[03/46] Remove unnecessary update of NUM_SLP_USES
[official-gcc.git] / gcc / tree-vectorizer.h
blobf4839ef6745611149c665782e43c2e0f99d29e89
1 /* Vectorizer
2 Copyright (C) 2003-2018 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #ifndef GCC_TREE_VECTORIZER_H
22 #define GCC_TREE_VECTORIZER_H
24 #include "tree-data-ref.h"
25 #include "tree-hash-traits.h"
26 #include "target.h"
28 /* Used for naming of new temporaries. */
29 enum vect_var_kind {
30 vect_simple_var,
31 vect_pointer_var,
32 vect_scalar_var,
33 vect_mask_var
36 /* Defines type of operation. */
37 enum operation_type {
38 unary_op = 1,
39 binary_op,
40 ternary_op
43 /* Define type of available alignment support. */
44 enum dr_alignment_support {
45 dr_unaligned_unsupported,
46 dr_unaligned_supported,
47 dr_explicit_realign,
48 dr_explicit_realign_optimized,
49 dr_aligned
52 /* Define type of def-use cross-iteration cycle. */
53 enum vect_def_type {
54 vect_uninitialized_def = 0,
55 vect_constant_def = 1,
56 vect_external_def,
57 vect_internal_def,
58 vect_induction_def,
59 vect_reduction_def,
60 vect_double_reduction_def,
61 vect_nested_cycle,
62 vect_unknown_def_type
65 /* Define type of reduction. */
66 enum vect_reduction_type {
67 TREE_CODE_REDUCTION,
68 COND_REDUCTION,
69 INTEGER_INDUC_COND_REDUCTION,
70 CONST_COND_REDUCTION,
72 /* Retain a scalar phi and use a FOLD_EXTRACT_LAST within the loop
73 to implement:
75 for (int i = 0; i < VF; ++i)
76 res = cond[i] ? val[i] : res; */
77 EXTRACT_LAST_REDUCTION,
79 /* Use a folding reduction within the loop to implement:
81 for (int i = 0; i < VF; ++i)
82 res = res OP val[i];
84 (with no reassocation). */
85 FOLD_LEFT_REDUCTION
88 #define VECTORIZABLE_CYCLE_DEF(D) (((D) == vect_reduction_def) \
89 || ((D) == vect_double_reduction_def) \
90 || ((D) == vect_nested_cycle))
92 /* Structure to encapsulate information about a group of like
93 instructions to be presented to the target cost model. */
94 struct stmt_info_for_cost {
95 int count;
96 enum vect_cost_for_stmt kind;
97 enum vect_cost_model_location where;
98 gimple *stmt;
99 int misalign;
102 typedef vec<stmt_info_for_cost> stmt_vector_for_cost;
104 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
105 known alignment for that base. */
106 typedef hash_map<tree_operand_hash,
107 innermost_loop_behavior *> vec_base_alignments;
109 /************************************************************************
111 ************************************************************************/
112 typedef struct _slp_tree *slp_tree;
114 /* A computation tree of an SLP instance. Each node corresponds to a group of
115 stmts to be packed in a SIMD stmt. */
116 struct _slp_tree {
117 /* Nodes that contain def-stmts of this node statements operands. */
118 vec<slp_tree> children;
119 /* A group of scalar stmts to be vectorized together. */
120 vec<gimple *> stmts;
121 /* Load permutation relative to the stores, NULL if there is no
122 permutation. */
123 vec<unsigned> load_permutation;
124 /* Vectorized stmt/s. */
125 vec<gimple *> vec_stmts;
126 /* Number of vector stmts that are created to replace the group of scalar
127 stmts. It is calculated during the transformation phase as the number of
128 scalar elements in one scalar iteration (GROUP_SIZE) multiplied by VF
129 divided by vector size. */
130 unsigned int vec_stmts_size;
131 /* Whether the scalar computations use two different operators. */
132 bool two_operators;
133 /* The DEF type of this node. */
134 enum vect_def_type def_type;
138 /* SLP instance is a sequence of stmts in a loop that can be packed into
139 SIMD stmts. */
140 typedef struct _slp_instance {
141 /* The root of SLP tree. */
142 slp_tree root;
144 /* Size of groups of scalar stmts that will be replaced by SIMD stmt/s. */
145 unsigned int group_size;
147 /* The unrolling factor required to vectorized this SLP instance. */
148 poly_uint64 unrolling_factor;
150 /* The group of nodes that contain loads of this SLP instance. */
151 vec<slp_tree> loads;
153 /* The SLP node containing the reduction PHIs. */
154 slp_tree reduc_phis;
155 } *slp_instance;
158 /* Access Functions. */
159 #define SLP_INSTANCE_TREE(S) (S)->root
160 #define SLP_INSTANCE_GROUP_SIZE(S) (S)->group_size
161 #define SLP_INSTANCE_UNROLLING_FACTOR(S) (S)->unrolling_factor
162 #define SLP_INSTANCE_LOADS(S) (S)->loads
164 #define SLP_TREE_CHILDREN(S) (S)->children
165 #define SLP_TREE_SCALAR_STMTS(S) (S)->stmts
166 #define SLP_TREE_VEC_STMTS(S) (S)->vec_stmts
167 #define SLP_TREE_NUMBER_OF_VEC_STMTS(S) (S)->vec_stmts_size
168 #define SLP_TREE_LOAD_PERMUTATION(S) (S)->load_permutation
169 #define SLP_TREE_TWO_OPERATORS(S) (S)->two_operators
170 #define SLP_TREE_DEF_TYPE(S) (S)->def_type
174 /* Describes two objects whose addresses must be unequal for the vectorized
175 loop to be valid. */
176 typedef std::pair<tree, tree> vec_object_pair;
178 /* Records that vectorization is only possible if abs (EXPR) >= MIN_VALUE.
179 UNSIGNED_P is true if we can assume that abs (EXPR) == EXPR. */
180 struct vec_lower_bound {
181 vec_lower_bound () {}
182 vec_lower_bound (tree e, bool u, poly_uint64 m)
183 : expr (e), unsigned_p (u), min_value (m) {}
185 tree expr;
186 bool unsigned_p;
187 poly_uint64 min_value;
190 /* Vectorizer state shared between different analyses like vector sizes
191 of the same CFG region. */
192 struct vec_info_shared {
193 vec_info_shared();
194 ~vec_info_shared();
196 void save_datarefs();
197 void check_datarefs();
199 /* All data references. Freed by free_data_refs, so not an auto_vec. */
200 vec<data_reference_p> datarefs;
201 vec<data_reference> datarefs_copy;
203 /* The loop nest in which the data dependences are computed. */
204 auto_vec<loop_p> loop_nest;
206 /* All data dependences. Freed by free_dependence_relations, so not
207 an auto_vec. */
208 vec<ddr_p> ddrs;
211 /* Vectorizer state common between loop and basic-block vectorization. */
212 struct vec_info {
213 enum vec_kind { bb, loop };
215 vec_info (vec_kind, void *, vec_info_shared *);
216 ~vec_info ();
218 /* The type of vectorization. */
219 vec_kind kind;
221 /* Shared vectorizer state. */
222 vec_info_shared *shared;
224 /* The mapping of GIMPLE UID to stmt_vec_info. */
225 vec<struct _stmt_vec_info *> stmt_vec_infos;
227 /* All SLP instances. */
228 auto_vec<slp_instance> slp_instances;
230 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
231 known alignment for that base. */
232 vec_base_alignments base_alignments;
234 /* All interleaving chains of stores, represented by the first
235 stmt in the chain. */
236 auto_vec<gimple *> grouped_stores;
238 /* Cost data used by the target cost model. */
239 void *target_cost_data;
242 struct _loop_vec_info;
243 struct _bb_vec_info;
245 template<>
246 template<>
247 inline bool
248 is_a_helper <_loop_vec_info *>::test (vec_info *i)
250 return i->kind == vec_info::loop;
253 template<>
254 template<>
255 inline bool
256 is_a_helper <_bb_vec_info *>::test (vec_info *i)
258 return i->kind == vec_info::bb;
262 /* In general, we can divide the vector statements in a vectorized loop
263 into related groups ("rgroups") and say that for each rgroup there is
264 some nS such that the rgroup operates on nS values from one scalar
265 iteration followed by nS values from the next. That is, if VF is the
266 vectorization factor of the loop, the rgroup operates on a sequence:
268 (1,1) (1,2) ... (1,nS) (2,1) ... (2,nS) ... (VF,1) ... (VF,nS)
270 where (i,j) represents a scalar value with index j in a scalar
271 iteration with index i.
273 [ We use the term "rgroup" to emphasise that this grouping isn't
274 necessarily the same as the grouping of statements used elsewhere.
