(*zeroextract[qs]i_compare0_scratch): Use const_int_operand
[official-gcc.git] / gcc / local-alloc.c
blobc36aca8948b4b3bd70153618b3e2130932ccb181
1 /* Allocate registers within a basic block, for GNU compiler.
2 Copyright (C) 1987, 88, 91, 93, 94, 95, 1996 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 /* Allocation of hard register numbers to pseudo registers is done in
23 two passes. In this pass we consider only regs that are born and
24 die once within one basic block. We do this one basic block at a
25 time. Then the next pass allocates the registers that remain.
26 Two passes are used because this pass uses methods that work only
27 on linear code, but that do a better job than the general methods
28 used in global_alloc, and more quickly too.
30 The assignments made are recorded in the vector reg_renumber
31 whose space is allocated here. The rtl code itself is not altered.
33 We assign each instruction in the basic block a number
34 which is its order from the beginning of the block.
35 Then we can represent the lifetime of a pseudo register with
36 a pair of numbers, and check for conflicts easily.
37 We can record the availability of hard registers with a
38 HARD_REG_SET for each instruction. The HARD_REG_SET
39 contains 0 or 1 for each hard reg.
41 To avoid register shuffling, we tie registers together when one
42 dies by being copied into another, or dies in an instruction that
43 does arithmetic to produce another. The tied registers are
44 allocated as one. Registers with different reg class preferences
45 can never be tied unless the class preferred by one is a subclass
46 of the one preferred by the other.
48 Tying is represented with "quantity numbers".
49 A non-tied register is given a new quantity number.
50 Tied registers have the same quantity number.
52 We have provision to exempt registers, even when they are contained
53 within the block, that can be tied to others that are not contained in it.
54 This is so that global_alloc could process them both and tie them then.
55 But this is currently disabled since tying in global_alloc is not
56 yet implemented. */
58 /* Pseudos allocated here cannot be reallocated by global.c if the hard
59 register is used as a spill register. So we don't allocate such pseudos
60 here if their preferred class is likely to be used by spills. */
62 #include <stdio.h>
63 #include "config.h"
64 #include "rtl.h"
65 #include "flags.h"
66 #include "basic-block.h"
67 #include "regs.h"
68 #include "hard-reg-set.h"
69 #include "insn-config.h"
70 #include "recog.h"
71 #include "output.h"
73 /* Next quantity number available for allocation. */
75 static int next_qty;
77 /* In all the following vectors indexed by quantity number. */
79 /* Element Q is the hard reg number chosen for quantity Q,
80 or -1 if none was found. */
82 static short *qty_phys_reg;
84 /* We maintain two hard register sets that indicate suggested hard registers
85 for each quantity. The first, qty_phys_copy_sugg, contains hard registers
86 that are tied to the quantity by a simple copy. The second contains all
87 hard registers that are tied to the quantity via an arithmetic operation.
89 The former register set is given priority for allocation. This tends to
90 eliminate copy insns. */
92 /* Element Q is a set of hard registers that are suggested for quantity Q by
93 copy insns. */
95 static HARD_REG_SET *qty_phys_copy_sugg;
97 /* Element Q is a set of hard registers that are suggested for quantity Q by
98 arithmetic insns. */
100 static HARD_REG_SET *qty_phys_sugg;
102 /* Element Q is the number of suggested registers in qty_phys_copy_sugg. */
104 static short *qty_phys_num_copy_sugg;
106 /* Element Q is the number of suggested registers in qty_phys_sugg. */
108 static short *qty_phys_num_sugg;
110 /* Element Q is the number of refs to quantity Q. */
112 static int *qty_n_refs;
114 /* Element Q is a reg class contained in (smaller than) the
115 preferred classes of all the pseudo regs that are tied in quantity Q.
116 This is the preferred class for allocating that quantity. */
118 static enum reg_class *qty_min_class;
120 /* Insn number (counting from head of basic block)
121 where quantity Q was born. -1 if birth has not been recorded. */
123 static int *qty_birth;
125 /* Insn number (counting from head of basic block)
126 where quantity Q died. Due to the way tying is done,
127 and the fact that we consider in this pass only regs that die but once,
128 a quantity can die only once. Each quantity's life span
129 is a set of consecutive insns. -1 if death has not been recorded. */
131 static int *qty_death;
133 /* Number of words needed to hold the data in quantity Q.
134 This depends on its machine mode. It is used for these purposes:
135 1. It is used in computing the relative importances of qtys,
136 which determines the order in which we look for regs for them.
137 2. It is used in rules that prevent tying several registers of
138 different sizes in a way that is geometrically impossible
139 (see combine_regs). */
141 static int *qty_size;
143 /* This holds the mode of the registers that are tied to qty Q,
144 or VOIDmode if registers with differing modes are tied together. */
146 static enum machine_mode *qty_mode;
148 /* Number of times a reg tied to qty Q lives across a CALL_INSN. */
150 static int *qty_n_calls_crossed;
152 /* Register class within which we allocate qty Q if we can't get
153 its preferred class. */
155 static enum reg_class *qty_alternate_class;
157 /* Element Q is the SCRATCH expression for which this quantity is being
158 allocated or 0 if this quantity is allocating registers. */
160 static rtx *qty_scratch_rtx;
162 /* Element Q is nonzero if this quantity has been used in a SUBREG
163 that changes its size. */
165 static char *qty_changes_size;
167 /* Element Q is the register number of one pseudo register whose
168 reg_qty value is Q, or -1 is this quantity is for a SCRATCH. This
169 register should be the head of the chain maintained in reg_next_in_qty. */
171 static int *qty_first_reg;
173 /* If (REG N) has been assigned a quantity number, is a register number
174 of another register assigned the same quantity number, or -1 for the
175 end of the chain. qty_first_reg point to the head of this chain. */
177 static int *reg_next_in_qty;
179 /* reg_qty[N] (where N is a pseudo reg number) is the qty number of that reg
180 if it is >= 0,
181 of -1 if this register cannot be allocated by local-alloc,
182 or -2 if not known yet.
184 Note that if we see a use or death of pseudo register N with
185 reg_qty[N] == -2, register N must be local to the current block. If
186 it were used in more than one block, we would have reg_qty[N] == -1.
187 This relies on the fact that if reg_basic_block[N] is >= 0, register N
188 will not appear in any other block. We save a considerable number of
189 tests by exploiting this.
191 If N is < FIRST_PSEUDO_REGISTER, reg_qty[N] is undefined and should not
192 be referenced. */
194 static int *reg_qty;
196 /* The offset (in words) of register N within its quantity.
197 This can be nonzero if register N is SImode, and has been tied
198 to a subreg of a DImode register. */
200 static char *reg_offset;
202 /* Vector of substitutions of register numbers,
203 used to map pseudo regs into hardware regs.
204 This is set up as a result of register allocation.
205 Element N is the hard reg assigned to pseudo reg N,
206 or is -1 if no hard reg was assigned.
207 If N is a hard reg number, element N is N. */
209 short *reg_renumber;
211 /* Set of hard registers live at the current point in the scan
212 of the instructions in a basic block. */
214 static HARD_REG_SET regs_live;
216 /* Each set of hard registers indicates registers live at a particular
217 point in the basic block. For N even, regs_live_at[N] says which
218 hard registers are needed *after* insn N/2 (i.e., they may not
219 conflict with the outputs of insn N/2 or the inputs of insn N/2 + 1.
221 If an object is to conflict with the inputs of insn J but not the
222 outputs of insn J + 1, we say it is born at index J*2 - 1. Similarly,
223 if it is to conflict with the outputs of insn J but not the inputs of
224 insn J + 1, it is said to die at index J*2 + 1. */
226 static HARD_REG_SET *regs_live_at;
228 int *scratch_block;
229 rtx *scratch_list;
230 int scratch_list_length;
231 static int scratch_index;
233 /* Communicate local vars `insn_number' and `insn'
234 from `block_alloc' to `reg_is_set', `wipe_dead_reg', and `alloc_qty'. */
235 static int this_insn_number;
236 static rtx this_insn;
238 /* Used to communicate changes made by update_equiv_regs to
239 memref_referenced_p. */
240 static rtx *reg_equiv_replacement;
242 static void alloc_qty PROTO((int, enum machine_mode, int, int));
243 static void alloc_qty_for_scratch PROTO((rtx, int, rtx, int, int));
244 static void validate_equiv_mem_from_store PROTO((rtx, rtx));
245 static int validate_equiv_mem PROTO((rtx, rtx, rtx));
246 static int memref_referenced_p PROTO((rtx, rtx));
247 static int memref_used_between_p PROTO((rtx, rtx, rtx));
248 static void optimize_reg_copy_1 PROTO((rtx, rtx, rtx));
249 static void optimize_reg_copy_2 PROTO((rtx, rtx, rtx));
250 static void update_equiv_regs PROTO((void));
251 static void block_alloc PROTO((int));
252 static int qty_sugg_compare PROTO((int, int));
253 static int qty_sugg_compare_1 PROTO((int *, int *));
254 static int qty_compare PROTO((int, int));
255 static int qty_compare_1 PROTO((int *, int *));
256 static int combine_regs PROTO((rtx, rtx, int, int, rtx, int));
257 static int reg_meets_class_p PROTO((int, enum reg_class));
258 static int reg_classes_overlap_p PROTO((enum reg_class, enum reg_class,
259 int));
260 static void update_qty_class PROTO((int, int));
261 static void reg_is_set PROTO((rtx, rtx));
262 static void reg_is_born PROTO((rtx, int));
263 static void wipe_dead_reg PROTO((rtx, int));
264 static int find_free_reg PROTO((enum reg_class, enum machine_mode,
265 int, int, int, int, int));
266 static void mark_life PROTO((int, enum machine_mode, int));
267 static void post_mark_life PROTO((int, enum machine_mode, int, int, int));
268 static int no_conflict_p PROTO((rtx, rtx, rtx));
269 static int requires_inout PROTO((char *));
271 /* Allocate a new quantity (new within current basic block)
272 for register number REGNO which is born at index BIRTH
273 within the block. MODE and SIZE are info on reg REGNO. */
275 static void
276 alloc_qty (regno, mode, size, birth)
277 int regno;
278 enum machine_mode mode;
279 int size, birth;
281 register int qty = next_qty++;
283 reg_qty[regno] = qty;
284 reg_offset[regno] = 0;
285 reg_next_in_qty[regno] = -1;
287 qty_first_reg[qty] = regno;
288 qty_size[qty] = size;
289 qty_mode[qty] = mode;
290 qty_birth[qty] = birth;
291 qty_n_calls_crossed[qty] = reg_n_calls_crossed[regno];
292 qty_min_class[qty] = reg_preferred_class (regno);
293 qty_alternate_class[qty] = reg_alternate_class (regno);
294 qty_n_refs[qty] = reg_n_refs[regno];
295 qty_changes_size[qty] = reg_changes_size[regno];
298 /* Similar to `alloc_qty', but allocates a quantity for a SCRATCH rtx
299 used as operand N in INSN. We assume here that the SCRATCH is used in
300 a CLOBBER. */
302 static void
303 alloc_qty_for_scratch (scratch, n, insn, insn_code_num, insn_number)
304 rtx scratch;
305 int n;
306 rtx insn;
307 int insn_code_num, insn_number;
309 register int qty;
310 enum reg_class class;
311 char *p, c;
312 int i;
314 #ifdef REGISTER_CONSTRAINTS
315 /* If we haven't yet computed which alternative will be used, do so now.
