* asan.c (create_cond_insert_point): Maintain profile.
[official-gcc.git] / gcc / tree-vect-loop-manip.c
blobbe34310fd03fdd1213a9d191df596ec55fbdb69f
1 /* Vectorizer Specific Loop Manipulations
2 Copyright (C) 2003-2017 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
4 and Ira Rosen <irar@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "cfghooks.h"
29 #include "tree-pass.h"
30 #include "ssa.h"
31 #include "fold-const.h"
32 #include "cfganal.h"
33 #include "gimplify.h"
34 #include "gimple-iterator.h"
35 #include "gimplify-me.h"
36 #include "tree-cfg.h"
37 #include "tree-ssa-loop-manip.h"
38 #include "tree-into-ssa.h"
39 #include "tree-ssa.h"
40 #include "cfgloop.h"
41 #include "tree-scalar-evolution.h"
42 #include "tree-vectorizer.h"
43 #include "tree-ssa-loop-ivopts.h"
45 /*************************************************************************
46 Simple Loop Peeling Utilities
48 Utilities to support loop peeling for vectorization purposes.
49 *************************************************************************/
52 /* Renames the use *OP_P. */
54 static void
55 rename_use_op (use_operand_p op_p)
57 tree new_name;
59 if (TREE_CODE (USE_FROM_PTR (op_p)) != SSA_NAME)
60 return;
62 new_name = get_current_def (USE_FROM_PTR (op_p));
64 /* Something defined outside of the loop. */
65 if (!new_name)
66 return;
68 /* An ordinary ssa name defined in the loop. */
70 SET_USE (op_p, new_name);
74 /* Renames the variables in basic block BB. Allow renaming of PHI arguments
75 on edges incoming from outer-block header if RENAME_FROM_OUTER_LOOP is
76 true. */
78 static void
79 rename_variables_in_bb (basic_block bb, bool rename_from_outer_loop)
81 gimple *stmt;
82 use_operand_p use_p;
83 ssa_op_iter iter;
84 edge e;
85 edge_iterator ei;
86 struct loop *loop = bb->loop_father;
87 struct loop *outer_loop = NULL;
89 if (rename_from_outer_loop)
91 gcc_assert (loop);
92 outer_loop = loop_outer (loop);
95 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
96 gsi_next (&gsi))
98 stmt = gsi_stmt (gsi);
99 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
100 rename_use_op (use_p);
103 FOR_EACH_EDGE (e, ei, bb->preds)
105 if (!flow_bb_inside_loop_p (loop, e->src))
107 if (!rename_from_outer_loop)
108 continue;
109 if (e->src != outer_loop->header)
111 if (outer_loop->inner->next)
113 /* If outer_loop has 2 inner loops, allow there to
114 be an extra basic block which decides which of the
115 two loops to use using LOOP_VECTORIZED. */
116 if (!single_pred_p (e->src)
117 || single_pred (e->src) != outer_loop->header)
118 continue;
122 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
123 gsi_next (&gsi))
124 rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi.phi (), e));
129 struct adjust_info
131 tree from, to;
132 basic_block bb;
135 /* A stack of values to be adjusted in debug stmts. We have to
136 process them LIFO, so that the closest substitution applies. If we
137 processed them FIFO, without the stack, we might substitute uses
138 with a PHI DEF that would soon become non-dominant, and when we got
139 to the suitable one, it wouldn't have anything to substitute any
140 more. */
141 static vec<adjust_info, va_heap> adjust_vec;
143 /* Adjust any debug stmts that referenced AI->from values to use the
144 loop-closed AI->to, if the references are dominated by AI->bb and
145 not by the definition of AI->from. */
147 static void
148 adjust_debug_stmts_now (adjust_info *ai)
150 basic_block bbphi = ai->bb;
151 tree orig_def = ai->from;
152 tree new_def = ai->to;
153 imm_use_iterator imm_iter;
154 gimple *stmt;
155 basic_block bbdef = gimple_bb (SSA_NAME_DEF_STMT (orig_def));
157 gcc_assert (dom_info_available_p (CDI_DOMINATORS));
159 /* Adjust any debug stmts that held onto non-loop-closed
160 references. */
161 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, orig_def)
163 use_operand_p use_p;
164 basic_block bbuse;
166 if (!is_gimple_debug (stmt))
167 continue;
169 gcc_assert (gimple_debug_bind_p (stmt));
171 bbuse = gimple_bb (stmt);
173 if ((bbuse == bbphi
174 || dominated_by_p (CDI_DOMINATORS, bbuse, bbphi))
175 && !(bbuse == bbdef
176 || dominated_by_p (CDI_DOMINATORS, bbuse, bbdef)))
178 if (new_def)
179 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
180 SET_USE (use_p, new_def);
181 else
183 gimple_debug_bind_reset_value (stmt);
184 update_stmt (stmt);
190 /* Adjust debug stmts as scheduled before. */
192 static void
193 adjust_vec_debug_stmts (void)
195 if (!MAY_HAVE_DEBUG_STMTS)
196 return;
198 gcc_assert (adjust_vec.exists ());
200 while (!adjust_vec.is_empty ())
202 adjust_debug_stmts_now (&adjust_vec.last ());
203 adjust_vec.pop ();
207 /* Adjust any debug stmts that referenced FROM values to use the
208 loop-closed TO, if the references are dominated by BB and not by
209 the definition of FROM. If adjust_vec is non-NULL, adjustments
210 will be postponed until adjust_vec_debug_stmts is called. */
212 static void
213 adjust_debug_stmts (tree from, tree to, basic_block bb)
215 adjust_info ai;
217 if (MAY_HAVE_DEBUG_STMTS
218 && TREE_CODE (from) == SSA_NAME
219 && ! SSA_NAME_IS_DEFAULT_DEF (from)
220 && ! virtual_operand_p (from))
222 ai.from = from;
223 ai.to = to;
224 ai.bb = bb;
226 if (adjust_vec.exists ())
227 adjust_vec.safe_push (ai);
228 else
229 adjust_debug_stmts_now (&ai);
233 /* Change E's phi arg in UPDATE_PHI to NEW_DEF, and record information
234 to adjust any debug stmts that referenced the old phi arg,
235 presumably non-loop-closed references left over from other
236 transformations. */
238 static void
239 adjust_phi_and_debug_stmts (gimple *update_phi, edge e, tree new_def)
241 tree orig_def = PHI_ARG_DEF_FROM_EDGE (update_phi, e);
243 SET_PHI_ARG_DEF (update_phi, e->dest_idx, new_def);
245 if (MAY_HAVE_DEBUG_STMTS)
246 adjust_debug_stmts (orig_def, PHI_RESULT (update_phi),
247 gimple_bb (update_phi));
250 /* Make the LOOP iterate NITERS times. This is done by adding a new IV
251 that starts at zero, increases by one and its limit is NITERS.
253 Assumption: the exit-condition of LOOP is the last stmt in the loop. */
255 void
256 slpeel_make_loop_iterate_ntimes (struct loop *loop, tree niters)
258 tree indx_before_incr, indx_after_incr;
259 gcond *cond_stmt;
260 gcond *orig_cond;
261 edge exit_edge = single_exit (loop);
262 gimple_stmt_iterator loop_cond_gsi;
263 gimple_stmt_iterator incr_gsi;
264 bool insert_after;
265 tree init = build_int_cst (TREE_TYPE (niters), 0);
266 tree step = build_int_cst (TREE_TYPE (niters), 1);
267 source_location loop_loc;
268 enum tree_code code;
270 orig_cond = get_loop_exit_condition (loop);
271 gcc_assert (orig_cond);
272 loop_cond_gsi = gsi_for_stmt (orig_cond);
274 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
275 create_iv (init, step, NULL_TREE, loop,
276 &incr_gsi, insert_after, &indx_before_incr, &indx_after_incr);
278 indx_after_incr = force_gimple_operand_gsi (&loop_cond_gsi, indx_after_incr,
279 true, NULL_TREE, true,
280 GSI_SAME_STMT);
281 niters = force_gimple_operand_gsi (&loop_cond_gsi, niters, true, NULL_TREE,
282 true, GSI_SAME_STMT);
284 code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GE_EXPR : LT_EXPR;
285 cond_stmt = gimple_build_cond (code, indx_after_incr, niters, NULL_TREE,
286 NULL_TREE);
288 gsi_insert_before (&loop_cond_gsi, cond_stmt, GSI_SAME_STMT);
290 /* Remove old loop exit test: */
291 gsi_remove (&loop_cond_gsi, true);
292 free_stmt_vec_info (orig_cond);
294 loop_loc = find_loop_location (loop);
295 if (dump_enabled_p ())
297 if (LOCATION_LOCUS (loop_loc) != UNKNOWN_LOCATION)
298 dump_printf (MSG_NOTE, "\nloop at %s:%d: ", LOCATION_FILE (loop_loc),
299 LOCATION_LINE (loop_loc));
300 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, cond_stmt, 0);
303 /* Record the number of latch iterations. */
304 loop->nb_iterations = fold_build2 (MINUS_EXPR, TREE_TYPE (niters), niters,
305 build_int_cst (TREE_TYPE (niters), 1));
308 /* Helper routine of slpeel_tree_duplicate_loop_to_edge_cfg.