275 For example, if we implement a group of scalar loads using gather
276 loads, we'll use a separate gather load for each scalar load, and
277 thus each gather load will belong to its own rgroup. ]
279 In general this sequence will occupy nV vectors concatenated
280 together. If these vectors have nL lanes each, the total number
281 of scalar values N is given by:
283 N = nS * VF = nV * nL
285 None of nS, VF, nV and nL are required to be a power of 2. nS and nV
286 are compile-time constants but VF and nL can be variable (if the target
287 supports variable-length vectors).
289 In classical vectorization, each iteration of the vector loop would
290 handle exactly VF iterations of the original scalar loop. However,
291 in a fully-masked loop, a particular iteration of the vector loop
292 might handle fewer than VF iterations of the scalar loop. The vector
293 lanes that correspond to iterations of the scalar loop are said to be
294 "active" and the other lanes are said to be "inactive".
296 In a fully-masked loop, many rgroups need to be masked to ensure that
297 they have no effect for the inactive lanes. Each such rgroup needs a
298 sequence of booleans in the same order as above, but with each (i,j)
299 replaced by a boolean that indicates whether iteration i is active.
300 This sequence occupies nV vector masks that again have nL lanes each.
301 Thus the mask sequence as a whole consists of VF independent booleans
302 that are each repeated nS times.
304 We make the simplifying assumption that if a sequence of nV masks is
305 suitable for one (nS,nL) pair, we can reuse it for (nS/2,nL/2) by
306 VIEW_CONVERTing it. This holds for all current targets that support
307 fully-masked loops. For example, suppose the scalar loop is:
309 float *f;
310 double *d;
311 for (int i = 0; i < n; ++i)
313 f[i * 2 + 0] += 1.0f;
314 f[i * 2 + 1] += 2.0f;
315 d[i] += 3.0;
318 and suppose that vectors have 256 bits. The vectorized f accesses
319 will belong to one rgroup and the vectorized d access to another:
321 f rgroup: nS = 2, nV = 1, nL = 8
322 d rgroup: nS = 1, nV = 1, nL = 4
323 VF = 4
325 [ In this simple example the rgroups do correspond to the normal
326 SLP grouping scheme. ]
328 If only the first three lanes are active, the masks we need are:
330 f rgroup: 1 1 | 1 1 | 1 1 | 0 0
331 d rgroup: 1 | 1 | 1 | 0
333 Here we can use a mask calculated for f's rgroup for d's, but not
334 vice versa.
336 Thus for each value of nV, it is enough to provide nV masks, with the
337 mask being calculated based on the highest nL (or, equivalently, based
338 on the highest nS) required by any rgroup with that nV. We therefore
339 represent the entire collection of masks as a two-level table, with the
340 first level being indexed by nV - 1 (since nV == 0 doesn't exist) and
341 the second being indexed by the mask index 0 <= i < nV. */
343 /* The masks needed by rgroups with nV vectors, according to the
344 description above. */
345 struct rgroup_masks {
346 /* The largest nS for all rgroups that use these masks. */
347 unsigned int max_nscalars_per_iter;
349 /* The type of mask to use, based on the highest nS recorded above. */
350 tree mask_type;
352 /* A vector of nV masks, in iteration order. */
353 vec<tree> masks;
356 typedef auto_vec<rgroup_masks> vec_loop_masks;
358 /*-----------------------------------------------------------------*/
359 /* Info on vectorized loops. */
360 /*-----------------------------------------------------------------*/
361 typedef struct _loop_vec_info : public vec_info {
362 _loop_vec_info (struct loop *, vec_info_shared *);
363 ~_loop_vec_info ();
365 /* The loop to which this info struct refers to. */
366 struct loop *loop;
368 /* The loop basic blocks. */
369 basic_block *bbs;
371 /* Number of latch executions. */
372 tree num_itersm1;
373 /* Number of iterations. */
374 tree num_iters;
375 /* Number of iterations of the original loop. */
376 tree num_iters_unchanged;
377 /* Condition under which this loop is analyzed and versioned. */
378 tree num_iters_assumptions;
380 /* Threshold of number of iterations below which vectorzation will not be
381 performed. It is calculated from MIN_PROFITABLE_ITERS and
382 PARAM_MIN_VECT_LOOP_BOUND. */
383 unsigned int th;
385 /* When applying loop versioning, the vector form should only be used
386 if the number of scalar iterations is >= this value, on top of all
387 the other requirements. Ignored when loop versioning is not being
388 used. */
389 poly_uint64 versioning_threshold;
391 /* Unrolling factor */
392 poly_uint64 vectorization_factor;
394 /* Maximum runtime vectorization factor, or MAX_VECTORIZATION_FACTOR
395 if there is no particular limit. */
396 unsigned HOST_WIDE_INT max_vectorization_factor;
398 /* The masks that a fully-masked loop should use to avoid operating
399 on inactive scalars. */
400 vec_loop_masks masks;
402 /* If we are using a loop mask to align memory addresses, this variable
403 contains the number of vector elements that we should skip in the
404 first iteration of the vector loop (i.e. the number of leading
405 elements that should be false in the first mask). */
406 tree mask_skip_niters;
408 /* Type of the variables to use in the WHILE_ULT call for fully-masked
409 loops. */
410 tree mask_compare_type;
412 /* Unknown DRs according to which loop was peeled. */
413 struct data_reference *unaligned_dr;
415 /* peeling_for_alignment indicates whether peeling for alignment will take
416 place, and what the peeling factor should be:
417 peeling_for_alignment = X means:
418 If X=0: Peeling for alignment will not be applied.
419 If X>0: Peel first X iterations.
420 If X=-1: Generate a runtime test to calculate the number of iterations
421 to be peeled, using the dataref recorded in the field
422 unaligned_dr. */
423 int peeling_for_alignment;
425 /* The mask used to check the alignment of pointers or arrays. */
426 int ptr_mask;
428 /* Data Dependence Relations defining address ranges that are candidates
429 for a run-time aliasing check. */
430 auto_vec<ddr_p> may_alias_ddrs;
432 /* Data Dependence Relations defining address ranges together with segment
433 lengths from which the run-time aliasing check is built. */
434 auto_vec<dr_with_seg_len_pair_t> comp_alias_ddrs;
436 /* Check that the addresses of each pair of objects is unequal. */
437 auto_vec<vec_object_pair> check_unequal_addrs;
439 /* List of values that are required to be nonzero. This is used to check
440 whether things like "x[i * n] += 1;" are safe and eventually gets added
441 to the checks for lower bounds below. */
442 auto_vec<tree> check_nonzero;
444 /* List of values that need to be checked for a minimum value. */
445 auto_vec<vec_lower_bound> lower_bounds;
447 /* Statements in the loop that have data references that are candidates for a
448 runtime (loop versioning) misalignment check. */
449 auto_vec<gimple *> may_misalign_stmts;
451 /* Reduction cycles detected in the loop. Used in loop-aware SLP. */
452 auto_vec<gimple *> reductions;
454 /* All reduction chains in the loop, represented by the first
455 stmt in the chain. */
456 auto_vec<gimple *> reduction_chains;
458 /* Cost vector for a single scalar iteration. */
459 auto_vec<stmt_info_for_cost> scalar_cost_vec;
461 /* Map of IV base/step expressions to inserted name in the preheader. */
462 hash_map<tree_operand_hash, tree> *ivexpr_map;
464 /* The unrolling factor needed to SLP the loop. In case of that pure SLP is
465 applied to the loop, i.e., no unrolling is needed, this is 1. */
466 poly_uint64 slp_unrolling_factor;
468 /* Cost of a single scalar iteration. */
469 int single_scalar_iteration_cost;
471 /* Is the loop vectorizable? */
472 bool vectorizable;
474 /* Records whether we still have the option of using a fully-masked loop. */
475 bool can_fully_mask_p;
477 /* True if have decided to use a fully-masked loop. */
478 bool fully_masked_p;
480 /* When we have grouped data accesses with gaps, we may introduce invalid
481 memory accesses. We peel the last iteration of the loop to prevent
482 this. */
483 bool peeling_for_gaps;
485 /* When the number of iterations is not a multiple of the vector size
486 we need to peel off iterations at the end to form an epilogue loop. */
487 bool peeling_for_niter;
489 /* Reductions are canonicalized so that the last operand is the reduction
490 operand. If this places a constant into RHS1, this decanonicalizes
491 GIMPLE for other phases, so we must track when this has occurred and
492 fix it up. */
493 bool operands_swapped;
495 /* True if there are no loop carried data dependencies in the loop.
496 If loop->safelen <= 1, then this is always true, either the loop
497 didn't have any loop carried data dependencies, or the loop is being
498 vectorized guarded with some runtime alias checks, or couldn't
499 be vectorized at all, but then this field shouldn't be used.
