_TYPE d;
496 /* Clear all bits of the real value type so that we can later do
497 bitwise comparisons to see if two values are the same. */
498 memset (&d, 0, sizeof d);
500 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
501 TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
502 TREE_UNSIGNED (TREE_TYPE (i)));
503 return d;
506 /* Given a tree representing an integer constant I, return a tree
507 representing the same value as a floating-point constant of type TYPE. */
509 tree
510 build_real_from_int_cst (tree type, tree i)
512 tree v;
513 int overflow = TREE_OVERFLOW (i);
515 v = build_real (type, real_value_from_int_cst (type, i));
517 TREE_OVERFLOW (v) |= overflow;
518 TREE_CONSTANT_OVERFLOW (v) |= overflow;
519 return v;
522 /* Return a newly constructed STRING_CST node whose value is
523 the LEN characters at STR.
524 The TREE_TYPE is not initialized. */
526 tree
527 build_string (int len, const char *str)
529 tree s = make_node (STRING_CST);
531 TREE_STRING_LENGTH (s) = len;
532 TREE_STRING_POINTER (s) = ggc_alloc_string (str, len);
534 return s;
537 /* Return a newly constructed COMPLEX_CST node whose value is
538 specified by the real and imaginary parts REAL and IMAG.
539 Both REAL and IMAG should be constant nodes. TYPE, if specified,
540 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
542 tree
543 build_complex (tree type, tree real, tree imag)
545 tree t = make_node (COMPLEX_CST);
547 TREE_REALPART (t) = real;
548 TREE_IMAGPART (t) = imag;
549 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
550 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
551 TREE_CONSTANT_OVERFLOW (t)
552 = TREE_CONSTANT_OVERFLOW (real) | TREE_CONSTANT_OVERFLOW (imag);
553 return t;
556 /* Build a newly constructed TREE_VEC node of length LEN. */
558 tree
559 make_tree_vec_stat (int len MEM_STAT_DECL)
561 tree t;
562 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
564 #ifdef GATHER_STATISTICS
565 tree_node_counts[(int) vec_kind]++;
566 tree_node_sizes[(int) vec_kind] += length;
567 #endif
569 t = ggc_alloc_zone_stat (length, tree_zone PASS_MEM_STAT);
571 memset (t, 0, length);
573 TREE_SET_CODE (t, TREE_VEC);
574 TREE_VEC_LENGTH (t) = len;
576 return t;
579 /* Return 1 if EXPR is the integer constant zero or a complex constant
580 of zero. */
583 integer_zerop (tree expr)
585 STRIP_NOPS (expr);
587 return ((TREE_CODE (expr) == INTEGER_CST
588 && ! TREE_CONSTANT_OVERFLOW (expr)
589 && TREE_INT_CST_LOW (expr) == 0
590 && TREE_INT_CST_HIGH (expr) == 0)
591 || (TREE_CODE (expr) == COMPLEX_CST
592 && integer_zerop (TREE_REALPART (expr))
593 && integer_zerop (TREE_IMAGPART (expr))));
596 /* Return 1 if EXPR is the integer constant one or the corresponding
597 complex constant. */
600 integer_onep (tree expr)
602 STRIP_NOPS (expr);
604 return ((TREE_CODE (expr) == INTEGER_CST
605 && ! TREE_CONSTANT_OVERFLOW (expr)
606 && TREE_INT_CST_LOW (expr) == 1
607 && TREE_INT_CST_HIGH (expr) == 0)
608 || (TREE_CODE (expr) == COMPLEX_CST
609 && integer_onep (TREE_REALPART (expr))
610 && integer_zerop (TREE_IMAGPART (expr))));
613 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
614 it contains. Likewise for the corresponding complex constant. */
617 integer_all_onesp (tree expr)
619 int prec;
620 int uns;
622 STRIP_NOPS (expr);
624 if (TREE_CODE (expr) == COMPLEX_CST
625 && integer_all_onesp (TREE_REALPART (expr))
626 && integer_zerop (TREE_IMAGPART (expr)))
627 return 1;
629 else if (TREE_CODE (expr) != INTEGER_CST
630 || TREE_CONSTANT_OVERFLOW (expr))
631 return 0;
633 uns = TREE_UNSIGNED (TREE_TYPE (expr));
634 if (!uns)
635 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
636 && TREE_INT_CST_HIGH (expr) == -1);
638 /* Note that using TYPE_PRECISION here is wrong. We care about the
639 actual bits, not the (arbitrary) range of the type. */
640 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
641 if (prec >= HOST_BITS_PER_WIDE_INT)
643 HOST_WIDE_INT high_value;
644 int shift_amount;
646 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
648 if (shift_amount > HOST_BITS_PER_WIDE_INT)
649 /* Can not handle precisions greater than twice the host int size. */
650 abort ();
651 else if (shift_amount == HOST_BITS_PER_WIDE_INT)
652 /* Shifting by the host word size is undefined according to the ANSI
653 standard, so we must handle this as a special case. */
654 high_value = -1;
655 else
656 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
658 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
659 && TREE_INT_CST_HIGH (expr) == high_value);
661 else
662 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
665 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
666 one bit on). */
669 integer_pow2p (tree expr)
671 int prec;
672 HOST_WIDE_INT high, low;
674 STRIP_NOPS (expr);
676 if (TREE_CODE (expr) == COMPLEX_CST
677 && integer_pow2p (TREE_REALPART (expr))
678 && integer_zerop (TREE_IMAGPART (expr)))
679 return 1;
681 if (TREE_CODE (expr) != INTEGER_CST || TREE_CONSTANT_OVERFLOW (expr))
682 return 0;
684 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
685 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
686 high = TREE_INT_CST_HIGH (expr);
687 low = TREE_INT_CST_LOW (expr);
689 /* First clear all bits that are beyond the type's precision in case
690 we've been sign extended. */
692 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
694 else if (prec > HOST_BITS_PER_WIDE_INT)
695 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
696 else
698 high = 0;
699 if (prec < HOST_BITS_PER_WIDE_INT)
700 low &= ~((HOST_WIDE_INT) (-1) << prec);
703 if (high == 0 && low == 0)
704 return 0;
706 return ((high == 0 && (low & (low - 1)) == 0)
707 || (low == 0 && (high & (high - 1)) == 0));
710 /* Return 1 if EXPR is an integer constant other than zero or a
711 complex constant other than zero. */
714 integer_nonzerop (tree expr)
716 STRIP_NOPS (expr);
718 return ((TREE_CODE (expr) == INTEGER_CST
719 && ! TREE_CONSTANT_OVERFLOW (expr)
720 && (TREE_INT_CST_LOW (expr) != 0
721 || TREE_INT_CST_HIGH (expr) != 0))
722 || (TREE_CODE (expr) == COMPLEX_CST
723 && (integer_nonzerop (TREE_REALPART (expr))
724 || integer_nonzerop (TREE_IMAGPART (expr)))));
727 /* Return the power of two represented by a tree node known to be a
728 power of two. */
731 tree_log2 (tree expr)
733 int prec;
734 HOST_WIDE_INT high, low;
736 STRIP_NOPS (expr);
738 if (TREE_CODE (expr) == COMPLEX_CST)
739 return tree_log2 (TREE_REALPART (expr));
741 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
742 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
744 high = TREE_INT_CST_HIGH (expr);
745 low = TREE_INT_CST_LOW (expr);
747 /* First clear all bits that are beyond the type's precision in case
748 we've been sign extended. */
750 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
752 else if (prec > HOST_BITS_PER_WIDE_INT)
753 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
754 else
756 high = 0;
757 if (prec < HOST_BITS_PER_WIDE_INT)
758 low &= ~((HOST_WIDE_INT) (-1) << prec);
761 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
762 : exact_log2 (low));
765 /* Similar, but return the largest integer Y such that 2 ** Y is less
766 than or equal to EXPR. */
769 tree_floor_log2 (tree expr)
771 int prec;
772 HOST_WIDE_INT high, low;
774 STRIP_NOPS (expr);
776 if (TREE_CODE (expr) == COMPLEX_CST)
777 return tree_log2 (TREE_REALPART (expr));
779 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
780 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
782 high = TREE_INT_CST_HIGH (expr);
783 low = TREE_INT_CST_LOW (expr);
785 /* First clear all bits that are beyond the type's precision in case
786 we've been sign extended. Ignore if type's precision hasn't been set
787 since what we are doing is setting it. */
789 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
791 else if (prec > HOST_BITS_PER_WIDE_INT)
792 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
793 else
795 high = 0;
796 if (prec < HOST_BITS_PER_WIDE_INT)
797 low &= ~((HOST_WIDE_INT) (-1) << prec);
800 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
801 : floor_log2 (low));
804 /* Return 1 if EXPR is the real constant zero. */
807 real_zerop (tree expr)
809 STRIP_NOPS (expr);
811 return ((TREE_CODE (expr) == REAL_CST
812 && ! TREE_CONSTANT_OVERFLOW (expr)
813 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
814 || (TREE_CODE (expr) == COMPLEX_CST
815 && real_zerop (TREE_REALPART (expr))
816 && real_zerop (TREE_IMAGPART (expr))));
819 /* Return 1 if EXPR is the real constant one in real or complex form. */
822 real_onep (tree expr)
824 STRIP_NOPS (expr);
826 return ((TREE_CODE (expr) == REAL_CST
827 && ! TREE_CONSTANT_OVERFLOW (expr)
828 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
829 || (TREE_CODE (expr) == COMPLEX_CST
830 && real_onep (TREE_REALPART (expr))
831 && real_zerop (TREE_IMAGPART (expr))));
834 /* Return 1 if EXPR is the real constant two. */
837 real_twop (tree expr)
839 STRIP_NOPS (expr);
841 return ((TREE_CODE (expr) == REAL_CST
842 && ! TREE_CONSTANT_OVERFLOW (expr)
843 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
844 || (TREE_CODE (expr) == COMPLEX_CST
845 && real_twop (TREE_REALPART (expr))
846 && real_zerop (TREE_IMAGPART (expr))));
849 /* Return 1 if EXPR is the real constant minus one. */
852 real_minus_onep (tree expr)
854 STRIP_NOPS (expr);
856 return ((TREE_CODE (expr) == REAL_CST
857 && ! TREE_CONSTANT_OVERFLOW (expr)
858 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1))
859 || (TREE_CODE (expr) == COMPLEX_CST
860 && real_minus_onep (TREE_REALPART (expr))
861 && real_zerop (TREE_IMAGPART (expr))));
864 /* Nonzero if EXP is a constant or a cast of a constant. */
867 really_constant_p (tree exp)
869 /* This is not quite the same as STRIP_NOPS. It does more. */
870 while (TREE_CODE (exp) == NOP_EXPR
871 || TREE_CODE (exp) == CONVERT_EXPR
872 || TREE_CODE (exp) == NON_LVALUE_EXPR)
873 exp = TREE_OPERAND (exp, 0);
874 return TREE_CONSTANT (exp);
877 /* Return first list element whose TREE_VALUE is ELEM.
878 Return 0 if ELEM is not in LIST. */
880 tree
881 value_member (tree elem, tree list)
883 while (list)
885 if (elem == TREE_VALUE (list))
886 return list;
887 list = TREE_CHAIN (list);
889 return NULL_TREE;
892 /* Return first list element whose TREE_PURPOSE is ELEM.
893 Return 0 if ELEM is not in LIST. */
895 tree
896 purpose_member (tree elem, tree list)
898 while (list)
900 if (elem == TREE_PURPOSE (list))
901 return list;
902 list = TREE_CHAIN (list);
904 return NULL_TREE;
907 /* Return first list element whose BINFO_TYPE is ELEM.
908 Return 0 if ELEM is not in LIST. */
910 tree
911 binfo_member (tree elem, tree list)
913 while (list)
915 if (elem == BINFO_TYPE (list))
916 return list;
917 list = TREE_CHAIN (list);
919 return NULL_TREE;
922 /* Return nonzero if ELEM is part of the chain CHAIN. */
925 chain_member (tree elem, tree chain)
927 while (chain)
929 if (elem == chain)
930 return 1;
931 chain = TREE_CHAIN (chain);
934 return 0;
937 /* Return the length of a chain of nodes chained through TREE_CHAIN.
938 We expect a null pointer to mark the end of the chain.
939 This is the Lisp primitive `length'. */
942 list_length (tree t)
944 tree tail;
945 int len = 0;
947 for (tail = t; tail; tail = TREE_CHAIN (tail))
948 len++;
950 return len;
953 /* Returns the number of FIELD_DECLs in TYPE. */
956 fields_length (tree type)
958 tree t = TYPE_FIELDS (type);
959 int count = 0;
961 for (; t; t = TREE_CHAIN (t))
962 if (TREE_CODE (t) == FIELD_DECL)
963 ++count;
965 return count;
968 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
969 by modifying the last node in chain 1 to point to chain 2.
970 This is the Lisp primitive `nconc'. */
972 tree
973 chainon (tree op1, tree op2)
975 tree t1;
977 if (!op1)
978 return op2;
979 if (!op2)
980 return op1;
982 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
983 continue;
984 TREE_CHAIN (t1) = op2;
986 #ifdef ENABLE_TREE_CHECKING
988 tree t2;
989 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
990 if (t2 == t1)
991 abort (); /* Circularity created. */
993 #endif
995 return op1;
998 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1000 tree
1001 tree_last (tree chain)
1003 tree next;
1004 if (chain)
1005 while ((next = TREE_CHAIN (chain)))
1006 chain = next;
1007 return chain;
1010 /* Reverse the order of elements in the chain T,
1011 and return the new head of the chain (old last element). */
1013 tree
1014 nreverse (tree t)
1016 tree prev = 0, decl, next;
1017 for (decl = t; decl; decl = next)
1019 next = TREE_CHAIN (decl);
1020 TREE_CHAIN (decl) = prev;
1021 prev = decl;
1023 return prev;
1026 /* Return a newly created TREE_LIST node whose
1027 purpose and value fields are PARM and VALUE. */
1029 tree
1030 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
1032 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
1033 TREE_PURPOSE (t) = parm;
1034 TREE_VALUE (t) = value;
1035 return t;
1038 /* Return a newly created TREE_LIST node whose
1039 purpose and value fields are PURPOSE and VALUE
1040 and whose TREE_CHAIN is CHAIN. */
1042 tree
1043 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
1045 tree node;
1047 node = ggc_alloc_zone_stat (sizeof (struct tree_list),
1048 tree_zone PASS_MEM_STAT);
1050 memset (node, 0, sizeof (struct tree_common));
1052 #ifdef GATHER_STATISTICS
1053 tree_node_counts[(int) x_kind]++;
1054 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
1055 #endif
1057 TREE_SET_CODE (node, TREE_LIST);
1058 TREE_CHAIN (node) = chain;
1059 TREE_PURPOSE (node) = purpose;
1060 TREE_VALUE (node) = value;
1061 return node;
1064 /* Return the first expression in a sequence of COMPOUND_EXPRs. */
1066 tree
1067 expr_first (tree expr)
1069 if (expr == NULL_TREE)
1070 return expr;
1071 while (TREE_CODE (expr) == COMPOUND_EXPR)
1072 expr = TREE_OPERAND (expr, 0);
1073 return expr;
1076 /* Return the last expression in a sequence of COMPOUND_EXPRs. */
1078 tree
1079 expr_last (tree expr)
1081 if (expr == NULL_TREE)
1082 return expr;
1083 while (TREE_CODE (expr) == COMPOUND_EXPR)
1084 expr = TREE_OPERAND (expr, 1);
1085 return expr;
1088 /* Return the number of subexpressions in a sequence of COMPOUND_EXPRs. */
1091 expr_length (tree expr)
1093 int len = 0;
1095 if (expr == NULL_TREE)
1096 return 0;
1097 for (; TREE_CODE (expr) == COMPOUND_EXPR; expr = TREE_OPERAND (expr, 1))
1098 len += expr_length (TREE_OPERAND (expr, 0));
1099 ++len;
1100 return len;
1103 /* Return the size nominally occupied by an object of type TYPE
1104 when it resides in memory. The value is measured in units of bytes,
1105 and its data type is that normally used for type sizes
1106 (which is the first type created by make_signed_type or
1107 make_unsigned_type). */
1109 tree
1110 size_in_bytes (tree type)
1112 tree t;
1114 if (type == error_mark_node)
1115 return integer_zero_node;
1117 type = TYPE_MAIN_VARIANT (type);
1118 t = TYPE_SIZE_UNIT (type);
1120 if (t == 0)
1122 (*lang_hooks.types.incomplete_type_error) (NULL_TREE, type);
1123 return size_zero_node;
1126 if (TREE_CODE (t) == INTEGER_CST)
1127 force_fit_type (t, 0);
1129 return t;
1132 /* Return the size of TYPE (in bytes) as a wide integer
1133 or return -1 if the size can vary or is larger than an integer. */
1135 HOST_WIDE_INT
1136 int_size_in_bytes (tree type)
1138 tree t;
1140 if (type == error_mark_node)
1141 return 0;
1143 type = TYPE_MAIN_VARIANT (type);
1144 t = TYPE_SIZE_UNIT (type);
1145 if (t == 0
1146 || TREE_CODE (t) != INTEGER_CST
1147 || TREE_OVERFLOW (t)
1148 || TREE_INT_CST_HIGH (t) != 0
1149 /* If the result would appear negative, it's too big to represent. */
1150 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
1151 return -1;
1153 return TREE_INT_CST_LOW (t);
1156 /* Return the bit position of FIELD, in bits from the start of the record.