309 For all PHI arguments in FROM->dest and TO->dest from those
310 edges ensure that TO->dest PHI arguments have current_def
311 to that in from. */
313 static void
314 slpeel_duplicate_current_defs_from_edges (edge from, edge to)
316 gimple_stmt_iterator gsi_from, gsi_to;
318 for (gsi_from = gsi_start_phis (from->dest),
319 gsi_to = gsi_start_phis (to->dest);
320 !gsi_end_p (gsi_from) && !gsi_end_p (gsi_to);)
322 gimple *from_phi = gsi_stmt (gsi_from);
323 gimple *to_phi = gsi_stmt (gsi_to);
324 tree from_arg = PHI_ARG_DEF_FROM_EDGE (from_phi, from);
325 tree to_arg = PHI_ARG_DEF_FROM_EDGE (to_phi, to);
326 if (virtual_operand_p (from_arg))
328 gsi_next (&gsi_from);
329 continue;
331 if (virtual_operand_p (to_arg))
333 gsi_next (&gsi_to);
334 continue;
336 if (TREE_CODE (from_arg) != SSA_NAME)
337 gcc_assert (operand_equal_p (from_arg, to_arg, 0));
338 else
340 if (get_current_def (to_arg) == NULL_TREE)
341 set_current_def (to_arg, get_current_def (from_arg));
343 gsi_next (&gsi_from);
344 gsi_next (&gsi_to);
347 gphi *from_phi = get_virtual_phi (from->dest);
348 gphi *to_phi = get_virtual_phi (to->dest);
349 if (from_phi)
350 set_current_def (PHI_ARG_DEF_FROM_EDGE (to_phi, to),
351 get_current_def (PHI_ARG_DEF_FROM_EDGE (from_phi, from)));
355 /* Given LOOP this function generates a new copy of it and puts it
356 on E which is either the entry or exit of LOOP. If SCALAR_LOOP is
357 non-NULL, assume LOOP and SCALAR_LOOP are equivalent and copy the
358 basic blocks from SCALAR_LOOP instead of LOOP, but to either the
359 entry or exit of LOOP. */
361 struct loop *
362 slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *loop,
363 struct loop *scalar_loop, edge e)
365 struct loop *new_loop;
366 basic_block *new_bbs, *bbs, *pbbs;
367 bool at_exit;
368 bool was_imm_dom;
369 basic_block exit_dest;
370 edge exit, new_exit;
371 bool duplicate_outer_loop = false;
373 exit = single_exit (loop);
374 at_exit = (e == exit);
375 if (!at_exit && e != loop_preheader_edge (loop))
376 return NULL;
378 if (scalar_loop == NULL)
379 scalar_loop = loop;
381 bbs = XNEWVEC (basic_block, scalar_loop->num_nodes + 1);
382 pbbs = bbs + 1;
383 get_loop_body_with_size (scalar_loop, pbbs, scalar_loop->num_nodes);
384 /* Allow duplication of outer loops. */
385 if (scalar_loop->inner)
386 duplicate_outer_loop = true;
387 /* Check whether duplication is possible. */
388 if (!can_copy_bbs_p (pbbs, scalar_loop->num_nodes))
390 free (bbs);
391 return NULL;
394 /* Generate new loop structure. */
395 new_loop = duplicate_loop (scalar_loop, loop_outer (scalar_loop));
396 duplicate_subloops (scalar_loop, new_loop);
398 exit_dest = exit->dest;
399 was_imm_dom = (get_immediate_dominator (CDI_DOMINATORS,
400 exit_dest) == loop->header ?
401 true : false);
403 /* Also copy the pre-header, this avoids jumping through hoops to
404 duplicate the loop entry PHI arguments. Create an empty
405 pre-header unconditionally for this. */
406 basic_block preheader = split_edge (loop_preheader_edge (scalar_loop));
407 edge entry_e = single_pred_edge (preheader);
408 bbs[0] = preheader;
409 new_bbs = XNEWVEC (basic_block, scalar_loop->num_nodes + 1);
411 exit = single_exit (scalar_loop);
412 copy_bbs (bbs, scalar_loop->num_nodes + 1, new_bbs,
413 &exit, 1, &new_exit, NULL,
414 at_exit ? loop->latch : e->src, true);
415 exit = single_exit (loop);
416 basic_block new_preheader = new_bbs[0];
418 add_phi_args_after_copy (new_bbs, scalar_loop->num_nodes + 1, NULL);
420 if (scalar_loop != loop)
422 /* If we copied from SCALAR_LOOP rather than LOOP, SSA_NAMEs from
423 SCALAR_LOOP will have current_def set to SSA_NAMEs in the new_loop,
424 but LOOP will not. slpeel_update_phi_nodes_for_guard{1,2} expects
425 the LOOP SSA_NAMEs (on the exit edge and edge from latch to
426 header) to have current_def set, so copy them over. */
427 slpeel_duplicate_current_defs_from_edges (single_exit (scalar_loop),
428 exit);
429 slpeel_duplicate_current_defs_from_edges (EDGE_SUCC (scalar_loop->latch,
431 EDGE_SUCC (loop->latch, 0));
434 if (at_exit) /* Add the loop copy at exit. */
436 if (scalar_loop != loop)
438 gphi_iterator gsi;
439 new_exit = redirect_edge_and_branch (new_exit, exit_dest);
441 for (gsi = gsi_start_phis (exit_dest); !gsi_end_p (gsi);
442 gsi_next (&gsi))
444 gphi *phi = gsi.phi ();
445 tree orig_arg = PHI_ARG_DEF_FROM_EDGE (phi, e);
446 location_t orig_locus
447 = gimple_phi_arg_location_from_edge (phi, e);
449 add_phi_arg (phi, orig_arg, new_exit, orig_locus);
452 redirect_edge_and_branch_force (e, new_preheader);
453 flush_pending_stmts (e);
454 set_immediate_dominator (CDI_DOMINATORS, new_preheader, e->src);
455 if (was_imm_dom || duplicate_outer_loop)
456 set_immediate_dominator (CDI_DOMINATORS, exit_dest, new_exit->src);
458 /* And remove the non-necessary forwarder again. Keep the other
459 one so we have a proper pre-header for the loop at the exit edge. */
460 redirect_edge_pred (single_succ_edge (preheader),
461 single_pred (preheader));
462 delete_basic_block (preheader);
463 set_immediate_dominator (CDI_DOMINATORS, scalar_loop->header,
464 loop_preheader_edge (scalar_loop)->src);
466 else /* Add the copy at entry. */
468 if (scalar_loop != loop)
470 /* Remove the non-necessary forwarder of scalar_loop again. */
471 redirect_edge_pred (single_succ_edge (preheader),
472 single_pred (preheader));
473 delete_basic_block (preheader);
474 set_immediate_dominator (CDI_DOMINATORS, scalar_loop->header,
475 loop_preheader_edge (scalar_loop)->src);
476 preheader = split_edge (loop_preheader_edge (loop));
477 entry_e = single_pred_edge (preheader);
480 redirect_edge_and_branch_force (entry_e, new_preheader);
481 flush_pending_stmts (entry_e);
482 set_immediate_dominator (CDI_DOMINATORS, new_preheader, entry_e->src);
484 redirect_edge_and_branch_force (new_exit, preheader);
485 flush_pending_stmts (new_exit);
486 set_immediate_dominator (CDI_DOMINATORS, preheader, new_exit->src);
488 /* And remove the non-necessary forwarder again. Keep the other
489 one so we have a proper pre-header for the loop at the exit edge. */
490 redirect_edge_pred (single_succ_edge (new_preheader),
491 single_pred (new_preheader));
492 delete_basic_block (new_preheader);
493 set_immediate_dominator (CDI_DOMINATORS, new_loop->header,
494 loop_preheader_edge (new_loop)->src);
497 /* Skip new preheader since it's deleted if copy loop is added at entry. */
498 for (unsigned i = (at_exit ? 0 : 1); i < scalar_loop->num_nodes + 1; i++)
499 rename_variables_in_bb (new_bbs[i], duplicate_outer_loop);
501 if (scalar_loop != loop)
503 /* Update new_loop->header PHIs, so that on the preheader
504 edge they are the ones from loop rather than scalar_loop. */
505 gphi_iterator gsi_orig, gsi_new;
506 edge orig_e = loop_preheader_edge (loop);
507 edge new_e = loop_preheader_edge (new_loop);
509 for (gsi_orig = gsi_start_phis (loop->header),
510 gsi_new = gsi_start_phis (new_loop->header);
511 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_new);
512 gsi_next (&gsi_orig), gsi_next (&gsi_new))
514 gphi *orig_phi = gsi_orig.phi ();
515 gphi *new_phi = gsi_new.phi ();
516 tree orig_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, orig_e);
