(*zeroextract[qs]i_compare0_scratch): Use const_int_operand
[official-gcc.git] / gcc / reorg.c
bloba9101a9be311b341a9a454ad01add9cc3062fbd0
1 /* Perform instruction reorganizations for delay slot filling.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996 Free Software Foundation, Inc.
3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu).
4 Hacked by Michael Tiemann (tiemann@cygnus.com).
6 This file is part of GNU CC.
8 GNU CC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
13 GNU CC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU CC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
23 /* Instruction reorganization pass.
25 This pass runs after register allocation and final jump
26 optimization. It should be the last pass to run before peephole.
27 It serves primarily to fill delay slots of insns, typically branch
28 and call insns. Other insns typically involve more complicated
29 interactions of data dependencies and resource constraints, and
30 are better handled by scheduling before register allocation (by the
31 function `schedule_insns').
33 The Branch Penalty is the number of extra cycles that are needed to
34 execute a branch insn. On an ideal machine, branches take a single
35 cycle, and the Branch Penalty is 0. Several RISC machines approach
36 branch delays differently:
38 The MIPS and AMD 29000 have a single branch delay slot. Most insns
39 (except other branches) can be used to fill this slot. When the
40 slot is filled, two insns execute in two cycles, reducing the
41 branch penalty to zero.
43 The Motorola 88000 conditionally exposes its branch delay slot,
44 so code is shorter when it is turned off, but will run faster
45 when useful insns are scheduled there.
47 The IBM ROMP has two forms of branch and call insns, both with and
48 without a delay slot. Much like the 88k, insns not using the delay
49 slot can be shorted (2 bytes vs. 4 bytes), but will run slowed.
51 The SPARC always has a branch delay slot, but its effects can be
52 annulled when the branch is not taken. This means that failing to
53 find other sources of insns, we can hoist an insn from the branch
54 target that would only be safe to execute knowing that the branch
55 is taken.
57 The HP-PA always has a branch delay slot. For unconditional branches
58 its effects can be annulled when the branch is taken. The effects
59 of the delay slot in a conditional branch can be nullified for forward
60 taken branches, or for untaken backward branches. This means
61 we can hoist insns from the fall-through path for forward branches or
62 steal insns from the target of backward branches.
64 Three techniques for filling delay slots have been implemented so far:
66 (1) `fill_simple_delay_slots' is the simplest, most efficient way
67 to fill delay slots. This pass first looks for insns which come
68 from before the branch and which are safe to execute after the
69 branch. Then it searches after the insn requiring delay slots or,
70 in the case of a branch, for insns that are after the point at
71 which the branch merges into the fallthrough code, if such a point
72 exists. When such insns are found, the branch penalty decreases
73 and no code expansion takes place.
75 (2) `fill_eager_delay_slots' is more complicated: it is used for
76 scheduling conditional jumps, or for scheduling jumps which cannot
77 be filled using (1). A machine need not have annulled jumps to use
78 this strategy, but it helps (by keeping more options open).
79 `fill_eager_delay_slots' tries to guess the direction the branch
80 will go; if it guesses right 100% of the time, it can reduce the
81 branch penalty as much as `fill_simple_delay_slots' does. If it
82 guesses wrong 100% of the time, it might as well schedule nops (or
83 on the m88k, unexpose the branch slot). When
84 `fill_eager_delay_slots' takes insns from the fall-through path of
85 the jump, usually there is no code expansion; when it takes insns
86 from the branch target, there is code expansion if it is not the
87 only way to reach that target.
89 (3) `relax_delay_slots' uses a set of rules to simplify code that
90 has been reorganized by (1) and (2). It finds cases where
91 conditional test can be eliminated, jumps can be threaded, extra
92 insns can be eliminated, etc. It is the job of (1) and (2) to do a
93 good job of scheduling locally; `relax_delay_slots' takes care of
94 making the various individual schedules work well together. It is
95 especially tuned to handle the control flow interactions of branch
96 insns. It does nothing for insns with delay slots that do not
97 branch.
99 On machines that use CC0, we are very conservative. We will not make
100 a copy of an insn involving CC0 since we want to maintain a 1-1
101 correspondence between the insn that sets and uses CC0. The insns are
102 allowed to be separated by placing an insn that sets CC0 (but not an insn
103 that uses CC0; we could do this, but it doesn't seem worthwhile) in a
104 delay slot. In that case, we point each insn at the other with REG_CC_USER
105 and REG_CC_SETTER notes. Note that these restrictions affect very few
106 machines because most RISC machines with delay slots will not use CC0
107 (the RT is the only known exception at this point).
109 Not yet implemented:
111 The Acorn Risc Machine can conditionally execute most insns, so
112 it is profitable to move single insns into a position to execute
113 based on the condition code of the previous insn.
115 The HP-PA can conditionally nullify insns, providing a similar
116 effect to the ARM, differing mostly in which insn is "in charge". */
118 #include <stdio.h>
119 #include "config.h"
120 #include "rtl.h"
121 #include "insn-config.h"
122 #include "conditions.h"
123 #include "hard-reg-set.h"
124 #include "basic-block.h"
125 #include "regs.h"
126 #include "insn-flags.h"
127 #include "recog.h"
128 #include "flags.h"
129 #include "output.h"
130 #include "obstack.h"
131 #include "insn-attr.h"
133 /* Import list of registers used as spill regs from reload. */
134 extern HARD_REG_SET used_spill_regs;
136 #ifdef DELAY_SLOTS
138 #define obstack_chunk_alloc xmalloc
139 #define obstack_chunk_free free
141 #ifndef ANNUL_IFTRUE_SLOTS
142 #define eligible_for_annul_true(INSN, SLOTS, TRIAL, FLAGS) 0
143 #endif
144 #ifndef ANNUL_IFFALSE_SLOTS
145 #define eligible_for_annul_false(INSN, SLOTS, TRIAL, FLAGS) 0
146 #endif
148 /* Insns which have delay slots that have not yet been filled. */
150 static struct obstack unfilled_slots_obstack;
151 static rtx *unfilled_firstobj;
153 /* Define macros to refer to the first and last slot containing unfilled
154 insns. These are used because the list may move and its address
155 should be recomputed at each use. */
157 #define unfilled_slots_base \
158 ((rtx *) obstack_base (&unfilled_slots_obstack))
160 #define unfilled_slots_next \
161 ((rtx *) obstack_next_free (&unfilled_slots_obstack))
163 /* This structure is used to indicate which hardware resources are set or
164 needed by insns so far. */
166 struct resources
168 char memory; /* Insn sets or needs a memory location. */
169 char unch_memory; /* Insn sets of needs a "unchanging" MEM. */
170 char volatil; /* Insn sets or needs a volatile memory loc. */
171 char cc; /* Insn sets or needs the condition codes. */
172 HARD_REG_SET regs; /* Which registers are set or needed. */
175 /* Macro to clear all resources. */
176 #define CLEAR_RESOURCE(RES) \
177 do { (RES)->memory = (RES)->unch_memory = (RES)->volatil = (RES)->cc = 0; \
178 CLEAR_HARD_REG_SET ((RES)->regs); } while (0)
180 /* Indicates what resources are required at the beginning of the epilogue. */
181 static struct resources start_of_epilogue_needs;
183 /* Indicates what resources are required at function end. */
184 static struct resources end_of_function_needs;
186 /* Points to the label before the end of the function. */
187 static rtx end_of_function_label;
189 /* This structure is used to record liveness information at the targets or
190 fallthrough insns of branches. We will most likely need the information
191 at targets again, so save them in a hash table rather than recomputing them
192 each time. */
194 struct target_info
196 int uid; /* INSN_UID of target. */
197 struct target_info *next; /* Next info for same hash bucket. */
198 HARD_REG_SET live_regs; /* Registers live at target. */
199 int block; /* Basic block number containing target. */
200 int bb_tick; /* Generation count of basic block info. */
203 #define TARGET_HASH_PRIME 257
205 /* Define the hash table itself. */
206 static struct target_info **target_hash_table;
208 /* For each basic block, we maintain a generation number of its basic
209 block info, which is updated each time we move an insn from the
210 target of a jump. This is the generation number indexed by block
211 number. */
213 static int *bb_ticks;
215 /* Mapping between INSN_UID's and position in the code since INSN_UID's do
216 not always monotonically increase. */
217 static int *uid_to_ruid;
219 /* Highest valid index in `uid_to_ruid'. */
220 static int max_uid;
222 static void mark_referenced_resources PROTO((rtx, struct resources *, int));
223 static void mark_set_resources PROTO((rtx, struct resources *, int, int));
224 static int stop_search_p PROTO((rtx, int));
225 static int resource_conflicts_p PROTO((struct resources *,
226 struct resources *));
227 static int insn_references_resource_p PROTO((rtx, struct resources *, int));
228 static int insn_sets_resources_p PROTO((rtx, struct resources *, int));
229 static rtx find_end_label PROTO((void));
230 static rtx emit_delay_sequence PROTO((rtx, rtx, int, int));
231 static rtx add_to_delay_list PROTO((rtx, rtx));
232 static void delete_from_delay_slot PROTO((rtx));
233 static void delete_scheduled_jump PROTO((rtx));
234 static void note_delay_statistics PROTO((int, int));
235 static rtx optimize_skip PROTO((rtx));
236 static int get_jump_flags PROTO((rtx, rtx));
237 static int rare_destination PROTO((rtx));
238 static int mostly_true_jump PROTO((rtx, rtx));
239 static rtx get_branch_condition PROTO((rtx, rtx));
240 static int condition_dominates_p PROTO((rtx, rtx));
241 static rtx steal_delay_list_from_target PROTO((rtx, rtx, rtx, rtx,
242 struct resources *,
243 struct resources *,
244 struct resources *,
245 int, int *, int *, rtx *));
246 static rtx steal_delay_list_from_fallthrough PROTO((rtx, rtx, rtx, rtx,
247 struct resources *,
248 struct resources *,
249 struct resources *,
250 int, int *, int *));
251 static void try_merge_delay_insns PROTO((rtx, rtx));
252 static rtx redundant_insn PROTO((rtx, rtx, rtx));
253 static int own_thread_p PROTO((rtx, rtx, int));
254 static int find_basic_block PROTO((rtx));
255 static void update_block PROTO((rtx, rtx));
256 static int reorg_redirect_jump PROTO((rtx, rtx));
257 static void update_reg_dead_notes PROTO((rtx, rtx));
258 static void fix_reg_dead_note PROTO((rtx, rtx));
259 static void update_reg_unused_notes PROTO((rtx, rtx));
260 static void update_live_status PROTO((rtx, rtx));
261 static rtx next_insn_no_annul PROTO((rtx));
262 static void mark_target_live_regs PROTO((rtx, struct resources *));
263 static void fill_simple_delay_slots PROTO((rtx, int));
264 static rtx fill_slots_from_thread PROTO((rtx, rtx, rtx, rtx, int, int,
265 int, int, int, int *));
266 static void fill_eager_delay_slots PROTO((rtx));
267 static void relax_delay_slots PROTO((rtx));
268 static void make_return_insns PROTO((rtx));
269 static int redirect_with_delay_slots_safe_p PROTO ((rtx, rtx, rtx));
270 static int redirect_with_delay_list_safe_p PROTO ((rtx, rtx, rtx));
272 /* Given X, some rtl, and RES, a pointer to a `struct resource', mark
273 which resources are references by the insn. If INCLUDE_CALLED_ROUTINE
274 is TRUE, resources used by the called routine will be included for
275 CALL_INSNs. */
277 static void
278 mark_referenced_resources (x, res, include_delayed_effects)
279 register rtx x;
280 register struct resources *res;
281 register int include_delayed_effects;
283 register enum rtx_code code = GET_CODE (x);
284 register int i, j;
285 register char *format_ptr;
287 /* Handle leaf items for which we set resource flags. Also, special-case
288 CALL, SET and CLOBBER operators. */
289 switch (code)
291 case CONST:
292 case CONST_INT:
293 case CONST_DOUBLE:
294 case PC:
295 case SYMBOL_REF:
296 case LABEL_REF:
297 return;
299 case SUBREG:
300 if (GET_CODE (SUBREG_REG (x)) != REG)
301 mark_referenced_resources (SUBREG_REG (x), res, 0);
302 else
304 int regno = REGNO (SUBREG_REG (x)) + SUBREG_WORD (x);
305 int last_regno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
306 for (i = regno; i < last_regno; i++)
307 SET_HARD_REG_BIT (res->regs, i);
309 return;
311 case REG:
312 for (i = 0; i < HARD_REGNO_NREGS (REGNO (x), GET_MODE (x)); i++)
313 SET_HARD_REG_BIT (res->regs, REGNO (x) + i);
314 return;
316 case MEM:
317 /* If this memory shouldn't change, it really isn't referencing
318 memory. */
319 if (RTX_UNCHANGING_P (x))
320 res->unch_memory = 1;
321 else
322 res->memory = 1;
323 res->volatil = MEM_VOLATILE_P (x);
325 /* Mark registers used to access memory. */
326 mark_referenced_resources (XEXP (x, 0), res, 0);
327 return;
329 case CC0:
330 res->cc = 1;
331 return;
333 case UNSPEC_VOLATILE:
334 case ASM_INPUT:
335 case TRAP_IF:
336 /* Traditional asm's are always volatile. */
337 res->volatil = 1;
338 return;
340 case ASM_OPERANDS:
341 res->volatil = MEM_VOLATILE_P (x);
343 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
344 We can not just fall through here since then we would be confused
345 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
346 traditional asms unlike their normal usage. */
348 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
349 mark_referenced_resources (ASM_OPERANDS_INPUT (x, i), res, 0);
350 return;
352 case CALL:
353 /* The first operand will be a (MEM (xxx)) but doesn't really reference
354 memory. The second operand may be referenced, though. */
355 mark_referenced_resources (XEXP (XEXP (x, 0), 0), res, 0);
356 mark_referenced_resources (XEXP (x, 1), res, 0);
357 return;
359 case SET:
360 /* Usually, the first operand of SET is set, not referenced. But
361 registers used to access memory are referenced. SET_DEST is
362 also referenced if it is a ZERO_EXTRACT or SIGN_EXTRACT. */
364 mark_referenced_resources (SET_SRC (x), res, 0);
366 x = SET_DEST (x);
367 if (GET_CODE (x) == SIGN_EXTRACT || GET_CODE (x) == ZERO_EXTRACT)
368 mark_referenced_resources (x, res, 0);
369 else if (GET_CODE (x) == SUBREG)
370 x = SUBREG_REG (x);
371 if (GET_CODE (x) == MEM)
372 mark_referenced_resources (XEXP (x, 0), res, 0);
373 return;
375 case CLOBBER:
376 return;
378 case CALL_INSN:
379 if (include_delayed_effects)
381 /* A CALL references memory, the frame pointer if it exists, the
382 stack pointer, any global registers and any registers given in
383 USE insns immediately in front of the CALL.
385 However, we may have moved some of the parameter loading insns
386 into the delay slot of this CALL. If so, the USE's for them
387 don't count and should be skipped. */
388 rtx insn = PREV_INSN (x);
389 rtx sequence = 0;
390 int seq_size = 0;
391 rtx next = NEXT_INSN (x);
392 int i;
394 /* If we are part of a delay slot sequence, point at the SEQUENCE. */
395 if (NEXT_INSN (insn) != x)
397 next = NEXT_INSN (NEXT_INSN (insn));
398 sequence = PATTERN (NEXT_INSN (insn));
399 seq_size = XVECLEN (sequence, 0);
400 if (GET_CODE (sequence) != SEQUENCE)
401 abort ();
404 res->memory = 1;
405 SET_HARD_REG_BIT (res->regs, STACK_POINTER_REGNUM);
406 if (frame_pointer_needed)
408 SET_HARD_REG_BIT (res->regs, FRAME_POINTER_REGNUM);
409 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
410 SET_HARD_REG_BIT (res->regs, HARD_FRAME_POINTER_REGNUM);
411 #endif
414 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
415 if (global_regs[i])
416 SET_HARD_REG_BIT (res->regs, i);
418 /* Check for a NOTE_INSN_SETJMP. If it exists, then we must
419 assume that this call can need any register.
421 This is done to be more conservative about how we handle setjmp.
422 We assume that they both use and set all registers. Using all
423 registers ensures that a register will not be considered dead
424 just because it crosses a setjmp call. A register should be
425 considered dead only if the setjmp call returns non-zero. */
426 if (next && GET_CODE (next) == NOTE
427 && NOTE_LINE_NUMBER (next) == NOTE_INSN_SETJMP)
428 SET_HARD_REG_SET (res->regs);
431 rtx link;
433 for (link = CALL_INSN_FUNCTION_USAGE (x);
434 link;
435 link = XEXP (link, 1))
436 if (GET_CODE (XEXP (link, 0)) == USE)
438 for (i = 1; i < seq_size; i++)
440 rtx slot_pat = PATTERN (XVECEXP (sequence, 0, i));
441 if (GET_CODE (slot_pat) == SET
442 && rtx_equal_p (SET_DEST (slot_pat),
443 SET_DEST (XEXP (link, 0))))
444 break;
446 if (i >= seq_size)
447 mark_referenced_resources (SET_DEST (XEXP (link, 0)),
448 res, 0);
453 /* ... fall through to other INSN processing ... */
455 case INSN:
456 case JUMP_INSN:
458 #ifdef INSN_REFERENCES_ARE_DELAYED
459 if (! include_delayed_effects
460 && INSN_REFERENCES_ARE_DELAYED (x))
461 return;
462 #endif
464 /* No special processing, just speed up. */
465 mark_referenced_resources (PATTERN (x), res, include_delayed_effects);
466 return;
469 /* Process each sub-expression and flag what it needs. */
470 format_ptr = GET_RTX_FORMAT (code);
471 for (i = 0; i < GET_RTX_LENGTH (code); i++)
472 switch (*format_ptr++)
474 case 'e':
475 mark_referenced_resources (XEXP (x, i), res, include_delayed_effects);
476 break;
478 case 'E':
479 for (j = 0; j < XVECLEN (x, i); j++)
480 mark_referenced_resources (XVECEXP (x, i, j), res,
481 include_delayed_effects);
482 break;
486 /* Given X, a part of an insn, and a pointer to a `struct resource', RES,
487 indicate which resources are modified by the insn. If INCLUDE_CALLED_ROUTINE
488 is nonzero, also mark resources potentially set by the called routine.
490 If IN_DEST is nonzero, it means we are inside a SET. Otherwise,
491 objects are being referenced instead of set.
493 We never mark the insn as modifying the condition code unless it explicitly
494 SETs CC0 even though this is not totally correct. The reason for this is
495 that we require a SET of CC0 to immediately precede the reference to CC0.