1157 This is a tree of type bitsizetype. */
1159 tree
1160 bit_position (tree field)
1162 return bit_from_pos (DECL_FIELD_OFFSET (field),
1163 DECL_FIELD_BIT_OFFSET (field));
1166 /* Likewise, but return as an integer. Abort if it cannot be represented
1167 in that way (since it could be a signed value, we don't have the option
1168 of returning -1 like int_size_in_byte can. */
1170 HOST_WIDE_INT
1171 int_bit_position (tree field)
1173 return tree_low_cst (bit_position (field), 0);
1176 /* Return the byte position of FIELD, in bytes from the start of the record.
1177 This is a tree of type sizetype. */
1179 tree
1180 byte_position (tree field)
1182 return byte_from_pos (DECL_FIELD_OFFSET (field),
1183 DECL_FIELD_BIT_OFFSET (field));
1186 /* Likewise, but return as an integer. Abort if it cannot be represented
1187 in that way (since it could be a signed value, we don't have the option
1188 of returning -1 like int_size_in_byte can. */
1190 HOST_WIDE_INT
1191 int_byte_position (tree field)
1193 return tree_low_cst (byte_position (field), 0);
1196 /* Return the strictest alignment, in bits, that T is known to have. */
1198 unsigned int
1199 expr_align (tree t)
1201 unsigned int align0, align1;
1203 switch (TREE_CODE (t))
1205 case NOP_EXPR: case CONVERT_EXPR: case NON_LVALUE_EXPR:
1206 /* If we have conversions, we know that the alignment of the
1207 object must meet each of the alignments of the types. */
1208 align0 = expr_align (TREE_OPERAND (t, 0));
1209 align1 = TYPE_ALIGN (TREE_TYPE (t));
1210 return MAX (align0, align1);
1212 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
1213 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
1214 case WITH_RECORD_EXPR: case CLEANUP_POINT_EXPR: case UNSAVE_EXPR:
1215 /* These don't change the alignment of an object. */
1216 return expr_align (TREE_OPERAND (t, 0));
1218 case COND_EXPR:
1219 /* The best we can do is say that the alignment is the least aligned
1220 of the two arms. */
1221 align0 = expr_align (TREE_OPERAND (t, 1));
1222 align1 = expr_align (TREE_OPERAND (t, 2));
1223 return MIN (align0, align1);
1225 case LABEL_DECL: case CONST_DECL:
1226 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
1227 if (DECL_ALIGN (t) != 0)
1228 return DECL_ALIGN (t);
1229 break;
1231 case FUNCTION_DECL:
1232 return FUNCTION_BOUNDARY;
1234 default:
1235 break;
1238 /* Otherwise take the alignment from that of the type. */
1239 return TYPE_ALIGN (TREE_TYPE (t));
1242 /* Return, as a tree node, the number of elements for TYPE (which is an
1243 ARRAY_TYPE) minus one. This counts only elements of the top array. */
1245 tree
1246 array_type_nelts (tree type)
1248 tree index_type, min, max;
1250 /* If they did it with unspecified bounds, then we should have already
1251 given an error about it before we got here. */
1252 if (! TYPE_DOMAIN (type))
1253 return error_mark_node;
1255 index_type = TYPE_DOMAIN (type);
1256 min = TYPE_MIN_VALUE (index_type);
1257 max = TYPE_MAX_VALUE (index_type);
1259 return (integer_zerop (min)
1260 ? max
1261 : fold (build (MINUS_EXPR, TREE_TYPE (max), max, min)));
1264 /* Return nonzero if arg is static -- a reference to an object in
1265 static storage. This is not the same as the C meaning of `static'. */
1268 staticp (tree arg)
1270 switch (TREE_CODE (arg))
1272 case FUNCTION_DECL:
1273 /* Nested functions aren't static, since taking their address
1274 involves a trampoline. */
1275 return ((decl_function_context (arg) == 0 || DECL_NO_STATIC_CHAIN (arg))
1276 && ! DECL_NON_ADDR_CONST_P (arg));
1278 case VAR_DECL:
1279 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1280 && ! DECL_THREAD_LOCAL (arg)
1281 && ! DECL_NON_ADDR_CONST_P (arg));
1283 case CONSTRUCTOR:
1284 return TREE_STATIC (arg);
1286 case LABEL_DECL:
1287 case STRING_CST:
1288 return 1;
1290 /* If we are referencing a bitfield, we can't evaluate an
1291 ADDR_EXPR at compile time and so it isn't a constant. */
1292 case COMPONENT_REF:
1293 return (! DECL_BIT_FIELD (TREE_OPERAND (arg, 1))
1294 && staticp (TREE_OPERAND (arg, 0)));
1296 case BIT_FIELD_REF:
1297 return 0;
1299 #if 0
1300 /* This case is technically correct, but results in setting
1301 TREE_CONSTANT on ADDR_EXPRs that cannot be evaluated at
1302 compile time. */
1303 case INDIRECT_REF:
1304 return TREE_CONSTANT (TREE_OPERAND (arg, 0));
1305 #endif
1307 case ARRAY_REF:
1308 case ARRAY_RANGE_REF:
1309 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
1310 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
1311 return staticp (TREE_OPERAND (arg, 0));
1313 default:
1314 if ((unsigned int) TREE_CODE (arg)
1315 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
1316 return (*lang_hooks.staticp) (arg);
1317 else
1318 return 0;
1322 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
1323 Do this to any expression which may be used in more than one place,
1324 but must be evaluated only once.
1326 Normally, expand_expr would reevaluate the expression each time.
1327 Calling save_expr produces something that is evaluated and recorded
1328 the first time expand_expr is called on it. Subsequent calls to
1329 expand_expr just reuse the recorded value.
1331 The call to expand_expr that generates code that actually computes
1332 the value is the first call *at compile time*. Subsequent calls
1333 *at compile time* generate code to use the saved value.
1334 This produces correct result provided that *at run time* control
1335 always flows through the insns made by the first expand_expr
1336 before reaching the other places where the save_expr was evaluated.
1337 You, the caller of save_expr, must make sure this is so.
1339 Constants, and certain read-only nodes, are returned with no
1340 SAVE_EXPR because that is safe. Expressions containing placeholders
1341 are not touched; see tree.def for an explanation of what these
1342 are used for. */
1344 tree
1345 save_expr (tree expr)
1347 tree t = fold (expr);
1348 tree inner;
1350 /* If the tree evaluates to a constant, then we don't want to hide that
1351 fact (i.e. this allows further folding, and direct checks for constants).
1352 However, a read-only object that has side effects cannot be bypassed.
1353 Since it is no problem to reevaluate literals, we just return the
1354 literal node. */
1355 inner = skip_simple_arithmetic (t);
1356 if (TREE_CONSTANT (inner)
1357 || (TREE_READONLY (inner) && ! TREE_SIDE_EFFECTS (inner))
1358 || TREE_CODE (inner) == SAVE_EXPR
1359 || TREE_CODE (inner) == ERROR_MARK)
1360 return t;
1362 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
1363 it means that the size or offset of some field of an object depends on
1364 the value within another field.
1366 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
1367 and some variable since it would then need to be both evaluated once and
1368 evaluated more than once. Front-ends must assure this case cannot
1369 happen by surrounding any such subexpressions in their own SAVE_EXPR
1370 and forcing evaluation at the proper time. */
1371 if (contains_placeholder_p (inner))
1372 return t;
1374 t = build (SAVE_EXPR, TREE_TYPE (expr), t, current_function_decl, NULL_TREE);
1376 /* This expression might be placed ahead of a jump to ensure that the
1377 value was computed on both sides of the jump. So make sure it isn't
1378 eliminated as dead. */
1379 TREE_SIDE_EFFECTS (t) = 1;
1380 TREE_READONLY (t) = 1;
1381 return t;
1384 /* Look inside EXPR and into any simple arithmetic operations. Return
1385 the innermost non-arithmetic node. */
1387 tree
1388 skip_simple_arithmetic (tree expr)
1390 tree inner;
1392 /* We don't care about whether this can be used as an lvalue in this
1393 context. */
1394 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
1395 expr = TREE_OPERAND (expr, 0);
1397 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
1398 a constant, it will be more efficient to not make another SAVE_EXPR since
1399 it will allow better simplification and GCSE will be able to merge the
1400 computations if they actually occur. */
1401 inner = expr;
1402 while (1)
1404 if (TREE_CODE_CLASS (TREE_CODE (inner)) == '1')
1405 inner = TREE_OPERAND (inner, 0);
1406 else if (TREE_CODE_CLASS (TREE_CODE (inner)) == '2')
1408 if (TREE_CONSTANT (TREE_OPERAND (inner, 1)))
1409 inner = TREE_OPERAND (inner, 0);
1410 else if (TREE_CONSTANT (TREE_OPERAND (inner, 0)))
1411 inner = TREE_OPERAND (inner, 1);
1412 else
1413 break;
1415 else
1416 break;
1419 return inner;
1422 /* Return TRUE if EXPR is a SAVE_EXPR or wraps simple arithmetic around a
1423 SAVE_EXPR. Return FALSE otherwise. */
1425 bool
1426 saved_expr_p (tree expr)
1428 return TREE_CODE (skip_simple_arithmetic (expr)) == SAVE_EXPR;
1431 /* Arrange for an expression to be expanded multiple independent
1432 times. This is useful for cleanup actions, as the backend can
1433 expand them multiple times in different places. */
1435 tree
1436 unsave_expr (tree expr)
1438 tree t;
1440 /* If this is already protected, no sense in protecting it again. */
1441 if (TREE_CODE (expr) == UNSAVE_EXPR)
1442 return expr;
1444 t = build1 (UNSAVE_EXPR, TREE_TYPE (expr), expr);
1445 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (expr);
1446 return t;
1449 /* Returns the index of the first non-tree operand for CODE, or the number
1450 of operands if all are trees. */
1453 first_rtl_op (enum tree_code code)
1455 switch (code)
1457 case SAVE_EXPR:
1458 return 2;
1459 case GOTO_SUBROUTINE_EXPR:
1460 case RTL_EXPR:
1461 return 0;
1462 case WITH_CLEANUP_EXPR:
1463 return 2;
1464 default:
1465 return TREE_CODE_LENGTH (code);
1469 /* Return which tree structure is used by T. */
1471 enum tree_node_structure_enum
1472 tree_node_structure (tree t)
1474 enum tree_code code = TREE_CODE (t);
1476 switch (TREE_CODE_CLASS (code))
1478 case 'd': return TS_DECL;
1479 case 't': return TS_TYPE;
1480 case 'b': return TS_BLOCK;
1481 case 'r': case '<': case '1': case '2': case 'e': case 's':
1482 return TS_EXP;
1483 default: /* 'c' and 'x' */
1484 break;
1486 switch (code)
1488 /* 'c' cases. */
1489 case INTEGER_CST: return TS_INT_CST;
1490 case REAL_CST: return TS_REAL_CST;
1491 case COMPLEX_CST: return TS_COMPLEX;
1492 case VECTOR_CST: return TS_VECTOR;
1493 case STRING_CST: return TS_STRING;
1494 /* 'x' cases. */
1495 case ERROR_MARK: return TS_COMMON;
1496 case IDENTIFIER_NODE: return TS_IDENTIFIER;
1497 case TREE_LIST: return TS_LIST;
1498 case TREE_VEC: return TS_VEC;
1499 case PLACEHOLDER_EXPR: return TS_COMMON;
1501 default:
1502 abort ();
1506 /* Perform any modifications to EXPR required when it is unsaved. Does
1507 not recurse into EXPR's subtrees. */
1509 void
1510 unsave_expr_1 (tree expr)
1512 switch (TREE_CODE (expr))
1514 case SAVE_EXPR:
1515 if (! SAVE_EXPR_PERSISTENT_P (expr))
1516 SAVE_EXPR_RTL (expr) = 0;
1517 break;
1519 case TARGET_EXPR:
1520 /* Don't mess with a TARGET_EXPR that hasn't been expanded.
1521 It's OK for this to happen if it was part of a subtree that
1522 isn't immediately expanded, such as operand 2 of another
1523 TARGET_EXPR. */
1524 if (TREE_OPERAND (expr, 1))
1525 break;
1527 TREE_OPERAND (expr, 1) = TREE_OPERAND (expr, 3);
1528 TREE_OPERAND (expr, 3) = NULL_TREE;
1529 break;
1531 case RTL_EXPR:
1532 /* I don't yet know how to emit a sequence multiple times. */
1533 if (RTL_EXPR_SEQUENCE (expr) != 0)
1534 abort ();
1535 break;
1537 default:
1538 break;
1542 /* Default lang hook for "unsave_expr_now". */
1544 tree
1545 lhd_unsave_expr_now (tree expr)
1547 enum tree_code code;
1549 /* There's nothing to do for NULL_TREE. */
1550 if (expr == 0)
1551 return expr;
1553 unsave_expr_1 (expr);
1555 code = TREE_CODE (expr);
1556 switch (TREE_CODE_CLASS (code))
1558 case 'c': /* a constant */
1559 case 't': /* a type node */
1560 case 'd': /* A decl node */
1561 case 'b': /* A block node */
1562 break;
1564 case 'x': /* miscellaneous: e.g., identifier, TREE_LIST or ERROR_MARK. */
1565 if (code == TREE_LIST)
1567 lhd_unsave_expr_now (TREE_VALUE (expr));
1568 lhd_unsave_expr_now (TREE_CHAIN (expr));
1570 break;
1572 case 'e': /* an expression */
1573 case 'r': /* a reference */
1574 case 's': /* an expression with side effects */
1575 case '<': /* a comparison expression */
1576 case '2': /* a binary arithmetic expression */
1577 case '1': /* a unary arithmetic expression */
1579 int i;
1581 for (i = first_rtl_op (code) - 1; i >= 0; i--)
1582 lhd_unsave_expr_now (TREE_OPERAND (expr, i));
1584 break;
1586 default:
1587 abort ();
1590 return expr;
1593 /* Return 0 if it is safe to evaluate EXPR multiple times,
1594 return 1 if it is safe if EXPR is unsaved afterward, or
1595 return 2 if it is completely unsafe.
1597 This assumes that CALL_EXPRs and TARGET_EXPRs are never replicated in
1598 an expression tree, so that it safe to unsave them and the surrounding
1599 context will be correct.
1601 SAVE_EXPRs basically *only* appear replicated in an expression tree,
1602 occasionally across the whole of a function. It is therefore only
1603 safe to unsave a SAVE_EXPR if you know that all occurrences appear
1604 below the UNSAVE_EXPR.
1606 RTL_EXPRs consume their rtl during evaluation. It is therefore
1607 never possible to unsave them. */
1610 unsafe_for_reeval (tree expr)
1612 int unsafeness = 0;
1613 enum tree_code code;
1614 int i, tmp, tmp2;
1615 tree exp;
1616 int first_rtl;
1618 if (expr == NULL_TREE)
1619 return 1;
1621 code = TREE_CODE (expr);
1622 first_rtl = first_rtl_op (code);
1624 switch (code)
1626 case SAVE_EXPR:
1627 case RTL_EXPR:
1628 return 2;
1630 case TREE_LIST:
1631 for (exp = expr; exp != 0; exp = TREE_CHAIN (exp))
1633 tmp = unsafe_for_reeval (TREE_VALUE (exp));
1634 unsafeness = MAX (tmp, unsafeness);
1637 return unsafeness;
1639 case CALL_EXPR:
1640 tmp2 = unsafe_for_reeval (TREE_OPERAND (expr, 0));
1641 tmp = unsafe_for_reeval (TREE_OPERAND (expr, 1));
1642 return MAX (MAX (tmp, 1), tmp2);
1644 case TARGET_EXPR:
1645 unsafeness = 1;
1646 break;
1648 case EXIT_BLOCK_EXPR:
1649 /* EXIT_BLOCK_LABELED_BLOCK, a.k.a. TREE_OPERAND (expr, 0), holds
1650 a reference to an ancestor LABELED_BLOCK, so we need to avoid
1651 unbounded recursion in the 'e' traversal code below. */
1652 exp = EXIT_BLOCK_RETURN (expr);
1653 return exp ? unsafe_for_reeval (exp) : 0;
1655 default:
1656 tmp = (*lang_hooks.unsafe_for_reeval) (expr);
1657 if (tmp >= 0)
1658 return tmp;
1659 break;
1662 switch (TREE_CODE_CLASS (code))
1664 case 'c': /* a constant */
1665 case 't': /* a type node */
1666 case 'x': /* something random, like an identifier or an ERROR_MARK. */
1667 case 'd': /* A decl node */
1668 case 'b': /* A block node */
1669 return 0;
1671 case 'e': /* an expression */
1672 case 'r': /* a reference */
1673 case 's': /* an expression with side effects */
1674 case '<': /* a comparison expression */
1675 case '2': /* a binary arithmetic expression */
1676 case '1': /* a unary arithmetic expression */
1677 for (i = first_rtl - 1; i >= 0; i--)
1679 tmp = unsafe_for_reeval (TREE_OPERAND (expr, i));
1680 unsafeness = MAX (tmp, unsafeness);
1683 return unsafeness;
1685 default:
1686 return 2;
1690 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
1691 or offset that depends on a field within a record. */
1693 bool
1694 contains_placeholder_p (tree exp)
1696 enum tree_code code;
1697 int result;
1699 if (!exp)
1700 return 0;
1702 /* If we have a WITH_RECORD_EXPR, it "cancels" any PLACEHOLDER_EXPR
1703 in it since it is supplying a value for it. */
1704 code = TREE_CODE (exp);
1705 if (code == WITH_RECORD_EXPR)
1706 return 0;
1707 else if (code == PLACEHOLDER_EXPR)
1708 return 1;
1710 switch (TREE_CODE_CLASS (code))
1712 case 'r':
1713 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
1714 position computations since they will be converted into a
1715 WITH_RECORD_EXPR involving the reference, which will assume
1716 here will be valid. */
1717 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
1719 case 'x':
1720 if (code == TREE_LIST)
1721 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
1722 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
1723 break;
1725 case '1':
1726 case '2': case '<':
1727 case 'e':
1728 switch (code)
1730 case COMPOUND_EXPR:
1731 /* Ignoring the first operand isn't quite right, but works best. */
1732 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
1734 case RTL_EXPR:
1735 case CONSTRUCTOR:
1736 return 0;
1738 case COND_EXPR:
1739 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
1740 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
1741 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
1743 case SAVE_EXPR:
1744 /* If we already know this doesn't have a placeholder, don't
1745 check again. */
1746 if (SAVE_EXPR_NOPLACEHOLDER (exp) || SAVE_EXPR_RTL (exp) != 0)
1747 return 0;
1749 SAVE_EXPR_NOPLACEHOLDER (exp) = 1;
1750 result = CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
1751 if (result)
1752 SAVE_EXPR_NOPLACEHOLDER (exp) = 0;
1754 return result;
1756 case CALL_EXPR:
1757 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
1759 default:
1760 break;
1763 switch (TREE_CODE_LENGTH (code))
1765 case 1:
1766 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
1767 case 2:
1768 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
1769 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
1770 default:
1771 return 0;
1774 default:
1775 return 0;
1777 return 0;
1780 /* Return 1 if any part of the computation of TYPE involves a PLACEHOLDER_EXPR.