517 location_t orig_locus
518 = gimple_phi_arg_location_from_edge (orig_phi, orig_e);
520 add_phi_arg (new_phi, orig_arg, new_e, orig_locus);
524 free (new_bbs);
525 free (bbs);
527 checking_verify_dominators (CDI_DOMINATORS);
529 return new_loop;
533 /* Given the condition expression COND, put it as the last statement of
534 GUARD_BB; set both edges' probability; set dominator of GUARD_TO to
535 DOM_BB; return the skip edge. GUARD_TO is the target basic block to
536 skip the loop. PROBABILITY is the skip edge's probability. Mark the
537 new edge as irreducible if IRREDUCIBLE_P is true. */
539 static edge
540 slpeel_add_loop_guard (basic_block guard_bb, tree cond,
541 basic_block guard_to, basic_block dom_bb,
542 profile_probability probability, bool irreducible_p)
544 gimple_stmt_iterator gsi;
545 edge new_e, enter_e;
546 gcond *cond_stmt;
547 gimple_seq gimplify_stmt_list = NULL;
549 enter_e = EDGE_SUCC (guard_bb, 0);
550 enter_e->flags &= ~EDGE_FALLTHRU;
551 enter_e->flags |= EDGE_FALSE_VALUE;
552 gsi = gsi_last_bb (guard_bb);
554 cond = force_gimple_operand_1 (cond, &gimplify_stmt_list, is_gimple_condexpr,
555 NULL_TREE);
556 if (gimplify_stmt_list)
557 gsi_insert_seq_after (&gsi, gimplify_stmt_list, GSI_NEW_STMT);
559 cond_stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
560 gsi = gsi_last_bb (guard_bb);
561 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
563 /* Add new edge to connect guard block to the merge/loop-exit block. */
564 new_e = make_edge (guard_bb, guard_to, EDGE_TRUE_VALUE);
566 new_e->probability = probability;
567 if (irreducible_p)
568 new_e->flags |= EDGE_IRREDUCIBLE_LOOP;
570 enter_e->probability = probability.invert ();
571 set_immediate_dominator (CDI_DOMINATORS, guard_to, dom_bb);
573 /* Split enter_e to preserve LOOPS_HAVE_PREHEADERS. */
574 if (enter_e->dest->loop_father->header == enter_e->dest)
575 split_edge (enter_e);
577 return new_e;
581 /* This function verifies that the following restrictions apply to LOOP:
582 (1) it consists of exactly 2 basic blocks - header, and an empty latch
583 for innermost loop and 5 basic blocks for outer-loop.
584 (2) it is single entry, single exit
585 (3) its exit condition is the last stmt in the header
586 (4) E is the entry/exit edge of LOOP.
589 bool
590 slpeel_can_duplicate_loop_p (const struct loop *loop, const_edge e)
592 edge exit_e = single_exit (loop);
593 edge entry_e = loop_preheader_edge (loop);
594 gcond *orig_cond = get_loop_exit_condition (loop);
595 gimple_stmt_iterator loop_exit_gsi = gsi_last_bb (exit_e->src);
596 unsigned int num_bb = loop->inner? 5 : 2;
598 /* All loops have an outer scope; the only case loop->outer is NULL is for
599 the function itself. */
600 if (!loop_outer (loop)
601 || loop->num_nodes != num_bb
602 || !empty_block_p (loop->latch)
603 || !single_exit (loop)
604 /* Verify that new loop exit condition can be trivially modified. */
605 || (!orig_cond || orig_cond != gsi_stmt (loop_exit_gsi))
606 || (e != exit_e && e != entry_e))
607 return false;
609 return true;
612 /* If the loop has a virtual PHI, but exit bb doesn't, create a virtual PHI
613 in the exit bb and rename all the uses after the loop. This simplifies
614 the *guard[12] routines, which assume loop closed SSA form for all PHIs
615 (but normally loop closed SSA form doesn't require virtual PHIs to be
616 in the same form). Doing this early simplifies the checking what
617 uses should be renamed. */
619 static void
620 create_lcssa_for_virtual_phi (struct loop *loop)
622 gphi_iterator gsi;
623 edge exit_e = single_exit (loop);
625 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
626 if (virtual_operand_p (gimple_phi_result (gsi_stmt (gsi))))
628 gphi *phi = gsi.phi ();
629 for (gsi = gsi_start_phis (exit_e->dest);
630 !gsi_end_p (gsi); gsi_next (&gsi))
631 if (virtual_operand_p (gimple_phi_result (gsi_stmt (gsi))))
632 break;
633 if (gsi_end_p (gsi))
635 tree new_vop = copy_ssa_name (PHI_RESULT (phi));
636 gphi *new_phi = create_phi_node (new_vop, exit_e->dest);
637 tree vop = PHI_ARG_DEF_FROM_EDGE (phi, EDGE_SUCC (loop->latch, 0));
638 imm_use_iterator imm_iter;
639 gimple *stmt;
640 use_operand_p use_p;
642 add_phi_arg (new_phi, vop, exit_e, UNKNOWN_LOCATION);
643 gimple_phi_set_result (new_phi, new_vop);
644 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, vop)
645 if (stmt != new_phi
646 && !flow_bb_inside_loop_p (loop, gimple_bb (stmt)))
647 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
648 SET_USE (use_p, new_vop);
650 break;
655 /* Function vect_get_loop_location.
657 Extract the location of the loop in the source code.
658 If the loop is not well formed for vectorization, an estimated
659 location is calculated.
660 Return the loop location if succeed and NULL if not. */
662 source_location
663 find_loop_location (struct loop *loop)
665 gimple *stmt = NULL;
666 basic_block bb;
667 gimple_stmt_iterator si;
669 if (!loop)
670 return UNKNOWN_LOCATION;
672 stmt = get_loop_exit_condition (loop);
674 if (stmt
675 && LOCATION_LOCUS (gimple_location (stmt)) > BUILTINS_LOCATION)
676 return gimple_location (stmt);
678 /* If we got here the loop is probably not "well formed",
679 try to estimate the loop location */
681 if (!loop->header)
682 return UNKNOWN_LOCATION;
684 bb = loop->header;
686 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
688 stmt = gsi_stmt (si);
689 if (LOCATION_LOCUS (gimple_location (stmt)) > BUILTINS_LOCATION)
690 return gimple_location (stmt);
693 return UNKNOWN_LOCATION;
696 /* Return true if PHI defines an IV of the loop to be vectorized. */
698 static bool
699 iv_phi_p (gphi *phi)
701 if (virtual_operand_p (PHI_RESULT (phi)))
702 return false;
704 stmt_vec_info stmt_info = vinfo_for_stmt (phi);
705 gcc_assert (stmt_info != NULL);
706 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def
707 || STMT_VINFO_DEF_TYPE (stmt_info) == vect_double_reduction_def)
708 return false;
710 return true;
713 /* Function vect_can_advance_ivs_p
715 In case the number of iterations that LOOP iterates is unknown at compile
716 time, an epilog loop will be generated, and the loop induction variables
717 (IVs) will be "advanced" to the value they are supposed to take just before
718 the epilog loop. Here we check that the access function of the loop IVs
719 and the expression that represents the loop bound are simple enough.
720 These restrictions will be relaxed in the future. */
722 bool
723 vect_can_advance_ivs_p (loop_vec_info loop_vinfo)
725 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
726 basic_block bb = loop->header;
727 gphi_iterator gsi;
729 /* Analyze phi functions of the loop header. */
731 if (dump_enabled_p ())
732 dump_printf_loc (MSG_NOTE, vect_location, "vect_can_advance_ivs_p:\n");
733 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
735 tree evolution_part;
737 gphi *phi = gsi.phi ();
738 if (dump_enabled_p ())
740 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
741 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
744 /* Skip virtual phi's. The data dependences that are associated with
745 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere.