316 Then set P to the constraints for that alternative. */
317 if (which_alternative == -1)
318 if (! constrain_operands (insn_code_num, 0))
319 return;
321 for (p = insn_operand_constraint[insn_code_num][n], i = 0;
322 *p && i < which_alternative; p++)
323 if (*p == ',')
324 i++;
326 /* Compute the class required for this SCRATCH. If we don't need a
327 register, the class will remain NO_REGS. If we guessed the alternative
328 number incorrectly, reload will fix things up for us. */
330 class = NO_REGS;
331 while ((c = *p++) != '\0' && c != ',')
332 switch (c)
334 case '=': case '+': case '?':
335 case '#': case '&': case '!':
336 case '*': case '%':
337 case '0': case '1': case '2': case '3': case '4':
338 case 'm': case '<': case '>': case 'V': case 'o':
339 case 'E': case 'F': case 'G': case 'H':
340 case 's': case 'i': case 'n':
341 case 'I': case 'J': case 'K': case 'L':
342 case 'M': case 'N': case 'O': case 'P':
343 #ifdef EXTRA_CONSTRAINT
344 case 'Q': case 'R': case 'S': case 'T': case 'U':
345 #endif
346 case 'p':
347 /* These don't say anything we care about. */
348 break;
350 case 'X':
351 /* We don't need to allocate this SCRATCH. */
352 return;
354 case 'g': case 'r':
355 class = reg_class_subunion[(int) class][(int) GENERAL_REGS];
356 break;
358 default:
359 class
360 = reg_class_subunion[(int) class][(int) REG_CLASS_FROM_LETTER (c)];
361 break;
364 if (class == NO_REGS)
365 return;
367 #else /* REGISTER_CONSTRAINTS */
369 class = GENERAL_REGS;
370 #endif
373 qty = next_qty++;
375 qty_first_reg[qty] = -1;
376 qty_scratch_rtx[qty] = scratch;
377 qty_size[qty] = GET_MODE_SIZE (GET_MODE (scratch));
378 qty_mode[qty] = GET_MODE (scratch);
379 qty_birth[qty] = 2 * insn_number - 1;
380 qty_death[qty] = 2 * insn_number + 1;
381 qty_n_calls_crossed[qty] = 0;
382 qty_min_class[qty] = class;
383 qty_alternate_class[qty] = NO_REGS;
384 qty_n_refs[qty] = 1;
385 qty_changes_size[qty] = 0;
388 /* Main entry point of this file. */
390 void
391 local_alloc ()
393 register int b, i;
394 int max_qty;
396 /* Leaf functions and non-leaf functions have different needs.
397 If defined, let the machine say what kind of ordering we
398 should use. */
399 #ifdef ORDER_REGS_FOR_LOCAL_ALLOC
400 ORDER_REGS_FOR_LOCAL_ALLOC;
401 #endif
403 /* Promote REG_EQUAL notes to REG_EQUIV notes and adjust status of affected
404 registers. */
405 update_equiv_regs ();
407 /* This sets the maximum number of quantities we can have. Quantity
408 numbers start at zero and we can have one for each pseudo plus the
409 number of SCRATCHes in the largest block, in the worst case. */
410 max_qty = (max_regno - FIRST_PSEUDO_REGISTER) + max_scratch;
412 /* Allocate vectors of temporary data.
413 See the declarations of these variables, above,
414 for what they mean. */
416 /* There can be up to MAX_SCRATCH * N_BASIC_BLOCKS SCRATCHes to allocate.
417 Instead of allocating this much memory from now until the end of
418 reload, only allocate space for MAX_QTY SCRATCHes. If there are more
419 reload will allocate them. */
421 scratch_list_length = max_qty;
422 scratch_list = (rtx *) xmalloc (scratch_list_length * sizeof (rtx));
423 bzero ((char *) scratch_list, scratch_list_length * sizeof (rtx));
424 scratch_block = (int *) xmalloc (scratch_list_length * sizeof (int));
425 bzero ((char *) scratch_block, scratch_list_length * sizeof (int));
426 scratch_index = 0;
428 qty_phys_reg = (short *) alloca (max_qty * sizeof (short));
429 qty_phys_copy_sugg
430 = (HARD_REG_SET *) alloca (max_qty * sizeof (HARD_REG_SET));
431 qty_phys_num_copy_sugg = (short *) alloca (max_qty * sizeof (short));
432 qty_phys_sugg = (HARD_REG_SET *) alloca (max_qty * sizeof (HARD_REG_SET));
433 qty_phys_num_sugg = (short *) alloca (max_qty * sizeof (short));
434 qty_birth = (int *) alloca (max_qty * sizeof (int));
435 qty_death = (int *) alloca (max_qty * sizeof (int));
436 qty_scratch_rtx = (rtx *) alloca (max_qty * sizeof (rtx));
437 qty_first_reg = (int *) alloca (max_qty * sizeof (int));
438 qty_size = (int *) alloca (max_qty * sizeof (int));
439 qty_mode
440 = (enum machine_mode *) alloca (max_qty * sizeof (enum machine_mode));
441 qty_n_calls_crossed = (int *) alloca (max_qty * sizeof (int));
442 qty_min_class
443 = (enum reg_class *) alloca (max_qty * sizeof (enum reg_class));
444 qty_alternate_class
445 = (enum reg_class *) alloca (max_qty * sizeof (enum reg_class));
446 qty_n_refs = (int *) alloca (max_qty * sizeof (int));
447 qty_changes_size = (char *) alloca (max_qty * sizeof (char));
449 reg_qty = (int *) alloca (max_regno * sizeof (int));
450 reg_offset = (char *) alloca (max_regno * sizeof (char));
451 reg_next_in_qty = (int *) alloca (max_regno * sizeof (int));
453 reg_renumber = (short *) oballoc (max_regno * sizeof (short));
454 for (i = 0; i < max_regno; i++)
455 reg_renumber[i] = -1;
457 /* Determine which pseudo-registers can be allocated by local-alloc.
458 In general, these are the registers used only in a single block and
459 which only die once. However, if a register's preferred class has only
460 a few entries, don't allocate this register here unless it is preferred
461 or nothing since retry_global_alloc won't be able to move it to
462 GENERAL_REGS if a reload register of this class is needed.
464 We need not be concerned with which block actually uses the register
465 since we will never see it outside that block. */
467 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
469 if (reg_basic_block[i] >= 0 && reg_n_deaths[i] == 1
470 && (reg_alternate_class (i) == NO_REGS
471 || ! CLASS_LIKELY_SPILLED_P (reg_preferred_class (i))))
472 reg_qty[i] = -2;
473 else
474 reg_qty[i] = -1;
477 /* Force loop below to initialize entire quantity array. */
478 next_qty = max_qty;
480 /* Allocate each block's local registers, block by block. */
482 for (b = 0; b < n_basic_blocks; b++)
484 /* NEXT_QTY indicates which elements of the `qty_...'
485 vectors might need to be initialized because they were used
486 for the previous block; it is set to the entire array before
487 block 0. Initialize those, with explicit loop if there are few,
488 else with bzero and bcopy. Do not initialize vectors that are
489 explicit set by `alloc_qty'. */
491 if (next_qty < 6)
493 for (i = 0; i < next_qty; i++)
495 qty_scratch_rtx[i] = 0;
496 CLEAR_HARD_REG_SET (qty_phys_copy_sugg[i]);
497 qty_phys_num_copy_sugg[i] = 0;
498 CLEAR_HARD_REG_SET (qty_phys_sugg[i]);
499 qty_phys_num_sugg[i] = 0;
502 else
504 #define CLEAR(vector) \
505 bzero ((char *) (vector), (sizeof (*(vector))) * next_qty);
507 CLEAR (qty_scratch_rtx);
508 CLEAR (qty_phys_copy_sugg);
509 CLEAR (qty_phys_num_copy_sugg);
510 CLEAR (qty_phys_sugg);
511 CLEAR (qty_phys_num_sugg);
514 next_qty = 0;
516 block_alloc (b);
517 #ifdef USE_C_ALLOCA
518 alloca (0);
519 #endif
523 /* Depth of loops we are in while in update_equiv_regs. */
524 static int loop_depth;
526 /* Used for communication between the following two functions: contains
527 a MEM that we wish to ensure remains unchanged. */
528 static rtx equiv_mem;
530 /* Set nonzero if EQUIV_MEM is modified. */
531 static int equiv_mem_modified;
533 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
534 Called via note_stores. */
536 static void
537 validate_equiv_mem_from_store (dest, set)
538 rtx dest;
539 rtx set;
541 if ((GET_CODE (dest) == REG
542 && reg_overlap_mentioned_p (dest, equiv_mem))
543 || (GET_CODE (dest) == MEM
544 && true_dependence (dest, equiv_mem)))
545 equiv_mem_modified = 1;