1781 This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and field
1782 positions. */
1784 bool
1785 type_contains_placeholder_p (tree type)
1787 /* If the size contains a placeholder or the parent type (component type in
1788 the case of arrays) type involves a placeholder, this type does. */
1789 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
1790 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
1791 || (TREE_TYPE (type) != 0
1792 && type_contains_placeholder_p (TREE_TYPE (type))))
1793 return 1;
1795 /* Now do type-specific checks. Note that the last part of the check above
1796 greatly limits what we have to do below. */
1797 switch (TREE_CODE (type))
1799 case VOID_TYPE:
1800 case COMPLEX_TYPE:
1801 case VECTOR_TYPE:
1802 case ENUMERAL_TYPE:
1803 case BOOLEAN_TYPE:
1804 case CHAR_TYPE:
1805 case POINTER_TYPE:
1806 case OFFSET_TYPE:
1807 case REFERENCE_TYPE:
1808 case METHOD_TYPE:
1809 case FILE_TYPE:
1810 case FUNCTION_TYPE:
1811 return 0;
1813 case INTEGER_TYPE:
1814 case REAL_TYPE:
1815 /* Here we just check the bounds. */
1816 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
1817 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
1819 case ARRAY_TYPE:
1820 case SET_TYPE:
1821 /* We're already checked the component type (TREE_TYPE), so just check
1822 the index type. */
1823 return type_contains_placeholder_p (TYPE_DOMAIN (type));
1825 case RECORD_TYPE:
1826 case UNION_TYPE:
1827 case QUAL_UNION_TYPE:
1829 static tree seen_types = 0;
1830 tree field;
1831 bool ret = 0;
1833 /* We have to be careful here that we don't end up in infinite
1834 recursions due to a field of a type being a pointer to that type
1835 or to a mutually-recursive type. So we store a list of record
1836 types that we've seen and see if this type is in them. To save
1837 memory, we don't use a list for just one type. Here we check
1838 whether we've seen this type before and store it if not. */
1839 if (seen_types == 0)
1840 seen_types = type;
1841 else if (TREE_CODE (seen_types) != TREE_LIST)
1843 if (seen_types == type)
1844 return 0;
1846 seen_types = tree_cons (NULL_TREE, type,
1847 build_tree_list (NULL_TREE, seen_types));
1849 else
1851 if (value_member (type, seen_types) != 0)
1852 return 0;
1854 seen_types = tree_cons (NULL_TREE, type, seen_types);
1857 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1858 if (TREE_CODE (field) == FIELD_DECL
1859 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
1860 || (TREE_CODE (type) == QUAL_UNION_TYPE
1861 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
1862 || type_contains_placeholder_p (TREE_TYPE (field))))
1864 ret = true;
1865 break;
1868 /* Now remove us from seen_types and return the result. */
1869 if (seen_types == type)
1870 seen_types = 0;
1871 else
1872 seen_types = TREE_CHAIN (seen_types);
1874 return ret;
1877 default:
1878 abort ();
1882 /* Return 1 if EXP contains any expressions that produce cleanups for an
1883 outer scope to deal with. Used by fold. */
1886 has_cleanups (tree exp)
1888 int i, nops, cmp;
1890 if (! TREE_SIDE_EFFECTS (exp))
1891 return 0;
1893 switch (TREE_CODE (exp))
1895 case TARGET_EXPR:
1896 case GOTO_SUBROUTINE_EXPR:
1897 case WITH_CLEANUP_EXPR:
1898 return 1;
1900 case CLEANUP_POINT_EXPR:
1901 return 0;
1903 case CALL_EXPR:
1904 for (exp = TREE_OPERAND (exp, 1); exp; exp = TREE_CHAIN (exp))
1906 cmp = has_cleanups (TREE_VALUE (exp));
1907 if (cmp)
1908 return cmp;
1910 return 0;
1912 default:
1913 break;
1916 /* This general rule works for most tree codes. All exceptions should be
1917 handled above. If this is a language-specific tree code, we can't
1918 trust what might be in the operand, so say we don't know
1919 the situation. */
1920 if ((int) TREE_CODE (exp) >= (int) LAST_AND_UNUSED_TREE_CODE)
1921 return -1;
1923 nops = first_rtl_op (TREE_CODE (exp));
1924 for (i = 0; i < nops; i++)
1925 if (TREE_OPERAND (exp, i) != 0)
1927 int type = TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, i)));
1928 if (type == 'e' || type == '<' || type == '1' || type == '2'
1929 || type == 'r' || type == 's')
1931 cmp = has_cleanups (TREE_OPERAND (exp, i));
1932 if (cmp)
1933 return cmp;
1937 return 0;
1940 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
1941 return a tree with all occurrences of references to F in a
1942 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
1943 contains only arithmetic expressions or a CALL_EXPR with a
1944 PLACEHOLDER_EXPR occurring only in its arglist. */
1946 tree
1947 substitute_in_expr (tree exp, tree f, tree r)
1949 enum tree_code code = TREE_CODE (exp);
1950 tree op0, op1, op2;
1951 tree new;
1952 tree inner;
1954 switch (TREE_CODE_CLASS (code))
1956 case 'c':
1957 case 'd':
1958 return exp;
1960 case 'x':
1961 if (code == PLACEHOLDER_EXPR)
1962 return exp;
1963 else if (code == TREE_LIST)
1965 op0 = (TREE_CHAIN (exp) == 0
1966 ? 0 : substitute_in_expr (TREE_CHAIN (exp), f, r));
1967 op1 = substitute_in_expr (TREE_VALUE (exp), f, r);
1968 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
1969 return exp;
1971 return tree_cons (TREE_PURPOSE (exp), op1, op0);
1974 abort ();
1976 case '1':
1977 case '2':
1978 case '<':
1979 case 'e':
1980 switch (TREE_CODE_LENGTH (code))
1982 case 1:
1983 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
1984 if (op0 == TREE_OPERAND (exp, 0))
1985 return exp;
1987 if (code == NON_LVALUE_EXPR)
1988 return op0;
1990 new = fold (build1 (code, TREE_TYPE (exp), op0));
1991 break;
1993 case 2:
1994 /* An RTL_EXPR cannot contain a PLACEHOLDER_EXPR; a CONSTRUCTOR
1995 could, but we don't support it. */
1996 if (code == RTL_EXPR)
1997 return exp;
1998 else if (code == CONSTRUCTOR)
1999 abort ();
2001 op0 = TREE_OPERAND (exp, 0);
2002 op1 = TREE_OPERAND (exp, 1);
2003 if (CONTAINS_PLACEHOLDER_P (op0))
2004 op0 = substitute_in_expr (op0, f, r);
2005 if (CONTAINS_PLACEHOLDER_P (op1))
2006 op1 = substitute_in_expr (op1, f, r);
2008 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2009 return exp;
2011 new = fold (build (code, TREE_TYPE (exp), op0, op1));
2012 break;
2014 case 3:
2015 /* It cannot be that anything inside a SAVE_EXPR contains a
2016 PLACEHOLDER_EXPR. */
2017 if (code == SAVE_EXPR)
2018 return exp;
2020 else if (code == CALL_EXPR)
2022 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2023 if (op1 == TREE_OPERAND (exp, 1))
2024 return exp;
2026 return build (code, TREE_TYPE (exp),
2027 TREE_OPERAND (exp, 0), op1, NULL_TREE);
2030 else if (code != COND_EXPR)
2031 abort ();
2033 op0 = TREE_OPERAND (exp, 0);
2034 op1 = TREE_OPERAND (exp, 1);
2035 op2 = TREE_OPERAND (exp, 2);
2037 if (CONTAINS_PLACEHOLDER_P (op0))
2038 op0 = substitute_in_expr (op0, f, r);
2039 if (CONTAINS_PLACEHOLDER_P (op1))
2040 op1 = substitute_in_expr (op1, f, r);
2041 if (CONTAINS_PLACEHOLDER_P (op2))
2042 op2 = substitute_in_expr (op2, f, r);
2044 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2045 && op2 == TREE_OPERAND (exp, 2))
2046 return exp;
2048 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
2049 break;
2051 default:
2052 abort ();
2055 break;
2057 case 'r':
2058 switch (code)
2060 case COMPONENT_REF:
2061 /* If this expression is getting a value from a PLACEHOLDER_EXPR
2062 and it is the right field, replace it with R. */
2063 for (inner = TREE_OPERAND (exp, 0);
2064 TREE_CODE_CLASS (TREE_CODE (inner)) == 'r';
2065 inner = TREE_OPERAND (inner, 0))
2067 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2068 && TREE_OPERAND (exp, 1) == f)
2069 return r;
2071 /* If this expression hasn't been completed let, leave it
2072 alone. */
2073 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2074 && TREE_TYPE (inner) == 0)
2075 return exp;
2077 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2078 if (op0 == TREE_OPERAND (exp, 0))
2079 return exp;
2081 new = fold (build (code, TREE_TYPE (exp), op0,
2082 TREE_OPERAND (exp, 1)));
2083 break;
2085 case BIT_FIELD_REF:
2086 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2087 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2088 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
2089 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2090 && op2 == TREE_OPERAND (exp, 2))
2091 return exp;
2093 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
2094 break;
2096 case INDIRECT_REF:
2097 case BUFFER_REF:
2098 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2099 if (op0 == TREE_OPERAND (exp, 0))
2100 return exp;
2102 new = fold (build1 (code, TREE_TYPE (exp), op0));
2103 break;
2105 default:
2106 abort ();
2108 break;
2110 default:
2111 abort ();
2114 TREE_READONLY (new) = TREE_READONLY (exp);
2115 return new;
2118 /* Stabilize a reference so that we can use it any number of times
2119 without causing its operands to be evaluated more than once.
2120 Returns the stabilized reference. This works by means of save_expr,
2121 so see the caveats in the comments about save_expr.
2123 Also allows conversion expressions whose operands are references.
2124 Any other kind of expression is returned unchanged. */
2126 tree
2127 stabilize_reference (tree ref)
2129 tree result;
2130 enum tree_code code = TREE_CODE (ref);
2132 switch (code)
2134 case VAR_DECL:
2135 case PARM_DECL:
2136 case RESULT_DECL:
2137 /* No action is needed in this case. */
2138 return ref;
2140 case NOP_EXPR:
2141 case CONVERT_EXPR:
2142 case FLOAT_EXPR:
2143 case FIX_TRUNC_EXPR:
2144 case FIX_FLOOR_EXPR:
2145 case FIX_ROUND_EXPR:
2146 case FIX_CEIL_EXPR:
2147 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2148 break;
2150 case INDIRECT_REF:
2151 result = build_nt (INDIRECT_REF,
2152 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2153 break;
2155 case COMPONENT_REF:
2156 result = build_nt (COMPONENT_REF,
2157 stabilize_reference (TREE_OPERAND (ref, 0)),
2158 TREE_OPERAND (ref, 1));
2159 break;
2161 case BIT_FIELD_REF:
2162 result = build_nt (BIT_FIELD_REF,
2163 stabilize_reference (TREE_OPERAND (ref, 0)),
2164 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2165 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2166 break;
2168 case ARRAY_REF:
2169 result = build_nt (ARRAY_REF,
2170 stabilize_reference (TREE_OPERAND (ref, 0)),
2171 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2172 break;
2174 case ARRAY_RANGE_REF:
2175 result = build_nt (ARRAY_RANGE_REF,
2176 stabilize_reference (TREE_OPERAND (ref, 0)),
2177 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2178 break;
2180 case COMPOUND_EXPR:
2181 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2182 it wouldn't be ignored. This matters when dealing with
2183 volatiles. */
2184 return stabilize_reference_1 (ref);
2186 case RTL_EXPR:
2187 result = build1 (INDIRECT_REF, TREE_TYPE (ref),
2188 save_expr (build1 (ADDR_EXPR,
2189 build_pointer_type (TREE_TYPE (ref)),
2190 ref)));
2191 break;
2193 /* If arg isn't a kind of lvalue we recognize, make no change.
2194 Caller should recognize the error for an invalid lvalue. */
2195 default:
2196 return ref;
2198 case ERROR_MARK:
2199 return error_mark_node;
2202 TREE_TYPE (result) = TREE_TYPE (ref);
2203 TREE_READONLY (result) = TREE_READONLY (ref);
2204 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2205 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2207 return result;
2210 /* Subroutine of stabilize_reference; this is called for subtrees of
2211 references. Any expression with side-effects must be put in a SAVE_EXPR
2212 to ensure that it is only evaluated once.
2214 We don't put SAVE_EXPR nodes around everything, because assigning very
2215 simple expressions to temporaries causes us to miss good opportunities
2216 for optimizations. Among other things, the opportunity to fold in the
2217 addition of a constant into an addressing mode often gets lost, e.g.
2218 "y[i+1] += x;". In general, we take the approach that we should not make
2219 an assignment unless we are forced into it - i.e., that any non-side effect
2220 operator should be allowed, and that cse should take care of coalescing
2221 multiple utterances of the same expression should that prove fruitful. */
2223 tree
2224 stabilize_reference_1 (tree e)
2226 tree result;
2227 enum tree_code code = TREE_CODE (e);
2229 /* We cannot ignore const expressions because it might be a reference
2230 to a const array but whose index contains side-effects. But we can
2231 ignore things that are actual constant or that already have been
2232 handled by this function. */
2234 if (TREE_CONSTANT (e) || code == SAVE_EXPR)
2235 return e;
2237 switch (TREE_CODE_CLASS (code))
2239 case 'x':
2240 case 't':
2241 case 'd':
2242 case 'b':
2243 case '<':
2244 case 's':
2245 case 'e':
2246 case 'r':
2247 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2248 so that it will only be evaluated once. */
2249 /* The reference (r) and comparison (<) classes could be handled as
2250 below, but it is generally faster to only evaluate them once. */
2251 if (TREE_SIDE_EFFECTS (e))
2252 return save_expr (e);
2253 return e;
2255 case 'c':
2256 /* Constants need no processing. In fact, we should never reach
2257 here. */
2258 return e;
2260 case '2':
2261 /* Division is slow and tends to be compiled with jumps,
2262 especially the division by powers of 2 that is often
2263 found inside of an array reference. So do it just once. */
2264 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2265 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2266 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2267 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2268 return save_expr (e);
2269 /* Recursively stabilize each operand. */
2270 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2271 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2272 break;
2274 case '1':
2275 /* Recursively stabilize each operand. */
2276 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2277 break;
2279 default:
2280 abort ();
2283 TREE_TYPE (result) = TREE_TYPE (e);
2284 TREE_READONLY (result) = TREE_READONLY (e);
2285 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2286 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2288 return result;
2291 /* Low-level constructors for expressions. */
2293 /* Build an expression of code CODE, data type TYPE, and operands as
2294 specified. Expressions and reference nodes can be created this way.
