(*zeroextract[qs]i_compare0_scratch): Use const_int_operand
[official-gcc.git] / gcc / global.c
blob534c36c65a232e62f5cecd59d0029190c47818d3
1 /* Allocate registers for pseudo-registers that span basic blocks.
2 Copyright (C) 1987, 1988, 1991, 1994, 1996 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 #include <stdio.h>
23 #include "config.h"
24 #include "rtl.h"
25 #include "flags.h"
26 #include "basic-block.h"
27 #include "hard-reg-set.h"
28 #include "regs.h"
29 #include "insn-config.h"
30 #include "output.h"
32 /* This pass of the compiler performs global register allocation.
33 It assigns hard register numbers to all the pseudo registers
34 that were not handled in local_alloc. Assignments are recorded
35 in the vector reg_renumber, not by changing the rtl code.
36 (Such changes are made by final). The entry point is
37 the function global_alloc.
39 After allocation is complete, the reload pass is run as a subroutine
40 of this pass, so that when a pseudo reg loses its hard reg due to
41 spilling it is possible to make a second attempt to find a hard
42 reg for it. The reload pass is independent in other respects
43 and it is run even when stupid register allocation is in use.
45 1. count the pseudo-registers still needing allocation
46 and assign allocation-numbers (allocnos) to them.
47 Set up tables reg_allocno and allocno_reg to map
48 reg numbers to allocnos and vice versa.
49 max_allocno gets the number of allocnos in use.
51 2. Allocate a max_allocno by max_allocno conflict bit matrix and clear it.
52 Allocate a max_allocno by FIRST_PSEUDO_REGISTER conflict matrix
53 for conflicts between allocnos and explicit hard register use
54 (which includes use of pseudo-registers allocated by local_alloc).
56 3. for each basic block
57 walk forward through the block, recording which
58 unallocated registers and which hardware registers are live.
59 Build the conflict matrix between the unallocated registers
60 and another of unallocated registers versus hardware registers.
61 Also record the preferred hardware registers
62 for each unallocated one.
64 4. Sort a table of the allocnos into order of
65 desirability of the variables.
67 5. Allocate the variables in that order; each if possible into
68 a preferred register, else into another register. */
70 /* Number of pseudo-registers still requiring allocation
71 (not allocated by local_allocate). */
73 static int max_allocno;
75 /* Indexed by (pseudo) reg number, gives the allocno, or -1
76 for pseudo registers already allocated by local_allocate. */
78 int *reg_allocno;
80 /* Indexed by allocno, gives the reg number. */
82 static int *allocno_reg;
84 /* A vector of the integers from 0 to max_allocno-1,
85 sorted in the order of first-to-be-allocated first. */
87 static int *allocno_order;
89 /* Indexed by an allocno, gives the number of consecutive
90 hard registers needed by that pseudo reg. */
92 static int *allocno_size;
94 /* Indexed by (pseudo) reg number, gives the number of another
95 lower-numbered pseudo reg which can share a hard reg with this pseudo
96 *even if the two pseudos would otherwise appear to conflict*. */
98 static int *reg_may_share;
100 /* Define the number of bits in each element of `conflicts' and what
101 type that element has. We use the largest integer format on the
102 host machine. */
104 #define INT_BITS HOST_BITS_PER_WIDE_INT
105 #define INT_TYPE HOST_WIDE_INT
107 /* max_allocno by max_allocno array of bits,
108 recording whether two allocno's conflict (can't go in the same
109 hardware register).
111 `conflicts' is not symmetric; a conflict between allocno's i and j
112 is recorded either in element i,j or in element j,i. */
114 static INT_TYPE *conflicts;
116 /* Number of ints require to hold max_allocno bits.
117 This is the length of a row in `conflicts'. */
119 static int allocno_row_words;
121 /* Two macros to test or store 1 in an element of `conflicts'. */
123 #define CONFLICTP(I, J) \
124 (conflicts[(I) * allocno_row_words + (J) / INT_BITS] \
125 & ((INT_TYPE) 1 << ((J) % INT_BITS)))
127 #define SET_CONFLICT(I, J) \
128 (conflicts[(I) * allocno_row_words + (J) / INT_BITS] \
129 |= ((INT_TYPE) 1 << ((J) % INT_BITS)))
131 /* Set of hard regs currently live (during scan of all insns). */
133 static HARD_REG_SET hard_regs_live;
135 /* Indexed by N, set of hard regs conflicting with allocno N. */
137 static HARD_REG_SET *hard_reg_conflicts;
139 /* Indexed by N, set of hard regs preferred by allocno N.
140 This is used to make allocnos go into regs that are copied to or from them,
141 when possible, to reduce register shuffling. */
143 static HARD_REG_SET *hard_reg_preferences;
145 /* Similar, but just counts register preferences made in simple copy
146 operations, rather than arithmetic. These are given priority because
147 we can always eliminate an insn by using these, but using a register
148 in the above list won't always eliminate an insn. */
150 static HARD_REG_SET *hard_reg_copy_preferences;
152 /* Similar to hard_reg_preferences, but includes bits for subsequent
153 registers when an allocno is multi-word. The above variable is used for
154 allocation while this is used to build reg_someone_prefers, below. */
156 static HARD_REG_SET *hard_reg_full_preferences;
158 /* Indexed by N, set of hard registers that some later allocno has a
159 preference for. */
161 static HARD_REG_SET *regs_someone_prefers;
163 /* Set of registers that global-alloc isn't supposed to use. */
165 static HARD_REG_SET no_global_alloc_regs;
167 /* Set of registers used so far. */
169 static HARD_REG_SET regs_used_so_far;
171 /* Number of calls crossed by each allocno. */
173 static int *allocno_calls_crossed;
175 /* Number of refs (weighted) to each allocno. */
177 static int *allocno_n_refs;
179 /* Guess at live length of each allocno.
180 This is actually the max of the live lengths of the regs. */
182 static int *allocno_live_length;
184 /* Number of refs (weighted) to each hard reg, as used by local alloc.
185 It is zero for a reg that contains global pseudos or is explicitly used. */
187 static int local_reg_n_refs[FIRST_PSEUDO_REGISTER];
189 /* Guess at live length of each hard reg, as used by local alloc.
190 This is actually the sum of the live lengths of the specific regs. */
192 static int local_reg_live_length[FIRST_PSEUDO_REGISTER];
194 /* Test a bit in TABLE, a vector of HARD_REG_SETs,
195 for vector element I, and hard register number J. */
197 #define REGBITP(TABLE, I, J) TEST_HARD_REG_BIT (TABLE[I], J)
199 /* Set to 1 a bit in a vector of HARD_REG_SETs. Works like REGBITP. */
201 #define SET_REGBIT(TABLE, I, J) SET_HARD_REG_BIT (TABLE[I], J)
203 /* Bit mask for allocnos live at current point in the scan. */
205 static INT_TYPE *allocnos_live;
207 /* Test, set or clear bit number I in allocnos_live,
208 a bit vector indexed by allocno. */
210 #define ALLOCNO_LIVE_P(I) \
211 (allocnos_live[(I) / INT_BITS] & ((INT_TYPE) 1 << ((I) % INT_BITS)))
213 #define SET_ALLOCNO_LIVE(I) \
214 (allocnos_live[(I) / INT_BITS] |= ((INT_TYPE) 1 << ((I) % INT_BITS)))
216 #define CLEAR_ALLOCNO_LIVE(I) \
217 (allocnos_live[(I) / INT_BITS] &= ~((INT_TYPE) 1 << ((I) % INT_BITS)))
219 /* This is turned off because it doesn't work right for DImode.
220 (And it is only used for DImode, so the other cases are worthless.)
221 The problem is that it isn't true that there is NO possibility of conflict;
222 only that there is no conflict if the two pseudos get the exact same regs.