548 /* Verify that no store between START and the death of REG invalidates
549 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
550 by storing into an overlapping memory location, or with a non-const
551 CALL_INSN.
553 Return 1 if MEMREF remains valid. */
555 static int
556 validate_equiv_mem (start, reg, memref)
557 rtx start;
558 rtx reg;
559 rtx memref;
561 rtx insn;
562 rtx note;
564 equiv_mem = memref;
565 equiv_mem_modified = 0;
567 /* If the memory reference has side effects or is volatile, it isn't a
568 valid equivalence. */
569 if (side_effects_p (memref))
570 return 0;
572 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
574 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
575 continue;
577 if (find_reg_note (insn, REG_DEAD, reg))
578 return 1;
580 if (GET_CODE (insn) == CALL_INSN && ! RTX_UNCHANGING_P (memref)
581 && ! CONST_CALL_P (insn))
582 return 0;
584 note_stores (PATTERN (insn), validate_equiv_mem_from_store);
586 /* If a register mentioned in MEMREF is modified via an
587 auto-increment, we lose the equivalence. Do the same if one
588 dies; although we could extend the life, it doesn't seem worth
589 the trouble. */
591 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
592 if ((REG_NOTE_KIND (note) == REG_INC
593 || REG_NOTE_KIND (note) == REG_DEAD)
594 && GET_CODE (XEXP (note, 0)) == REG
595 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
596 return 0;
599 return 0;
602 /* TRUE if X references a memory location that would be affected by a store
603 to MEMREF. */
605 static int
606 memref_referenced_p (memref, x)
607 rtx x;
608 rtx memref;
610 int i, j;
611 char *fmt;
612 enum rtx_code code = GET_CODE (x);
614 switch (code)
616 case CONST_INT:
617 case CONST:
618 case LABEL_REF:
619 case SYMBOL_REF:
620 case CONST_DOUBLE:
621 case PC:
622 case CC0:
623 case HIGH:
624 case LO_SUM:
625 return 0;
627 case REG:
628 return (reg_equiv_replacement[REGNO (x)]
629 && memref_referenced_p (memref,
630 reg_equiv_replacement[REGNO (x)]));
632 case MEM:
633 if (true_dependence (memref, x))
634 return 1;
635 break;
637 case SET:
638 /* If we are setting a MEM, it doesn't count (its address does), but any
639 other SET_DEST that has a MEM in it is referencing the MEM. */
640 if (GET_CODE (SET_DEST (x)) == MEM)
642 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
643 return 1;
645 else if (memref_referenced_p (memref, SET_DEST (x)))
646 return 1;
648 return memref_referenced_p (memref, SET_SRC (x));
651 fmt = GET_RTX_FORMAT (code);
652 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
653 switch (fmt[i])
655 case 'e':
656 if (memref_referenced_p (memref, XEXP (x, i)))
657 return 1;
658 break;
659 case 'E':
660 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
661 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
662 return 1;
663 break;
666 return 0;
669 /* TRUE if some insn in the range (START, END] references a memory location
670 that would be affected by a store to MEMREF. */
672 static int
673 memref_used_between_p (memref, start, end)
674 rtx memref;
675 rtx start;
676 rtx end;
678 rtx insn;
680 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
681 insn = NEXT_INSN (insn))
682 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
683 && memref_referenced_p (memref, PATTERN (insn)))
684 return 1;
686 return 0;
689 /* INSN is a copy from SRC to DEST, both registers, and SRC does not die
690 in INSN.
692 Search forward to see if SRC dies before either it or DEST is modified,
693 but don't scan past the end of a basic block. If so, we can replace SRC
694 with DEST and let SRC die in INSN.
696 This will reduce the number of registers live in that range and may enable
697 DEST to be tied to SRC, thus often saving one register in addition to a
698 register-register copy. */
700 static void
701 optimize_reg_copy_1 (insn, dest, src)
702 rtx insn;
703 rtx dest;
704 rtx src;
706 rtx p, q;
707 rtx note;
708 rtx dest_death = 0;
709 int sregno = REGNO (src);
710 int dregno = REGNO (dest);
712 if (sregno == dregno
713 #ifdef SMALL_REGISTER_CLASSES
714 /* We don't want to mess with hard regs if register classes are small. */
715 || sregno < FIRST_PSEUDO_REGISTER || dregno < FIRST_PSEUDO_REGISTER
716 #endif
717 /* We don't see all updates to SP if they are in an auto-inc memory
718 reference, so we must disallow this optimization on them. */
719 || sregno == STACK_POINTER_REGNUM || dregno == STACK_POINTER_REGNUM)
720 return;
722 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
724 if (GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN
725 || (GET_CODE (p) == NOTE
726 && (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG
727 || NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)))
728 break;
730 if (GET_RTX_CLASS (GET_CODE (p)) != 'i')
731 continue;
733 if (reg_set_p (src, p) || reg_set_p (dest, p)
734 /* Don't change a USE of a register. */
735 || (GET_CODE (PATTERN (p)) == USE
736 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
737 break;
739 /* See if all of SRC dies in P. This test is slightly more
740 conservative than it needs to be. */
741 if ((note = find_regno_note (p, REG_DEAD, sregno)) != 0
742 && GET_MODE (XEXP (note, 0)) == GET_MODE (src))
744 int failed = 0;
745 int length = 0;
746 int d_length = 0;
747 int n_calls = 0;
748 int d_n_calls = 0;
750 /* We can do the optimization. Scan forward from INSN again,
751 replacing regs as we go. Set FAILED if a replacement can't
752 be done. In that case, we can't move the death note for SRC.
753 This should be rare. */
755 /* Set to stop at next insn. */
756 for (q = next_real_insn (insn);
757 q != next_real_insn (p);
758 q = next_real_insn (q))
760 if (reg_overlap_mentioned_p (src, PATTERN (q)))
762 /* If SRC is a hard register, we might miss some
763 overlapping registers with validate_replace_rtx,
764 so we would have to undo it. We can't if DEST is
765 present in the insn, so fail in that combination
766 of cases. */
767 if (sregno < FIRST_PSEUDO_REGISTER
768 && reg_mentioned_p (dest, PATTERN (q)))
769 failed = 1;
771 /* Replace all uses and make sure that the register
772 isn't still present. */
773 else if (validate_replace_rtx (src, dest, q)
774 && (sregno >= FIRST_PSEUDO_REGISTER
775 || ! reg_overlap_mentioned_p (src,
776 PATTERN (q))))
778 /* We assume that a register is used exactly once per
779 insn in the updates below. If this is not correct,
780 no great harm is done. */
781 if (sregno >= FIRST_PSEUDO_REGISTER)
782 reg_n_refs[sregno] -= loop_depth;
783 if (dregno >= FIRST_PSEUDO_REGISTER)
784 reg_n_refs[dregno] += loop_depth;
786 else
788 validate_replace_rtx (dest, src, q);
789 failed = 1;
793 /* Count the insns and CALL_INSNs passed. If we passed the
794 death note of DEST, show increased live length. */
795 length++;
796 if (dest_death)
797 d_length++;
799 /* If the insn in which SRC dies is a CALL_INSN, don't count it
800 as a call that has been crossed. Otherwise, count it. */
801 if (q != p && GET_CODE (q) == CALL_INSN)
803 n_calls++;
804 if (dest_death)
805 d_n_calls++;
808 /* If DEST dies here, remove the death note and save it for
809 later. Make sure ALL of DEST dies here; again, this is
810 overly conservative. */
811 if (dest_death == 0
812 && (dest_death = find_regno_note (q, REG_DEAD, dregno)) != 0
813 && GET_MODE (XEXP (dest_death, 0)) == GET_MODE (dest))
814 remove_note (q, dest_death);
817 if (! failed)
819 if (sregno >= FIRST_PSEUDO_REGISTER)
821 reg_live_length[sregno] -= length;
822 /* reg_live_length is only an approximation after combine
823 if sched is not run, so make sure that we still have
824 a reasonable value. */
825 if (reg_live_length[sregno] < 2)
826 reg_live_length[sregno] = 2;
827 reg_n_calls_crossed[sregno] -= n_calls;
830 if (dregno >= FIRST_PSEUDO_REGISTER)
832 reg_live_length[dregno] += d_length;
833 reg_n_calls_crossed[dregno] += d_n_calls;
836 /* Move death note of SRC from P to INSN. */
837 remove_note (p, note);
838 XEXP (note, 1) = REG_NOTES (insn);
839 REG_NOTES (insn) = note;
842 /* Put death note of DEST on P if we saw it die. */
843 if (dest_death)
845 XEXP (dest_death, 1) = REG_NOTES (p);
846 REG_NOTES (p) = dest_death;
849 return;
852 /* If SRC is a hard register which is set or killed in some other
853 way, we can't do this optimization. */
854 else if (sregno < FIRST_PSEUDO_REGISTER
855 && dead_or_set_p (p, src))
856 break;
860 /* INSN is a copy of SRC to DEST, in which SRC dies. See if we now have
861 a sequence of insns that modify DEST followed by an insn that sets
862 SRC to DEST in which DEST dies, with no prior modification of DEST.
863 (There is no need to check if the insns in between actually modify
864 DEST. We should not have cases where DEST is not modified, but
865 the optimization is safe if no such modification is detected.)
866 In that case, we can replace all uses of DEST, starting with INSN and
867 ending with the set of SRC to DEST, with SRC. We do not do this
868 optimization if a CALL_INSN is crossed unless SRC already crosses a
869 call or if DEST dies before the copy back to SRC.
871 It is assumed that DEST and SRC are pseudos; it is too complicated to do
872 this for hard registers since the substitutions we may make might fail. */
874 static void
875 optimize_reg_copy_2 (insn, dest, src)
876 rtx insn;
877 rtx dest;
878 rtx src;
880 rtx p, q;
881 rtx set;
882 int sregno = REGNO (src);
883 int dregno = REGNO (dest);
885 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
887 if (GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN
888 || (GET_CODE (p) == NOTE
889 && (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG
890 || NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)))
891 break;
893 if (GET_RTX_CLASS (GET_CODE (p)) != 'i')
894 continue;
896 set = single_set (p);
897 if (set && SET_SRC (set) == dest && SET_DEST (set) == src
898 && find_reg_note (p, REG_DEAD, dest))
900 /* We can do the optimization. Scan forward from INSN again,
901 replacing regs as we go. */
903 /* Set to stop at next insn. */
904 for (q = insn; q != NEXT_INSN (p); q = NEXT_INSN (q))
905 if (GET_RTX_CLASS (GET_CODE (q)) == 'i')
907 if (reg_mentioned_p (dest, PATTERN (q)))
909 PATTERN (q) = replace_rtx (PATTERN (q), dest, src);
911 /* We assume that a register is used exactly once per
912 insn in the updates below. If this is not correct,
913 no great harm is done. */
914 reg_n_refs[dregno] -= loop_depth;
915 reg_n_refs[sregno] += loop_depth;
919 if (GET_CODE (q) == CALL_INSN)
921 reg_n_calls_crossed[dregno]--;
922 reg_n_calls_crossed[sregno]++;
926 remove_note (p, find_reg_note (p, REG_DEAD, dest));
927 reg_n_deaths[dregno]--;
928 remove_note (insn, find_reg_note (insn, REG_DEAD, src));
929 reg_n_deaths[sregno]--;
930 return;
933 if (reg_set_p (src, p)
934 || find_reg_note (p, REG_DEAD, dest)
935 || (GET_CODE (p) == CALL_INSN && reg_n_calls_crossed[sregno] == 0))
936 break;
940 /* Find registers that are equivalent to a single value throughout the
941 compilation (either because they can be referenced in memory or are set once
942 from a single constant). Lower their priority for a register.