496 So if some other insn sets CC0 as a side-effect, we know it cannot affect
497 our computation and thus may be placed in a delay slot. */
499 static void
500 mark_set_resources (x, res, in_dest, include_delayed_effects)
501 register rtx x;
502 register struct resources *res;
503 int in_dest;
504 int include_delayed_effects;
506 register enum rtx_code code;
507 register int i, j;
508 register char *format_ptr;
510 restart:
512 code = GET_CODE (x);
514 switch (code)
516 case NOTE:
517 case BARRIER:
518 case CODE_LABEL:
519 case USE:
520 case CONST_INT:
521 case CONST_DOUBLE:
522 case LABEL_REF:
523 case SYMBOL_REF:
524 case CONST:
525 case PC:
526 /* These don't set any resources. */
527 return;
529 case CC0:
530 if (in_dest)
531 res->cc = 1;
532 return;
534 case CALL_INSN:
535 /* Called routine modifies the condition code, memory, any registers
536 that aren't saved across calls, global registers and anything
537 explicitly CLOBBERed immediately after the CALL_INSN. */
539 if (include_delayed_effects)
541 rtx next = NEXT_INSN (x);
542 rtx prev = PREV_INSN (x);
543 rtx link;
545 res->cc = res->memory = 1;
546 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
547 if (call_used_regs[i] || global_regs[i])
548 SET_HARD_REG_BIT (res->regs, i);
550 /* If X is part of a delay slot sequence, then NEXT should be
551 the first insn after the sequence. */
552 if (NEXT_INSN (prev) != x)
553 next = NEXT_INSN (NEXT_INSN (prev));
555 for (link = CALL_INSN_FUNCTION_USAGE (x);
556 link; link = XEXP (link, 1))
557 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
558 mark_set_resources (SET_DEST (XEXP (link, 0)), res, 1, 0);
560 /* Check for a NOTE_INSN_SETJMP. If it exists, then we must
561 assume that this call can clobber any register. */
562 if (next && GET_CODE (next) == NOTE
563 && NOTE_LINE_NUMBER (next) == NOTE_INSN_SETJMP)
564 SET_HARD_REG_SET (res->regs);
567 /* ... and also what it's RTL says it modifies, if anything. */
569 case JUMP_INSN:
570 case INSN:
572 /* An insn consisting of just a CLOBBER (or USE) is just for flow
573 and doesn't actually do anything, so we ignore it. */
575 #ifdef INSN_SETS_ARE_DELAYED
576 if (! include_delayed_effects
577 && INSN_SETS_ARE_DELAYED (x))
578 return;
579 #endif
581 x = PATTERN (x);
582 if (GET_CODE (x) != USE && GET_CODE (x) != CLOBBER)
583 goto restart;
584 return;
586 case SET:
587 /* If the source of a SET is a CALL, this is actually done by
588 the called routine. So only include it if we are to include the
589 effects of the calling routine. */
591 mark_set_resources (SET_DEST (x), res,
592 (include_delayed_effects
593 || GET_CODE (SET_SRC (x)) != CALL),
596 mark_set_resources (SET_SRC (x), res, 0, 0);
597 return;
599 case CLOBBER:
600 mark_set_resources (XEXP (x, 0), res, 1, 0);
601 return;
603 case SEQUENCE:
604 for (i = 0; i < XVECLEN (x, 0); i++)
605 if (! (INSN_ANNULLED_BRANCH_P (XVECEXP (x, 0, 0))
606 && INSN_FROM_TARGET_P (XVECEXP (x, 0, i))))
607 mark_set_resources (XVECEXP (x, 0, i), res, 0,
608 include_delayed_effects);
609 return;
611 case POST_INC:
612 case PRE_INC:
613 case POST_DEC:
614 case PRE_DEC:
615 mark_set_resources (XEXP (x, 0), res, 1, 0);
616 return;
618 case ZERO_EXTRACT:
619 mark_set_resources (XEXP (x, 0), res, in_dest, 0);
620 mark_set_resources (XEXP (x, 1), res, 0, 0);
621 mark_set_resources (XEXP (x, 2), res, 0, 0);
622 return;
624 case MEM:
625 if (in_dest)
627 res->memory = 1;
628 res->unch_memory = RTX_UNCHANGING_P (x);
629 res->volatil = MEM_VOLATILE_P (x);
632 mark_set_resources (XEXP (x, 0), res, 0, 0);
633 return;
635 case SUBREG:
636 if (in_dest)
638 if (GET_CODE (SUBREG_REG (x)) != REG)
639 mark_set_resources (SUBREG_REG (x), res,
640 in_dest, include_delayed_effects);
641 else
643 int regno = REGNO (SUBREG_REG (x)) + SUBREG_WORD (x);
644 int last_regno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
645 for (i = regno; i < last_regno; i++)
646 SET_HARD_REG_BIT (res->regs, i);
649 return;
651 case REG:
652 if (in_dest)
653 for (i = 0; i < HARD_REGNO_NREGS (REGNO (x), GET_MODE (x)); i++)
654 SET_HARD_REG_BIT (res->regs, REGNO (x) + i);
655 return;
658 /* Process each sub-expression and flag what it needs. */
659 format_ptr = GET_RTX_FORMAT (code);
660 for (i = 0; i < GET_RTX_LENGTH (code); i++)
661 switch (*format_ptr++)
663 case 'e':
664 mark_set_resources (XEXP (x, i), res, in_dest, include_delayed_effects);
665 break;
667 case 'E':
668 for (j = 0; j < XVECLEN (x, i); j++)
669 mark_set_resources (XVECEXP (x, i, j), res, in_dest,
670 include_delayed_effects);
671 break;
675 /* Return TRUE if this insn should stop the search for insn to fill delay
676 slots. LABELS_P indicates that labels should terminate the search.
677 In all cases, jumps terminate the search. */
679 static int
680 stop_search_p (insn, labels_p)
681 rtx insn;
682 int labels_p;
684 if (insn == 0)
685 return 1;
687 switch (GET_CODE (insn))
689 case NOTE:
690 case CALL_INSN:
691 return 0;
693 case CODE_LABEL:
694 return labels_p;
696 case JUMP_INSN:
697 case BARRIER:
698 return 1;
700 case INSN:
701 /* OK unless it contains a delay slot or is an `asm' insn of some type.
702 We don't know anything about these. */
703 return (GET_CODE (PATTERN (insn)) == SEQUENCE
704 || GET_CODE (PATTERN (insn)) == ASM_INPUT
705 || asm_noperands (PATTERN (insn)) >= 0);
707 default:
708 abort ();
712 /* Return TRUE if any resources are marked in both RES1 and RES2 or if either
713 resource set contains a volatile memory reference. Otherwise, return FALSE. */
715 static int
716 resource_conflicts_p (res1, res2)
717 struct resources *res1, *res2;
719 if ((res1->cc && res2->cc) || (res1->memory && res2->memory)
720 || (res1->unch_memory && res2->unch_memory)
721 || res1->volatil || res2->volatil)
722 return 1;
724 #ifdef HARD_REG_SET
725 return (res1->regs & res2->regs) != HARD_CONST (0);
726 #else
728 int i;
730 for (i = 0; i < HARD_REG_SET_LONGS; i++)
731 if ((res1->regs[i] & res2->regs[i]) != 0)
732 return 1;
733 return 0;
735 #endif
738 /* Return TRUE if any resource marked in RES, a `struct resources', is
739 referenced by INSN. If INCLUDE_CALLED_ROUTINE is set, return if the called
740 routine is using those resources.
742 We compute this by computing all the resources referenced by INSN and
743 seeing if this conflicts with RES. It might be faster to directly check
744 ourselves, and this is the way it used to work, but it means duplicating
745 a large block of complex code. */
747 static int
748 insn_references_resource_p (insn, res, include_delayed_effects)
749 register rtx insn;
750 register struct resources *res;
751 int include_delayed_effects;
753 struct resources insn_res;
755 CLEAR_RESOURCE (&insn_res);
756 mark_referenced_resources (insn, &insn_res, include_delayed_effects);
757 return resource_conflicts_p (&insn_res, res);
760 /* Return TRUE if INSN modifies resources that are marked in RES.
761 INCLUDE_CALLED_ROUTINE is set if the actions of that routine should be
762 included. CC0 is only modified if it is explicitly set; see comments
763 in front of mark_set_resources for details. */
765 static int
766 insn_sets_resource_p (insn, res, include_delayed_effects)
767 register rtx insn;
768 register struct resources *res;
769 int include_delayed_effects;
771 struct resources insn_sets;
773 CLEAR_RESOURCE (&insn_sets);
774 mark_set_resources (insn, &insn_sets, 0, include_delayed_effects);
775 return resource_conflicts_p (&insn_sets, res);
778 /* Find a label at the end of the function or before a RETURN. If there is
779 none, make one. */
781 static rtx
782 find_end_label ()
784 rtx insn;
786 /* If we found one previously, return it. */
787 if (end_of_function_label)
788 return end_of_function_label;
790 /* Otherwise, see if there is a label at the end of the function. If there
791 is, it must be that RETURN insns aren't needed, so that is our return
792 label and we don't have to do anything else. */
794 insn = get_last_insn ();
795 while (GET_CODE (insn) == NOTE
796 || (GET_CODE (insn) == INSN
797 && (GET_CODE (PATTERN (insn)) == USE
798 || GET_CODE (PATTERN (insn)) == CLOBBER)))
799 insn = PREV_INSN (insn);
801 /* When a target threads its epilogue we might already have a
802 suitable return insn. If so put a label before it for the
803 end_of_function_label. */
804 if (GET_CODE (insn) == BARRIER
805 && GET_CODE (PREV_INSN (insn)) == JUMP_INSN
806 && GET_CODE (PATTERN (PREV_INSN (insn))) == RETURN)
808 rtx temp = PREV_INSN (PREV_INSN (insn));
809 end_of_function_label = gen_label_rtx ();
810 LABEL_NUSES (end_of_function_label) = 0;
812 /* Put the label before an USE insns that may proceed the RETURN insn. */
813 while (GET_CODE (temp) == USE)
814 temp = PREV_INSN (temp);
816 emit_label_after (end_of_function_label, temp);
819 else if (GET_CODE (insn) == CODE_LABEL)
820 end_of_function_label = insn;
821 else
823 /* Otherwise, make a new label and emit a RETURN and BARRIER,
824 if needed. */
825 end_of_function_label = gen_label_rtx ();
826 LABEL_NUSES (end_of_function_label) = 0;
827 emit_label (end_of_function_label);
828 #ifdef HAVE_return
829 if (HAVE_return)
831 /* The return we make may have delay slots too. */
832 rtx insn = gen_return ();
833 insn = emit_jump_insn (insn);
834 emit_barrier ();
835 if (num_delay_slots (insn) > 0)
836 obstack_ptr_grow (&unfilled_slots_obstack, insn);
838 #endif
841 /* Show one additional use for this label so it won't go away until
842 we are done. */
843 ++LABEL_NUSES (end_of_function_label);
845 return end_of_function_label;
848 /* Put INSN and LIST together in a SEQUENCE rtx of LENGTH, and replace
849 the pattern of INSN with the SEQUENCE.
851 Chain the insns so that NEXT_INSN of each insn in the sequence points to
852 the next and NEXT_INSN of the last insn in the sequence points to
853 the first insn after the sequence. Similarly for PREV_INSN. This makes
854 it easier to scan all insns.
856 Returns the SEQUENCE that replaces INSN. */
858 static rtx
859 emit_delay_sequence (insn, list, length, avail)
860 rtx insn;
861 rtx list;
862 int length;
863 int avail;
865 register int i = 1;
866 register rtx li;
867 int had_barrier = 0;
869 /* Allocate the the rtvec to hold the insns and the SEQUENCE. */
870 rtvec seqv = rtvec_alloc (length + 1);
871 rtx seq = gen_rtx (SEQUENCE, VOIDmode, seqv);
872 rtx seq_insn = make_insn_raw (seq);
873 rtx first = get_insns ();
874 rtx last = get_last_insn ();
876 /* Make a copy of the insn having delay slots. */
877 rtx delay_insn = copy_rtx (insn);
879 /* If INSN is followed by a BARRIER, delete the BARRIER since it will only
880 confuse further processing. Update LAST in case it was the last insn.
881 We will put the BARRIER back in later. */
882 if (NEXT_INSN (insn) && GET_CODE (NEXT_INSN (insn)) == BARRIER)
884 delete_insn (NEXT_INSN (insn));
885 last = get_last_insn ();
886 had_barrier = 1;
889 /* Splice our SEQUENCE into the insn stream where INSN used to be. */
890 NEXT_INSN (seq_insn) = NEXT_INSN (insn);
891 PREV_INSN (seq_insn) = PREV_INSN (insn);
893 if (insn == last)
894 set_new_first_and_last_insn (first, seq_insn);
895 else
896 PREV_INSN (NEXT_INSN (seq_insn)) = seq_insn;
898 if (insn == first)
899 set_new_first_and_last_insn (seq_insn, last);
900 else
901 NEXT_INSN (PREV_INSN (seq_insn)) = seq_insn;
903 /* Build our SEQUENCE and rebuild the insn chain. */
904 XVECEXP (seq, 0, 0) = delay_insn;
905 INSN_DELETED_P (delay_insn) = 0;
906 PREV_INSN (delay_insn) = PREV_INSN (seq_insn);
908 for (li = list; li; li = XEXP (li, 1), i++)
910 rtx tem = XEXP (li, 0);
911 rtx note;
913 /* Show that this copy of the insn isn't deleted. */
914 INSN_DELETED_P (tem) = 0;
916 XVECEXP (seq, 0, i) = tem;
917 PREV_INSN (tem) = XVECEXP (seq, 0, i - 1);
918 NEXT_INSN (XVECEXP (seq, 0, i - 1)) = tem;
920 /* Remove any REG_DEAD notes because we can't rely on them now
921 that the insn has been moved. */
922 for (note = REG_NOTES (tem); note; note = XEXP (note, 1))
923 if (REG_NOTE_KIND (note) == REG_DEAD)
924 XEXP (note, 0) = const0_rtx;
927 NEXT_INSN (XVECEXP (seq, 0, length)) = NEXT_INSN (seq_insn);
929 /* If the previous insn is a SEQUENCE, update the NEXT_INSN pointer on the
930 last insn in that SEQUENCE to point to us. Similarly for the first
931 insn in the following insn if it is a SEQUENCE. */
933 if (PREV_INSN (seq_insn) && GET_CODE (PREV_INSN (seq_insn)) == INSN
934 && GET_CODE (PATTERN (PREV_INSN (seq_insn))) == SEQUENCE)
935 NEXT_INSN (XVECEXP (PATTERN (PREV_INSN (seq_insn)), 0,
936 XVECLEN (PATTERN (PREV_INSN (seq_insn)), 0) - 1))
937 = seq_insn;
939 if (NEXT_INSN (seq_insn) && GET_CODE (NEXT_INSN (seq_insn)) == INSN
940 && GET_CODE (PATTERN (NEXT_INSN (seq_insn))) == SEQUENCE)
941 PREV_INSN (XVECEXP (PATTERN (NEXT_INSN (seq_insn)), 0, 0)) = seq_insn;
943 /* If there used to be a BARRIER, put it back. */
944 if (had_barrier)
945 emit_barrier_after (seq_insn);
947 if (i != length + 1)
948 abort ();
950 return seq_insn;
953 /* Add INSN to DELAY_LIST and return the head of the new list. The list must
954 be in the order in which the insns are to be executed. */
956 static rtx
957 add_to_delay_list (insn, delay_list)
958 rtx insn;
959 rtx delay_list;
961 /* If we have an empty list, just make a new list element. If
962 INSN has it's block number recorded, clear it since we may
963 be moving the insn to a new block. */
965 if (delay_list == 0)
967 struct target_info *tinfo;
969 for (tinfo = target_hash_table[INSN_UID (insn) % TARGET_HASH_PRIME];
970 tinfo; tinfo = tinfo->next)
971 if (tinfo->uid == INSN_UID (insn))
972 break;
974 if (tinfo)
975 tinfo->block = -1;
977 return gen_rtx (INSN_LIST, VOIDmode, insn, NULL_RTX);
980 /* Otherwise this must be an INSN_LIST. Add INSN to the end of the
981 list. */
982 XEXP (delay_list, 1) = add_to_delay_list (insn, XEXP (delay_list, 1));
984 return delay_list;
987 /* Delete INSN from the the delay slot of the insn that it is in. This may
988 produce an insn without anything in its delay slots. */
990 static void
991 delete_from_delay_slot (insn)
992 rtx insn;
994 rtx trial, seq_insn, seq, prev;
995 rtx delay_list = 0;
996 int i;
998 /* We first must find the insn containing the SEQUENCE with INSN in its
999 delay slot. Do this by finding an insn, TRIAL, where
1000 PREV_INSN (NEXT_INSN (TRIAL)) != TRIAL. */
1002 for (trial = insn;
1003 PREV_INSN (NEXT_INSN (trial)) == trial;
1004 trial = NEXT_INSN (trial))
1007 seq_insn = PREV_INSN (NEXT_INSN (trial));
1008 seq = PATTERN (seq_insn);
1010 /* Create a delay list consisting of all the insns other than the one
1011 we are deleting (unless we were the only one). */
1012 if (XVECLEN (seq, 0) > 2)
1013 for (i = 1; i < XVECLEN (seq, 0); i++)
1014 if (XVECEXP (seq, 0, i) != insn)
1015 delay_list = add_to_delay_list (XVECEXP (seq, 0, i), delay_list);
1017 /* Delete the old SEQUENCE, re-emit the insn that used to have the delay
1018 list, and rebuild the delay list if non-empty. */
1019 prev = PREV_INSN (seq_insn);
1020 trial = XVECEXP (seq, 0, 0);
1021 delete_insn (seq_insn);
1022 add_insn_after (trial, prev);
1024 if (GET_CODE (trial) == JUMP_INSN
1025 && (simplejump_p (trial) || GET_CODE (PATTERN (trial)) == RETURN))
1026 emit_barrier_after (trial);
1028 /* If there are any delay insns, remit them. Otherwise clear the
1029 annul flag. */
1030 if (delay_list)
1031 trial = emit_delay_sequence (trial, delay_list, XVECLEN (seq, 0) - 2, 0);
1032 else
1033 INSN_ANNULLED_BRANCH_P (trial) = 0;
1035 INSN_FROM_TARGET_P (insn) = 0;
1037 /* Show we need to fill this insn again. */
1038 obstack_ptr_grow (&unfilled_slots_obstack, trial);
1041 /* Delete INSN, a JUMP_INSN. If it is a conditional jump, we must track down
1042 the insn that sets CC0 for it and delete it too. */
1044 static void
1045 delete_scheduled_jump (insn)
1046 rtx insn;
1048 /* Delete the insn that sets cc0 for us. On machines without cc0, we could
1049 delete the insn that sets the condition code, but it is hard to find it.
1050 Since this case is rare anyway, don't bother trying; there would likely
1051 be other insns that became dead anyway, which we wouldn't know to
1052 delete. */
1054 #ifdef HAVE_cc0
1055 if (reg_mentioned_p (cc0_rtx, insn))
1057 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
1059 /* If a reg-note was found, it points to an insn to set CC0. This
1060 insn is in the delay list of some other insn. So delete it from
1061 the delay list it was in. */
1062 if (note)
1064 if (! FIND_REG_INC_NOTE (XEXP (note, 0), NULL_RTX)
1065 && sets_cc0_p (PATTERN (XEXP (note, 0))) == 1)
1066 delete_from_delay_slot (XEXP (note, 0));
1068 else
1070 /* The insn setting CC0 is our previous insn, but it may be in
1071 a delay slot. It will be the last insn in the delay slot, if
1072 it is. */
1073 rtx trial = previous_insn (insn);
1074 if (GET_CODE (trial) == NOTE)
1075 trial = prev_nonnote_insn (trial);
1076 if (sets_cc0_p (PATTERN (trial)) != 1
1077 || FIND_REG_INC_NOTE (trial, 0))
1078 return;
1079 if (PREV_INSN (NEXT_INSN (trial)) == trial)
1080 delete_insn (trial);
1081 else
1082 delete_from_delay_slot (trial);
1085 #endif
1087 delete_insn (insn);
1090 /* Counters for delay-slot filling. */
1092 #define NUM_REORG_FUNCTIONS 2
1093 #define MAX_DELAY_HISTOGRAM 3
1094 #define MAX_REORG_PASSES 2
1096 static int num_insns_needing_delays[NUM_REORG_FUNCTIONS][MAX_REORG_PASSES];
1098 static int num_filled_delays[NUM_REORG_FUNCTIONS][MAX_DELAY_HISTOGRAM+1][MAX_REORG_PASSES];
1100 static int reorg_pass_number;
1102 static void
1103 note_delay_statistics (slots_filled, index)
1104 int slots_filled, index;
1106 num_insns_needing_delays[index][reorg_pass_number]++;
1107 if (slots_filled > MAX_DELAY_HISTOGRAM)
1108 slots_filled = MAX_DELAY_HISTOGRAM;
1109 num_filled_delays[index][slots_filled][reorg_pass_number]++;
1112 #if defined(ANNUL_IFFALSE_SLOTS) || defined(ANNUL_IFTRUE_SLOTS)
1114 /* Optimize the following cases:
1116 1. When a conditional branch skips over only one instruction,
1117 use an annulling branch and put that insn in the delay slot.
1118 Use either a branch that annuls when the condition if true or
1119 invert the test with a branch that annuls when the condition is
1120 false. This saves insns, since otherwise we must copy an insn
1121 from the L1 target.
1123 (orig) (skip) (otherwise)
1124 Bcc.n L1 Bcc',a L1 Bcc,a L1'
1125 insn insn insn2
1126 L1: L1: L1:
1127 insn2 insn2 insn2
1128 insn3 insn3 L1':
1129 insn3
1131 2. When a conditional branch skips over only one instruction,
1132 and after that, it unconditionally branches somewhere else,
1133 perform the similar optimization. This saves executing the
1134 second branch in the case where the inverted condition is true.
1136 Bcc.n L1 Bcc',a L2
1137 insn insn
1138 L1: L1:
1139 Bra L2 Bra L2
1141 INSN is a JUMP_INSN.
1143 This should be expanded to skip over N insns, where N is the number
1144 of delay slots required. */
1146 static rtx
1147 optimize_skip (insn)
1148 register rtx insn;
1150 register rtx trial = next_nonnote_insn (insn);
1151 rtx next_trial = next_active_insn (trial);
1152 rtx delay_list = 0;
1153 rtx target_label;
1154 int flags;
1156 flags = get_jump_flags (insn, JUMP_LABEL (insn));
1158 if (trial == 0
1159 || GET_CODE (trial) != INSN
1160 || GET_CODE (PATTERN (trial)) == SEQUENCE
1161 || recog_memoized (trial) < 0
1162 || (! eligible_for_annul_false (insn, 0, trial, flags)
1163 && ! eligible_for_annul_true (insn, 0, trial, flags)))
1164 return 0;
1166 /* There are two cases where we are just executing one insn (we assume
1167 here that a branch requires only one insn; this should be generalized
1168 at some point): Where the branch goes around a single insn or where
1169 we have one insn followed by a branch to the same label we branch to.