747 Skip reduction phis. */
748 if (!iv_phi_p (phi))
750 if (dump_enabled_p ())
751 dump_printf_loc (MSG_NOTE, vect_location,
752 "reduc or virtual phi. skip.\n");
753 continue;
756 /* Analyze the evolution function. */
758 evolution_part
759 = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (vinfo_for_stmt (phi));
760 if (evolution_part == NULL_TREE)
762 if (dump_enabled_p ())
763 dump_printf (MSG_MISSED_OPTIMIZATION,
764 "No access function or evolution.\n");
765 return false;
768 /* FORNOW: We do not transform initial conditions of IVs
769 which evolution functions are not invariants in the loop. */
771 if (!expr_invariant_in_loop_p (loop, evolution_part))
773 if (dump_enabled_p ())
774 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
775 "evolution not invariant in loop.\n");
776 return false;
779 /* FORNOW: We do not transform initial conditions of IVs
780 which evolution functions are a polynomial of degree >= 2. */
782 if (tree_is_chrec (evolution_part))
784 if (dump_enabled_p ())
785 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
786 "evolution is chrec.\n");
787 return false;
791 return true;
795 /* Function vect_update_ivs_after_vectorizer.
797 "Advance" the induction variables of LOOP to the value they should take
798 after the execution of LOOP. This is currently necessary because the
799 vectorizer does not handle induction variables that are used after the
800 loop. Such a situation occurs when the last iterations of LOOP are
801 peeled, because:
802 1. We introduced new uses after LOOP for IVs that were not originally used
803 after LOOP: the IVs of LOOP are now used by an epilog loop.
804 2. LOOP is going to be vectorized; this means that it will iterate N/VF
805 times, whereas the loop IVs should be bumped N times.
807 Input:
808 - LOOP - a loop that is going to be vectorized. The last few iterations
809 of LOOP were peeled.
810 - NITERS - the number of iterations that LOOP executes (before it is
811 vectorized). i.e, the number of times the ivs should be bumped.
812 - UPDATE_E - a successor edge of LOOP->exit that is on the (only) path
813 coming out from LOOP on which there are uses of the LOOP ivs
814 (this is the path from LOOP->exit to epilog_loop->preheader).
816 The new definitions of the ivs are placed in LOOP->exit.
817 The phi args associated with the edge UPDATE_E in the bb
818 UPDATE_E->dest are updated accordingly.
820 Assumption 1: Like the rest of the vectorizer, this function assumes
821 a single loop exit that has a single predecessor.
823 Assumption 2: The phi nodes in the LOOP header and in update_bb are
824 organized in the same order.
826 Assumption 3: The access function of the ivs is simple enough (see
827 vect_can_advance_ivs_p). This assumption will be relaxed in the future.
829 Assumption 4: Exactly one of the successors of LOOP exit-bb is on a path
830 coming out of LOOP on which the ivs of LOOP are used (this is the path
831 that leads to the epilog loop; other paths skip the epilog loop). This
832 path starts with the edge UPDATE_E, and its destination (denoted update_bb)
833 needs to have its phis updated.
836 static void
837 vect_update_ivs_after_vectorizer (loop_vec_info loop_vinfo,
838 tree niters, edge update_e)
840 gphi_iterator gsi, gsi1;
841 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
842 basic_block update_bb = update_e->dest;
843 basic_block exit_bb = single_exit (loop)->dest;
845 /* Make sure there exists a single-predecessor exit bb: */
846 gcc_assert (single_pred_p (exit_bb));
847 gcc_assert (single_succ_edge (exit_bb) == update_e);
849 for (gsi = gsi_start_phis (loop->header), gsi1 = gsi_start_phis (update_bb);
850 !gsi_end_p (gsi) && !gsi_end_p (gsi1);
851 gsi_next (&gsi), gsi_next (&gsi1))
853 tree init_expr;
854 tree step_expr, off;
855 tree type;
856 tree var, ni, ni_name;
857 gimple_stmt_iterator last_gsi;
859 gphi *phi = gsi.phi ();
860 gphi *phi1 = gsi1.phi ();
861 if (dump_enabled_p ())
863 dump_printf_loc (MSG_NOTE, vect_location,
864 "vect_update_ivs_after_vectorizer: phi: ");
865 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
868 /* Skip reduction and virtual phis. */
869 if (!iv_phi_p (phi))
871 if (dump_enabled_p ())
872 dump_printf_loc (MSG_NOTE, vect_location,
873 "reduc or virtual phi. skip.\n");
874 continue;
877 type = TREE_TYPE (gimple_phi_result (phi));
878 step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (vinfo_for_stmt (phi));
879 step_expr = unshare_expr (step_expr);
881 /* FORNOW: We do not support IVs whose evolution function is a polynomial
882 of degree >= 2 or exponential. */
883 gcc_assert (!tree_is_chrec (step_expr));
885 init_expr = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
887 off = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
888 fold_convert (TREE_TYPE (step_expr), niters),
889 step_expr);
890 if (POINTER_TYPE_P (type))
891 ni = fold_build_pointer_plus (init_expr, off);
892 else
893 ni = fold_build2 (PLUS_EXPR, type,
894 init_expr, fold_convert (type, off));
896 var = create_tmp_var (type, "tmp");
898 last_gsi = gsi_last_bb (exit_bb);
899 gimple_seq new_stmts = NULL;
900 ni_name = force_gimple_operand (ni, &new_stmts, false, var);
901 /* Exit_bb shouldn't be empty. */
902 if (!gsi_end_p (last_gsi))
903 gsi_insert_seq_after (&last_gsi, new_stmts, GSI_SAME_STMT);
904 else
905 gsi_insert_seq_before (&last_gsi, new_stmts, GSI_SAME_STMT);
907 /* Fix phi expressions in the successor bb. */
908 adjust_phi_and_debug_stmts (phi1, update_e, ni_name);
912 /* Function vect_gen_prolog_loop_niters
914 Generate the number of iterations which should be peeled as prolog for the
915 loop represented by LOOP_VINFO. It is calculated as the misalignment of
916 DR - the data reference recorded in LOOP_VINFO_UNALIGNED_DR (LOOP_VINFO).
917 As a result, after the execution of this loop, the data reference DR will
918 refer to an aligned location. The following computation is generated:
920 If the misalignment of DR is known at compile time:
921 addr_mis = int mis = DR_MISALIGNMENT (dr);
922 Else, compute address misalignment in bytes:
923 addr_mis = addr & (vectype_align - 1)
925 prolog_niters = ((VF - addr_mis/elem_size)&(VF-1))/step
927 (elem_size = element type size; an element is the scalar element whose type
928 is the inner type of the vectype)
930 The computations will be emitted at the end of BB. We also compute and
931 store upper bound (included) of the result in BOUND.
933 When the step of the data-ref in the loop is not 1 (as in interleaved data
934 and SLP), the number of iterations of the prolog must be divided by the step
935 (which is equal to the size of interleaved group).
937 The above formulas assume that VF == number of elements in the vector. This
938 may not hold when there are multiple-types in the loop.