944 If such a register is only referenced once, try substituting its value
945 into the using insn. If it succeeds, we can eliminate the register
946 completely. */
948 static void
949 update_equiv_regs ()
951 rtx *reg_equiv_init_insn = (rtx *) alloca (max_regno * sizeof (rtx *));
952 rtx insn;
954 reg_equiv_replacement = (rtx *) alloca (max_regno * sizeof (rtx *));
956 bzero ((char *) reg_equiv_init_insn, max_regno * sizeof (rtx *));
957 bzero ((char *) reg_equiv_replacement, max_regno * sizeof (rtx *));
959 init_alias_analysis ();
961 loop_depth = 1;
963 /* Scan the insns and find which registers have equivalences. Do this
964 in a separate scan of the insns because (due to -fcse-follow-jumps)
965 a register can be set below its use. */
966 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
968 rtx note;
969 rtx set = single_set (insn);
970 rtx dest;
971 int regno;
973 if (GET_CODE (insn) == NOTE)
975 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
976 loop_depth++;
977 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
978 loop_depth--;
981 /* If this insn contains more (or less) than a single SET, ignore it. */
982 if (set == 0)
983 continue;
985 dest = SET_DEST (set);
987 /* If this sets a MEM to the contents of a REG that is only used
988 in a single basic block, see if the register is always equivalent
989 to that memory location and if moving the store from INSN to the
990 insn that set REG is safe. If so, put a REG_EQUIV note on the
991 initializing insn. */
993 if (GET_CODE (dest) == MEM && GET_CODE (SET_SRC (set)) == REG
994 && (regno = REGNO (SET_SRC (set))) >= FIRST_PSEUDO_REGISTER
995 && reg_basic_block[regno] >= 0
996 && reg_equiv_init_insn[regno] != 0
997 && validate_equiv_mem (reg_equiv_init_insn[regno], SET_SRC (set),
998 dest)
999 && ! memref_used_between_p (SET_DEST (set),
1000 reg_equiv_init_insn[regno], insn))
1001 REG_NOTES (reg_equiv_init_insn[regno])
1002 = gen_rtx (EXPR_LIST, REG_EQUIV, dest,
1003 REG_NOTES (reg_equiv_init_insn[regno]));
1005 /* If this is a register-register copy where SRC is not dead, see if we
1006 can optimize it. */
1007 if (flag_expensive_optimizations && GET_CODE (dest) == REG
1008 && GET_CODE (SET_SRC (set)) == REG
1009 && ! find_reg_note (insn, REG_DEAD, SET_SRC (set)))
1010 optimize_reg_copy_1 (insn, dest, SET_SRC (set));
1012 /* Similarly for a pseudo-pseudo copy when SRC is dead. */
1013 else if (flag_expensive_optimizations && GET_CODE (dest) == REG
1014 && REGNO (dest) >= FIRST_PSEUDO_REGISTER
1015 && GET_CODE (SET_SRC (set)) == REG
1016 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER
1017 && find_reg_note (insn, REG_DEAD, SET_SRC (set)))
1018 optimize_reg_copy_2 (insn, dest, SET_SRC (set));
1020 /* Otherwise, we only handle the case of a pseudo register being set
1021 once. */
1022 if (GET_CODE (dest) != REG
1023 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
1024 || reg_n_sets[regno] != 1)
1025 continue;
1027 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
1029 /* Record this insn as initializing this register. */
1030 reg_equiv_init_insn[regno] = insn;
1032 /* If this register is known to be equal to a constant, record that
1033 it is always equivalent to the constant. */
1034 if (note && CONSTANT_P (XEXP (note, 0)))
1035 PUT_MODE (note, (enum machine_mode) REG_EQUIV);
1037 /* If this insn introduces a "constant" register, decrease the priority
1038 of that register. Record this insn if the register is only used once
1039 more and the equivalence value is the same as our source.
1041 The latter condition is checked for two reasons: First, it is an
1042 indication that it may be more efficient to actually emit the insn
1043 as written (if no registers are available, reload will substitute
1044 the equivalence). Secondly, it avoids problems with any registers
1045 dying in this insn whose death notes would be missed.
1047 If we don't have a REG_EQUIV note, see if this insn is loading
1048 a register used only in one basic block from a MEM. If so, and the
1049 MEM remains unchanged for the life of the register, add a REG_EQUIV
1050 note. */
1052 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
1054 if (note == 0 && reg_basic_block[regno] >= 0
1055 && GET_CODE (SET_SRC (set)) == MEM
1056 && validate_equiv_mem (insn, dest, SET_SRC (set)))
1057 REG_NOTES (insn) = note = gen_rtx (EXPR_LIST, REG_EQUIV, SET_SRC (set),
1058 REG_NOTES (insn));
1060 /* Don't mess with things live during setjmp. */
1061 if (note && reg_live_length[regno] >= 0)
1063 int regno = REGNO (dest);
1065 /* Note that the statement below does not affect the priority
1066 in local-alloc! */
1067 reg_live_length[regno] *= 2;
1069 /* If the register is referenced exactly twice, meaning it is set
1070 once and used once, indicate that the reference may be replaced
1071 by the equivalence we computed above. If the register is only
1072 used in one basic block, this can't succeed or combine would
1073 have done it.
1075 It would be nice to use "loop_depth * 2" in the compare
1076 below. Unfortunately, LOOP_DEPTH need not be constant within
1077 a basic block so this would be too complicated.
1079 This case normally occurs when a parameter is read from memory
1080 and then used exactly once, not in a loop. */
1082 if (reg_n_refs[regno] == 2
1083 && reg_basic_block[regno] < 0
1084 && rtx_equal_p (XEXP (note, 0), SET_SRC (set)))
1085 reg_equiv_replacement[regno] = SET_SRC (set);
1089 /* Now scan all regs killed in an insn to see if any of them are registers
1090 only used that once. If so, see if we can replace the reference with
1091 the equivalent from. If we can, delete the initializing reference
1092 and this register will go away. */
1093 for (insn = next_active_insn (get_insns ());
1094 insn;
1095 insn = next_active_insn (insn))
1097 rtx link;
1099 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1100 if (REG_NOTE_KIND (link) == REG_DEAD
1101 /* Make sure this insn still refers to the register. */
1102 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
1104 int regno = REGNO (XEXP (link, 0));
1106 if (reg_equiv_replacement[regno]
1107 && validate_replace_rtx (regno_reg_rtx[regno],
1108 reg_equiv_replacement[regno], insn))
1110 rtx equiv_insn = reg_equiv_init_insn[regno];
1112 remove_death (regno, insn);
1113 reg_n_refs[regno] = 0;
1114 PUT_CODE (equiv_insn, NOTE);
1115 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
1116 NOTE_SOURCE_FILE (equiv_insn) = 0;
1122 /* Allocate hard regs to the pseudo regs used only within block number B.
1123 Only the pseudos that die but once can be handled. */
1125 static void
1126 block_alloc (b)
1127 int b;
1129 register int i, q;
1130 register rtx insn;
1131 rtx note;
1132 int insn_number = 0;
1133 int insn_count = 0;
1134 int max_uid = get_max_uid ();
1135 int *qty_order;
1136 int no_conflict_combined_regno = -1;
1137 /* Counter to prevent allocating more SCRATCHes than can be stored
1138 in SCRATCH_LIST. */
1139 int scratches_allocated = scratch_index;
1141 /* Count the instructions in the basic block. */
1143 insn = basic_block_end[b];
1144 while (1)
1146 if (GET_CODE (insn) != NOTE)
1147 if (++insn_count > max_uid)
1148 abort ();
1149 if (insn == basic_block_head[b])
1150 break;
1151 insn = PREV_INSN (insn);
1154 /* +2 to leave room for a post_mark_life at the last insn and for
1155 the birth of a CLOBBER in the first insn. */
1156 regs_live_at = (HARD_REG_SET *) alloca ((2 * insn_count + 2)
1157 * sizeof (HARD_REG_SET));
1158 bzero ((char *) regs_live_at, (2 * insn_count + 2) * sizeof (HARD_REG_SET));
1160 /* Initialize table of hardware registers currently live. */
1162 #ifdef HARD_REG_SET
1163 regs_live = *basic_block_live_at_start[b];
1164 #else
1165 COPY_HARD_REG_SET (regs_live, basic_block_live_at_start[b]);
1166 #endif
1168 /* This loop scans the instructions of the basic block
1169 and assigns quantities to registers.
1170 It computes which registers to tie. */
1172 insn = basic_block_head[b];
1173 while (1)
1175 register rtx body = PATTERN (insn);
1177 if (GET_CODE (insn) != NOTE)
1178 insn_number++;
1180 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1182 register rtx link, set;
1183 register int win = 0;
1184 register rtx r0, r1;
1185 int combined_regno = -1;
1186 int i;
1187 int insn_code_number = recog_memoized (insn);
1189 this_insn_number = insn_number;
1190 this_insn = insn;
1192 if (insn_code_number >= 0)
1193 insn_extract (insn);
1194 which_alternative = -1;
1196 /* Is this insn suitable for tying two registers?
1197 If so, try doing that.
1198 Suitable insns are those with at least two operands and where
1199 operand 0 is an output that is a register that is not
1200 earlyclobber.
1202 We can tie operand 0 with some operand that dies in this insn.
1203 First look for operands that are required to be in the same
1204 register as operand 0. If we find such, only try tying that
1205 operand or one that can be put into that operand if the
1206 operation is commutative. If we don't find an operand
1207 that is required to be in the same register as operand 0,
1208 we can tie with any operand.
