(*zeroextract[qs]i_compare0_scratch): Use const_int_operand
[official-gcc.git] / gcc / unroll.c
blobe5b1e0ecb9d9ed09579693a7ac6731ceb4ff8824
1 /* Try to unroll loops, and split induction variables.
2 Copyright (C) 1992, 1993, 1994, 1995 Free Software Foundation, Inc.
3 Contributed by James E. Wilson, Cygnus Support/UC Berkeley.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 /* Try to unroll a loop, and split induction variables.
24 Loops for which the number of iterations can be calculated exactly are
25 handled specially. If the number of iterations times the insn_count is
26 less than MAX_UNROLLED_INSNS, then the loop is unrolled completely.
27 Otherwise, we try to unroll the loop a number of times modulo the number
28 of iterations, so that only one exit test will be needed. It is unrolled
29 a number of times approximately equal to MAX_UNROLLED_INSNS divided by
30 the insn count.
32 Otherwise, if the number of iterations can be calculated exactly at
33 run time, and the loop is always entered at the top, then we try to
34 precondition the loop. That is, at run time, calculate how many times
35 the loop will execute, and then execute the loop body a few times so
36 that the remaining iterations will be some multiple of 4 (or 2 if the
37 loop is large). Then fall through to a loop unrolled 4 (or 2) times,
38 with only one exit test needed at the end of the loop.
40 Otherwise, if the number of iterations can not be calculated exactly,
41 not even at run time, then we still unroll the loop a number of times
42 approximately equal to MAX_UNROLLED_INSNS divided by the insn count,
43 but there must be an exit test after each copy of the loop body.
45 For each induction variable, which is dead outside the loop (replaceable)
46 or for which we can easily calculate the final value, if we can easily
47 calculate its value at each place where it is set as a function of the
48 current loop unroll count and the variable's value at loop entry, then
49 the induction variable is split into `N' different variables, one for
50 each copy of the loop body. One variable is live across the backward
51 branch, and the others are all calculated as a function of this variable.
52 This helps eliminate data dependencies, and leads to further opportunities
53 for cse. */
55 /* Possible improvements follow: */
57 /* ??? Add an extra pass somewhere to determine whether unrolling will
58 give any benefit. E.g. after generating all unrolled insns, compute the
59 cost of all insns and compare against cost of insns in rolled loop.
61 - On traditional architectures, unrolling a non-constant bound loop
62 is a win if there is a giv whose only use is in memory addresses, the
63 memory addresses can be split, and hence giv increments can be
64 eliminated.
65 - It is also a win if the loop is executed many times, and preconditioning
66 can be performed for the loop.
67 Add code to check for these and similar cases. */
69 /* ??? Improve control of which loops get unrolled. Could use profiling
70 info to only unroll the most commonly executed loops. Perhaps have
71 a user specifyable option to control the amount of code expansion,
72 or the percent of loops to consider for unrolling. Etc. */
74 /* ??? Look at the register copies inside the loop to see if they form a
75 simple permutation. If so, iterate the permutation until it gets back to
76 the start state. This is how many times we should unroll the loop, for
77 best results, because then all register copies can be eliminated.
78 For example, the lisp nreverse function should be unrolled 3 times
79 while (this)
81 next = this->cdr;
82 this->cdr = prev;
83 prev = this;
84 this = next;
87 ??? The number of times to unroll the loop may also be based on data
88 references in the loop. For example, if we have a loop that references
89 x[i-1], x[i], and x[i+1], we should unroll it a multiple of 3 times. */
91 /* ??? Add some simple linear equation solving capability so that we can
92 determine the number of loop iterations for more complex loops.
93 For example, consider this loop from gdb
94 #define SWAP_TARGET_AND_HOST(buffer,len)
96 char tmp;
97 char *p = (char *) buffer;
98 char *q = ((char *) buffer) + len - 1;
99 int iterations = (len + 1) >> 1;
100 int i;
101 for (p; p < q; p++, q--;)
103 tmp = *q;
104 *q = *p;
105 *p = tmp;
108 Note that:
109 start value = p = &buffer + current_iteration
110 end value = q = &buffer + len - 1 - current_iteration
111 Given the loop exit test of "p < q", then there must be "q - p" iterations,
112 set equal to zero and solve for number of iterations:
113 q - p = len - 1 - 2*current_iteration = 0
114 current_iteration = (len - 1) / 2
115 Hence, there are (len - 1) / 2 (rounded up to the nearest integer)
116 iterations of this loop. */
118 /* ??? Currently, no labels are marked as loop invariant when doing loop
119 unrolling. This is because an insn inside the loop, that loads the address
120 of a label inside the loop into a register, could be moved outside the loop
121 by the invariant code motion pass if labels were invariant. If the loop
122 is subsequently unrolled, the code will be wrong because each unrolled
123 body of the loop will use the same address, whereas each actually needs a
124 different address. A case where this happens is when a loop containing
125 a switch statement is unrolled.
127 It would be better to let labels be considered invariant. When we
128 unroll loops here, check to see if any insns using a label local to the
129 loop were moved before the loop. If so, then correct the problem, by
130 moving the insn back into the loop, or perhaps replicate the insn before
131 the loop, one copy for each time the loop is unrolled. */
133 /* The prime factors looked for when trying to unroll a loop by some
134 number which is modulo the total number of iterations. Just checking
135 for these 4 prime factors will find at least one factor for 75% of
136 all numbers theoretically. Practically speaking, this will succeed
137 almost all of the time since loops are generally a multiple of 2
138 and/or 5. */
140 #define NUM_FACTORS 4
142 struct _factor { int factor, count; } factors[NUM_FACTORS]
143 = { {2, 0}, {3, 0}, {5, 0}, {7, 0}};
145 /* Describes the different types of loop unrolling performed. */
147 enum unroll_types { UNROLL_COMPLETELY, UNROLL_MODULO, UNROLL_NAIVE };
149 #include "config.h"
150 #include "rtl.h"
151 #include "insn-config.h"
152 #include "integrate.h"
153 #include "regs.h"
154 #include "flags.h"
155 #include "expr.h"
156 #include <stdio.h>
157 #include "loop.h"
159 /* This controls which loops are unrolled, and by how much we unroll
160 them. */
162 #ifndef MAX_UNROLLED_INSNS
163 #define MAX_UNROLLED_INSNS 100
164 #endif
166 /* Indexed by register number, if non-zero, then it contains a pointer
167 to a struct induction for a DEST_REG giv which has been combined with
168 one of more address givs. This is needed because whenever such a DEST_REG
169 giv is modified, we must modify the value of all split address givs
170 that were combined with this DEST_REG giv. */
172 static struct induction **addr_combined_regs;
174 /* Indexed by register number, if this is a splittable induction variable,
175 then this will hold the current value of the register, which depends on the
176 iteration number. */
178 static rtx *splittable_regs;
180 /* Indexed by register number, if this is a splittable induction variable,
181 then this will hold the number of instructions in the loop that modify
182 the induction variable. Used to ensure that only the last insn modifying
183 a split iv will update the original iv of the dest. */
185 static int *splittable_regs_updates;
187 /* Values describing the current loop's iteration variable. These are set up
188 by loop_iterations, and used by precondition_loop_p. */
190 static rtx loop_iteration_var;
191 static rtx loop_initial_value;
192 static rtx loop_increment;
193 static rtx loop_final_value;
195 /* Forward declarations. */
197 static void init_reg_map PROTO((struct inline_remap *, int));
198 static int precondition_loop_p PROTO((rtx *, rtx *, rtx *, rtx, rtx));
199 static rtx calculate_giv_inc PROTO((rtx, rtx, int));
200 static rtx initial_reg_note_copy PROTO((rtx, struct inline_remap *));
201 static void final_reg_note_copy PROTO((rtx, struct inline_remap *));
202 static void copy_loop_body PROTO((rtx, rtx, struct inline_remap *, rtx, int,
203 enum unroll_types, rtx, rtx, rtx, rtx));
204 static void iteration_info PROTO((rtx, rtx *, rtx *, rtx, rtx));
205 static rtx approx_final_value PROTO((enum rtx_code, rtx, int *, int *));
206 static int find_splittable_regs PROTO((enum unroll_types, rtx, rtx, rtx, int));
207 static int find_splittable_givs PROTO((struct iv_class *,enum unroll_types,
208 rtx, rtx, rtx, int));
209 static int reg_dead_after_loop PROTO((rtx, rtx, rtx));
210 static rtx fold_rtx_mult_add PROTO((rtx, rtx, rtx, enum machine_mode));
211 static rtx remap_split_bivs PROTO((rtx));
213 /* Try to unroll one loop and split induction variables in the loop.
215 The loop is described by the arguments LOOP_END, INSN_COUNT, and
216 LOOP_START. END_INSERT_BEFORE indicates where insns should be added
217 which need to be executed when the loop falls through. STRENGTH_REDUCTION_P
218 indicates whether information generated in the strength reduction pass
219 is available.
221 This function is intended to be called from within `strength_reduce'
222 in loop.c. */
224 void
225 unroll_loop (loop_end, insn_count, loop_start, end_insert_before,
226 strength_reduce_p)
227 rtx loop_end;
228 int insn_count;
229 rtx loop_start;
230 rtx end_insert_before;
231 int strength_reduce_p;
233 int i, j, temp;
234 int unroll_number = 1;
235 rtx copy_start, copy_end;
236 rtx insn, copy, sequence, pattern, tem;
237 int max_labelno, max_insnno;
238 rtx insert_before;
239 struct inline_remap *map;
240 char *local_label;
241 char *local_regno;
242 int maxregnum;
243 int new_maxregnum;
244 rtx exit_label = 0;
245 rtx start_label;
246 struct iv_class *bl;
247 int splitting_not_safe = 0;
248 enum unroll_types unroll_type;
249 int loop_preconditioned = 0;
250 rtx safety_label;
251 /* This points to the last real insn in the loop, which should be either
252 a JUMP_INSN (for conditional jumps) or a BARRIER (for unconditional
253 jumps). */
254 rtx last_loop_insn;
256 /* Don't bother unrolling huge loops. Since the minimum factor is
257 two, loops greater than one half of MAX_UNROLLED_INSNS will never
258 be unrolled. */
259 if (insn_count > MAX_UNROLLED_INSNS / 2)
261 if (loop_dump_stream)
262 fprintf (loop_dump_stream, "Unrolling failure: Loop too big.\n");
263 return;
266 /* When emitting debugger info, we can't unroll loops with unequal numbers
267 of block_beg and block_end notes, because that would unbalance the block
268 structure of the function. This can happen as a result of the
269 "if (foo) bar; else break;" optimization in jump.c. */
271 if (write_symbols != NO_DEBUG)
273 int block_begins = 0;
274 int block_ends = 0;
276 for (insn = loop_start; insn != loop_end; insn = NEXT_INSN (insn))
278 if (GET_CODE (insn) == NOTE)
280 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
281 block_begins++;
282 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
283 block_ends++;
287 if (block_begins != block_ends)
289 if (loop_dump_stream)
290 fprintf (loop_dump_stream,
291 "Unrolling failure: Unbalanced block notes.\n");
292 return;
296 /* Determine type of unroll to perform. Depends on the number of iterations
297 and the size of the loop. */
299 /* If there is no strength reduce info, then set loop_n_iterations to zero.
300 This can happen if strength_reduce can't find any bivs in the loop.
301 A value of zero indicates that the number of iterations could not be
302 calculated. */
304 if (! strength_reduce_p)
305 loop_n_iterations = 0;
307 if (loop_dump_stream && loop_n_iterations > 0)
308 fprintf (loop_dump_stream,
309 "Loop unrolling: %d iterations.\n", loop_n_iterations);
311 /* Find and save a pointer to the last nonnote insn in the loop. */
313 last_loop_insn = prev_nonnote_insn (loop_end);
315 /* Calculate how many times to unroll the loop. Indicate whether or
316 not the loop is being completely unrolled. */
318 if (loop_n_iterations == 1)
320 /* If number of iterations is exactly 1, then eliminate the compare and
321 branch at the end of the loop since they will never be taken.
322 Then return, since no other action is needed here. */
324 /* If the last instruction is not a BARRIER or a JUMP_INSN, then
325 don't do anything. */
327 if (GET_CODE (last_loop_insn) == BARRIER)
329 /* Delete the jump insn. This will delete the barrier also. */
330 delete_insn (PREV_INSN (last_loop_insn));
332 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
334 #ifdef HAVE_cc0
335 /* The immediately preceding insn is a compare which must be
336 deleted. */
337 delete_insn (last_loop_insn);
338 delete_insn (PREV_INSN (last_loop_insn));
339 #else
340 /* The immediately preceding insn may not be the compare, so don't
341 delete it. */
342 delete_insn (last_loop_insn);
343 #endif
345 return;
347 else if (loop_n_iterations > 0
348 && loop_n_iterations * insn_count < MAX_UNROLLED_INSNS)
350 unroll_number = loop_n_iterations;
351 unroll_type = UNROLL_COMPLETELY;
353 else if (loop_n_iterations > 0)
355 /* Try to factor the number of iterations. Don't bother with the
356 general case, only using 2, 3, 5, and 7 will get 75% of all
357 numbers theoretically, and almost all in practice. */
359 for (i = 0; i < NUM_FACTORS; i++)
360 factors[i].count = 0;
362 temp = loop_n_iterations;
363 for (i = NUM_FACTORS - 1; i >= 0; i--)
364 while (temp % factors[i].factor == 0)
366 factors[i].count++;
367 temp = temp / factors[i].factor;
370 /* Start with the larger factors first so that we generally
371 get lots of unrolling. */
373 unroll_number = 1;
374 temp = insn_count;
375 for (i = 3; i >= 0; i--)
376 while (factors[i].count--)
378 if (temp * factors[i].factor < MAX_UNROLLED_INSNS)
380 unroll_number *= factors[i].factor;
381 temp *= factors[i].factor;
383 else
384 break;
387 /* If we couldn't find any factors, then unroll as in the normal
388 case. */
389 if (unroll_number == 1)
391 if (loop_dump_stream)
392 fprintf (loop_dump_stream,
393 "Loop unrolling: No factors found.\n");
395 else
396 unroll_type = UNROLL_MODULO;
400 /* Default case, calculate number of times to unroll loop based on its
401 size. */
402 if (unroll_number == 1)
404 if (8 * insn_count < MAX_UNROLLED_INSNS)
405 unroll_number = 8;
406 else if (4 * insn_count < MAX_UNROLLED_INSNS)
407 unroll_number = 4;
408 else
409 unroll_number = 2;
411 unroll_type = UNROLL_NAIVE;
414 /* Now we know how many times to unroll the loop. */
416 if (loop_dump_stream)
417 fprintf (loop_dump_stream,
418 "Unrolling loop %d times.\n", unroll_number);
421 if (unroll_type == UNROLL_COMPLETELY || unroll_type == UNROLL_MODULO)
423 /* Loops of these types should never start with a jump down to
424 the exit condition test. For now, check for this case just to
425 be sure. UNROLL_NAIVE loops can be of this form, this case is
426 handled below. */
427 insn = loop_start;
428 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
429 insn = NEXT_INSN (insn);
430 if (GET_CODE (insn) == JUMP_INSN)
431 abort ();
434 if (unroll_type == UNROLL_COMPLETELY)
436 /* Completely unrolling the loop: Delete the compare and branch at
437 the end (the last two instructions). This delete must done at the
438 very end of loop unrolling, to avoid problems with calls to
439 back_branch_in_range_p, which is called by find_splittable_regs.