1170 In both of these cases, inverting the jump and annulling the delay
1171 slot give the same effect in fewer insns. */
1172 if ((next_trial == next_active_insn (JUMP_LABEL (insn)))
1173 || (next_trial != 0
1174 && GET_CODE (next_trial) == JUMP_INSN
1175 && JUMP_LABEL (insn) == JUMP_LABEL (next_trial)
1176 && (simplejump_p (next_trial)
1177 || GET_CODE (PATTERN (next_trial)) == RETURN)))
1179 if (eligible_for_annul_false (insn, 0, trial, flags))
1181 if (invert_jump (insn, JUMP_LABEL (insn)))
1182 INSN_FROM_TARGET_P (trial) = 1;
1183 else if (! eligible_for_annul_true (insn, 0, trial, flags))
1184 return 0;
1187 delay_list = add_to_delay_list (trial, NULL_RTX);
1188 next_trial = next_active_insn (trial);
1189 update_block (trial, trial);
1190 delete_insn (trial);
1192 /* Also, if we are targeting an unconditional
1193 branch, thread our jump to the target of that branch. Don't
1194 change this into a RETURN here, because it may not accept what
1195 we have in the delay slot. We'll fix this up later. */
1196 if (next_trial && GET_CODE (next_trial) == JUMP_INSN
1197 && (simplejump_p (next_trial)
1198 || GET_CODE (PATTERN (next_trial)) == RETURN))
1200 target_label = JUMP_LABEL (next_trial);
1201 if (target_label == 0)
1202 target_label = find_end_label ();
1204 /* Recompute the flags based on TARGET_LABEL since threading
1205 the jump to TARGET_LABEL may change the direction of the
1206 jump (which may change the circumstances in which the
1207 delay slot is nullified). */
1208 flags = get_jump_flags (insn, target_label);
1209 if (eligible_for_annul_true (insn, 0, trial, flags))
1210 reorg_redirect_jump (insn, target_label);
1213 INSN_ANNULLED_BRANCH_P (insn) = 1;
1216 return delay_list;
1218 #endif
1221 /* Encode and return branch direction and prediction information for
1222 INSN assuming it will jump to LABEL.
1224 Non conditional branches return no direction information and
1225 are predicted as very likely taken. */
1226 static int
1227 get_jump_flags (insn, label)
1228 rtx insn, label;
1230 int flags;
1232 /* get_jump_flags can be passed any insn with delay slots, these may
1233 be INSNs, CALL_INSNs, or JUMP_INSNs. Only JUMP_INSNs have branch
1234 direction information, and only if they are conditional jumps.
1236 If LABEL is zero, then there is no way to determine the branch
1237 direction. */
1238 if (GET_CODE (insn) == JUMP_INSN
1239 && (condjump_p (insn) || condjump_in_parallel_p (insn))
1240 && INSN_UID (insn) <= max_uid
1241 && label != 0
1242 && INSN_UID (label) <= max_uid)
1243 flags
1244 = (uid_to_ruid[INSN_UID (label)] > uid_to_ruid[INSN_UID (insn)])
1245 ? ATTR_FLAG_forward : ATTR_FLAG_backward;
1246 /* No valid direction information. */
1247 else
1248 flags = 0;
1250 /* If insn is a conditional branch call mostly_true_jump to get
1251 determine the branch prediction.
1253 Non conditional branches are predicted as very likely taken. */
1254 if (GET_CODE (insn) == JUMP_INSN
1255 && (condjump_p (insn) || condjump_in_parallel_p (insn)))
1257 int prediction;
1259 prediction = mostly_true_jump (insn, get_branch_condition (insn, label));
1260 switch (prediction)
1262 case 2:
1263 flags |= (ATTR_FLAG_very_likely | ATTR_FLAG_likely);
1264 break;
1265 case 1:
1266 flags |= ATTR_FLAG_likely;
1267 break;
1268 case 0:
1269 flags |= ATTR_FLAG_unlikely;
1270 break;
1271 case -1:
1272 flags |= (ATTR_FLAG_very_unlikely | ATTR_FLAG_unlikely);
1273 break;
1275 default:
1276 abort();
1279 else
1280 flags |= (ATTR_FLAG_very_likely | ATTR_FLAG_likely);
1282 return flags;
1285 /* Return 1 if INSN is a destination that will be branched to rarely (the
1286 return point of a function); return 2 if DEST will be branched to very
1287 rarely (a call to a function that doesn't return). Otherwise,
1288 return 0. */
1290 static int
1291 rare_destination (insn)
1292 rtx insn;
1294 int jump_count = 0;
1295 rtx next;
1297 for (; insn; insn = next)
1299 if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
1300 insn = XVECEXP (PATTERN (insn), 0, 0);
1302 next = NEXT_INSN (insn);
1304 switch (GET_CODE (insn))
1306 case CODE_LABEL:
1307 return 0;
1308 case BARRIER:
1309 /* A BARRIER can either be after a JUMP_INSN or a CALL_INSN. We
1310 don't scan past JUMP_INSNs, so any barrier we find here must
1311 have been after a CALL_INSN and hence mean the call doesn't
1312 return. */
1313 return 2;
1314 case JUMP_INSN:
1315 if (GET_CODE (PATTERN (insn)) == RETURN)
1316 return 1;
1317 else if (simplejump_p (insn)
1318 && jump_count++ < 10)
1319 next = JUMP_LABEL (insn);
1320 else
1321 return 0;
1325 /* If we got here it means we hit the end of the function. So this
1326 is an unlikely destination. */
1328 return 1;
1331 /* Return truth value of the statement that this branch
1332 is mostly taken. If we think that the branch is extremely likely
1333 to be taken, we return 2. If the branch is slightly more likely to be
1334 taken, return 1. If the branch is slightly less likely to be taken,
1335 return 0 and if the branch is highly unlikely to be taken, return -1.
1337 CONDITION, if non-zero, is the condition that JUMP_INSN is testing. */
1339 static int
1340 mostly_true_jump (jump_insn, condition)
1341 rtx jump_insn, condition;
1343 rtx target_label = JUMP_LABEL (jump_insn);
1344 rtx insn;
1345 int rare_dest = rare_destination (target_label);
1346 int rare_fallthrough = rare_destination (NEXT_INSN (jump_insn));
1348 /* If this is a branch outside a loop, it is highly unlikely. */
1349 if (GET_CODE (PATTERN (jump_insn)) == SET
1350 && GET_CODE (SET_SRC (PATTERN (jump_insn))) == IF_THEN_ELSE
1351 && ((GET_CODE (XEXP (SET_SRC (PATTERN (jump_insn)), 1)) == LABEL_REF
1352 && LABEL_OUTSIDE_LOOP_P (XEXP (SET_SRC (PATTERN (jump_insn)), 1)))
1353 || (GET_CODE (XEXP (SET_SRC (PATTERN (jump_insn)), 2)) == LABEL_REF
1354 && LABEL_OUTSIDE_LOOP_P (XEXP (SET_SRC (PATTERN (jump_insn)), 2)))))
1355 return -1;
1357 if (target_label)
1359 /* If this is the test of a loop, it is very likely true. We scan
1360 backwards from the target label. If we find a NOTE_INSN_LOOP_BEG
1361 before the next real insn, we assume the branch is to the top of
1362 the loop. */
1363 for (insn = PREV_INSN (target_label);
1364 insn && GET_CODE (insn) == NOTE;
1365 insn = PREV_INSN (insn))
1366 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
1367 return 2;
1369 /* If this is a jump to the test of a loop, it is likely true. We scan
1370 forwards from the target label. If we find a NOTE_INSN_LOOP_VTOP
1371 before the next real insn, we assume the branch is to the loop branch
1372 test. */
1373 for (insn = NEXT_INSN (target_label);
1374 insn && GET_CODE (insn) == NOTE;
1375 insn = PREV_INSN (insn))
1376 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_VTOP)
1377 return 1;
1380 /* Look at the relative rarities of the fallthrough and destination. If
1381 they differ, we can predict the branch that way. */
1383 switch (rare_fallthrough - rare_dest)
1385 case -2:
1386 return -1;
1387 case -1:
1388 return 0;
1389 case 0:
1390 break;
1391 case 1:
1392 return 1;
1393 case 2:
1394 return 2;
1397 /* If we couldn't figure out what this jump was, assume it won't be
1398 taken. This should be rare. */
1399 if (condition == 0)
1400 return 0;
1402 /* EQ tests are usually false and NE tests are usually true. Also,
1403 most quantities are positive, so we can make the appropriate guesses
1404 about signed comparisons against zero. */
1405 switch (GET_CODE (condition))
1407 case CONST_INT:
1408 /* Unconditional branch. */
1409 return 1;
1410 case EQ:
1411 return 0;
1412 case NE:
1413 return 1;
1414 case LE:
1415 case LT:
1416 if (XEXP (condition, 1) == const0_rtx)
1417 return 0;
1418 break;
1419 case GE:
1420 case GT:
1421 if (XEXP (condition, 1) == const0_rtx)
1422 return 1;
1423 break;
1426 /* Predict backward branches usually take, forward branches usually not. If
1427 we don't know whether this is forward or backward, assume the branch
1428 will be taken, since most are. */
1429 return (target_label == 0 || INSN_UID (jump_insn) > max_uid
1430 || INSN_UID (target_label) > max_uid
1431 || (uid_to_ruid[INSN_UID (jump_insn)]
1432 > uid_to_ruid[INSN_UID (target_label)]));;
1435 /* Return the condition under which INSN will branch to TARGET. If TARGET
1436 is zero, return the condition under which INSN will return. If INSN is
1437 an unconditional branch, return const_true_rtx. If INSN isn't a simple
1438 type of jump, or it doesn't go to TARGET, return 0. */
1440 static rtx
1441 get_branch_condition (insn, target)
1442 rtx insn;
1443 rtx target;
1445 rtx pat = PATTERN (insn);
1446 rtx src;
1448 if (condjump_in_parallel_p (insn))
1449 pat = XVECEXP (pat, 0, 0);
1451 if (GET_CODE (pat) == RETURN)
1452 return target == 0 ? const_true_rtx : 0;
1454 else if (GET_CODE (pat) != SET || SET_DEST (pat) != pc_rtx)
1455 return 0;
1457 src = SET_SRC (pat);
1458 if (GET_CODE (src) == LABEL_REF && XEXP (src, 0) == target)
1459 return const_true_rtx;
1461 else if (GET_CODE (src) == IF_THEN_ELSE
1462 && ((target == 0 && GET_CODE (XEXP (src, 1)) == RETURN)
1463 || (GET_CODE (XEXP (src, 1)) == LABEL_REF
1464 && XEXP (XEXP (src, 1), 0) == target))
1465 && XEXP (src, 2) == pc_rtx)
1466 return XEXP (src, 0);
1468 else if (GET_CODE (src) == IF_THEN_ELSE
1469 && ((target == 0 && GET_CODE (XEXP (src, 2)) == RETURN)
1470 || (GET_CODE (XEXP (src, 2)) == LABEL_REF
1471 && XEXP (XEXP (src, 2), 0) == target))
1472 && XEXP (src, 1) == pc_rtx)
1473 return gen_rtx (reverse_condition (GET_CODE (XEXP (src, 0))),
1474 GET_MODE (XEXP (src, 0)),
1475 XEXP (XEXP (src, 0), 0), XEXP (XEXP (src, 0), 1));
1477 return 0;
1480 /* Return non-zero if CONDITION is more strict than the condition of
1481 INSN, i.e., if INSN will always branch if CONDITION is true. */
1483 static int
1484 condition_dominates_p (condition, insn)
1485 rtx condition;
1486 rtx insn;
1488 rtx other_condition = get_branch_condition (insn, JUMP_LABEL (insn));
1489 enum rtx_code code = GET_CODE (condition);
1490 enum rtx_code other_code;
1492 if (rtx_equal_p (condition, other_condition)
1493 || other_condition == const_true_rtx)
1494 return 1;
1496 else if (condition == const_true_rtx || other_condition == 0)
1497 return 0;
1499 other_code = GET_CODE (other_condition);
1500 if (GET_RTX_LENGTH (code) != 2 || GET_RTX_LENGTH (other_code) != 2
1501 || ! rtx_equal_p (XEXP (condition, 0), XEXP (other_condition, 0))
1502 || ! rtx_equal_p (XEXP (condition, 1), XEXP (other_condition, 1)))
1503 return 0;
1505 return comparison_dominates_p (code, other_code);
1508 /* Return non-zero if redirecting JUMP to NEWLABEL does not invalidate
1509 any insns already in the delay slot of JUMP. */
1511 static int
1512 redirect_with_delay_slots_safe_p (jump, newlabel, seq)
1513 rtx jump, newlabel, seq;
1515 int flags, slots, i;
1516 rtx pat = PATTERN (seq);
1518 /* Make sure all the delay slots of this jump would still
1519 be valid after threading the jump. If they are still
1520 valid, then return non-zero. */
1522 flags = get_jump_flags (jump, newlabel);
1523 for (i = 1; i < XVECLEN (pat, 0); i++)
1524 if (! (
1525 #ifdef ANNUL_IFFALSE_SLOTS
1526 (INSN_ANNULLED_BRANCH_P (jump)
1527 && INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)))
1528 ? eligible_for_annul_false (jump, i - 1,
1529 XVECEXP (pat, 0, i), flags) :
1530 #endif
1531 #ifdef ANNUL_IFTRUE_SLOTS
1532 (INSN_ANNULLED_BRANCH_P (jump)
1533 && ! INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)))
1534 ? eligible_for_annul_true (jump, i - 1,
1535 XVECEXP (pat, 0, i), flags) :
1536 #endif
1537 eligible_for_delay (jump, i -1, XVECEXP (pat, 0, i), flags)))
1538 break;
1540 return (i == XVECLEN (pat, 0));
1543 /* Return non-zero if redirecting JUMP to NEWLABEL does not invalidate
1544 any insns we wish to place in the delay slot of JUMP. */
1546 static int
1547 redirect_with_delay_list_safe_p (jump, newlabel, delay_list)
1548 rtx jump, newlabel, delay_list;
1550 int flags, i;
1551 rtx li;
1553 /* Make sure all the insns in DELAY_LIST would still be
1554 valid after threading the jump. If they are still
1555 valid, then return non-zero. */
1557 flags = get_jump_flags (jump, newlabel);
1558 for (li = delay_list, i = 0; li; li = XEXP (li, 1), i++)
1559 if (! (
1560 #ifdef ANNUL_IFFALSE_SLOTS
1561 (INSN_ANNULLED_BRANCH_P (jump)
1562 && INSN_FROM_TARGET_P (XEXP (li, 0)))
1563 ? eligible_for_annul_false (jump, i, XEXP (li, 0), flags) :
1564 #endif
1565 #ifdef ANNUL_IFTRUE_SLOTS
1566 (INSN_ANNULLED_BRANCH_P (jump)
1567 && ! INSN_FROM_TARGET_P (XEXP (li, 0)))
1568 ? eligible_for_annul_true (jump, i, XEXP (li, 0), flags) :
1569 #endif
1570 eligible_for_delay (jump, i, XEXP (li, 0), flags)))
1571 break;
1573 return (li == NULL);
1577 /* INSN branches to an insn whose pattern SEQ is a SEQUENCE. Given that
1578 the condition tested by INSN is CONDITION and the resources shown in
1579 OTHER_NEEDED are needed after INSN, see whether INSN can take all the insns
1580 from SEQ's delay list, in addition to whatever insns it may execute
1581 (in DELAY_LIST). SETS and NEEDED are denote resources already set and
1582 needed while searching for delay slot insns. Return the concatenated
1583 delay list if possible, otherwise, return 0.
1585 SLOTS_TO_FILL is the total number of slots required by INSN, and
1586 PSLOTS_FILLED points to the number filled so far (also the number of
1587 insns in DELAY_LIST). It is updated with the number that have been
1588 filled from the SEQUENCE, if any.
1590 PANNUL_P points to a non-zero value if we already know that we need
1591 to annul INSN. If this routine determines that annulling is needed,
1592 it may set that value non-zero.
1594 PNEW_THREAD points to a location that is to receive the place at which
1595 execution should continue. */
1597 static rtx
1598 steal_delay_list_from_target (insn, condition, seq, delay_list,
1599 sets, needed, other_needed,
1600 slots_to_fill, pslots_filled, pannul_p,
1601 pnew_thread)
1602 rtx insn, condition;
1603 rtx seq;
1604 rtx delay_list;
1605 struct resources *sets, *needed, *other_needed;
1606 int slots_to_fill;
1607 int *pslots_filled;
1608 int *pannul_p;
1609 rtx *pnew_thread;
1611 rtx temp;
1612 int slots_remaining = slots_to_fill - *pslots_filled;
1613 int total_slots_filled = *pslots_filled;
1614 rtx new_delay_list = 0;
1615 int must_annul = *pannul_p;
1616 int i;
1618 /* We can't do anything if there are more delay slots in SEQ than we
1619 can handle, or if we don't know that it will be a taken branch.
1620 We know that it will be a taken branch if it is either an unconditional
1621 branch or a conditional branch with a stricter branch condition.
1623 Also, exit if the branch has more than one set, since then it is computing
1624 other results that can't be ignored, e.g. the HPPA mov&branch instruction.
1625 ??? It may be possible to move other sets into INSN in addition to
1626 moving the instructions in the delay slots. */
1628 if (XVECLEN (seq, 0) - 1 > slots_remaining
1629 || ! condition_dominates_p (condition, XVECEXP (seq, 0, 0))
1630 || ! single_set (XVECEXP (seq, 0, 0)))
1631 return delay_list;
1633 for (i = 1; i < XVECLEN (seq, 0); i++)
1635 rtx trial = XVECEXP (seq, 0, i);
1636 int flags;
1638 if (insn_references_resource_p (trial, sets, 0)
1639 || insn_sets_resource_p (trial, needed, 0)
1640 || insn_sets_resource_p (trial, sets, 0)
1641 #ifdef HAVE_cc0
1642 /* If TRIAL sets CC0, we can't copy it, so we can't steal this
1643 delay list. */
1644 || find_reg_note (trial, REG_CC_USER, NULL_RTX)
1645 #endif
1646 /* If TRIAL is from the fallthrough code of an annulled branch insn
1647 in SEQ, we cannot use it. */
1648 || (INSN_ANNULLED_BRANCH_P (XVECEXP (seq, 0, 0))
1649 && ! INSN_FROM_TARGET_P (trial)))
1650 return delay_list;
1652 /* If this insn was already done (usually in a previous delay slot),
1653 pretend we put it in our delay slot. */
1654 if (redundant_insn (trial, insn, new_delay_list))
1655 continue;
1657 /* We will end up re-vectoring this branch, so compute flags
1658 based on jumping to the new label. */
1659 flags = get_jump_flags (insn, JUMP_LABEL (XVECEXP (seq, 0, 0)));
1661 if (! must_annul
1662 && ((condition == const_true_rtx
1663 || (! insn_sets_resource_p (trial, other_needed, 0)
1664 && ! may_trap_p (PATTERN (trial)))))
1665 ? eligible_for_delay (insn, total_slots_filled, trial, flags)
1666 : (must_annul = 1,
1667 eligible_for_annul_false (insn, total_slots_filled, trial, flags)))
1669 temp = copy_rtx (trial);
1670 INSN_FROM_TARGET_P (temp) = 1;
1671 new_delay_list = add_to_delay_list (temp, new_delay_list);
1672 total_slots_filled++;
1674 if (--slots_remaining == 0)
1675 break;
1677 else
1678 return delay_list;
1681 /* Show the place to which we will be branching. */
1682 *pnew_thread = next_active_insn (JUMP_LABEL (XVECEXP (seq, 0, 0)));
1684 /* Add any new insns to the delay list and update the count of the
1685 number of slots filled. */
1686 *pslots_filled = total_slots_filled;
1687 *pannul_p = must_annul;
1689 if (delay_list == 0)
1690 return new_delay_list;
1692 for (temp = new_delay_list; temp; temp = XEXP (temp, 1))
1693 delay_list = add_to_delay_list (XEXP (temp, 0), delay_list);
1695 return delay_list;
1698 /* Similar to steal_delay_list_from_target except that SEQ is on the
1699 fallthrough path of INSN. Here we only do something if the delay insn
1700 of SEQ is an unconditional branch. In that case we steal its delay slot
1701 for INSN since unconditional branches are much easier to fill. */
1703 static rtx
1704 steal_delay_list_from_fallthrough (insn, condition, seq,
1705 delay_list, sets, needed, other_needed,
1706 slots_to_fill, pslots_filled, pannul_p)
1707 rtx insn, condition;
1708 rtx seq;
1709 rtx delay_list;
1710 struct resources *sets, *needed, *other_needed;
1711 int slots_to_fill;
1712 int *pslots_filled;
1713 int *pannul_p;
1715 int i;
1716 int flags;
1718 flags = get_jump_flags (insn, JUMP_LABEL (insn));
1720 /* We can't do anything if SEQ's delay insn isn't an
1721 unconditional branch. */
1723 if (! simplejump_p (XVECEXP (seq, 0, 0))
1724 && GET_CODE (PATTERN (XVECEXP (seq, 0, 0))) != RETURN)
1725 return delay_list;
1727 for (i = 1; i < XVECLEN (seq, 0); i++)
1729 rtx trial = XVECEXP (seq, 0, i);
1731 /* If TRIAL sets CC0, stealing it will move it too far from the use
1732 of CC0. */
1733 if (insn_references_resource_p (trial, sets, 0)
1734 || insn_sets_resource_p (trial, needed, 0)
1735 || insn_sets_resource_p (trial, sets, 0)
1736 #ifdef HAVE_cc0
1737 || sets_cc0_p (PATTERN (trial))
1738 #endif
1741 break;
1743 /* If this insn was already done, we don't need it. */
1744 if (redundant_insn (trial, insn, delay_list))
1746 delete_from_delay_slot (trial);
1747 continue;
1750 if (! *pannul_p
1751 && ((condition == const_true_rtx
1752 || (! insn_sets_resource_p (trial, other_needed, 0)
1753 && ! may_trap_p (PATTERN (trial)))))
1754 ? eligible_for_delay (insn, *pslots_filled, trial, flags)
1755 : (*pannul_p = 1,
1756 eligible_for_annul_true (insn, *pslots_filled, trial, flags)))
1758 delete_from_delay_slot (trial);
1759 delay_list = add_to_delay_list (trial, delay_list);
1761 if (++(*pslots_filled) == slots_to_fill)
1762 break;
1764 else
1765 break;
1768 return delay_list;
1771 /* Try merging insns starting at THREAD which match exactly the insns in
1772 INSN's delay list.
1774 If all insns were matched and the insn was previously annulling, the
1775 annul bit will be cleared.