500 For loop->safelen >= 2, the user has asserted that there are no
501 backward dependencies, but there still could be loop carried forward
502 dependencies in such loops. This flag will be false if normal
503 vectorizer data dependency analysis would fail or require versioning
504 for alias, but because of loop->safelen >= 2 it has been vectorized
505 even without versioning for alias. E.g. in:
506 #pragma omp simd
507 for (int i = 0; i < m; i++)
508 a[i] = a[i + k] * c;
509 (or #pragma simd or #pragma ivdep) we can vectorize this and it will
510 DTRT even for k > 0 && k < m, but without safelen we would not
511 vectorize this, so this field would be false. */
512 bool no_data_dependencies;
514 /* Mark loops having masked stores. */
515 bool has_mask_store;
517 /* If if-conversion versioned this loop before conversion, this is the
518 loop version without if-conversion. */
519 struct loop *scalar_loop;
521 /* For loops being epilogues of already vectorized loops
522 this points to the original vectorized loop. Otherwise NULL. */
523 _loop_vec_info *orig_loop_info;
525 } *loop_vec_info;
527 /* Access Functions. */
528 #define LOOP_VINFO_LOOP(L) (L)->loop
529 #define LOOP_VINFO_BBS(L) (L)->bbs
530 #define LOOP_VINFO_NITERSM1(L) (L)->num_itersm1
531 #define LOOP_VINFO_NITERS(L) (L)->num_iters
532 /* Since LOOP_VINFO_NITERS and LOOP_VINFO_NITERSM1 can change after
533 prologue peeling retain total unchanged scalar loop iterations for
534 cost model. */
535 #define LOOP_VINFO_NITERS_UNCHANGED(L) (L)->num_iters_unchanged
536 #define LOOP_VINFO_NITERS_ASSUMPTIONS(L) (L)->num_iters_assumptions
537 #define LOOP_VINFO_COST_MODEL_THRESHOLD(L) (L)->th
538 #define LOOP_VINFO_VERSIONING_THRESHOLD(L) (L)->versioning_threshold
539 #define LOOP_VINFO_VECTORIZABLE_P(L) (L)->vectorizable
540 #define LOOP_VINFO_CAN_FULLY_MASK_P(L) (L)->can_fully_mask_p
541 #define LOOP_VINFO_FULLY_MASKED_P(L) (L)->fully_masked_p
542 #define LOOP_VINFO_VECT_FACTOR(L) (L)->vectorization_factor
543 #define LOOP_VINFO_MAX_VECT_FACTOR(L) (L)->max_vectorization_factor
544 #define LOOP_VINFO_MASKS(L) (L)->masks
545 #define LOOP_VINFO_MASK_SKIP_NITERS(L) (L)->mask_skip_niters
546 #define LOOP_VINFO_MASK_COMPARE_TYPE(L) (L)->mask_compare_type
547 #define LOOP_VINFO_PTR_MASK(L) (L)->ptr_mask
548 #define LOOP_VINFO_LOOP_NEST(L) (L)->shared->loop_nest
549 #define LOOP_VINFO_DATAREFS(L) (L)->shared->datarefs
550 #define LOOP_VINFO_DDRS(L) (L)->shared->ddrs
551 #define LOOP_VINFO_INT_NITERS(L) (TREE_INT_CST_LOW ((L)->num_iters))
552 #define LOOP_VINFO_PEELING_FOR_ALIGNMENT(L) (L)->peeling_for_alignment
553 #define LOOP_VINFO_UNALIGNED_DR(L) (L)->unaligned_dr
554 #define LOOP_VINFO_MAY_MISALIGN_STMTS(L) (L)->may_misalign_stmts
555 #define LOOP_VINFO_MAY_ALIAS_DDRS(L) (L)->may_alias_ddrs
556 #define LOOP_VINFO_COMP_ALIAS_DDRS(L) (L)->comp_alias_ddrs
557 #define LOOP_VINFO_CHECK_UNEQUAL_ADDRS(L) (L)->check_unequal_addrs
558 #define LOOP_VINFO_CHECK_NONZERO(L) (L)->check_nonzero
559 #define LOOP_VINFO_LOWER_BOUNDS(L) (L)->lower_bounds
560 #define LOOP_VINFO_GROUPED_STORES(L) (L)->grouped_stores
561 #define LOOP_VINFO_SLP_INSTANCES(L) (L)->slp_instances
562 #define LOOP_VINFO_SLP_UNROLLING_FACTOR(L) (L)->slp_unrolling_factor
563 #define LOOP_VINFO_REDUCTIONS(L) (L)->reductions
564 #define LOOP_VINFO_REDUCTION_CHAINS(L) (L)->reduction_chains
565 #define LOOP_VINFO_TARGET_COST_DATA(L) (L)->target_cost_data
566 #define LOOP_VINFO_PEELING_FOR_GAPS(L) (L)->peeling_for_gaps
567 #define LOOP_VINFO_OPERANDS_SWAPPED(L) (L)->operands_swapped
568 #define LOOP_VINFO_PEELING_FOR_NITER(L) (L)->peeling_for_niter
569 #define LOOP_VINFO_NO_DATA_DEPENDENCIES(L) (L)->no_data_dependencies
570 #define LOOP_VINFO_SCALAR_LOOP(L) (L)->scalar_loop
571 #define LOOP_VINFO_HAS_MASK_STORE(L) (L)->has_mask_store
572 #define LOOP_VINFO_SCALAR_ITERATION_COST(L) (L)->scalar_cost_vec
573 #define LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST(L) (L)->single_scalar_iteration_cost
574 #define LOOP_VINFO_ORIG_LOOP_INFO(L) (L)->orig_loop_info
576 #define LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT(L) \
577 ((L)->may_misalign_stmts.length () > 0)
578 #define LOOP_REQUIRES_VERSIONING_FOR_ALIAS(L) \
579 ((L)->comp_alias_ddrs.length () > 0 \
580 || (L)->check_unequal_addrs.length () > 0 \
581 || (L)->lower_bounds.length () > 0)
582 #define LOOP_REQUIRES_VERSIONING_FOR_NITERS(L) \
583 (LOOP_VINFO_NITERS_ASSUMPTIONS (L))
584 #define LOOP_REQUIRES_VERSIONING(L) \
585 (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (L) \
586 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (L) \
587 || LOOP_REQUIRES_VERSIONING_FOR_NITERS (L))
589 #define LOOP_VINFO_NITERS_KNOWN_P(L) \
590 (tree_fits_shwi_p ((L)->num_iters) && tree_to_shwi ((L)->num_iters) > 0)
592 #define LOOP_VINFO_EPILOGUE_P(L) \
593 (LOOP_VINFO_ORIG_LOOP_INFO (L) != NULL)
595 #define LOOP_VINFO_ORIG_MAX_VECT_FACTOR(L) \
596 (LOOP_VINFO_MAX_VECT_FACTOR (LOOP_VINFO_ORIG_LOOP_INFO (L)))
598 static inline loop_vec_info
599 loop_vec_info_for_loop (struct loop *loop)
601 return (loop_vec_info) loop->aux;
604 static inline bool
605 nested_in_vect_loop_p (struct loop *loop, gimple *stmt)
607 return (loop->inner
608 && (loop->inner == (gimple_bb (stmt))->loop_father));
611 typedef struct _bb_vec_info : public vec_info
613 _bb_vec_info (gimple_stmt_iterator, gimple_stmt_iterator, vec_info_shared *);
614 ~_bb_vec_info ();
616 basic_block bb;
617 gimple_stmt_iterator region_begin;
618 gimple_stmt_iterator region_end;
619 } *bb_vec_info;
621 #define BB_VINFO_BB(B) (B)->bb
622 #define BB_VINFO_GROUPED_STORES(B) (B)->grouped_stores
623 #define BB_VINFO_SLP_INSTANCES(B) (B)->slp_instances
624 #define BB_VINFO_DATAREFS(B) (B)->shared->datarefs
625 #define BB_VINFO_DDRS(B) (B)->shared->ddrs
626 #define BB_VINFO_TARGET_COST_DATA(B) (B)->target_cost_data
628 static inline bb_vec_info
629 vec_info_for_bb (basic_block bb)
631 return (bb_vec_info) bb->aux;
634 /*-----------------------------------------------------------------*/
635 /* Info on vectorized defs. */
636 /*-----------------------------------------------------------------*/
637 enum stmt_vec_info_type {
638 undef_vec_info_type = 0,
639 load_vec_info_type,
640 store_vec_info_type,
641 shift_vec_info_type,
642 op_vec_info_type,
643 call_vec_info_type,
644 call_simd_clone_vec_info_type,
645 assignment_vec_info_type,
646 condition_vec_info_type,
647 comparison_vec_info_type,
648 reduc_vec_info_type,
649 induc_vec_info_type,
650 type_promotion_vec_info_type,
651 type_demotion_vec_info_type,
652 type_conversion_vec_info_type,
653 loop_exit_ctrl_vec_info_type
656 /* Indicates whether/how a variable is used in the scope of loop/basic
657 block. */
658 enum vect_relevant {
659 vect_unused_in_scope = 0,
661 /* The def is only used outside the loop. */
662 vect_used_only_live,
663 /* The def is in the inner loop, and the use is in the outer loop, and the
664 use is a reduction stmt. */
665 vect_used_in_outer_by_reduction,
666 /* The def is in the inner loop, and the use is in the outer loop (and is
667 not part of reduction). */
668 vect_used_in_outer,
670 /* defs that feed computations that end up (only) in a reduction. These
671 defs may be used by non-reduction stmts, but eventually, any
672 computations/values that are affected by these defs are used to compute
673 a reduction (i.e. don't get stored to memory, for example). We use this
674 to identify computations that we can change the order in which they are
675 computed. */
676 vect_used_by_reduction,
678 vect_used_in_scope
681 /* The type of vectorization that can be applied to the stmt: regular loop-based
682 vectorization; pure SLP - the stmt is a part of SLP instances and does not
683 have uses outside SLP instances; or hybrid SLP and loop-based - the stmt is
684 a part of SLP instance and also must be loop-based vectorized, since it has
685 uses outside SLP sequences.