440 All increments of splittable bivs/givs are changed to load constant
441 instructions. */
443 copy_start = loop_start;
445 /* Set insert_before to the instruction immediately after the JUMP_INSN
446 (or BARRIER), so that any NOTEs between the JUMP_INSN and the end of
447 the loop will be correctly handled by copy_loop_body. */
448 insert_before = NEXT_INSN (last_loop_insn);
450 /* Set copy_end to the insn before the jump at the end of the loop. */
451 if (GET_CODE (last_loop_insn) == BARRIER)
452 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
453 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
455 #ifdef HAVE_cc0
456 /* The instruction immediately before the JUMP_INSN is a compare
457 instruction which we do not want to copy. */
458 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
459 #else
460 /* The instruction immediately before the JUMP_INSN may not be the
461 compare, so we must copy it. */
462 copy_end = PREV_INSN (last_loop_insn);
463 #endif
465 else
467 /* We currently can't unroll a loop if it doesn't end with a
468 JUMP_INSN. There would need to be a mechanism that recognizes
469 this case, and then inserts a jump after each loop body, which
470 jumps to after the last loop body. */
471 if (loop_dump_stream)
472 fprintf (loop_dump_stream,
473 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
474 return;
477 else if (unroll_type == UNROLL_MODULO)
479 /* Partially unrolling the loop: The compare and branch at the end
480 (the last two instructions) must remain. Don't copy the compare
481 and branch instructions at the end of the loop. Insert the unrolled
482 code immediately before the compare/branch at the end so that the
483 code will fall through to them as before. */
485 copy_start = loop_start;
487 /* Set insert_before to the jump insn at the end of the loop.
488 Set copy_end to before the jump insn at the end of the loop. */
489 if (GET_CODE (last_loop_insn) == BARRIER)
491 insert_before = PREV_INSN (last_loop_insn);
492 copy_end = PREV_INSN (insert_before);
494 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
496 #ifdef HAVE_cc0
497 /* The instruction immediately before the JUMP_INSN is a compare
498 instruction which we do not want to copy or delete. */
499 insert_before = PREV_INSN (last_loop_insn);
500 copy_end = PREV_INSN (insert_before);
501 #else
502 /* The instruction immediately before the JUMP_INSN may not be the
503 compare, so we must copy it. */
504 insert_before = last_loop_insn;
505 copy_end = PREV_INSN (last_loop_insn);
506 #endif
508 else
510 /* We currently can't unroll a loop if it doesn't end with a
511 JUMP_INSN. There would need to be a mechanism that recognizes
512 this case, and then inserts a jump after each loop body, which
513 jumps to after the last loop body. */
514 if (loop_dump_stream)
515 fprintf (loop_dump_stream,
516 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
517 return;
520 else
522 /* Normal case: Must copy the compare and branch instructions at the
523 end of the loop. */
525 if (GET_CODE (last_loop_insn) == BARRIER)
527 /* Loop ends with an unconditional jump and a barrier.
528 Handle this like above, don't copy jump and barrier.
529 This is not strictly necessary, but doing so prevents generating
530 unconditional jumps to an immediately following label.
532 This will be corrected below if the target of this jump is
533 not the start_label. */
535 insert_before = PREV_INSN (last_loop_insn);
536 copy_end = PREV_INSN (insert_before);
538 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
540 /* Set insert_before to immediately after the JUMP_INSN, so that
541 NOTEs at the end of the loop will be correctly handled by
542 copy_loop_body. */
543 insert_before = NEXT_INSN (last_loop_insn);
544 copy_end = last_loop_insn;
546 else
548 /* We currently can't unroll a loop if it doesn't end with a
549 JUMP_INSN. There would need to be a mechanism that recognizes
550 this case, and then inserts a jump after each loop body, which
551 jumps to after the last loop body. */
552 if (loop_dump_stream)
553 fprintf (loop_dump_stream,
554 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
555 return;
558 /* If copying exit test branches because they can not be eliminated,
559 then must convert the fall through case of the branch to a jump past
560 the end of the loop. Create a label to emit after the loop and save
561 it for later use. Do not use the label after the loop, if any, since
562 it might be used by insns outside the loop, or there might be insns
563 added before it later by final_[bg]iv_value which must be after
564 the real exit label. */
565 exit_label = gen_label_rtx ();
567 insn = loop_start;
568 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
569 insn = NEXT_INSN (insn);
571 if (GET_CODE (insn) == JUMP_INSN)
573 /* The loop starts with a jump down to the exit condition test.
574 Start copying the loop after the barrier following this
575 jump insn. */
576 copy_start = NEXT_INSN (insn);
578 /* Splitting induction variables doesn't work when the loop is
579 entered via a jump to the bottom, because then we end up doing
580 a comparison against a new register for a split variable, but
581 we did not execute the set insn for the new register because
582 it was skipped over. */
583 splitting_not_safe = 1;
584 if (loop_dump_stream)
585 fprintf (loop_dump_stream,
586 "Splitting not safe, because loop not entered at top.\n");
588 else
589 copy_start = loop_start;
592 /* This should always be the first label in the loop. */
593 start_label = NEXT_INSN (copy_start);
594 /* There may be a line number note and/or a loop continue note here. */
595 while (GET_CODE (start_label) == NOTE)
596 start_label = NEXT_INSN (start_label);
597 if (GET_CODE (start_label) != CODE_LABEL)
599 /* This can happen as a result of jump threading. If the first insns in
600 the loop test the same condition as the loop's backward jump, or the
601 opposite condition, then the backward jump will be modified to point
602 to elsewhere, and the loop's start label is deleted.
604 This case currently can not be handled by the loop unrolling code. */
606 if (loop_dump_stream)
607 fprintf (loop_dump_stream,
608 "Unrolling failure: unknown insns between BEG note and loop label.\n");
609 return;
611 if (LABEL_NAME (start_label))
613 /* The jump optimization pass must have combined the original start label
614 with a named label for a goto. We can't unroll this case because
615 jumps which go to the named label must be handled differently than
616 jumps to the loop start, and it is impossible to differentiate them
617 in this case. */
618 if (loop_dump_stream)
619 fprintf (loop_dump_stream,
620 "Unrolling failure: loop start label is gone\n");
621 return;
624 if (unroll_type == UNROLL_NAIVE
625 && GET_CODE (last_loop_insn) == BARRIER
626 && start_label != JUMP_LABEL (PREV_INSN (last_loop_insn)))
628 /* In this case, we must copy the jump and barrier, because they will
629 not be converted to jumps to an immediately following label. */
631 insert_before = NEXT_INSN (last_loop_insn);
632 copy_end = last_loop_insn;
635 /* Allocate a translation table for the labels and insn numbers.
636 They will be filled in as we copy the insns in the loop. */
638 max_labelno = max_label_num ();
639 max_insnno = get_max_uid ();
641 map = (struct inline_remap *) alloca (sizeof (struct inline_remap));
643 map->integrating = 0;
645 /* Allocate the label map. */
647 if (max_labelno > 0)
649 map->label_map = (rtx *) alloca (max_labelno * sizeof (rtx));
651 local_label = (char *) alloca (max_labelno);
652 bzero (local_label, max_labelno);
654 else
655 map->label_map = 0;
657 /* Search the loop and mark all local labels, i.e. the ones which have to
658 be distinct labels when copied. For all labels which might be
659 non-local, set their label_map entries to point to themselves.
660 If they happen to be local their label_map entries will be overwritten
661 before the loop body is copied. The label_map entries for local labels
662 will be set to a different value each time the loop body is copied. */
664 for (insn = copy_start; insn != loop_end; insn = NEXT_INSN (insn))
666 if (GET_CODE (insn) == CODE_LABEL)
667 local_label[CODE_LABEL_NUMBER (insn)] = 1;
668 else if (GET_CODE (insn) == JUMP_INSN)
670 if (JUMP_LABEL (insn))
671 map->label_map[CODE_LABEL_NUMBER (JUMP_LABEL (insn))]
672 = JUMP_LABEL (insn);
673 else if (GET_CODE (PATTERN (insn)) == ADDR_VEC
674 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
676 rtx pat = PATTERN (insn);
677 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
678 int len = XVECLEN (pat, diff_vec_p);
679 rtx label;
681 for (i = 0; i < len; i++)
683 label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
684 map->label_map[CODE_LABEL_NUMBER (label)] = label;
690 /* Allocate space for the insn map. */
692 map->insn_map = (rtx *) alloca (max_insnno * sizeof (rtx));
694 /* Set this to zero, to indicate that we are doing loop unrolling,
695 not function inlining. */
696 map->inline_target = 0;
698 /* The register and constant maps depend on the number of registers
699 present, so the final maps can't be created until after
700 find_splittable_regs is called. However, they are needed for
701 preconditioning, so we create temporary maps when preconditioning
702 is performed. */
704 /* The preconditioning code may allocate two new pseudo registers. */
705 maxregnum = max_reg_num ();
707 /* Allocate and zero out the splittable_regs and addr_combined_regs
708 arrays. These must be zeroed here because they will be used if
709 loop preconditioning is performed, and must be zero for that case.
711 It is safe to do this here, since the extra registers created by the
712 preconditioning code and find_splittable_regs will never be used
713 to access the splittable_regs[] and addr_combined_regs[] arrays. */
715 splittable_regs = (rtx *) alloca (maxregnum * sizeof (rtx));
716 bzero ((char *) splittable_regs, maxregnum * sizeof (rtx));
717 splittable_regs_updates = (int *) alloca (maxregnum * sizeof (int));
718 bzero ((char *) splittable_regs_updates, maxregnum * sizeof (int));
719 addr_combined_regs
720 = (struct induction **) alloca (maxregnum * sizeof (struct induction *));
721 bzero ((char *) addr_combined_regs, maxregnum * sizeof (struct induction *));
722 /* We must limit it to max_reg_before_loop, because only these pseudo
723 registers have valid regno_first_uid info. Any register created after
724 that is unlikely to be local to the loop anyways. */
725 local_regno = (char *) alloca (max_reg_before_loop);
726 bzero (local_regno, max_reg_before_loop);
728 /* Mark all local registers, i.e. the ones which are referenced only
729 inside the loop. */
730 if (INSN_UID (copy_end) < max_uid_for_loop)
732 int copy_start_luid = INSN_LUID (copy_start);
733 int copy_end_luid = INSN_LUID (copy_end);
735 /* If a register is used in the jump insn, we must not duplicate it
736 since it will also be used outside the loop. */
737 if (GET_CODE (copy_end) == JUMP_INSN)
738 copy_end_luid--;
739 /* If copy_start points to the NOTE that starts the loop, then we must
740 use the next luid, because invariant pseudo-regs moved out of the loop
741 have their lifetimes modified to start here, but they are not safe
742 to duplicate. */
743 if (copy_start == loop_start)
744 copy_start_luid++;
746 for (j = FIRST_PSEUDO_REGISTER; j < max_reg_before_loop; ++j)
747 if (regno_first_uid[j] > 0 && regno_first_uid[j] <= max_uid_for_loop
748 && uid_luid[regno_first_uid[j]] >= copy_start_luid
749 && regno_last_uid[j] > 0 && regno_last_uid[j] <= max_uid_for_loop
750 && uid_luid[regno_last_uid[j]] <= copy_end_luid)
751 local_regno[j] = 1;
754 /* If this loop requires exit tests when unrolled, check to see if we
755 can precondition the loop so as to make the exit tests unnecessary.
756 Just like variable splitting, this is not safe if the loop is entered
757 via a jump to the bottom. Also, can not do this if no strength
758 reduce info, because precondition_loop_p uses this info. */
760 /* Must copy the loop body for preconditioning before the following
761 find_splittable_regs call since that will emit insns which need to
762 be after the preconditioned loop copies, but immediately before the
763 unrolled loop copies. */
765 /* Also, it is not safe to split induction variables for the preconditioned
766 copies of the loop body. If we split induction variables, then the code
767 assumes that each induction variable can be represented as a function
768 of its initial value and the loop iteration number. This is not true
769 in this case, because the last preconditioned copy of the loop body
770 could be any iteration from the first up to the `unroll_number-1'th,
771 depending on the initial value of the iteration variable. Therefore
772 we can not split induction variables here, because we can not calculate
773 their value. Hence, this code must occur before find_splittable_regs
774 is called. */
776 if (unroll_type == UNROLL_NAIVE && ! splitting_not_safe && strength_reduce_p)
778 rtx initial_value, final_value, increment;
780 if (precondition_loop_p (&initial_value, &final_value, &increment,
781 loop_start, loop_end))
783 register rtx diff, temp;
784 enum machine_mode mode;
785 rtx *labels;
786 int abs_inc, neg_inc;
788 map->reg_map = (rtx *) alloca (maxregnum * sizeof (rtx));
790 map->const_equiv_map = (rtx *) alloca (maxregnum * sizeof (rtx));
791 map->const_age_map = (unsigned *) alloca (maxregnum
792 * sizeof (unsigned));
793 map->const_equiv_map_size = maxregnum;
794 global_const_equiv_map = map->const_equiv_map;
795 global_const_equiv_map_size = maxregnum;
797 init_reg_map (map, maxregnum);
799 /* Limit loop unrolling to 4, since this will make 7 copies of
800 the loop body. */
801 if (unroll_number > 4)
802 unroll_number = 4;
804 /* Save the absolute value of the increment, and also whether or
805 not it is negative. */
806 neg_inc = 0;
807 abs_inc = INTVAL (increment);
808 if (abs_inc < 0)
810 abs_inc = - abs_inc;
811 neg_inc = 1;
814 start_sequence ();
816 /* Decide what mode to do these calculations in. Choose the larger
817 of final_value's mode and initial_value's mode, or a full-word if
818 both are constants. */
819 mode = GET_MODE (final_value);
820 if (mode == VOIDmode)
822 mode = GET_MODE (initial_value);
823 if (mode == VOIDmode)
824 mode = word_mode;
826 else if (mode != GET_MODE (initial_value)
827 && (GET_MODE_SIZE (mode)
828 < GET_MODE_SIZE (GET_MODE (initial_value))))
829 mode = GET_MODE (initial_value);
831 /* Calculate the difference between the final and initial values.
832 Final value may be a (plus (reg x) (const_int 1)) rtx.
833 Let the following cse pass simplify this if initial value is
834 a constant.