1777 For each insn that is merged, if the branch is or will be non-annulling,
1778 we delete the merged insn. */
1780 static void
1781 try_merge_delay_insns (insn, thread)
1782 rtx insn, thread;
1784 rtx trial, next_trial;
1785 rtx delay_insn = XVECEXP (PATTERN (insn), 0, 0);
1786 int annul_p = INSN_ANNULLED_BRANCH_P (delay_insn);
1787 int slot_number = 1;
1788 int num_slots = XVECLEN (PATTERN (insn), 0);
1789 rtx next_to_match = XVECEXP (PATTERN (insn), 0, slot_number);
1790 struct resources set, needed;
1791 rtx merged_insns = 0;
1792 int i;
1793 int flags;
1795 flags = get_jump_flags (delay_insn, JUMP_LABEL (delay_insn));
1797 CLEAR_RESOURCE (&needed);
1798 CLEAR_RESOURCE (&set);
1800 /* If this is not an annulling branch, take into account anything needed in
1801 NEXT_TO_MATCH. This prevents two increments from being incorrectly
1802 folded into one. If we are annulling, this would be the correct
1803 thing to do. (The alternative, looking at things set in NEXT_TO_MATCH
1804 will essentially disable this optimization. This method is somewhat of
1805 a kludge, but I don't see a better way.) */
1806 if (! annul_p)
1807 mark_referenced_resources (next_to_match, &needed, 1);
1809 for (trial = thread; !stop_search_p (trial, 1); trial = next_trial)
1811 rtx pat = PATTERN (trial);
1812 rtx oldtrial = trial;
1814 next_trial = next_nonnote_insn (trial);
1816 /* TRIAL must be a CALL_INSN or INSN. Skip USE and CLOBBER. */
1817 if (GET_CODE (trial) == INSN
1818 && (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER))
1819 continue;
1821 if (GET_CODE (next_to_match) == GET_CODE (trial)
1822 #ifdef HAVE_cc0
1823 /* We can't share an insn that sets cc0. */
1824 && ! sets_cc0_p (pat)
1825 #endif
1826 && ! insn_references_resource_p (trial, &set, 1)
1827 && ! insn_sets_resource_p (trial, &set, 1)
1828 && ! insn_sets_resource_p (trial, &needed, 1)
1829 && (trial = try_split (pat, trial, 0)) != 0
1830 /* Update next_trial, in case try_split succeeded. */
1831 && (next_trial = next_nonnote_insn (trial))
1832 /* Likewise THREAD. */
1833 && (thread = oldtrial == thread ? trial : thread)
1834 && rtx_equal_p (PATTERN (next_to_match), PATTERN (trial))
1835 /* Have to test this condition if annul condition is different
1836 from (and less restrictive than) non-annulling one. */
1837 && eligible_for_delay (delay_insn, slot_number - 1, trial, flags))
1840 if (! annul_p)
1842 update_block (trial, thread);
1843 if (trial == thread)
1844 thread = next_active_insn (thread);
1846 delete_insn (trial);
1847 INSN_FROM_TARGET_P (next_to_match) = 0;
1849 else
1850 merged_insns = gen_rtx (INSN_LIST, VOIDmode, trial, merged_insns);
1852 if (++slot_number == num_slots)
1853 break;
1855 next_to_match = XVECEXP (PATTERN (insn), 0, slot_number);
1856 if (! annul_p)
1857 mark_referenced_resources (next_to_match, &needed, 1);
1860 mark_set_resources (trial, &set, 0, 1);
1861 mark_referenced_resources (trial, &needed, 1);
1864 /* See if we stopped on a filled insn. If we did, try to see if its
1865 delay slots match. */
1866 if (slot_number != num_slots
1867 && trial && GET_CODE (trial) == INSN
1868 && GET_CODE (PATTERN (trial)) == SEQUENCE
1869 && ! INSN_ANNULLED_BRANCH_P (XVECEXP (PATTERN (trial), 0, 0)))
1871 rtx pat = PATTERN (trial);
1872 rtx filled_insn = XVECEXP (pat, 0, 0);
1874 /* Account for resources set/needed by the filled insn. */
1875 mark_set_resources (filled_insn, &set, 0, 1);
1876 mark_referenced_resources (filled_insn, &needed, 1);
1878 for (i = 1; i < XVECLEN (pat, 0); i++)
1880 rtx dtrial = XVECEXP (pat, 0, i);
1882 if (! insn_references_resource_p (dtrial, &set, 1)
1883 && ! insn_sets_resource_p (dtrial, &set, 1)
1884 && ! insn_sets_resource_p (dtrial, &needed, 1)
1885 #ifdef HAVE_cc0
1886 && ! sets_cc0_p (PATTERN (dtrial))
1887 #endif
1888 && rtx_equal_p (PATTERN (next_to_match), PATTERN (dtrial))
1889 && eligible_for_delay (delay_insn, slot_number - 1, dtrial, flags))
1891 if (! annul_p)
1893 update_block (dtrial, thread);
1894 delete_from_delay_slot (dtrial);
1895 INSN_FROM_TARGET_P (next_to_match) = 0;
1897 else
1898 merged_insns = gen_rtx (INSN_LIST, SImode, dtrial,
1899 merged_insns);
1901 if (++slot_number == num_slots)
1902 break;
1904 next_to_match = XVECEXP (PATTERN (insn), 0, slot_number);
1909 /* If all insns in the delay slot have been matched and we were previously
1910 annulling the branch, we need not any more. In that case delete all the
1911 merged insns. Also clear the INSN_FROM_TARGET_P bit of each insn the
1912 the delay list so that we know that it isn't only being used at the
1913 target. */
1914 if (slot_number == num_slots && annul_p)
1916 for (; merged_insns; merged_insns = XEXP (merged_insns, 1))
1918 if (GET_MODE (merged_insns) == SImode)
1920 update_block (XEXP (merged_insns, 0), thread);
1921 delete_from_delay_slot (XEXP (merged_insns, 0));
1923 else
1925 update_block (XEXP (merged_insns, 0), thread);
1926 delete_insn (XEXP (merged_insns, 0));
1930 INSN_ANNULLED_BRANCH_P (delay_insn) = 0;
1932 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1933 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i)) = 0;
1937 /* See if INSN is redundant with an insn in front of TARGET. Often this
1938 is called when INSN is a candidate for a delay slot of TARGET.
1939 DELAY_LIST are insns that will be placed in delay slots of TARGET in front
1940 of INSN. Often INSN will be redundant with an insn in a delay slot of
1941 some previous insn. This happens when we have a series of branches to the
1942 same label; in that case the first insn at the target might want to go
1943 into each of the delay slots.
1945 If we are not careful, this routine can take up a significant fraction
1946 of the total compilation time (4%), but only wins rarely. Hence we
1947 speed this routine up by making two passes. The first pass goes back
1948 until it hits a label and sees if it find an insn with an identical
1949 pattern. Only in this (relatively rare) event does it check for
1950 data conflicts.
1952 We do not split insns we encounter. This could cause us not to find a
1953 redundant insn, but the cost of splitting seems greater than the possible
1954 gain in rare cases. */
1956 static rtx
1957 redundant_insn (insn, target, delay_list)
1958 rtx insn;
1959 rtx target;
1960 rtx delay_list;
1962 rtx target_main = target;
1963 rtx ipat = PATTERN (insn);
1964 rtx trial, pat;
1965 struct resources needed, set;
1966 int i;
1968 /* Scan backwards looking for a match. */
1969 for (trial = PREV_INSN (target); trial; trial = PREV_INSN (trial))
1971 if (GET_CODE (trial) == CODE_LABEL)
1972 return 0;
1974 if (GET_RTX_CLASS (GET_CODE (trial)) != 'i')
1975 continue;
1977 pat = PATTERN (trial);
1978 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
1979 continue;
1981 if (GET_CODE (pat) == SEQUENCE)
1983 /* Stop for a CALL and its delay slots because it is difficult to
1984 track its resource needs correctly. */
1985 if (GET_CODE (XVECEXP (pat, 0, 0)) == CALL_INSN)
1986 return 0;
1988 /* Stop for an INSN or JUMP_INSN with delayed effects and its delay
1989 slots because it is difficult to track its resource needs
1990 correctly. */
1992 #ifdef INSN_SETS_ARE_DELAYED
1993 if (INSN_SETS_ARE_DELAYED (XVECEXP (pat, 0, 0)))
1994 return 0;
1995 #endif
1997 #ifdef INSN_REFERENCES_ARE_DELAYED
1998 if (INSN_REFERENCES_ARE_DELAYED (XVECEXP (pat, 0, 0)))
1999 return 0;
2000 #endif
2002 /* See if any of the insns in the delay slot match, updating
2003 resource requirements as we go. */
2004 for (i = XVECLEN (pat, 0) - 1; i > 0; i--)
2005 if (GET_CODE (XVECEXP (pat, 0, i)) == GET_CODE (insn)
2006 && rtx_equal_p (PATTERN (XVECEXP (pat, 0, i)), ipat))
2007 break;
2009 /* If found a match, exit this loop early. */
2010 if (i > 0)
2011 break;
2014 else if (GET_CODE (trial) == GET_CODE (insn) && rtx_equal_p (pat, ipat))
2015 break;
2018 /* If we didn't find an insn that matches, return 0. */
2019 if (trial == 0)
2020 return 0;
2022 /* See what resources this insn sets and needs. If they overlap, or
2023 if this insn references CC0, it can't be redundant. */
2025 CLEAR_RESOURCE (&needed);
2026 CLEAR_RESOURCE (&set);
2027 mark_set_resources (insn, &set, 0, 1);
2028 mark_referenced_resources (insn, &needed, 1);
2030 /* If TARGET is a SEQUENCE, get the main insn. */
2031 if (GET_CODE (target) == INSN && GET_CODE (PATTERN (target)) == SEQUENCE)
2032 target_main = XVECEXP (PATTERN (target), 0, 0);
2034 if (resource_conflicts_p (&needed, &set)
2035 #ifdef HAVE_cc0
2036 || reg_mentioned_p (cc0_rtx, ipat)
2037 #endif
2038 /* The insn requiring the delay may not set anything needed or set by
2039 INSN. */
2040 || insn_sets_resource_p (target_main, &needed, 1)
2041 || insn_sets_resource_p (target_main, &set, 1))
2042 return 0;
2044 /* Insns we pass may not set either NEEDED or SET, so merge them for
2045 simpler tests. */
2046 needed.memory |= set.memory;
2047 needed.unch_memory |= set.unch_memory;
2048 IOR_HARD_REG_SET (needed.regs, set.regs);
2050 /* This insn isn't redundant if it conflicts with an insn that either is
2051 or will be in a delay slot of TARGET. */
2053 while (delay_list)
2055 if (insn_sets_resource_p (XEXP (delay_list, 0), &needed, 1))
2056 return 0;
2057 delay_list = XEXP (delay_list, 1);
2060 if (GET_CODE (target) == INSN && GET_CODE (PATTERN (target)) == SEQUENCE)
2061 for (i = 1; i < XVECLEN (PATTERN (target), 0); i++)
2062 if (insn_sets_resource_p (XVECEXP (PATTERN (target), 0, i), &needed, 1))
2063 return 0;
2065 /* Scan backwards until we reach a label or an insn that uses something
2066 INSN sets or sets something insn uses or sets. */
2068 for (trial = PREV_INSN (target);
2069 trial && GET_CODE (trial) != CODE_LABEL;
2070 trial = PREV_INSN (trial))
2072 if (GET_CODE (trial) != INSN && GET_CODE (trial) != CALL_INSN
2073 && GET_CODE (trial) != JUMP_INSN)
2074 continue;
2076 pat = PATTERN (trial);
2077 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
2078 continue;
2080 if (GET_CODE (pat) == SEQUENCE)
2082 /* If this is a CALL_INSN and its delay slots, it is hard to track
2083 the resource needs properly, so give up. */
2084 if (GET_CODE (XVECEXP (pat, 0, 0)) == CALL_INSN)
2085 return 0;
2087 /* If this this is an INSN or JUMP_INSN with delayed effects, it
2088 is hard to track the resource needs properly, so give up. */
2090 #ifdef INSN_SETS_ARE_DELAYED
2091 if (INSN_SETS_ARE_DELAYED (XVECEXP (pat, 0, 0)))
2092 return 0;
2093 #endif
2095 #ifdef INSN_REFERENCES_ARE_DELAYED
2096 if (INSN_REFERENCES_ARE_DELAYED (XVECEXP (pat, 0, 0)))
2097 return 0;
2098 #endif
2100 /* See if any of the insns in the delay slot match, updating
2101 resource requirements as we go. */
2102 for (i = XVECLEN (pat, 0) - 1; i > 0; i--)
2104 rtx candidate = XVECEXP (pat, 0, i);
2106 /* If an insn will be annulled if the branch is false, it isn't
2107 considered as a possible duplicate insn. */
2108 if (rtx_equal_p (PATTERN (candidate), ipat)
2109 && ! (INSN_ANNULLED_BRANCH_P (XVECEXP (pat, 0, 0))
2110 && INSN_FROM_TARGET_P (candidate)))
2112 /* Show that this insn will be used in the sequel. */
2113 INSN_FROM_TARGET_P (candidate) = 0;
2114 return candidate;
2117 /* Unless this is an annulled insn from the target of a branch,
2118 we must stop if it sets anything needed or set by INSN. */
2119 if ((! INSN_ANNULLED_BRANCH_P (XVECEXP (pat, 0, 0))
2120 || ! INSN_FROM_TARGET_P (candidate))
2121 && insn_sets_resource_p (candidate, &needed, 1))
2122 return 0;
2126 /* If the insn requiring the delay slot conflicts with INSN, we
2127 must stop. */
2128 if (insn_sets_resource_p (XVECEXP (pat, 0, 0), &needed, 1))
2129 return 0;
2131 else
2133 /* See if TRIAL is the same as INSN. */
2134 pat = PATTERN (trial);
2135 if (rtx_equal_p (pat, ipat))
2136 return trial;
2138 /* Can't go any further if TRIAL conflicts with INSN. */
2139 if (insn_sets_resource_p (trial, &needed, 1))
2140 return 0;
2144 return 0;
2147 /* Return 1 if THREAD can only be executed in one way. If LABEL is non-zero,
2148 it is the target of the branch insn being scanned. If ALLOW_FALLTHROUGH
2149 is non-zero, we are allowed to fall into this thread; otherwise, we are
2150 not.
2152 If LABEL is used more than one or we pass a label other than LABEL before
2153 finding an active insn, we do not own this thread. */
2155 static int
2156 own_thread_p (thread, label, allow_fallthrough)
2157 rtx thread;
2158 rtx label;
2159 int allow_fallthrough;
2161 rtx active_insn;
2162 rtx insn;
2164 /* We don't own the function end. */
2165 if (thread == 0)
2166 return 0;
2168 /* Get the first active insn, or THREAD, if it is an active insn. */
2169 active_insn = next_active_insn (PREV_INSN (thread));
2171 for (insn = thread; insn != active_insn; insn = NEXT_INSN (insn))
2172 if (GET_CODE (insn) == CODE_LABEL
2173 && (insn != label || LABEL_NUSES (insn) != 1))
2174 return 0;
2176 if (allow_fallthrough)
2177 return 1;
2179 /* Ensure that we reach a BARRIER before any insn or label. */
2180 for (insn = prev_nonnote_insn (thread);
2181 insn == 0 || GET_CODE (insn) != BARRIER;
2182 insn = prev_nonnote_insn (insn))
2183 if (insn == 0
2184 || GET_CODE (insn) == CODE_LABEL
2185 || (GET_CODE (insn) == INSN
2186 && GET_CODE (PATTERN (insn)) != USE
2187 && GET_CODE (PATTERN (insn)) != CLOBBER))
2188 return 0;
2190 return 1;
2193 /* Find the number of the basic block that starts closest to INSN. Return -1
2194 if we couldn't find such a basic block. */
2196 static int
2197 find_basic_block (insn)
2198 rtx insn;
2200 int i;
2202 /* Scan backwards to the previous BARRIER. Then see if we can find a
2203 label that starts a basic block. Return the basic block number. */
2205 for (insn = prev_nonnote_insn (insn);
2206 insn && GET_CODE (insn) != BARRIER;
2207 insn = prev_nonnote_insn (insn))
2210 /* The start of the function is basic block zero. */
2211 if (insn == 0)
2212 return 0;
2214 /* See if any of the upcoming CODE_LABELs start a basic block. If we reach
2215 anything other than a CODE_LABEL or note, we can't find this code. */
2216 for (insn = next_nonnote_insn (insn);
2217 insn && GET_CODE (insn) == CODE_LABEL;
2218 insn = next_nonnote_insn (insn))
2220 for (i = 0; i < n_basic_blocks; i++)
2221 if (insn == basic_block_head[i])
2222 return i;
2225 return -1;
2228 /* Called when INSN is being moved from a location near the target of a jump.
2229 We leave a marker of the form (use (INSN)) immediately in front
2230 of WHERE for mark_target_live_regs. These markers will be deleted when
2231 reorg finishes.
2233 We used to try to update the live status of registers if WHERE is at
2234 the start of a basic block, but that can't work since we may remove a
2235 BARRIER in relax_delay_slots. */
2237 static void
2238 update_block (insn, where)
2239 rtx insn;
2240 rtx where;
2242 int b;
2244 /* Ignore if this was in a delay slot and it came from the target of
2245 a branch. */
2246 if (INSN_FROM_TARGET_P (insn))
2247 return;
2249 emit_insn_before (gen_rtx (USE, VOIDmode, insn), where);
2251 /* INSN might be making a value live in a block where it didn't use to
2252 be. So recompute liveness information for this block. */
2254 b = find_basic_block (insn);
2255 if (b != -1)
2256 bb_ticks[b]++;
2259 /* Similar to REDIRECT_JUMP except that we update the BB_TICKS entry for
2260 the basic block containing the jump. */
2262 static int
2263 reorg_redirect_jump (jump, nlabel)
2264 rtx jump;
2265 rtx nlabel;
2267 int b = find_basic_block (jump);
2269 if (b != -1)
2270 bb_ticks[b]++;
2272 return redirect_jump (jump, nlabel);
2275 /* Called when INSN is being moved forward into a delay slot of DELAYED_INSN.