1210 Subregs in place of regs are also ok.
1212 If tying is done, WIN is set nonzero. */
1214 if (insn_code_number >= 0
1215 #ifdef REGISTER_CONSTRAINTS
1216 && insn_n_operands[insn_code_number] > 1
1217 && insn_operand_constraint[insn_code_number][0][0] == '='
1218 && insn_operand_constraint[insn_code_number][0][1] != '&'
1219 #else
1220 && GET_CODE (PATTERN (insn)) == SET
1221 && rtx_equal_p (SET_DEST (PATTERN (insn)), recog_operand[0])
1222 #endif
1225 #ifdef REGISTER_CONSTRAINTS
1226 /* If non-negative, is an operand that must match operand 0. */
1227 int must_match_0 = -1;
1228 /* Counts number of alternatives that require a match with
1229 operand 0. */
1230 int n_matching_alts = 0;
1232 for (i = 1; i < insn_n_operands[insn_code_number]; i++)
1234 char *p = insn_operand_constraint[insn_code_number][i];
1235 int this_match = (requires_inout (p));
1237 n_matching_alts += this_match;
1238 if (this_match == insn_n_alternatives[insn_code_number])
1239 must_match_0 = i;
1241 #endif
1243 r0 = recog_operand[0];
1244 for (i = 1; i < insn_n_operands[insn_code_number]; i++)
1246 #ifdef REGISTER_CONSTRAINTS
1247 /* Skip this operand if we found an operand that
1248 must match operand 0 and this operand isn't it
1249 and can't be made to be it by commutativity. */
1251 if (must_match_0 >= 0 && i != must_match_0
1252 && ! (i == must_match_0 + 1
1253 && insn_operand_constraint[insn_code_number][i-1][0] == '%')
1254 && ! (i == must_match_0 - 1
1255 && insn_operand_constraint[insn_code_number][i][0] == '%'))
1256 continue;
1258 /* Likewise if each alternative has some operand that
1259 must match operand zero. In that case, skip any
1260 operand that doesn't list operand 0 since we know that
1261 the operand always conflicts with operand 0. We
1262 ignore commutatity in this case to keep things simple. */
1263 if (n_matching_alts == insn_n_alternatives[insn_code_number]
1264 && (0 == requires_inout
1265 (insn_operand_constraint[insn_code_number][i])))
1266 continue;
1267 #endif
1269 r1 = recog_operand[i];
1271 /* If the operand is an address, find a register in it.
1272 There may be more than one register, but we only try one
1273 of them. */
1274 if (
1275 #ifdef REGISTER_CONSTRAINTS
1276 insn_operand_constraint[insn_code_number][i][0] == 'p'
1277 #else
1278 insn_operand_address_p[insn_code_number][i]
1279 #endif
1281 while (GET_CODE (r1) == PLUS || GET_CODE (r1) == MULT)
1282 r1 = XEXP (r1, 0);
1284 if (GET_CODE (r0) == REG || GET_CODE (r0) == SUBREG)
1286 /* We have two priorities for hard register preferences.
1287 If we have a move insn or an insn whose first input
1288 can only be in the same register as the output, give
1289 priority to an equivalence found from that insn. */
1290 int may_save_copy
1291 = ((SET_DEST (body) == r0 && SET_SRC (body) == r1)
1292 #ifdef REGISTER_CONSTRAINTS
1293 || (r1 == recog_operand[i] && must_match_0 >= 0)
1294 #endif
1297 if (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1298 win = combine_regs (r1, r0, may_save_copy,
1299 insn_number, insn, 0);
1301 if (win)
1302 break;
1306 /* Recognize an insn sequence with an ultimate result
1307 which can safely overlap one of the inputs.
1308 The sequence begins with a CLOBBER of its result,
1309 and ends with an insn that copies the result to itself
1310 and has a REG_EQUAL note for an equivalent formula.
1311 That note indicates what the inputs are.
1312 The result and the input can overlap if each insn in
1313 the sequence either doesn't mention the input
1314 or has a REG_NO_CONFLICT note to inhibit the conflict.
1316 We do the combining test at the CLOBBER so that the
1317 destination register won't have had a quantity number
1318 assigned, since that would prevent combining. */
1320 if (GET_CODE (PATTERN (insn)) == CLOBBER
1321 && (r0 = XEXP (PATTERN (insn), 0),
1322 GET_CODE (r0) == REG)
1323 && (link = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0
1324 && XEXP (link, 0) != 0
1325 && GET_CODE (XEXP (link, 0)) == INSN
1326 && (set = single_set (XEXP (link, 0))) != 0
1327 && SET_DEST (set) == r0 && SET_SRC (set) == r0
1328 && (note = find_reg_note (XEXP (link, 0), REG_EQUAL,
1329 NULL_RTX)) != 0)
1331 if (r1 = XEXP (note, 0), GET_CODE (r1) == REG
1332 /* Check that we have such a sequence. */
1333 && no_conflict_p (insn, r0, r1))
1334 win = combine_regs (r1, r0, 1, insn_number, insn, 1);
1335 else if (GET_RTX_FORMAT (GET_CODE (XEXP (note, 0)))[0] == 'e'
1336 && (r1 = XEXP (XEXP (note, 0), 0),
1337 GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1338 && no_conflict_p (insn, r0, r1))
1339 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1341 /* Here we care if the operation to be computed is
1342 commutative. */
1343 else if ((GET_CODE (XEXP (note, 0)) == EQ
1344 || GET_CODE (XEXP (note, 0)) == NE
1345 || GET_RTX_CLASS (GET_CODE (XEXP (note, 0))) == 'c')
1346 && (r1 = XEXP (XEXP (note, 0), 1),
1347 (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG))
1348 && no_conflict_p (insn, r0, r1))
1349 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1351 /* If we did combine something, show the register number
1352 in question so that we know to ignore its death. */
1353 if (win)
1354 no_conflict_combined_regno = REGNO (r1);
1357 /* If registers were just tied, set COMBINED_REGNO
1358 to the number of the register used in this insn
1359 that was tied to the register set in this insn.
1360 This register's qty should not be "killed". */
1362 if (win)
1364 while (GET_CODE (r1) == SUBREG)
1365 r1 = SUBREG_REG (r1);
1366 combined_regno = REGNO (r1);
1369 /* Mark the death of everything that dies in this instruction,
1370 except for anything that was just combined. */
1372 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1373 if (REG_NOTE_KIND (link) == REG_DEAD
1374 && GET_CODE (XEXP (link, 0)) == REG
1375 && combined_regno != REGNO (XEXP (link, 0))
1376 && (no_conflict_combined_regno != REGNO (XEXP (link, 0))
1377 || ! find_reg_note (insn, REG_NO_CONFLICT, XEXP (link, 0))))
1378 wipe_dead_reg (XEXP (link, 0), 0);
1380 /* Allocate qty numbers for all registers local to this block
1381 that are born (set) in this instruction.
1382 A pseudo that already has a qty is not changed. */
1384 note_stores (PATTERN (insn), reg_is_set);
1386 /* If anything is set in this insn and then unused, mark it as dying
1387 after this insn, so it will conflict with our outputs. This
1388 can't match with something that combined, and it doesn't matter
1389 if it did. Do this after the calls to reg_is_set since these
1390 die after, not during, the current insn. */
1392 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1393 if (REG_NOTE_KIND (link) == REG_UNUSED
1394 && GET_CODE (XEXP (link, 0)) == REG)
1395 wipe_dead_reg (XEXP (link, 0), 1);
1397 /* Allocate quantities for any SCRATCH operands of this insn. */
1399 if (insn_code_number >= 0)
1400 for (i = 0; i < insn_n_operands[insn_code_number]; i++)
1401 if (GET_CODE (recog_operand[i]) == SCRATCH
1402 && scratches_allocated++ < scratch_list_length)
1403 alloc_qty_for_scratch (recog_operand[i], i, insn,
1404 insn_code_number, insn_number);
1406 /* If this is an insn that has a REG_RETVAL note pointing at a
1407 CLOBBER insn, we have reached the end of a REG_NO_CONFLICT
1408 block, so clear any register number that combined within it. */
1409 if ((note = find_reg_note (insn, REG_RETVAL, NULL_RTX)) != 0
1410 && GET_CODE (XEXP (note, 0)) == INSN
1411 && GET_CODE (PATTERN (XEXP (note, 0))) == CLOBBER)
1412 no_conflict_combined_regno = -1;
1415 /* Set the registers live after INSN_NUMBER. Note that we never
1416 record the registers live before the block's first insn, since no
1417 pseudos we care about are live before that insn. */
1419 IOR_HARD_REG_SET (regs_live_at[2 * insn_number], regs_live);
1420 IOR_HARD_REG_SET (regs_live_at[2 * insn_number + 1], regs_live);
1422 if (insn == basic_block_end[b])
1423 break;
1425 insn = NEXT_INSN (insn);
1428 /* Now every register that is local to this basic block
1429 should have been given a quantity, or else -1 meaning ignore it.
1430 Every quantity should have a known birth and death.
1432 Order the qtys so we assign them registers in order of the
1433 number of suggested registers they need so we allocate those with
1434 the most restrictive needs first. */
1436 qty_order = (int *) alloca (next_qty * sizeof (int));
1437 for (i = 0; i < next_qty; i++)
1438 qty_order[i] = i;
1440 #define EXCHANGE(I1, I2) \
1441 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1443 switch (next_qty)
1445 case 3:
1446 /* Make qty_order[2] be the one to allocate last. */
1447 if (qty_sugg_compare (0, 1) > 0)
1448 EXCHANGE (0, 1);
1449 if (qty_sugg_compare (1, 2) > 0)
1450 EXCHANGE (2, 1);
1452 /* ... Fall through ... */
1453 case 2:
1454 /* Put the best one to allocate in qty_order[0]. */
1455 if (qty_sugg_compare (0, 1) > 0)
1456 EXCHANGE (0, 1);
1458 /* ... Fall through ... */
1460 case 1:
1461 case 0:
1462 /* Nothing to do here. */
1463 break;
1465 default:
1466 qsort (qty_order, next_qty, sizeof (int), qty_sugg_compare_1);
1469 /* Try to put each quantity in a suggested physical register, if it has one.
1470 This may cause registers to be allocated that otherwise wouldn't be, but
1471 this seems acceptable in local allocation (unlike global allocation). */
1472 for (i = 0; i < next_qty; i++)
1474 q = qty_order[i];
1475 if (qty_phys_num_sugg[q] != 0 || qty_phys_num_copy_sugg[q] != 0)
1476 qty_phys_reg[q] = find_free_reg (qty_min_class[q], qty_mode[q], q,
1477 0, 1, qty_birth[q], qty_death[q]);
1478 else
1479 qty_phys_reg[q] = -1;
1482 /* Order the qtys so we assign them registers in order of
1483 decreasing length of life. Normally call qsort, but if we
1484 have only a very small number of quantities, sort them ourselves. */
1486 for (i = 0; i < next_qty; i++)
1487 qty_order[i] = i;
1489 #define EXCHANGE(I1, I2) \
1490 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1492 switch (next_qty)
1494 case 3:
1495 /* Make qty_order[2] be the one to allocate last. */
1496 if (qty_compare (0, 1) > 0)
1497 EXCHANGE (0, 1);
1498 if (qty_compare (1, 2) > 0)
1499 EXCHANGE (2, 1);
1501 /* ... Fall through ... */
1502 case 2:
1503 /* Put the best one to allocate in qty_order[0]. */
1504 if (qty_compare (0, 1) > 0)
1505 EXCHANGE (0, 1);
1507 /* ... Fall through ... */
1509 case 1:
1510 case 0:
1511 /* Nothing to do here. */
1512 break;
1514 default:
1515 qsort (qty_order, next_qty, sizeof (int), qty_compare_1);
1518 /* Now for each qty that is not a hardware register,
1519 look for a hardware register to put it in.