223 If they were allocated with a partial overlap, there would be a conflict.
224 We can't safely turn off the conflict unless we have another way to
225 prevent the partial overlap.
227 Idea: change hard_reg_conflicts so that instead of recording which
228 hard regs the allocno may not overlap, it records where the allocno
229 may not start. Change both where it is used and where it is updated.
230 Then there is a way to record that (reg:DI 108) may start at 10
231 but not at 9 or 11. There is still the question of how to record
232 this semi-conflict between two pseudos. */
233 #if 0
234 /* Reg pairs for which conflict after the current insn
235 is inhibited by a REG_NO_CONFLICT note.
236 If the table gets full, we ignore any other notes--that is conservative. */
237 #define NUM_NO_CONFLICT_PAIRS 4
238 /* Number of pairs in use in this insn. */
239 int n_no_conflict_pairs;
240 static struct { int allocno1, allocno2;}
241 no_conflict_pairs[NUM_NO_CONFLICT_PAIRS];
242 #endif /* 0 */
244 /* Record all regs that are set in any one insn.
245 Communication from mark_reg_{store,clobber} and global_conflicts. */
247 static rtx *regs_set;
248 static int n_regs_set;
250 /* All registers that can be eliminated. */
252 static HARD_REG_SET eliminable_regset;
254 static int allocno_compare PROTO((int *, int *));
255 static void global_conflicts PROTO((void));
256 static void expand_preferences PROTO((void));
257 static void prune_preferences PROTO((void));
258 static void find_reg PROTO((int, HARD_REG_SET, int, int, int));
259 static void record_one_conflict PROTO((int));
260 static void record_conflicts PROTO((short *, int));
261 static void mark_reg_store PROTO((rtx, rtx));
262 static void mark_reg_clobber PROTO((rtx, rtx));
263 static void mark_reg_conflicts PROTO((rtx));
264 static void mark_reg_death PROTO((rtx));
265 static void mark_reg_live_nc PROTO((int, enum machine_mode));
266 static void set_preference PROTO((rtx, rtx));
267 static void dump_conflicts PROTO((FILE *));
269 /* Perform allocation of pseudo-registers not allocated by local_alloc.
270 FILE is a file to output debugging information on,
271 or zero if such output is not desired.
273 Return value is nonzero if reload failed
274 and we must not do any more for this function. */
277 global_alloc (file)
278 FILE *file;
280 #ifdef ELIMINABLE_REGS
281 static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
282 #endif
283 int need_fp
284 = (! flag_omit_frame_pointer
285 #ifdef EXIT_IGNORE_STACK
286 || (current_function_calls_alloca && EXIT_IGNORE_STACK)
287 #endif
288 || FRAME_POINTER_REQUIRED);
290 register int i;
291 rtx x;
293 max_allocno = 0;
295 /* A machine may have certain hard registers that
296 are safe to use only within a basic block. */
298 CLEAR_HARD_REG_SET (no_global_alloc_regs);
299 #ifdef OVERLAPPING_REGNO_P
300 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
301 if (OVERLAPPING_REGNO_P (i))
302 SET_HARD_REG_BIT (no_global_alloc_regs, i);
303 #endif
305 /* Build the regset of all eliminable registers and show we can't use those
306 that we already know won't be eliminated. */
307 #ifdef ELIMINABLE_REGS
308 for (i = 0; i < sizeof eliminables / sizeof eliminables[0]; i++)
310 SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
312 if (! CAN_ELIMINATE (eliminables[i].from, eliminables[i].to)
313 || (eliminables[i].to == STACK_POINTER_REGNUM && need_fp))
314 SET_HARD_REG_BIT (no_global_alloc_regs, eliminables[i].from);
316 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
317 SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
318 if (need_fp)
319 SET_HARD_REG_BIT (no_global_alloc_regs, HARD_FRAME_POINTER_REGNUM);
320 #endif
322 #else
323 SET_HARD_REG_BIT (eliminable_regset, FRAME_POINTER_REGNUM);
324 if (need_fp)
325 SET_HARD_REG_BIT (no_global_alloc_regs, FRAME_POINTER_REGNUM);
326 #endif
328 /* Track which registers have already been used. Start with registers
329 explicitly in the rtl, then registers allocated by local register
330 allocation. */
332 CLEAR_HARD_REG_SET (regs_used_so_far);
333 #ifdef LEAF_REGISTERS
334 /* If we are doing the leaf function optimization, and this is a leaf
335 function, it means that the registers that take work to save are those
336 that need a register window. So prefer the ones that can be used in
337 a leaf function. */
339 char *cheap_regs;
340 static char leaf_regs[] = LEAF_REGISTERS;
342 if (only_leaf_regs_used () && leaf_function_p ())
343 cheap_regs = leaf_regs;
344 else
345 cheap_regs = call_used_regs;
346 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
347 if (regs_ever_live[i] || cheap_regs[i])
348 SET_HARD_REG_BIT (regs_used_so_far, i);
350 #else
351 /* We consider registers that do not have to be saved over calls as if
352 they were already used since there is no cost in using them. */
353 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
354 if (regs_ever_live[i] || call_used_regs[i])
355 SET_HARD_REG_BIT (regs_used_so_far, i);
356 #endif
358 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
359 if (reg_renumber[i] >= 0)
360 SET_HARD_REG_BIT (regs_used_so_far, reg_renumber[i]);
362 /* Establish mappings from register number to allocation number
363 and vice versa. In the process, count the allocnos. */
365 reg_allocno = (int *) alloca (max_regno * sizeof (int));
367 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
368 reg_allocno[i] = -1;
370 /* Initialize the shared-hard-reg mapping
371 from the list of pairs that may share. */
372 reg_may_share = (int *) alloca (max_regno * sizeof (int));
373 bzero ((char *) reg_may_share, max_regno * sizeof (int));
374 for (x = regs_may_share; x; x = XEXP (XEXP (x, 1), 1))
376 int r1 = REGNO (XEXP (x, 0));
377 int r2 = REGNO (XEXP (XEXP (x, 1), 0));
378 if (r1 > r2)
379 reg_may_share[r1] = r2;
380 else
381 reg_may_share[r2] = r1;
384 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
385 /* Note that reg_live_length[i] < 0 indicates a "constant" reg
386 that we are supposed to refrain from putting in a hard reg.