836 We must copy the final and initial values here to avoid
837 improperly shared rtl. */
839 diff = expand_binop (mode, sub_optab, copy_rtx (final_value),
840 copy_rtx (initial_value), NULL_RTX, 0,
841 OPTAB_LIB_WIDEN);
843 /* Now calculate (diff % (unroll * abs (increment))) by using an
844 and instruction. */
845 diff = expand_binop (GET_MODE (diff), and_optab, diff,
846 GEN_INT (unroll_number * abs_inc - 1),
847 NULL_RTX, 0, OPTAB_LIB_WIDEN);
849 /* Now emit a sequence of branches to jump to the proper precond
850 loop entry point. */
852 labels = (rtx *) alloca (sizeof (rtx) * unroll_number);
853 for (i = 0; i < unroll_number; i++)
854 labels[i] = gen_label_rtx ();
856 /* Check for the case where the initial value is greater than or equal
857 to the final value. In that case, we want to execute exactly
858 one loop iteration. The code below will fail for this case. */
860 emit_cmp_insn (initial_value, final_value, neg_inc ? LE : GE,
861 NULL_RTX, mode, 0, 0);
862 if (neg_inc)
863 emit_jump_insn (gen_ble (labels[1]));
864 else
865 emit_jump_insn (gen_bge (labels[1]));
866 JUMP_LABEL (get_last_insn ()) = labels[1];
867 LABEL_NUSES (labels[1])++;
869 /* Assuming the unroll_number is 4, and the increment is 2, then
870 for a negative increment: for a positive increment:
871 diff = 0,1 precond 0 diff = 0,7 precond 0
872 diff = 2,3 precond 3 diff = 1,2 precond 1
873 diff = 4,5 precond 2 diff = 3,4 precond 2
874 diff = 6,7 precond 1 diff = 5,6 precond 3 */
876 /* We only need to emit (unroll_number - 1) branches here, the
877 last case just falls through to the following code. */
879 /* ??? This would give better code if we emitted a tree of branches
880 instead of the current linear list of branches. */
882 for (i = 0; i < unroll_number - 1; i++)
884 int cmp_const;
885 enum rtx_code cmp_code;
887 /* For negative increments, must invert the constant compared
888 against, except when comparing against zero. */
889 if (i == 0)
891 cmp_const = 0;
892 cmp_code = EQ;
894 else if (neg_inc)
896 cmp_const = unroll_number - i;
897 cmp_code = GE;
899 else
901 cmp_const = i;
902 cmp_code = LE;
905 emit_cmp_insn (diff, GEN_INT (abs_inc * cmp_const),
906 cmp_code, NULL_RTX, mode, 0, 0);
908 if (i == 0)
909 emit_jump_insn (gen_beq (labels[i]));
910 else if (neg_inc)
911 emit_jump_insn (gen_bge (labels[i]));
912 else
913 emit_jump_insn (gen_ble (labels[i]));
914 JUMP_LABEL (get_last_insn ()) = labels[i];
915 LABEL_NUSES (labels[i])++;
918 /* If the increment is greater than one, then we need another branch,
919 to handle other cases equivalent to 0. */
921 /* ??? This should be merged into the code above somehow to help
922 simplify the code here, and reduce the number of branches emitted.
923 For the negative increment case, the branch here could easily
924 be merged with the `0' case branch above. For the positive
925 increment case, it is not clear how this can be simplified. */
927 if (abs_inc != 1)
929 int cmp_const;
930 enum rtx_code cmp_code;
932 if (neg_inc)
934 cmp_const = abs_inc - 1;
935 cmp_code = LE;
937 else
939 cmp_const = abs_inc * (unroll_number - 1) + 1;
940 cmp_code = GE;
943 emit_cmp_insn (diff, GEN_INT (cmp_const), cmp_code, NULL_RTX,
944 mode, 0, 0);
946 if (neg_inc)
947 emit_jump_insn (gen_ble (labels[0]));
948 else
949 emit_jump_insn (gen_bge (labels[0]));
950 JUMP_LABEL (get_last_insn ()) = labels[0];
951 LABEL_NUSES (labels[0])++;
954 sequence = gen_sequence ();
955 end_sequence ();
956 emit_insn_before (sequence, loop_start);
958 /* Only the last copy of the loop body here needs the exit
959 test, so set copy_end to exclude the compare/branch here,
960 and then reset it inside the loop when get to the last
961 copy. */
963 if (GET_CODE (last_loop_insn) == BARRIER)
964 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
965 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
967 #ifdef HAVE_cc0
968 /* The immediately preceding insn is a compare which we do not
969 want to copy. */
970 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
971 #else
972 /* The immediately preceding insn may not be a compare, so we
973 must copy it. */
974 copy_end = PREV_INSN (last_loop_insn);
975 #endif
977 else
978 abort ();
980 for (i = 1; i < unroll_number; i++)
982 emit_label_after (labels[unroll_number - i],
983 PREV_INSN (loop_start));
985 bzero ((char *) map->insn_map, max_insnno * sizeof (rtx));
986 bzero ((char *) map->const_equiv_map, maxregnum * sizeof (rtx));
987 bzero ((char *) map->const_age_map,
988 maxregnum * sizeof (unsigned));
989 map->const_age = 0;
991 for (j = 0; j < max_labelno; j++)
992 if (local_label[j])
993 map->label_map[j] = gen_label_rtx ();
995 for (j = FIRST_PSEUDO_REGISTER; j < max_reg_before_loop; j++)
996 if (local_regno[j])
997 map->reg_map[j] = gen_reg_rtx (GET_MODE (regno_reg_rtx[j]));
999 /* The last copy needs the compare/branch insns at the end,
1000 so reset copy_end here if the loop ends with a conditional
1001 branch. */
1003 if (i == unroll_number - 1)
1005 if (GET_CODE (last_loop_insn) == BARRIER)
1006 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1007 else
1008 copy_end = last_loop_insn;
1011 /* None of the copies are the `last_iteration', so just
1012 pass zero for that parameter. */
1013 copy_loop_body (copy_start, copy_end, map, exit_label, 0,
1014 unroll_type, start_label, loop_end,
1015 loop_start, copy_end);
1017 emit_label_after (labels[0], PREV_INSN (loop_start));
1019 if (GET_CODE (last_loop_insn) == BARRIER)
1021 insert_before = PREV_INSN (last_loop_insn);
1022 copy_end = PREV_INSN (insert_before);
1024 else
1026 #ifdef HAVE_cc0
1027 /* The immediately preceding insn is a compare which we do not
1028 want to copy. */
1029 insert_before = PREV_INSN (last_loop_insn);
1030 copy_end = PREV_INSN (insert_before);
1031 #else
1032 /* The immediately preceding insn may not be a compare, so we
1033 must copy it. */
1034 insert_before = last_loop_insn;
1035 copy_end = PREV_INSN (last_loop_insn);
1036 #endif
1039 /* Set unroll type to MODULO now. */
1040 unroll_type = UNROLL_MODULO;
1041 loop_preconditioned = 1;
1045 /* If reach here, and the loop type is UNROLL_NAIVE, then don't unroll
1046 the loop unless all loops are being unrolled. */
1047 if (unroll_type == UNROLL_NAIVE && ! flag_unroll_all_loops)
1049 if (loop_dump_stream)
1050 fprintf (loop_dump_stream, "Unrolling failure: Naive unrolling not being done.\n");
1051 return;
1054 /* At this point, we are guaranteed to unroll the loop. */
1056 /* For each biv and giv, determine whether it can be safely split into
1057 a different variable for each unrolled copy of the loop body.
1058 We precalculate and save this info here, since computing it is
1059 expensive.
1061 Do this before deleting any instructions from the loop, so that
1062 back_branch_in_range_p will work correctly. */
1064 if (splitting_not_safe)
1065 temp = 0;
1066 else
1067 temp = find_splittable_regs (unroll_type, loop_start, loop_end,
1068 end_insert_before, unroll_number);
1070 /* find_splittable_regs may have created some new registers, so must
1071 reallocate the reg_map with the new larger size, and must realloc
1072 the constant maps also. */
1074 maxregnum = max_reg_num ();
1075 map->reg_map = (rtx *) alloca (maxregnum * sizeof (rtx));
1077 init_reg_map (map, maxregnum);
1079 /* Space is needed in some of the map for new registers, so new_maxregnum
1080 is an (over)estimate of how many registers will exist at the end. */
1081 new_maxregnum = maxregnum + (temp * unroll_number * 2);
1083 /* Must realloc space for the constant maps, because the number of registers
1084 may have changed. */
1086 map->const_equiv_map = (rtx *) alloca (new_maxregnum * sizeof (rtx));
1087 map->const_age_map = (unsigned *) alloca (new_maxregnum * sizeof (unsigned));
1089 map->const_equiv_map_size = new_maxregnum;
1090 global_const_equiv_map = map->const_equiv_map;
1091 global_const_equiv_map_size = new_maxregnum;
1093 /* Search the list of bivs and givs to find ones which need to be remapped
1094 when split, and set their reg_map entry appropriately. */
1096 for (bl = loop_iv_list; bl; bl = bl->next)
1098 if (REGNO (bl->biv->src_reg) != bl->regno)
1099 map->reg_map[bl->regno] = bl->biv->src_reg;
1100 #if 0
1101 /* Currently, non-reduced/final-value givs are never split. */
1102 for (v = bl->giv; v; v = v->next_iv)
1103 if (REGNO (v->src_reg) != bl->regno)
1104 map->reg_map[REGNO (v->dest_reg)] = v->src_reg;
1105 #endif
1108 /* Use our current register alignment and pointer flags. */
1109 map->regno_pointer_flag = regno_pointer_flag;
1110 map->regno_pointer_align = regno_pointer_align;
1112 /* If the loop is being partially unrolled, and the iteration variables
1113 are being split, and are being renamed for the split, then must fix up
1114 the compare/jump instruction at the end of the loop to refer to the new
1115 registers. This compare isn't copied, so the registers used in it
1116 will never be replaced if it isn't done here. */
1118 if (unroll_type == UNROLL_MODULO)
1120 insn = NEXT_INSN (copy_end);
1121 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
1122 PATTERN (insn) = remap_split_bivs (PATTERN (insn));
1125 /* For unroll_number - 1 times, make a copy of each instruction
1126 between copy_start and copy_end, and insert these new instructions
1127 before the end of the loop. */
1129 for (i = 0; i < unroll_number; i++)
1131 bzero ((char *) map->insn_map, max_insnno * sizeof (rtx));
1132 bzero ((char *) map->const_equiv_map, new_maxregnum * sizeof (rtx));
1133 bzero ((char *) map->const_age_map, new_maxregnum * sizeof (unsigned));
1134 map->const_age = 0;
1136 for (j = 0; j < max_labelno; j++)
1137 if (local_label[j])
1138 map->label_map[j] = gen_label_rtx ();
1140 for (j = FIRST_PSEUDO_REGISTER; j < max_reg_before_loop; j++)
1141 if (local_regno[j])
1142 map->reg_map[j] = gen_reg_rtx (GET_MODE (regno_reg_rtx[j]));
1144 /* If loop starts with a branch to the test, then fix it so that
1145 it points to the test of the first unrolled copy of the loop. */
1146 if (i == 0 && loop_start != copy_start)
1148 insn = PREV_INSN (copy_start);
1149 pattern = PATTERN (insn);
1151 tem = map->label_map[CODE_LABEL_NUMBER
1152 (XEXP (SET_SRC (pattern), 0))];
1153 SET_SRC (pattern) = gen_rtx (LABEL_REF, VOIDmode, tem);
1155 /* Set the jump label so that it can be used by later loop unrolling
1156 passes. */
1157 JUMP_LABEL (insn) = tem;
1158 LABEL_NUSES (tem)++;
1161 copy_loop_body (copy_start, copy_end, map, exit_label,
1162 i == unroll_number - 1, unroll_type, start_label,
1163 loop_end, insert_before, insert_before);
1166 /* Before deleting any insns, emit a CODE_LABEL immediately after the last
1167 insn to be deleted. This prevents any runaway delete_insn call from
1168 more insns that it should, as it always stops at a CODE_LABEL. */
1170 /* Delete the compare and branch at the end of the loop if completely
1171 unrolling the loop. Deleting the backward branch at the end also
1172 deletes the code label at the start of the loop. This is done at
1173 the very end to avoid problems with back_branch_in_range_p. */
1175 if (unroll_type == UNROLL_COMPLETELY)
1176 safety_label = emit_label_after (gen_label_rtx (), last_loop_insn);
1177 else
1178 safety_label = emit_label_after (gen_label_rtx (), copy_end);
1180 /* Delete all of the original loop instructions. Don't delete the
1181 LOOP_BEG note, or the first code label in the loop. */
1183 insn = NEXT_INSN (copy_start);
1184 while (insn != safety_label)
1186 if (insn != start_label)
1187 insn = delete_insn (insn);
1188 else
1189 insn = NEXT_INSN (insn);
1192 /* Can now delete the 'safety' label emitted to protect us from runaway
1193 delete_insn calls. */
1194 if (INSN_DELETED_P (safety_label))
1195 abort ();
1196 delete_insn (safety_label);
1198 /* If exit_label exists, emit it after the loop. Doing the emit here
1199 forces it to have a higher INSN_UID than any insn in the unrolled loop.
1200 This is needed so that mostly_true_jump in reorg.c will treat jumps
1201 to this loop end label correctly, i.e. predict that they are usually
1202 not taken. */
1203 if (exit_label)
1204 emit_label_after (exit_label, loop_end);
1207 /* Return true if the loop can be safely, and profitably, preconditioned
1208 so that the unrolled copies of the loop body don't need exit tests.
1210 This only works if final_value, initial_value and increment can be
1211 determined, and if increment is a constant power of 2.
1212 If increment is not a power of 2, then the preconditioning modulo
1213 operation would require a real modulo instead of a boolean AND, and this
1214 is not considered `profitable'. */
1216 /* ??? If the loop is known to be executed very many times, or the machine
1217 has a very cheap divide instruction, then preconditioning is a win even
1218 when the increment is not a power of 2. Use RTX_COST to compute
1219 whether divide is cheap. */
1221 static int
1222 precondition_loop_p (initial_value, final_value, increment, loop_start,
1223 loop_end)
1224 rtx *initial_value, *final_value, *increment;
1225 rtx loop_start, loop_end;
1228 if (loop_n_iterations > 0)
1230 *initial_value = const0_rtx;
1231 *increment = const1_rtx;
1232 *final_value = GEN_INT (loop_n_iterations);
1234 if (loop_dump_stream)
1235 fprintf (loop_dump_stream,
1236 "Preconditioning: Success, number of iterations known, %d.\n",
1237 loop_n_iterations);
1238 return 1;
1241 if (loop_initial_value == 0)
1243 if (loop_dump_stream)
1244 fprintf (loop_dump_stream,
1245 "Preconditioning: Could not find initial value.\n");
1246 return 0;
1248 else if (loop_increment == 0)
1250 if (loop_dump_stream)
1251 fprintf (loop_dump_stream,
1252 "Preconditioning: Could not find increment value.\n");
1253 return 0;
1255 else if (GET_CODE (loop_increment) != CONST_INT)
1257 if (loop_dump_stream)
1258 fprintf (loop_dump_stream,
1259 "Preconditioning: Increment not a constant.\n");
1260 return 0;
1262 else if ((exact_log2 (INTVAL (loop_increment)) < 0)
1263 && (exact_log2 (- INTVAL (loop_increment)) < 0))
1265 if (loop_dump_stream)
1266 fprintf (loop_dump_stream,
1267 "Preconditioning: Increment not a constant power of 2.\n");
1268 return 0;
1271 /* Unsigned_compare and compare_dir can be ignored here, since they do
1272 not matter for preconditioning. */
1274 if (loop_final_value == 0)
1276 if (loop_dump_stream)
1277 fprintf (loop_dump_stream,
1278 "Preconditioning: EQ comparison loop.\n");
1279 return 0;
1282 /* Must ensure that final_value is invariant, so call invariant_p to
1283 check. Before doing so, must check regno against max_reg_before_loop
1284 to make sure that the register is in the range covered by invariant_p.