1520 First try the register class that is cheapest for this qty,
1521 if there is more than one class. */
1523 for (i = 0; i < next_qty; i++)
1525 q = qty_order[i];
1526 if (qty_phys_reg[q] < 0)
1528 if (N_REG_CLASSES > 1)
1530 qty_phys_reg[q] = find_free_reg (qty_min_class[q],
1531 qty_mode[q], q, 0, 0,
1532 qty_birth[q], qty_death[q]);
1533 if (qty_phys_reg[q] >= 0)
1534 continue;
1537 if (qty_alternate_class[q] != NO_REGS)
1538 qty_phys_reg[q] = find_free_reg (qty_alternate_class[q],
1539 qty_mode[q], q, 0, 0,
1540 qty_birth[q], qty_death[q]);
1544 /* Now propagate the register assignments
1545 to the pseudo regs belonging to the qtys. */
1547 for (q = 0; q < next_qty; q++)
1548 if (qty_phys_reg[q] >= 0)
1550 for (i = qty_first_reg[q]; i >= 0; i = reg_next_in_qty[i])
1551 reg_renumber[i] = qty_phys_reg[q] + reg_offset[i];
1552 if (qty_scratch_rtx[q])
1554 if (GET_CODE (qty_scratch_rtx[q]) == REG)
1555 abort ();
1556 PUT_CODE (qty_scratch_rtx[q], REG);
1557 REGNO (qty_scratch_rtx[q]) = qty_phys_reg[q];
1559 scratch_block[scratch_index] = b;
1560 scratch_list[scratch_index++] = qty_scratch_rtx[q];
1562 /* Must clear the USED field, because it will have been set by
1563 copy_rtx_if_shared, but the leaf_register code expects that
1564 it is zero in all REG rtx. copy_rtx_if_shared does not set the
1565 used bit for REGs, but does for SCRATCHes. */
1566 qty_scratch_rtx[q]->used = 0;
1571 /* Compare two quantities' priority for getting real registers.
1572 We give shorter-lived quantities higher priority.
1573 Quantities with more references are also preferred, as are quantities that
1574 require multiple registers. This is the identical prioritization as
1575 done by global-alloc.
1577 We used to give preference to registers with *longer* lives, but using
1578 the same algorithm in both local- and global-alloc can speed up execution
1579 of some programs by as much as a factor of three! */
1581 static int
1582 qty_compare (q1, q2)
1583 int q1, q2;
1585 /* Note that the quotient will never be bigger than
1586 the value of floor_log2 times the maximum number of
1587 times a register can occur in one insn (surely less than 100).
1588 Multiplying this by 10000 can't overflow. */
1589 register int pri1
1590 = (((double) (floor_log2 (qty_n_refs[q1]) * qty_n_refs[q1] * qty_size[q1])
1591 / (qty_death[q1] - qty_birth[q1]))
1592 * 10000);
1593 register int pri2
1594 = (((double) (floor_log2 (qty_n_refs[q2]) * qty_n_refs[q2] * qty_size[q2])
1595 / (qty_death[q2] - qty_birth[q2]))
1596 * 10000);
1597 return pri2 - pri1;
1600 static int
1601 qty_compare_1 (q1, q2)
1602 int *q1, *q2;
1604 register int tem;
1606 /* Note that the quotient will never be bigger than
1607 the value of floor_log2 times the maximum number of
1608 times a register can occur in one insn (surely less than 100).
1609 Multiplying this by 10000 can't overflow. */
1610 register int pri1
1611 = (((double) (floor_log2 (qty_n_refs[*q1]) * qty_n_refs[*q1]
1612 * qty_size[*q1])
1613 / (qty_death[*q1] - qty_birth[*q1]))
1614 * 10000);
1615 register int pri2
1616 = (((double) (floor_log2 (qty_n_refs[*q2]) * qty_n_refs[*q2]
1617 * qty_size[*q2])
1618 / (qty_death[*q2] - qty_birth[*q2]))
1619 * 10000);
1621 tem = pri2 - pri1;
1622 if (tem != 0) return tem;
1623 /* If qtys are equally good, sort by qty number,
1624 so that the results of qsort leave nothing to chance. */
1625 return *q1 - *q2;
1628 /* Compare two quantities' priority for getting real registers. This version
1629 is called for quantities that have suggested hard registers. First priority
1630 goes to quantities that have copy preferences, then to those that have
1631 normal preferences. Within those groups, quantities with the lower
1632 number of preferences have the highest priority. Of those, we use the same
1633 algorithm as above. */
1635 static int
1636 qty_sugg_compare (q1, q2)
1637 int q1, q2;
1639 register int sugg1 = (qty_phys_num_copy_sugg[q1]
1640 ? qty_phys_num_copy_sugg[q1]
1641 : qty_phys_num_sugg[q1] * FIRST_PSEUDO_REGISTER);
1642 register int sugg2 = (qty_phys_num_copy_sugg[q2]
1643 ? qty_phys_num_copy_sugg[q2]
1644 : qty_phys_num_sugg[q2] * FIRST_PSEUDO_REGISTER);
1645 /* Note that the quotient will never be bigger than
1646 the value of floor_log2 times the maximum number of
1647 times a register can occur in one insn (surely less than 100).
1648 Multiplying this by 10000 can't overflow. */
1649 register int pri1
1650 = (((double) (floor_log2 (qty_n_refs[q1]) * qty_n_refs[q1] * qty_size[q1])
1651 / (qty_death[q1] - qty_birth[q1]))
1652 * 10000);
1653 register int pri2
1654 = (((double) (floor_log2 (qty_n_refs[q2]) * qty_n_refs[q2] * qty_size[q2])
1655 / (qty_death[q2] - qty_birth[q2]))
1656 * 10000);
1658 if (sugg1 != sugg2)
1659 return sugg1 - sugg2;
1661 return pri2 - pri1;
1664 static int
1665 qty_sugg_compare_1 (q1, q2)
1666 int *q1, *q2;
1668 register int sugg1 = (qty_phys_num_copy_sugg[*q1]
1669 ? qty_phys_num_copy_sugg[*q1]
1670 : qty_phys_num_sugg[*q1] * FIRST_PSEUDO_REGISTER);
1671 register int sugg2 = (qty_phys_num_copy_sugg[*q2]
1672 ? qty_phys_num_copy_sugg[*q2]
1673 : qty_phys_num_sugg[*q2] * FIRST_PSEUDO_REGISTER);
1675 /* Note that the quotient will never be bigger than
1676 the value of floor_log2 times the maximum number of
1677 times a register can occur in one insn (surely less than 100).
1678 Multiplying this by 10000 can't overflow. */
1679 register int pri1
1680 = (((double) (floor_log2 (qty_n_refs[*q1]) * qty_n_refs[*q1]
1681 * qty_size[*q1])
1682 / (qty_death[*q1] - qty_birth[*q1]))
1683 * 10000);
1684 register int pri2
1685 = (((double) (floor_log2 (qty_n_refs[*q2]) * qty_n_refs[*q2]
1686 * qty_size[*q2])
1687 / (qty_death[*q2] - qty_birth[*q2]))
1688 * 10000);
1690 if (sugg1 != sugg2)
1691 return sugg1 - sugg2;
1693 if (pri1 != pri2)
1694 return pri2 - pri1;
1696 /* If qtys are equally good, sort by qty number,
1697 so that the results of qsort leave nothing to chance. */
1698 return *q1 - *q2;
1701 /* Attempt to combine the two registers (rtx's) USEDREG and SETREG.
1702 Returns 1 if have done so, or 0 if cannot.
1704 Combining registers means marking them as having the same quantity
1705 and adjusting the offsets within the quantity if either of
1706 them is a SUBREG).
1708 We don't actually combine a hard reg with a pseudo; instead
1709 we just record the hard reg as the suggestion for the pseudo's quantity.
1710 If we really combined them, we could lose if the pseudo lives
1711 across an insn that clobbers the hard reg (eg, movstr).
1713 ALREADY_DEAD is non-zero if USEDREG is known to be dead even though
1714 there is no REG_DEAD note on INSN. This occurs during the processing
1715 of REG_NO_CONFLICT blocks.
1717 MAY_SAVE_COPYCOPY is non-zero if this insn is simply copying USEDREG to
1718 SETREG or if the input and output must share a register.
1719 In that case, we record a hard reg suggestion in QTY_PHYS_COPY_SUGG.
1721 There are elaborate checks for the validity of combining. */
1724 static int
1725 combine_regs (usedreg, setreg, may_save_copy, insn_number, insn, already_dead)
1726 rtx usedreg, setreg;
1727 int may_save_copy;
1728 int insn_number;
1729 rtx insn;
1730 int already_dead;
1732 register int ureg, sreg;
1733 register int offset = 0;
1734 int usize, ssize;
1735 register int sqty;
1737 /* Determine the numbers and sizes of registers being used. If a subreg
1738 is present that does not change the entire register, don't consider
1739 this a copy insn. */
1741 while (GET_CODE (usedreg) == SUBREG)
1743 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (usedreg))) > UNITS_PER_WORD)
1744 may_save_copy = 0;
1745 offset += SUBREG_WORD (usedreg);
1746 usedreg = SUBREG_REG (usedreg);
1748 if (GET_CODE (usedreg) != REG)
1749 return 0;
1750 ureg = REGNO (usedreg);
1751 usize = REG_SIZE (usedreg);
1753 while (GET_CODE (setreg) == SUBREG)
1755 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (setreg))) > UNITS_PER_WORD)
1756 may_save_copy = 0;
1757 offset -= SUBREG_WORD (setreg);
1758 setreg = SUBREG_REG (setreg);
1760 if (GET_CODE (setreg) != REG)
1761 return 0;
1762 sreg = REGNO (setreg);
1763 ssize = REG_SIZE (setreg);
1765 /* If UREG is a pseudo-register that hasn't already been assigned a
1766 quantity number, it means that it is not local to this block or dies
1767 more than once. In either event, we can't do anything with it. */
1768 if ((ureg >= FIRST_PSEUDO_REGISTER && reg_qty[ureg] < 0)
1769 /* Do not combine registers unless one fits within the other. */
1770 || (offset > 0 && usize + offset > ssize)
1771 || (offset < 0 && usize + offset < ssize)
1772 /* Do not combine with a smaller already-assigned object
1773 if that smaller object is already combined with something bigger. */
1774 || (ssize > usize && ureg >= FIRST_PSEUDO_REGISTER
1775 && usize < qty_size[reg_qty[ureg]])
1776 /* Can't combine if SREG is not a register we can allocate. */
1777 || (sreg >= FIRST_PSEUDO_REGISTER && reg_qty[sreg] == -1)
1778 /* Don't combine with a pseudo mentioned in a REG_NO_CONFLICT note.