387 -2 means do make an allocno but don't allocate it. */
388 if (reg_n_refs[i] != 0 && reg_renumber[i] < 0 && reg_live_length[i] != -1
389 /* Don't allocate pseudos that cross calls,
390 if this function receives a nonlocal goto. */
391 && (! current_function_has_nonlocal_label
392 || reg_n_calls_crossed[i] == 0))
394 if (reg_may_share[i] && reg_allocno[reg_may_share[i]] >= 0)
395 reg_allocno[i] = reg_allocno[reg_may_share[i]];
396 else
397 reg_allocno[i] = max_allocno++;
398 if (reg_live_length[i] == 0)
399 abort ();
401 else
402 reg_allocno[i] = -1;
404 allocno_reg = (int *) alloca (max_allocno * sizeof (int));
405 allocno_size = (int *) alloca (max_allocno * sizeof (int));
406 allocno_calls_crossed = (int *) alloca (max_allocno * sizeof (int));
407 allocno_n_refs = (int *) alloca (max_allocno * sizeof (int));
408 allocno_live_length = (int *) alloca (max_allocno * sizeof (int));
409 bzero ((char *) allocno_size, max_allocno * sizeof (int));
410 bzero ((char *) allocno_calls_crossed, max_allocno * sizeof (int));
411 bzero ((char *) allocno_n_refs, max_allocno * sizeof (int));
412 bzero ((char *) allocno_live_length, max_allocno * sizeof (int));
414 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
415 if (reg_allocno[i] >= 0)
417 int allocno = reg_allocno[i];
418 allocno_reg[allocno] = i;
419 allocno_size[allocno] = PSEUDO_REGNO_SIZE (i);
420 allocno_calls_crossed[allocno] += reg_n_calls_crossed[i];
421 allocno_n_refs[allocno] += reg_n_refs[i];
422 if (allocno_live_length[allocno] < reg_live_length[i])
423 allocno_live_length[allocno] = reg_live_length[i];
426 /* Calculate amount of usage of each hard reg by pseudos
427 allocated by local-alloc. This is to see if we want to
428 override it. */
429 bzero ((char *) local_reg_live_length, sizeof local_reg_live_length);
430 bzero ((char *) local_reg_n_refs, sizeof local_reg_n_refs);
431 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
432 if (reg_allocno[i] < 0 && reg_renumber[i] >= 0)
434 int regno = reg_renumber[i];
435 int endregno = regno + HARD_REGNO_NREGS (regno, PSEUDO_REGNO_MODE (i));
436 int j;
438 for (j = regno; j < endregno; j++)
440 local_reg_n_refs[j] += reg_n_refs[i];
441 local_reg_live_length[j] += reg_live_length[i];
445 /* We can't override local-alloc for a reg used not just by local-alloc. */
446 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
447 if (regs_ever_live[i])
448 local_reg_n_refs[i] = 0;
450 /* Likewise for regs used in a SCRATCH. */
451 for (i = 0; i < scratch_list_length; i++)
452 if (scratch_list[i])
454 int regno = REGNO (scratch_list[i]);
455 int lim = regno + HARD_REGNO_NREGS (regno, GET_MODE (scratch_list[i]));
456 int j;
458 for (j = regno; j < lim; j++)
459 local_reg_n_refs[j] = 0;
462 /* Allocate the space for the conflict and preference tables and
463 initialize them. */
465 hard_reg_conflicts
466 = (HARD_REG_SET *) alloca (max_allocno * sizeof (HARD_REG_SET));
467 bzero ((char *) hard_reg_conflicts, max_allocno * sizeof (HARD_REG_SET));
469 hard_reg_preferences
470 = (HARD_REG_SET *) alloca (max_allocno * sizeof (HARD_REG_SET));
471 bzero ((char *) hard_reg_preferences, max_allocno * sizeof (HARD_REG_SET));
473 hard_reg_copy_preferences
474 = (HARD_REG_SET *) alloca (max_allocno * sizeof (HARD_REG_SET));
475 bzero ((char *) hard_reg_copy_preferences,
476 max_allocno * sizeof (HARD_REG_SET));
478 hard_reg_full_preferences
479 = (HARD_REG_SET *) alloca (max_allocno * sizeof (HARD_REG_SET));
480 bzero ((char *) hard_reg_full_preferences,
481 max_allocno * sizeof (HARD_REG_SET));
483 regs_someone_prefers
484 = (HARD_REG_SET *) alloca (max_allocno * sizeof (HARD_REG_SET));
485 bzero ((char *) regs_someone_prefers, max_allocno * sizeof (HARD_REG_SET));
487 allocno_row_words = (max_allocno + INT_BITS - 1) / INT_BITS;
489 conflicts = (INT_TYPE *) alloca (max_allocno * allocno_row_words
490 * sizeof (INT_TYPE));
491 bzero ((char *) conflicts,
492 max_allocno * allocno_row_words * sizeof (INT_TYPE));
494 allocnos_live = (INT_TYPE *) alloca (allocno_row_words * sizeof (INT_TYPE));
496 /* If there is work to be done (at least one reg to allocate),
497 perform global conflict analysis and allocate the regs. */
499 if (max_allocno > 0)
501 /* Scan all the insns and compute the conflicts among allocnos
502 and between allocnos and hard regs. */
504 global_conflicts ();
506 /* Eliminate conflicts between pseudos and eliminable registers. If
507 the register is not eliminated, the pseudo won't really be able to
508 live in the eliminable register, so the conflict doesn't matter.
509 If we do eliminate the register, the conflict will no longer exist.
510 So in either case, we can ignore the conflict. Likewise for
511 preferences. */
513 for (i = 0; i < max_allocno; i++)
515 AND_COMPL_HARD_REG_SET (hard_reg_conflicts[i], eliminable_regset);
516 AND_COMPL_HARD_REG_SET (hard_reg_copy_preferences[i],
517 eliminable_regset);
518 AND_COMPL_HARD_REG_SET (hard_reg_preferences[i], eliminable_regset);
521 /* Try to expand the preferences by merging them between allocnos. */
523 expand_preferences ();
525 /* Determine the order to allocate the remaining pseudo registers. */
527 allocno_order = (int *) alloca (max_allocno * sizeof (int));
528 for (i = 0; i < max_allocno; i++)
529 allocno_order[i] = i;
531 /* Default the size to 1, since allocno_compare uses it to divide by.
532 Also convert allocno_live_length of zero to -1. A length of zero
533 can occur when all the registers for that allocno have reg_live_length
534 equal to -2. In this case, we want to make an allocno, but not
535 allocate it. So avoid the divide-by-zero and set it to a low
536 priority. */
538 for (i = 0; i < max_allocno; i++)
540 if (allocno_size[i] == 0)
541 allocno_size[i] = 1;
542 if (allocno_live_length[i] == 0)
543 allocno_live_length[i] = -1;
546 qsort (allocno_order, max_allocno, sizeof (int), allocno_compare);
548 prune_preferences ();
550 if (file)
551 dump_conflicts (file);
553 /* Try allocating them, one by one, in that order,
554 except for parameters marked with reg_live_length[regno] == -2. */
556 for (i = 0; i < max_allocno; i++)
557 if (reg_live_length[allocno_reg[allocno_order[i]]] >= 0)
559 /* If we have more than one register class,
560 first try allocating in the class that is cheapest
561 for this pseudo-reg. If that fails, try any reg. */
562 if (N_REG_CLASSES > 1)
564 find_reg (allocno_order[i], HARD_CONST (0), 0, 0, 0);
565 if (reg_renumber[allocno_reg[allocno_order[i]]] >= 0)
566 continue;
568 if (reg_alternate_class (allocno_reg[allocno_order[i]]) != NO_REGS)
569 find_reg (allocno_order[i], HARD_CONST (0), 1, 0, 0);
573 /* Do the reloads now while the allocno data still exist, so that we can
574 try to assign new hard regs to any pseudo regs that are spilled. */
576 #if 0 /* We need to eliminate regs even if there is no rtl code,
577 for the sake of debugging information. */
578 if (n_basic_blocks > 0)
579 #endif
580 return reload (get_insns (), 1, file);
583 /* Sort predicate for ordering the allocnos.
584 Returns -1 (1) if *v1 should be allocated before (after) *v2. */
586 static int
587 allocno_compare (v1, v2)
588 int *v1, *v2;
590 /* Note that the quotient will never be bigger than
591 the value of floor_log2 times the maximum number of
592 times a register can occur in one insn (surely less than 100).
593 Multiplying this by 10000 can't overflow. */
594 register int pri1
595 = (((double) (floor_log2 (allocno_n_refs[*v1]) * allocno_n_refs[*v1])
596 / allocno_live_length[*v1])
597 * 10000 * allocno_size[*v1]);
598 register int pri2
599 = (((double) (floor_log2 (allocno_n_refs[*v2]) * allocno_n_refs[*v2])
600 / allocno_live_length[*v2])
601 * 10000 * allocno_size[*v2]);
602 if (pri2 - pri1)
603 return pri2 - pri1;
605 /* If regs are equally good, sort by allocno,
606 so that the results of qsort leave nothing to chance. */
607 return *v1 - *v2;
610 /* Scan the rtl code and record all conflicts and register preferences in the
611 conflict matrices and preference tables. */
613 static void
614 global_conflicts ()
616 register int b, i;
617 register rtx insn;
618 short *block_start_allocnos;
620 /* Make a vector that mark_reg_{store,clobber} will store in. */
621 regs_set = (rtx *) alloca (max_parallel * sizeof (rtx) * 2);
623 block_start_allocnos = (short *) alloca (max_allocno * sizeof (short));
625 for (b = 0; b < n_basic_blocks; b++)
627 bzero ((char *) allocnos_live, allocno_row_words * sizeof (INT_TYPE));
629 /* Initialize table of registers currently live
630 to the state at the beginning of this basic block.