687 In the loop context the meanings of pure and hybrid SLP are slightly
688 different. By saying that pure SLP is applied to the loop, we mean that we
689 exploit only intra-iteration parallelism in the loop; i.e., the loop can be
690 vectorized without doing any conceptual unrolling, cause we don't pack
691 together stmts from different iterations, only within a single iteration.
692 Loop hybrid SLP means that we exploit both intra-iteration and
693 inter-iteration parallelism (e.g., number of elements in the vector is 4
694 and the slp-group-size is 2, in which case we don't have enough parallelism
695 within an iteration, so we obtain the rest of the parallelism from subsequent
696 iterations by unrolling the loop by 2). */
697 enum slp_vect_type {
698 loop_vect = 0,
699 pure_slp,
700 hybrid
703 /* Says whether a statement is a load, a store of a vectorized statement
704 result, or a store of an invariant value. */
705 enum vec_load_store_type {
706 VLS_LOAD,
707 VLS_STORE,
708 VLS_STORE_INVARIANT
711 /* Describes how we're going to vectorize an individual load or store,
712 or a group of loads or stores. */
713 enum vect_memory_access_type {
714 /* An access to an invariant address. This is used only for loads. */
715 VMAT_INVARIANT,
717 /* A simple contiguous access. */
718 VMAT_CONTIGUOUS,
720 /* A contiguous access that goes down in memory rather than up,
721 with no additional permutation. This is used only for stores
722 of invariants. */
723 VMAT_CONTIGUOUS_DOWN,
725 /* A simple contiguous access in which the elements need to be permuted
726 after loading or before storing. Only used for loop vectorization;
727 SLP uses separate permutes. */
728 VMAT_CONTIGUOUS_PERMUTE,
730 /* A simple contiguous access in which the elements need to be reversed
731 after loading or before storing. */
732 VMAT_CONTIGUOUS_REVERSE,
734 /* An access that uses IFN_LOAD_LANES or IFN_STORE_LANES. */
735 VMAT_LOAD_STORE_LANES,
737 /* An access in which each scalar element is loaded or stored
738 individually. */
739 VMAT_ELEMENTWISE,
741 /* A hybrid of VMAT_CONTIGUOUS and VMAT_ELEMENTWISE, used for grouped
742 SLP accesses. Each unrolled iteration uses a contiguous load
743 or store for the whole group, but the groups from separate iterations
744 are combined in the same way as for VMAT_ELEMENTWISE. */
745 VMAT_STRIDED_SLP,
747 /* The access uses gather loads or scatter stores. */
748 VMAT_GATHER_SCATTER
751 struct dataref_aux {
752 /* The misalignment in bytes of the reference, or -1 if not known. */
753 int misalignment;
754 /* The byte alignment that we'd ideally like the reference to have,
755 and the value that misalignment is measured against. */
756 int target_alignment;
757 /* If true the alignment of base_decl needs to be increased. */
758 bool base_misaligned;
759 tree base_decl;
762 typedef struct data_reference *dr_p;
764 typedef struct _stmt_vec_info {
766 enum stmt_vec_info_type type;
768 /* Indicates whether this stmts is part of a computation whose result is
769 used outside the loop. */
770 bool live;
772 /* Stmt is part of some pattern (computation idiom) */
773 bool in_pattern_p;
775 /* Is this statement vectorizable or should it be skipped in (partial)
776 vectorization. */
777 bool vectorizable;
779 /* The stmt to which this info struct refers to. */
780 gimple *stmt;
782 /* The vec_info with respect to which STMT is vectorized. */
783 vec_info *vinfo;
785 /* The vector type to be used for the LHS of this statement. */
786 tree vectype;
788 /* The vectorized version of the stmt. */
789 gimple *vectorized_stmt;
792 /* The following is relevant only for stmts that contain a non-scalar
793 data-ref (array/pointer/struct access). A GIMPLE stmt is expected to have
794 at most one such data-ref. */
796 /* Information about the data-ref (access function, etc),
797 relative to the inner-most containing loop. */
798 struct data_reference *data_ref_info;
800 dataref_aux dr_aux;
802 /* Information about the data-ref relative to this loop
803 nest (the loop that is being considered for vectorization). */
804 innermost_loop_behavior dr_wrt_vec_loop;
806 /* For loop PHI nodes, the base and evolution part of it. This makes sure
807 this information is still available in vect_update_ivs_after_vectorizer
808 where we may not be able to re-analyze the PHI nodes evolution as
809 peeling for the prologue loop can make it unanalyzable. The evolution
810 part is still correct after peeling, but the base may have changed from
811 the version here. */
812 tree loop_phi_evolution_base_unchanged;
813 tree loop_phi_evolution_part;
815 /* Used for various bookkeeping purposes, generally holding a pointer to
816 some other stmt S that is in some way "related" to this stmt.
817 Current use of this field is:
818 If this stmt is part of a pattern (i.e. the field 'in_pattern_p' is
819 true): S is the "pattern stmt" that represents (and replaces) the
820 sequence of stmts that constitutes the pattern. Similarly, the
821 related_stmt of the "pattern stmt" points back to this stmt (which is
822 the last stmt in the original sequence of stmts that constitutes the
823 pattern). */
824 gimple *related_stmt;
826 /* Used to keep a sequence of def stmts of a pattern stmt if such exists.
827 The sequence is attached to the original statement rather than the
828 pattern statement. */
829 gimple_seq pattern_def_seq;
831 /* List of datarefs that are known to have the same alignment as the dataref
832 of this stmt. */
833 vec<dr_p> same_align_refs;
835 /* Selected SIMD clone's function info. First vector element
836 is SIMD clone's function decl, followed by a pair of trees (base + step)
837 for linear arguments (pair of NULLs for other arguments). */
838 vec<tree> simd_clone_info;
840 /* Classify the def of this stmt. */
841 enum vect_def_type def_type;
843 /* Whether the stmt is SLPed, loop-based vectorized, or both. */
844 enum slp_vect_type slp_type;
846 /* Interleaving and reduction chains info. */
847 /* First element in the group. */
848 gimple *first_element;
849 /* Pointer to the next element in the group. */
850 gimple *next_element;
851 /* For data-refs, in case that two or more stmts share data-ref, this is the
852 pointer to the previously detected stmt with the same dr. */
853 gimple *same_dr_stmt;
854 /* The size of the group. */
855 unsigned int size;
856 /* For stores, number of stores from this group seen. We vectorize the last
857 one. */
858 unsigned int store_count;
859 /* For loads only, the gap from the previous load. For consecutive loads, GAP
860 is 1. */
861 unsigned int gap;
863 /* The minimum negative dependence distance this stmt participates in
864 or zero if none. */
865 unsigned int min_neg_dist;
867 /* Not all stmts in the loop need to be vectorized. e.g, the increment
868 of the loop induction variable and computation of array indexes. relevant
869 indicates whether the stmt needs to be vectorized. */
870 enum vect_relevant relevant;
872 /* For loads if this is a gather, for stores if this is a scatter. */
873 bool gather_scatter_p;
875 /* True if this is an access with loop-invariant stride. */
876 bool strided_p;
878 /* For both loads and stores. */
879 bool simd_lane_access_p;
881 /* Classifies how the load or store is going to be implemented
882 for loop vectorization. */
883 vect_memory_access_type memory_access_type;
885 /* For reduction loops, this is the type of reduction. */
886 enum vect_reduction_type v_reduc_type;
888 /* For CONST_COND_REDUCTION, record the reduc code. */
889 enum tree_code const_cond_reduc_code;
891 /* On a reduction PHI the reduction type as detected by
892 vect_force_simple_reduction. */
893 enum vect_reduction_type reduc_type;
895 /* On a reduction PHI the def returned by vect_force_simple_reduction.