1285 If it isn't, then it is most likely a biv/giv which by definition are
1286 not invariant. */
1287 if ((GET_CODE (loop_final_value) == REG
1288 && REGNO (loop_final_value) >= max_reg_before_loop)
1289 || (GET_CODE (loop_final_value) == PLUS
1290 && REGNO (XEXP (loop_final_value, 0)) >= max_reg_before_loop)
1291 || ! invariant_p (loop_final_value))
1293 if (loop_dump_stream)
1294 fprintf (loop_dump_stream,
1295 "Preconditioning: Final value not invariant.\n");
1296 return 0;
1299 /* Fail for floating point values, since the caller of this function
1300 does not have code to deal with them. */
1301 if (GET_MODE_CLASS (GET_MODE (loop_final_value)) == MODE_FLOAT
1302 || GET_MODE_CLASS (GET_MODE (loop_initial_value)) == MODE_FLOAT)
1304 if (loop_dump_stream)
1305 fprintf (loop_dump_stream,
1306 "Preconditioning: Floating point final or initial value.\n");
1307 return 0;
1310 /* Now set initial_value to be the iteration_var, since that may be a
1311 simpler expression, and is guaranteed to be correct if all of the
1312 above tests succeed.
1314 We can not use the initial_value as calculated, because it will be
1315 one too small for loops of the form "while (i-- > 0)". We can not
1316 emit code before the loop_skip_over insns to fix this problem as this
1317 will then give a number one too large for loops of the form
1318 "while (--i > 0)".
1320 Note that all loops that reach here are entered at the top, because
1321 this function is not called if the loop starts with a jump. */
1323 /* Fail if loop_iteration_var is not live before loop_start, since we need
1324 to test its value in the preconditioning code. */
1326 if (uid_luid[regno_first_uid[REGNO (loop_iteration_var)]]
1327 > INSN_LUID (loop_start))
1329 if (loop_dump_stream)
1330 fprintf (loop_dump_stream,
1331 "Preconditioning: Iteration var not live before loop start.\n");
1332 return 0;
1335 *initial_value = loop_iteration_var;
1336 *increment = loop_increment;
1337 *final_value = loop_final_value;
1339 /* Success! */
1340 if (loop_dump_stream)
1341 fprintf (loop_dump_stream, "Preconditioning: Successful.\n");
1342 return 1;
1346 /* All pseudo-registers must be mapped to themselves. Two hard registers
1347 must be mapped, VIRTUAL_STACK_VARS_REGNUM and VIRTUAL_INCOMING_ARGS_
1348 REGNUM, to avoid function-inlining specific conversions of these
1349 registers. All other hard regs can not be mapped because they may be
1350 used with different
1351 modes. */
1353 static void
1354 init_reg_map (map, maxregnum)
1355 struct inline_remap *map;
1356 int maxregnum;
1358 int i;
1360 for (i = maxregnum - 1; i > LAST_VIRTUAL_REGISTER; i--)
1361 map->reg_map[i] = regno_reg_rtx[i];
1362 /* Just clear the rest of the entries. */
1363 for (i = LAST_VIRTUAL_REGISTER; i >= 0; i--)
1364 map->reg_map[i] = 0;
1366 map->reg_map[VIRTUAL_STACK_VARS_REGNUM]
1367 = regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM];
1368 map->reg_map[VIRTUAL_INCOMING_ARGS_REGNUM]
1369 = regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM];
1372 /* Strength-reduction will often emit code for optimized biv/givs which
1373 calculates their value in a temporary register, and then copies the result
1374 to the iv. This procedure reconstructs the pattern computing the iv;
1375 verifying that all operands are of the proper form.
1377 The return value is the amount that the giv is incremented by. */
1379 static rtx
1380 calculate_giv_inc (pattern, src_insn, regno)
1381 rtx pattern, src_insn;
1382 int regno;
1384 rtx increment;
1385 rtx increment_total = 0;
1386 int tries = 0;
1388 retry:
1389 /* Verify that we have an increment insn here. First check for a plus
1390 as the set source. */
1391 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1393 /* SR sometimes computes the new giv value in a temp, then copies it
1394 to the new_reg. */
1395 src_insn = PREV_INSN (src_insn);
1396 pattern = PATTERN (src_insn);
1397 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1398 abort ();
1400 /* The last insn emitted is not needed, so delete it to avoid confusing
1401 the second cse pass. This insn sets the giv unnecessarily. */
1402 delete_insn (get_last_insn ());
1405 /* Verify that we have a constant as the second operand of the plus. */
1406 increment = XEXP (SET_SRC (pattern), 1);
1407 if (GET_CODE (increment) != CONST_INT)
1409 /* SR sometimes puts the constant in a register, especially if it is
1410 too big to be an add immed operand. */
1411 src_insn = PREV_INSN (src_insn);
1412 increment = SET_SRC (PATTERN (src_insn));
1414 /* SR may have used LO_SUM to compute the constant if it is too large
1415 for a load immed operand. In this case, the constant is in operand
1416 one of the LO_SUM rtx. */
1417 if (GET_CODE (increment) == LO_SUM)
1418 increment = XEXP (increment, 1);
1419 else if (GET_CODE (increment) == IOR
1420 || GET_CODE (increment) == ASHIFT)
1422 /* The rs6000 port loads some constants with IOR.
1423 The alpha port loads some constants with ASHIFT. */
1424 rtx second_part = XEXP (increment, 1);
1425 enum rtx_code code = GET_CODE (increment);
1427 src_insn = PREV_INSN (src_insn);
1428 increment = SET_SRC (PATTERN (src_insn));
1429 /* Don't need the last insn anymore. */
1430 delete_insn (get_last_insn ());
1432 if (GET_CODE (second_part) != CONST_INT
1433 || GET_CODE (increment) != CONST_INT)
1434 abort ();
1436 if (code == IOR)
1437 increment = GEN_INT (INTVAL (increment) | INTVAL (second_part));
1438 else
1439 increment = GEN_INT (INTVAL (increment) << INTVAL (second_part));
1442 if (GET_CODE (increment) != CONST_INT)
1443 abort ();
1445 /* The insn loading the constant into a register is no longer needed,
1446 so delete it. */
1447 delete_insn (get_last_insn ());
1450 if (increment_total)
1451 increment_total = GEN_INT (INTVAL (increment_total) + INTVAL (increment));
1452 else
1453 increment_total = increment;
1455 /* Check that the source register is the same as the register we expected
1456 to see as the source. If not, something is seriously wrong. */
1457 if (GET_CODE (XEXP (SET_SRC (pattern), 0)) != REG
1458 || REGNO (XEXP (SET_SRC (pattern), 0)) != regno)
1460 /* Some machines (e.g. the romp), may emit two add instructions for
1461 certain constants, so lets try looking for another add immediately
1462 before this one if we have only seen one add insn so far. */
1464 if (tries == 0)
1466 tries++;
1468 src_insn = PREV_INSN (src_insn);
1469 pattern = PATTERN (src_insn);
1471 delete_insn (get_last_insn ());
1473 goto retry;
1476 abort ();
1479 return increment_total;
1482 /* Copy REG_NOTES, except for insn references, because not all insn_map
1483 entries are valid yet. We do need to copy registers now though, because
1484 the reg_map entries can change during copying. */
1486 static rtx
1487 initial_reg_note_copy (notes, map)
1488 rtx notes;
1489 struct inline_remap *map;
1491 rtx copy;
1493 if (notes == 0)
1494 return 0;
1496 copy = rtx_alloc (GET_CODE (notes));
1497 PUT_MODE (copy, GET_MODE (notes));
1499 if (GET_CODE (notes) == EXPR_LIST)
1500 XEXP (copy, 0) = copy_rtx_and_substitute (XEXP (notes, 0), map);
1501 else if (GET_CODE (notes) == INSN_LIST)
1502 /* Don't substitute for these yet. */
1503 XEXP (copy, 0) = XEXP (notes, 0);
1504 else
1505 abort ();
1507 XEXP (copy, 1) = initial_reg_note_copy (XEXP (notes, 1), map);
1509 return copy;
1512 /* Fixup insn references in copied REG_NOTES. */
1514 static void
1515 final_reg_note_copy (notes, map)
1516 rtx notes;
1517 struct inline_remap *map;
1519 rtx note;
1521 for (note = notes; note; note = XEXP (note, 1))
1522 if (GET_CODE (note) == INSN_LIST)
1523 XEXP (note, 0) = map->insn_map[INSN_UID (XEXP (note, 0))];
1526 /* Copy each instruction in the loop, substituting from map as appropriate.
1527 This is very similar to a loop in expand_inline_function. */
1529 static void
1530 copy_loop_body (copy_start, copy_end, map, exit_label, last_iteration,
1531 unroll_type, start_label, loop_end, insert_before,
1532 copy_notes_from)
1533 rtx copy_start, copy_end;
1534 struct inline_remap *map;
1535 rtx exit_label;
1536 int last_iteration;
1537 enum unroll_types unroll_type;
1538 rtx start_label, loop_end, insert_before, copy_notes_from;
1540 rtx insn, pattern;
1541 rtx tem, copy;
1542 int dest_reg_was_split, i;
1543 rtx cc0_insn = 0;
1544 rtx final_label = 0;
1545 rtx giv_inc, giv_dest_reg, giv_src_reg;
1547 /* If this isn't the last iteration, then map any references to the
1548 start_label to final_label. Final label will then be emitted immediately
1549 after the end of this loop body if it was ever used.
1551 If this is the last iteration, then map references to the start_label
1552 to itself. */
1553 if (! last_iteration)
1555 final_label = gen_label_rtx ();
1556 map->label_map[CODE_LABEL_NUMBER (start_label)] = final_label;
1558 else
1559 map->label_map[CODE_LABEL_NUMBER (start_label)] = start_label;
1561 start_sequence ();
1563 insn = copy_start;
1566 insn = NEXT_INSN (insn);
1568 map->orig_asm_operands_vector = 0;
1570 switch (GET_CODE (insn))
1572 case INSN:
1573 pattern = PATTERN (insn);
1574 copy = 0;
1575 giv_inc = 0;
1577 /* Check to see if this is a giv that has been combined with
1578 some split address givs. (Combined in the sense that
1579 `combine_givs' in loop.c has put two givs in the same register.)
1580 In this case, we must search all givs based on the same biv to
1581 find the address givs. Then split the address givs.
1582 Do this before splitting the giv, since that may map the
1583 SET_DEST to a new register. */
1585 if (GET_CODE (pattern) == SET
1586 && GET_CODE (SET_DEST (pattern)) == REG
1587 && addr_combined_regs[REGNO (SET_DEST (pattern))])
1589 struct iv_class *bl;
1590 struct induction *v, *tv;
1591 int regno = REGNO (SET_DEST (pattern));
1593 v = addr_combined_regs[REGNO (SET_DEST (pattern))];
1594 bl = reg_biv_class[REGNO (v->src_reg)];
1596 /* Although the giv_inc amount is not needed here, we must call
1597 calculate_giv_inc here since it might try to delete the
1598 last insn emitted. If we wait until later to call it,
1599 we might accidentally delete insns generated immediately
1600 below by emit_unrolled_add. */
1602 giv_inc = calculate_giv_inc (pattern, insn, regno);
1604 /* Now find all address giv's that were combined with this
1605 giv 'v'. */
1606 for (tv = bl->giv; tv; tv = tv->next_iv)
1607 if (tv->giv_type == DEST_ADDR && tv->same == v)
1609 int this_giv_inc = INTVAL (giv_inc);
1611 /* Scale this_giv_inc if the multiplicative factors of
1612 the two givs are different. */
1613 if (tv->mult_val != v->mult_val)
1614 this_giv_inc = (this_giv_inc / INTVAL (v->mult_val)
1615 * INTVAL (tv->mult_val));
1617 tv->dest_reg = plus_constant (tv->dest_reg, this_giv_inc);
1618 *tv->location = tv->dest_reg;
1620 if (last_iteration && unroll_type != UNROLL_COMPLETELY)
1622 /* Must emit an insn to increment the split address
1623 giv. Add in the const_adjust field in case there
1624 was a constant eliminated from the address. */
1625 rtx value, dest_reg;
1627 /* tv->dest_reg will be either a bare register,
1628 or else a register plus a constant. */
1629 if (GET_CODE (tv->dest_reg) == REG)
1630 dest_reg = tv->dest_reg;
1631 else
1632 dest_reg = XEXP (tv->dest_reg, 0);
1634 /* Check for shared address givs, and avoid
1635 incrementing the shared pseudo reg more than
1636 once. */
1637 if (! tv->same_insn)
1639 /* tv->dest_reg may actually be a (PLUS (REG)
1640 (CONST)) here, so we must call plus_constant
1641 to add the const_adjust amount before calling
1642 emit_unrolled_add below. */
1643 value = plus_constant (tv->dest_reg,
1644 tv->const_adjust);
1646 /* The constant could be too large for an add
1647 immediate, so can't directly emit an insn
1648 here. */
1649 emit_unrolled_add (dest_reg, XEXP (value, 0),
1650 XEXP (value, 1));
1653 /* Reset the giv to be just the register again, in case
1654 it is used after the set we have just emitted.
1655 We must subtract the const_adjust factor added in
1656 above. */
1657 tv->dest_reg = plus_constant (dest_reg,
1658 - tv->const_adjust);
1659 *tv->location = tv->dest_reg;
1664 /* If this is a setting of a splittable variable, then determine
1665 how to split the variable, create a new set based on this split,
1666 and set up the reg_map so that later uses of the variable will
1667 use the new split variable. */
1669 dest_reg_was_split = 0;
1671 if (GET_CODE (pattern) == SET
1672 && GET_CODE (SET_DEST (pattern)) == REG
1673 && splittable_regs[REGNO (SET_DEST (pattern))])
1675 int regno = REGNO (SET_DEST (pattern));
1677 dest_reg_was_split = 1;
1679 /* Compute the increment value for the giv, if it wasn't
1680 already computed above. */
1682 if (giv_inc == 0)
1683 giv_inc = calculate_giv_inc (pattern, insn, regno);
1684 giv_dest_reg = SET_DEST (pattern);
1685 giv_src_reg = SET_DEST (pattern);
1687 if (unroll_type == UNROLL_COMPLETELY)
1689 /* Completely unrolling the loop. Set the induction
1690 variable to a known constant value. */
1692 /* The value in splittable_regs may be an invariant
1693 value, so we must use plus_constant here. */
1694 splittable_regs[regno]
1695 = plus_constant (splittable_regs[regno], INTVAL (giv_inc));
1697 if (GET_CODE (splittable_regs[regno]) == PLUS)
1699 giv_src_reg = XEXP (splittable_regs[regno], 0);
1700 giv_inc = XEXP (splittable_regs[regno], 1);
1702 else
1704 /* The splittable_regs value must be a REG or a
1705 CONST_INT, so put the entire value in the giv_src_reg
1706 variable. */
1707 giv_src_reg = splittable_regs[regno];
1708 giv_inc = const0_rtx;
1711 else
1713 /* Partially unrolling loop. Create a new pseudo
1714 register for the iteration variable, and set it to
1715 be a constant plus the original register. Except
1716 on the last iteration, when the result has to
1717 go back into the original iteration var register. */
1719 /* Handle bivs which must be mapped to a new register
1720 when split. This happens for bivs which need their
1721 final value set before loop entry. The new register
1722 for the biv was stored in the biv's first struct
1723 induction entry by find_splittable_regs. */
1725 if (regno < max_reg_before_loop
1726 && reg_iv_type[regno] == BASIC_INDUCT)
1728 giv_src_reg = reg_biv_class[regno]->biv->src_reg;
1729 giv_dest_reg = giv_src_reg;
1732 #if 0
1733 /* If non-reduced/final-value givs were split, then
1734 this would have to remap those givs also. See
1735 find_splittable_regs. */
1736 #endif
1738 splittable_regs[regno]
1739 = GEN_INT (INTVAL (giv_inc)
1740 + INTVAL (splittable_regs[regno]));
1741 giv_inc = splittable_regs[regno];
1743 /* Now split the induction variable by changing the dest
1744 of this insn to a new register, and setting its
1745 reg_map entry to point to this new register.