1779 These have already been taken care of. This probably wouldn't
1780 combine anyway, but don't take any chances. */
1781 || (ureg >= FIRST_PSEUDO_REGISTER
1782 && find_reg_note (insn, REG_NO_CONFLICT, usedreg))
1783 /* Don't tie something to itself. In most cases it would make no
1784 difference, but it would screw up if the reg being tied to itself
1785 also dies in this insn. */
1786 || ureg == sreg
1787 /* Don't try to connect two different hardware registers. */
1788 || (ureg < FIRST_PSEUDO_REGISTER && sreg < FIRST_PSEUDO_REGISTER)
1789 /* Don't connect two different machine modes if they have different
1790 implications as to which registers may be used. */
1791 || !MODES_TIEABLE_P (GET_MODE (usedreg), GET_MODE (setreg)))
1792 return 0;
1794 /* Now, if UREG is a hard reg and SREG is a pseudo, record the hard reg in
1795 qty_phys_sugg for the pseudo instead of tying them.
1797 Return "failure" so that the lifespan of UREG is terminated here;
1798 that way the two lifespans will be disjoint and nothing will prevent
1799 the pseudo reg from being given this hard reg. */
1801 if (ureg < FIRST_PSEUDO_REGISTER)
1803 /* Allocate a quantity number so we have a place to put our
1804 suggestions. */
1805 if (reg_qty[sreg] == -2)
1806 reg_is_born (setreg, 2 * insn_number);
1808 if (reg_qty[sreg] >= 0)
1810 if (may_save_copy
1811 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg))
1813 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg);
1814 qty_phys_num_copy_sugg[reg_qty[sreg]]++;
1816 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg))
1818 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg);
1819 qty_phys_num_sugg[reg_qty[sreg]]++;
1822 return 0;
1825 /* Similarly for SREG a hard register and UREG a pseudo register. */
1827 if (sreg < FIRST_PSEUDO_REGISTER)
1829 if (may_save_copy
1830 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg))
1832 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg);
1833 qty_phys_num_copy_sugg[reg_qty[ureg]]++;
1835 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg))
1837 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg);
1838 qty_phys_num_sugg[reg_qty[ureg]]++;
1840 return 0;
1843 /* At this point we know that SREG and UREG are both pseudos.
1844 Do nothing if SREG already has a quantity or is a register that we
1845 don't allocate. */
1846 if (reg_qty[sreg] >= -1
1847 /* If we are not going to let any regs live across calls,
1848 don't tie a call-crossing reg to a non-call-crossing reg. */
1849 || (current_function_has_nonlocal_label
1850 && ((reg_n_calls_crossed[ureg] > 0)
1851 != (reg_n_calls_crossed[sreg] > 0))))
1852 return 0;
1854 /* We don't already know about SREG, so tie it to UREG
1855 if this is the last use of UREG, provided the classes they want
1856 are compatible. */
1858 if ((already_dead || find_regno_note (insn, REG_DEAD, ureg))
1859 && reg_meets_class_p (sreg, qty_min_class[reg_qty[ureg]]))
1861 /* Add SREG to UREG's quantity. */
1862 sqty = reg_qty[ureg];
1863 reg_qty[sreg] = sqty;
1864 reg_offset[sreg] = reg_offset[ureg] + offset;
1865 reg_next_in_qty[sreg] = qty_first_reg[sqty];
1866 qty_first_reg[sqty] = sreg;
1868 /* If SREG's reg class is smaller, set qty_min_class[SQTY]. */
1869 update_qty_class (sqty, sreg);
1871 /* Update info about quantity SQTY. */
1872 qty_n_calls_crossed[sqty] += reg_n_calls_crossed[sreg];
1873 qty_n_refs[sqty] += reg_n_refs[sreg];
1874 if (usize < ssize)
1876 register int i;
1878 for (i = qty_first_reg[sqty]; i >= 0; i = reg_next_in_qty[i])
1879 reg_offset[i] -= offset;
1881 qty_size[sqty] = ssize;
1882 qty_mode[sqty] = GET_MODE (setreg);
1885 else
1886 return 0;
1888 return 1;
1891 /* Return 1 if the preferred class of REG allows it to be tied
1892 to a quantity or register whose class is CLASS.
1893 True if REG's reg class either contains or is contained in CLASS. */
1895 static int
1896 reg_meets_class_p (reg, class)
1897 int reg;
1898 enum reg_class class;
1900 register enum reg_class rclass = reg_preferred_class (reg);
1901 return (reg_class_subset_p (rclass, class)
1902 || reg_class_subset_p (class, rclass));
1905 /* Return 1 if the two specified classes have registers in common.
1906 If CALL_SAVED, then consider only call-saved registers. */
1908 static int
1909 reg_classes_overlap_p (c1, c2, call_saved)
1910 register enum reg_class c1;
1911 register enum reg_class c2;
1912 int call_saved;
1914 HARD_REG_SET c;
1915 int i;
1917 COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
1918 AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
1920 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1921 if (TEST_HARD_REG_BIT (c, i)
1922 && (! call_saved || ! call_used_regs[i]))
1923 return 1;
1925 return 0;
1928 /* Update the class of QTY assuming that REG is being tied to it. */
1930 static void
1931 update_qty_class (qty, reg)
1932 int qty;
1933 int reg;
1935 enum reg_class rclass = reg_preferred_class (reg);
1936 if (reg_class_subset_p (rclass, qty_min_class[qty]))
1937 qty_min_class[qty] = rclass;
1939 rclass = reg_alternate_class (reg);
1940 if (reg_class_subset_p (rclass, qty_alternate_class[qty]))
1941 qty_alternate_class[qty] = rclass;
1943 if (reg_changes_size[reg])
1944 qty_changes_size[qty] = 1;
1947 /* Handle something which alters the value of an rtx REG.
1949 REG is whatever is set or clobbered. SETTER is the rtx that
1950 is modifying the register.
1952 If it is not really a register, we do nothing.
1953 The file-global variables `this_insn' and `this_insn_number'
1954 carry info from `block_alloc'. */
1956 static void
1957 reg_is_set (reg, setter)
1958 rtx reg;
1959 rtx setter;
1961 /* Note that note_stores will only pass us a SUBREG if it is a SUBREG of
1962 a hard register. These may actually not exist any more. */
1964 if (GET_CODE (reg) != SUBREG
1965 && GET_CODE (reg) != REG)
1966 return;
1968 /* Mark this register as being born. If it is used in a CLOBBER, mark
1969 it as being born halfway between the previous insn and this insn so that
1970 it conflicts with our inputs but not the outputs of the previous insn. */
1972 reg_is_born (reg, 2 * this_insn_number - (GET_CODE (setter) == CLOBBER));
1975 /* Handle beginning of the life of register REG.
1976 BIRTH is the index at which this is happening. */
1978 static void
1979 reg_is_born (reg, birth)
1980 rtx reg;
1981 int birth;
1983 register int regno;
1985 if (GET_CODE (reg) == SUBREG)
1986 regno = REGNO (SUBREG_REG (reg)) + SUBREG_WORD (reg);
1987 else
1988 regno = REGNO (reg);
1990 if (regno < FIRST_PSEUDO_REGISTER)
1992 mark_life (regno, GET_MODE (reg), 1);
1994 /* If the register was to have been born earlier that the present
1995 insn, mark it as live where it is actually born. */
1996 if (birth < 2 * this_insn_number)
1997 post_mark_life (regno, GET_MODE (reg), 1, birth, 2 * this_insn_number);
1999 else
2001 if (reg_qty[regno] == -2)
2002 alloc_qty (regno, GET_MODE (reg), PSEUDO_REGNO_SIZE (regno), birth);
2004 /* If this register has a quantity number, show that it isn't dead. */
2005 if (reg_qty[regno] >= 0)
2006 qty_death[reg_qty[regno]] = -1;
2010 /* Record the death of REG in the current insn. If OUTPUT_P is non-zero,
2011 REG is an output that is dying (i.e., it is never used), otherwise it
2012 is an input (the normal case).
2013 If OUTPUT_P is 1, then we extend the life past the end of this insn. */
2015 static void
2016 wipe_dead_reg (reg, output_p)
2017 register rtx reg;
2018 int output_p;
2020 register int regno = REGNO (reg);
2022 /* If this insn has multiple results,
2023 and the dead reg is used in one of the results,
2024 extend its life to after this insn,
2025 so it won't get allocated together with any other result of this insn. */
2026 if (GET_CODE (PATTERN (this_insn)) == PARALLEL
2027 && !single_set (this_insn))
2029 int i;
2030 for (i = XVECLEN (PATTERN (this_insn), 0) - 1; i >= 0; i--)
2032 rtx set = XVECEXP (PATTERN (this_insn), 0, i);
2033 if (GET_CODE (set) == SET
2034 && GET_CODE (SET_DEST (set)) != REG
2035 && !rtx_equal_p (reg, SET_DEST (set))
2036 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
2037 output_p = 1;
2041 /* If this register is used in an auto-increment address, then extend its
2042 life to after this insn, so that it won't get allocated together with
2043 the result of this insn. */
2044 if (! output_p && find_regno_note (this_insn, REG_INC, regno))
2045 output_p = 1;
2047 if (regno < FIRST_PSEUDO_REGISTER)
2049 mark_life (regno, GET_MODE (reg), 0);
2051 /* If a hard register is dying as an output, mark it as in use at
2052 the beginning of this insn (the above statement would cause this
2053 not to happen). */
2054 if (output_p)
2055 post_mark_life (regno, GET_MODE (reg), 1,
2056 2 * this_insn_number, 2 * this_insn_number+ 1);
2059 else if (reg_qty[regno] >= 0)
2060 qty_death[reg_qty[regno]] = 2 * this_insn_number + output_p;
2063 /* Find a block of SIZE words of hard regs in reg_class CLASS
2064 that can hold something of machine-mode MODE
2065 (but actually we test only the first of the block for holding MODE)
2066 and still free between insn BORN_INDEX and insn DEAD_INDEX,
2067 and return the number of the first of them.