896 On the def returned by vect_force_simple_reduction the
897 corresponding PHI. */
898 gimple *reduc_def;
900 /* The number of scalar stmt references from active SLP instances. */
901 unsigned int num_slp_uses;
903 /* If nonzero, the lhs of the statement could be truncated to this
904 many bits without affecting any users of the result. */
905 unsigned int min_output_precision;
907 /* If nonzero, all non-boolean input operands have the same precision,
908 and they could each be truncated to this many bits without changing
909 the result. */
910 unsigned int min_input_precision;
912 /* If OPERATION_BITS is nonzero, the statement could be performed on
913 an integer with the sign and number of bits given by OPERATION_SIGN
914 and OPERATION_BITS without changing the result. */
915 unsigned int operation_precision;
916 signop operation_sign;
917 } *stmt_vec_info;
919 /* Information about a gather/scatter call. */
920 struct gather_scatter_info {
921 /* The internal function to use for the gather/scatter operation,
922 or IFN_LAST if a built-in function should be used instead. */
923 internal_fn ifn;
925 /* The FUNCTION_DECL for the built-in gather/scatter function,
926 or null if an internal function should be used instead. */
927 tree decl;
929 /* The loop-invariant base value. */
930 tree base;
932 /* The original scalar offset, which is a non-loop-invariant SSA_NAME. */
933 tree offset;
935 /* Each offset element should be multiplied by this amount before
936 being added to the base. */
937 int scale;
939 /* The definition type for the vectorized offset. */
940 enum vect_def_type offset_dt;
942 /* The type of the vectorized offset. */
943 tree offset_vectype;
945 /* The type of the scalar elements after loading or before storing. */
946 tree element_type;
948 /* The type of the scalar elements being loaded or stored. */
949 tree memory_type;
952 /* Access Functions. */
953 #define STMT_VINFO_TYPE(S) (S)->type
954 #define STMT_VINFO_STMT(S) (S)->stmt
955 inline loop_vec_info
956 STMT_VINFO_LOOP_VINFO (stmt_vec_info stmt_vinfo)
958 if (loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (stmt_vinfo->vinfo))
959 return loop_vinfo;
960 return NULL;
962 inline bb_vec_info
963 STMT_VINFO_BB_VINFO (stmt_vec_info stmt_vinfo)
965 if (bb_vec_info bb_vinfo = dyn_cast <bb_vec_info> (stmt_vinfo->vinfo))
966 return bb_vinfo;
967 return NULL;
969 #define STMT_VINFO_RELEVANT(S) (S)->relevant
970 #define STMT_VINFO_LIVE_P(S) (S)->live
971 #define STMT_VINFO_VECTYPE(S) (S)->vectype
972 #define STMT_VINFO_VEC_STMT(S) (S)->vectorized_stmt
973 #define STMT_VINFO_VECTORIZABLE(S) (S)->vectorizable
974 #define STMT_VINFO_DATA_REF(S) (S)->data_ref_info
975 #define STMT_VINFO_GATHER_SCATTER_P(S) (S)->gather_scatter_p
976 #define STMT_VINFO_STRIDED_P(S) (S)->strided_p
977 #define STMT_VINFO_MEMORY_ACCESS_TYPE(S) (S)->memory_access_type
978 #define STMT_VINFO_SIMD_LANE_ACCESS_P(S) (S)->simd_lane_access_p
979 #define STMT_VINFO_VEC_REDUCTION_TYPE(S) (S)->v_reduc_type
980 #define STMT_VINFO_VEC_CONST_COND_REDUC_CODE(S) (S)->const_cond_reduc_code
982 #define STMT_VINFO_DR_WRT_VEC_LOOP(S) (S)->dr_wrt_vec_loop
983 #define STMT_VINFO_DR_BASE_ADDRESS(S) (S)->dr_wrt_vec_loop.base_address
984 #define STMT_VINFO_DR_INIT(S) (S)->dr_wrt_vec_loop.init
985 #define STMT_VINFO_DR_OFFSET(S) (S)->dr_wrt_vec_loop.offset
986 #define STMT_VINFO_DR_STEP(S) (S)->dr_wrt_vec_loop.step
987 #define STMT_VINFO_DR_BASE_ALIGNMENT(S) (S)->dr_wrt_vec_loop.base_alignment
988 #define STMT_VINFO_DR_BASE_MISALIGNMENT(S) \
989 (S)->dr_wrt_vec_loop.base_misalignment
990 #define STMT_VINFO_DR_OFFSET_ALIGNMENT(S) \
991 (S)->dr_wrt_vec_loop.offset_alignment
992 #define STMT_VINFO_DR_STEP_ALIGNMENT(S) \
993 (S)->dr_wrt_vec_loop.step_alignment
995 #define STMT_VINFO_IN_PATTERN_P(S) (S)->in_pattern_p
996 #define STMT_VINFO_RELATED_STMT(S) (S)->related_stmt
997 #define STMT_VINFO_PATTERN_DEF_SEQ(S) (S)->pattern_def_seq
998 #define STMT_VINFO_SAME_ALIGN_REFS(S) (S)->same_align_refs
999 #define STMT_VINFO_SIMD_CLONE_INFO(S) (S)->simd_clone_info
1000 #define STMT_VINFO_DEF_TYPE(S) (S)->def_type
1001 #define STMT_VINFO_GROUPED_ACCESS(S) ((S)->data_ref_info && DR_GROUP_FIRST_ELEMENT(S))
1002 #define STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED(S) (S)->loop_phi_evolution_base_unchanged
1003 #define STMT_VINFO_LOOP_PHI_EVOLUTION_PART(S) (S)->loop_phi_evolution_part
1004 #define STMT_VINFO_MIN_NEG_DIST(S) (S)->min_neg_dist
1005 #define STMT_VINFO_NUM_SLP_USES(S) (S)->num_slp_uses
1006 #define STMT_VINFO_REDUC_TYPE(S) (S)->reduc_type
1007 #define STMT_VINFO_REDUC_DEF(S) (S)->reduc_def
1009 #define DR_GROUP_FIRST_ELEMENT(S) (gcc_checking_assert ((S)->data_ref_info), (S)->first_element)
1010 #define DR_GROUP_NEXT_ELEMENT(S) (gcc_checking_assert ((S)->data_ref_info), (S)->next_element)
1011 #define DR_GROUP_SIZE(S) (gcc_checking_assert ((S)->data_ref_info), (S)->size)
1012 #define DR_GROUP_STORE_COUNT(S) (gcc_checking_assert ((S)->data_ref_info), (S)->store_count)
1013 #define DR_GROUP_GAP(S) (gcc_checking_assert ((S)->data_ref_info), (S)->gap)
1014 #define DR_GROUP_SAME_DR_STMT(S) (gcc_checking_assert ((S)->data_ref_info), (S)->same_dr_stmt)
1016 #define REDUC_GROUP_FIRST_ELEMENT(S) (gcc_checking_assert (!(S)->data_ref_info), (S)->first_element)
1017 #define REDUC_GROUP_NEXT_ELEMENT(S) (gcc_checking_assert (!(S)->data_ref_info), (S)->next_element)
1018 #define REDUC_GROUP_SIZE(S) (gcc_checking_assert (!(S)->data_ref_info), (S)->size)
1020 #define STMT_VINFO_RELEVANT_P(S) ((S)->relevant != vect_unused_in_scope)
1022 #define HYBRID_SLP_STMT(S) ((S)->slp_type == hybrid)
1023 #define PURE_SLP_STMT(S) ((S)->slp_type == pure_slp)
1024 #define STMT_SLP_TYPE(S) (S)->slp_type
1026 #define DR_VECT_AUX(dr) (&vinfo_for_stmt (DR_STMT (dr))->dr_aux)
1028 #define VECT_MAX_COST 1000
1030 /* The maximum number of intermediate steps required in multi-step type
1031 conversion. */
1032 #define MAX_INTERM_CVT_STEPS 3
1034 #define MAX_VECTORIZATION_FACTOR INT_MAX
1036 /* Nonzero if TYPE represents a (scalar) boolean type or type
1037 in the middle-end compatible with it (unsigned precision 1 integral
1038 types). Used to determine which types should be vectorized as
1039 VECTOR_BOOLEAN_TYPE_P. */
1041 #define VECT_SCALAR_BOOLEAN_TYPE_P(TYPE) \
1042 (TREE_CODE (TYPE) == BOOLEAN_TYPE \
1043 || ((TREE_CODE (TYPE) == INTEGER_TYPE \
1044 || TREE_CODE (TYPE) == ENUMERAL_TYPE) \
1045 && TYPE_PRECISION (TYPE) == 1 \
1046 && TYPE_UNSIGNED (TYPE)))
1048 extern vec<stmt_vec_info> *stmt_vec_info_vec;
1050 void set_stmt_vec_info_vec (vec<stmt_vec_info> *);
1051 void free_stmt_vec_infos (vec<stmt_vec_info> *);
1053 /* Return a stmt_vec_info corresponding to STMT. */
1055 static inline stmt_vec_info
1056 vinfo_for_stmt (gimple *stmt)
1058 int uid = gimple_uid (stmt);
1059 if (uid <= 0)
1060 return NULL;
1062 return (*stmt_vec_info_vec)[uid - 1];
1065 /* Set vectorizer information INFO for STMT. */
1067 static inline void
1068 set_vinfo_for_stmt (gimple *stmt, stmt_vec_info info)
1070 unsigned int uid = gimple_uid (stmt);
1071 if (uid == 0)
1073 gcc_checking_assert (info);
1074 uid = stmt_vec_info_vec->length () + 1;
1075 gimple_set_uid (stmt, uid);
1076 stmt_vec_info_vec->safe_push (info);
1078 else
1080 gcc_checking_assert (info == NULL);
1081 (*stmt_vec_info_vec)[uid - 1] = info;
1085 /* Return the earlier statement between STMT1 and STMT2. */
1087 static inline gimple *