1747 If this is the last iteration, and this is the last insn
1748 that will update the iv, then reuse the original dest,
1749 to ensure that the iv will have the proper value when
1750 the loop exits or repeats.
1752 Using splittable_regs_updates here like this is safe,
1753 because it can only be greater than one if all
1754 instructions modifying the iv are always executed in
1755 order. */
1757 if (! last_iteration
1758 || (splittable_regs_updates[regno]-- != 1))
1760 tem = gen_reg_rtx (GET_MODE (giv_src_reg));
1761 giv_dest_reg = tem;
1762 map->reg_map[regno] = tem;
1764 else
1765 map->reg_map[regno] = giv_src_reg;
1768 /* The constant being added could be too large for an add
1769 immediate, so can't directly emit an insn here. */
1770 emit_unrolled_add (giv_dest_reg, giv_src_reg, giv_inc);
1771 copy = get_last_insn ();
1772 pattern = PATTERN (copy);
1774 else
1776 pattern = copy_rtx_and_substitute (pattern, map);
1777 copy = emit_insn (pattern);
1779 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
1781 #ifdef HAVE_cc0
1782 /* If this insn is setting CC0, it may need to look at
1783 the insn that uses CC0 to see what type of insn it is.
1784 In that case, the call to recog via validate_change will
1785 fail. So don't substitute constants here. Instead,
1786 do it when we emit the following insn.
1788 For example, see the pyr.md file. That machine has signed and
1789 unsigned compares. The compare patterns must check the
1790 following branch insn to see which what kind of compare to
1791 emit.
1793 If the previous insn set CC0, substitute constants on it as
1794 well. */
1795 if (sets_cc0_p (PATTERN (copy)) != 0)
1796 cc0_insn = copy;
1797 else
1799 if (cc0_insn)
1800 try_constants (cc0_insn, map);
1801 cc0_insn = 0;
1802 try_constants (copy, map);
1804 #else
1805 try_constants (copy, map);
1806 #endif
1808 /* Make split induction variable constants `permanent' since we
1809 know there are no backward branches across iteration variable
1810 settings which would invalidate this. */
1811 if (dest_reg_was_split)
1813 int regno = REGNO (SET_DEST (pattern));
1815 if (regno < map->const_equiv_map_size
1816 && map->const_age_map[regno] == map->const_age)
1817 map->const_age_map[regno] = -1;
1819 break;
1821 case JUMP_INSN:
1822 pattern = copy_rtx_and_substitute (PATTERN (insn), map);
1823 copy = emit_jump_insn (pattern);
1824 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
1826 if (JUMP_LABEL (insn) == start_label && insn == copy_end
1827 && ! last_iteration)
1829 /* This is a branch to the beginning of the loop; this is the
1830 last insn being copied; and this is not the last iteration.
1831 In this case, we want to change the original fall through
1832 case to be a branch past the end of the loop, and the
1833 original jump label case to fall_through. */
1835 if (invert_exp (pattern, copy))
1837 if (! redirect_exp (&pattern,
1838 map->label_map[CODE_LABEL_NUMBER
1839 (JUMP_LABEL (insn))],
1840 exit_label, copy))
1841 abort ();
1843 else
1845 rtx jmp;
1846 rtx lab = gen_label_rtx ();
1847 /* Can't do it by reversing the jump (probably because we
1848 couldn't reverse the conditions), so emit a new
1849 jump_insn after COPY, and redirect the jump around
1850 that. */
1851 jmp = emit_jump_insn_after (gen_jump (exit_label), copy);
1852 jmp = emit_barrier_after (jmp);
1853 emit_label_after (lab, jmp);
1854 LABEL_NUSES (lab) = 0;
1855 if (! redirect_exp (&pattern,
1856 map->label_map[CODE_LABEL_NUMBER
1857 (JUMP_LABEL (insn))],
1858 lab, copy))
1859 abort ();
1863 #ifdef HAVE_cc0
1864 if (cc0_insn)
1865 try_constants (cc0_insn, map);
1866 cc0_insn = 0;
1867 #endif
1868 try_constants (copy, map);
1870 /* Set the jump label of COPY correctly to avoid problems with
1871 later passes of unroll_loop, if INSN had jump label set. */
1872 if (JUMP_LABEL (insn))
1874 rtx label = 0;
1876 /* Can't use the label_map for every insn, since this may be
1877 the backward branch, and hence the label was not mapped. */
1878 if (GET_CODE (pattern) == SET)
1880 tem = SET_SRC (pattern);
1881 if (GET_CODE (tem) == LABEL_REF)
1882 label = XEXP (tem, 0);
1883 else if (GET_CODE (tem) == IF_THEN_ELSE)
1885 if (XEXP (tem, 1) != pc_rtx)
1886 label = XEXP (XEXP (tem, 1), 0);
1887 else
1888 label = XEXP (XEXP (tem, 2), 0);
1892 if (label && GET_CODE (label) == CODE_LABEL)
1893 JUMP_LABEL (copy) = label;
1894 else
1896 /* An unrecognizable jump insn, probably the entry jump
1897 for a switch statement. This label must have been mapped,
1898 so just use the label_map to get the new jump label. */
1899 JUMP_LABEL (copy)
1900 = map->label_map[CODE_LABEL_NUMBER (JUMP_LABEL (insn))];
1903 /* If this is a non-local jump, then must increase the label
1904 use count so that the label will not be deleted when the
1905 original jump is deleted. */
1906 LABEL_NUSES (JUMP_LABEL (copy))++;
1908 else if (GET_CODE (PATTERN (copy)) == ADDR_VEC
1909 || GET_CODE (PATTERN (copy)) == ADDR_DIFF_VEC)
1911 rtx pat = PATTERN (copy);
1912 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1913 int len = XVECLEN (pat, diff_vec_p);
1914 int i;
1916 for (i = 0; i < len; i++)
1917 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))++;
1920 /* If this used to be a conditional jump insn but whose branch
1921 direction is now known, we must do something special. */
1922 if (condjump_p (insn) && !simplejump_p (insn) && map->last_pc_value)
1924 #ifdef HAVE_cc0
1925 /* The previous insn set cc0 for us. So delete it. */
1926 delete_insn (PREV_INSN (copy));
1927 #endif
1929 /* If this is now a no-op, delete it. */
1930 if (map->last_pc_value == pc_rtx)
1932 /* Don't let delete_insn delete the label referenced here,
1933 because we might possibly need it later for some other
1934 instruction in the loop. */
1935 if (JUMP_LABEL (copy))
1936 LABEL_NUSES (JUMP_LABEL (copy))++;
1937 delete_insn (copy);
1938 if (JUMP_LABEL (copy))
1939 LABEL_NUSES (JUMP_LABEL (copy))--;
1940 copy = 0;
1942 else
1943 /* Otherwise, this is unconditional jump so we must put a
1944 BARRIER after it. We could do some dead code elimination
1945 here, but jump.c will do it just as well. */
1946 emit_barrier ();
1948 break;
1950 case CALL_INSN:
1951 pattern = copy_rtx_and_substitute (PATTERN (insn), map);
1952 copy = emit_call_insn (pattern);
1953 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
1955 /* Because the USAGE information potentially contains objects other
1956 than hard registers, we need to copy it. */
1957 CALL_INSN_FUNCTION_USAGE (copy) =
1958 copy_rtx_and_substitute (CALL_INSN_FUNCTION_USAGE (insn), map);
1960 #ifdef HAVE_cc0
1961 if (cc0_insn)
1962 try_constants (cc0_insn, map);
1963 cc0_insn = 0;
1964 #endif
1965 try_constants (copy, map);
1967 /* Be lazy and assume CALL_INSNs clobber all hard registers. */
1968 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1969 map->const_equiv_map[i] = 0;
1970 break;
1972 case CODE_LABEL:
1973 /* If this is the loop start label, then we don't need to emit a
1974 copy of this label since no one will use it. */
1976 if (insn != start_label)
1978 copy = emit_label (map->label_map[CODE_LABEL_NUMBER (insn)]);
1979 map->const_age++;
1981 break;
1983 case BARRIER:
1984 copy = emit_barrier ();
1985 break;
1987 case NOTE:
1988 /* VTOP notes are valid only before the loop exit test. If placed
1989 anywhere else, loop may generate bad code. */
1991 if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
1992 && (NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP
1993 || (last_iteration && unroll_type != UNROLL_COMPLETELY)))
1994 copy = emit_note (NOTE_SOURCE_FILE (insn),
1995 NOTE_LINE_NUMBER (insn));
1996 else
1997 copy = 0;
1998 break;
2000 default:
2001 abort ();
2002 break;
2005 map->insn_map[INSN_UID (insn)] = copy;
2007 while (insn != copy_end);
2009 /* Now finish coping the REG_NOTES. */
2010 insn = copy_start;
2013 insn = NEXT_INSN (insn);
2014 if ((GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
2015 || GET_CODE (insn) == CALL_INSN)
2016 && map->insn_map[INSN_UID (insn)])
2017 final_reg_note_copy (REG_NOTES (map->insn_map[INSN_UID (insn)]), map);
2019 while (insn != copy_end);
2021 /* There may be notes between copy_notes_from and loop_end. Emit a copy of
2022 each of these notes here, since there may be some important ones, such as
2023 NOTE_INSN_BLOCK_END notes, in this group. We don't do this on the last
2024 iteration, because the original notes won't be deleted.
2026 We can't use insert_before here, because when from preconditioning,
2027 insert_before points before the loop. We can't use copy_end, because
2028 there may be insns already inserted after it (which we don't want to
2029 copy) when not from preconditioning code. */
2031 if (! last_iteration)
2033 for (insn = copy_notes_from; insn != loop_end; insn = NEXT_INSN (insn))
2035 if (GET_CODE (insn) == NOTE
2036 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED)
2037 emit_note (NOTE_SOURCE_FILE (insn), NOTE_LINE_NUMBER (insn));
2041 if (final_label && LABEL_NUSES (final_label) > 0)
2042 emit_label (final_label);
2044 tem = gen_sequence ();
2045 end_sequence ();
2046 emit_insn_before (tem, insert_before);
2049 /* Emit an insn, using the expand_binop to ensure that a valid insn is
2050 emitted. This will correctly handle the case where the increment value
2051 won't fit in the immediate field of a PLUS insns. */
2053 void
2054 emit_unrolled_add (dest_reg, src_reg, increment)
2055 rtx dest_reg, src_reg, increment;
2057 rtx result;
2059 result = expand_binop (GET_MODE (dest_reg), add_optab, src_reg, increment,
2060 dest_reg, 0, OPTAB_LIB_WIDEN);
2062 if (dest_reg != result)
2063 emit_move_insn (dest_reg, result);
2066 /* Searches the insns between INSN and LOOP_END. Returns 1 if there
2067 is a backward branch in that range that branches to somewhere between
2068 LOOP_START and INSN. Returns 0 otherwise. */
2070 /* ??? This is quadratic algorithm. Could be rewritten to be linear.
2071 In practice, this is not a problem, because this function is seldom called,
2072 and uses a negligible amount of CPU time on average. */
2075 back_branch_in_range_p (insn, loop_start, loop_end)
2076 rtx insn;
2077 rtx loop_start, loop_end;
2079 rtx p, q, target_insn;
2081 /* Stop before we get to the backward branch at the end of the loop. */
2082 loop_end = prev_nonnote_insn (loop_end);
2083 if (GET_CODE (loop_end) == BARRIER)
2084 loop_end = PREV_INSN (loop_end);
2086 /* Check in case insn has been deleted, search forward for first non
2087 deleted insn following it. */
2088 while (INSN_DELETED_P (insn))
2089 insn = NEXT_INSN (insn);
2091 /* Check for the case where insn is the last insn in the loop. */
2092 if (insn == loop_end)
2093 return 0;
2095 for (p = NEXT_INSN (insn); p != loop_end; p = NEXT_INSN (p))
2097 if (GET_CODE (p) == JUMP_INSN)
2099 target_insn = JUMP_LABEL (p);
2101 /* Search from loop_start to insn, to see if one of them is
2102 the target_insn. We can't use INSN_LUID comparisons here,
2103 since insn may not have an LUID entry. */
2104 for (q = loop_start; q != insn; q = NEXT_INSN (q))
2105 if (q == target_insn)
2106 return 1;
2110 return 0;
2113 /* Try to generate the simplest rtx for the expression
2114 (PLUS (MULT mult1 mult2) add1). This is used to calculate the initial
2115 value of giv's. */
2117 static rtx
2118 fold_rtx_mult_add (mult1, mult2, add1, mode)
2119 rtx mult1, mult2, add1;
2120 enum machine_mode mode;
2122 rtx temp, mult_res;
2123 rtx result;
2125 /* The modes must all be the same. This should always be true. For now,
2126 check to make sure. */
2127 if ((GET_MODE (mult1) != mode && GET_MODE (mult1) != VOIDmode)
2128 || (GET_MODE (mult2) != mode && GET_MODE (mult2) != VOIDmode)
2129 || (GET_MODE (add1) != mode && GET_MODE (add1) != VOIDmode))
2130 abort ();
2132 /* Ensure that if at least one of mult1/mult2 are constant, then mult2
2133 will be a constant. */
2134 if (GET_CODE (mult1) == CONST_INT)
2136 temp = mult2;
2137 mult2 = mult1;
2138 mult1 = temp;
2141 mult_res = simplify_binary_operation (MULT, mode, mult1, mult2);
2142 if (! mult_res)
2143 mult_res = gen_rtx (MULT, mode, mult1, mult2);
2145 /* Again, put the constant second. */
2146 if (GET_CODE (add1) == CONST_INT)
2148 temp = add1;
2149 add1 = mult_res;
2150 mult_res = temp;
2153 result = simplify_binary_operation (PLUS, mode, add1, mult_res);
2154 if (! result)
2155 result = gen_rtx (PLUS, mode, add1, mult_res);
2157 return result;
2160 /* Searches the list of induction struct's for the biv BL, to try to calculate
2161 the total increment value for one iteration of the loop as a constant.
2163 Returns the increment value as an rtx, simplified as much as possible,
2164 if it can be calculated. Otherwise, returns 0. */
2166 rtx
2167 biv_total_increment (bl, loop_start, loop_end)
2168 struct iv_class *bl;
2169 rtx loop_start, loop_end;
2171 struct induction *v;
2172 rtx result;
2174 /* For increment, must check every instruction that sets it. Each
2175 instruction must be executed only once each time through the loop.
2176 To verify this, we check that the the insn is always executed, and that
2177 there are no backward branches after the insn that branch to before it.
2178 Also, the insn must have a mult_val of one (to make sure it really is
2179 an increment). */
2181 result = const0_rtx;
2182 for (v = bl->biv; v; v = v->next_iv)
2184 if (v->always_computable && v->mult_val == const1_rtx
2185 && ! back_branch_in_range_p (v->insn, loop_start, loop_end))
2186 result = fold_rtx_mult_add (result, const1_rtx, v->add_val, v->mode);
2187 else
2188 return 0;
2191 return result;
2194 /* Determine the initial value of the iteration variable, and the amount
2195 that it is incremented each loop. Use the tables constructed by
2196 the strength reduction pass to calculate these values.