2295 Constants, decls, types and misc nodes cannot be.
2297 We define 5 non-variadic functions, from 0 to 4 arguments. This is
2298 enough for all extant tree codes. These functions can be called
2299 directly (preferably!), but can also be obtained via GCC preprocessor
2300 magic within the build macro. */
2302 tree
2303 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
2305 tree t;
2307 #ifdef ENABLE_CHECKING
2308 if (TREE_CODE_LENGTH (code) != 0)
2309 abort ();
2310 #endif
2312 t = make_node_stat (code PASS_MEM_STAT);
2313 TREE_TYPE (t) = tt;
2315 return t;
2318 tree
2319 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
2321 int length = sizeof (struct tree_exp);
2322 #ifdef GATHER_STATISTICS
2323 tree_node_kind kind;
2324 #endif
2325 tree t;
2327 #ifdef GATHER_STATISTICS
2328 switch (TREE_CODE_CLASS (code))
2330 case 's': /* an expression with side effects */
2331 kind = s_kind;
2332 break;
2333 case 'r': /* a reference */
2334 kind = r_kind;
2335 break;
2336 default:
2337 kind = e_kind;
2338 break;
2341 tree_node_counts[(int) kind]++;
2342 tree_node_sizes[(int) kind] += length;
2343 #endif
2345 #ifdef ENABLE_CHECKING
2346 if (TREE_CODE_LENGTH (code) != 1)
2347 abort ();
2348 #endif /* ENABLE_CHECKING */
2350 t = ggc_alloc_zone_stat (length, tree_zone PASS_MEM_STAT);
2352 memset (t, 0, sizeof (struct tree_common));
2354 TREE_SET_CODE (t, code);
2356 TREE_TYPE (t) = type;
2357 TREE_COMPLEXITY (t) = 0;
2358 TREE_OPERAND (t, 0) = node;
2359 if (node && first_rtl_op (code) != 0)
2361 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
2362 TREE_READONLY (t) = TREE_READONLY (node);
2365 if (TREE_CODE_CLASS (code) == 's')
2366 TREE_SIDE_EFFECTS (t) = 1;
2367 else switch (code)
2369 case INIT_EXPR:
2370 case MODIFY_EXPR:
2371 case VA_ARG_EXPR:
2372 case RTL_EXPR:
2373 case PREDECREMENT_EXPR:
2374 case PREINCREMENT_EXPR:
2375 case POSTDECREMENT_EXPR:
2376 case POSTINCREMENT_EXPR:
2377 /* All of these have side-effects, no matter what their
2378 operands are. */
2379 TREE_SIDE_EFFECTS (t) = 1;
2380 TREE_READONLY (t) = 0;
2381 break;
2383 case INDIRECT_REF:
2384 /* Whether a dereference is readonly has nothing to do with whether
2385 its operand is readonly. */
2386 TREE_READONLY (t) = 0;
2387 break;
2389 case ADDR_EXPR:
2390 if (node)
2392 /* The address of a volatile decl or reference does not have
2393 side-effects. But be careful not to ignore side-effects from
2394 other sources deeper in the expression--if node is a _REF and
2395 one of its operands has side-effects, so do we. */
2396 if (TREE_THIS_VOLATILE (node))
2398 TREE_SIDE_EFFECTS (t) = 0;
2399 if (!DECL_P (node))
2401 int i = first_rtl_op (TREE_CODE (node)) - 1;
2402 for (; i >= 0; --i)
2404 if (TREE_SIDE_EFFECTS (TREE_OPERAND (node, i)))
2405 TREE_SIDE_EFFECTS (t) = 1;
2410 break;
2412 default:
2413 if (TREE_CODE_CLASS (code) == '1' && node && TREE_CONSTANT (node))
2414 TREE_CONSTANT (t) = 1;
2415 break;
2418 return t;
2421 #define PROCESS_ARG(N) \
2422 do { \
2423 TREE_OPERAND (t, N) = arg##N; \
2424 if (arg##N && fro > N) \
2426 if (TREE_SIDE_EFFECTS (arg##N)) \
2427 side_effects = 1; \
2428 if (!TREE_READONLY (arg##N)) \
2429 read_only = 0; \
2430 if (!TREE_CONSTANT (arg##N)) \
2431 constant = 0; \
2433 } while (0)
2435 tree
2436 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
2438 bool constant, read_only, side_effects;
2439 tree t;
2440 int fro;
2442 #ifdef ENABLE_CHECKING
2443 if (TREE_CODE_LENGTH (code) != 2)
2444 abort ();
2445 #endif
2447 t = make_node_stat (code PASS_MEM_STAT);
2448 TREE_TYPE (t) = tt;
2450 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
2451 result based on those same flags for the arguments. But if the
2452 arguments aren't really even `tree' expressions, we shouldn't be trying
2453 to do this. */
2454 fro = first_rtl_op (code);
2456 /* Expressions without side effects may be constant if their
2457 arguments are as well. */
2458 constant = (TREE_CODE_CLASS (code) == '<'
2459 || TREE_CODE_CLASS (code) == '2');
2460 read_only = 1;
2461 side_effects = TREE_SIDE_EFFECTS (t);
2463 PROCESS_ARG(0);
2464 PROCESS_ARG(1);
2466 if (code == CALL_EXPR && !side_effects)
2468 tree node;
2469 int i;
2471 /* Calls have side-effects, except those to const or
2472 pure functions. */
2473 i = call_expr_flags (t);
2474 if (!(i & (ECF_CONST | ECF_PURE)))
2475 side_effects = 1;
2477 /* And even those have side-effects if their arguments do. */
2478 else for (node = TREE_OPERAND (t, 1); node; node = TREE_CHAIN (node))
2479 if (TREE_SIDE_EFFECTS (TREE_VALUE (node)))
2481 side_effects = 1;
2482 break;
2486 TREE_READONLY (t) = read_only;
2487 TREE_CONSTANT (t) = constant;
2488 TREE_SIDE_EFFECTS (t) = side_effects;
2490 return t;
2493 tree
2494 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
2495 tree arg2 MEM_STAT_DECL)
2497 bool constant, read_only, side_effects;
2498 tree t;
2499 int fro;
2501 /* ??? Quite a lot of existing code passes one too many arguments to
2502 CALL_EXPR. Not going to fix them, because CALL_EXPR is about to
2503 grow a new argument, so it would just mean changing them back. */
2504 if (code == CALL_EXPR)
2506 if (arg2 != NULL_TREE)
2507 abort ();
2508 return build2 (code, tt, arg0, arg1);
2511 #ifdef ENABLE_CHECKING
2512 if (TREE_CODE_LENGTH (code) != 3)
2513 abort ();
2514 #endif
2516 t = make_node_stat (code PASS_MEM_STAT);
2517 TREE_TYPE (t) = tt;
2519 fro = first_rtl_op (code);
2521 side_effects = TREE_SIDE_EFFECTS (t);
2523 PROCESS_ARG(0);
2524 PROCESS_ARG(1);
2525 PROCESS_ARG(2);
2527 TREE_SIDE_EFFECTS (t) = side_effects;
2529 return t;
2532 tree
2533 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
2534 tree arg2, tree arg3 MEM_STAT_DECL)
2536 bool constant, read_only, side_effects;
2537 tree t;
2538 int fro;
2540 #ifdef ENABLE_CHECKING
2541 if (TREE_CODE_LENGTH (code) != 4)
2542 abort ();
2543 #endif
2545 t = make_node_stat (code PASS_MEM_STAT);
2546 TREE_TYPE (t) = tt;
2548 fro = first_rtl_op (code);
2550 side_effects = TREE_SIDE_EFFECTS (t);
2552 PROCESS_ARG(0);
2553 PROCESS_ARG(1);
2554 PROCESS_ARG(2);
2555 PROCESS_ARG(3);
2557 TREE_SIDE_EFFECTS (t) = side_effects;
2559 return t;
2562 /* Backup definition for non-gcc build compilers. */
2564 tree
2565 (build) (enum tree_code code, tree tt, ...)
2567 tree t, arg0, arg1, arg2, arg3;
2568 int length = TREE_CODE_LENGTH (code);
2569 va_list p;
2571 va_start (p, tt);
2572 switch (length)
2574 case 0:
2575 t = build0 (code, tt);
2576 break;
2577 case 1:
2578 arg0 = va_arg (p, tree);
2579 t = build1 (code, tt, arg0);
2580 break;
2581 case 2:
2582 arg0 = va_arg (p, tree);
2583 arg1 = va_arg (p, tree);
2584 t = build2 (code, tt, arg0, arg1);
2585 break;
2586 case 3:
2587 arg0 = va_arg (p, tree);
2588 arg1 = va_arg (p, tree);
2589 arg2 = va_arg (p, tree);
2590 t = build3 (code, tt, arg0, arg1, arg2);
2591 break;
2592 case 4:
2593 arg0 = va_arg (p, tree);
2594 arg1 = va_arg (p, tree);
2595 arg2 = va_arg (p, tree);
2596 arg3 = va_arg (p, tree);
2597 t = build4 (code, tt, arg0, arg1, arg2, arg3);
2598 break;
2599 default:
2600 abort ();
2602 va_end (p);
2604 return t;
2607 /* Similar except don't specify the TREE_TYPE
2608 and leave the TREE_SIDE_EFFECTS as 0.
2609 It is permissible for arguments to be null,
2610 or even garbage if their values do not matter. */
2612 tree
2613 build_nt (enum tree_code code, ...)
2615 tree t;
2616 int length;
2617 int i;
2618 va_list p;
2620 va_start (p, code);
2622 t = make_node (code);
2623 length = TREE_CODE_LENGTH (code);
2625 for (i = 0; i < length; i++)
2626 TREE_OPERAND (t, i) = va_arg (p, tree);
2628 va_end (p);
2629 return t;
2632 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
2633 We do NOT enter this node in any sort of symbol table.
2635 layout_decl is used to set up the decl's storage layout.
2636 Other slots are initialized to 0 or null pointers. */
2638 tree
2639 build_decl_stat (enum tree_code code, tree name, tree type MEM_STAT_DECL)
2641 tree t;
2643 t = make_node_stat (code PASS_MEM_STAT);
2645 /* if (type == error_mark_node)
2646 type = integer_type_node; */
2647 /* That is not done, deliberately, so that having error_mark_node
2648 as the type can suppress useless errors in the use of this variable. */
2650 DECL_NAME (t) = name;
2651 TREE_TYPE (t) = type;
2653 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
2654 layout_decl (t, 0);
2655 else if (code == FUNCTION_DECL)
2656 DECL_MODE (t) = FUNCTION_MODE;
2658 return t;
2661 /* BLOCK nodes are used to represent the structure of binding contours
2662 and declarations, once those contours have been exited and their contents
2663 compiled. This information is used for outputting debugging info. */
2665 tree
2666 build_block (tree vars, tree tags ATTRIBUTE_UNUSED, tree subblocks,
2667 tree supercontext, tree chain)
2669 tree block = make_node (BLOCK);
2671 BLOCK_VARS (block) = vars;
2672 BLOCK_SUBBLOCKS (block) = subblocks;
2673 BLOCK_SUPERCONTEXT (block) = supercontext;
2674 BLOCK_CHAIN (block) = chain;
2675 return block;
2678 /* EXPR_WITH_FILE_LOCATION are used to keep track of the exact
2679 location where an expression or an identifier were encountered. It
2680 is necessary for languages where the frontend parser will handle
2681 recursively more than one file (Java is one of them). */
2683 tree
2684 build_expr_wfl (tree node, const char *file, int line, int col)
2686 static const char *last_file = 0;
2687 static tree last_filenode = NULL_TREE;
2688 tree wfl = make_node (EXPR_WITH_FILE_LOCATION);
2690 EXPR_WFL_NODE (wfl) = node;
2691 EXPR_WFL_SET_LINECOL (wfl, line, col);
2692 if (file != last_file)
2694 last_file = file;
2695 last_filenode = file ? get_identifier (file) : NULL_TREE;
2698 EXPR_WFL_FILENAME_NODE (wfl) = last_filenode;
2699 if (node)
2701 TREE_SIDE_EFFECTS (wfl) = TREE_SIDE_EFFECTS (node);
2702 TREE_TYPE (wfl) = TREE_TYPE (node);
2705 return wfl;
2708 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
2709 is ATTRIBUTE. */
2711 tree
2712 build_decl_attribute_variant (tree ddecl, tree attribute)
2714 DECL_ATTRIBUTES (ddecl) = attribute;
2715 return ddecl;
2718 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
2719 is ATTRIBUTE.
2721 Record such modified types already made so we don't make duplicates. */
2723 tree
2724 build_type_attribute_variant (tree ttype, tree attribute)
2726 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
2728 hashval_t hashcode = 0;
2729 tree ntype;
2730 enum tree_code code = TREE_CODE (ttype);
2732 ntype = copy_node (ttype);
2734 TYPE_POINTER_TO (ntype) = 0;
2735 TYPE_REFERENCE_TO (ntype) = 0;
2736 TYPE_ATTRIBUTES (ntype) = attribute;
2738 /* Create a new main variant of TYPE. */
2739 TYPE_MAIN_VARIANT (ntype) = ntype;
2740 TYPE_NEXT_VARIANT (ntype) = 0;
2741 set_type_quals (ntype, TYPE_UNQUALIFIED);
2743 hashcode = iterative_hash_object (code, hashcode);
2744 if (TREE_TYPE (ntype))
2745 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
2746 hashcode);
2747 hashcode = attribute_hash_list (attribute, hashcode);
2749 switch (TREE_CODE (ntype))
2751 case FUNCTION_TYPE:
2752 hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
2753 break;
2754 case ARRAY_TYPE:
2755 hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
2756 hashcode);
2757 break;
2758 case INTEGER_TYPE:
2759 hashcode = iterative_hash_object
2760 (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
2761 hashcode = iterative_hash_object
2762 (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
2763 break;
2764 case REAL_TYPE:
2766 unsigned int precision = TYPE_PRECISION (ntype);
2767 hashcode = iterative_hash_object (precision, hashcode);
2769 break;
2770 default:
2771 break;
2774 ntype = type_hash_canon (hashcode, ntype);
2775 ttype = build_qualified_type (ntype, TYPE_QUALS (ttype));
2778 return ttype;
2781 /* Return nonzero if IDENT is a valid name for attribute ATTR,
2782 or zero if not.
2784 We try both `text' and `__text__', ATTR may be either one. */
2785 /* ??? It might be a reasonable simplification to require ATTR to be only
2786 `text'. One might then also require attribute lists to be stored in
2787 their canonicalized form. */
2790 is_attribute_p (const char *attr, tree ident)
2792 int ident_len, attr_len;
2793 const char *p;
2795 if (TREE_CODE (ident) != IDENTIFIER_NODE)
2796 return 0;
2798 if (strcmp (attr, IDENTIFIER_POINTER (ident)) == 0)
2799 return 1;
2801 p = IDENTIFIER_POINTER (ident);
2802 ident_len = strlen (p);
2803 attr_len = strlen (attr);
2805 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
2806 if (attr[0] == '_')
2808 if (attr[1] != '_'
2809 || attr[attr_len - 2] != '_'
2810 || attr[attr_len - 1] != '_')
2811 abort ();
2812 if (ident_len == attr_len - 4
2813 && strncmp (attr + 2, p, attr_len - 4) == 0)
2814 return 1;
2816 else
2818 if (ident_len == attr_len + 4
2819 && p[0] == '_' && p[1] == '_'
2820 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
2821 && strncmp (attr, p + 2, attr_len) == 0)
2822 return 1;
2825 return 0;
2828 /* Given an attribute name and a list of attributes, return a pointer to the
2829 attribute's list element if the attribute is part of the list, or NULL_TREE
2830 if not found. If the attribute appears more than once, this only
2831 returns the first occurrence; the TREE_CHAIN of the return value should
2832 be passed back in if further occurrences are wanted. */
2834 tree
2835 lookup_attribute (const char *attr_name, tree list)
2837 tree l;
2839 for (l = list; l; l = TREE_CHAIN (l))
2841 if (TREE_CODE (TREE_PURPOSE (l)) != IDENTIFIER_NODE)
2842 abort ();
2843 if (is_attribute_p (attr_name, TREE_PURPOSE (l)))
2844 return l;
2847 return NULL_TREE;
2850 /* Return an attribute list that is the union of a1 and a2. */
2852 tree
2853 merge_attributes (tree a1, tree a2)
2855 tree attributes;
2857 /* Either one unset? Take the set one. */
2859 if ((attributes = a1) == 0)
2860 attributes = a2;
2862 /* One that completely contains the other? Take it. */
2864 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
2866 if (attribute_list_contained (a2, a1))
2867 attributes = a2;
2868 else
2870 /* Pick the longest list, and hang on the other list. */
2872 if (list_length (a1) < list_length (a2))
2873 attributes = a2, a2 = a1;
2875 for (; a2 != 0; a2 = TREE_CHAIN (a2))
2877 tree a;
2878 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
2879 attributes);
2880 a != NULL_TREE;
2881 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
2882 TREE_CHAIN (a)))
2884 if (simple_cst_equal (TREE_VALUE (a), TREE_VALUE (a2)) == 1)
2885 break;
2887 if (a == NULL_TREE)
2889 a1 = copy_node (a2);
2890 TREE_CHAIN (a1) = attributes;
2891 attributes = a1;
2896 return attributes;
2899 /* Given types T1 and T2, merge their attributes and return
2900 the result. */
2902 tree
2903 merge_type_attributes (tree t1, tree t2)
2905 return merge_attributes (TYPE_ATTRIBUTES (t1),
2906 TYPE_ATTRIBUTES (t2));
2909 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
2910 the result. */
2912 tree
2913 merge_decl_attributes (tree olddecl, tree newdecl)
2915 return merge_attributes (DECL_ATTRIBUTES (olddecl),
2916 DECL_ATTRIBUTES (newdecl));
2919 #ifdef TARGET_DLLIMPORT_DECL_ATTRIBUTES
2921 /* Specialization of merge_decl_attributes for various Windows targets.