1088 get_earlier_stmt (gimple *stmt1, gimple *stmt2)
1090 unsigned int uid1, uid2;
1092 if (stmt1 == NULL)
1093 return stmt2;
1095 if (stmt2 == NULL)
1096 return stmt1;
1098 uid1 = gimple_uid (stmt1);
1099 uid2 = gimple_uid (stmt2);
1101 if (uid1 == 0 || uid2 == 0)
1102 return NULL;
1104 gcc_assert (uid1 <= stmt_vec_info_vec->length ()
1105 && uid2 <= stmt_vec_info_vec->length ());
1106 gcc_checking_assert ((STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (stmt1))
1107 || !STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt1)))
1108 && (STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (stmt2))
1109 || !STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt2))));
1111 if (uid1 < uid2)
1112 return stmt1;
1113 else
1114 return stmt2;
1117 /* Return the later statement between STMT1 and STMT2. */
1119 static inline gimple *
1120 get_later_stmt (gimple *stmt1, gimple *stmt2)
1122 unsigned int uid1, uid2;
1124 if (stmt1 == NULL)
1125 return stmt2;
1127 if (stmt2 == NULL)
1128 return stmt1;
1130 uid1 = gimple_uid (stmt1);
1131 uid2 = gimple_uid (stmt2);
1133 if (uid1 == 0 || uid2 == 0)
1134 return NULL;
1136 gcc_assert (uid1 <= stmt_vec_info_vec->length ()
1137 && uid2 <= stmt_vec_info_vec->length ());
1138 gcc_checking_assert ((STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (stmt1))
1139 || !STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt1)))
1140 && (STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (stmt2))
1141 || !STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt2))));
1143 if (uid1 > uid2)
1144 return stmt1;
1145 else
1146 return stmt2;
1149 /* Return TRUE if a statement represented by STMT_INFO is a part of a
1150 pattern. */
1152 static inline bool
1153 is_pattern_stmt_p (stmt_vec_info stmt_info)
1155 gimple *related_stmt;
1156 stmt_vec_info related_stmt_info;
1158 related_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
1159 if (related_stmt
1160 && (related_stmt_info = vinfo_for_stmt (related_stmt))
1161 && STMT_VINFO_IN_PATTERN_P (related_stmt_info))
1162 return true;
1164 return false;
1167 /* Return true if BB is a loop header. */
1169 static inline bool
1170 is_loop_header_bb_p (basic_block bb)
1172 if (bb == (bb->loop_father)->header)
1173 return true;
1174 gcc_checking_assert (EDGE_COUNT (bb->preds) == 1);
1175 return false;
1178 /* Return pow2 (X). */
1180 static inline int
1181 vect_pow2 (int x)
1183 int i, res = 1;
1185 for (i = 0; i < x; i++)
1186 res *= 2;
1188 return res;
1191 /* Alias targetm.vectorize.builtin_vectorization_cost. */
1193 static inline int
1194 builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost,
1195 tree vectype, int misalign)
1197 return targetm.vectorize.builtin_vectorization_cost (type_of_cost,
1198 vectype, misalign);
1201 /* Get cost by calling cost target builtin. */
1203 static inline
1204 int vect_get_stmt_cost (enum vect_cost_for_stmt type_of_cost)
1206 return builtin_vectorization_cost (type_of_cost, NULL, 0);
1209 /* Alias targetm.vectorize.init_cost. */
1211 static inline void *
1212 init_cost (struct loop *loop_info)
1214 return targetm.vectorize.init_cost (loop_info);
1217 extern void dump_stmt_cost (FILE *, void *, int, enum vect_cost_for_stmt,
1218 stmt_vec_info, int, enum vect_cost_model_location);
1220 /* Alias targetm.vectorize.add_stmt_cost. */
1222 static inline unsigned
1223 add_stmt_cost (void *data, int count, enum vect_cost_for_stmt kind,
1224 stmt_vec_info stmt_info, int misalign,
1225 enum vect_cost_model_location where)
1227 if (dump_file && (dump_flags & TDF_DETAILS))
1228 dump_stmt_cost (dump_file, data, count, kind, stmt_info, misalign, where);
1229 return targetm.vectorize.add_stmt_cost (data, count, kind,
1230 stmt_info, misalign, where);
1233 /* Alias targetm.vectorize.finish_cost. */
1235 static inline void
1236 finish_cost (void *data, unsigned *prologue_cost,
1237 unsigned *body_cost, unsigned *epilogue_cost)
1239 targetm.vectorize.finish_cost (data, prologue_cost, body_cost, epilogue_cost);
1242 /* Alias targetm.vectorize.destroy_cost_data. */
1244 static inline void
1245 destroy_cost_data (void *data)
1247 targetm.vectorize.destroy_cost_data (data);
1250 inline void
1251 add_stmt_costs (void *data, stmt_vector_for_cost *cost_vec)
1253 stmt_info_for_cost *cost;
1254 unsigned i;
1255 FOR_EACH_VEC_ELT (*cost_vec, i, cost)
1256 add_stmt_cost (data, cost->count, cost->kind,
1257 cost->stmt ? vinfo_for_stmt (cost->stmt) : NULL,
1258 cost->misalign, cost->where);
1261 /*-----------------------------------------------------------------*/
1262 /* Info on data references alignment. */
1263 /*-----------------------------------------------------------------*/
1264 #define DR_MISALIGNMENT_UNKNOWN (-1)
1265 #define DR_MISALIGNMENT_UNINITIALIZED (-2)
1267 inline void
1268 set_dr_misalignment (struct data_reference *dr, int val)
1270 dataref_aux *data_aux = DR_VECT_AUX (dr);
1271 data_aux->misalignment = val;
1274 inline int
1275 dr_misalignment (struct data_reference *dr)
1277 int misalign = DR_VECT_AUX (dr)->misalignment;
1278 gcc_assert (misalign != DR_MISALIGNMENT_UNINITIALIZED);
1279 return misalign;
1282 /* Reflects actual alignment of first access in the vectorized loop,
1283 taking into account peeling/versioning if applied. */
1284 #define DR_MISALIGNMENT(DR) dr_misalignment (DR)
1285 #define SET_DR_MISALIGNMENT(DR, VAL) set_dr_misalignment (DR, VAL)
1287 /* Only defined once DR_MISALIGNMENT is defined. */
1288 #define DR_TARGET_ALIGNMENT(DR) DR_VECT_AUX (DR)->target_alignment
1290 /* Return true if data access DR is aligned to its target alignment
1291 (which may be less than a full vector). */
1293 static inline bool
1294 aligned_access_p (struct data_reference *data_ref_info)
1296 return (DR_MISALIGNMENT (data_ref_info) == 0);
1299 /* Return TRUE if the alignment of the data access is known, and FALSE
1300 otherwise. */
1302 static inline bool
1303 known_alignment_for_access_p (struct data_reference *data_ref_info)
1305 return (DR_MISALIGNMENT (data_ref_info) != DR_MISALIGNMENT_UNKNOWN);
1308 /* Return the minimum alignment in bytes that the vectorized version
1309 of DR is guaranteed to have. */
1311 static inline unsigned int
1312 vect_known_alignment_in_bytes (struct data_reference *dr)
1314 if (DR_MISALIGNMENT (dr) == DR_MISALIGNMENT_UNKNOWN)
1315 return TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr)));
1316 if (DR_MISALIGNMENT (dr) == 0)
1317 return DR_TARGET_ALIGNMENT (dr);
1318 return DR_MISALIGNMENT (dr) & -DR_MISALIGNMENT (dr);
1321 /* Return the behavior of DR with respect to the vectorization context
1322 (which for outer loop vectorization might not be the behavior recorded
1323 in DR itself). */
1325 static inline innermost_loop_behavior *
1326 vect_dr_behavior (data_reference *dr)
1328 gimple *stmt = DR_STMT (dr);
1329 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1330 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1331 if (loop_vinfo == NULL
1332 || !nested_in_vect_loop_p (LOOP_VINFO_LOOP (loop_vinfo), stmt))
1333 return &DR_INNERMOST (dr);
1334 else
1335 return &STMT_VINFO_DR_WRT_VEC_LOOP (stmt_info);
1338 /* Return the stmt DR is in. For DR_STMT that have been replaced by
1339 a pattern this returns the corresponding pattern stmt. Otherwise
1340 DR_STMT is returned. */
1342 inline gimple *
1343 vect_dr_stmt (data_reference *dr)
1345 gimple *stmt = DR_STMT (dr);
1346 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1347 if (STMT_VINFO_IN_PATTERN_P (stmt_info))