631 This also marks the conflicts among them.
633 For pseudo-regs, there is only one bit for each one
634 no matter how many hard regs it occupies.
635 This is ok; we know the size from PSEUDO_REGNO_SIZE.
636 For explicit hard regs, we cannot know the size that way
637 since one hard reg can be used with various sizes.
638 Therefore, we must require that all the hard regs
639 implicitly live as part of a multi-word hard reg
640 are explicitly marked in basic_block_live_at_start. */
643 register int offset;
644 REGSET_ELT_TYPE bit;
645 register regset old = basic_block_live_at_start[b];
646 int ax = 0;
648 #ifdef HARD_REG_SET
649 hard_regs_live = old[0];
650 #else
651 COPY_HARD_REG_SET (hard_regs_live, old);
652 #endif
653 for (offset = 0, i = 0; offset < regset_size; offset++)
654 if (old[offset] == 0)
655 i += REGSET_ELT_BITS;
656 else
657 for (bit = 1; bit; bit <<= 1, i++)
659 if (i >= max_regno)
660 break;
661 if (old[offset] & bit)
663 register int a = reg_allocno[i];
664 if (a >= 0)
666 SET_ALLOCNO_LIVE (a);
667 block_start_allocnos[ax++] = a;
669 else if ((a = reg_renumber[i]) >= 0)
670 mark_reg_live_nc (a, PSEUDO_REGNO_MODE (i));
674 /* Record that each allocno now live conflicts with each other
675 allocno now live, and with each hard reg now live. */
677 record_conflicts (block_start_allocnos, ax);
680 insn = basic_block_head[b];
682 /* Scan the code of this basic block, noting which allocnos
683 and hard regs are born or die. When one is born,
684 record a conflict with all others currently live. */
686 while (1)
688 register RTX_CODE code = GET_CODE (insn);
689 register rtx link;
691 /* Make regs_set an empty set. */
693 n_regs_set = 0;
695 if (code == INSN || code == CALL_INSN || code == JUMP_INSN)
698 #if 0
699 int i = 0;
700 for (link = REG_NOTES (insn);
701 link && i < NUM_NO_CONFLICT_PAIRS;
702 link = XEXP (link, 1))
703 if (REG_NOTE_KIND (link) == REG_NO_CONFLICT)
705 no_conflict_pairs[i].allocno1
706 = reg_allocno[REGNO (SET_DEST (PATTERN (insn)))];
707 no_conflict_pairs[i].allocno2
708 = reg_allocno[REGNO (XEXP (link, 0))];
709 i++;
711 #endif /* 0 */
713 /* Mark any registers clobbered by INSN as live,
714 so they conflict with the inputs. */
716 note_stores (PATTERN (insn), mark_reg_clobber);
718 /* Mark any registers dead after INSN as dead now. */
720 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
721 if (REG_NOTE_KIND (link) == REG_DEAD)
722 mark_reg_death (XEXP (link, 0));
724 /* Mark any registers set in INSN as live,
725 and mark them as conflicting with all other live regs.
726 Clobbers are processed again, so they conflict with
727 the registers that are set. */
729 note_stores (PATTERN (insn), mark_reg_store);
731 #ifdef AUTO_INC_DEC
732 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
733 if (REG_NOTE_KIND (link) == REG_INC)
734 mark_reg_store (XEXP (link, 0), NULL_RTX);
735 #endif
737 /* If INSN has multiple outputs, then any reg that dies here
738 and is used inside of an output
739 must conflict with the other outputs. */
741 if (GET_CODE (PATTERN (insn)) == PARALLEL && !single_set (insn))
742 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
743 if (REG_NOTE_KIND (link) == REG_DEAD)
745 int used_in_output = 0;
746 int i;
747 rtx reg = XEXP (link, 0);
749 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
751 rtx set = XVECEXP (PATTERN (insn), 0, i);
752 if (GET_CODE (set) == SET
753 && GET_CODE (SET_DEST (set)) != REG
754 && !rtx_equal_p (reg, SET_DEST (set))
755 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
756 used_in_output = 1;
758 if (used_in_output)
759 mark_reg_conflicts (reg);
762 /* Mark any registers set in INSN and then never used. */
764 while (n_regs_set > 0)
765 if (find_regno_note (insn, REG_UNUSED,
766 REGNO (regs_set[--n_regs_set])))
767 mark_reg_death (regs_set[n_regs_set]);
770 if (insn == basic_block_end[b])
771 break;
772 insn = NEXT_INSN (insn);
776 /* Expand the preference information by looking for cases where one allocno
777 dies in an insn that sets an allocno. If those two allocnos don't conflict,
778 merge any preferences between those allocnos. */
780 static void
781 expand_preferences ()
783 rtx insn;
784 rtx link;
785 rtx set;
787 /* We only try to handle the most common cases here. Most of the cases
788 where this wins are reg-reg copies. */
790 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
791 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
792 && (set = single_set (insn)) != 0
793 && GET_CODE (SET_DEST (set)) == REG
794 && reg_allocno[REGNO (SET_DEST (set))] >= 0)
795 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
796 if (REG_NOTE_KIND (link) == REG_DEAD
797 && GET_CODE (XEXP (link, 0)) == REG
798 && reg_allocno[REGNO (XEXP (link, 0))] >= 0
799 && ! CONFLICTP (reg_allocno[REGNO (SET_DEST (set))],
800 reg_allocno[REGNO (XEXP (link, 0))])
801 && ! CONFLICTP (reg_allocno[REGNO (XEXP (link, 0))],
802 reg_allocno[REGNO (SET_DEST (set))]))
804 int a1 = reg_allocno[REGNO (SET_DEST (set))];
805 int a2 = reg_allocno[REGNO (XEXP (link, 0))];
807 if (XEXP (link, 0) == SET_SRC (set))
809 IOR_HARD_REG_SET (hard_reg_copy_preferences[a1],
810 hard_reg_copy_preferences[a2]);
811 IOR_HARD_REG_SET (hard_reg_copy_preferences[a2],
812 hard_reg_copy_preferences[a1]);
815 IOR_HARD_REG_SET (hard_reg_preferences[a1],
816 hard_reg_preferences[a2]);
817 IOR_HARD_REG_SET (hard_reg_preferences[a2],
818 hard_reg_preferences[a1]);
819 IOR_HARD_REG_SET (hard_reg_full_preferences[a1],
820 hard_reg_full_preferences[a2]);
821 IOR_HARD_REG_SET (hard_reg_full_preferences[a2],
822 hard_reg_full_preferences[a1]);
826 /* Prune the preferences for global registers to exclude registers that cannot
827 be used.
829 Compute `regs_someone_prefers', which is a bitmask of the hard registers
830 that are preferred by conflicting registers of lower priority. If possible,
831 we will avoid using these registers. */
833 static void
834 prune_preferences ()
836 int i, j;
837 int allocno;
839 /* Scan least most important to most important.