2068 Return -1 if such a block cannot be found.
2069 If QTY crosses calls, insist on a register preserved by calls,
2070 unless ACCEPT_CALL_CLOBBERED is nonzero.
2072 If JUST_TRY_SUGGESTED is non-zero, only try to see if the suggested
2073 register is available. If not, return -1. */
2075 static int
2076 find_free_reg (class, mode, qty, accept_call_clobbered, just_try_suggested,
2077 born_index, dead_index)
2078 enum reg_class class;
2079 enum machine_mode mode;
2080 int qty;
2081 int accept_call_clobbered;
2082 int just_try_suggested;
2083 int born_index, dead_index;
2085 register int i, ins;
2086 #ifdef HARD_REG_SET
2087 register /* Declare it register if it's a scalar. */
2088 #endif
2089 HARD_REG_SET used, first_used;
2090 #ifdef ELIMINABLE_REGS
2091 static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
2092 #endif
2094 /* Validate our parameters. */
2095 if (born_index < 0 || born_index > dead_index)
2096 abort ();
2098 /* Don't let a pseudo live in a reg across a function call
2099 if we might get a nonlocal goto. */
2100 if (current_function_has_nonlocal_label
2101 && qty_n_calls_crossed[qty] > 0)
2102 return -1;
2104 if (accept_call_clobbered)
2105 COPY_HARD_REG_SET (used, call_fixed_reg_set);
2106 else if (qty_n_calls_crossed[qty] == 0)
2107 COPY_HARD_REG_SET (used, fixed_reg_set);
2108 else
2109 COPY_HARD_REG_SET (used, call_used_reg_set);
2111 if (accept_call_clobbered)
2112 IOR_HARD_REG_SET (used, losing_caller_save_reg_set);
2114 for (ins = born_index; ins < dead_index; ins++)
2115 IOR_HARD_REG_SET (used, regs_live_at[ins]);
2117 IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) class]);
2119 /* Don't use the frame pointer reg in local-alloc even if
2120 we may omit the frame pointer, because if we do that and then we
2121 need a frame pointer, reload won't know how to move the pseudo
2122 to another hard reg. It can move only regs made by global-alloc.
2124 This is true of any register that can be eliminated. */
2125 #ifdef ELIMINABLE_REGS
2126 for (i = 0; i < sizeof eliminables / sizeof eliminables[0]; i++)
2127 SET_HARD_REG_BIT (used, eliminables[i].from);
2128 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2129 /* If FRAME_POINTER_REGNUM is not a real register, then protect the one
2130 that it might be eliminated into. */
2131 SET_HARD_REG_BIT (used, HARD_FRAME_POINTER_REGNUM);
2132 #endif
2133 #else
2134 SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
2135 #endif
2137 #ifdef CLASS_CANNOT_CHANGE_SIZE
2138 if (qty_changes_size[qty])
2139 IOR_HARD_REG_SET (used,
2140 reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE]);
2141 #endif
2143 /* Normally, the registers that can be used for the first register in
2144 a multi-register quantity are the same as those that can be used for
2145 subsequent registers. However, if just trying suggested registers,
2146 restrict our consideration to them. If there are copy-suggested
2147 register, try them. Otherwise, try the arithmetic-suggested
2148 registers. */
2149 COPY_HARD_REG_SET (first_used, used);
2151 if (just_try_suggested)
2153 if (qty_phys_num_copy_sugg[qty] != 0)
2154 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_copy_sugg[qty]);
2155 else
2156 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_sugg[qty]);
2159 /* If all registers are excluded, we can't do anything. */
2160 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) ALL_REGS], first_used, fail);
2162 /* If at least one would be suitable, test each hard reg. */
2164 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2166 #ifdef REG_ALLOC_ORDER
2167 int regno = reg_alloc_order[i];
2168 #else
2169 int regno = i;
2170 #endif
2171 if (! TEST_HARD_REG_BIT (first_used, regno)
2172 && HARD_REGNO_MODE_OK (regno, mode))
2174 register int j;
2175 register int size1 = HARD_REGNO_NREGS (regno, mode);
2176 for (j = 1; j < size1 && ! TEST_HARD_REG_BIT (used, regno + j); j++);
2177 if (j == size1)
2179 /* Mark that this register is in use between its birth and death
2180 insns. */
2181 post_mark_life (regno, mode, 1, born_index, dead_index);
2182 return regno;
2184 #ifndef REG_ALLOC_ORDER
2185 i += j; /* Skip starting points we know will lose */
2186 #endif
2190 fail:
2192 /* If we are just trying suggested register, we have just tried copy-
2193 suggested registers, and there are arithmetic-suggested registers,
2194 try them. */
2196 /* If it would be profitable to allocate a call-clobbered register
2197 and save and restore it around calls, do that. */
2198 if (just_try_suggested && qty_phys_num_copy_sugg[qty] != 0
2199 && qty_phys_num_sugg[qty] != 0)
2201 /* Don't try the copy-suggested regs again. */
2202 qty_phys_num_copy_sugg[qty] = 0;
2203 return find_free_reg (class, mode, qty, accept_call_clobbered, 1,
2204 born_index, dead_index);
2207 /* We need not check to see if the current function has nonlocal
2208 labels because we don't put any pseudos that are live over calls in
2209 registers in that case. */
2211 if (! accept_call_clobbered
2212 && flag_caller_saves
2213 && ! just_try_suggested
2214 && qty_n_calls_crossed[qty] != 0
2215 && CALLER_SAVE_PROFITABLE (qty_n_refs[qty], qty_n_calls_crossed[qty]))
2217 i = find_free_reg (class, mode, qty, 1, 0, born_index, dead_index);
2218 if (i >= 0)
2219 caller_save_needed = 1;
2220 return i;
2222 return -1;
2225 /* Mark that REGNO with machine-mode MODE is live starting from the current
2226 insn (if LIFE is non-zero) or dead starting at the current insn (if LIFE
2227 is zero). */
2229 static void
2230 mark_life (regno, mode, life)
2231 register int regno;
2232 enum machine_mode mode;
2233 int life;
2235 register int j = HARD_REGNO_NREGS (regno, mode);
2236 if (life)
2237 while (--j >= 0)
2238 SET_HARD_REG_BIT (regs_live, regno + j);
2239 else
2240 while (--j >= 0)
2241 CLEAR_HARD_REG_BIT (regs_live, regno + j);
2244 /* Mark register number REGNO (with machine-mode MODE) as live (if LIFE
2245 is non-zero) or dead (if LIFE is zero) from insn number BIRTH (inclusive)
2246 to insn number DEATH (exclusive). */
2248 static void
2249 post_mark_life (regno, mode, life, birth, death)
2250 int regno;
2251 enum machine_mode mode;
2252 int life, birth, death;
2254 register int j = HARD_REGNO_NREGS (regno, mode);
2255 #ifdef HARD_REG_SET
2256 register /* Declare it register if it's a scalar. */
2257 #endif
2258 HARD_REG_SET this_reg;
2260 CLEAR_HARD_REG_SET (this_reg);
2261 while (--j >= 0)
2262 SET_HARD_REG_BIT (this_reg, regno + j);
2264 if (life)
2265 while (birth < death)
2267 IOR_HARD_REG_SET (regs_live_at[birth], this_reg);
2268 birth++;
2270 else
2271 while (birth < death)
2273 AND_COMPL_HARD_REG_SET (regs_live_at[birth], this_reg);
2274 birth++;
2278 /* INSN is the CLOBBER insn that starts a REG_NO_NOCONFLICT block, R0
2279 is the register being clobbered, and R1 is a register being used in
2280 the equivalent expression.
2282 If R1 dies in the block and has a REG_NO_CONFLICT note on every insn
2283 in which it is used, return 1.
2285 Otherwise, return 0. */
2287 static int
2288 no_conflict_p (insn, r0, r1)
2289 rtx insn, r0, r1;
2291 int ok = 0;
2292 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
2293 rtx p, last;
2295 /* If R1 is a hard register, return 0 since we handle this case
2296 when we scan the insns that actually use it. */
2298 if (note == 0
2299 || (GET_CODE (r1) == REG && REGNO (r1) < FIRST_PSEUDO_REGISTER)
2300 || (GET_CODE (r1) == SUBREG && GET_CODE (SUBREG_REG (r1)) == REG
2301 && REGNO (SUBREG_REG (r1)) < FIRST_PSEUDO_REGISTER))
2302 return 0;
2304 last = XEXP (note, 0);
2306 for (p = NEXT_INSN (insn); p && p != last; p = NEXT_INSN (p))
2307 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
2309 if (find_reg_note (p, REG_DEAD, r1))
2310 ok = 1;
2312 if (reg_mentioned_p (r1, PATTERN (p))
2313 && ! find_reg_note (p, REG_NO_CONFLICT, r1))
2314 return 0;
2317 return ok;
2320 #ifdef REGISTER_CONSTRAINTS
2322 /* Return the number of alternatives for which the constraint string P
2323 indicates that the operand must be equal to operand 0 and that no register
2324 is acceptable. */
2326 static int
2327 requires_inout (p)
2328 char *p;
2330 char c;
2331 int found_zero = 0;
2332 int reg_allowed = 0;
2333 int num_matching_alts = 0;
2335 while (c = *p++)
2336 switch (c)
2338 case '=': case '+': case '?':
2339 case '#': case '&': case '!':
2340 case '*': case '%':
2341 case '1': case '2': case '3': case '4':
2342 case 'm': case '<': case '>': case 'V': case 'o':
2343 case 'E': case 'F': case 'G': case 'H':
2344 case 's': case 'i': case 'n':
2345 case 'I': case 'J': case 'K': case 'L':
2346 case 'M': case 'N': case 'O': case 'P':
2347 #ifdef EXTRA_CONSTRAINT
2348 case 'Q': case 'R': case 'S': case 'T': case 'U':
2349 #endif
2350 case 'X':
2351 /* These don't say anything we care about. */
2352 break;
2354 case ',':
2355 if (found_zero && ! reg_allowed)
2356 num_matching_alts++;
2358 found_zero = reg_allowed = 0;
2359 break;
2361 case '0':
2362 found_zero = 1;
2363 break;
2365 case 'p':
2366 case 'g': case 'r':
2367 default:
2368 reg_allowed = 1;
2369 break;
2372 if (found_zero && ! reg_allowed)
2373 num_matching_alts++;
2375 return num_matching_alts;
2377 #endif /* REGISTER_CONSTRAINTS */
2379 void
2380 dump_local_alloc (file)
2381 FILE *file;
2383 register int i;
2384 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2385 if (reg_renumber[i] != -1)
2386 fprintf (file, ";; Register %d in %d.\n", i, reg_renumber[i]);