1348 return STMT_VINFO_RELATED_STMT (stmt_info);
1349 /* DR_STMT should never refer to a stmt in a pattern replacement. */
1350 gcc_checking_assert (!STMT_VINFO_RELATED_STMT (stmt_info));
1351 return stmt;
1354 /* Return true if the vect cost model is unlimited. */
1355 static inline bool
1356 unlimited_cost_model (loop_p loop)
1358 if (loop != NULL && loop->force_vectorize
1359 && flag_simd_cost_model != VECT_COST_MODEL_DEFAULT)
1360 return flag_simd_cost_model == VECT_COST_MODEL_UNLIMITED;
1361 return (flag_vect_cost_model == VECT_COST_MODEL_UNLIMITED);
1364 /* Return true if the loop described by LOOP_VINFO is fully-masked and
1365 if the first iteration should use a partial mask in order to achieve
1366 alignment. */
1368 static inline bool
1369 vect_use_loop_mask_for_alignment_p (loop_vec_info loop_vinfo)
1371 return (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo)
1372 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo));
1375 /* Return the number of vectors of type VECTYPE that are needed to get
1376 NUNITS elements. NUNITS should be based on the vectorization factor,
1377 so it is always a known multiple of the number of elements in VECTYPE. */
1379 static inline unsigned int
1380 vect_get_num_vectors (poly_uint64 nunits, tree vectype)
1382 return exact_div (nunits, TYPE_VECTOR_SUBPARTS (vectype)).to_constant ();
1385 /* Return the number of copies needed for loop vectorization when
1386 a statement operates on vectors of type VECTYPE. This is the
1387 vectorization factor divided by the number of elements in
1388 VECTYPE and is always known at compile time. */
1390 static inline unsigned int
1391 vect_get_num_copies (loop_vec_info loop_vinfo, tree vectype)
1393 return vect_get_num_vectors (LOOP_VINFO_VECT_FACTOR (loop_vinfo), vectype);
1396 /* Update maximum unit count *MAX_NUNITS so that it accounts for
1397 the number of units in vector type VECTYPE. *MAX_NUNITS can be 1
1398 if we haven't yet recorded any vector types. */
1400 static inline void
1401 vect_update_max_nunits (poly_uint64 *max_nunits, tree vectype)
1403 /* All unit counts have the form current_vector_size * X for some
1404 rational X, so two unit sizes must have a common multiple.
1405 Everything is a multiple of the initial value of 1. */
1406 poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vectype);
1407 *max_nunits = force_common_multiple (*max_nunits, nunits);
1410 /* Return the vectorization factor that should be used for costing
1411 purposes while vectorizing the loop described by LOOP_VINFO.
1412 Pick a reasonable estimate if the vectorization factor isn't
1413 known at compile time. */
1415 static inline unsigned int
1416 vect_vf_for_cost (loop_vec_info loop_vinfo)
1418 return estimated_poly_value (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
1421 /* Estimate the number of elements in VEC_TYPE for costing purposes.
1422 Pick a reasonable estimate if the exact number isn't known at
1423 compile time. */
1425 static inline unsigned int
1426 vect_nunits_for_cost (tree vec_type)
1428 return estimated_poly_value (TYPE_VECTOR_SUBPARTS (vec_type));
1431 /* Return the maximum possible vectorization factor for LOOP_VINFO. */
1433 static inline unsigned HOST_WIDE_INT
1434 vect_max_vf (loop_vec_info loop_vinfo)
1436 unsigned HOST_WIDE_INT vf;
1437 if (LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant (&vf))
1438 return vf;
1439 return MAX_VECTORIZATION_FACTOR;
1442 /* Return the size of the value accessed by unvectorized data reference DR.
1443 This is only valid once STMT_VINFO_VECTYPE has been calculated for the
1444 associated gimple statement, since that guarantees that DR accesses
1445 either a scalar or a scalar equivalent. ("Scalar equivalent" here
1446 includes things like V1SI, which can be vectorized in the same way
1447 as a plain SI.) */
1449 inline unsigned int
1450 vect_get_scalar_dr_size (struct data_reference *dr)
1452 return tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr))));
1455 /* Source location + hotness information. */
1456 extern dump_user_location_t vect_location;
1458 /* A macro for calling:
1459 dump_begin_scope (MSG, vect_location);
1460 via an RAII object, thus printing "=== MSG ===\n" to the dumpfile etc,
1461 and then calling
1462 dump_end_scope ();
1463 once the object goes out of scope, thus capturing the nesting of
1464 the scopes. */
1466 #define DUMP_VECT_SCOPE(MSG) \
1467 AUTO_DUMP_SCOPE (MSG, vect_location)
1469 /*-----------------------------------------------------------------*/
1470 /* Function prototypes. */
1471 /*-----------------------------------------------------------------*/
1473 /* Simple loop peeling and versioning utilities for vectorizer's purposes -
1474 in tree-vect-loop-manip.c. */
1475 extern void vect_set_loop_condition (struct loop *, loop_vec_info,
1476 tree, tree, tree, bool);
1477 extern bool slpeel_can_duplicate_loop_p (const struct loop *, const_edge);
1478 struct loop *slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *,
1479 struct loop *, edge);
1480 extern void vect_loop_versioning (loop_vec_info, unsigned int, bool,
1481 poly_uint64);
1482 extern struct loop *vect_do_peeling (loop_vec_info, tree, tree,
1483 tree *, tree *, tree *, int, bool, bool);
1484 extern void vect_prepare_for_masked_peels (loop_vec_info);
1485 extern dump_user_location_t find_loop_location (struct loop *);
1486 extern bool vect_can_advance_ivs_p (loop_vec_info);
1488 /* In tree-vect-stmts.c. */
1489 extern poly_uint64 current_vector_size;
1490 extern tree get_vectype_for_scalar_type (tree);
1491 extern tree get_vectype_for_scalar_type_and_size (tree, poly_uint64);
1492 extern tree get_mask_type_for_scalar_type (tree);
1493 extern tree get_same_sized_vectype (tree, tree);
1494 extern bool vect_get_loop_mask_type (loop_vec_info);
1495 extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
1496 gimple ** = NULL);
1497 extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
1498 tree *, gimple ** = NULL);
1499 extern bool supportable_widening_operation (enum tree_code, gimple *, tree,
1500 tree, enum tree_code *,
1501 enum tree_code *, int *,
1502 vec<tree> *);
1503 extern bool supportable_narrowing_operation (enum tree_code, tree, tree,
1504 enum tree_code *,
1505 int *, vec<tree> *);
1506 extern stmt_vec_info new_stmt_vec_info (gimple *stmt, vec_info *);
1507 extern void free_stmt_vec_info (gimple *stmt);
1508 extern unsigned record_stmt_cost (stmt_vector_for_cost *, int,
1509 enum vect_cost_for_stmt, stmt_vec_info,
1510 int, enum vect_cost_model_location);
1511 extern void vect_finish_replace_stmt (gimple *, gimple *);
1512 extern void vect_finish_stmt_generation (gimple *, gimple *,
1513 gimple_stmt_iterator *);
1514 extern bool vect_mark_stmts_to_be_vectorized (loop_vec_info);
1515 extern tree vect_get_store_rhs (gimple *);
1516 extern tree vect_get_vec_def_for_operand_1 (gimple *, enum vect_def_type);
1517 extern tree vect_get_vec_def_for_operand (tree, gimple *, tree = NULL);
1518 extern void vect_get_vec_defs (tree, tree, gimple *, vec<tree> *,
1519 vec<tree> *, slp_tree);
1520 extern void vect_get_vec_defs_for_stmt_copy (enum vect_def_type *,
1521 vec<tree> *, vec<tree> *);
1522 extern tree vect_init_vector (gimple *, tree, tree,
1523 gimple_stmt_iterator *);
1524 extern tree vect_get_vec_def_for_stmt_copy (enum vect_def_type, tree);
1525 extern bool vect_transform_stmt (gimple *, gimple_stmt_iterator *,