840 For each allocno, remove from preferences registers that cannot be used,
841 either because of conflicts or register type. Then compute all registers
842 preferred by each lower-priority register that conflicts. */
844 for (i = max_allocno - 1; i >= 0; i--)
846 HARD_REG_SET temp;
848 allocno = allocno_order[i];
849 COPY_HARD_REG_SET (temp, hard_reg_conflicts[allocno]);
851 if (allocno_calls_crossed[allocno] == 0)
852 IOR_HARD_REG_SET (temp, fixed_reg_set);
853 else
854 IOR_HARD_REG_SET (temp, call_used_reg_set);
856 IOR_COMPL_HARD_REG_SET
857 (temp,
858 reg_class_contents[(int) reg_preferred_class (allocno_reg[allocno])]);
860 AND_COMPL_HARD_REG_SET (hard_reg_preferences[allocno], temp);
861 AND_COMPL_HARD_REG_SET (hard_reg_copy_preferences[allocno], temp);
862 AND_COMPL_HARD_REG_SET (hard_reg_full_preferences[allocno], temp);
864 CLEAR_HARD_REG_SET (regs_someone_prefers[allocno]);
866 /* Merge in the preferences of lower-priority registers (they have
867 already been pruned). If we also prefer some of those registers,
868 don't exclude them unless we are of a smaller size (in which case
869 we want to give the lower-priority allocno the first chance for
870 these registers). */
871 for (j = i + 1; j < max_allocno; j++)
872 if (CONFLICTP (allocno, allocno_order[j]))
874 COPY_HARD_REG_SET (temp,
875 hard_reg_full_preferences[allocno_order[j]]);
876 if (allocno_size[allocno_order[j]] <= allocno_size[allocno])
877 AND_COMPL_HARD_REG_SET (temp,
878 hard_reg_full_preferences[allocno]);
880 IOR_HARD_REG_SET (regs_someone_prefers[allocno], temp);
885 /* Assign a hard register to ALLOCNO; look for one that is the beginning
886 of a long enough stretch of hard regs none of which conflicts with ALLOCNO.
887 The registers marked in PREFREGS are tried first.
889 LOSERS, if non-zero, is a HARD_REG_SET indicating registers that cannot
890 be used for this allocation.
892 If ALT_REGS_P is zero, consider only the preferred class of ALLOCNO's reg.
893 Otherwise ignore that preferred class and use the alternate class.
895 If ACCEPT_CALL_CLOBBERED is nonzero, accept a call-clobbered hard reg that
896 will have to be saved and restored at calls.
898 RETRYING is nonzero if this is called from retry_global_alloc.
900 If we find one, record it in reg_renumber.
901 If not, do nothing. */
903 static void
904 find_reg (allocno, losers, alt_regs_p, accept_call_clobbered, retrying)
905 int allocno;
906 HARD_REG_SET losers;
907 int alt_regs_p;
908 int accept_call_clobbered;
909 int retrying;
911 register int i, best_reg, pass;
912 #ifdef HARD_REG_SET
913 register /* Declare it register if it's a scalar. */
914 #endif
915 HARD_REG_SET used, used1, used2;
917 enum reg_class class = (alt_regs_p
918 ? reg_alternate_class (allocno_reg[allocno])
919 : reg_preferred_class (allocno_reg[allocno]));
920 enum machine_mode mode = PSEUDO_REGNO_MODE (allocno_reg[allocno]);
922 if (accept_call_clobbered)
923 COPY_HARD_REG_SET (used1, call_fixed_reg_set);
924 else if (allocno_calls_crossed[allocno] == 0)
925 COPY_HARD_REG_SET (used1, fixed_reg_set);
926 else
927 COPY_HARD_REG_SET (used1, call_used_reg_set);
929 /* Some registers should not be allocated in global-alloc. */
930 IOR_HARD_REG_SET (used1, no_global_alloc_regs);
931 if (losers)
932 IOR_HARD_REG_SET (used1, losers);
934 IOR_COMPL_HARD_REG_SET (used1, reg_class_contents[(int) class]);
935 COPY_HARD_REG_SET (used2, used1);
937 IOR_HARD_REG_SET (used1, hard_reg_conflicts[allocno]);
939 #ifdef CLASS_CANNOT_CHANGE_SIZE
940 if (reg_changes_size[allocno_reg[allocno]])
941 IOR_HARD_REG_SET (used1,
942 reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE]);
943 #endif
945 /* Try each hard reg to see if it fits. Do this in two passes.
946 In the first pass, skip registers that are preferred by some other pseudo
947 to give it a better chance of getting one of those registers. Only if
948 we can't get a register when excluding those do we take one of them.
949 However, we never allocate a register for the first time in pass 0. */
951 COPY_HARD_REG_SET (used, used1);
952 IOR_COMPL_HARD_REG_SET (used, regs_used_so_far);
953 IOR_HARD_REG_SET (used, regs_someone_prefers[allocno]);
955 best_reg = -1;
956 for (i = FIRST_PSEUDO_REGISTER, pass = 0;
957 pass <= 1 && i >= FIRST_PSEUDO_REGISTER;
958 pass++)
960 if (pass == 1)
961 COPY_HARD_REG_SET (used, used1);
962 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
964 #ifdef REG_ALLOC_ORDER
965 int regno = reg_alloc_order[i];
966 #else
967 int regno = i;
968 #endif
969 if (! TEST_HARD_REG_BIT (used, regno)
970 && HARD_REGNO_MODE_OK (regno, mode))
972 register int j;
973 register int lim = regno + HARD_REGNO_NREGS (regno, mode);
974 for (j = regno + 1;
975 (j < lim
976 && ! TEST_HARD_REG_BIT (used, j));
977 j++);
978 if (j == lim)
980 best_reg = regno;
981 break;
983 #ifndef REG_ALLOC_ORDER
984 i = j; /* Skip starting points we know will lose */
985 #endif
990 /* See if there is a preferred register with the same class as the register
991 we allocated above. Making this restriction prevents register
992 preferencing from creating worse register allocation.
994 Remove from the preferred registers and conflicting registers. Note that
995 additional conflicts may have been added after `prune_preferences' was
996 called.
998 First do this for those register with copy preferences, then all
999 preferred registers. */
1001 AND_COMPL_HARD_REG_SET (hard_reg_copy_preferences[allocno], used);
1002 GO_IF_HARD_REG_SUBSET (hard_reg_copy_preferences[allocno],
1003 reg_class_contents[(int) NO_REGS], no_copy_prefs);
1005 if (best_reg >= 0)
1007 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1008 if (TEST_HARD_REG_BIT (hard_reg_copy_preferences[allocno], i)
1009 && HARD_REGNO_MODE_OK (i, mode)
1010 && (REGNO_REG_CLASS (i) == REGNO_REG_CLASS (best_reg)
1011 || reg_class_subset_p (REGNO_REG_CLASS (i),
1012 REGNO_REG_CLASS (best_reg))
1013 || reg_class_subset_p (REGNO_REG_CLASS (best_reg),
1014 REGNO_REG_CLASS (i))))
1016 register int j;
1017 register int lim = i + HARD_REGNO_NREGS (i, mode);
1018 for (j = i + 1;
1019 (j < lim
1020 && ! TEST_HARD_REG_BIT (used, j)
1021 && (REGNO_REG_CLASS (j)
1022 == REGNO_REG_CLASS (best_reg + (j - i))
1023 || reg_class_subset_p (REGNO_REG_CLASS (j),
1024 REGNO_REG_CLASS (best_reg + (j - i)))
1025 || reg_class_subset_p (REGNO_REG_CLASS (best_reg + (j - i)),
1026 REGNO_REG_CLASS (j))));
1027 j++);
1028 if (j == lim)
1030 best_reg = i;
1031 goto no_prefs;
1035 no_copy_prefs:
1037 AND_COMPL_HARD_REG_SET (hard_reg_preferences[allocno], used);
1038 GO_IF_HARD_REG_SUBSET (hard_reg_preferences[allocno],
1039 reg_class_contents[(int) NO_REGS], no_prefs);
1041 if (best_reg >= 0)
1043 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1044 if (TEST_HARD_REG_BIT (hard_reg_preferences[allocno], i)
1045 && HARD_REGNO_MODE_OK (i, mode)
1046 && (REGNO_REG_CLASS (i) == REGNO_REG_CLASS (best_reg)
1047 || reg_class_subset_p (REGNO_REG_CLASS (i),
1048 REGNO_REG_CLASS (best_reg))
1049 || reg_class_subset_p (REGNO_REG_CLASS (best_reg),
1050 REGNO_REG_CLASS (i))))
1052 register int j;
1053 register int lim = i + HARD_REGNO_NREGS (i, mode);
1054 for (j = i + 1;
1055 (j < lim
1056 && ! TEST_HARD_REG_BIT (used, j)
1057 && (REGNO_REG_CLASS (j)
1058 == REGNO_REG_CLASS (best_reg + (j - i))
1059 || reg_class_subset_p (REGNO_REG_CLASS (j),
1060 REGNO_REG_CLASS (best_reg + (j - i)))
1061 || reg_class_subset_p (REGNO_REG_CLASS (best_reg + (j - i)),
1062 REGNO_REG_CLASS (j))));
1063 j++);
1064 if (j == lim)
1066 best_reg = i;
1067 break;
1071 no_prefs:
1073 /* If we haven't succeeded yet, try with caller-saves.