939 In this case, for some data-references in the loop the VF does not represent
940 the number of elements that fit in the vector. Therefore, instead of VF we
941 use TYPE_VECTOR_SUBPARTS. */
943 static tree
944 vect_gen_prolog_loop_niters (loop_vec_info loop_vinfo,
945 basic_block bb, int *bound)
947 struct data_reference *dr = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
948 tree var;
949 tree niters_type = TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo));
950 gimple_seq stmts = NULL, new_stmts = NULL;
951 tree iters, iters_name;
952 gimple *dr_stmt = DR_STMT (dr);
953 stmt_vec_info stmt_info = vinfo_for_stmt (dr_stmt);
954 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
955 unsigned int target_align = DR_TARGET_ALIGNMENT (dr);
957 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
959 int npeel = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
961 if (dump_enabled_p ())
962 dump_printf_loc (MSG_NOTE, vect_location,
963 "known peeling = %d.\n", npeel);
965 iters = build_int_cst (niters_type, npeel);
966 *bound = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
968 else
970 bool negative = tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0;
971 tree offset = negative
972 ? size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1) : size_zero_node;
973 tree start_addr = vect_create_addr_base_for_vector_ref (dr_stmt,
974 &stmts, offset);
975 tree type = unsigned_type_for (TREE_TYPE (start_addr));
976 tree target_align_minus_1 = build_int_cst (type, target_align - 1);
977 HOST_WIDE_INT elem_size
978 = int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
979 tree elem_size_log = build_int_cst (type, exact_log2 (elem_size));
980 HOST_WIDE_INT align_in_elems = target_align / elem_size;
981 tree align_in_elems_minus_1 = build_int_cst (type, align_in_elems - 1);
982 tree align_in_elems_tree = build_int_cst (type, align_in_elems);
983 tree misalign_in_bytes;
984 tree misalign_in_elems;
986 /* Create: misalign_in_bytes = addr & (target_align - 1). */
987 misalign_in_bytes
988 = fold_build2 (BIT_AND_EXPR, type, fold_convert (type, start_addr),
989 target_align_minus_1);
991 /* Create: misalign_in_elems = misalign_in_bytes / element_size. */
992 misalign_in_elems
993 = fold_build2 (RSHIFT_EXPR, type, misalign_in_bytes, elem_size_log);
995 /* Create: (niters_type) ((align_in_elems - misalign_in_elems)
996 & (align_in_elems - 1)). */
997 if (negative)
998 iters = fold_build2 (MINUS_EXPR, type, misalign_in_elems,
999 align_in_elems_tree);
1000 else
1001 iters = fold_build2 (MINUS_EXPR, type, align_in_elems_tree,
1002 misalign_in_elems);
1003 iters = fold_build2 (BIT_AND_EXPR, type, iters, align_in_elems_minus_1);
1004 iters = fold_convert (niters_type, iters);
1005 *bound = align_in_elems - 1;
1008 if (dump_enabled_p ())
1010 dump_printf_loc (MSG_NOTE, vect_location,
1011 "niters for prolog loop: ");
1012 dump_generic_expr (MSG_NOTE, TDF_SLIM, iters);
1013 dump_printf (MSG_NOTE, "\n");
1016 var = create_tmp_var (niters_type, "prolog_loop_niters");
1017 iters_name = force_gimple_operand (iters, &new_stmts, false, var);
1019 if (new_stmts)
1020 gimple_seq_add_seq (&stmts, new_stmts);
1021 if (stmts)
1023 gcc_assert (single_succ_p (bb));
1024 gimple_stmt_iterator gsi = gsi_last_bb (bb);
1025 if (gsi_end_p (gsi))
1026 gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
1027 else
1028 gsi_insert_seq_after (&gsi, stmts, GSI_SAME_STMT);
1030 return iters_name;
1034 /* Function vect_update_init_of_dr
1036 NITERS iterations were peeled from LOOP. DR represents a data reference
1037 in LOOP. This function updates the information recorded in DR to
1038 account for the fact that the first NITERS iterations had already been
1039 executed. Specifically, it updates the OFFSET field of DR. */
1041 static void
1042 vect_update_init_of_dr (struct data_reference *dr, tree niters)
1044 tree offset = DR_OFFSET (dr);
1046 niters = fold_build2 (MULT_EXPR, sizetype,
1047 fold_convert (sizetype, niters),
1048 fold_convert (sizetype, DR_STEP (dr)));
1049 offset = fold_build2 (PLUS_EXPR, sizetype,
1050 fold_convert (sizetype, offset), niters);
1051 DR_OFFSET (dr) = offset;
1055 /* Function vect_update_inits_of_drs
1057 NITERS iterations were peeled from the loop represented by LOOP_VINFO.
1058 This function updates the information recorded for the data references in
1059 the loop to account for the fact that the first NITERS iterations had
1060 already been executed. Specifically, it updates the initial_condition of
1061 the access_function of all the data_references in the loop. */
1063 static void
1064 vect_update_inits_of_drs (loop_vec_info loop_vinfo, tree niters)
1066 unsigned int i;
1067 vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
1068 struct data_reference *dr;
1070 if (dump_enabled_p ())
1071 dump_printf_loc (MSG_NOTE, vect_location,
1072 "=== vect_update_inits_of_dr ===\n");
1074 /* Adjust niters to sizetype and insert stmts on loop preheader edge. */
1075 if (!types_compatible_p (sizetype, TREE_TYPE (niters)))
1077 gimple_seq seq;
1078 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
1079 tree var = create_tmp_var (sizetype, "prolog_loop_adjusted_niters");
1081 niters = fold_convert (sizetype, niters);
1082 niters = force_gimple_operand (niters, &seq, false, var);
1083 if (seq)
1085 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
1086 gcc_assert (!new_bb);
1090 FOR_EACH_VEC_ELT (datarefs, i, dr)
1091 vect_update_init_of_dr (dr, niters);
1095 /* This function builds ni_name = number of iterations. Statements
1096 are emitted on the loop preheader edge. If NEW_VAR_P is not NULL, set
1097 it to TRUE if new ssa_var is generated. */
1099 tree
1100 vect_build_loop_niters (loop_vec_info loop_vinfo, bool *new_var_p)
1102 tree ni = unshare_expr (LOOP_VINFO_NITERS (loop_vinfo));
1103 if (TREE_CODE (ni) == INTEGER_CST)
1104 return ni;
1105 else
1107 tree ni_name, var;
1108 gimple_seq stmts = NULL;
1109 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
1111 var = create_tmp_var (TREE_TYPE (ni), "niters");
1112 ni_name = force_gimple_operand (ni, &stmts, false, var);
1113 if (stmts)
1115 gsi_insert_seq_on_edge_immediate (pe, stmts);
1116 if (new_var_p != NULL)
1117 *new_var_p = true;
1120 return ni_name;
1124 /* Calculate the number of iterations above which vectorized loop will be
1125 preferred than scalar loop. NITERS_PROLOG is the number of iterations
1126 of prolog loop. If it's integer const, the integer number is also passed
1127 in INT_NITERS_PROLOG. BOUND_PROLOG is the upper bound (included) of
1128 number of iterations of prolog loop. VFM1 is vector factor minus one.
1129 If CHECK_PROFITABILITY is true, TH is the threshold below which scalar
1130 (rather than vectorized) loop will be executed. This function stores
1131 upper bound (included) of the result in BOUND_SCALAR. */
1133 static tree
1134 vect_gen_scalar_loop_niters (tree niters_prolog, int int_niters_prolog,
1135 int bound_prolog, int vfm1, int th,
1136 int *bound_scalar, bool check_profitability)
1138 tree type = TREE_TYPE (niters_prolog);
1139 tree niters = fold_build2 (PLUS_EXPR, type, niters_prolog,
1140 build_int_cst (type, vfm1));
1142 *bound_scalar = vfm1 + bound_prolog;
1143 if (check_profitability)
1145 /* TH indicates the minimum niters of vectorized loop, while we
1146 compute the maximum niters of scalar loop. */
1147 th--;
1148 /* Peeling for constant times. */
1149 if (int_niters_prolog >= 0)
1151 *bound_scalar = (int_niters_prolog + vfm1 < th
1152 ? th
1153 : vfm1 + int_niters_prolog);
1154 return build_int_cst (type, *bound_scalar);
1156 /* Peeling for unknown times. Note BOUND_PROLOG is the upper
1157 bound (inlcuded) of niters of prolog loop. */
1158 if (th >= vfm1 + bound_prolog)
1160 *bound_scalar = th;
1161 return build_int_cst (type, th);
1163 /* Need to do runtime comparison, but BOUND_SCALAR remains the same. */
1164 else if (th > vfm1)
1165 return fold_build2 (MAX_EXPR, type, build_int_cst (type, th), niters);
1167 return niters;
1170 /* This function generates the following statements:
1172 niters = number of iterations loop executes (after peeling)
1173 niters_vector = niters / vf
1175 and places them on the loop preheader edge. NITERS_NO_OVERFLOW is
1176 true if NITERS doesn't overflow. */
1178 void
1179 vect_gen_vector_loop_niters (loop_vec_info loop_vinfo, tree niters,
1180 tree *niters_vector_ptr, bool niters_no_overflow)
1182 tree ni_minus_gap, var;
1183 tree niters_vector, type = TREE_TYPE (niters);
1184 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1185 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
1186 tree log_vf = build_int_cst (type, exact_log2 (vf));
1188 /* If epilogue loop is required because of data accesses with gaps, we
1189 subtract one iteration from the total number of iterations here for
1190 correct calculation of RATIO. */
1191 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
1193 ni_minus_gap = fold_build2 (MINUS_EXPR, type, niters,
1194 build_one_cst (type));
1195 if (!is_gimple_val (ni_minus_gap))
1197 var = create_tmp_var (type, "ni_gap");
1198 gimple *stmts = NULL;