2923 This handles the following situation:
2925 __declspec (dllimport) int foo;
2926 int foo;
2928 The second instance of `foo' nullifies the dllimport. */
2930 tree
2931 merge_dllimport_decl_attributes (tree old, tree new)
2933 tree a;
2934 int delete_dllimport_p;
2936 old = DECL_ATTRIBUTES (old);
2937 new = DECL_ATTRIBUTES (new);
2939 /* What we need to do here is remove from `old' dllimport if it doesn't
2940 appear in `new'. dllimport behaves like extern: if a declaration is
2941 marked dllimport and a definition appears later, then the object
2942 is not dllimport'd. */
2943 if (lookup_attribute ("dllimport", old) != NULL_TREE
2944 && lookup_attribute ("dllimport", new) == NULL_TREE)
2945 delete_dllimport_p = 1;
2946 else
2947 delete_dllimport_p = 0;
2949 a = merge_attributes (old, new);
2951 if (delete_dllimport_p)
2953 tree prev, t;
2955 /* Scan the list for dllimport and delete it. */
2956 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
2958 if (is_attribute_p ("dllimport", TREE_PURPOSE (t)))
2960 if (prev == NULL_TREE)
2961 a = TREE_CHAIN (a);
2962 else
2963 TREE_CHAIN (prev) = TREE_CHAIN (t);
2964 break;
2969 return a;
2972 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
2974 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
2975 of the various TYPE_QUAL values. */
2977 static void
2978 set_type_quals (tree type, int type_quals)
2980 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
2981 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
2982 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
2985 /* Returns true iff cand is equivalent to base with type_quals. */
2987 bool
2988 check_qualified_type (tree cand, tree base, int type_quals)
2990 return (TYPE_QUALS (cand) == type_quals
2991 && TYPE_NAME (cand) == TYPE_NAME (base)
2992 /* Apparently this is needed for Objective-C. */
2993 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
2994 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
2995 TYPE_ATTRIBUTES (base)));
2998 /* Return a version of the TYPE, qualified as indicated by the
2999 TYPE_QUALS, if one exists. If no qualified version exists yet,
3000 return NULL_TREE. */
3002 tree
3003 get_qualified_type (tree type, int type_quals)
3005 tree t;
3007 if (TYPE_QUALS (type) == type_quals)
3008 return type;
3010 /* Search the chain of variants to see if there is already one there just
3011 like the one we need to have. If so, use that existing one. We must
3012 preserve the TYPE_NAME, since there is code that depends on this. */
3013 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
3014 if (check_qualified_type (t, type, type_quals))
3015 return t;
3017 return NULL_TREE;
3020 /* Like get_qualified_type, but creates the type if it does not
3021 exist. This function never returns NULL_TREE. */
3023 tree
3024 build_qualified_type (tree type, int type_quals)
3026 tree t;
3028 /* See if we already have the appropriate qualified variant. */
3029 t = get_qualified_type (type, type_quals);
3031 /* If not, build it. */
3032 if (!t)
3034 t = build_type_copy (type);
3035 set_type_quals (t, type_quals);
3038 return t;
3041 /* Create a new variant of TYPE, equivalent but distinct.
3042 This is so the caller can modify it. */
3044 tree
3045 build_type_copy (tree type)
3047 tree t, m = TYPE_MAIN_VARIANT (type);
3049 t = copy_node (type);
3051 TYPE_POINTER_TO (t) = 0;
3052 TYPE_REFERENCE_TO (t) = 0;
3054 /* Add this type to the chain of variants of TYPE. */
3055 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
3056 TYPE_NEXT_VARIANT (m) = t;
3058 return t;
3061 /* Hashing of types so that we don't make duplicates.
3062 The entry point is `type_hash_canon'. */
3064 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
3065 with types in the TREE_VALUE slots), by adding the hash codes
3066 of the individual types. */
3068 unsigned int
3069 type_hash_list (tree list, hashval_t hashcode)
3071 tree tail;
3073 for (tail = list; tail; tail = TREE_CHAIN (tail))
3074 if (TREE_VALUE (tail) != error_mark_node)
3075 hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
3076 hashcode);
3078 return hashcode;
3081 /* These are the Hashtable callback functions. */
3083 /* Returns true if the types are equal. */
3085 static int
3086 type_hash_eq (const void *va, const void *vb)
3088 const struct type_hash *a = va, *b = vb;
3089 if (a->hash == b->hash
3090 && TREE_CODE (a->type) == TREE_CODE (b->type)
3091 && TREE_TYPE (a->type) == TREE_TYPE (b->type)
3092 && attribute_list_equal (TYPE_ATTRIBUTES (a->type),
3093 TYPE_ATTRIBUTES (b->type))
3094 && TYPE_ALIGN (a->type) == TYPE_ALIGN (b->type)
3095 && (TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
3096 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
3097 TYPE_MAX_VALUE (b->type)))
3098 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
3099 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
3100 TYPE_MIN_VALUE (b->type)))
3101 /* Note that TYPE_DOMAIN is TYPE_ARG_TYPES for FUNCTION_TYPE. */
3102 && (TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type)
3103 || (TYPE_DOMAIN (a->type)
3104 && TREE_CODE (TYPE_DOMAIN (a->type)) == TREE_LIST
3105 && TYPE_DOMAIN (b->type)
3106 && TREE_CODE (TYPE_DOMAIN (b->type)) == TREE_LIST
3107 && type_list_equal (TYPE_DOMAIN (a->type),
3108 TYPE_DOMAIN (b->type)))))
3109 return 1;
3110 return 0;
3113 /* Return the cached hash value. */
3115 static hashval_t
3116 type_hash_hash (const void *item)
3118 return ((const struct type_hash *) item)->hash;
3121 /* Look in the type hash table for a type isomorphic to TYPE.
3122 If one is found, return it. Otherwise return 0. */
3124 tree
3125 type_hash_lookup (hashval_t hashcode, tree type)
3127 struct type_hash *h, in;
3129 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
3130 must call that routine before comparing TYPE_ALIGNs. */
3131 layout_type (type);
3133 in.hash = hashcode;
3134 in.type = type;
3136 h = htab_find_with_hash (type_hash_table, &in, hashcode);
3137 if (h)
3138 return h->type;
3139 return NULL_TREE;
3142 /* Add an entry to the type-hash-table
3143 for a type TYPE whose hash code is HASHCODE. */
3145 void
3146 type_hash_add (hashval_t hashcode, tree type)
3148 struct type_hash *h;
3149 void **loc;
3151 h = ggc_alloc (sizeof (struct type_hash));
3152 h->hash = hashcode;
3153 h->type = type;
3154 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
3155 *(struct type_hash **) loc = h;
3158 /* Given TYPE, and HASHCODE its hash code, return the canonical
3159 object for an identical type if one already exists.
3160 Otherwise, return TYPE, and record it as the canonical object
3161 if it is a permanent object.
3163 To use this function, first create a type of the sort you want.
3164 Then compute its hash code from the fields of the type that
3165 make it different from other similar types.
3166 Then call this function and use the value.
3167 This function frees the type you pass in if it is a duplicate. */
3169 /* Set to 1 to debug without canonicalization. Never set by program. */
3170 int debug_no_type_hash = 0;
3172 tree
3173 type_hash_canon (unsigned int hashcode, tree type)
3175 tree t1;
3177 if (debug_no_type_hash)
3178 return type;
3180 /* See if the type is in the hash table already. If so, return it.
3181 Otherwise, add the type. */
3182 t1 = type_hash_lookup (hashcode, type);
3183 if (t1 != 0)
3185 #ifdef GATHER_STATISTICS
3186 tree_node_counts[(int) t_kind]--;
3187 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
3188 #endif
3189 return t1;
3191 else
3193 type_hash_add (hashcode, type);
3194 return type;
3198 /* See if the data pointed to by the type hash table is marked. We consider
3199 it marked if the type is marked or if a debug type number or symbol
3200 table entry has been made for the type. This reduces the amount of
3201 debugging output and eliminates that dependency of the debug output on
3202 the number of garbage collections. */
3204 static int
3205 type_hash_marked_p (const void *p)
3207 tree type = ((struct type_hash *) p)->type;
3209 return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
3212 static void
3213 print_type_hash_statistics (void)
3215 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
3216 (long) htab_size (type_hash_table),
3217 (long) htab_elements (type_hash_table),
3218 htab_collisions (type_hash_table));
3221 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
3222 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
3223 by adding the hash codes of the individual attributes. */
3225 unsigned int
3226 attribute_hash_list (tree list, hashval_t hashcode)
3228 tree tail;
3230 for (tail = list; tail; tail = TREE_CHAIN (tail))
3231 /* ??? Do we want to add in TREE_VALUE too? */
3232 hashcode = iterative_hash_object
3233 (IDENTIFIER_HASH_VALUE (TREE_PURPOSE (tail)), hashcode);
3234 return hashcode;
3237 /* Given two lists of attributes, return true if list l2 is
3238 equivalent to l1. */
3241 attribute_list_equal (tree l1, tree l2)
3243 return attribute_list_contained (l1, l2)
3244 && attribute_list_contained (l2, l1);
3247 /* Given two lists of attributes, return true if list L2 is
3248 completely contained within L1. */
3249 /* ??? This would be faster if attribute names were stored in a canonicalized
3250 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
3251 must be used to show these elements are equivalent (which they are). */
3252 /* ??? It's not clear that attributes with arguments will always be handled
3253 correctly. */
3256 attribute_list_contained (tree l1, tree l2)
3258 tree t1, t2;
3260 /* First check the obvious, maybe the lists are identical. */
3261 if (l1 == l2)
3262 return 1;
3264 /* Maybe the lists are similar. */
3265 for (t1 = l1, t2 = l2;
3266 t1 != 0 && t2 != 0
3267 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
3268 && TREE_VALUE (t1) == TREE_VALUE (t2);
3269 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
3271 /* Maybe the lists are equal. */
3272 if (t1 == 0 && t2 == 0)
3273 return 1;
3275 for (; t2 != 0; t2 = TREE_CHAIN (t2))
3277 tree attr;
3278 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
3279 attr != NULL_TREE;
3280 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
3281 TREE_CHAIN (attr)))
3283 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
3284 break;
3287 if (attr == 0)
3288 return 0;
3290 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) != 1)
3291 return 0;
3294 return 1;
3297 /* Given two lists of types
3298 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
3299 return 1 if the lists contain the same types in the same order.
3300 Also, the TREE_PURPOSEs must match. */
3303 type_list_equal (tree l1, tree l2)
3305 tree t1, t2;
3307 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
3308 if (TREE_VALUE (t1) != TREE_VALUE (t2)
3309 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
3310 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
3311 && (TREE_TYPE (TREE_PURPOSE (t1))
3312 == TREE_TYPE (TREE_PURPOSE (t2))))))
3313 return 0;
3315 return t1 == t2;
3318 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
3319 given by TYPE. If the argument list accepts variable arguments,
3320 then this function counts only the ordinary arguments. */
3323 type_num_arguments (tree type)
3325 int i = 0;
3326 tree t;
3328 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
3329 /* If the function does not take a variable number of arguments,
3330 the last element in the list will have type `void'. */
3331 if (VOID_TYPE_P (TREE_VALUE (t)))
3332 break;
3333 else
3334 ++i;
3336 return i;
3339 /* Nonzero if integer constants T1 and T2
3340 represent the same constant value. */
3343 tree_int_cst_equal (tree t1, tree t2)
3345 if (t1 == t2)
3346 return 1;
3348 if (t1 == 0 || t2 == 0)
3349 return 0;
3351 if (TREE_CODE (t1) == INTEGER_CST
3352 && TREE_CODE (t2) == INTEGER_CST
3353 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3354 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
3355 return 1;
3357 return 0;
3360 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
3361 The precise way of comparison depends on their data type. */
3364 tree_int_cst_lt (tree t1, tree t2)
3366 if (t1 == t2)
3367 return 0;
3369 if (TREE_UNSIGNED (TREE_TYPE (t1)) != TREE_UNSIGNED (TREE_TYPE (t2)))
3371 int t1_sgn = tree_int_cst_sgn (t1);
3372 int t2_sgn = tree_int_cst_sgn (t2);
3374 if (t1_sgn < t2_sgn)
3375 return 1;
3376 else if (t1_sgn > t2_sgn)
3377 return 0;
3378 /* Otherwise, both are non-negative, so we compare them as
3379 unsigned just in case one of them would overflow a signed
3380 type. */
3382 else if (! TREE_UNSIGNED (TREE_TYPE (t1)))
3383 return INT_CST_LT (t1, t2);
3385 return INT_CST_LT_UNSIGNED (t1, t2);
3388 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
3391 tree_int_cst_compare (tree t1, tree t2)
3393 if (tree_int_cst_lt (t1, t2))
3394 return -1;
3395 else if (tree_int_cst_lt (t2, t1))
3396 return 1;
3397 else
3398 return 0;
3401 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
3402 the host. If POS is zero, the value can be represented in a single
3403 HOST_WIDE_INT. If POS is nonzero, the value must be positive and can
3404 be represented in a single unsigned HOST_WIDE_INT. */
3407 host_integerp (tree t, int pos)
3409 return (TREE_CODE (t) == INTEGER_CST
3410 && ! TREE_OVERFLOW (t)
3411 && ((TREE_INT_CST_HIGH (t) == 0
3412 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
3413 || (! pos && TREE_INT_CST_HIGH (t) == -1
3414 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
3415 && ! TREE_UNSIGNED (TREE_TYPE (t)))
3416 || (pos && TREE_INT_CST_HIGH (t) == 0)));
3419 /* Return the HOST_WIDE_INT least significant bits of T if it is an
3420 INTEGER_CST and there is no overflow. POS is nonzero if the result must
3421 be positive. Abort if we cannot satisfy the above conditions. */
3423 HOST_WIDE_INT
3424 tree_low_cst (tree t, int pos)
3426 if (host_integerp (t, pos))
3427 return TREE_INT_CST_LOW (t);
3428 else
3429 abort ();
3432 /* Return the most significant bit of the integer constant T. */
3435 tree_int_cst_msb (tree t)
3437 int prec;
3438 HOST_WIDE_INT h;
3439 unsigned HOST_WIDE_INT l;
3441 /* Note that using TYPE_PRECISION here is wrong. We care about the
3442 actual bits, not the (arbitrary) range of the type. */
3443 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
3444 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
3445 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
3446 return (l & 1) == 1;
3449 /* Return an indication of the sign of the integer constant T.
3450 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
3451 Note that -1 will never be returned it T's type is unsigned. */
3454 tree_int_cst_sgn (tree t)
3456 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
3457 return 0;
3458 else if (TREE_UNSIGNED (TREE_TYPE (t)))
3459 return 1;
3460 else if (TREE_INT_CST_HIGH (t) < 0)
3461 return -1;
3462 else
3463 return 1;
3466 /* Compare two constructor-element-type constants. Return 1 if the lists
3467 are known to be equal; otherwise return 0. */
3470 simple_cst_list_equal (tree l1, tree l2)
3472 while (l1 != NULL_TREE && l2 != NULL_TREE)
3474 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
3475 return 0;
3477 l1 = TREE_CHAIN (l1);
3478 l2 = TREE_CHAIN (l2);
3481 return l1 == l2;
3484 /* Return truthvalue of whether T1 is the same tree structure as T2.