1074 We need not check to see if the current function has nonlocal
1075 labels because we don't put any pseudos that are live over calls in
1076 registers in that case. */
1078 if (flag_caller_saves && best_reg < 0)
1080 /* Did not find a register. If it would be profitable to
1081 allocate a call-clobbered register and save and restore it
1082 around calls, do that. */
1083 if (! accept_call_clobbered
1084 && allocno_calls_crossed[allocno] != 0
1085 && CALLER_SAVE_PROFITABLE (allocno_n_refs[allocno],
1086 allocno_calls_crossed[allocno]))
1088 HARD_REG_SET new_losers;
1089 if (! losers)
1090 CLEAR_HARD_REG_SET (new_losers);
1091 else
1092 COPY_HARD_REG_SET (new_losers, losers);
1094 IOR_HARD_REG_SET(new_losers, losing_caller_save_reg_set);
1095 find_reg (allocno, new_losers, alt_regs_p, 1, retrying);
1096 if (reg_renumber[allocno_reg[allocno]] >= 0)
1098 caller_save_needed = 1;
1099 return;
1104 /* If we haven't succeeded yet,
1105 see if some hard reg that conflicts with us
1106 was utilized poorly by local-alloc.
1107 If so, kick out the regs that were put there by local-alloc
1108 so we can use it instead. */
1109 if (best_reg < 0 && !retrying
1110 /* Let's not bother with multi-reg allocnos. */
1111 && allocno_size[allocno] == 1)
1113 /* Count from the end, to find the least-used ones first. */
1114 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
1116 #ifdef REG_ALLOC_ORDER
1117 int regno = reg_alloc_order[i];
1118 #else
1119 int regno = i;
1120 #endif
1122 if (local_reg_n_refs[regno] != 0
1123 /* Don't use a reg no good for this pseudo. */
1124 && ! TEST_HARD_REG_BIT (used2, regno)
1125 && HARD_REGNO_MODE_OK (regno, mode)
1126 #ifdef CLASS_CANNOT_CHANGE_SIZE
1127 && ! (reg_changes_size[allocno_reg[allocno]]
1128 && (TEST_HARD_REG_BIT
1129 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE],
1130 regno)))
1131 #endif
1134 /* We explicitly evaluate the divide results into temporary
1135 variables so as to avoid excess precision problems that occur
1136 on a i386-unknown-sysv4.2 (unixware) host. */
1138 double tmp1 = ((double) local_reg_n_refs[regno]
1139 / local_reg_live_length[regno]);
1140 double tmp2 = ((double) allocno_n_refs[allocno]
1141 / allocno_live_length[allocno]);
1143 if (tmp1 < tmp2)
1145 /* Hard reg REGNO was used less in total by local regs
1146 than it would be used by this one allocno! */
1147 int k;
1148 for (k = 0; k < max_regno; k++)
1149 if (reg_renumber[k] >= 0)
1151 int r = reg_renumber[k];
1152 int endregno
1153 = r + HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (k));
1155 if (regno >= r && regno < endregno)
1156 reg_renumber[k] = -1;
1159 best_reg = regno;
1160 break;
1166 /* Did we find a register? */
1168 if (best_reg >= 0)
1170 register int lim, j;
1171 HARD_REG_SET this_reg;
1173 /* Yes. Record it as the hard register of this pseudo-reg. */
1174 reg_renumber[allocno_reg[allocno]] = best_reg;
1175 /* Also of any pseudo-regs that share with it. */
1176 if (reg_may_share[allocno_reg[allocno]])
1177 for (j = FIRST_PSEUDO_REGISTER; j < max_regno; j++)
1178 if (reg_allocno[j] == allocno)
1179 reg_renumber[j] = best_reg;
1181 /* Make a set of the hard regs being allocated. */
1182 CLEAR_HARD_REG_SET (this_reg);
1183 lim = best_reg + HARD_REGNO_NREGS (best_reg, mode);
1184 for (j = best_reg; j < lim; j++)
1186 SET_HARD_REG_BIT (this_reg, j);
1187 SET_HARD_REG_BIT (regs_used_so_far, j);
1188 /* This is no longer a reg used just by local regs. */
1189 local_reg_n_refs[j] = 0;
1191 /* For each other pseudo-reg conflicting with this one,
1192 mark it as conflicting with the hard regs this one occupies. */
1193 lim = allocno;
1194 for (j = 0; j < max_allocno; j++)
1195 if (CONFLICTP (lim, j) || CONFLICTP (j, lim))
1197 IOR_HARD_REG_SET (hard_reg_conflicts[j], this_reg);
1202 /* Called from `reload' to look for a hard reg to put pseudo reg REGNO in.
1203 Perhaps it had previously seemed not worth a hard reg,
1204 or perhaps its old hard reg has been commandeered for reloads.
1205 FORBIDDEN_REGS indicates certain hard regs that may not be used, even if
1206 they do not appear to be allocated.
1207 If FORBIDDEN_REGS is zero, no regs are forbidden. */
1209 void
1210 retry_global_alloc (regno, forbidden_regs)
1211 int regno;
1212 HARD_REG_SET forbidden_regs;
1214 int allocno = reg_allocno[regno];
1215 if (allocno >= 0)
1217 /* If we have more than one register class,
1218 first try allocating in the class that is cheapest
1219 for this pseudo-reg. If that fails, try any reg. */
1220 if (N_REG_CLASSES > 1)
1221 find_reg (allocno, forbidden_regs, 0, 0, 1);
1222 if (reg_renumber[regno] < 0
1223 && reg_alternate_class (regno) != NO_REGS)
1224 find_reg (allocno, forbidden_regs, 1, 0, 1);
1226 /* If we found a register, modify the RTL for the register to
1227 show the hard register, and mark that register live. */
1228 if (reg_renumber[regno] >= 0)
1230 REGNO (regno_reg_rtx[regno]) = reg_renumber[regno];
1231 mark_home_live (regno);
1236 /* Record a conflict between register REGNO
1237 and everything currently live.
1238 REGNO must not be a pseudo reg that was allocated
1239 by local_alloc; such numbers must be translated through
1240 reg_renumber before calling here. */
1242 static void
1243 record_one_conflict (regno)
1244 int regno;
1246 register int j;
1248 if (regno < FIRST_PSEUDO_REGISTER)
1249 /* When a hard register becomes live,
1250 record conflicts with live pseudo regs. */
1251 for (j = 0; j < max_allocno; j++)
1253 if (ALLOCNO_LIVE_P (j))
1254 SET_HARD_REG_BIT (hard_reg_conflicts[j], regno);
1256 else
1257 /* When a pseudo-register becomes live,
1258 record conflicts first with hard regs,
1259 then with other pseudo regs. */
1261 register int ialloc = reg_allocno[regno];
1262 register int ialloc_prod = ialloc * allocno_row_words;
1263 IOR_HARD_REG_SET (hard_reg_conflicts[ialloc], hard_regs_live);
1264 for (j = allocno_row_words - 1; j >= 0; j--)
1266 #if 0
1267 int k;
1268 for (k = 0; k < n_no_conflict_pairs; k++)
1269 if (! ((j == no_conflict_pairs[k].allocno1
1270 && ialloc == no_conflict_pairs[k].allocno2)
1272 (j == no_conflict_pairs[k].allocno2
1273 && ialloc == no_conflict_pairs[k].allocno1)))
1274 #endif /* 0 */
1275 conflicts[ialloc_prod + j] |= allocnos_live[j];
1280 /* Record all allocnos currently live as conflicting
1281 with each other and with all hard regs currently live.