1199 ni_minus_gap = force_gimple_operand (ni_minus_gap, &stmts,
1200 true, var);
1201 gsi_insert_seq_on_edge_immediate (pe, stmts);
1204 else
1205 ni_minus_gap = niters;
1207 /* Create: niters >> log2(vf) */
1208 /* If it's known that niters == number of latch executions + 1 doesn't
1209 overflow, we can generate niters >> log2(vf); otherwise we generate
1210 (niters - vf) >> log2(vf) + 1 by using the fact that we know ratio
1211 will be at least one. */
1212 if (niters_no_overflow)
1213 niters_vector = fold_build2 (RSHIFT_EXPR, type, ni_minus_gap, log_vf);
1214 else
1215 niters_vector
1216 = fold_build2 (PLUS_EXPR, type,
1217 fold_build2 (RSHIFT_EXPR, type,
1218 fold_build2 (MINUS_EXPR, type, ni_minus_gap,
1219 build_int_cst (type, vf)),
1220 log_vf),
1221 build_int_cst (type, 1));
1223 if (!is_gimple_val (niters_vector))
1225 var = create_tmp_var (type, "bnd");
1226 gimple_seq stmts = NULL;
1227 niters_vector = force_gimple_operand (niters_vector, &stmts, true, var);
1228 gsi_insert_seq_on_edge_immediate (pe, stmts);
1229 /* Peeling algorithm guarantees that vector loop bound is at least ONE,
1230 we set range information to make niters analyzer's life easier. */
1231 if (stmts != NULL)
1232 set_range_info (niters_vector, VR_RANGE,
1233 wi::to_wide (build_int_cst (type, 1)),
1234 wi::to_wide (fold_build2 (RSHIFT_EXPR, type,
1235 TYPE_MAX_VALUE (type),
1236 log_vf)));
1238 *niters_vector_ptr = niters_vector;
1240 return;
1243 /* Given NITERS_VECTOR which is the number of iterations for vectorized
1244 loop specified by LOOP_VINFO after vectorization, compute the number
1245 of iterations before vectorization (niters_vector * vf) and store it
1246 to NITERS_VECTOR_MULT_VF_PTR. */
1248 static void
1249 vect_gen_vector_loop_niters_mult_vf (loop_vec_info loop_vinfo,
1250 tree niters_vector,
1251 tree *niters_vector_mult_vf_ptr)
1253 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1254 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1255 tree type = TREE_TYPE (niters_vector);
1256 tree log_vf = build_int_cst (type, exact_log2 (vf));
1257 basic_block exit_bb = single_exit (loop)->dest;
1259 gcc_assert (niters_vector_mult_vf_ptr != NULL);
1260 tree niters_vector_mult_vf = fold_build2 (LSHIFT_EXPR, type,
1261 niters_vector, log_vf);
1262 if (!is_gimple_val (niters_vector_mult_vf))
1264 tree var = create_tmp_var (type, "niters_vector_mult_vf");
1265 gimple_seq stmts = NULL;
1266 niters_vector_mult_vf = force_gimple_operand (niters_vector_mult_vf,
1267 &stmts, true, var);
1268 gimple_stmt_iterator gsi = gsi_start_bb (exit_bb);
1269 gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
1271 *niters_vector_mult_vf_ptr = niters_vector_mult_vf;
1274 /* Function slpeel_tree_duplicate_loop_to_edge_cfg duplciates FIRST/SECOND
1275 from SECOND/FIRST and puts it at the original loop's preheader/exit
1276 edge, the two loops are arranged as below:
1278 preheader_a:
1279 first_loop:
1280 header_a:
1281 i_1 = PHI<i_0, i_2>;
1283 i_2 = i_1 + 1;
1284 if (cond_a)
1285 goto latch_a;
1286 else
1287 goto between_bb;
1288 latch_a:
1289 goto header_a;
1291 between_bb:
1292 ;; i_x = PHI<i_2>; ;; LCSSA phi node to be created for FIRST,
1294 second_loop:
1295 header_b:
1296 i_3 = PHI<i_0, i_4>; ;; Use of i_0 to be replaced with i_x,
1297 or with i_2 if no LCSSA phi is created
1298 under condition of CREATE_LCSSA_FOR_IV_PHIS.
1300 i_4 = i_3 + 1;
1301 if (cond_b)
1302 goto latch_b;
1303 else
1304 goto exit_bb;
1305 latch_b:
1306 goto header_b;
1308 exit_bb:
1310 This function creates loop closed SSA for the first loop; update the
1311 second loop's PHI nodes by replacing argument on incoming edge with the
1312 result of newly created lcssa PHI nodes. IF CREATE_LCSSA_FOR_IV_PHIS
1313 is false, Loop closed ssa phis will only be created for non-iv phis for
1314 the first loop.
1316 This function assumes exit bb of the first loop is preheader bb of the
1317 second loop, i.e, between_bb in the example code. With PHIs updated,
1318 the second loop will execute rest iterations of the first. */
1320 static void
1321 slpeel_update_phi_nodes_for_loops (loop_vec_info loop_vinfo,
1322 struct loop *first, struct loop *second,
1323 bool create_lcssa_for_iv_phis)
1325 gphi_iterator gsi_update, gsi_orig;
1326 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1328 edge first_latch_e = EDGE_SUCC (first->latch, 0);
1329 edge second_preheader_e = loop_preheader_edge (second);
1330 basic_block between_bb = single_exit (first)->dest;
1332 gcc_assert (between_bb == second_preheader_e->src);
1333 gcc_assert (single_pred_p (between_bb) && single_succ_p (between_bb));
1334 /* Either the first loop or the second is the loop to be vectorized. */
1335 gcc_assert (loop == first || loop == second);
1337 for (gsi_orig = gsi_start_phis (first->header),
1338 gsi_update = gsi_start_phis (second->header);
1339 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_update);
1340 gsi_next (&gsi_orig), gsi_next (&gsi_update))
1342 gphi *orig_phi = gsi_orig.phi ();
1343 gphi *update_phi = gsi_update.phi ();
1345 tree arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, first_latch_e);
1346 /* Generate lcssa PHI node for the first loop. */
1347 gphi *vect_phi = (loop == first) ? orig_phi : update_phi;
1348 if (create_lcssa_for_iv_phis || !iv_phi_p (vect_phi))
1350 tree new_res = copy_ssa_name (PHI_RESULT (orig_phi));
1351 gphi *lcssa_phi = create_phi_node (new_res, between_bb);
1352 add_phi_arg (lcssa_phi, arg, single_exit (first), UNKNOWN_LOCATION);
1353 arg = new_res;
1356 /* Update PHI node in the second loop by replacing arg on the loop's
1357 incoming edge. */
1358 adjust_phi_and_debug_stmts (update_phi, second_preheader_e, arg);
1362 /* Function slpeel_add_loop_guard adds guard skipping from the beginning
1363 of SKIP_LOOP to the beginning of UPDATE_LOOP. GUARD_EDGE and MERGE_EDGE
1364 are two pred edges of the merge point before UPDATE_LOOP. The two loops
1365 appear like below:
1367 guard_bb:
1368 if (cond)
1369 goto merge_bb;
1370 else
1371 goto skip_loop;
1373 skip_loop:
1374 header_a:
1375 i_1 = PHI<i_0, i_2>;
1377 i_2 = i_1 + 1;
1378 if (cond_a)
1379 goto latch_a;
1380 else
1381 goto exit_a;
1382 latch_a:
1383 goto header_a;
1385 exit_a:
1386 i_5 = PHI<i_2>;
1388 merge_bb:
1389 ;; PHI (i_x = PHI<i_0, i_5>) to be created at merge point.
1391 update_loop:
1392 header_b:
1393 i_3 = PHI<i_5, i_4>; ;; Use of i_5 to be replaced with i_x.
1395 i_4 = i_3 + 1;
1396 if (cond_b)
1397 goto latch_b;
1398 else
1399 goto exit_bb;
1400 latch_b:
1401 goto header_b;
1403 exit_bb:
1405 This function creates PHI nodes at merge_bb and replaces the use of i_5
1406 in the update_loop's PHI node with the result of new PHI result. */
1408 static void
1409 slpeel_update_phi_nodes_for_guard1 (struct loop *skip_loop,
1410 struct loop *update_loop,
1411 edge guard_edge, edge merge_edge)
1413 source_location merge_loc, guard_loc;
1414 edge orig_e = loop_preheader_edge (skip_loop);
1415 edge update_e = loop_preheader_edge (update_loop);
1416 gphi_iterator gsi_orig, gsi_update;
1418 for ((gsi_orig = gsi_start_phis (skip_loop->header),
1419 gsi_update = gsi_start_phis (update_loop->header));
1420 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_update);
1421 gsi_next (&gsi_orig), gsi_next (&gsi_update))
1423 gphi *orig_phi = gsi_orig.phi ();
1424 gphi *update_phi = gsi_update.phi ();
1426 /* Generate new phi node at merge bb of the guard. */
1427 tree new_res = copy_ssa_name (PHI_RESULT (orig_phi));
1428 gphi *new_phi = create_phi_node (new_res, guard_edge->dest);
1430 /* Merge bb has two incoming edges: GUARD_EDGE and MERGE_EDGE. Set the
1431 args in NEW_PHI for these edges. */
1432 tree merge_arg = PHI_ARG_DEF_FROM_EDGE (update_phi, update_e);
1433 tree guard_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, orig_e);
1434 merge_loc = gimple_phi_arg_location_from_edge (update_phi, update_e);
1435 guard_loc = gimple_phi_arg_location_from_edge (orig_phi, orig_e);
1436 add_phi_arg (new_phi, merge_arg, merge_edge, merge_loc);
1437 add_phi_arg (new_phi, guard_arg, guard_edge, guard_loc);
1439 /* Update phi in UPDATE_PHI. */
1440 adjust_phi_and_debug_stmts (update_phi, update_e, new_res);
1444 /* LCSSA_PHI is a lcssa phi of EPILOG loop which is copied from LOOP,
1445 this function searches for the corresponding lcssa phi node in exit
1446 bb of LOOP. If it is found, return the phi result; otherwise return
1447 NULL. */
1449 static tree
1450 find_guard_arg (struct loop *loop, struct loop *epilog ATTRIBUTE_UNUSED,
1451 gphi *lcssa_phi)
1453 gphi_iterator gsi;
1454 edge e = single_exit (loop);
1456 gcc_assert (single_pred_p (e->dest));
1457 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
1459 gphi *phi = gsi.phi ();
1460 if (operand_equal_p (PHI_ARG_DEF (phi, 0),
1461 PHI_ARG_DEF (lcssa_phi, 0), 0))
1462 return PHI_RESULT (phi);
1464 return NULL_TREE;
1467 /* LOOP and EPILOG are two consecutive loops in CFG and EPILOG is copied
1468 from LOOP. Function slpeel_add_loop_guard adds guard skipping from a
1469 point between the two loops to the end of EPILOG. Edges GUARD_EDGE
1470 and MERGE_EDGE are the two pred edges of merge_bb at the end of EPILOG.