3485 Return 1 if they are the same.
3486 Return 0 if they are understandably different.
3487 Return -1 if either contains tree structure not understood by
3488 this function. */
3491 simple_cst_equal (tree t1, tree t2)
3493 enum tree_code code1, code2;
3494 int cmp;
3495 int i;
3497 if (t1 == t2)
3498 return 1;
3499 if (t1 == 0 || t2 == 0)
3500 return 0;
3502 code1 = TREE_CODE (t1);
3503 code2 = TREE_CODE (t2);
3505 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
3507 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3508 || code2 == NON_LVALUE_EXPR)
3509 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3510 else
3511 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
3514 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3515 || code2 == NON_LVALUE_EXPR)
3516 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
3518 if (code1 != code2)
3519 return 0;
3521 switch (code1)
3523 case INTEGER_CST:
3524 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3525 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
3527 case REAL_CST:
3528 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
3530 case STRING_CST:
3531 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
3532 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
3533 TREE_STRING_LENGTH (t1)));
3535 case CONSTRUCTOR:
3536 if (CONSTRUCTOR_ELTS (t1) == CONSTRUCTOR_ELTS (t2))
3537 return 1;
3538 else
3539 abort ();
3541 case SAVE_EXPR:
3542 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3544 case CALL_EXPR:
3545 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3546 if (cmp <= 0)
3547 return cmp;
3548 return
3549 simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3551 case TARGET_EXPR:
3552 /* Special case: if either target is an unallocated VAR_DECL,
3553 it means that it's going to be unified with whatever the
3554 TARGET_EXPR is really supposed to initialize, so treat it
3555 as being equivalent to anything. */
3556 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
3557 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
3558 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
3559 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
3560 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
3561 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
3562 cmp = 1;
3563 else
3564 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3566 if (cmp <= 0)
3567 return cmp;
3569 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3571 case WITH_CLEANUP_EXPR:
3572 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3573 if (cmp <= 0)
3574 return cmp;
3576 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
3578 case COMPONENT_REF:
3579 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
3580 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3582 return 0;
3584 case VAR_DECL:
3585 case PARM_DECL:
3586 case CONST_DECL:
3587 case FUNCTION_DECL:
3588 return 0;
3590 default:
3591 break;
3594 /* This general rule works for most tree codes. All exceptions should be
3595 handled above. If this is a language-specific tree code, we can't
3596 trust what might be in the operand, so say we don't know
3597 the situation. */
3598 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
3599 return -1;
3601 switch (TREE_CODE_CLASS (code1))
3603 case '1':
3604 case '2':
3605 case '<':
3606 case 'e':
3607 case 'r':
3608 case 's':
3609 cmp = 1;
3610 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
3612 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
3613 if (cmp <= 0)
3614 return cmp;
3617 return cmp;
3619 default:
3620 return -1;
3624 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
3625 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
3626 than U, respectively. */
3629 compare_tree_int (tree t, unsigned HOST_WIDE_INT u)
3631 if (tree_int_cst_sgn (t) < 0)
3632 return -1;
3633 else if (TREE_INT_CST_HIGH (t) != 0)
3634 return 1;
3635 else if (TREE_INT_CST_LOW (t) == u)
3636 return 0;
3637 else if (TREE_INT_CST_LOW (t) < u)
3638 return -1;
3639 else
3640 return 1;
3643 /* Return true if CODE represents an associative tree code. Otherwise
3644 return false. */
3645 bool
3646 associative_tree_code (enum tree_code code)
3648 switch (code)
3650 case BIT_IOR_EXPR:
3651 case BIT_AND_EXPR:
3652 case BIT_XOR_EXPR:
3653 case PLUS_EXPR:
3654 case MINUS_EXPR:
3655 case MULT_EXPR:
3656 case LSHIFT_EXPR:
3657 case RSHIFT_EXPR:
3658 case MIN_EXPR:
3659 case MAX_EXPR:
3660 return true;
3662 default:
3663 break;
3665 return false;
3668 /* Return true if CODE represents an commutative tree code. Otherwise
3669 return false. */
3670 bool
3671 commutative_tree_code (enum tree_code code)
3673 switch (code)
3675 case PLUS_EXPR:
3676 case MULT_EXPR:
3677 case MIN_EXPR:
3678 case MAX_EXPR:
3679 case BIT_IOR_EXPR:
3680 case BIT_XOR_EXPR:
3681 case BIT_AND_EXPR:
3682 case NE_EXPR:
3683 case EQ_EXPR:
3684 return true;
3686 default:
3687 break;
3689 return false;
3692 /* Generate a hash value for an expression. This can be used iteratively
3693 by passing a previous result as the "val" argument.
3695 This function is intended to produce the same hash for expressions which
3696 would compare equal using operand_equal_p. */
3698 hashval_t
3699 iterative_hash_expr (tree t, hashval_t val)
3701 int i;
3702 enum tree_code code;
3703 char class;
3705 if (t == NULL_TREE)
3706 return iterative_hash_object (t, val);
3708 code = TREE_CODE (t);
3709 class = TREE_CODE_CLASS (code);
3711 if (class == 'd')
3713 /* Decls we can just compare by pointer. */
3714 val = iterative_hash_object (t, val);
3716 else if (class == 'c')
3718 /* Alas, constants aren't shared, so we can't rely on pointer
3719 identity. */
3720 if (code == INTEGER_CST)
3722 val = iterative_hash_object (TREE_INT_CST_LOW (t), val);
3723 val = iterative_hash_object (TREE_INT_CST_HIGH (t), val);
3725 else if (code == REAL_CST)
3726 val = iterative_hash (TREE_REAL_CST_PTR (t),
3727 sizeof (REAL_VALUE_TYPE), val);
3728 else if (code == STRING_CST)
3729 val = iterative_hash (TREE_STRING_POINTER (t),
3730 TREE_STRING_LENGTH (t), val);
3731 else if (code == COMPLEX_CST)
3733 val = iterative_hash_expr (TREE_REALPART (t), val);
3734 val = iterative_hash_expr (TREE_IMAGPART (t), val);
3736 else if (code == VECTOR_CST)
3737 val = iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
3738 else
3739 abort ();
3741 else if (IS_EXPR_CODE_CLASS (class))
3743 val = iterative_hash_object (code, val);
3745 if (code == NOP_EXPR || code == CONVERT_EXPR
3746 || code == NON_LVALUE_EXPR)
3747 val = iterative_hash_object (TREE_TYPE (t), val);
3749 if (commutative_tree_code (code))
3751 /* It's a commutative expression. We want to hash it the same
3752 however it appears. We do this by first hashing both operands
3753 and then rehashing based on the order of their independent
3754 hashes. */
3755 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
3756 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
3757 hashval_t t;
3759 if (one > two)
3760 t = one, one = two, two = t;
3762 val = iterative_hash_object (one, val);
3763 val = iterative_hash_object (two, val);
3765 else
3766 for (i = first_rtl_op (code) - 1; i >= 0; --i)
3767 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
3769 else if (code == TREE_LIST)
3771 /* A list of expressions, for a CALL_EXPR or as the elements of a
3772 VECTOR_CST. */
3773 for (; t; t = TREE_CHAIN (t))
3774 val = iterative_hash_expr (TREE_VALUE (t), val);
3776 else
3777 abort ();
3779 return val;
3782 /* Constructors for pointer, array and function types.
3783 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
3784 constructed by language-dependent code, not here.) */
3786 /* Construct, lay out and return the type of pointers to TO_TYPE
3787 with mode MODE. If such a type has already been constructed,
3788 reuse it. */
3790 tree
3791 build_pointer_type_for_mode (tree to_type, enum machine_mode mode)
3793 tree t = TYPE_POINTER_TO (to_type);
3795 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3796 if (t != 0 && mode == ptr_mode)
3797 return t;
3799 t = make_node (POINTER_TYPE);
3801 TREE_TYPE (t) = to_type;
3802 TYPE_MODE (t) = mode;
3804 /* Record this type as the pointer to TO_TYPE. */
3805 if (mode == ptr_mode)
3806 TYPE_POINTER_TO (to_type) = t;
3808 /* Lay out the type. This function has many callers that are concerned
3809 with expression-construction, and this simplifies them all.
3810 Also, it guarantees the TYPE_SIZE is in the same obstack as the type. */
3811 layout_type (t);
3813 return t;
3816 /* By default build pointers in ptr_mode. */
3818 tree
3819 build_pointer_type (tree to_type)
3821 return build_pointer_type_for_mode (to_type, ptr_mode);
3824 /* Construct, lay out and return the type of references to TO_TYPE
3825 with mode MODE. If such a type has already been constructed,
3826 reuse it. */
3828 tree
3829 build_reference_type_for_mode (tree to_type, enum machine_mode mode)
3831 tree t = TYPE_REFERENCE_TO (to_type);
3833 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3834 if (t != 0 && mode == ptr_mode)
3835 return t;
3837 t = make_node (REFERENCE_TYPE);
3839 TREE_TYPE (t) = to_type;
3840 TYPE_MODE (t) = mode;
3842 /* Record this type as the pointer to TO_TYPE. */
3843 if (mode == ptr_mode)
3844 TYPE_REFERENCE_TO (to_type) = t;
3846 layout_type (t);
3848 return t;
3852 /* Build the node for the type of references-to-TO_TYPE by default
3853 in ptr_mode. */
3855 tree
3856 build_reference_type (tree to_type)
3858 return build_reference_type_for_mode (to_type, ptr_mode);
3861 /* Build a type that is compatible with t but has no cv quals anywhere
3862 in its type, thus
3864 const char *const *const * -> char ***. */
3866 tree
3867 build_type_no_quals (tree t)
3869 switch (TREE_CODE (t))
3871 case POINTER_TYPE:
3872 return build_pointer_type (build_type_no_quals (TREE_TYPE (t)));
3873 case REFERENCE_TYPE:
3874 return build_reference_type (build_type_no_quals (TREE_TYPE (t)));
3875 default:
3876 return TYPE_MAIN_VARIANT (t);
3880 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
3881 MAXVAL should be the maximum value in the domain
3882 (one less than the length of the array).
3884 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
3885 We don't enforce this limit, that is up to caller (e.g. language front end).
3886 The limit exists because the result is a signed type and we don't handle
3887 sizes that use more than one HOST_WIDE_INT. */
3889 tree
3890 build_index_type (tree maxval)
3892 tree itype = make_node (INTEGER_TYPE);
3894 TREE_TYPE (itype) = sizetype;
3895 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
3896 TYPE_MIN_VALUE (itype) = size_zero_node;
3897 TYPE_MAX_VALUE (itype) = convert (sizetype, maxval);
3898 TYPE_MODE (itype) = TYPE_MODE (sizetype);
3899 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
3900 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
3901 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
3902 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
3904 if (host_integerp (maxval, 1))
3905 return type_hash_canon (tree_low_cst (maxval, 1), itype);
3906 else
3907 return itype;
3910 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
3911 ENUMERAL_TYPE, BOOLEAN_TYPE, or CHAR_TYPE), with
3912 low bound LOWVAL and high bound HIGHVAL.
3913 if TYPE==NULL_TREE, sizetype is used. */
3915 tree
3916 build_range_type (tree type, tree lowval, tree highval)
3918 tree itype = make_node (INTEGER_TYPE);
3920 TREE_TYPE (itype) = type;
3921 if (type == NULL_TREE)
3922 type = sizetype;
3924 TYPE_MIN_VALUE (itype) = convert (type, lowval);
3925 TYPE_MAX_VALUE (itype) = highval ? convert (type, highval) : NULL;
3927 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
3928 TYPE_MODE (itype) = TYPE_MODE (type);
3929 TYPE_SIZE (itype) = TYPE_SIZE (type);
3930 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
3931 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
3932 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
3934 if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
3935 return type_hash_canon (tree_low_cst (highval, 0)
3936 - tree_low_cst (lowval, 0),
3937 itype);
3938 else
3939 return itype;
3942 /* Just like build_index_type, but takes lowval and highval instead
3943 of just highval (maxval). */
3945 tree
3946 build_index_2_type (tree lowval, tree highval)
3948 return build_range_type (sizetype, lowval, highval);
3951 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
3952 and number of elements specified by the range of values of INDEX_TYPE.
3953 If such a type has already been constructed, reuse it. */
3955 tree
3956 build_array_type (tree elt_type, tree index_type)
3958 tree t;
3959 hashval_t hashcode = 0;
3961 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
3963 error ("arrays of functions are not meaningful");
3964 elt_type = integer_type_node;
3967 /* Make sure TYPE_POINTER_TO (elt_type) is filled in. */
3968 build_pointer_type (elt_type);
3970 /* Allocate the array after the pointer type,
3971 in case we free it in type_hash_canon. */
3972 t = make_node (ARRAY_TYPE);
3973 TREE_TYPE (t) = elt_type;
3974 TYPE_DOMAIN (t) = index_type;
3976 if (index_type == 0)
3978 return t;
3981 hashcode = iterative_hash_object (TYPE_HASH (elt_type), hashcode);
3982 hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
3983 t = type_hash_canon (hashcode, t);
3985 if (!COMPLETE_TYPE_P (t))
3986 layout_type (t);
3987 return t;
3990 /* Return the TYPE of the elements comprising
3991 the innermost dimension of ARRAY. */
3993 tree
3994 get_inner_array_type (tree array)
3996 tree type = TREE_TYPE (array);
3998 while (TREE_CODE (type) == ARRAY_TYPE)
3999 type = TREE_TYPE (type);
4001 return type;
4004 /* Construct, lay out and return
4005 the type of functions returning type VALUE_TYPE
4006 given arguments of types ARG_TYPES.
4007 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
4008 are data type nodes for the arguments of the function.
4009 If such a type has already been constructed, reuse it. */
4011 tree
4012 build_function_type (tree value_type, tree arg_types)
4014 tree t;
4015 hashval_t hashcode = 0;
4017 if (TREE_CODE (value_type) == FUNCTION_TYPE)
4019 error ("function return type cannot be function");
4020 value_type = integer_type_node;
4023 /* Make a node of the sort we want. */
4024 t = make_node (FUNCTION_TYPE);
4025 TREE_TYPE (t) = value_type;
4026 TYPE_ARG_TYPES (t) = arg_types;
4028 /* If we already have such a type, use the old one and free this one. */
4029 hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
4030 hashcode = type_hash_list (arg_types, hashcode);
4031 t = type_hash_canon (hashcode, t);
4033 if (!COMPLETE_TYPE_P (t))
4034 layout_type (t);
4035 return t;
4038 /* Build a function type. The RETURN_TYPE is the type returned by the
4039 function. If additional arguments are provided, they are
4040 additional argument types. The list of argument types must always
4041 be terminated by NULL_TREE. */
4043 tree
4044 build_function_type_list (tree return_type, ...)
4046 tree t, args, last;
4047 va_list p;
4049 va_start (p, return_type);
4051 t = va_arg (p, tree);
4052 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (p, tree))
4053 args = tree_cons (NULL_TREE, t, args);
4055 last = args;
4056 args = nreverse (args);
4057 TREE_CHAIN (last) = void_list_node;
4058 args = build_function_type (return_type, args);
4060 va_end (p);
4061 return args;
4064 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
4065 and ARGTYPES (a TREE_LIST) are the return type and arguments types
4066 for the method. An implicit additional parameter (of type
4067 pointer-to-BASETYPE) is added to the ARGTYPES. */
4069 tree
4070 build_method_type_directly (tree basetype,
4071 tree rettype,
4072 tree argtypes)
4074 tree t;
4075 tree ptype;
4076 int hashcode = 0;
4078 /* Make a node of the sort we want. */
4079 t = make_node (METHOD_TYPE);
4081 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
4082 TREE_TYPE (t) = rettype;
4083 ptype = build_pointer_type (basetype);
4085 /* The actual arglist for this function includes a "hidden" argument
4086 which is "this". Put it into the list of argument types. */
4087 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
4088 TYPE_ARG_TYPES (t) = argtypes;
4090 /* If we already have such a type, use the old one and free this one.
4091 Note that it also frees up the above cons cell if found. */
4092 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
4093 hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
4094 hashcode = type_hash_list (argtypes, hashcode);
4096 t = type_hash_canon (hashcode, t);
4098 if (!COMPLETE_TYPE_P (t))
4099 layout_type (t);
4101 return t;
4104 /* Construct, lay out and return the type of methods belonging to class
4105 BASETYPE and whose arguments and values are described by TYPE.
4106 If that type exists already, reuse it.
4107 TYPE must be a FUNCTION_TYPE node. */
4109 tree
4110 build_method_type (tree basetype, tree type)
4112 if (TREE_CODE (type) != FUNCTION_TYPE)
4113 abort ();
4115 return build_method_type_directly (basetype,
4116 TREE_TYPE (type),
4117 TYPE_ARG_TYPES (type));
4120 /* Construct, lay out and return the type of offsets to a value
4121 of type TYPE, within an object of type BASETYPE.
4122 If a suitable offset type exists already, reuse it. */
4124 tree
4125 build_offset_type (tree basetype, tree type)
4127 tree t;
4128 hashval_t hashcode = 0;
4130 /* Make a node of the sort we want. */
4131 t = make_node (OFFSET_TYPE);
4133 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
4134 TREE_TYPE (t) = type;
4136 /* If we already have such a type, use the old one and free this one. */
4137 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
4138 hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
4139 t = type_hash_canon (hashcode, t);
4141 if (!COMPLETE_TYPE_P (t))
4142 layout_type (t);
4144 return t;
4147 /* Create a complex type whose components are COMPONENT_TYPE. */
4149 tree
4150 build_complex_type (tree component_type)
4152 tree t;
4153 hashval_t hashcode;
4155 /* Make a node of the sort we want. */
4156 t = make_node (COMPLEX_TYPE);
4158 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
4159 set_type_quals (t, TYPE_QUALS (component_type));
4161 /* If we already have such a type, use the old one and free this one. */
4162 hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
4163 t = type_hash_canon (hashcode, t);
4165 if (!COMPLETE_TYPE_P (t))
4166 layout_type (t);
4168 /* If we are writing Dwarf2 output we need to create a name,
4169 since complex is a fundamental type. */
4170 if ((write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
4171 && ! TYPE_NAME (t))
4173 const char *name;
4174 if (component_type == char_type_node)
4175 name = "complex char";
4176 else if (component_type == signed_char_type_node)
4177 name = "complex signed char";
4178 else if (component_type == unsigned_char_type_node)
4179 name = "complex unsigned char";
4180 else if (component_type == short_integer_type_node)
4181 name = "complex short int";
4182 else if (component_type == short_unsigned_type_node)
4183 name = "complex short unsigned int";
4184 else if (component_type == integer_type_node)
4185 name = "complex int";
4186 else if (component_type == unsigned_type_node)
4187 name = "complex unsigned int";
4188 else if (component_type == long_integer_type_node)
4189 name = "complex long int";
4190 else if (component_type == long_unsigned_type_node)
4191 name = "complex long unsigned int";
4192 else if (component_type == long_long_integer_type_node)
4193 name = "complex long long int";
4194 else if (component_type == long_long_unsigned_type_node)
4195 name = "complex long long unsigned int";
4196 else
4197 name = 0;
4199 if (name != 0)
4200 TYPE_NAME (t) = get_identifier (name);
4203 return t;
4206 /* Return OP, stripped of any conversions to wider types as much as is safe.