1526 bool *, slp_tree, slp_instance);
1527 extern void vect_remove_stores (gimple *);
1528 extern bool vect_analyze_stmt (gimple *, bool *, slp_tree, slp_instance,
1529 stmt_vector_for_cost *);
1530 extern bool vectorizable_condition (gimple *, gimple_stmt_iterator *,
1531 gimple **, tree, int, slp_tree,
1532 stmt_vector_for_cost *);
1533 extern void vect_get_load_cost (stmt_vec_info, int, bool,
1534 unsigned int *, unsigned int *,
1535 stmt_vector_for_cost *,
1536 stmt_vector_for_cost *, bool);
1537 extern void vect_get_store_cost (stmt_vec_info, int,
1538 unsigned int *, stmt_vector_for_cost *);
1539 extern bool vect_supportable_shift (enum tree_code, tree);
1540 extern tree vect_gen_perm_mask_any (tree, const vec_perm_indices &);
1541 extern tree vect_gen_perm_mask_checked (tree, const vec_perm_indices &);
1542 extern void optimize_mask_stores (struct loop*);
1543 extern gcall *vect_gen_while (tree, tree, tree);
1544 extern tree vect_gen_while_not (gimple_seq *, tree, tree, tree);
1545 extern bool vect_get_vector_types_for_stmt (stmt_vec_info, tree *, tree *);
1546 extern tree vect_get_mask_type_for_stmt (stmt_vec_info);
1548 /* In tree-vect-data-refs.c. */
1549 extern bool vect_can_force_dr_alignment_p (const_tree, unsigned int);
1550 extern enum dr_alignment_support vect_supportable_dr_alignment
1551 (struct data_reference *, bool);
1552 extern tree vect_get_smallest_scalar_type (gimple *, HOST_WIDE_INT *,
1553 HOST_WIDE_INT *);
1554 extern bool vect_analyze_data_ref_dependences (loop_vec_info, unsigned int *);
1555 extern bool vect_slp_analyze_instance_dependence (slp_instance);
1556 extern bool vect_enhance_data_refs_alignment (loop_vec_info);
1557 extern bool vect_analyze_data_refs_alignment (loop_vec_info);
1558 extern bool vect_verify_datarefs_alignment (loop_vec_info);
1559 extern bool vect_slp_analyze_and_verify_instance_alignment (slp_instance);
1560 extern bool vect_analyze_data_ref_accesses (vec_info *);
1561 extern bool vect_prune_runtime_alias_test_list (loop_vec_info);
1562 extern bool vect_gather_scatter_fn_p (bool, bool, tree, tree, unsigned int,
1563 signop, int, internal_fn *, tree *);
1564 extern bool vect_check_gather_scatter (gimple *, loop_vec_info,
1565 gather_scatter_info *);
1566 extern bool vect_find_stmt_data_reference (loop_p, gimple *,
1567 vec<data_reference_p> *);
1568 extern bool vect_analyze_data_refs (vec_info *, poly_uint64 *);
1569 extern void vect_record_base_alignments (vec_info *);
1570 extern tree vect_create_data_ref_ptr (gimple *, tree, struct loop *, tree,
1571 tree *, gimple_stmt_iterator *,
1572 gimple **, bool, bool *,
1573 tree = NULL_TREE, tree = NULL_TREE);
1574 extern tree bump_vector_ptr (tree, gimple *, gimple_stmt_iterator *, gimple *,
1575 tree);
1576 extern void vect_copy_ref_info (tree, tree);
1577 extern tree vect_create_destination_var (tree, tree);
1578 extern bool vect_grouped_store_supported (tree, unsigned HOST_WIDE_INT);
1579 extern bool vect_store_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
1580 extern bool vect_grouped_load_supported (tree, bool, unsigned HOST_WIDE_INT);
1581 extern bool vect_load_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
1582 extern void vect_permute_store_chain (vec<tree> ,unsigned int, gimple *,
1583 gimple_stmt_iterator *, vec<tree> *);
1584 extern tree vect_setup_realignment (gimple *, gimple_stmt_iterator *, tree *,
1585 enum dr_alignment_support, tree,
1586 struct loop **);
1587 extern void vect_transform_grouped_load (gimple *, vec<tree> , int,
1588 gimple_stmt_iterator *);
1589 extern void vect_record_grouped_load_vectors (gimple *, vec<tree> );
1590 extern tree vect_get_new_vect_var (tree, enum vect_var_kind, const char *);
1591 extern tree vect_get_new_ssa_name (tree, enum vect_var_kind,
1592 const char * = NULL);
1593 extern tree vect_create_addr_base_for_vector_ref (gimple *, gimple_seq *,
1594 tree, tree = NULL_TREE);
1596 /* In tree-vect-loop.c. */
1597 /* FORNOW: Used in tree-parloops.c. */
1598 extern gimple *vect_force_simple_reduction (loop_vec_info, gimple *,
1599 bool *, bool);
1600 /* Used in gimple-loop-interchange.c. */
1601 extern bool check_reduction_path (dump_user_location_t, loop_p, gphi *, tree,
1602 enum tree_code);
1603 /* Drive for loop analysis stage. */
1604 extern loop_vec_info vect_analyze_loop (struct loop *, loop_vec_info,
1605 vec_info_shared *);
1606 extern tree vect_build_loop_niters (loop_vec_info, bool * = NULL);
1607 extern void vect_gen_vector_loop_niters (loop_vec_info, tree, tree *,
1608 tree *, bool);
1609 extern tree vect_halve_mask_nunits (tree);
1610 extern tree vect_double_mask_nunits (tree);
1611 extern void vect_record_loop_mask (loop_vec_info, vec_loop_masks *,
1612 unsigned int, tree);
1613 extern tree vect_get_loop_mask (gimple_stmt_iterator *, vec_loop_masks *,
1614 unsigned int, tree, unsigned int);
1616 /* Drive for loop transformation stage. */
1617 extern struct loop *vect_transform_loop (loop_vec_info);
1618 extern loop_vec_info vect_analyze_loop_form (struct loop *, vec_info_shared *);
1619 extern bool vectorizable_live_operation (gimple *, gimple_stmt_iterator *,
1620 slp_tree, int, gimple **,
1621 stmt_vector_for_cost *);
1622 extern bool vectorizable_reduction (gimple *, gimple_stmt_iterator *,
1623 gimple **, slp_tree, slp_instance,
1624 stmt_vector_for_cost *);
1625 extern bool vectorizable_induction (gimple *, gimple_stmt_iterator *,
1626 gimple **, slp_tree,
1627 stmt_vector_for_cost *);
1628 extern tree get_initial_def_for_reduction (gimple *, tree, tree *);
1629 extern bool vect_worthwhile_without_simd_p (vec_info *, tree_code);
1630 extern int vect_get_known_peeling_cost (loop_vec_info, int, int *,
1631 stmt_vector_for_cost *,
1632 stmt_vector_for_cost *,
1633 stmt_vector_for_cost *);
1634 extern tree cse_and_gimplify_to_preheader (loop_vec_info, tree);
1636 /* In tree-vect-slp.c. */
1637 extern void vect_free_slp_instance (slp_instance, bool);
1638 extern bool vect_transform_slp_perm_load (slp_tree, vec<tree> ,
1639 gimple_stmt_iterator *, poly_uint64,
1640 slp_instance, bool, unsigned *);
1641 extern bool vect_slp_analyze_operations (vec_info *);
1642 extern bool vect_schedule_slp (vec_info *);
1643 extern bool vect_analyze_slp (vec_info *, unsigned);
1644 extern bool vect_make_slp_decision (loop_vec_info);
1645 extern void vect_detect_hybrid_slp (loop_vec_info);
1646 extern void vect_get_slp_defs (vec<tree> , slp_tree, vec<vec<tree> > *);
1647 extern bool vect_slp_bb (basic_block);
1648 extern gimple *vect_find_last_scalar_stmt_in_slp (slp_tree);
1649 extern bool is_simple_and_all_uses_invariant (gimple *, loop_vec_info);
1650 extern bool can_duplicate_and_interleave_p (unsigned int, machine_mode,
1651 unsigned int * = NULL,
1652 tree * = NULL, tree * = NULL);
1653 extern void duplicate_and_interleave (gimple_seq *, tree, vec<tree>,
1654 unsigned int, vec<tree> &);
1655 extern int vect_get_place_in_interleaving_chain (gimple *, gimple *);
1657 /* In tree-vect-patterns.c. */
1658 /* Pattern recognition functions.
1659 Additional pattern recognition functions can (and will) be added
1660 in the future. */
1661 void vect_pattern_recog (vec_info *);
1663 /* In tree-vectorizer.c. */
1664 unsigned vectorize_loops (void);
1665 bool vect_stmt_in_region_p (vec_info *, gimple *);
1666 void vect_free_loop_info_assumptions (struct loop *);
1668 #endif /* GCC_TREE_VECTORIZER_H */