1471 The CFG looks like:
1473 loop:
1474 header_a:
1475 i_1 = PHI<i_0, i_2>;
1477 i_2 = i_1 + 1;
1478 if (cond_a)
1479 goto latch_a;
1480 else
1481 goto exit_a;
1482 latch_a:
1483 goto header_a;
1485 exit_a:
1487 guard_bb:
1488 if (cond)
1489 goto merge_bb;
1490 else
1491 goto epilog_loop;
1493 ;; fall_through_bb
1495 epilog_loop:
1496 header_b:
1497 i_3 = PHI<i_2, i_4>;
1499 i_4 = i_3 + 1;
1500 if (cond_b)
1501 goto latch_b;
1502 else
1503 goto merge_bb;
1504 latch_b:
1505 goto header_b;
1507 merge_bb:
1508 ; PHI node (i_y = PHI<i_2, i_4>) to be created at merge point.
1510 exit_bb:
1511 i_x = PHI<i_4>; ;Use of i_4 to be replaced with i_y in merge_bb.
1513 For each name used out side EPILOG (i.e - for each name that has a lcssa
1514 phi in exit_bb) we create a new PHI in merge_bb. The new PHI has two
1515 args corresponding to GUARD_EDGE and MERGE_EDGE. Arg for MERGE_EDGE is
1516 the arg of the original PHI in exit_bb, arg for GUARD_EDGE is defined
1517 by LOOP and is found in the exit bb of LOOP. Arg of the original PHI
1518 in exit_bb will also be updated. */
1520 static void
1521 slpeel_update_phi_nodes_for_guard2 (struct loop *loop, struct loop *epilog,
1522 edge guard_edge, edge merge_edge)
1524 gphi_iterator gsi;
1525 basic_block merge_bb = guard_edge->dest;
1527 gcc_assert (single_succ_p (merge_bb));
1528 edge e = single_succ_edge (merge_bb);
1529 basic_block exit_bb = e->dest;
1530 gcc_assert (single_pred_p (exit_bb));
1531 gcc_assert (single_pred (exit_bb) == single_exit (epilog)->dest);
1533 for (gsi = gsi_start_phis (exit_bb); !gsi_end_p (gsi); gsi_next (&gsi))
1535 gphi *update_phi = gsi.phi ();
1536 tree old_arg = PHI_ARG_DEF (update_phi, 0);
1537 /* This loop-closed-phi actually doesn't represent a use out of the
1538 loop - the phi arg is a constant. */
1539 if (TREE_CODE (old_arg) != SSA_NAME)
1540 continue;
1542 tree merge_arg = get_current_def (old_arg);
1543 if (!merge_arg)
1544 merge_arg = old_arg;
1546 tree guard_arg = find_guard_arg (loop, epilog, update_phi);
1547 /* If the var is live after loop but not a reduction, we simply
1548 use the old arg. */
1549 if (!guard_arg)
1550 guard_arg = old_arg;
1552 /* Create new phi node in MERGE_BB: */
1553 tree new_res = copy_ssa_name (PHI_RESULT (update_phi));
1554 gphi *merge_phi = create_phi_node (new_res, merge_bb);
1556 /* MERGE_BB has two incoming edges: GUARD_EDGE and MERGE_EDGE, Set
1557 the two PHI args in merge_phi for these edges. */
1558 add_phi_arg (merge_phi, merge_arg, merge_edge, UNKNOWN_LOCATION);
1559 add_phi_arg (merge_phi, guard_arg, guard_edge, UNKNOWN_LOCATION);
1561 /* Update the original phi in exit_bb. */
1562 adjust_phi_and_debug_stmts (update_phi, e, new_res);
1566 /* EPILOG loop is duplicated from the original loop for vectorizing,
1567 the arg of its loop closed ssa PHI needs to be updated. */
1569 static void
1570 slpeel_update_phi_nodes_for_lcssa (struct loop *epilog)
1572 gphi_iterator gsi;
1573 basic_block exit_bb = single_exit (epilog)->dest;
1575 gcc_assert (single_pred_p (exit_bb));
1576 edge e = EDGE_PRED (exit_bb, 0);
1577 for (gsi = gsi_start_phis (exit_bb); !gsi_end_p (gsi); gsi_next (&gsi))
1578 rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi.phi (), e));
1581 /* Function vect_do_peeling.
1583 Input:
1584 - LOOP_VINFO: Represent a loop to be vectorized, which looks like:
1586 preheader:
1587 LOOP:
1588 header_bb:
1589 loop_body
1590 if (exit_loop_cond) goto exit_bb
1591 else goto header_bb
1592 exit_bb:
1594 - NITERS: The number of iterations of the loop.
1595 - NITERSM1: The number of iterations of the loop's latch.
1596 - NITERS_NO_OVERFLOW: No overflow in computing NITERS.
1597 - TH, CHECK_PROFITABILITY: Threshold of niters to vectorize loop if
1598 CHECK_PROFITABILITY is true.
1599 Output:
1600 - NITERS_VECTOR: The number of iterations of loop after vectorization.
1602 This function peels prolog and epilog from the loop, adds guards skipping
1603 PROLOG and EPILOG for various conditions. As a result, the changed CFG
1604 would look like:
1606 guard_bb_1:
1607 if (prefer_scalar_loop) goto merge_bb_1
1608 else goto guard_bb_2
1610 guard_bb_2:
1611 if (skip_prolog) goto merge_bb_2
1612 else goto prolog_preheader
1614 prolog_preheader:
1615 PROLOG:
1616 prolog_header_bb:
1617 prolog_body
1618 if (exit_prolog_cond) goto prolog_exit_bb
1619 else goto prolog_header_bb
1620 prolog_exit_bb:
1622 merge_bb_2:
1624 vector_preheader:
1625 VECTOR LOOP:
1626 vector_header_bb:
1627 vector_body
1628 if (exit_vector_cond) goto vector_exit_bb
1629 else goto vector_header_bb
1630 vector_exit_bb:
1632 guard_bb_3:
1633 if (skip_epilog) goto merge_bb_3
1634 else goto epilog_preheader
1636 merge_bb_1:
1638 epilog_preheader:
1639 EPILOG:
1640 epilog_header_bb:
1641 epilog_body
1642 if (exit_epilog_cond) goto merge_bb_3
1643 else goto epilog_header_bb
1645 merge_bb_3:
1647 Note this function peels prolog and epilog only if it's necessary,
1648 as well as guards.