2198 Initial_value and/or increment are set to zero if their values could not
2199 be calculated. */
2201 static void
2202 iteration_info (iteration_var, initial_value, increment, loop_start, loop_end)
2203 rtx iteration_var, *initial_value, *increment;
2204 rtx loop_start, loop_end;
2206 struct iv_class *bl;
2207 struct induction *v, *b;
2209 /* Clear the result values, in case no answer can be found. */
2210 *initial_value = 0;
2211 *increment = 0;
2213 /* The iteration variable can be either a giv or a biv. Check to see
2214 which it is, and compute the variable's initial value, and increment
2215 value if possible. */
2217 /* If this is a new register, can't handle it since we don't have any
2218 reg_iv_type entry for it. */
2219 if (REGNO (iteration_var) >= max_reg_before_loop)
2221 if (loop_dump_stream)
2222 fprintf (loop_dump_stream,
2223 "Loop unrolling: No reg_iv_type entry for iteration var.\n");
2224 return;
2226 /* Reject iteration variables larger than the host long size, since they
2227 could result in a number of iterations greater than the range of our
2228 `unsigned long' variable loop_n_iterations. */
2229 else if (GET_MODE_BITSIZE (GET_MODE (iteration_var)) > HOST_BITS_PER_LONG)
2231 if (loop_dump_stream)
2232 fprintf (loop_dump_stream,
2233 "Loop unrolling: Iteration var rejected because mode larger than host long.\n");
2234 return;
2236 else if (GET_MODE_CLASS (GET_MODE (iteration_var)) != MODE_INT)
2238 if (loop_dump_stream)
2239 fprintf (loop_dump_stream,
2240 "Loop unrolling: Iteration var not an integer.\n");
2241 return;
2243 else if (reg_iv_type[REGNO (iteration_var)] == BASIC_INDUCT)
2245 /* Grab initial value, only useful if it is a constant. */
2246 bl = reg_biv_class[REGNO (iteration_var)];
2247 *initial_value = bl->initial_value;
2249 *increment = biv_total_increment (bl, loop_start, loop_end);
2251 else if (reg_iv_type[REGNO (iteration_var)] == GENERAL_INDUCT)
2253 #if 1
2254 /* ??? The code below does not work because the incorrect number of
2255 iterations is calculated when the biv is incremented after the giv
2256 is set (which is the usual case). This can probably be accounted
2257 for by biasing the initial_value by subtracting the amount of the
2258 increment that occurs between the giv set and the giv test. However,
2259 a giv as an iterator is very rare, so it does not seem worthwhile
2260 to handle this. */
2261 /* ??? An example failure is: i = 6; do {;} while (i++ < 9). */
2262 if (loop_dump_stream)
2263 fprintf (loop_dump_stream,
2264 "Loop unrolling: Giv iterators are not handled.\n");
2265 return;
2266 #else
2267 /* Initial value is mult_val times the biv's initial value plus
2268 add_val. Only useful if it is a constant. */
2269 v = reg_iv_info[REGNO (iteration_var)];
2270 bl = reg_biv_class[REGNO (v->src_reg)];
2271 *initial_value = fold_rtx_mult_add (v->mult_val, bl->initial_value,
2272 v->add_val, v->mode);
2274 /* Increment value is mult_val times the increment value of the biv. */
2276 *increment = biv_total_increment (bl, loop_start, loop_end);
2277 if (*increment)
2278 *increment = fold_rtx_mult_add (v->mult_val, *increment, const0_rtx,
2279 v->mode);
2280 #endif
2282 else
2284 if (loop_dump_stream)
2285 fprintf (loop_dump_stream,
2286 "Loop unrolling: Not basic or general induction var.\n");
2287 return;
2291 /* Calculate the approximate final value of the iteration variable
2292 which has an loop exit test with code COMPARISON_CODE and comparison value
2293 of COMPARISON_VALUE. Also returns an indication of whether the comparison
2294 was signed or unsigned, and the direction of the comparison. This info is
2295 needed to calculate the number of loop iterations. */
2297 static rtx
2298 approx_final_value (comparison_code, comparison_value, unsigned_p, compare_dir)
2299 enum rtx_code comparison_code;
2300 rtx comparison_value;
2301 int *unsigned_p;
2302 int *compare_dir;
2304 /* Calculate the final value of the induction variable.
2305 The exact final value depends on the branch operator, and increment sign.
2306 This is only an approximate value. It will be wrong if the iteration
2307 variable is not incremented by one each time through the loop, and
2308 approx final value - start value % increment != 0. */
2310 *unsigned_p = 0;
2311 switch (comparison_code)
2313 case LEU:
2314 *unsigned_p = 1;
2315 case LE:
2316 *compare_dir = 1;
2317 return plus_constant (comparison_value, 1);
2318 case GEU:
2319 *unsigned_p = 1;
2320 case GE:
2321 *compare_dir = -1;
2322 return plus_constant (comparison_value, -1);
2323 case EQ:
2324 /* Can not calculate a final value for this case. */
2325 *compare_dir = 0;
2326 return 0;
2327 case LTU:
2328 *unsigned_p = 1;
2329 case LT:
2330 *compare_dir = 1;
2331 return comparison_value;
2332 break;
2333 case GTU:
2334 *unsigned_p = 1;
2335 case GT:
2336 *compare_dir = -1;
2337 return comparison_value;
2338 case NE:
2339 *compare_dir = 0;
2340 return comparison_value;
2341 default:
2342 abort ();
2346 /* For each biv and giv, determine whether it can be safely split into
2347 a different variable for each unrolled copy of the loop body. If it
2348 is safe to split, then indicate that by saving some useful info
2349 in the splittable_regs array.
2351 If the loop is being completely unrolled, then splittable_regs will hold
2352 the current value of the induction variable while the loop is unrolled.
2353 It must be set to the initial value of the induction variable here.
2354 Otherwise, splittable_regs will hold the difference between the current
2355 value of the induction variable and the value the induction variable had
2356 at the top of the loop. It must be set to the value 0 here.
2358 Returns the total number of instructions that set registers that are
2359 splittable. */
2361 /* ?? If the loop is only unrolled twice, then most of the restrictions to
2362 constant values are unnecessary, since we can easily calculate increment
2363 values in this case even if nothing is constant. The increment value
2364 should not involve a multiply however. */
2366 /* ?? Even if the biv/giv increment values aren't constant, it may still
2367 be beneficial to split the variable if the loop is only unrolled a few
2368 times, since multiplies by small integers (1,2,3,4) are very cheap. */
2370 static int
2371 find_splittable_regs (unroll_type, loop_start, loop_end, end_insert_before,
2372 unroll_number)
2373 enum unroll_types unroll_type;
2374 rtx loop_start, loop_end;
2375 rtx end_insert_before;
2376 int unroll_number;
2378 struct iv_class *bl;
2379 struct induction *v;
2380 rtx increment, tem;
2381 rtx biv_final_value;
2382 int biv_splittable;
2383 int result = 0;
2385 for (bl = loop_iv_list; bl; bl = bl->next)
2387 /* Biv_total_increment must return a constant value,
2388 otherwise we can not calculate the split values. */
2390 increment = biv_total_increment (bl, loop_start, loop_end);
2391 if (! increment || GET_CODE (increment) != CONST_INT)
2392 continue;
2394 /* The loop must be unrolled completely, or else have a known number
2395 of iterations and only one exit, or else the biv must be dead
2396 outside the loop, or else the final value must be known. Otherwise,
2397 it is unsafe to split the biv since it may not have the proper
2398 value on loop exit. */
2400 /* loop_number_exit_count is non-zero if the loop has an exit other than
2401 a fall through at the end. */
2403 biv_splittable = 1;
2404 biv_final_value = 0;
2405 if (unroll_type != UNROLL_COMPLETELY
2406 && (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]]
2407 || unroll_type == UNROLL_NAIVE)
2408 && (uid_luid[regno_last_uid[bl->regno]] >= INSN_LUID (loop_end)
2409 || ! bl->init_insn
2410 || INSN_UID (bl->init_insn) >= max_uid_for_loop
2411 || (uid_luid[regno_first_uid[bl->regno]]
2412 < INSN_LUID (bl->init_insn))
2413 || reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
2414 && ! (biv_final_value = final_biv_value (bl, loop_start, loop_end)))
2415 biv_splittable = 0;
2417 /* If any of the insns setting the BIV don't do so with a simple
2418 PLUS, we don't know how to split it. */
2419 for (v = bl->biv; biv_splittable && v; v = v->next_iv)
2420 if ((tem = single_set (v->insn)) == 0
2421 || GET_CODE (SET_DEST (tem)) != REG
2422 || REGNO (SET_DEST (tem)) != bl->regno
2423 || GET_CODE (SET_SRC (tem)) != PLUS)
2424 biv_splittable = 0;
2426 /* If final value is non-zero, then must emit an instruction which sets
2427 the value of the biv to the proper value. This is done after
2428 handling all of the givs, since some of them may need to use the
2429 biv's value in their initialization code. */
2431 /* This biv is splittable. If completely unrolling the loop, save
2432 the biv's initial value. Otherwise, save the constant zero. */
2434 if (biv_splittable == 1)
2436 if (unroll_type == UNROLL_COMPLETELY)
2438 /* If the initial value of the biv is itself (i.e. it is too
2439 complicated for strength_reduce to compute), or is a hard
2440 register, or it isn't invariant, then we must create a new
2441 pseudo reg to hold the initial value of the biv. */
2443 if (GET_CODE (bl->initial_value) == REG
2444 && (REGNO (bl->initial_value) == bl->regno
2445 || REGNO (bl->initial_value) < FIRST_PSEUDO_REGISTER
2446 || ! invariant_p (bl->initial_value)))
2448 rtx tem = gen_reg_rtx (bl->biv->mode);
2450 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2451 loop_start);
2453 if (loop_dump_stream)
2454 fprintf (loop_dump_stream, "Biv %d initial value remapped to %d.\n",
2455 bl->regno, REGNO (tem));
2457 splittable_regs[bl->regno] = tem;
2459 else
2460 splittable_regs[bl->regno] = bl->initial_value;
2462 else
2463 splittable_regs[bl->regno] = const0_rtx;
2465 /* Save the number of instructions that modify the biv, so that
2466 we can treat the last one specially. */
2468 splittable_regs_updates[bl->regno] = bl->biv_count;
2469 result += bl->biv_count;
2471 if (loop_dump_stream)
2472 fprintf (loop_dump_stream,
2473 "Biv %d safe to split.\n", bl->regno);
2476 /* Check every giv that depends on this biv to see whether it is
2477 splittable also. Even if the biv isn't splittable, givs which
2478 depend on it may be splittable if the biv is live outside the
2479 loop, and the givs aren't. */
2481 result += find_splittable_givs (bl, unroll_type, loop_start, loop_end,
2482 increment, unroll_number);
2484 /* If final value is non-zero, then must emit an instruction which sets
2485 the value of the biv to the proper value. This is done after
2486 handling all of the givs, since some of them may need to use the
2487 biv's value in their initialization code. */
2488 if (biv_final_value)
2490 /* If the loop has multiple exits, emit the insns before the
2491 loop to ensure that it will always be executed no matter
2492 how the loop exits. Otherwise emit the insn after the loop,
2493 since this is slightly more efficient. */
2494 if (! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
2495 emit_insn_before (gen_move_insn (bl->biv->src_reg,
2496 biv_final_value),
2497 end_insert_before);
2498 else
2500 /* Create a new register to hold the value of the biv, and then
2501 set the biv to its final value before the loop start. The biv
2502 is set to its final value before loop start to ensure that
2503 this insn will always be executed, no matter how the loop
2504 exits. */
2505 rtx tem = gen_reg_rtx (bl->biv->mode);
2506 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2507 loop_start);
2508 emit_insn_before (gen_move_insn (bl->biv->src_reg,
2509 biv_final_value),
2510 loop_start);
2512 if (loop_dump_stream)
2513 fprintf (loop_dump_stream, "Biv %d mapped to %d for split.\n",
2514 REGNO (bl->biv->src_reg), REGNO (tem));
2516 /* Set up the mapping from the original biv register to the new
2517 register. */
2518 bl->biv->src_reg = tem;
2522 return result;
2525 /* Return 1 if the first and last unrolled copy of the address giv V is valid
2526 for the instruction that is using it. Do not make any changes to that
2527 instruction. */
2529 static int
2530 verify_addresses (v, giv_inc, unroll_number)
2531 struct induction *v;
2532 rtx giv_inc;
2533 int unroll_number;
2535 int ret = 1;
2536 rtx orig_addr = *v->location;
2537 rtx last_addr = plus_constant (v->dest_reg,
2538 INTVAL (giv_inc) * (unroll_number - 1));
2540 /* First check to see if either address would fail. */
2541 if (! validate_change (v->insn, v->location, v->dest_reg, 0)
2542 || ! validate_change (v->insn, v->location, last_addr, 0))
2543 ret = 0;
2545 /* Now put things back the way they were before. This will always
2546 succeed. */
2547 validate_change (v->insn, v->location, orig_addr, 0);
2549 return ret;
2552 /* For every giv based on the biv BL, check to determine whether it is
2553 splittable. This is a subroutine to find_splittable_regs ().
2555 Return the number of instructions that set splittable registers. */
2557 static int
2558 find_splittable_givs (bl, unroll_type, loop_start, loop_end, increment,
2559 unroll_number)
2560 struct iv_class *bl;
2561 enum unroll_types unroll_type;
2562 rtx loop_start, loop_end;
2563 rtx increment;
2564 int unroll_number;
2566 struct induction *v, *v2;
2567 rtx final_value;
2568 rtx tem;
2569 int result = 0;
2571 /* Scan the list of givs, and set the same_insn field when there are
2572 multiple identical givs in the same insn. */
2573 for (v = bl->giv; v; v = v->next_iv)
2574 for (v2 = v->next_iv; v2; v2 = v2->next_iv)
2575 if (v->insn == v2->insn && rtx_equal_p (v->new_reg, v2->new_reg)
2576 && ! v2->same_insn)
2577 v2->same_insn = v;
2579 for (v = bl->giv; v; v = v->next_iv)
2581 rtx giv_inc, value;
2583 /* Only split the giv if it has already been reduced, or if the loop is
2584 being completely unrolled. */
2585 if (unroll_type != UNROLL_COMPLETELY && v->ignore)
2586 continue;
2588 /* The giv can be split if the insn that sets the giv is executed once
2589 and only once on every iteration of the loop. */
2590 /* An address giv can always be split. v->insn is just a use not a set,
2591 and hence it does not matter whether it is always executed. All that
2592 matters is that all the biv increments are always executed, and we
2593 won't reach here if they aren't. */
2594 if (v->giv_type != DEST_ADDR
2595 && (! v->always_computable
2596 || back_branch_in_range_p (v->insn, loop_start, loop_end)))
2597 continue;
2599 /* The giv increment value must be a constant. */
2600 giv_inc = fold_rtx_mult_add (v->mult_val, increment, const0_rtx,
2601 v->mode);
2602 if (! giv_inc || GET_CODE (giv_inc) != CONST_INT)
2603 continue;
2605 /* The loop must be unrolled completely, or else have a known number of
2606 iterations and only one exit, or else the giv must be dead outside
2607 the loop, or else the final value of the giv must be known.