2276 We check every instruction between INSN and DELAYED_INSN for REG_DEAD notes
2277 that reference values used in INSN. If we find one, then we move the
2278 REG_DEAD note to INSN.
2280 This is needed to handle the case where an later insn (after INSN) has a
2281 REG_DEAD note for a register used by INSN, and this later insn subsequently
2282 gets moved before a CODE_LABEL because it is a redundant insn. In this
2283 case, mark_target_live_regs may be confused into thinking the register
2284 is dead because it sees a REG_DEAD note immediately before a CODE_LABEL. */
2286 static void
2287 update_reg_dead_notes (insn, delayed_insn)
2288 rtx insn, delayed_insn;
2290 rtx p, link, next;
2292 for (p = next_nonnote_insn (insn); p != delayed_insn;
2293 p = next_nonnote_insn (p))
2294 for (link = REG_NOTES (p); link; link = next)
2296 next = XEXP (link, 1);
2298 if (REG_NOTE_KIND (link) != REG_DEAD
2299 || GET_CODE (XEXP (link, 0)) != REG)
2300 continue;
2302 if (reg_referenced_p (XEXP (link, 0), PATTERN (insn)))
2304 /* Move the REG_DEAD note from P to INSN. */
2305 remove_note (p, link);
2306 XEXP (link, 1) = REG_NOTES (insn);
2307 REG_NOTES (insn) = link;
2312 /* Called when an insn redundant with start_insn is deleted. If there
2313 is a REG_DEAD note for the target of start_insn between start_insn
2314 and stop_insn, then the REG_DEAD note needs to be deleted since the
2315 value no longer dies there.
2317 If the REG_DEAD note isn't deleted, then mark_target_live_regs may be
2318 confused into thinking the register is dead. */
2320 static void
2321 fix_reg_dead_note (start_insn, stop_insn)
2322 rtx start_insn, stop_insn;
2324 rtx p, link, next;
2326 for (p = next_nonnote_insn (start_insn); p != stop_insn;
2327 p = next_nonnote_insn (p))
2328 for (link = REG_NOTES (p); link; link = next)
2330 next = XEXP (link, 1);
2332 if (REG_NOTE_KIND (link) != REG_DEAD
2333 || GET_CODE (XEXP (link, 0)) != REG)
2334 continue;
2336 if (reg_set_p (XEXP (link, 0), PATTERN (start_insn)))
2338 remove_note (p, link);
2339 return;
2344 /* Delete any REG_UNUSED notes that exist on INSN but not on REDUNDANT_INSN.
2346 This handles the case of udivmodXi4 instructions which optimize their
2347 output depending on whether any REG_UNUSED notes are present.
2348 we must make sure that INSN calculates as many results as REDUNDANT_INSN
2349 does. */
2351 static void
2352 update_reg_unused_notes (insn, redundant_insn)
2353 rtx insn, redundant_insn;
2355 rtx p, link, next;
2357 for (link = REG_NOTES (insn); link; link = next)
2359 next = XEXP (link, 1);
2361 if (REG_NOTE_KIND (link) != REG_UNUSED
2362 || GET_CODE (XEXP (link, 0)) != REG)
2363 continue;
2365 if (! find_regno_note (redundant_insn, REG_UNUSED,
2366 REGNO (XEXP (link, 0))))
2367 remove_note (insn, link);
2371 /* Marks registers possibly live at the current place being scanned by
2372 mark_target_live_regs. Used only by next two function. */
2374 static HARD_REG_SET current_live_regs;
2376 /* Marks registers for which we have seen a REG_DEAD note but no assignment.
2377 Also only used by the next two functions. */
2379 static HARD_REG_SET pending_dead_regs;
2381 /* Utility function called from mark_target_live_regs via note_stores.
2382 It deadens any CLOBBERed registers and livens any SET registers. */
2384 static void
2385 update_live_status (dest, x)
2386 rtx dest;
2387 rtx x;
2389 int first_regno, last_regno;
2390 int i;
2392 if (GET_CODE (dest) != REG
2393 && (GET_CODE (dest) != SUBREG || GET_CODE (SUBREG_REG (dest)) != REG))
2394 return;
2396 if (GET_CODE (dest) == SUBREG)
2397 first_regno = REGNO (SUBREG_REG (dest)) + SUBREG_WORD (dest);
2398 else
2399 first_regno = REGNO (dest);
2401 last_regno = first_regno + HARD_REGNO_NREGS (first_regno, GET_MODE (dest));
2403 if (GET_CODE (x) == CLOBBER)
2404 for (i = first_regno; i < last_regno; i++)
2405 CLEAR_HARD_REG_BIT (current_live_regs, i);
2406 else
2407 for (i = first_regno; i < last_regno; i++)
2409 SET_HARD_REG_BIT (current_live_regs, i);
2410 CLEAR_HARD_REG_BIT (pending_dead_regs, i);
2414 /* Similar to next_insn, but ignores insns in the delay slots of
2415 an annulled branch. */
2417 static rtx
2418 next_insn_no_annul (insn)
2419 rtx insn;
2421 if (insn)
2423 /* If INSN is an annulled branch, skip any insns from the target
2424 of the branch. */
2425 if (INSN_ANNULLED_BRANCH_P (insn)
2426 && NEXT_INSN (PREV_INSN (insn)) != insn)
2427 while (INSN_FROM_TARGET_P (NEXT_INSN (insn)))
2428 insn = NEXT_INSN (insn);
2430 insn = NEXT_INSN (insn);
2431 if (insn && GET_CODE (insn) == INSN
2432 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2433 insn = XVECEXP (PATTERN (insn), 0, 0);
2436 return insn;
2439 /* A subroutine of mark_target_live_regs. Search forward from TARGET
2440 looking for registers that are set before they are used. These are dead.
2441 Stop after passing a few conditional jumps, and/or a small
2442 number of unconditional branches. */
2444 static rtx
2445 find_dead_or_set_registers (target, res, jump_target, jump_count, set, needed)
2446 rtx target;
2447 struct resources *res;
2448 rtx *jump_target;
2449 int jump_count;
2450 struct resources set, needed;
2452 HARD_REG_SET scratch;
2453 rtx insn, next;
2454 rtx jump_insn = 0;
2455 int i;
2457 for (insn = target; insn; insn = next)
2459 rtx this_jump_insn = insn;
2461 next = NEXT_INSN (insn);
2462 switch (GET_CODE (insn))
2464 case CODE_LABEL:
2465 /* After a label, any pending dead registers that weren't yet
2466 used can be made dead. */
2467 AND_COMPL_HARD_REG_SET (pending_dead_regs, needed.regs);
2468 AND_COMPL_HARD_REG_SET (res->regs, pending_dead_regs);
2469 CLEAR_HARD_REG_SET (pending_dead_regs);
2471 /* All spill registers are dead at a label, so kill all of the
2472 ones that aren't needed also. */
2473 COPY_HARD_REG_SET (scratch, used_spill_regs);
2474 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
2475 AND_COMPL_HARD_REG_SET (res->regs, scratch);
2476 continue;
2478 case BARRIER:
2479 case NOTE:
2480 continue;
2482 case INSN:
2483 if (GET_CODE (PATTERN (insn)) == USE)
2485 /* If INSN is a USE made by update_block, we care about the
2486 underlying insn. Any registers set by the underlying insn
2487 are live since the insn is being done somewhere else. */
2488 if (GET_RTX_CLASS (GET_CODE (XEXP (PATTERN (insn), 0))) == 'i')
2489 mark_set_resources (XEXP (PATTERN (insn), 0), res, 0, 1);
2491 /* All other USE insns are to be ignored. */
2492 continue;
2494 else if (GET_CODE (PATTERN (insn)) == CLOBBER)
2495 continue;
2496 else if (GET_CODE (PATTERN (insn)) == SEQUENCE)
2498 /* An unconditional jump can be used to fill the delay slot
2499 of a call, so search for a JUMP_INSN in any position. */
2500 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2502 this_jump_insn = XVECEXP (PATTERN (insn), 0, i);
2503 if (GET_CODE (this_jump_insn) == JUMP_INSN)
2504 break;
2509 if (GET_CODE (this_jump_insn) == JUMP_INSN)
2511 if (jump_count++ < 10)
2513 if (simplejump_p (this_jump_insn)
2514 || GET_CODE (PATTERN (this_jump_insn)) == RETURN)
2516 next = JUMP_LABEL (this_jump_insn);
2517 if (jump_insn == 0)
2519 jump_insn = insn;
2520 if (jump_target)
2521 *jump_target = JUMP_LABEL (this_jump_insn);
2524 else if (condjump_p (this_jump_insn)
2525 || condjump_in_parallel_p (this_jump_insn))
2527 struct resources target_set, target_res;
2528 struct resources fallthrough_res;
2530 /* We can handle conditional branches here by following
2531 both paths, and then IOR the results of the two paths
2532 together, which will give us registers that are dead
2533 on both paths. Since this is expensive, we give it
2534 a much higher cost than unconditional branches. The
2535 cost was chosen so that we will follow at most 1
2536 conditional branch. */
2538 jump_count += 4;
2539 if (jump_count >= 10)
2540 break;
2542 mark_referenced_resources (insn, &needed, 1);
2544 /* For an annulled branch, mark_set_resources ignores slots
2545 filled by instructions from the target. This is correct
2546 if the branch is not taken. Since we are following both
2547 paths from the branch, we must also compute correct info
2548 if the branch is taken. We do this by inverting all of
2549 the INSN_FROM_TARGET_P bits, calling mark_set_resources,
2550 and then inverting the INSN_FROM_TARGET_P bits again. */
2552 if (GET_CODE (PATTERN (insn)) == SEQUENCE
2553 && INSN_ANNULLED_BRANCH_P (this_jump_insn))
2555 for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
2556 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
2557 = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
2559 target_set = set;
2560 mark_set_resources (insn, &target_set, 0, 1);
2562 for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
2563 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
2564 = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
2566 mark_set_resources (insn, &set, 0, 1);
2568 else
2570 mark_set_resources (insn, &set, 0, 1);
2571 target_set = set;
2574 target_res = *res;
2575 COPY_HARD_REG_SET (scratch, target_set.regs);
2576 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
2577 AND_COMPL_HARD_REG_SET (target_res.regs, scratch);
2579 fallthrough_res = *res;
2580 COPY_HARD_REG_SET (scratch, set.regs);
2581 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
2582 AND_COMPL_HARD_REG_SET (fallthrough_res.regs, scratch);
2584 find_dead_or_set_registers (JUMP_LABEL (this_jump_insn),
2585 &target_res, 0, jump_count,
2586 target_set, needed);
2587 find_dead_or_set_registers (next,
2588 &fallthrough_res, 0, jump_count,
2589 set, needed);
2590 IOR_HARD_REG_SET (fallthrough_res.regs, target_res.regs);
2591 AND_HARD_REG_SET (res->regs, fallthrough_res.regs);
2592 break;
2594 else
2595 break;
2597 else
2599 /* Don't try this optimization if we expired our jump count
2600 above, since that would mean there may be an infinite loop
2601 in the function being compiled. */
2602 jump_insn = 0;
2603 break;
2607 mark_referenced_resources (insn, &needed, 1);
2608 mark_set_resources (insn, &set, 0, 1);
2610 COPY_HARD_REG_SET (scratch, set.regs);
2611 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
2612 AND_COMPL_HARD_REG_SET (res->regs, scratch);
2615 return jump_insn;
2618 /* Set the resources that are live at TARGET.
2620 If TARGET is zero, we refer to the end of the current function and can
2621 return our precomputed value.
2623 Otherwise, we try to find out what is live by consulting the basic block
2624 information. This is tricky, because we must consider the actions of
2625 reload and jump optimization, which occur after the basic block information
2626 has been computed.
2628 Accordingly, we proceed as follows::
2630 We find the previous BARRIER and look at all immediately following labels
2631 (with no intervening active insns) to see if any of them start a basic
2632 block. If we hit the start of the function first, we use block 0.
2634 Once we have found a basic block and a corresponding first insns, we can
2635 accurately compute the live status from basic_block_live_regs and
2636 reg_renumber. (By starting at a label following a BARRIER, we are immune
2637 to actions taken by reload and jump.) Then we scan all insns between
2638 that point and our target. For each CLOBBER (or for call-clobbered regs
2639 when we pass a CALL_INSN), mark the appropriate registers are dead. For
2640 a SET, mark them as live.
2642 We have to be careful when using REG_DEAD notes because they are not
2643 updated by such things as find_equiv_reg. So keep track of registers
2644 marked as dead that haven't been assigned to, and mark them dead at the
2645 next CODE_LABEL since reload and jump won't propagate values across labels.
2647 If we cannot find the start of a basic block (should be a very rare
2648 case, if it can happen at all), mark everything as potentially live.
2650 Next, scan forward from TARGET looking for things set or clobbered
2651 before they are used. These are not live.
2653 Because we can be called many times on the same target, save our results
2654 in a hash table indexed by INSN_UID. */
2656 static void
2657 mark_target_live_regs (target, res)
2658 rtx target;
2659 struct resources *res;
2661 int b = -1;
2662 int i;
2663 struct target_info *tinfo;
2664 rtx insn, next;
2665 rtx jump_insn = 0;
2666 rtx jump_target;
2667 HARD_REG_SET scratch;
2668 struct resources set, needed;
2669 int jump_count = 0;
2671 /* Handle end of function. */
2672 if (target == 0)
2674 *res = end_of_function_needs;
2675 return;
2678 /* We have to assume memory is needed, but the CC isn't. */
2679 res->memory = 1;
2680 res->volatil = res->unch_memory = 0;
2681 res->cc = 0;
2683 /* See if we have computed this value already. */
2684 for (tinfo = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
2685 tinfo; tinfo = tinfo->next)
2686 if (tinfo->uid == INSN_UID (target))
2687 break;
2689 /* Start by getting the basic block number. If we have saved information,
2690 we can get it from there unless the insn at the start of the basic block
2691 has been deleted. */
2692 if (tinfo && tinfo->block != -1
2693 && ! INSN_DELETED_P (basic_block_head[tinfo->block]))
2694 b = tinfo->block;
2696 if (b == -1)
2697 b = find_basic_block (target);
2699 if (tinfo)
2701 /* If the information is up-to-date, use it. Otherwise, we will
2702 update it below. */
2703 if (b == tinfo->block && b != -1 && tinfo->bb_tick == bb_ticks[b])
2705 COPY_HARD_REG_SET (res->regs, tinfo->live_regs);
2706 return;
2709 else
2711 /* Allocate a place to put our results and chain it into the
2712 hash table. */
2713 tinfo = (struct target_info *) oballoc (sizeof (struct target_info));
2714 tinfo->uid = INSN_UID (target);
2715 tinfo->block = b;
2716 tinfo->next = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
2717 target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME] = tinfo;
2720 CLEAR_HARD_REG_SET (pending_dead_regs);
2722 /* If we found a basic block, get the live registers from it and update
2723 them with anything set or killed between its start and the insn before
2724 TARGET. Otherwise, we must assume everything is live. */
2725 if (b != -1)
2727 regset regs_live = basic_block_live_at_start[b];
2728 int offset, j;
2729 REGSET_ELT_TYPE bit;
2730 int regno;
2731 rtx start_insn, stop_insn;
2733 /* Compute hard regs live at start of block -- this is the real hard regs
2734 marked live, plus live pseudo regs that have been renumbered to
2735 hard regs. */
2737 #ifdef HARD_REG_SET
2738 current_live_regs = *regs_live;
2739 #else
2740 COPY_HARD_REG_SET (current_live_regs, regs_live);
2741 #endif
2743 for (offset = 0, i = 0; offset < regset_size; offset++)
2745 if (regs_live[offset] == 0)
2746 i += REGSET_ELT_BITS;
2747 else
2748 for (bit = 1; bit && i < max_regno; bit <<= 1, i++)
2749 if ((regs_live[offset] & bit)
2750 && (regno = reg_renumber[i]) >= 0)
2751 for (j = regno;
2752 j < regno + HARD_REGNO_NREGS (regno,
2753 PSEUDO_REGNO_MODE (i));
2754 j++)
2755 SET_HARD_REG_BIT (current_live_regs, j);
2758 /* Get starting and ending insn, handling the case where each might
2759 be a SEQUENCE. */
2760 start_insn = (b == 0 ? get_insns () : basic_block_head[b]);
2761 stop_insn = target;
2763 if (GET_CODE (start_insn) == INSN
2764 && GET_CODE (PATTERN (start_insn)) == SEQUENCE)
2765 start_insn = XVECEXP (PATTERN (start_insn), 0, 0);
2767 if (GET_CODE (stop_insn) == INSN
2768 && GET_CODE (PATTERN (stop_insn)) == SEQUENCE)
2769 stop_insn = next_insn (PREV_INSN (stop_insn));
2771 for (insn = start_insn; insn != stop_insn;
2772 insn = next_insn_no_annul (insn))
2774 rtx link;
2775 rtx real_insn = insn;
2777 /* If this insn is from the target of a branch, it isn't going to
2778 be used in the sequel. If it is used in both cases, this
2779 test will not be true. */
2780 if (INSN_FROM_TARGET_P (insn))
2781 continue;
2783 /* If this insn is a USE made by update_block, we care about the
2784 underlying insn. */
2785 if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == USE
2786 && GET_RTX_CLASS (GET_CODE (XEXP (PATTERN (insn), 0))) == 'i')
2787 real_insn = XEXP (PATTERN (insn), 0);
2789 if (GET_CODE (real_insn) == CALL_INSN)
2791 /* CALL clobbers all call-used regs that aren't fixed except
2792 sp, ap, and fp. Do this before setting the result of the
2793 call live. */
2794 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2795 if (call_used_regs[i]
2796 && i != STACK_POINTER_REGNUM && i != FRAME_POINTER_REGNUM
2797 && i != ARG_POINTER_REGNUM
2798 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2799 && i != HARD_FRAME_POINTER_REGNUM
2800 #endif
2801 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
2802 && ! (i == ARG_POINTER_REGNUM && fixed_regs[i])
2803 #endif
2804 #ifdef PIC_OFFSET_TABLE_REGNUM
2805 && ! (i == PIC_OFFSET_TABLE_REGNUM && flag_pic)
2806 #endif
2808 CLEAR_HARD_REG_BIT (current_live_regs, i);
2810 /* A CALL_INSN sets any global register live, since it may
2811 have been modified by the call. */
2812 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2813 if (global_regs[i])
2814 SET_HARD_REG_BIT (current_live_regs, i);
2817 /* Mark anything killed in an insn to be deadened at the next
2818 label. Ignore USE insns; the only REG_DEAD notes will be for
2819 parameters. But they might be early. A CALL_INSN will usually
2820 clobber registers used for parameters. It isn't worth bothering
2821 with the unlikely case when it won't. */
2822 if ((GET_CODE (real_insn) == INSN
2823 && GET_CODE (PATTERN (real_insn)) != USE
2824 && GET_CODE (PATTERN (real_insn)) != CLOBBER)
2825 || GET_CODE (real_insn) == JUMP_INSN
2826 || GET_CODE (real_insn) == CALL_INSN)
2828 for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
2829 if (REG_NOTE_KIND (link) == REG_DEAD
2830 && GET_CODE (XEXP (link, 0)) == REG
2831 && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
2833 int first_regno = REGNO (XEXP (link, 0));
2834 int last_regno
2835 = (first_regno
2836 + HARD_REGNO_NREGS (first_regno,
2837 GET_MODE (XEXP (link, 0))));
2839 for (i = first_regno; i < last_regno; i++)
2840 SET_HARD_REG_BIT (pending_dead_regs, i);
2843 note_stores (PATTERN (real_insn), update_live_status);
2845 /* If any registers were unused after this insn, kill them.