4207 Converting the value back to OP's type makes a value equivalent to OP.
4209 If FOR_TYPE is nonzero, we return a value which, if converted to
4210 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
4212 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
4213 narrowest type that can hold the value, even if they don't exactly fit.
4214 Otherwise, bit-field references are changed to a narrower type
4215 only if they can be fetched directly from memory in that type.
4217 OP must have integer, real or enumeral type. Pointers are not allowed!
4219 There are some cases where the obvious value we could return
4220 would regenerate to OP if converted to OP's type,
4221 but would not extend like OP to wider types.
4222 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
4223 For example, if OP is (unsigned short)(signed char)-1,
4224 we avoid returning (signed char)-1 if FOR_TYPE is int,
4225 even though extending that to an unsigned short would regenerate OP,
4226 since the result of extending (signed char)-1 to (int)
4227 is different from (int) OP. */
4229 tree
4230 get_unwidened (tree op, tree for_type)
4232 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
4233 tree type = TREE_TYPE (op);
4234 unsigned final_prec
4235 = TYPE_PRECISION (for_type != 0 ? for_type : type);
4236 int uns
4237 = (for_type != 0 && for_type != type
4238 && final_prec > TYPE_PRECISION (type)
4239 && TREE_UNSIGNED (type));
4240 tree win = op;
4242 while (TREE_CODE (op) == NOP_EXPR)
4244 int bitschange
4245 = TYPE_PRECISION (TREE_TYPE (op))
4246 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
4248 /* Truncations are many-one so cannot be removed.
4249 Unless we are later going to truncate down even farther. */
4250 if (bitschange < 0
4251 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
4252 break;
4254 /* See what's inside this conversion. If we decide to strip it,
4255 we will set WIN. */
4256 op = TREE_OPERAND (op, 0);
4258 /* If we have not stripped any zero-extensions (uns is 0),
4259 we can strip any kind of extension.
4260 If we have previously stripped a zero-extension,
4261 only zero-extensions can safely be stripped.
4262 Any extension can be stripped if the bits it would produce
4263 are all going to be discarded later by truncating to FOR_TYPE. */
4265 if (bitschange > 0)
4267 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
4268 win = op;
4269 /* TREE_UNSIGNED says whether this is a zero-extension.
4270 Let's avoid computing it if it does not affect WIN
4271 and if UNS will not be needed again. */
4272 if ((uns || TREE_CODE (op) == NOP_EXPR)
4273 && TREE_UNSIGNED (TREE_TYPE (op)))
4275 uns = 1;
4276 win = op;
4281 if (TREE_CODE (op) == COMPONENT_REF
4282 /* Since type_for_size always gives an integer type. */
4283 && TREE_CODE (type) != REAL_TYPE
4284 /* Don't crash if field not laid out yet. */
4285 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
4286 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
4288 unsigned int innerprec
4289 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4290 int unsignedp = (TREE_UNSIGNED (TREE_OPERAND (op, 1))
4291 || TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
4292 type = (*lang_hooks.types.type_for_size) (innerprec, unsignedp);
4294 /* We can get this structure field in the narrowest type it fits in.
4295 If FOR_TYPE is 0, do this only for a field that matches the
4296 narrower type exactly and is aligned for it
4297 The resulting extension to its nominal type (a fullword type)
4298 must fit the same conditions as for other extensions. */
4300 if (type != 0
4301 && INT_CST_LT_UNSIGNED (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (op)))
4302 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
4303 && (! uns || final_prec <= innerprec || unsignedp))
4305 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4306 TREE_OPERAND (op, 1));
4307 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4308 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4312 return win;
4315 /* Return OP or a simpler expression for a narrower value
4316 which can be sign-extended or zero-extended to give back OP.
4317 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
4318 or 0 if the value should be sign-extended. */
4320 tree
4321 get_narrower (tree op, int *unsignedp_ptr)
4323 int uns = 0;
4324 int first = 1;
4325 tree win = op;
4327 while (TREE_CODE (op) == NOP_EXPR)
4329 int bitschange
4330 = (TYPE_PRECISION (TREE_TYPE (op))
4331 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
4333 /* Truncations are many-one so cannot be removed. */
4334 if (bitschange < 0)
4335 break;
4337 /* See what's inside this conversion. If we decide to strip it,
4338 we will set WIN. */
4340 if (bitschange > 0)
4342 op = TREE_OPERAND (op, 0);
4343 /* An extension: the outermost one can be stripped,
4344 but remember whether it is zero or sign extension. */
4345 if (first)
4346 uns = TREE_UNSIGNED (TREE_TYPE (op));
4347 /* Otherwise, if a sign extension has been stripped,
4348 only sign extensions can now be stripped;
4349 if a zero extension has been stripped, only zero-extensions. */
4350 else if (uns != TREE_UNSIGNED (TREE_TYPE (op)))
4351 break;
4352 first = 0;
4354 else /* bitschange == 0 */
4356 /* A change in nominal type can always be stripped, but we must
4357 preserve the unsignedness. */
4358 if (first)
4359 uns = TREE_UNSIGNED (TREE_TYPE (op));
4360 first = 0;
4361 op = TREE_OPERAND (op, 0);
4364 win = op;
4367 if (TREE_CODE (op) == COMPONENT_REF
4368 /* Since type_for_size always gives an integer type. */
4369 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
4370 /* Ensure field is laid out already. */
4371 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0)
4373 unsigned HOST_WIDE_INT innerprec
4374 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4375 int unsignedp = (TREE_UNSIGNED (TREE_OPERAND (op, 1))
4376 || TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
4377 tree type = (*lang_hooks.types.type_for_size) (innerprec, unsignedp);
4379 /* We can get this structure field in a narrower type that fits it,
4380 but the resulting extension to its nominal type (a fullword type)
4381 must satisfy the same conditions as for other extensions.
4383 Do this only for fields that are aligned (not bit-fields),
4384 because when bit-field insns will be used there is no
4385 advantage in doing this. */
4387 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4388 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
4389 && (first || uns == TREE_UNSIGNED (TREE_OPERAND (op, 1)))
4390 && type != 0)
4392 if (first)
4393 uns = TREE_UNSIGNED (TREE_OPERAND (op, 1));
4394 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4395 TREE_OPERAND (op, 1));
4396 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4397 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4400 *unsignedp_ptr = uns;
4401 return win;
4404 /* Nonzero if integer constant C has a value that is permissible
4405 for type TYPE (an INTEGER_TYPE). */
4408 int_fits_type_p (tree c, tree type)
4410 tree type_low_bound = TYPE_MIN_VALUE (type);
4411 tree type_high_bound = TYPE_MAX_VALUE (type);
4412 int ok_for_low_bound, ok_for_high_bound;
4414 /* Perform some generic filtering first, which may allow making a decision
4415 even if the bounds are not constant. First, negative integers never fit
4416 in unsigned types, */
4417 if ((TREE_UNSIGNED (type) && tree_int_cst_sgn (c) < 0)
4418 /* Also, unsigned integers with top bit set never fit signed types. */
4419 || (! TREE_UNSIGNED (type)
4420 && TREE_UNSIGNED (TREE_TYPE (c)) && tree_int_cst_msb (c)))
4421 return 0;
4423 /* If at least one bound of the type is a constant integer, we can check
4424 ourselves and maybe make a decision. If no such decision is possible, but
4425 this type is a subtype, try checking against that. Otherwise, use
4426 force_fit_type, which checks against the precision.
4428 Compute the status for each possibly constant bound, and return if we see
4429 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
4430 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
4431 for "constant known to fit". */
4433 ok_for_low_bound = -1;
4434 ok_for_high_bound = -1;
4436 /* Check if C >= type_low_bound. */
4437 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
4439 ok_for_low_bound = ! tree_int_cst_lt (c, type_low_bound);
4440 if (! ok_for_low_bound)
4441 return 0;
4444 /* Check if c <= type_high_bound. */
4445 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
4447 ok_for_high_bound = ! tree_int_cst_lt (type_high_bound, c);
4448 if (! ok_for_high_bound)
4449 return 0;
4452 /* If the constant fits both bounds, the result is known. */
4453 if (ok_for_low_bound == 1 && ok_for_high_bound == 1)
4454 return 1;
4456 /* If we haven't been able to decide at this point, there nothing more we
4457 can check ourselves here. Look at the base type if we have one. */
4458 else if (TREE_CODE (type) == INTEGER_TYPE && TREE_TYPE (type) != 0)
4459 return int_fits_type_p (c, TREE_TYPE (type));
4461 /* Or to force_fit_type, if nothing else. */
4462 else
4464 c = copy_node (c);
4465 TREE_TYPE (c) = type;
4466 return !force_fit_type (c, 0);
4470 /* Returns true if T is, contains, or refers to a type with variable
4471 size. This concept is more general than that of C99 'variably
4472 modified types': in C99, a struct type is never variably modified
4473 because a VLA may not appear as a structure member. However, in
4474 GNU C code like:
4476 struct S { int i[f()]; };
4478 is valid, and other languages may define similar constructs. */
4480 bool
4481 variably_modified_type_p (tree type)
4483 tree t;
4485 if (type == error_mark_node)
4486 return false;
4488 /* If TYPE itself has variable size, it is variably modified.
4490 We do not yet have a representation of the C99 '[*]' syntax.
4491 When a representation is chosen, this function should be modified
4492 to test for that case as well. */
4493 t = TYPE_SIZE (type);
4494 if (t && t != error_mark_node && TREE_CODE (t) != INTEGER_CST)
4495 return true;
4497 switch (TREE_CODE (type))
4499 case POINTER_TYPE:
4500 case REFERENCE_TYPE:
4501 case ARRAY_TYPE:
4502 /* If TYPE is a pointer or reference, it is variably modified if
4503 the type pointed to is variably modified. Similarly for arrays;
4504 note that VLAs are handled by the TYPE_SIZE check above. */
4505 return variably_modified_type_p (TREE_TYPE (type));
4507 case FUNCTION_TYPE:
4508 case METHOD_TYPE:
4509 /* If TYPE is a function type, it is variably modified if any of the
4510 parameters or the return type are variably modified. */
4512 tree parm;
4514 if (variably_modified_type_p (TREE_TYPE (type)))
4515 return true;
4516 for (parm = TYPE_ARG_TYPES (type);
4517 parm && parm != void_list_node;
4518 parm = TREE_CHAIN (parm))
4519 if (variably_modified_type_p (TREE_VALUE (parm)))
4520 return true;
4522 break;
4524 case INTEGER_TYPE:
4525 /* Scalar types are variably modified if their end points
4526 aren't constant. */
4527 t = TYPE_MIN_VALUE (type);
4528 if (t && t != error_mark_node && TREE_CODE (t) != INTEGER_CST)
4529 return true;
4530 t = TYPE_MAX_VALUE (type);
4531 if (t && t != error_mark_node && TREE_CODE (t) != INTEGER_CST)
4532 return true;
4533 return false;
4535 default:
4536 break;
4539 /* The current language may have other cases to check, but in general,
4540 all other types are not variably modified. */
4541 return (*lang_hooks.tree_inlining.var_mod_type_p) (type);
4544 /* Given a DECL or TYPE, return the scope in which it was declared, or
4545 NULL_TREE if there is no containing scope. */
4547 tree
4548 get_containing_scope (tree t)
4550 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
4553 /* Return the innermost context enclosing DECL that is
4554 a FUNCTION_DECL, or zero if none. */
4556 tree
4557 decl_function_context (tree decl)
4559 tree context;
4561 if (TREE_CODE (decl) == ERROR_MARK)
4562 return 0;
4564 if (TREE_CODE (decl) == SAVE_EXPR)
4565 context = SAVE_EXPR_CONTEXT (decl);
4567 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
4568 where we look up the function at runtime. Such functions always take
4569 a first argument of type 'pointer to real context'.
4571 C++ should really be fixed to use DECL_CONTEXT for the real context,
4572 and use something else for the "virtual context". */
4573 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
4574 context
4575 = TYPE_MAIN_VARIANT
4576 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4577 else
4578 context = DECL_CONTEXT (decl);
4580 while (context && TREE_CODE (context) != FUNCTION_DECL)
4582 if (TREE_CODE (context) == BLOCK)
4583 context = BLOCK_SUPERCONTEXT (context);
4584 else
4585 context = get_containing_scope (context);
4588 return context;
4591 /* Return the innermost context enclosing DECL that is
4592 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
4593 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
4595 tree
4596 decl_type_context (tree decl)
4598 tree context = DECL_CONTEXT (decl);
4600 while (context)
4601 switch (TREE_CODE (context))
4603 case NAMESPACE_DECL:
4604 case TRANSLATION_UNIT_DECL:
4605 return NULL_TREE;
4607 case RECORD_TYPE:
4608 case UNION_TYPE:
4609 case QUAL_UNION_TYPE:
4610 return context;
4612 case TYPE_DECL:
4613 case FUNCTION_DECL:
4614 context = DECL_CONTEXT (context);
4615 break;
4617 case BLOCK:
4618 context = BLOCK_SUPERCONTEXT (context);
4619 break;
4621 default:
4622 abort ();
4625 return NULL_TREE;
4628 /* CALL is a CALL_EXPR. Return the declaration for the function
4629 called, or NULL_TREE if the called function cannot be
4630 determined. */
4632 tree
4633 get_callee_fndecl (tree call)
4635 tree addr;
4637 /* It's invalid to call this function with anything but a
4638 CALL_EXPR. */
4639 if (TREE_CODE (call) != CALL_EXPR)
4640 abort ();
4642 /* The first operand to the CALL is the address of the function
4643 called. */
4644 addr = TREE_OPERAND (call, 0);
4646 STRIP_NOPS (addr);
4648 /* If this is a readonly function pointer, extract its initial value. */
4649 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
4650 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
4651 && DECL_INITIAL (addr))
4652 addr = DECL_INITIAL (addr);
4654 /* If the address is just `&f' for some function `f', then we know
4655 that `f' is being called. */
4656 if (TREE_CODE (addr) == ADDR_EXPR
4657 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
4658 return TREE_OPERAND (addr, 0);
4660 /* We couldn't figure out what was being called. Maybe the front
4661 end has some idea. */
4662 return (*lang_hooks.lang_get_callee_fndecl) (call);
4665 /* Print debugging information about tree nodes generated during the compile,
4666 and any language-specific information. */
4668 void
4669 dump_tree_statistics (void)
4671 #ifdef GATHER_STATISTICS
4672 int i;
4673 int total_nodes, total_bytes;
4674 #endif
4676 fprintf (stderr, "\n??? tree nodes created\n\n");
4677 #ifdef GATHER_STATISTICS
4678 fprintf (stderr, "Kind Nodes Bytes\n");
4679 fprintf (stderr, "---------------------------------------\n");
4680 total_nodes = total_bytes = 0;
4681 for (i = 0; i < (int) all_kinds; i++)
4683 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
4684 tree_node_counts[i], tree_node_sizes[i]);
4685 total_nodes += tree_node_counts[i];
4686 total_bytes += tree_node_sizes[i];
4688 fprintf (stderr, "---------------------------------------\n");
4689 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
4690 fprintf (stderr, "---------------------------------------\n");
4691 #else
4692 fprintf (stderr, "(No per-node statistics)\n");
4693 #endif
4694 print_type_hash_statistics ();
4695 (*lang_hooks.print_statistics) ();
4698 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
4700 /* Generate a crc32 of a string. */
4702 unsigned
4703 crc32_string (unsigned chksum, const char *string)
4707 unsigned value = *string << 24;
4708 unsigned ix;
4710 for (ix = 8; ix--; value <<= 1)
4712 unsigned feedback;
4714 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
4715 chksum <<= 1;
4716 chksum ^= feedback;
4719 while (*string++);
4720 return chksum;
4723 /* P is a string that will be used in a symbol. Mask out any characters
4724 that are not valid in that context. */
4726 void
4727 clean_symbol_name (char *p)
4729 for (; *p; p++)
4730 if (! (ISALNUM (*p)
4731 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
4732 || *p == '$'
4733 #endif
4734 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
4735 || *p == '.'
4736 #endif
4738 *p = '_';
4741 /* Generate a name for a function unique to this translation unit.