2608 Otherwise, it is not safe to split the giv since it may not have the
2609 proper value on loop exit. */
2611 /* The used outside loop test will fail for DEST_ADDR givs. They are
2612 never used outside the loop anyways, so it is always safe to split a
2613 DEST_ADDR giv. */
2615 final_value = 0;
2616 if (unroll_type != UNROLL_COMPLETELY
2617 && (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]]
2618 || unroll_type == UNROLL_NAIVE)
2619 && v->giv_type != DEST_ADDR
2620 && ((regno_first_uid[REGNO (v->dest_reg)] != INSN_UID (v->insn)
2621 /* Check for the case where the pseudo is set by a shift/add
2622 sequence, in which case the first insn setting the pseudo
2623 is the first insn of the shift/add sequence. */
2624 && (! (tem = find_reg_note (v->insn, REG_RETVAL, NULL_RTX))
2625 || (regno_first_uid[REGNO (v->dest_reg)]
2626 != INSN_UID (XEXP (tem, 0)))))
2627 /* Line above always fails if INSN was moved by loop opt. */
2628 || (uid_luid[regno_last_uid[REGNO (v->dest_reg)]]
2629 >= INSN_LUID (loop_end)))
2630 && ! (final_value = v->final_value))
2631 continue;
2633 #if 0
2634 /* Currently, non-reduced/final-value givs are never split. */
2635 /* Should emit insns after the loop if possible, as the biv final value
2636 code below does. */
2638 /* If the final value is non-zero, and the giv has not been reduced,
2639 then must emit an instruction to set the final value. */
2640 if (final_value && !v->new_reg)
2642 /* Create a new register to hold the value of the giv, and then set
2643 the giv to its final value before the loop start. The giv is set
2644 to its final value before loop start to ensure that this insn
2645 will always be executed, no matter how we exit. */
2646 tem = gen_reg_rtx (v->mode);
2647 emit_insn_before (gen_move_insn (tem, v->dest_reg), loop_start);
2648 emit_insn_before (gen_move_insn (v->dest_reg, final_value),
2649 loop_start);
2651 if (loop_dump_stream)
2652 fprintf (loop_dump_stream, "Giv %d mapped to %d for split.\n",
2653 REGNO (v->dest_reg), REGNO (tem));
2655 v->src_reg = tem;
2657 #endif
2659 /* This giv is splittable. If completely unrolling the loop, save the
2660 giv's initial value. Otherwise, save the constant zero for it. */
2662 if (unroll_type == UNROLL_COMPLETELY)
2664 /* It is not safe to use bl->initial_value here, because it may not
2665 be invariant. It is safe to use the initial value stored in
2666 the splittable_regs array if it is set. In rare cases, it won't
2667 be set, so then we do exactly the same thing as
2668 find_splittable_regs does to get a safe value. */
2669 rtx biv_initial_value;
2671 if (splittable_regs[bl->regno])
2672 biv_initial_value = splittable_regs[bl->regno];
2673 else if (GET_CODE (bl->initial_value) != REG
2674 || (REGNO (bl->initial_value) != bl->regno
2675 && REGNO (bl->initial_value) >= FIRST_PSEUDO_REGISTER))
2676 biv_initial_value = bl->initial_value;
2677 else
2679 rtx tem = gen_reg_rtx (bl->biv->mode);
2681 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2682 loop_start);
2683 biv_initial_value = tem;
2685 value = fold_rtx_mult_add (v->mult_val, biv_initial_value,
2686 v->add_val, v->mode);
2688 else
2689 value = const0_rtx;
2691 if (v->new_reg)
2693 /* If a giv was combined with another giv, then we can only split
2694 this giv if the giv it was combined with was reduced. This
2695 is because the value of v->new_reg is meaningless in this
2696 case. */
2697 if (v->same && ! v->same->new_reg)
2699 if (loop_dump_stream)
2700 fprintf (loop_dump_stream,
2701 "giv combined with unreduced giv not split.\n");
2702 continue;
2704 /* If the giv is an address destination, it could be something other
2705 than a simple register, these have to be treated differently. */
2706 else if (v->giv_type == DEST_REG)
2708 /* If value is not a constant, register, or register plus
2709 constant, then compute its value into a register before
2710 loop start. This prevents invalid rtx sharing, and should
2711 generate better code. We can use bl->initial_value here
2712 instead of splittable_regs[bl->regno] because this code
2713 is going before the loop start. */
2714 if (unroll_type == UNROLL_COMPLETELY
2715 && GET_CODE (value) != CONST_INT
2716 && GET_CODE (value) != REG
2717 && (GET_CODE (value) != PLUS
2718 || GET_CODE (XEXP (value, 0)) != REG
2719 || GET_CODE (XEXP (value, 1)) != CONST_INT))
2721 rtx tem = gen_reg_rtx (v->mode);
2722 emit_iv_add_mult (bl->initial_value, v->mult_val,
2723 v->add_val, tem, loop_start);
2724 value = tem;
2727 splittable_regs[REGNO (v->new_reg)] = value;
2729 else
2731 /* Splitting address givs is useful since it will often allow us
2732 to eliminate some increment insns for the base giv as
2733 unnecessary. */
2735 /* If the addr giv is combined with a dest_reg giv, then all
2736 references to that dest reg will be remapped, which is NOT
2737 what we want for split addr regs. We always create a new
2738 register for the split addr giv, just to be safe. */
2740 /* ??? If there are multiple address givs which have been
2741 combined with the same dest_reg giv, then we may only need
2742 one new register for them. Pulling out constants below will
2743 catch some of the common cases of this. Currently, I leave
2744 the work of simplifying multiple address givs to the
2745 following cse pass. */
2747 /* As a special case, if we have multiple identical address givs
2748 within a single instruction, then we do use a single pseudo
2749 reg for both. This is necessary in case one is a match_dup
2750 of the other. */
2752 v->const_adjust = 0;
2754 if (v->same_insn)
2756 v->dest_reg = v->same_insn->dest_reg;
2757 if (loop_dump_stream)
2758 fprintf (loop_dump_stream,
2759 "Sharing address givs in insn %d\n",
2760 INSN_UID (v->insn));
2762 else if (unroll_type != UNROLL_COMPLETELY)
2764 /* If not completely unrolling the loop, then create a new
2765 register to hold the split value of the DEST_ADDR giv.
2766 Emit insn to initialize its value before loop start. */
2767 tem = gen_reg_rtx (v->mode);
2769 /* If the address giv has a constant in its new_reg value,
2770 then this constant can be pulled out and put in value,
2771 instead of being part of the initialization code. */
2773 if (GET_CODE (v->new_reg) == PLUS
2774 && GET_CODE (XEXP (v->new_reg, 1)) == CONST_INT)
2776 v->dest_reg
2777 = plus_constant (tem, INTVAL (XEXP (v->new_reg,1)));
2779 /* Only succeed if this will give valid addresses.
2780 Try to validate both the first and the last
2781 address resulting from loop unrolling, if
2782 one fails, then can't do const elim here. */
2783 if (! verify_addresses (v, giv_inc, unroll_number))
2785 /* Save the negative of the eliminated const, so
2786 that we can calculate the dest_reg's increment
2787 value later. */
2788 v->const_adjust = - INTVAL (XEXP (v->new_reg, 1));
2790 v->new_reg = XEXP (v->new_reg, 0);
2791 if (loop_dump_stream)
2792 fprintf (loop_dump_stream,
2793 "Eliminating constant from giv %d\n",
2794 REGNO (tem));
2796 else
2797 v->dest_reg = tem;
2799 else
2800 v->dest_reg = tem;
2802 /* If the address hasn't been checked for validity yet, do so
2803 now, and fail completely if either the first or the last
2804 unrolled copy of the address is not a valid address
2805 for the instruction that uses it. */
2806 if (v->dest_reg == tem
2807 && ! verify_addresses (v, giv_inc, unroll_number))
2809 if (loop_dump_stream)
2810 fprintf (loop_dump_stream,
2811 "Invalid address for giv at insn %d\n",
2812 INSN_UID (v->insn));
2813 continue;
2816 /* To initialize the new register, just move the value of
2817 new_reg into it. This is not guaranteed to give a valid
2818 instruction on machines with complex addressing modes.
2819 If we can't recognize it, then delete it and emit insns
2820 to calculate the value from scratch. */
2821 emit_insn_before (gen_rtx (SET, VOIDmode, tem,
2822 copy_rtx (v->new_reg)),
2823 loop_start);
2824 if (recog_memoized (PREV_INSN (loop_start)) < 0)
2826 rtx sequence, ret;
2828 /* We can't use bl->initial_value to compute the initial
2829 value, because the loop may have been preconditioned.
2830 We must calculate it from NEW_REG. Try using
2831 force_operand instead of emit_iv_add_mult. */
2832 delete_insn (PREV_INSN (loop_start));
2834 start_sequence ();
2835 ret = force_operand (v->new_reg, tem);
2836 if (ret != tem)
2837 emit_move_insn (tem, ret);
2838 sequence = gen_sequence ();
2839 end_sequence ();
2840 emit_insn_before (sequence, loop_start);
2842 if (loop_dump_stream)
2843 fprintf (loop_dump_stream,
2844 "Invalid init insn, rewritten.\n");
2847 else
2849 v->dest_reg = value;
2851 /* Check the resulting address for validity, and fail
2852 if the resulting address would be invalid. */
2853 if (! verify_addresses (v, giv_inc, unroll_number))
2855 if (loop_dump_stream)
2856 fprintf (loop_dump_stream,
2857 "Invalid address for giv at insn %d\n",
2858 INSN_UID (v->insn));
2859 continue;
2863 /* Store the value of dest_reg into the insn. This sharing
2864 will not be a problem as this insn will always be copied
2865 later. */
2867 *v->location = v->dest_reg;
2869 /* If this address giv is combined with a dest reg giv, then
2870 save the base giv's induction pointer so that we will be
2871 able to handle this address giv properly. The base giv
2872 itself does not have to be splittable. */
2874 if (v->same && v->same->giv_type == DEST_REG)
2875 addr_combined_regs[REGNO (v->same->new_reg)] = v->same;
2877 if (GET_CODE (v->new_reg) == REG)
2879 /* This giv maybe hasn't been combined with any others.
2880 Make sure that it's giv is marked as splittable here. */
2882 splittable_regs[REGNO (v->new_reg)] = value;
2884 /* Make it appear to depend upon itself, so that the
2885 giv will be properly split in the main loop above. */
2886 if (! v->same)
2888 v->same = v;
2889 addr_combined_regs[REGNO (v->new_reg)] = v;
2893 if (loop_dump_stream)
2894 fprintf (loop_dump_stream, "DEST_ADDR giv being split.\n");
2897 else
2899 #if 0
2900 /* Currently, unreduced giv's can't be split. This is not too much
2901 of a problem since unreduced giv's are not live across loop
2902 iterations anyways. When unrolling a loop completely though,
2903 it makes sense to reduce&split givs when possible, as this will
2904 result in simpler instructions, and will not require that a reg
2905 be live across loop iterations. */
2907 splittable_regs[REGNO (v->dest_reg)] = value;
2908 fprintf (stderr, "Giv %d at insn %d not reduced\n",
2909 REGNO (v->dest_reg), INSN_UID (v->insn));
2910 #else
2911 continue;
2912 #endif
2915 /* Givs are only updated once by definition. Mark it so if this is
2916 a splittable register. Don't need to do anything for address givs
2917 where this may not be a register. */
2919 if (GET_CODE (v->new_reg) == REG)
2920 splittable_regs_updates[REGNO (v->new_reg)] = 1;
2922 result++;
2924 if (loop_dump_stream)
2926 int regnum;
2928 if (GET_CODE (v->dest_reg) == CONST_INT)
2929 regnum = -1;
2930 else if (GET_CODE (v->dest_reg) != REG)
2931 regnum = REGNO (XEXP (v->dest_reg, 0));
2932 else
2933 regnum = REGNO (v->dest_reg);
2934 fprintf (loop_dump_stream, "Giv %d at insn %d safe to split.\n",
2935 regnum, INSN_UID (v->insn));
2939 return result;
2942 /* Try to prove that the register is dead after the loop exits. Trace every
2943 loop exit looking for an insn that will always be executed, which sets
2944 the register to some value, and appears before the first use of the register
2945 is found. If successful, then return 1, otherwise return 0. */
2947 /* ?? Could be made more intelligent in the handling of jumps, so that
2948 it can search past if statements and other similar structures. */
2950 static int
2951 reg_dead_after_loop (reg, loop_start, loop_end)
2952 rtx reg, loop_start, loop_end;
2954 rtx insn, label;
2955 enum rtx_code code;
2956 int jump_count = 0;
2957 int label_count = 0;
2958 int this_loop_num = uid_loop_num[INSN_UID (loop_start)];
2960 /* In addition to checking all exits of this loop, we must also check
2961 all exits of inner nested loops that would exit this loop. We don't
2962 have any way to identify those, so we just give up if there are any
2963 such inner loop exits. */
2965 for (label = loop_number_exit_labels[this_loop_num]; label;
2966 label = LABEL_NEXTREF (label))
2967 label_count++;
2969 if (label_count != loop_number_exit_count[this_loop_num])
2970 return 0;
2972 /* HACK: Must also search the loop fall through exit, create a label_ref
2973 here which points to the loop_end, and append the loop_number_exit_labels
2974 list to it. */
2975 label = gen_rtx (LABEL_REF, VOIDmode, loop_end);
2976 LABEL_NEXTREF (label) = loop_number_exit_labels[this_loop_num];
2978 for ( ; label; label = LABEL_NEXTREF (label))
2980 /* Succeed if find an insn which sets the biv or if reach end of
2981 function. Fail if find an insn that uses the biv, or if come to
2982 a conditional jump. */
2984 insn = NEXT_INSN (XEXP (label, 0));
2985 while (insn)
2987 code = GET_CODE (insn);
2988 if (GET_RTX_CLASS (code) == 'i')
2990 rtx set;
2992 if (reg_referenced_p (reg, PATTERN (insn)))
2993 return 0;
2995 set = single_set (insn);
2996 if (set && rtx_equal_p (SET_DEST (set), reg))
2997 break;
3000 if (code == JUMP_INSN)
3002 if (GET_CODE (PATTERN (insn)) == RETURN)
3003 break;
3004 else if (! simplejump_p (insn)
3005 /* Prevent infinite loop following infinite loops. */
3006 || jump_count++ > 20)
3007 return 0;
3008 else
3009 insn = JUMP_LABEL (insn);
3012 insn = NEXT_INSN (insn);
3016 /* Success, the register is dead on all loop exits. */
3017 return 1;
3020 /* Try to calculate the final value of the biv, the value it will have at
3021 the end of the loop. If we can do it, return that value. */
3024 final_biv_value (bl, loop_start, loop_end)
3025 struct iv_class *bl;
3026 rtx loop_start, loop_end;
3028 rtx increment, tem;
3030 /* ??? This only works for MODE_INT biv's. Reject all others for now. */
3032 if (GET_MODE_CLASS (bl->biv->mode) != MODE_INT)
3033 return 0;
3035 /* The final value for reversed bivs must be calculated differently than
3036 for ordinary bivs. In this case, there is already an insn after the
3037 loop which sets this biv's final value (if necessary), and there are
3038 no other loop exits, so we can return any value. */
3039 if (bl->reversed)
3041 if (loop_dump_stream)
3042 fprintf (loop_dump_stream,
3043 "Final biv value for %d, reversed biv.\n", bl->regno);
3045 return const0_rtx;
3048 /* Try to calculate the final value as initial value + (number of iterations
3049 * increment). For this to work, increment must be invariant, the only
3050 exit from the loop must be the fall through at the bottom (otherwise
3051 it may not have its final value when the loop exits), and the initial
3052 value of the biv must be invariant. */
3054 if (loop_n_iterations != 0
3055 && ! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]]
3056 && invariant_p (bl->initial_value))
3058 increment = biv_total_increment (bl, loop_start, loop_end);
3060 if (increment && invariant_p (increment))
3062 /* Can calculate the loop exit value, emit insns after loop
3063 end to calculate this value into a temporary register in
3064 case it is needed later. */
3066 tem = gen_reg_rtx (bl->biv->mode);
3067 /* Make sure loop_end is not the last insn. */
3068 if (NEXT_INSN (loop_end) == 0)
3069 emit_note_after (NOTE_INSN_DELETED, loop_end);
3070 emit_iv_add_mult (increment, GEN_INT (loop_n_iterations),
3071 bl->initial_value, tem, NEXT_INSN (loop_end));
3073 if (loop_dump_stream)
3074 fprintf (loop_dump_stream,
3075 "Final biv value for %d, calculated.\n", bl->regno);
3077 return tem;
3081 /* Check to see if the biv is dead at all loop exits. */
3082 if (reg_dead_after_loop (bl->biv->src_reg, loop_start, loop_end))
3084 if (loop_dump_stream)
3085 fprintf (loop_dump_stream,
3086 "Final biv value for %d, biv dead after loop exit.\n",
3087 bl->regno);
3089 return const0_rtx;
3092 return 0;
3095 /* Try to calculate the final value of the giv, the value it will have at
3096 the end of the loop. If we can do it, return that value. */
3099 final_giv_value (v, loop_start, loop_end)
3100 struct induction *v;
3101 rtx loop_start, loop_end;
3103 struct iv_class *bl;
3104 rtx insn;
3105 rtx increment, tem;
3106 rtx insert_before, seq;
3108 bl = reg_biv_class[REGNO (v->src_reg)];
3110 /* The final value for givs which depend on reversed bivs must be calculated
3111 differently than for ordinary givs. In this case, there is already an
3112 insn after the loop which sets this giv's final value (if necessary),
3113 and there are no other loop exits, so we can return any value. */
3114 if (bl->reversed)
3116 if (loop_dump_stream)
3117 fprintf (loop_dump_stream,
3118 "Final giv value for %d, depends on reversed biv\n",
3119 REGNO (v->dest_reg));
3120 return const0_rtx;
3123 /* Try to calculate the final value as a function of the biv it depends
3124 upon. The only exit from the loop must be the fall through at the bottom
3125 (otherwise it may not have its final value when the loop exits). */
3127 /* ??? Can calculate the final giv value by subtracting off the
3128 extra biv increments times the giv's mult_val. The loop must have
3129 only one exit for this to work, but the loop iterations does not need
3130 to be known. */
3132 if (loop_n_iterations != 0
3133 && ! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
3135 /* ?? It is tempting to use the biv's value here since these insns will
3136 be put after the loop, and hence the biv will have its final value
3137 then. However, this fails if the biv is subsequently eliminated.