2846 These notes will always be accurate. */
2847 for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
2848 if (REG_NOTE_KIND (link) == REG_UNUSED
2849 && GET_CODE (XEXP (link, 0)) == REG
2850 && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
2852 int first_regno = REGNO (XEXP (link, 0));
2853 int last_regno
2854 = (first_regno
2855 + HARD_REGNO_NREGS (first_regno,
2856 GET_MODE (XEXP (link, 0))));
2858 for (i = first_regno; i < last_regno; i++)
2859 CLEAR_HARD_REG_BIT (current_live_regs, i);
2863 else if (GET_CODE (real_insn) == CODE_LABEL)
2865 /* A label clobbers the pending dead registers since neither
2866 reload nor jump will propagate a value across a label. */
2867 AND_COMPL_HARD_REG_SET (current_live_regs, pending_dead_regs);
2868 CLEAR_HARD_REG_SET (pending_dead_regs);
2871 /* The beginning of the epilogue corresponds to the end of the
2872 RTL chain when there are no epilogue insns. Certain resources
2873 are implicitly required at that point. */
2874 else if (GET_CODE (real_insn) == NOTE
2875 && NOTE_LINE_NUMBER (real_insn) == NOTE_INSN_EPILOGUE_BEG)
2876 IOR_HARD_REG_SET (current_live_regs, start_of_epilogue_needs.regs);
2879 COPY_HARD_REG_SET (res->regs, current_live_regs);
2880 tinfo->block = b;
2881 tinfo->bb_tick = bb_ticks[b];
2883 else
2884 /* We didn't find the start of a basic block. Assume everything
2885 in use. This should happen only extremely rarely. */
2886 SET_HARD_REG_SET (res->regs);
2888 CLEAR_RESOURCE (&set);
2889 CLEAR_RESOURCE (&needed);
2891 jump_insn = find_dead_or_set_registers (target, res, &jump_target, 0,
2892 set, needed);
2894 /* If we hit an unconditional branch, we have another way of finding out
2895 what is live: we can see what is live at the branch target and include
2896 anything used but not set before the branch. The only things that are
2897 live are those that are live using the above test and the test below. */
2899 if (jump_insn)
2901 struct resources new_resources;
2902 rtx stop_insn = next_active_insn (jump_insn);
2904 mark_target_live_regs (next_active_insn (jump_target), &new_resources);
2905 CLEAR_RESOURCE (&set);
2906 CLEAR_RESOURCE (&needed);
2908 /* Include JUMP_INSN in the needed registers. */
2909 for (insn = target; insn != stop_insn; insn = next_active_insn (insn))
2911 mark_referenced_resources (insn, &needed, 1);
2913 COPY_HARD_REG_SET (scratch, needed.regs);
2914 AND_COMPL_HARD_REG_SET (scratch, set.regs);
2915 IOR_HARD_REG_SET (new_resources.regs, scratch);
2917 mark_set_resources (insn, &set, 0, 1);
2920 AND_HARD_REG_SET (res->regs, new_resources.regs);
2923 COPY_HARD_REG_SET (tinfo->live_regs, res->regs);
2926 /* Scan a function looking for insns that need a delay slot and find insns to
2927 put into the delay slot.
2929 NON_JUMPS_P is non-zero if we are to only try to fill non-jump insns (such
2930 as calls). We do these first since we don't want jump insns (that are
2931 easier to fill) to get the only insns that could be used for non-jump insns.
2932 When it is zero, only try to fill JUMP_INSNs.
2934 When slots are filled in this manner, the insns (including the
2935 delay_insn) are put together in a SEQUENCE rtx. In this fashion,
2936 it is possible to tell whether a delay slot has really been filled
2937 or not. `final' knows how to deal with this, by communicating
2938 through FINAL_SEQUENCE. */
2940 static void
2941 fill_simple_delay_slots (first, non_jumps_p)
2942 rtx first;
2943 int non_jumps_p;
2945 register rtx insn, pat, trial, next_trial;
2946 register int i, j;
2947 int num_unfilled_slots = unfilled_slots_next - unfilled_slots_base;
2948 struct resources needed, set;
2949 int slots_to_fill, slots_filled;
2950 rtx delay_list;
2952 for (i = 0; i < num_unfilled_slots; i++)
2954 int flags;
2955 /* Get the next insn to fill. If it has already had any slots assigned,
2956 we can't do anything with it. Maybe we'll improve this later. */
2958 insn = unfilled_slots_base[i];
2959 if (insn == 0
2960 || INSN_DELETED_P (insn)
2961 || (GET_CODE (insn) == INSN
2962 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2963 || (GET_CODE (insn) == JUMP_INSN && non_jumps_p)
2964 || (GET_CODE (insn) != JUMP_INSN && ! non_jumps_p))
2965 continue;
2967 if (GET_CODE (insn) == JUMP_INSN)
2968 flags = get_jump_flags (insn, JUMP_LABEL (insn));
2969 else
2970 flags = get_jump_flags (insn, NULL_RTX);
2971 slots_to_fill = num_delay_slots (insn);
2972 if (slots_to_fill == 0)
2973 abort ();
2975 /* This insn needs, or can use, some delay slots. SLOTS_TO_FILL
2976 says how many. After initialization, first try optimizing
2978 call _foo call _foo
2979 nop add %o7,.-L1,%o7
2980 b,a L1
2983 If this case applies, the delay slot of the call is filled with
2984 the unconditional jump. This is done first to avoid having the
2985 delay slot of the call filled in the backward scan. Also, since
2986 the unconditional jump is likely to also have a delay slot, that
2987 insn must exist when it is subsequently scanned.
2989 This is tried on each insn with delay slots as some machines
2990 have insns which perform calls, but are not represented as
2991 CALL_INSNs. */
2993 slots_filled = 0;
2994 delay_list = 0;
2996 if ((trial = next_active_insn (insn))
2997 && GET_CODE (trial) == JUMP_INSN
2998 && simplejump_p (trial)
2999 && eligible_for_delay (insn, slots_filled, trial, flags)
3000 && no_labels_between_p (insn, trial))
3002 rtx *tmp;
3003 slots_filled++;
3004 delay_list = add_to_delay_list (trial, delay_list);
3006 /* TRIAL may have had its delay slot filled, then unfilled. When
3007 the delay slot is unfilled, TRIAL is placed back on the unfilled
3008 slots obstack. Unfortunately, it is placed on the end of the
3009 obstack, not in its original location. Therefore, we must search
3010 from entry i + 1 to the end of the unfilled slots obstack to
3011 try and find TRIAL. */
3012 tmp = &unfilled_slots_base[i + 1];
3013 while (*tmp != trial && tmp != unfilled_slots_next)
3014 tmp++;
3016 /* Remove the unconditional jump from consideration for delay slot
3017 filling and unthread it. */
3018 if (*tmp == trial)
3019 *tmp = 0;
3021 rtx next = NEXT_INSN (trial);
3022 rtx prev = PREV_INSN (trial);
3023 if (prev)
3024 NEXT_INSN (prev) = next;
3025 if (next)
3026 PREV_INSN (next) = prev;
3030 /* Now, scan backwards from the insn to search for a potential
3031 delay-slot candidate. Stop searching when a label or jump is hit.
3033 For each candidate, if it is to go into the delay slot (moved
3034 forward in execution sequence), it must not need or set any resources
3035 that were set by later insns and must not set any resources that
3036 are needed for those insns.
3038 The delay slot insn itself sets resources unless it is a call
3039 (in which case the called routine, not the insn itself, is doing
3040 the setting). */
3042 if (slots_filled < slots_to_fill)
3044 CLEAR_RESOURCE (&needed);
3045 CLEAR_RESOURCE (&set);
3046 mark_set_resources (insn, &set, 0, 0);
3047 mark_referenced_resources (insn, &needed, 0);
3049 for (trial = prev_nonnote_insn (insn); ! stop_search_p (trial, 1);
3050 trial = next_trial)
3052 next_trial = prev_nonnote_insn (trial);
3054 /* This must be an INSN or CALL_INSN. */
3055 pat = PATTERN (trial);
3057 /* USE and CLOBBER at this level was just for flow; ignore it. */
3058 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
3059 continue;
3061 /* Check for resource conflict first, to avoid unnecessary
3062 splitting. */
3063 if (! insn_references_resource_p (trial, &set, 1)
3064 && ! insn_sets_resource_p (trial, &set, 1)
3065 && ! insn_sets_resource_p (trial, &needed, 1)
3066 #ifdef HAVE_cc0
3067 /* Can't separate set of cc0 from its use. */
3068 && ! (reg_mentioned_p (cc0_rtx, pat)
3069 && ! sets_cc0_p (cc0_rtx, pat))
3070 #endif
3073 trial = try_split (pat, trial, 1);
3074 next_trial = prev_nonnote_insn (trial);
3075 if (eligible_for_delay (insn, slots_filled, trial, flags))
3077 /* In this case, we are searching backward, so if we
3078 find insns to put on the delay list, we want
3079 to put them at the head, rather than the
3080 tail, of the list. */
3082 update_reg_dead_notes (trial, insn);
3083 delay_list = gen_rtx (INSN_LIST, VOIDmode,
3084 trial, delay_list);
3085 update_block (trial, trial);
3086 delete_insn (trial);
3087 if (slots_to_fill == ++slots_filled)
3088 break;
3089 continue;
3093 mark_set_resources (trial, &set, 0, 1);
3094 mark_referenced_resources (trial, &needed, 1);
3098 /* If all needed slots haven't been filled, we come here. */
3100 /* Try to optimize case of jumping around a single insn. */
3101 #if defined(ANNUL_IFFALSE_SLOTS) || defined(ANNUL_IFTRUE_SLOTS)
3102 if (slots_filled != slots_to_fill
3103 && delay_list == 0
3104 && GET_CODE (insn) == JUMP_INSN
3105 && (condjump_p (insn) || condjump_in_parallel_p (insn)))
3107 delay_list = optimize_skip (insn);
3108 if (delay_list)
3109 slots_filled += 1;
3111 #endif
3113 /* Try to get insns from beyond the insn needing the delay slot.
3114 These insns can neither set or reference resources set in insns being
3115 skipped, cannot set resources in the insn being skipped, and, if this
3116 is a CALL_INSN (or a CALL_INSN is passed), cannot trap (because the
3117 call might not return).
3119 There used to be code which continued past the target label if
3120 we saw all uses of the target label. This code did not work,
3121 because it failed to account for some instructions which were
3122 both annulled and marked as from the target. This can happen as a
3123 result of optimize_skip. Since this code was redundant with
3124 fill_eager_delay_slots anyways, it was just deleted. */
3126 if (slots_filled != slots_to_fill
3127 && (GET_CODE (insn) != JUMP_INSN
3128 || ((condjump_p (insn) || condjump_in_parallel_p (insn))
3129 && ! simplejump_p (insn)
3130 && JUMP_LABEL (insn) != 0)))
3132 rtx target = 0;
3133 int maybe_never = 0;
3134 struct resources needed_at_jump;
3136 CLEAR_RESOURCE (&needed);
3137 CLEAR_RESOURCE (&set);
3139 if (GET_CODE (insn) == CALL_INSN)
3141 mark_set_resources (insn, &set, 0, 1);
3142 mark_referenced_resources (insn, &needed, 1);
3143 maybe_never = 1;
3145 else
3147 mark_set_resources (insn, &set, 0, 1);
3148 mark_referenced_resources (insn, &needed, 1);
3149 if (GET_CODE (insn) == JUMP_INSN)
3150 target = JUMP_LABEL (insn);
3153 for (trial = next_nonnote_insn (insn); trial; trial = next_trial)
3155 rtx pat, trial_delay;
3157 next_trial = next_nonnote_insn (trial);
3159 if (GET_CODE (trial) == CODE_LABEL
3160 || GET_CODE (trial) == BARRIER)
3161 break;
3163 /* We must have an INSN, JUMP_INSN, or CALL_INSN. */
3164 pat = PATTERN (trial);
3166 /* Stand-alone USE and CLOBBER are just for flow. */
3167 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
3168 continue;
3170 /* If this already has filled delay slots, get the insn needing
3171 the delay slots. */
3172 if (GET_CODE (pat) == SEQUENCE)
3173 trial_delay = XVECEXP (pat, 0, 0);
3174 else
3175 trial_delay = trial;
3177 /* If this is a jump insn to our target, indicate that we have
3178 seen another jump to it. If we aren't handling a conditional
3179 jump, stop our search. Otherwise, compute the needs at its
3180 target and add them to NEEDED. */
3181 if (GET_CODE (trial_delay) == JUMP_INSN)
3183 if (target == 0)
3184 break;
3185 else if (JUMP_LABEL (trial_delay) != target)
3187 mark_target_live_regs
3188 (next_active_insn (JUMP_LABEL (trial_delay)),
3189 &needed_at_jump);
3190 needed.memory |= needed_at_jump.memory;
3191 needed.unch_memory |= needed_at_jump.unch_memory;
3192 IOR_HARD_REG_SET (needed.regs, needed_at_jump.regs);
3196 /* See if we have a resource problem before we try to
3197 split. */
3198 if (target == 0
3199 && GET_CODE (pat) != SEQUENCE
3200 && ! insn_references_resource_p (trial, &set, 1)
3201 && ! insn_sets_resource_p (trial, &set, 1)
3202 && ! insn_sets_resource_p (trial, &needed, 1)
3203 #ifdef HAVE_cc0
3204 && ! (reg_mentioned_p (cc0_rtx, pat) && ! sets_cc0_p (pat))
3205 #endif
3206 && ! (maybe_never && may_trap_p (pat))
3207 && (trial = try_split (pat, trial, 0))
3208 && eligible_for_delay (insn, slots_filled, trial, flags))
3210 next_trial = next_nonnote_insn (trial);
3211 delay_list = add_to_delay_list (trial, delay_list);
3213 #ifdef HAVE_cc0
3214 if (reg_mentioned_p (cc0_rtx, pat))
3215 link_cc0_insns (trial);
3216 #endif
3218 delete_insn (trial);
3219 if (slots_to_fill == ++slots_filled)
3220 break;
3221 continue;
3224 mark_set_resources (trial, &set, 0, 1);
3225 mark_referenced_resources (trial, &needed, 1);
3227 /* Ensure we don't put insns between the setting of cc and the
3228 comparison by moving a setting of cc into an earlier delay
3229 slot since these insns could clobber the condition code. */
3230 set.cc = 1;
3232 /* If this is a call or jump, we might not get here. */
3233 if (GET_CODE (trial_delay) == CALL_INSN
3234 || GET_CODE (trial_delay) == JUMP_INSN)
3235 maybe_never = 1;
3238 /* If there are slots left to fill and our search was stopped by an
3239 unconditional branch, try the insn at the branch target. We can
3240 redirect the branch if it works.
3242 Don't do this if the insn at the branch target is a branch. */
3243 if (slots_to_fill != slots_filled
3244 && trial
3245 && GET_CODE (trial) == JUMP_INSN
3246 && simplejump_p (trial)
3247 && (target == 0 || JUMP_LABEL (trial) == target)
3248 && (next_trial = next_active_insn (JUMP_LABEL (trial))) != 0
3249 && ! (GET_CODE (next_trial) == INSN
3250 && GET_CODE (PATTERN (next_trial)) == SEQUENCE)
3251 && GET_CODE (next_trial) != JUMP_INSN
3252 && ! insn_references_resource_p (next_trial, &set, 1)
3253 && ! insn_sets_resource_p (next_trial, &set, 1)
3254 && ! insn_sets_resource_p (next_trial, &needed, 1)
3255 #ifdef HAVE_cc0
3256 && ! reg_mentioned_p (cc0_rtx, PATTERN (next_trial))
3257 #endif
3258 && ! (maybe_never && may_trap_p (PATTERN (next_trial)))
3259 && (next_trial = try_split (PATTERN (next_trial), next_trial, 0))
3260 && eligible_for_delay (insn, slots_filled, next_trial, flags))
3262 rtx new_label = next_active_insn (next_trial);
3264 if (new_label != 0)
3265 new_label = get_label_before (new_label);
3266 else
3267 new_label = find_end_label ();
3269 delay_list
3270 = add_to_delay_list (copy_rtx (next_trial), delay_list);
3271 slots_filled++;
3272 reorg_redirect_jump (trial, new_label);
3274 /* If we merged because we both jumped to the same place,
3275 redirect the original insn also. */
3276 if (target)
3277 reorg_redirect_jump (insn, new_label);
3281 /* If this is an unconditional jump, then try to get insns from the
3282 target of the jump. */
3283 if (GET_CODE (insn) == JUMP_INSN
3284 && simplejump_p (insn)
3285 && slots_filled != slots_to_fill)
3286 delay_list
3287 = fill_slots_from_thread (insn, const_true_rtx,
3288 next_active_insn (JUMP_LABEL (insn)),
3289 NULL, 1, 1,
3290 own_thread_p (JUMP_LABEL (insn),
3291 JUMP_LABEL (insn), 0),
3292 0, slots_to_fill, &slots_filled);
3294 if (delay_list)
3295 unfilled_slots_base[i]
3296 = emit_delay_sequence (insn, delay_list,
3297 slots_filled, slots_to_fill);
3299 if (slots_to_fill == slots_filled)
3300 unfilled_slots_base[i] = 0;
3302 note_delay_statistics (slots_filled, 0);
3305 #ifdef DELAY_SLOTS_FOR_EPILOGUE
3306 /* See if the epilogue needs any delay slots. Try to fill them if so.
3307 The only thing we can do is scan backwards from the end of the
3308 function. If we did this in a previous pass, it is incorrect to do it
3309 again. */
3310 if (current_function_epilogue_delay_list)
3311 return;
3313 slots_to_fill = DELAY_SLOTS_FOR_EPILOGUE;
3314 if (slots_to_fill == 0)
3315 return;
3317 slots_filled = 0;
3318 CLEAR_RESOURCE (&set);
3320 /* The frame pointer and stack pointer are needed at the beginning of
3321 the epilogue, so instructions setting them can not be put in the
3322 epilogue delay slot. However, everything else needed at function
3323 end is safe, so we don't want to use end_of_function_needs here. */
3324 CLEAR_RESOURCE (&needed);
3325 if (frame_pointer_needed)
3327 SET_HARD_REG_BIT (needed.regs, FRAME_POINTER_REGNUM);
3328 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3329 SET_HARD_REG_BIT (needed.regs, HARD_FRAME_POINTER_REGNUM);
3330 #endif
3331 #ifdef EXIT_IGNORE_STACK
3332 if (! EXIT_IGNORE_STACK)
3333 #endif
3334 SET_HARD_REG_BIT (needed.regs, STACK_POINTER_REGNUM);
3336 else
3337 SET_HARD_REG_BIT (needed.regs, STACK_POINTER_REGNUM);
3339 for (trial = get_last_insn (); ! stop_search_p (trial, 1);
3340 trial = PREV_INSN (trial))
3342 if (GET_CODE (trial) == NOTE)
3343 continue;
3344 pat = PATTERN (trial);
3345 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
3346 continue;
3348 if (! insn_references_resource_p (trial, &set, 1)
3349 && ! insn_sets_resource_p (trial, &needed, 1)
3350 && ! insn_sets_resource_p (trial, &set, 1)
3351 #ifdef HAVE_cc0
3352 /* Don't want to mess with cc0 here. */
3353 && ! reg_mentioned_p (cc0_rtx, pat)
3354 #endif
3357 trial = try_split (pat, trial, 1);
3358 if (ELIGIBLE_FOR_EPILOGUE_DELAY (trial, slots_filled))
3360 /* Here as well we are searching backward, so put the
3361 insns we find on the head of the list. */
3363 current_function_epilogue_delay_list
3364 = gen_rtx (INSN_LIST, VOIDmode, trial,
3365 current_function_epilogue_delay_list);
3366 mark_referenced_resources (trial, &end_of_function_needs, 1);
3367 update_block (trial, trial);
3368 delete_insn (trial);
3370 /* Clear deleted bit so final.c will output the insn. */
3371 INSN_DELETED_P (trial) = 0;
3373 if (slots_to_fill == ++slots_filled)
3374 break;
3375 continue;
3379 mark_set_resources (trial, &set, 0, 1);
3380 mark_referenced_resources (trial, &needed, 1);
3383 note_delay_statistics (slots_filled, 0);
3384 #endif
3387 /* Try to find insns to place in delay slots.
3389 INSN is the jump needing SLOTS_TO_FILL delay slots. It tests CONDITION
3390 or is an unconditional branch if CONDITION is const_true_rtx.
3391 *PSLOTS_FILLED is updated with the number of slots that we have filled.
3393 THREAD is a flow-of-control, either the insns to be executed if the
3394 branch is true or if the branch is false, THREAD_IF_TRUE says which.
3396 OPPOSITE_THREAD is the thread in the opposite direction. It is used
3397 to see if any potential delay slot insns set things needed there.
3399 LIKELY is non-zero if it is extremely likely that the branch will be
3400 taken and THREAD_IF_TRUE is set. This is used for the branch at the
3401 end of a loop back up to the top.
3403 OWN_THREAD and OWN_OPPOSITE_THREAD are true if we are the only user of the
3404 thread. I.e., it is the fallthrough code of our jump or the target of the
3405 jump when we are the only jump going there.