1282 ALLOCNO_VEC is a vector of LEN allocnos, all allocnos that
1283 are currently live. Their bits are also flagged in allocnos_live. */
1285 static void
1286 record_conflicts (allocno_vec, len)
1287 register short *allocno_vec;
1288 register int len;
1290 register int allocno;
1291 register int j;
1292 register int ialloc_prod;
1294 while (--len >= 0)
1296 allocno = allocno_vec[len];
1297 ialloc_prod = allocno * allocno_row_words;
1298 IOR_HARD_REG_SET (hard_reg_conflicts[allocno], hard_regs_live);
1299 for (j = allocno_row_words - 1; j >= 0; j--)
1300 conflicts[ialloc_prod + j] |= allocnos_live[j];
1304 /* Handle the case where REG is set by the insn being scanned,
1305 during the forward scan to accumulate conflicts.
1306 Store a 1 in regs_live or allocnos_live for this register, record how many
1307 consecutive hardware registers it actually needs,
1308 and record a conflict with all other registers already live.
1310 Note that even if REG does not remain alive after this insn,
1311 we must mark it here as live, to ensure a conflict between
1312 REG and any other regs set in this insn that really do live.
1313 This is because those other regs could be considered after this.
1315 REG might actually be something other than a register;
1316 if so, we do nothing.
1318 SETTER is 0 if this register was modified by an auto-increment (i.e.,
1319 a REG_INC note was found for it).
1321 CLOBBERs are processed here by calling mark_reg_clobber. */
1323 static void
1324 mark_reg_store (orig_reg, setter)
1325 rtx orig_reg, setter;
1327 register int regno;
1328 register rtx reg = orig_reg;
1330 /* WORD is which word of a multi-register group is being stored.
1331 For the case where the store is actually into a SUBREG of REG.
1332 Except we don't use it; I believe the entire REG needs to be
1333 made live. */
1334 int word = 0;
1336 if (GET_CODE (reg) == SUBREG)
1338 word = SUBREG_WORD (reg);
1339 reg = SUBREG_REG (reg);
1342 if (GET_CODE (reg) != REG)
1343 return;
1345 if (setter && GET_CODE (setter) == CLOBBER)
1347 /* A clobber of a register should be processed here too. */
1348 mark_reg_clobber (orig_reg, setter);
1349 return;
1352 regs_set[n_regs_set++] = reg;
1354 if (setter)
1355 set_preference (reg, SET_SRC (setter));
1357 regno = REGNO (reg);
1359 if (reg_renumber[regno] >= 0)
1360 regno = reg_renumber[regno] /* + word */;
1362 /* Either this is one of the max_allocno pseudo regs not allocated,
1363 or it is or has a hardware reg. First handle the pseudo-regs. */
1364 if (regno >= FIRST_PSEUDO_REGISTER)
1366 if (reg_allocno[regno] >= 0)
1368 SET_ALLOCNO_LIVE (reg_allocno[regno]);
1369 record_one_conflict (regno);
1372 /* Handle hardware regs (and pseudos allocated to hard regs). */
1373 else if (! fixed_regs[regno])
1375 register int last = regno + HARD_REGNO_NREGS (regno, GET_MODE (reg));
1376 while (regno < last)
1378 record_one_conflict (regno);
1379 SET_HARD_REG_BIT (hard_regs_live, regno);
1380 regno++;
1385 /* Like mark_reg_set except notice just CLOBBERs; ignore SETs. */
1387 static void
1388 mark_reg_clobber (reg, setter)
1389 rtx reg, setter;
1391 register int regno;
1393 /* WORD is which word of a multi-register group is being stored.
1394 For the case where the store is actually into a SUBREG of REG.
1395 Except we don't use it; I believe the entire REG needs to be
1396 made live. */
1397 int word = 0;
1399 if (GET_CODE (setter) != CLOBBER)
1400 return;
1402 if (GET_CODE (reg) == SUBREG)
1404 word = SUBREG_WORD (reg);
1405 reg = SUBREG_REG (reg);
1408 if (GET_CODE (reg) != REG)
1409 return;
1411 regs_set[n_regs_set++] = reg;
1413 regno = REGNO (reg);
1415 if (reg_renumber[regno] >= 0)
1416 regno = reg_renumber[regno] /* + word */;
1418 /* Either this is one of the max_allocno pseudo regs not allocated,
1419 or it is or has a hardware reg. First handle the pseudo-regs. */
1420 if (regno >= FIRST_PSEUDO_REGISTER)
1422 if (reg_allocno[regno] >= 0)
1424 SET_ALLOCNO_LIVE (reg_allocno[regno]);
1425 record_one_conflict (regno);
1428 /* Handle hardware regs (and pseudos allocated to hard regs). */
1429 else if (! fixed_regs[regno])
1431 register int last = regno + HARD_REGNO_NREGS (regno, GET_MODE (reg));
1432 while (regno < last)
1434 record_one_conflict (regno);
1435 SET_HARD_REG_BIT (hard_regs_live, regno);
1436 regno++;
1441 /* Record that REG has conflicts with all the regs currently live.
1442 Do not mark REG itself as live. */
1444 static void
1445 mark_reg_conflicts (reg)
1446 rtx reg;
1448 register int regno;
1450 if (GET_CODE (reg) == SUBREG)
1451 reg = SUBREG_REG (reg);
1453 if (GET_CODE (reg) != REG)
1454 return;
1456 regno = REGNO (reg);
1458 if (reg_renumber[regno] >= 0)
1459 regno = reg_renumber[regno];
1461 /* Either this is one of the max_allocno pseudo regs not allocated,
1462 or it is or has a hardware reg. First handle the pseudo-regs. */
1463 if (regno >= FIRST_PSEUDO_REGISTER)
1465 if (reg_allocno[regno] >= 0)
1466 record_one_conflict (regno);
1468 /* Handle hardware regs (and pseudos allocated to hard regs). */
1469 else if (! fixed_regs[regno])
1471 register int last = regno + HARD_REGNO_NREGS (regno, GET_MODE (reg));
1472 while (regno < last)
1474 record_one_conflict (regno);
1475 regno++;
1480 /* Mark REG as being dead (following the insn being scanned now).
1481 Store a 0 in regs_live or allocnos_live for this register. */
1483 static void
1484 mark_reg_death (reg)
1485 rtx reg;
1487 register int regno = REGNO (reg);
1489 /* For pseudo reg, see if it has been assigned a hardware reg. */
1490 if (reg_renumber[regno] >= 0)
1491 regno = reg_renumber[regno];
1493 /* Either this is one of the max_allocno pseudo regs not allocated,
1494 or it is a hardware reg. First handle the pseudo-regs. */
1495 if (regno >= FIRST_PSEUDO_REGISTER)
1497 if (reg_allocno[regno] >= 0)
1498 CLEAR_ALLOCNO_LIVE (reg_allocno[regno]);
1500 /* Handle hardware regs (and pseudos allocated to hard regs). */
1501 else if (! fixed_regs[regno])
1503 /* Pseudo regs already assigned hardware regs are treated
1504 almost the same as explicit hardware regs. */
1505 register int last = regno + HARD_REGNO_NREGS (regno, GET_MODE (reg));
1506 while (regno < last)
1508 CLEAR_HARD_REG_BIT (hard_regs_live, regno);
1509 regno++;
1514 /* Mark hard reg REGNO as currently live, assuming machine mode MODE
1515 for the value stored in it. MODE determines how many consecutive
1516 registers are actually in use. Do not record conflicts;
1517 it is assumed that the caller will do that. */
1519 static void
1520 mark_reg_live_nc (regno, mode)
1521 register int regno;
1522 enum machine_mode mode;
1524 register int last = regno + HARD_REGNO_NREGS (regno, mode);
1525 while (regno < last)
1527 SET_HARD_REG_BIT (hard_regs_live, regno);
1528 regno++;
1532 /* Try to set a preference for an allocno to a hard register.