4742 TYPE is some string to identify the purpose of this function to the
4743 linker or collect2. */
4745 tree
4746 get_file_function_name_long (const char *type)
4748 char *buf;
4749 const char *p;
4750 char *q;
4752 if (first_global_object_name)
4753 p = first_global_object_name;
4754 else
4756 /* We don't have anything that we know to be unique to this translation
4757 unit, so use what we do have and throw in some randomness. */
4758 unsigned len;
4759 const char *name = weak_global_object_name;
4760 const char *file = main_input_filename;
4762 if (! name)
4763 name = "";
4764 if (! file)
4765 file = input_filename;
4767 len = strlen (file);
4768 q = alloca (9 * 2 + len + 1);
4769 memcpy (q, file, len + 1);
4770 clean_symbol_name (q);
4772 sprintf (q + len, "_%08X_%08X", crc32_string (0, name),
4773 crc32_string (0, flag_random_seed));
4775 p = q;
4778 buf = alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p) + strlen (type));
4780 /* Set up the name of the file-level functions we may need.
4781 Use a global object (which is already required to be unique over
4782 the program) rather than the file name (which imposes extra
4783 constraints). */
4784 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
4786 return get_identifier (buf);
4789 /* If KIND=='I', return a suitable global initializer (constructor) name.
4790 If KIND=='D', return a suitable global clean-up (destructor) name. */
4792 tree
4793 get_file_function_name (int kind)
4795 char p[2];
4797 p[0] = kind;
4798 p[1] = 0;
4800 return get_file_function_name_long (p);
4803 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4804 The result is placed in BUFFER (which has length BIT_SIZE),
4805 with one bit in each char ('\000' or '\001').
4807 If the constructor is constant, NULL_TREE is returned.
4808 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4810 tree
4811 get_set_constructor_bits (tree init, char *buffer, int bit_size)
4813 int i;
4814 tree vals;
4815 HOST_WIDE_INT domain_min
4816 = tree_low_cst (TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (init))), 0);
4817 tree non_const_bits = NULL_TREE;
4819 for (i = 0; i < bit_size; i++)
4820 buffer[i] = 0;
4822 for (vals = TREE_OPERAND (init, 1);
4823 vals != NULL_TREE; vals = TREE_CHAIN (vals))
4825 if (!host_integerp (TREE_VALUE (vals), 0)
4826 || (TREE_PURPOSE (vals) != NULL_TREE
4827 && !host_integerp (TREE_PURPOSE (vals), 0)))
4828 non_const_bits
4829 = tree_cons (TREE_PURPOSE (vals), TREE_VALUE (vals), non_const_bits);
4830 else if (TREE_PURPOSE (vals) != NULL_TREE)
4832 /* Set a range of bits to ones. */
4833 HOST_WIDE_INT lo_index
4834 = tree_low_cst (TREE_PURPOSE (vals), 0) - domain_min;
4835 HOST_WIDE_INT hi_index
4836 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
4838 if (lo_index < 0 || lo_index >= bit_size
4839 || hi_index < 0 || hi_index >= bit_size)
4840 abort ();
4841 for (; lo_index <= hi_index; lo_index++)
4842 buffer[lo_index] = 1;
4844 else
4846 /* Set a single bit to one. */
4847 HOST_WIDE_INT index
4848 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
4849 if (index < 0 || index >= bit_size)
4851 error ("invalid initializer for bit string");
4852 return NULL_TREE;
4854 buffer[index] = 1;
4857 return non_const_bits;
4860 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4861 The result is placed in BUFFER (which is an array of bytes).
4862 If the constructor is constant, NULL_TREE is returned.
4863 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4865 tree
4866 get_set_constructor_bytes (tree init, unsigned char *buffer, int wd_size)
4868 int i;
4869 int set_word_size = BITS_PER_UNIT;
4870 int bit_size = wd_size * set_word_size;
4871 int bit_pos = 0;
4872 unsigned char *bytep = buffer;
4873 char *bit_buffer = alloca (bit_size);
4874 tree non_const_bits = get_set_constructor_bits (init, bit_buffer, bit_size);
4876 for (i = 0; i < wd_size; i++)
4877 buffer[i] = 0;
4879 for (i = 0; i < bit_size; i++)
4881 if (bit_buffer[i])
4883 if (BYTES_BIG_ENDIAN)
4884 *bytep |= (1 << (set_word_size - 1 - bit_pos));
4885 else
4886 *bytep |= 1 << bit_pos;
4888 bit_pos++;
4889 if (bit_pos >= set_word_size)
4890 bit_pos = 0, bytep++;
4892 return non_const_bits;
4895 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
4896 /* Complain that the tree code of NODE does not match the expected CODE.
4897 FILE, LINE, and FUNCTION are of the caller. */
4899 void
4900 tree_check_failed (const tree node, enum tree_code code, const char *file,
4901 int line, const char *function)
4903 internal_error ("tree check: expected %s, have %s in %s, at %s:%d",
4904 tree_code_name[code], tree_code_name[TREE_CODE (node)],
4905 function, trim_filename (file), line);
4908 /* Similar to above, except that we check for a class of tree
4909 code, given in CL. */
4911 void
4912 tree_class_check_failed (const tree node, int cl, const char *file,
4913 int line, const char *function)
4915 internal_error
4916 ("tree check: expected class '%c', have '%c' (%s) in %s, at %s:%d",
4917 cl, TREE_CODE_CLASS (TREE_CODE (node)),
4918 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
4921 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
4922 (dynamically sized) vector. */
4924 void
4925 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
4926 const char *function)
4928 internal_error
4929 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
4930 idx + 1, len, function, trim_filename (file), line);
4933 /* Similar to above, except that the check is for the bounds of the operand
4934 vector of an expression node. */
4936 void
4937 tree_operand_check_failed (int idx, enum tree_code code, const char *file,
4938 int line, const char *function)
4940 internal_error
4941 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
4942 idx + 1, tree_code_name[code], TREE_CODE_LENGTH (code),
4943 function, trim_filename (file), line);
4945 #endif /* ENABLE_TREE_CHECKING */
4947 /* For a new vector type node T, build the information necessary for
4948 debugging output. */
4950 static void
4951 finish_vector_type (tree t)
4953 layout_type (t);
4956 tree index = build_int_2 (TYPE_VECTOR_SUBPARTS (t) - 1, 0);
4957 tree array = build_array_type (TREE_TYPE (t),
4958 build_index_type (index));
4959 tree rt = make_node (RECORD_TYPE);
4961 TYPE_FIELDS (rt) = build_decl (FIELD_DECL, get_identifier ("f"), array);
4962 DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
4963 layout_type (rt);
4964 TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
4965 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
4966 the representation type, and we want to find that die when looking up
4967 the vector type. This is most easily achieved by making the TYPE_UID
4968 numbers equal. */
4969 TYPE_UID (rt) = TYPE_UID (t);
4973 /* Create nodes for all integer types (and error_mark_node) using the sizes
4974 of C datatypes. The caller should call set_sizetype soon after calling
4975 this function to select one of the types as sizetype. */
4977 void
4978 build_common_tree_nodes (int signed_char)
4980 error_mark_node = make_node (ERROR_MARK);
4981 TREE_TYPE (error_mark_node) = error_mark_node;
4983 initialize_sizetypes ();
4985 /* Define both `signed char' and `unsigned char'. */
4986 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
4987 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
4989 /* Define `char', which is like either `signed char' or `unsigned char'
4990 but not the same as either. */
4991 char_type_node
4992 = (signed_char
4993 ? make_signed_type (CHAR_TYPE_SIZE)
4994 : make_unsigned_type (CHAR_TYPE_SIZE));
4996 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
4997 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
4998 integer_type_node = make_signed_type (INT_TYPE_SIZE);
4999 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
5000 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
5001 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
5002 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
5003 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
5005 /* Define a boolean type. This type only represents boolean values but
5006 may be larger than char depending on the value of BOOL_TYPE_SIZE.
5007 Front ends which want to override this size (i.e. Java) can redefine
5008 boolean_type_node before calling build_common_tree_nodes_2. */
5009 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
5010 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
5011 TYPE_MAX_VALUE (boolean_type_node) = build_int_2 (1, 0);
5012 TREE_TYPE (TYPE_MAX_VALUE (boolean_type_node)) = boolean_type_node;
5013 TYPE_PRECISION (boolean_type_node) = 1;
5015 intQI_type_node = make_signed_type (GET_MODE_BITSIZE (QImode));
5016 intHI_type_node = make_signed_type (GET_MODE_BITSIZE (HImode));
5017 intSI_type_node = make_signed_type (GET_MODE_BITSIZE (SImode));
5018 intDI_type_node = make_signed_type (GET_MODE_BITSIZE (DImode));
5019 intTI_type_node = make_signed_type (GET_MODE_BITSIZE (TImode));
5021 unsigned_intQI_type_node = make_unsigned_type (GET_MODE_BITSIZE (QImode));
5022 unsigned_intHI_type_node = make_unsigned_type (GET_MODE_BITSIZE (HImode));
5023 unsigned_intSI_type_node = make_unsigned_type (GET_MODE_BITSIZE (SImode));
5024 unsigned_intDI_type_node = make_unsigned_type (GET_MODE_BITSIZE (DImode));
5025 unsigned_intTI_type_node = make_unsigned_type (GET_MODE_BITSIZE (TImode));
5027 access_public_node = get_identifier ("public");
5028 access_protected_node = get_identifier ("protected");
5029 access_private_node = get_identifier ("private");
5032 /* Call this function after calling build_common_tree_nodes and set_sizetype.
5033 It will create several other common tree nodes. */
5035 void
5036 build_common_tree_nodes_2 (int short_double)
5038 /* Define these next since types below may used them. */
5039 integer_zero_node = build_int_2 (0, 0);
5040 integer_one_node = build_int_2 (1, 0);
5041 integer_minus_one_node = build_int_2 (-1, -1);
5043 size_zero_node = size_int (0);
5044 size_one_node = size_int (1);
5045 bitsize_zero_node = bitsize_int (0);
5046 bitsize_one_node = bitsize_int (1);
5047 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
5049 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
5050 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
5052 void_type_node = make_node (VOID_TYPE);
5053 layout_type (void_type_node);
5055 /* We are not going to have real types in C with less than byte alignment,
5056 so we might as well not have any types that claim to have it. */
5057 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
5058 TYPE_USER_ALIGN (void_type_node) = 0;
5060 null_pointer_node = build_int_2 (0, 0);
5061 TREE_TYPE (null_pointer_node) = build_pointer_type (void_type_node);
5062 layout_type (TREE_TYPE (null_pointer_node));
5064 ptr_type_node = build_pointer_type (void_type_node);
5065 const_ptr_type_node
5066 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
5068 float_type_node = make_node (REAL_TYPE);
5069 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
5070 layout_type (float_type_node);
5072 double_type_node = make_node (REAL_TYPE);
5073 if (short_double)
5074 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
5075 else
5076 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
5077 layout_type (double_type_node);
5079 long_double_type_node = make_node (REAL_TYPE);
5080 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
5081 layout_type (long_double_type_node);
5083 float_ptr_type_node = build_pointer_type (float_type_node);
5084 double_ptr_type_node = build_pointer_type (double_type_node);
5085 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
5086 integer_ptr_type_node = build_pointer_type (integer_type_node);
5088 complex_integer_type_node = make_node (COMPLEX_TYPE);
5089 TREE_TYPE (complex_integer_type_node) = integer_type_node;
5090 layout_type (complex_integer_type_node);
5092 complex_float_type_node = make_node (COMPLEX_TYPE);
5093 TREE_TYPE (complex_float_type_node) = float_type_node;
5094 layout_type (complex_float_type_node);
5096 complex_double_type_node = make_node (COMPLEX_TYPE);
5097 TREE_TYPE (complex_double_type_node) = double_type_node;
5098 layout_type (complex_double_type_node);
5100 complex_long_double_type_node = make_node (COMPLEX_TYPE);
5101 TREE_TYPE (complex_long_double_type_node) = long_double_type_node;
5102 layout_type (complex_long_double_type_node);
5105 tree t = (*targetm.build_builtin_va_list) ();
5107 /* Many back-ends define record types without setting TYPE_NAME.
5108 If we copied the record type here, we'd keep the original
5109 record type without a name. This breaks name mangling. So,
5110 don't copy record types and let c_common_nodes_and_builtins()
5111 declare the type to be __builtin_va_list. */
5112 if (TREE_CODE (t) != RECORD_TYPE)
5113 t = build_type_copy (t);
5115 va_list_type_node = t;
5118 unsigned_V4SI_type_node
5119 = make_vector (V4SImode, unsigned_intSI_type_node, 1);
5120 unsigned_V2HI_type_node
5121 = make_vector (V2HImode, unsigned_intHI_type_node, 1);
5122 unsigned_V2SI_type_node
5123 = make_vector (V2SImode, unsigned_intSI_type_node, 1);
5124 unsigned_V2DI_type_node
5125 = make_vector (V2DImode, unsigned_intDI_type_node, 1);
5126 unsigned_V4HI_type_node
5127 = make_vector (V4HImode, unsigned_intHI_type_node, 1);
5128 unsigned_V8QI_type_node
5129 = make_vector (V8QImode, unsigned_intQI_type_node, 1);
5130 unsigned_V8HI_type_node
5131 = make_vector (V8HImode, unsigned_intHI_type_node, 1);
5132 unsigned_V16QI_type_node
5133 = make_vector (V16QImode, unsigned_intQI_type_node, 1);
5134 unsigned_V1DI_type_node
5135 = make_vector (V1DImode, unsigned_intDI_type_node, 1);
5137 V16SF_type_node = make_vector (V16SFmode, float_type_node, 0);
5138 V4SF_type_node = make_vector (V4SFmode, float_type_node, 0);
5139 V4SI_type_node = make_vector (V4SImode, intSI_type_node, 0);
5140 V2HI_type_node = make_vector (V2HImode, intHI_type_node, 0);
5141 V2SI_type_node = make_vector (V2SImode, intSI_type_node, 0);
5142 V2DI_type_node = make_vector (V2DImode, intDI_type_node, 0);
5143 V4HI_type_node = make_vector (V4HImode, intHI_type_node, 0);
5144 V8QI_type_node = make_vector (V8QImode, intQI_type_node, 0);
5145 V8HI_type_node = make_vector (V8HImode, intHI_type_node, 0);
5146 V2SF_type_node = make_vector (V2SFmode, float_type_node, 0);
5147 V2DF_type_node = make_vector (V2DFmode, double_type_node, 0);
5148 V16QI_type_node = make_vector (V16QImode, intQI_type_node, 0);
5149 V1DI_type_node = make_vector (V1DImode, intDI_type_node, 0);
5150 V4DF_type_node = make_vector (V4DFmode, double_type_node, 0);
5153 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
5154 better way.
5156 If we requested a pointer to a vector, build up the pointers that
5157 we stripped off while looking for the inner type. Similarly for
5158 return values from functions.
5160 The argument TYPE is the top of the chain, and BOTTOM is the
5161 new type which we will point to. */
5163 tree
5164 reconstruct_complex_type (tree type, tree bottom)
5166 tree inner, outer;
5168 if (POINTER_TYPE_P (type))
5170 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
5171 outer = build_pointer_type (inner);
5173 else if (TREE_CODE (type) == ARRAY_TYPE)
5175 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
5176 outer = build_array_type (inner, TYPE_DOMAIN (type));
5178 else if (TREE_CODE (type) == FUNCTION_TYPE)
5180 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
5181 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
5183 else if (TREE_CODE (type) == METHOD_TYPE)
5185 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
5186 outer = build_method_type_directly (TYPE_METHOD_BASETYPE (type),
5187 inner,
5188 TYPE_ARG_TYPES (type));
5190 else
5191 return bottom;
5193 TREE_READONLY (outer) = TREE_READONLY (type);
5194 TREE_THIS_VOLATILE (outer) = TREE_THIS_VOLATILE (type);
5196 return outer;
5199 /* Returns a vector tree node given a vector mode, the inner type, and
5200 the signness. */
5202 tree
5203 make_vector (enum machine_mode mode, tree innertype, int unsignedp)
5205 tree t;
5207 t = make_node (VECTOR_TYPE);
5208 TREE_TYPE (t) = innertype;
5209 TYPE_MODE (t) = mode;
5210 TREE_UNSIGNED (TREE_TYPE (t)) = unsignedp;
5211 finish_vector_type (t);
5213 return t;
5216 /* Given an initializer INIT, return TRUE if INIT is zero or some
5217 aggregate of zeros. Otherwise return FALSE. */
5219 bool
5220 initializer_zerop (tree init)
5222 STRIP_NOPS (init);
5224 switch (TREE_CODE (init))
5226 case INTEGER_CST:
5227 return integer_zerop (init);
5228 case REAL_CST:
5229 return real_zerop (init)
5230 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
5231 case COMPLEX_CST:
5232 return integer_zerop (init)
5233 || (real_zerop (init)
5234 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
5235 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
5236 case CONSTRUCTOR:
5238 /* Set is empty if it has no elements. */
5239 if ((TREE_CODE (TREE_TYPE (init)) == SET_TYPE)
5240 && CONSTRUCTOR_ELTS (init))
5241 return false;
5243 if (AGGREGATE_TYPE_P (TREE_TYPE (init)))
5245 tree aggr_init = CONSTRUCTOR_ELTS (init);
5247 while (aggr_init)
5249 if (! initializer_zerop (TREE_VALUE (aggr_init)))
5250 return false;
5251 aggr_init = TREE_CHAIN (aggr_init);
5253 return true;
5255 return false;
5257 default:
5258 return false;
5262 #include "gt-tree.h"