3407 If OWN_THREAD is false, it must be the "true" thread of a jump. In that
3408 case, we can only take insns from the head of the thread for our delay
3409 slot. We then adjust the jump to point after the insns we have taken. */
3411 static rtx
3412 fill_slots_from_thread (insn, condition, thread, opposite_thread, likely,
3413 thread_if_true, own_thread, own_opposite_thread,
3414 slots_to_fill, pslots_filled)
3415 rtx insn;
3416 rtx condition;
3417 rtx thread, opposite_thread;
3418 int likely;
3419 int thread_if_true;
3420 int own_thread, own_opposite_thread;
3421 int slots_to_fill, *pslots_filled;
3423 rtx new_thread;
3424 rtx delay_list = 0;
3425 struct resources opposite_needed, set, needed;
3426 rtx trial;
3427 int lose = 0;
3428 int must_annul = 0;
3429 int flags;
3431 /* Validate our arguments. */
3432 if ((condition == const_true_rtx && ! thread_if_true)
3433 || (! own_thread && ! thread_if_true))
3434 abort ();
3436 flags = get_jump_flags (insn, JUMP_LABEL (insn));
3438 /* If our thread is the end of subroutine, we can't get any delay
3439 insns from that. */
3440 if (thread == 0)
3441 return 0;
3443 /* If this is an unconditional branch, nothing is needed at the
3444 opposite thread. Otherwise, compute what is needed there. */
3445 if (condition == const_true_rtx)
3446 CLEAR_RESOURCE (&opposite_needed);
3447 else
3448 mark_target_live_regs (opposite_thread, &opposite_needed);
3450 /* If the insn at THREAD can be split, do it here to avoid having to
3451 update THREAD and NEW_THREAD if it is done in the loop below. Also
3452 initialize NEW_THREAD. */
3454 new_thread = thread = try_split (PATTERN (thread), thread, 0);
3456 /* Scan insns at THREAD. We are looking for an insn that can be removed
3457 from THREAD (it neither sets nor references resources that were set
3458 ahead of it and it doesn't set anything needs by the insns ahead of
3459 it) and that either can be placed in an annulling insn or aren't
3460 needed at OPPOSITE_THREAD. */
3462 CLEAR_RESOURCE (&needed);
3463 CLEAR_RESOURCE (&set);
3465 /* If we do not own this thread, we must stop as soon as we find
3466 something that we can't put in a delay slot, since all we can do
3467 is branch into THREAD at a later point. Therefore, labels stop
3468 the search if this is not the `true' thread. */
3470 for (trial = thread;
3471 ! stop_search_p (trial, ! thread_if_true) && (! lose || own_thread);
3472 trial = next_nonnote_insn (trial))
3474 rtx pat, old_trial;
3476 /* If we have passed a label, we no longer own this thread. */
3477 if (GET_CODE (trial) == CODE_LABEL)
3479 own_thread = 0;
3480 continue;
3483 pat = PATTERN (trial);
3484 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
3485 continue;
3487 /* If TRIAL conflicts with the insns ahead of it, we lose. Also,
3488 don't separate or copy insns that set and use CC0. */
3489 if (! insn_references_resource_p (trial, &set, 1)
3490 && ! insn_sets_resource_p (trial, &set, 1)
3491 && ! insn_sets_resource_p (trial, &needed, 1)
3492 #ifdef HAVE_cc0
3493 && ! (reg_mentioned_p (cc0_rtx, pat)
3494 && (! own_thread || ! sets_cc0_p (pat)))
3495 #endif
3498 rtx prior_insn;
3500 /* If TRIAL is redundant with some insn before INSN, we don't
3501 actually need to add it to the delay list; we can merely pretend
3502 we did. */
3503 if (prior_insn = redundant_insn (trial, insn, delay_list))
3505 fix_reg_dead_note (prior_insn, insn);
3506 if (own_thread)
3508 update_block (trial, thread);
3509 if (trial == thread)
3511 thread = next_active_insn (thread);
3512 if (new_thread == trial)
3513 new_thread = thread;
3516 delete_insn (trial);
3518 else
3520 update_reg_unused_notes (prior_insn, trial);
3521 new_thread = next_active_insn (trial);
3524 continue;
3527 /* There are two ways we can win: If TRIAL doesn't set anything
3528 needed at the opposite thread and can't trap, or if it can
3529 go into an annulled delay slot. */
3530 if (condition == const_true_rtx
3531 || (! insn_sets_resource_p (trial, &opposite_needed, 1)
3532 && ! may_trap_p (pat)))
3534 old_trial = trial;
3535 trial = try_split (pat, trial, 0);
3536 if (new_thread == old_trial)
3537 new_thread = trial;
3538 if (thread == old_trial)
3539 thread = trial;
3540 pat = PATTERN (trial);
3541 if (eligible_for_delay (insn, *pslots_filled, trial, flags))
3542 goto winner;
3544 else if (0
3545 #ifdef ANNUL_IFTRUE_SLOTS
3546 || ! thread_if_true
3547 #endif
3548 #ifdef ANNUL_IFFALSE_SLOTS
3549 || thread_if_true
3550 #endif
3553 old_trial = trial;
3554 trial = try_split (pat, trial, 0);
3555 if (new_thread == old_trial)
3556 new_thread = trial;
3557 if (thread == old_trial)
3558 thread = trial;
3559 pat = PATTERN (trial);
3560 if ((thread_if_true
3561 ? eligible_for_annul_false (insn, *pslots_filled, trial, flags)
3562 : eligible_for_annul_true (insn, *pslots_filled, trial, flags)))
3564 rtx temp;
3566 must_annul = 1;
3567 winner:
3569 #ifdef HAVE_cc0
3570 if (reg_mentioned_p (cc0_rtx, pat))
3571 link_cc0_insns (trial);
3572 #endif
3574 /* If we own this thread, delete the insn. If this is the
3575 destination of a branch, show that a basic block status
3576 may have been updated. In any case, mark the new
3577 starting point of this thread. */
3578 if (own_thread)
3580 update_block (trial, thread);
3581 delete_insn (trial);
3583 else
3584 new_thread = next_active_insn (trial);
3586 temp = own_thread ? trial : copy_rtx (trial);
3587 if (thread_if_true)
3588 INSN_FROM_TARGET_P (temp) = 1;
3590 delay_list = add_to_delay_list (temp, delay_list);
3592 if (slots_to_fill == ++(*pslots_filled))
3594 /* Even though we have filled all the slots, we
3595 may be branching to a location that has a
3596 redundant insn. Skip any if so. */
3597 while (new_thread && ! own_thread
3598 && ! insn_sets_resource_p (new_thread, &set, 1)
3599 && ! insn_sets_resource_p (new_thread, &needed, 1)
3600 && ! insn_references_resource_p (new_thread,
3601 &set, 1)
3602 && redundant_insn (new_thread, insn, delay_list))
3603 new_thread = next_active_insn (new_thread);
3604 break;
3607 continue;
3612 /* This insn can't go into a delay slot. */
3613 lose = 1;
3614 mark_set_resources (trial, &set, 0, 1);
3615 mark_referenced_resources (trial, &needed, 1);
3617 /* Ensure we don't put insns between the setting of cc and the comparison
3618 by moving a setting of cc into an earlier delay slot since these insns
3619 could clobber the condition code. */
3620 set.cc = 1;
3622 /* If this insn is a register-register copy and the next insn has
3623 a use of our destination, change it to use our source. That way,
3624 it will become a candidate for our delay slot the next time
3625 through this loop. This case occurs commonly in loops that
3626 scan a list.
3628 We could check for more complex cases than those tested below,
3629 but it doesn't seem worth it. It might also be a good idea to try
3630 to swap the two insns. That might do better.
3632 We can't do this if the next insn modifies our destination, because
3633 that would make the replacement into the insn invalid. We also can't
3634 do this if it modifies our source, because it might be an earlyclobber
3635 operand. This latter test also prevents updating the contents of
3636 a PRE_INC. */
3638 if (GET_CODE (trial) == INSN && GET_CODE (pat) == SET
3639 && GET_CODE (SET_SRC (pat)) == REG
3640 && GET_CODE (SET_DEST (pat)) == REG)
3642 rtx next = next_nonnote_insn (trial);
3644 if (next && GET_CODE (next) == INSN
3645 && GET_CODE (PATTERN (next)) != USE
3646 && ! reg_set_p (SET_DEST (pat), next)
3647 && ! reg_set_p (SET_SRC (pat), next)
3648 && reg_referenced_p (SET_DEST (pat), PATTERN (next)))
3649 validate_replace_rtx (SET_DEST (pat), SET_SRC (pat), next);
3653 /* If we stopped on a branch insn that has delay slots, see if we can
3654 steal some of the insns in those slots. */
3655 if (trial && GET_CODE (trial) == INSN
3656 && GET_CODE (PATTERN (trial)) == SEQUENCE
3657 && GET_CODE (XVECEXP (PATTERN (trial), 0, 0)) == JUMP_INSN)
3659 /* If this is the `true' thread, we will want to follow the jump,
3660 so we can only do this if we have taken everything up to here. */
3661 if (thread_if_true && trial == new_thread)
3662 delay_list
3663 = steal_delay_list_from_target (insn, condition, PATTERN (trial),
3664 delay_list, &set, &needed,
3665 &opposite_needed, slots_to_fill,
3666 pslots_filled, &must_annul,
3667 &new_thread);
3668 else if (! thread_if_true)
3669 delay_list
3670 = steal_delay_list_from_fallthrough (insn, condition,
3671 PATTERN (trial),
3672 delay_list, &set, &needed,
3673 &opposite_needed, slots_to_fill,
3674 pslots_filled, &must_annul);
3677 /* If we haven't found anything for this delay slot and it is very
3678 likely that the branch will be taken, see if the insn at our target
3679 increments or decrements a register with an increment that does not
3680 depend on the destination register. If so, try to place the opposite
3681 arithmetic insn after the jump insn and put the arithmetic insn in the
3682 delay slot. If we can't do this, return. */
3683 if (delay_list == 0 && likely && new_thread && GET_CODE (new_thread) == INSN)
3685 rtx pat = PATTERN (new_thread);
3686 rtx dest;
3687 rtx src;
3689 trial = new_thread;
3690 pat = PATTERN (trial);
3692 if (GET_CODE (trial) != INSN || GET_CODE (pat) != SET
3693 || ! eligible_for_delay (insn, 0, trial, flags))
3694 return 0;
3696 dest = SET_DEST (pat), src = SET_SRC (pat);
3697 if ((GET_CODE (src) == PLUS || GET_CODE (src) == MINUS)
3698 && rtx_equal_p (XEXP (src, 0), dest)
3699 && ! reg_overlap_mentioned_p (dest, XEXP (src, 1)))
3701 rtx other = XEXP (src, 1);
3702 rtx new_arith;
3703 rtx ninsn;
3705 /* If this is a constant adjustment, use the same code with
3706 the negated constant. Otherwise, reverse the sense of the
3707 arithmetic. */
3708 if (GET_CODE (other) == CONST_INT)
3709 new_arith = gen_rtx (GET_CODE (src), GET_MODE (src), dest,
3710 negate_rtx (GET_MODE (src), other));
3711 else
3712 new_arith = gen_rtx (GET_CODE (src) == PLUS ? MINUS : PLUS,
3713 GET_MODE (src), dest, other);
3715 ninsn = emit_insn_after (gen_rtx (SET, VOIDmode, dest, new_arith),
3716 insn);
3718 if (recog_memoized (ninsn) < 0
3719 || (insn_extract (ninsn),
3720 ! constrain_operands (INSN_CODE (ninsn), 1)))
3722 delete_insn (ninsn);
3723 return 0;
3726 if (own_thread)
3728 update_block (trial, thread);
3729 delete_insn (trial);
3731 else
3732 new_thread = next_active_insn (trial);
3734 ninsn = own_thread ? trial : copy_rtx (trial);
3735 if (thread_if_true)
3736 INSN_FROM_TARGET_P (ninsn) = 1;
3738 delay_list = add_to_delay_list (ninsn, NULL_RTX);
3739 (*pslots_filled)++;
3743 if (delay_list && must_annul)
3744 INSN_ANNULLED_BRANCH_P (insn) = 1;
3746 /* If we are to branch into the middle of this thread, find an appropriate
3747 label or make a new one if none, and redirect INSN to it. If we hit the
3748 end of the function, use the end-of-function label. */
3749 if (new_thread != thread)
3751 rtx label;
3753 if (! thread_if_true)
3754 abort ();
3756 if (new_thread && GET_CODE (new_thread) == JUMP_INSN
3757 && (simplejump_p (new_thread)
3758 || GET_CODE (PATTERN (new_thread)) == RETURN)
3759 && redirect_with_delay_list_safe_p (insn,
3760 JUMP_LABEL (new_thread),
3761 delay_list))
3762 new_thread = follow_jumps (JUMP_LABEL (new_thread));
3764 if (new_thread == 0)
3765 label = find_end_label ();
3766 else if (GET_CODE (new_thread) == CODE_LABEL)
3767 label = new_thread;
3768 else
3769 label = get_label_before (new_thread);
3771 reorg_redirect_jump (insn, label);
3774 return delay_list;
3777 /* Make another attempt to find insns to place in delay slots.
3779 We previously looked for insns located in front of the delay insn
3780 and, for non-jump delay insns, located behind the delay insn.
3782 Here only try to schedule jump insns and try to move insns from either
3783 the target or the following insns into the delay slot. If annulling is
3784 supported, we will be likely to do this. Otherwise, we can do this only
3785 if safe. */
3787 static void
3788 fill_eager_delay_slots (first)
3789 rtx first;
3791 register rtx insn;
3792 register int i;
3793 int num_unfilled_slots = unfilled_slots_next - unfilled_slots_base;
3795 for (i = 0; i < num_unfilled_slots; i++)
3797 rtx condition;
3798 rtx target_label, insn_at_target, fallthrough_insn;
3799 rtx delay_list = 0;
3800 int own_target;
3801 int own_fallthrough;
3802 int prediction, slots_to_fill, slots_filled;
3804 insn = unfilled_slots_base[i];
3805 if (insn == 0
3806 || INSN_DELETED_P (insn)
3807 || GET_CODE (insn) != JUMP_INSN
3808 || ! (condjump_p (insn) || condjump_in_parallel_p (insn)))
3809 continue;
3811 slots_to_fill = num_delay_slots (insn);
3812 if (slots_to_fill == 0)
3813 abort ();
3815 slots_filled = 0;
3816 target_label = JUMP_LABEL (insn);
3817 condition = get_branch_condition (insn, target_label);
3819 if (condition == 0)
3820 continue;
3822 /* Get the next active fallthrough and target insns and see if we own
3823 them. Then see whether the branch is likely true. We don't need
3824 to do a lot of this for unconditional branches. */
3826 insn_at_target = next_active_insn (target_label);
3827 own_target = own_thread_p (target_label, target_label, 0);
3829 if (condition == const_true_rtx)
3831 own_fallthrough = 0;
3832 fallthrough_insn = 0;
3833 prediction = 2;
3835 else
3837 fallthrough_insn = next_active_insn (insn);
3838 own_fallthrough = own_thread_p (NEXT_INSN (insn), NULL_RTX, 1);
3839 prediction = mostly_true_jump (insn, condition);
3842 /* If this insn is expected to branch, first try to get insns from our
3843 target, then our fallthrough insns. If it is not, expected to branch,
3844 try the other order. */
3846 if (prediction > 0)
3848 delay_list
3849 = fill_slots_from_thread (insn, condition, insn_at_target,
3850 fallthrough_insn, prediction == 2, 1,
3851 own_target, own_fallthrough,
3852 slots_to_fill, &slots_filled);
3854 if (delay_list == 0 && own_fallthrough)
3856 /* Even though we didn't find anything for delay slots,
3857 we might have found a redundant insn which we deleted
3858 from the thread that was filled. So we have to recompute
3859 the next insn at the target. */
3860 target_label = JUMP_LABEL (insn);
3861 insn_at_target = next_active_insn (target_label);
3863 delay_list
3864 = fill_slots_from_thread (insn, condition, fallthrough_insn,
3865 insn_at_target, 0, 0,
3866 own_fallthrough, own_target,
3867 slots_to_fill, &slots_filled);
3870 else
3872 if (own_fallthrough)
3873 delay_list
3874 = fill_slots_from_thread (insn, condition, fallthrough_insn,
3875 insn_at_target, 0, 0,
3876 own_fallthrough, own_target,
3877 slots_to_fill, &slots_filled);
3879 if (delay_list == 0)
3880 delay_list
3881 = fill_slots_from_thread (insn, condition, insn_at_target,
3882 next_active_insn (insn), 0, 1,
3883 own_target, own_fallthrough,
3884 slots_to_fill, &slots_filled);
3887 if (delay_list)
3888 unfilled_slots_base[i]
3889 = emit_delay_sequence (insn, delay_list,
3890 slots_filled, slots_to_fill);
3892 if (slots_to_fill == slots_filled)
3893 unfilled_slots_base[i] = 0;
3895 note_delay_statistics (slots_filled, 1);
3899 /* Once we have tried two ways to fill a delay slot, make a pass over the
3900 code to try to improve the results and to do such things as more jump
3901 threading. */
3903 static void
3904 relax_delay_slots (first)
3905 rtx first;
3907 register rtx insn, next, pat;
3908 register rtx trial, delay_insn, target_label;
3910 /* Look at every JUMP_INSN and see if we can improve it. */
3911 for (insn = first; insn; insn = next)
3913 rtx other;
3915 next = next_active_insn (insn);
3917 /* If this is a jump insn, see if it now jumps to a jump, jumps to
3918 the next insn, or jumps to a label that is not the last of a
3919 group of consecutive labels. */
3920 if (GET_CODE (insn) == JUMP_INSN
3921 && (condjump_p (insn) || condjump_in_parallel_p (insn))
3922 && (target_label = JUMP_LABEL (insn)) != 0)
3924 target_label = follow_jumps (target_label);
3925 target_label = prev_label (next_active_insn (target_label));
3927 if (target_label == 0)
3928 target_label = find_end_label ();
3930 if (next_active_insn (target_label) == next
3931 && ! condjump_in_parallel_p (insn))
3933 delete_jump (insn);
3934 continue;
3937 if (target_label != JUMP_LABEL (insn))
3938 reorg_redirect_jump (insn, target_label);
3940 /* See if this jump branches around a unconditional jump.
3941 If so, invert this jump and point it to the target of the
3942 second jump. */
3943 if (next && GET_CODE (next) == JUMP_INSN
3944 && (simplejump_p (next) || GET_CODE (PATTERN (next)) == RETURN)
3945 && next_active_insn (target_label) == next_active_insn (next)
3946 && no_labels_between_p (insn, next))
3948 rtx label = JUMP_LABEL (next);
3950 /* Be careful how we do this to avoid deleting code or
3951 labels that are momentarily dead. See similar optimization
3952 in jump.c.
3954 We also need to ensure we properly handle the case when
3955 invert_jump fails. */
3957 ++LABEL_NUSES (target_label);
3958 if (label)
3959 ++LABEL_NUSES (label);
3961 if (invert_jump (insn, label))
3963 delete_insn (next);
3964 next = insn;
3967 if (label)
3968 --LABEL_NUSES (label);
3970 if (--LABEL_NUSES (target_label) == 0)
3971 delete_insn (target_label);
3973 continue;
3977 /* If this is an unconditional jump and the previous insn is a
3978 conditional jump, try reversing the condition of the previous
3979 insn and swapping our targets. The next pass might be able to
3980 fill the slots.
3982 Don't do this if we expect the conditional branch to be true, because
3983 we would then be making the more common case longer. */
3985 if (GET_CODE (insn) == JUMP_INSN
3986 && (simplejump_p (insn) || GET_CODE (PATTERN (insn)) == RETURN)
3987 && (other = prev_active_insn (insn)) != 0
3988 && (condjump_p (other) || condjump_in_parallel_p (other))
3989 && no_labels_between_p (other, insn)
3990 && 0 < mostly_true_jump (other,
3991 get_branch_condition (other,
3992 JUMP_LABEL (other))))
3994 rtx other_target = JUMP_LABEL (other);
3995 target_label = JUMP_LABEL (insn);
3997 /* Increment the count of OTHER_TARGET, so it doesn't get deleted
3998 as we move the label. */
3999 if (other_target)
4000 ++LABEL_NUSES (other_target);
4002 if (invert_jump (other, target_label))
4003 reorg_redirect_jump (insn, other_target);
4005 if (other_target)
4006 --LABEL_NUSES (other_target);
4009 /* Now look only at cases where we have filled a delay slot. */
4010 if (GET_CODE (insn) != INSN
4011 || GET_CODE (PATTERN (insn)) != SEQUENCE)
4012 continue;
4014 pat = PATTERN (insn);
4015 delay_insn = XVECEXP (pat, 0, 0);
4017 /* See if the first insn in the delay slot is redundant with some
4018 previous insn. Remove it from the delay slot if so; then set up
4019 to reprocess this insn. */
4020 if (redundant_insn (XVECEXP (pat, 0, 1), delay_insn, 0))
4022 delete_from_delay_slot (XVECEXP (pat, 0, 1));
4023 next = prev_active_insn (next);
4024 continue;
4027 /* Now look only at the cases where we have a filled JUMP_INSN. */
4028 if (GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) != JUMP_INSN
4029 || ! (condjump_p (XVECEXP (PATTERN (insn), 0, 0))
4030 || condjump_in_parallel_p (XVECEXP (PATTERN (insn), 0, 0))))
4031 continue;
4033 target_label = JUMP_LABEL (delay_insn);
4035 if (target_label)
4037 /* If this jump goes to another unconditional jump, thread it, but
4038 don't convert a jump into a RETURN here. */
4039 trial = follow_jumps (target_label);
4040 /* We use next_real_insn instead of next_active_insn, so that
4041 the special USE insns emitted by reorg won't be ignored.