3138 Perhaps determine whether biv's are eliminable before trying to
3139 determine whether giv's are replaceable so that we can use the
3140 biv value here if it is not eliminable. */
3142 increment = biv_total_increment (bl, loop_start, loop_end);
3144 if (increment && invariant_p (increment))
3146 /* Can calculate the loop exit value of its biv as
3147 (loop_n_iterations * increment) + initial_value */
3149 /* The loop exit value of the giv is then
3150 (final_biv_value - extra increments) * mult_val + add_val.
3151 The extra increments are any increments to the biv which
3152 occur in the loop after the giv's value is calculated.
3153 We must search from the insn that sets the giv to the end
3154 of the loop to calculate this value. */
3156 insert_before = NEXT_INSN (loop_end);
3158 /* Put the final biv value in tem. */
3159 tem = gen_reg_rtx (bl->biv->mode);
3160 emit_iv_add_mult (increment, GEN_INT (loop_n_iterations),
3161 bl->initial_value, tem, insert_before);
3163 /* Subtract off extra increments as we find them. */
3164 for (insn = NEXT_INSN (v->insn); insn != loop_end;
3165 insn = NEXT_INSN (insn))
3167 struct induction *biv;
3169 for (biv = bl->biv; biv; biv = biv->next_iv)
3170 if (biv->insn == insn)
3172 start_sequence ();
3173 tem = expand_binop (GET_MODE (tem), sub_optab, tem,
3174 biv->add_val, NULL_RTX, 0,
3175 OPTAB_LIB_WIDEN);
3176 seq = gen_sequence ();
3177 end_sequence ();
3178 emit_insn_before (seq, insert_before);
3182 /* Now calculate the giv's final value. */
3183 emit_iv_add_mult (tem, v->mult_val, v->add_val, tem,
3184 insert_before);
3186 if (loop_dump_stream)
3187 fprintf (loop_dump_stream,
3188 "Final giv value for %d, calc from biv's value.\n",
3189 REGNO (v->dest_reg));
3191 return tem;
3195 /* Replaceable giv's should never reach here. */
3196 if (v->replaceable)
3197 abort ();
3199 /* Check to see if the biv is dead at all loop exits. */
3200 if (reg_dead_after_loop (v->dest_reg, loop_start, loop_end))
3202 if (loop_dump_stream)
3203 fprintf (loop_dump_stream,
3204 "Final giv value for %d, giv dead after loop exit.\n",
3205 REGNO (v->dest_reg));
3207 return const0_rtx;
3210 return 0;
3214 /* Calculate the number of loop iterations. Returns the exact number of loop
3215 iterations if it can be calculated, otherwise returns zero. */
3217 unsigned HOST_WIDE_INT
3218 loop_iterations (loop_start, loop_end)
3219 rtx loop_start, loop_end;
3221 rtx comparison, comparison_value;
3222 rtx iteration_var, initial_value, increment, final_value;
3223 enum rtx_code comparison_code;
3224 HOST_WIDE_INT i;
3225 int increment_dir;
3226 int unsigned_compare, compare_dir, final_larger;
3227 unsigned long tempu;
3228 rtx last_loop_insn;
3230 /* First find the iteration variable. If the last insn is a conditional
3231 branch, and the insn before tests a register value, make that the
3232 iteration variable. */
3234 loop_initial_value = 0;
3235 loop_increment = 0;
3236 loop_final_value = 0;
3237 loop_iteration_var = 0;
3239 /* We used to use pren_nonnote_insn here, but that fails because it might
3240 accidentally get the branch for a contained loop if the branch for this
3241 loop was deleted. We can only trust branches immediately before the
3242 loop_end. */
3243 last_loop_insn = PREV_INSN (loop_end);
3245 comparison = get_condition_for_loop (last_loop_insn);
3246 if (comparison == 0)
3248 if (loop_dump_stream)
3249 fprintf (loop_dump_stream,
3250 "Loop unrolling: No final conditional branch found.\n");
3251 return 0;
3254 /* ??? Get_condition may switch position of induction variable and
3255 invariant register when it canonicalizes the comparison. */
3257 comparison_code = GET_CODE (comparison);
3258 iteration_var = XEXP (comparison, 0);
3259 comparison_value = XEXP (comparison, 1);
3261 if (GET_CODE (iteration_var) != REG)
3263 if (loop_dump_stream)
3264 fprintf (loop_dump_stream,
3265 "Loop unrolling: Comparison not against register.\n");
3266 return 0;
3269 /* Loop iterations is always called before any new registers are created
3270 now, so this should never occur. */
3272 if (REGNO (iteration_var) >= max_reg_before_loop)
3273 abort ();
3275 iteration_info (iteration_var, &initial_value, &increment,
3276 loop_start, loop_end);
3277 if (initial_value == 0)
3278 /* iteration_info already printed a message. */
3279 return 0;
3281 /* If the comparison value is an invariant register, then try to find
3282 its value from the insns before the start of the loop. */
3284 if (GET_CODE (comparison_value) == REG && invariant_p (comparison_value))
3286 rtx insn, set;
3288 for (insn = PREV_INSN (loop_start); insn ; insn = PREV_INSN (insn))
3290 if (GET_CODE (insn) == CODE_LABEL)
3291 break;
3293 else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
3294 && reg_set_p (comparison_value, insn))
3296 /* We found the last insn before the loop that sets the register.
3297 If it sets the entire register, and has a REG_EQUAL note,
3298 then use the value of the REG_EQUAL note. */
3299 if ((set = single_set (insn))
3300 && (SET_DEST (set) == comparison_value))
3302 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3304 /* Only use the REG_EQUAL note if it is a constant.
3305 Other things, divide in particular, will cause
3306 problems later if we use them. */
3307 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3308 && CONSTANT_P (XEXP (note, 0)))
3309 comparison_value = XEXP (note, 0);
3311 break;
3316 final_value = approx_final_value (comparison_code, comparison_value,
3317 &unsigned_compare, &compare_dir);
3319 /* Save the calculated values describing this loop's bounds, in case
3320 precondition_loop_p will need them later. These values can not be
3321 recalculated inside precondition_loop_p because strength reduction
3322 optimizations may obscure the loop's structure. */
3324 loop_iteration_var = iteration_var;
3325 loop_initial_value = initial_value;
3326 loop_increment = increment;
3327 loop_final_value = final_value;
3329 if (increment == 0)
3331 if (loop_dump_stream)
3332 fprintf (loop_dump_stream,
3333 "Loop unrolling: Increment value can't be calculated.\n");
3334 return 0;
3336 else if (GET_CODE (increment) != CONST_INT)
3338 if (loop_dump_stream)
3339 fprintf (loop_dump_stream,
3340 "Loop unrolling: Increment value not constant.\n");
3341 return 0;
3343 else if (GET_CODE (initial_value) != CONST_INT)
3345 if (loop_dump_stream)
3346 fprintf (loop_dump_stream,
3347 "Loop unrolling: Initial value not constant.\n");
3348 return 0;
3350 else if (final_value == 0)
3352 if (loop_dump_stream)
3353 fprintf (loop_dump_stream,
3354 "Loop unrolling: EQ comparison loop.\n");
3355 return 0;
3357 else if (GET_CODE (final_value) != CONST_INT)
3359 if (loop_dump_stream)
3360 fprintf (loop_dump_stream,
3361 "Loop unrolling: Final value not constant.\n");
3362 return 0;
3365 /* ?? Final value and initial value do not have to be constants.
3366 Only their difference has to be constant. When the iteration variable
3367 is an array address, the final value and initial value might both
3368 be addresses with the same base but different constant offsets.
3369 Final value must be invariant for this to work.
3371 To do this, need some way to find the values of registers which are
3372 invariant. */
3374 /* Final_larger is 1 if final larger, 0 if they are equal, otherwise -1. */
3375 if (unsigned_compare)
3376 final_larger
3377 = ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3378 > (unsigned HOST_WIDE_INT) INTVAL (initial_value))
3379 - ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3380 < (unsigned HOST_WIDE_INT) INTVAL (initial_value));
3381 else
3382 final_larger = (INTVAL (final_value) > INTVAL (initial_value))
3383 - (INTVAL (final_value) < INTVAL (initial_value));
3385 if (INTVAL (increment) > 0)
3386 increment_dir = 1;
3387 else if (INTVAL (increment) == 0)
3388 increment_dir = 0;
3389 else
3390 increment_dir = -1;
3392 /* There are 27 different cases: compare_dir = -1, 0, 1;
3393 final_larger = -1, 0, 1; increment_dir = -1, 0, 1.
3394 There are 4 normal cases, 4 reverse cases (where the iteration variable
3395 will overflow before the loop exits), 4 infinite loop cases, and 15
3396 immediate exit (0 or 1 iteration depending on loop type) cases.
3397 Only try to optimize the normal cases. */
3399 /* (compare_dir/final_larger/increment_dir)
3400 Normal cases: (0/-1/-1), (0/1/1), (-1/-1/-1), (1/1/1)
3401 Reverse cases: (0/-1/1), (0/1/-1), (-1/-1/1), (1/1/-1)
3402 Infinite loops: (0/-1/0), (0/1/0), (-1/-1/0), (1/1/0)
3403 Immediate exit: (0/0/X), (-1/0/X), (-1/1/X), (1/0/X), (1/-1/X) */
3405 /* ?? If the meaning of reverse loops (where the iteration variable
3406 will overflow before the loop exits) is undefined, then could
3407 eliminate all of these special checks, and just always assume
3408 the loops are normal/immediate/infinite. Note that this means
3409 the sign of increment_dir does not have to be known. Also,
3410 since it does not really hurt if immediate exit loops or infinite loops
3411 are optimized, then that case could be ignored also, and hence all
3412 loops can be optimized.
3414 According to ANSI Spec, the reverse loop case result is undefined,
3415 because the action on overflow is undefined.
3417 See also the special test for NE loops below. */
3419 if (final_larger == increment_dir && final_larger != 0
3420 && (final_larger == compare_dir || compare_dir == 0))
3421 /* Normal case. */
3423 else
3425 if (loop_dump_stream)
3426 fprintf (loop_dump_stream,
3427 "Loop unrolling: Not normal loop.\n");
3428 return 0;
3431 /* Calculate the number of iterations, final_value is only an approximation,
3432 so correct for that. Note that tempu and loop_n_iterations are
3433 unsigned, because they can be as large as 2^n - 1. */
3435 i = INTVAL (increment);
3436 if (i > 0)
3437 tempu = INTVAL (final_value) - INTVAL (initial_value);
3438 else if (i < 0)
3440 tempu = INTVAL (initial_value) - INTVAL (final_value);
3441 i = -i;
3443 else
3444 abort ();
3446 /* For NE tests, make sure that the iteration variable won't miss the
3447 final value. If tempu mod i is not zero, then the iteration variable
3448 will overflow before the loop exits, and we can not calculate the
3449 number of iterations. */
3450 if (compare_dir == 0 && (tempu % i) != 0)
3451 return 0;
3453 return tempu / i + ((tempu % i) != 0);
3456 /* Replace uses of split bivs with their split pseudo register. This is
3457 for original instructions which remain after loop unrolling without
3458 copying. */
3460 static rtx
3461 remap_split_bivs (x)
3462 rtx x;
3464 register enum rtx_code code;
3465 register int i;
3466 register char *fmt;
3468 if (x == 0)
3469 return x;
3471 code = GET_CODE (x);
3472 switch (code)
3474 case SCRATCH:
3475 case PC:
3476 case CC0:
3477 case CONST_INT:
3478 case CONST_DOUBLE:
3479 case CONST:
3480 case SYMBOL_REF:
3481 case LABEL_REF:
3482 return x;
3484 case REG:
3485 #if 0
3486 /* If non-reduced/final-value givs were split, then this would also
3487 have to remap those givs also. */
3488 #endif
3489 if (REGNO (x) < max_reg_before_loop
3490 && reg_iv_type[REGNO (x)] == BASIC_INDUCT)
3491 return reg_biv_class[REGNO (x)]->biv->src_reg;
3494 fmt = GET_RTX_FORMAT (code);
3495 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3497 if (fmt[i] == 'e')
3498 XEXP (x, i) = remap_split_bivs (XEXP (x, i));
3499 if (fmt[i] == 'E')
3501 register int j;
3502 for (j = 0; j < XVECLEN (x, i); j++)
3503 XVECEXP (x, i, j) = remap_split_bivs (XVECEXP (x, i, j));
3506 return x;