1533 We are passed DEST and SRC which are the operands of a SET. It is known
1534 that SRC is a register. If SRC or the first operand of SRC is a register,
1535 try to set a preference. If one of the two is a hard register and the other
1536 is a pseudo-register, mark the preference.
1538 Note that we are not as aggressive as local-alloc in trying to tie a
1539 pseudo-register to a hard register. */
1541 static void
1542 set_preference (dest, src)
1543 rtx dest, src;
1545 int src_regno, dest_regno;
1546 /* Amount to add to the hard regno for SRC, or subtract from that for DEST,
1547 to compensate for subregs in SRC or DEST. */
1548 int offset = 0;
1549 int i;
1550 int copy = 1;
1552 if (GET_RTX_FORMAT (GET_CODE (src))[0] == 'e')
1553 src = XEXP (src, 0), copy = 0;
1555 /* Get the reg number for both SRC and DEST.
1556 If neither is a reg, give up. */
1558 if (GET_CODE (src) == REG)
1559 src_regno = REGNO (src);
1560 else if (GET_CODE (src) == SUBREG && GET_CODE (SUBREG_REG (src)) == REG)
1562 src_regno = REGNO (SUBREG_REG (src));
1563 offset += SUBREG_WORD (src);
1565 else
1566 return;
1568 if (GET_CODE (dest) == REG)
1569 dest_regno = REGNO (dest);
1570 else if (GET_CODE (dest) == SUBREG && GET_CODE (SUBREG_REG (dest)) == REG)
1572 dest_regno = REGNO (SUBREG_REG (dest));
1573 offset -= SUBREG_WORD (dest);
1575 else
1576 return;
1578 /* Convert either or both to hard reg numbers. */
1580 if (reg_renumber[src_regno] >= 0)
1581 src_regno = reg_renumber[src_regno];
1583 if (reg_renumber[dest_regno] >= 0)
1584 dest_regno = reg_renumber[dest_regno];
1586 /* Now if one is a hard reg and the other is a global pseudo
1587 then give the other a preference. */
1589 if (dest_regno < FIRST_PSEUDO_REGISTER && src_regno >= FIRST_PSEUDO_REGISTER
1590 && reg_allocno[src_regno] >= 0)
1592 dest_regno -= offset;
1593 if (dest_regno >= 0 && dest_regno < FIRST_PSEUDO_REGISTER)
1595 if (copy)
1596 SET_REGBIT (hard_reg_copy_preferences,
1597 reg_allocno[src_regno], dest_regno);
1599 SET_REGBIT (hard_reg_preferences,
1600 reg_allocno[src_regno], dest_regno);
1601 for (i = dest_regno;
1602 i < dest_regno + HARD_REGNO_NREGS (dest_regno, GET_MODE (dest));
1603 i++)
1604 SET_REGBIT (hard_reg_full_preferences, reg_allocno[src_regno], i);
1608 if (src_regno < FIRST_PSEUDO_REGISTER && dest_regno >= FIRST_PSEUDO_REGISTER
1609 && reg_allocno[dest_regno] >= 0)
1611 src_regno += offset;
1612 if (src_regno >= 0 && src_regno < FIRST_PSEUDO_REGISTER)
1614 if (copy)
1615 SET_REGBIT (hard_reg_copy_preferences,
1616 reg_allocno[dest_regno], src_regno);
1618 SET_REGBIT (hard_reg_preferences,
1619 reg_allocno[dest_regno], src_regno);
1620 for (i = src_regno;
1621 i < src_regno + HARD_REGNO_NREGS (src_regno, GET_MODE (src));
1622 i++)
1623 SET_REGBIT (hard_reg_full_preferences, reg_allocno[dest_regno], i);
1628 /* Indicate that hard register number FROM was eliminated and replaced with
1629 an offset from hard register number TO. The status of hard registers live
1630 at the start of a basic block is updated by replacing a use of FROM with
1631 a use of TO. */
1633 void
1634 mark_elimination (from, to)
1635 int from, to;
1637 int i;
1639 for (i = 0; i < n_basic_blocks; i++)
1640 if ((basic_block_live_at_start[i][from / REGSET_ELT_BITS]
1641 & ((REGSET_ELT_TYPE) 1 << (from % REGSET_ELT_BITS))) != 0)
1643 basic_block_live_at_start[i][from / REGSET_ELT_BITS]
1644 &= ~ ((REGSET_ELT_TYPE) 1 << (from % REGSET_ELT_BITS));
1645 basic_block_live_at_start[i][to / REGSET_ELT_BITS]
1646 |= ((REGSET_ELT_TYPE) 1 << (to % REGSET_ELT_BITS));
1650 /* Print debugging trace information if -greg switch is given,
1651 showing the information on which the allocation decisions are based. */
1653 static void
1654 dump_conflicts (file)
1655 FILE *file;
1657 register int i;
1658 register int has_preferences;
1659 fprintf (file, ";; %d regs to allocate:", max_allocno);
1660 for (i = 0; i < max_allocno; i++)
1662 int j;
1663 fprintf (file, " %d", allocno_reg[allocno_order[i]]);
1664 for (j = 0; j < max_regno; j++)
1665 if (reg_allocno[j] == allocno_order[i]
1666 && j != allocno_reg[allocno_order[i]])
1667 fprintf (file, "+%d", j);
1668 if (allocno_size[allocno_order[i]] != 1)
1669 fprintf (file, " (%d)", allocno_size[allocno_order[i]]);
1671 fprintf (file, "\n");
1673 for (i = 0; i < max_allocno; i++)
1675 register int j;
1676 fprintf (file, ";; %d conflicts:", allocno_reg[i]);
1677 for (j = 0; j < max_allocno; j++)
1678 if (CONFLICTP (i, j) || CONFLICTP (j, i))
1679 fprintf (file, " %d", allocno_reg[j]);
1680 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1681 if (TEST_HARD_REG_BIT (hard_reg_conflicts[i], j))
1682 fprintf (file, " %d", j);
1683 fprintf (file, "\n");
1685 has_preferences = 0;
1686 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1687 if (TEST_HARD_REG_BIT (hard_reg_preferences[i], j))
1688 has_preferences = 1;
1690 if (! has_preferences)
1691 continue;
1692 fprintf (file, ";; %d preferences:", allocno_reg[i]);
1693 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1694 if (TEST_HARD_REG_BIT (hard_reg_preferences[i], j))
1695 fprintf (file, " %d", j);
1696 fprintf (file, "\n");
1698 fprintf (file, "\n");
1701 void
1702 dump_global_regs (file)
1703 FILE *file;
1705 register int i, j;
1707 fprintf (file, ";; Register dispositions:\n");
1708 for (i = FIRST_PSEUDO_REGISTER, j = 0; i < max_regno; i++)
1709 if (reg_renumber[i] >= 0)
1711 fprintf (file, "%d in %d ", i, reg_renumber[i]);
1712 if (++j % 6 == 0)
1713 fprintf (file, "\n");
1716 fprintf (file, "\n\n;; Hard regs used: ");
1717 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1718 if (regs_ever_live[i])
1719 fprintf (file, " %d", i);
1720 fprintf (file, "\n\n");