4042 If they are ignored, then they will get deleted if target_label
4043 is now unreachable, and that would cause mark_target_live_regs
4044 to fail. */
4045 trial = prev_label (next_real_insn (trial));
4046 if (trial == 0 && target_label != 0)
4047 trial = find_end_label ();
4049 if (trial != target_label
4050 && redirect_with_delay_slots_safe_p (delay_insn, trial, insn))
4052 reorg_redirect_jump (delay_insn, trial);
4053 target_label = trial;
4056 /* If the first insn at TARGET_LABEL is redundant with a previous
4057 insn, redirect the jump to the following insn process again. */
4058 trial = next_active_insn (target_label);
4059 if (trial && GET_CODE (PATTERN (trial)) != SEQUENCE
4060 && redundant_insn (trial, insn, 0))
4062 trial = next_active_insn (trial);
4063 if (trial == 0)
4064 target_label = find_end_label ();
4065 else
4066 target_label = get_label_before (trial);
4067 reorg_redirect_jump (delay_insn, target_label);
4068 next = insn;
4069 continue;
4072 /* Similarly, if it is an unconditional jump with one insn in its
4073 delay list and that insn is redundant, thread the jump. */
4074 if (trial && GET_CODE (PATTERN (trial)) == SEQUENCE
4075 && XVECLEN (PATTERN (trial), 0) == 2
4076 && GET_CODE (XVECEXP (PATTERN (trial), 0, 0)) == JUMP_INSN
4077 && (simplejump_p (XVECEXP (PATTERN (trial), 0, 0))
4078 || GET_CODE (PATTERN (XVECEXP (PATTERN (trial), 0, 0))) == RETURN)
4079 && redundant_insn (XVECEXP (PATTERN (trial), 0, 1), insn, 0))
4081 target_label = JUMP_LABEL (XVECEXP (PATTERN (trial), 0, 0));
4082 if (target_label == 0)
4083 target_label = find_end_label ();
4085 if (redirect_with_delay_slots_safe_p (delay_insn, target_label,
4086 insn))
4088 reorg_redirect_jump (delay_insn, target_label);
4089 next = insn;
4090 continue;
4095 if (! INSN_ANNULLED_BRANCH_P (delay_insn)
4096 && prev_active_insn (target_label) == insn
4097 && ! condjump_in_parallel_p (delay_insn)
4098 #ifdef HAVE_cc0
4099 /* If the last insn in the delay slot sets CC0 for some insn,
4100 various code assumes that it is in a delay slot. We could
4101 put it back where it belonged and delete the register notes,
4102 but it doesn't seem worthwhile in this uncommon case. */
4103 && ! find_reg_note (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1),
4104 REG_CC_USER, NULL_RTX)
4105 #endif
4108 int i;
4110 /* All this insn does is execute its delay list and jump to the
4111 following insn. So delete the jump and just execute the delay
4112 list insns.
4114 We do this by deleting the INSN containing the SEQUENCE, then
4115 re-emitting the insns separately, and then deleting the jump.
4116 This allows the count of the jump target to be properly
4117 decremented. */
4119 /* Clear the from target bit, since these insns are no longer
4120 in delay slots. */
4121 for (i = 0; i < XVECLEN (pat, 0); i++)
4122 INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)) = 0;
4124 trial = PREV_INSN (insn);
4125 delete_insn (insn);
4126 emit_insn_after (pat, trial);
4127 delete_scheduled_jump (delay_insn);
4128 continue;
4131 /* See if this is an unconditional jump around a single insn which is
4132 identical to the one in its delay slot. In this case, we can just
4133 delete the branch and the insn in its delay slot. */
4134 if (next && GET_CODE (next) == INSN
4135 && prev_label (next_active_insn (next)) == target_label
4136 && simplejump_p (insn)
4137 && XVECLEN (pat, 0) == 2
4138 && rtx_equal_p (PATTERN (next), PATTERN (XVECEXP (pat, 0, 1))))
4140 delete_insn (insn);
4141 continue;
4144 /* See if this jump (with its delay slots) branches around another
4145 jump (without delay slots). If so, invert this jump and point
4146 it to the target of the second jump. We cannot do this for
4147 annulled jumps, though. Again, don't convert a jump to a RETURN
4148 here. */
4149 if (! INSN_ANNULLED_BRANCH_P (delay_insn)
4150 && next && GET_CODE (next) == JUMP_INSN
4151 && (simplejump_p (next) || GET_CODE (PATTERN (next)) == RETURN)
4152 && next_active_insn (target_label) == next_active_insn (next)
4153 && no_labels_between_p (insn, next))
4155 rtx label = JUMP_LABEL (next);
4156 rtx old_label = JUMP_LABEL (delay_insn);
4158 if (label == 0)
4159 label = find_end_label ();
4161 if (redirect_with_delay_slots_safe_p (delay_insn, label, insn))
4163 /* Be careful how we do this to avoid deleting code or labels
4164 that are momentarily dead. See similar optimization in
4165 jump.c */
4166 if (old_label)
4167 ++LABEL_NUSES (old_label);
4169 if (invert_jump (delay_insn, label))
4171 int i;
4173 /* Must update the INSN_FROM_TARGET_P bits now that
4174 the branch is reversed, so that mark_target_live_regs
4175 will handle the delay slot insn correctly. */
4176 for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
4178 rtx slot = XVECEXP (PATTERN (insn), 0, i);
4179 INSN_FROM_TARGET_P (slot) = ! INSN_FROM_TARGET_P (slot);
4182 delete_insn (next);
4183 next = insn;
4186 if (old_label && --LABEL_NUSES (old_label) == 0)
4187 delete_insn (old_label);
4188 continue;
4192 /* If we own the thread opposite the way this insn branches, see if we
4193 can merge its delay slots with following insns. */
4194 if (INSN_FROM_TARGET_P (XVECEXP (pat, 0, 1))
4195 && own_thread_p (NEXT_INSN (insn), 0, 1))
4196 try_merge_delay_insns (insn, next);
4197 else if (! INSN_FROM_TARGET_P (XVECEXP (pat, 0, 1))
4198 && own_thread_p (target_label, target_label, 0))
4199 try_merge_delay_insns (insn, next_active_insn (target_label));
4201 /* If we get here, we haven't deleted INSN. But we may have deleted
4202 NEXT, so recompute it. */
4203 next = next_active_insn (insn);
4207 #ifdef HAVE_return
4209 /* Look for filled jumps to the end of function label. We can try to convert
4210 them into RETURN insns if the insns in the delay slot are valid for the
4211 RETURN as well. */
4213 static void
4214 make_return_insns (first)
4215 rtx first;
4217 rtx insn, jump_insn, pat;
4218 rtx real_return_label = end_of_function_label;
4219 int slots, i;
4221 /* See if there is a RETURN insn in the function other than the one we
4222 made for END_OF_FUNCTION_LABEL. If so, set up anything we can't change
4223 into a RETURN to jump to it. */
4224 for (insn = first; insn; insn = NEXT_INSN (insn))
4225 if (GET_CODE (insn) == JUMP_INSN && GET_CODE (PATTERN (insn)) == RETURN)
4227 real_return_label = get_label_before (insn);
4228 break;
4231 /* Show an extra usage of REAL_RETURN_LABEL so it won't go away if it
4232 was equal to END_OF_FUNCTION_LABEL. */
4233 LABEL_NUSES (real_return_label)++;
4235 /* Clear the list of insns to fill so we can use it. */
4236 obstack_free (&unfilled_slots_obstack, unfilled_firstobj);
4238 for (insn = first; insn; insn = NEXT_INSN (insn))
4240 int flags;
4242 /* Only look at filled JUMP_INSNs that go to the end of function
4243 label. */
4244 if (GET_CODE (insn) != INSN
4245 || GET_CODE (PATTERN (insn)) != SEQUENCE
4246 || GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) != JUMP_INSN
4247 || JUMP_LABEL (XVECEXP (PATTERN (insn), 0, 0)) != end_of_function_label)
4248 continue;
4250 pat = PATTERN (insn);
4251 jump_insn = XVECEXP (pat, 0, 0);
4253 /* If we can't make the jump into a RETURN, try to redirect it to the best
4254 RETURN and go on to the next insn. */
4255 if (! reorg_redirect_jump (jump_insn, NULL_RTX))
4257 /* Make sure redirecting the jump will not invalidate the delay
4258 slot insns. */
4259 if (redirect_with_delay_slots_safe_p (jump_insn,
4260 real_return_label,
4261 insn))
4262 reorg_redirect_jump (jump_insn, real_return_label);
4263 continue;
4266 /* See if this RETURN can accept the insns current in its delay slot.
4267 It can if it has more or an equal number of slots and the contents
4268 of each is valid. */
4270 flags = get_jump_flags (jump_insn, JUMP_LABEL (jump_insn));
4271 slots = num_delay_slots (jump_insn);
4272 if (slots >= XVECLEN (pat, 0) - 1)
4274 for (i = 1; i < XVECLEN (pat, 0); i++)
4275 if (! (
4276 #ifdef ANNUL_IFFALSE_SLOTS
4277 (INSN_ANNULLED_BRANCH_P (jump_insn)
4278 && INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)))
4279 ? eligible_for_annul_false (jump_insn, i - 1,
4280 XVECEXP (pat, 0, i), flags) :
4281 #endif
4282 #ifdef ANNUL_IFTRUE_SLOTS
4283 (INSN_ANNULLED_BRANCH_P (jump_insn)
4284 && ! INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)))
4285 ? eligible_for_annul_true (jump_insn, i - 1,
4286 XVECEXP (pat, 0, i), flags) :
4287 #endif
4288 eligible_for_delay (jump_insn, i -1, XVECEXP (pat, 0, i), flags)))
4289 break;
4291 else
4292 i = 0;
4294 if (i == XVECLEN (pat, 0))
4295 continue;
4297 /* We have to do something with this insn. If it is an unconditional
4298 RETURN, delete the SEQUENCE and output the individual insns,
4299 followed by the RETURN. Then set things up so we try to find
4300 insns for its delay slots, if it needs some. */
4301 if (GET_CODE (PATTERN (jump_insn)) == RETURN)
4303 rtx prev = PREV_INSN (insn);
4305 delete_insn (insn);
4306 for (i = 1; i < XVECLEN (pat, 0); i++)
4307 prev = emit_insn_after (PATTERN (XVECEXP (pat, 0, i)), prev);
4309 insn = emit_jump_insn_after (PATTERN (jump_insn), prev);
4310 emit_barrier_after (insn);
4312 if (slots)
4313 obstack_ptr_grow (&unfilled_slots_obstack, insn);
4315 else
4316 /* It is probably more efficient to keep this with its current
4317 delay slot as a branch to a RETURN. */
4318 reorg_redirect_jump (jump_insn, real_return_label);
4321 /* Now delete REAL_RETURN_LABEL if we never used it. Then try to fill any
4322 new delay slots we have created. */
4323 if (--LABEL_NUSES (real_return_label) == 0)
4324 delete_insn (real_return_label);
4326 fill_simple_delay_slots (first, 1);
4327 fill_simple_delay_slots (first, 0);
4329 #endif
4331 /* Try to find insns to place in delay slots. */
4333 void
4334 dbr_schedule (first, file)
4335 rtx first;
4336 FILE *file;
4338 rtx insn, next, epilogue_insn = 0;
4339 int i;
4340 #if 0
4341 int old_flag_no_peephole = flag_no_peephole;
4343 /* Execute `final' once in prescan mode to delete any insns that won't be
4344 used. Don't let final try to do any peephole optimization--it will
4345 ruin dataflow information for this pass. */
4347 flag_no_peephole = 1;
4348 final (first, 0, NO_DEBUG, 1, 1);
4349 flag_no_peephole = old_flag_no_peephole;
4350 #endif
4352 /* If the current function has no insns other than the prologue and
4353 epilogue, then do not try to fill any delay slots. */
4354 if (n_basic_blocks == 0)
4355 return;
4357 /* Find the highest INSN_UID and allocate and initialize our map from
4358 INSN_UID's to position in code. */
4359 for (max_uid = 0, insn = first; insn; insn = NEXT_INSN (insn))
4361 if (INSN_UID (insn) > max_uid)
4362 max_uid = INSN_UID (insn);
4363 if (GET_CODE (insn) == NOTE
4364 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
4365 epilogue_insn = insn;
4368 uid_to_ruid = (int *) alloca ((max_uid + 1) * sizeof (int *));
4369 for (i = 0, insn = first; insn; i++, insn = NEXT_INSN (insn))
4370 uid_to_ruid[INSN_UID (insn)] = i;
4372 /* Initialize the list of insns that need filling. */
4373 if (unfilled_firstobj == 0)
4375 gcc_obstack_init (&unfilled_slots_obstack);
4376 unfilled_firstobj = (rtx *) obstack_alloc (&unfilled_slots_obstack, 0);
4379 for (insn = next_active_insn (first); insn; insn = next_active_insn (insn))
4381 rtx target;
4383 INSN_ANNULLED_BRANCH_P (insn) = 0;
4384 INSN_FROM_TARGET_P (insn) = 0;
4386 /* Skip vector tables. We can't get attributes for them. */
4387 if (GET_CODE (insn) == JUMP_INSN
4388 && (GET_CODE (PATTERN (insn)) == ADDR_VEC
4389 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC))
4390 continue;
4392 if (num_delay_slots (insn) > 0)
4393 obstack_ptr_grow (&unfilled_slots_obstack, insn);
4395 /* Ensure all jumps go to the last of a set of consecutive labels. */
4396 if (GET_CODE (insn) == JUMP_INSN
4397 && (condjump_p (insn) || condjump_in_parallel_p (insn))
4398 && JUMP_LABEL (insn) != 0
4399 && ((target = prev_label (next_active_insn (JUMP_LABEL (insn))))
4400 != JUMP_LABEL (insn)))
4401 redirect_jump (insn, target);
4404 /* Indicate what resources are required to be valid at the end of the current
4405 function. The condition code never is and memory always is. If the
4406 frame pointer is needed, it is and so is the stack pointer unless
4407 EXIT_IGNORE_STACK is non-zero. If the frame pointer is not needed, the
4408 stack pointer is. Registers used to return the function value are
4409 needed. Registers holding global variables are needed. */
4411 end_of_function_needs.cc = 0;
4412 end_of_function_needs.memory = 1;
4413 end_of_function_needs.unch_memory = 0;
4414 CLEAR_HARD_REG_SET (end_of_function_needs.regs);
4416 if (frame_pointer_needed)
4418 SET_HARD_REG_BIT (end_of_function_needs.regs, FRAME_POINTER_REGNUM);
4419 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
4420 SET_HARD_REG_BIT (end_of_function_needs.regs, HARD_FRAME_POINTER_REGNUM);
4421 #endif
4422 #ifdef EXIT_IGNORE_STACK
4423 if (! EXIT_IGNORE_STACK)
4424 #endif
4425 SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
4427 else
4428 SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
4430 if (current_function_return_rtx != 0
4431 && GET_CODE (current_function_return_rtx) == REG)
4432 mark_referenced_resources (current_function_return_rtx,
4433 &end_of_function_needs, 1);
4435 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4436 if (global_regs[i])
4437 SET_HARD_REG_BIT (end_of_function_needs.regs, i);
4439 /* The registers required to be live at the end of the function are
4440 represented in the flow information as being dead just prior to
4441 reaching the end of the function. For example, the return of a value
4442 might be represented by a USE of the return register immediately
4443 followed by an unconditional jump to the return label where the
4444 return label is the end of the RTL chain. The end of the RTL chain
4445 is then taken to mean that the return register is live.
4447 This sequence is no longer maintained when epilogue instructions are
4448 added to the RTL chain. To reconstruct the original meaning, the
4449 start of the epilogue (NOTE_INSN_EPILOGUE_BEG) is regarded as the
4450 point where these registers become live (start_of_epilogue_needs).
4451 If epilogue instructions are present, the registers set by those
4452 instructions won't have been processed by flow. Thus, those
4453 registers are additionally required at the end of the RTL chain
4454 (end_of_function_needs). */
4456 start_of_epilogue_needs = end_of_function_needs;
4458 while (epilogue_insn = next_nonnote_insn (epilogue_insn))
4459 mark_set_resources (epilogue_insn, &end_of_function_needs, 0, 1);
4461 /* Show we haven't computed an end-of-function label yet. */
4462 end_of_function_label = 0;
4464 /* Allocate and initialize the tables used by mark_target_live_regs. */
4465 target_hash_table
4466 = (struct target_info **) alloca ((TARGET_HASH_PRIME
4467 * sizeof (struct target_info *)));
4468 bzero ((char *) target_hash_table,
4469 TARGET_HASH_PRIME * sizeof (struct target_info *));
4471 bb_ticks = (int *) alloca (n_basic_blocks * sizeof (int));
4472 bzero ((char *) bb_ticks, n_basic_blocks * sizeof (int));
4474 /* Initialize the statistics for this function. */
4475 bzero ((char *) num_insns_needing_delays, sizeof num_insns_needing_delays);
4476 bzero ((char *) num_filled_delays, sizeof num_filled_delays);
4478 /* Now do the delay slot filling. Try everything twice in case earlier
4479 changes make more slots fillable. */
4481 for (reorg_pass_number = 0;
4482 reorg_pass_number < MAX_REORG_PASSES;
4483 reorg_pass_number++)
4485 fill_simple_delay_slots (first, 1);
4486 fill_simple_delay_slots (first, 0);
4487 fill_eager_delay_slots (first);
4488 relax_delay_slots (first);
4491 /* Delete any USE insns made by update_block; subsequent passes don't need
4492 them or know how to deal with them. */
4493 for (insn = first; insn; insn = next)
4495 next = NEXT_INSN (insn);
4497 if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == USE
4498 && GET_RTX_CLASS (GET_CODE (XEXP (PATTERN (insn), 0))) == 'i')
4499 next = delete_insn (insn);
4502 /* If we made an end of function label, indicate that it is now
4503 safe to delete it by undoing our prior adjustment to LABEL_NUSES.
4504 If it is now unused, delete it. */
4505 if (end_of_function_label && --LABEL_NUSES (end_of_function_label) == 0)
4506 delete_insn (end_of_function_label);
4508 #ifdef HAVE_return
4509 if (HAVE_return && end_of_function_label != 0)
4510 make_return_insns (first);
4511 #endif
4513 obstack_free (&unfilled_slots_obstack, unfilled_firstobj);
4515 /* It is not clear why the line below is needed, but it does seem to be. */
4516 unfilled_firstobj = (rtx *) obstack_alloc (&unfilled_slots_obstack, 0);
4518 /* Reposition the prologue and epilogue notes in case we moved the
4519 prologue/epilogue insns. */
4520 reposition_prologue_and_epilogue_notes (first);
4522 if (file)
4524 register int i, j, need_comma;
4526 for (reorg_pass_number = 0;
4527 reorg_pass_number < MAX_REORG_PASSES;
4528 reorg_pass_number++)
4530 fprintf (file, ";; Reorg pass #%d:\n", reorg_pass_number + 1);
4531 for (i = 0; i < NUM_REORG_FUNCTIONS; i++)
4533 need_comma = 0;
4534 fprintf (file, ";; Reorg function #%d\n", i);
4536 fprintf (file, ";; %d insns needing delay slots\n;; ",
4537 num_insns_needing_delays[i][reorg_pass_number]);
4539 for (j = 0; j < MAX_DELAY_HISTOGRAM; j++)
4540 if (num_filled_delays[i][j][reorg_pass_number])
4542 if (need_comma)
4543 fprintf (file, ", ");
4544 need_comma = 1;
4545 fprintf (file, "%d got %d delays",
4546 num_filled_delays[i][j][reorg_pass_number], j);
4548 fprintf (file, "\n");
4553 #endif /* DELAY_SLOTS */