1649 Returns created epilogue or NULL.
1651 TODO: Guard for prefer_scalar_loop should be emitted along with
1652 versioning conditions if loop versioning is needed. */
1655 struct loop *
1656 vect_do_peeling (loop_vec_info loop_vinfo, tree niters, tree nitersm1,
1657 tree *niters_vector, int th, bool check_profitability,
1658 bool niters_no_overflow)
1660 edge e, guard_e;
1661 tree type = TREE_TYPE (niters), guard_cond;
1662 basic_block guard_bb, guard_to;
1663 profile_probability prob_prolog, prob_vector, prob_epilog;
1664 int bound_prolog = 0, bound_scalar = 0, bound = 0;
1665 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1666 int prolog_peeling = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
1667 bool epilog_peeling = (LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo)
1668 || LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo));
1670 if (!prolog_peeling && !epilog_peeling)
1671 return NULL;
1673 prob_vector = profile_probability::guessed_always ().apply_scale (9, 10);
1674 if ((vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo)) == 2)
1675 vf = 3;
1676 prob_prolog = prob_epilog = profile_probability::guessed_always ()
1677 .apply_scale (vf - 1, vf);
1678 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1680 struct loop *prolog, *epilog = NULL, *loop = LOOP_VINFO_LOOP (loop_vinfo);
1681 struct loop *first_loop = loop;
1682 bool irred_flag = loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP;
1683 create_lcssa_for_virtual_phi (loop);
1684 update_ssa (TODO_update_ssa_only_virtuals);
1686 if (MAY_HAVE_DEBUG_STMTS)
1688 gcc_assert (!adjust_vec.exists ());
1689 adjust_vec.create (32);
1691 initialize_original_copy_tables ();
1693 /* Prolog loop may be skipped. */
1694 bool skip_prolog = (prolog_peeling != 0);
1695 /* Skip to epilog if scalar loop may be preferred. It's only needed
1696 when we peel for epilog loop and when it hasn't been checked with
1697 loop versioning. */
1698 bool skip_vector = (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1699 && !LOOP_REQUIRES_VERSIONING (loop_vinfo));
1700 /* Epilog loop must be executed if the number of iterations for epilog
1701 loop is known at compile time, otherwise we need to add a check at
1702 the end of vector loop and skip to the end of epilog loop. */
1703 bool skip_epilog = (prolog_peeling < 0
1704 || !LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo));
1705 /* PEELING_FOR_GAPS is special because epilog loop must be executed. */
1706 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
1707 skip_epilog = false;
1709 /* Record the anchor bb at which guard should be placed if scalar loop
1710 may be preferred. */
1711 basic_block anchor = loop_preheader_edge (loop)->src;
1712 if (skip_vector)
1714 split_edge (loop_preheader_edge (loop));
1716 /* Due to the order in which we peel prolog and epilog, we first
1717 propagate probability to the whole loop. The purpose is to
1718 avoid adjusting probabilities of both prolog and vector loops
1719 separately. Note in this case, the probability of epilog loop
1720 needs to be scaled back later. */
1721 basic_block bb_before_loop = loop_preheader_edge (loop)->src;
1722 if (prob_vector.initialized_p ())
1723 scale_bbs_frequencies (&bb_before_loop, 1, prob_vector);
1724 scale_loop_profile (loop, prob_vector, bound);
1727 tree niters_prolog = build_int_cst (type, 0);
1728 source_location loop_loc = find_loop_location (loop);
1729 struct loop *scalar_loop = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
1730 if (prolog_peeling)
1732 e = loop_preheader_edge (loop);
1733 if (!slpeel_can_duplicate_loop_p (loop, e))
1735 dump_printf_loc (MSG_MISSED_OPTIMIZATION, loop_loc,
1736 "loop can't be duplicated to preheader edge.\n");
1737 gcc_unreachable ();
1739 /* Peel prolog and put it on preheader edge of loop. */
1740 prolog = slpeel_tree_duplicate_loop_to_edge_cfg (loop, scalar_loop, e);
1741 if (!prolog)
1743 dump_printf_loc (MSG_MISSED_OPTIMIZATION, loop_loc,
1744 "slpeel_tree_duplicate_loop_to_edge_cfg failed.\n");
1745 gcc_unreachable ();
1747 slpeel_update_phi_nodes_for_loops (loop_vinfo, prolog, loop, true);
1748 first_loop = prolog;
1749 reset_original_copy_tables ();
1751 /* Generate and update the number of iterations for prolog loop. */
1752 niters_prolog = vect_gen_prolog_loop_niters (loop_vinfo, anchor,
1753 &bound_prolog);
1754 slpeel_make_loop_iterate_ntimes (prolog, niters_prolog);
1756 /* Skip the prolog loop. */
1757 if (skip_prolog)
1759 guard_cond = fold_build2 (EQ_EXPR, boolean_type_node,
1760 niters_prolog, build_int_cst (type, 0));
1761 guard_bb = loop_preheader_edge (prolog)->src;
1762 basic_block bb_after_prolog = loop_preheader_edge (loop)->src;
1763 guard_to = split_edge (loop_preheader_edge (loop));
1764 guard_e = slpeel_add_loop_guard (guard_bb, guard_cond,
1765 guard_to, guard_bb,
1766 prob_prolog.invert (),
1767 irred_flag);
1768 e = EDGE_PRED (guard_to, 0);
1769 e = (e != guard_e ? e : EDGE_PRED (guard_to, 1));
1770 slpeel_update_phi_nodes_for_guard1 (prolog, loop, guard_e, e);
1772 scale_bbs_frequencies (&bb_after_prolog, 1, prob_prolog);
1773 scale_loop_profile (prolog, prob_prolog, bound_prolog);
1775 /* Update init address of DRs. */
1776 vect_update_inits_of_drs (loop_vinfo, niters_prolog);
1777 /* Update niters for vector loop. */
1778 LOOP_VINFO_NITERS (loop_vinfo)
1779 = fold_build2 (MINUS_EXPR, type, niters, niters_prolog);
1780 LOOP_VINFO_NITERSM1 (loop_vinfo)
1781 = fold_build2 (MINUS_EXPR, type,
1782 LOOP_VINFO_NITERSM1 (loop_vinfo), niters_prolog);
1783 bool new_var_p = false;
1784 niters = vect_build_loop_niters (loop_vinfo, &new_var_p);
1785 /* It's guaranteed that vector loop bound before vectorization is at
1786 least VF, so set range information for newly generated var. */
1787 if (new_var_p)
1788 set_range_info (niters, VR_RANGE,
1789 wi::to_wide (build_int_cst (type, vf)),
1790 wi::to_wide (TYPE_MAX_VALUE (type)));
1792 /* Prolog iterates at most bound_prolog times, latch iterates at
1793 most bound_prolog - 1 times. */
1794 record_niter_bound (prolog, bound_prolog - 1, false, true);
1795 delete_update_ssa ();
1796 adjust_vec_debug_stmts ();
1797 scev_reset ();
1800 if (epilog_peeling)
1802 e = single_exit (loop);
1803 if (!slpeel_can_duplicate_loop_p (loop, e))
1805 dump_printf_loc (MSG_MISSED_OPTIMIZATION, loop_loc,
1806 "loop can't be duplicated to exit edge.\n");
1807 gcc_unreachable ();
1809 /* Peel epilog and put it on exit edge of loop. */
1810 epilog = slpeel_tree_duplicate_loop_to_edge_cfg (loop, scalar_loop, e);
1811 if (!epilog)
1813 dump_printf_loc (MSG_MISSED_OPTIMIZATION, loop_loc,
1814 "slpeel_tree_duplicate_loop_to_edge_cfg failed.\n");
1815 gcc_unreachable ();
1817 slpeel_update_phi_nodes_for_loops (loop_vinfo, loop, epilog, false);
1819 /* Scalar version loop may be preferred. In this case, add guard
1820 and skip to epilog. Note this only happens when the number of
1821 iterations of loop is unknown at compile time, otherwise this
1822 won't be vectorized. */
1823 if (skip_vector)
1825 /* Additional epilogue iteration is peeled if gap exists. */
1826 bool peel_for_gaps = LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo);
1827 tree t = vect_gen_scalar_loop_niters (niters_prolog, prolog_peeling,
1828 bound_prolog,
1829 peel_for_gaps ? vf : vf - 1,
1830 th, &bound_scalar,
1831 check_profitability);
1832 /* Build guard against NITERSM1 since NITERS may overflow. */
1833 guard_cond = fold_build2 (LT_EXPR, boolean_type_node, nitersm1, t);
1834 guard_bb = anchor;
1835 guard_to = split_edge (loop_preheader_edge (epilog));
1836 guard_e = slpeel_add_loop_guard (guard_bb, guard_cond,
1837 guard_to, guard_bb,
1838 prob_vector.invert (),
1839 irred_flag);
1840 e = EDGE_PRED (guard_to, 0);
1841 e = (e != guard_e ? e : EDGE_PRED (guard_to, 1));
1842 slpeel_update_phi_nodes_for_guard1 (first_loop, epilog, guard_e, e);
1844 /* Simply propagate profile info from guard_bb to guard_to which is
1845 a merge point of control flow. */
1846 guard_to->count = guard_bb->count;
1847 /* Scale probability of epilog loop back.
1848 FIXME: We should avoid scaling down and back up. Profile may
1849 get lost if we scale down to 0. */
1850 int scale_up = REG_BR_PROB_BASE * REG_BR_PROB_BASE
1851 / prob_vector.to_reg_br_prob_base ();
1852 basic_block *bbs = get_loop_body (epilog);
1853 scale_bbs_frequencies_int (bbs, epilog->num_nodes, scale_up,
1854 REG_BR_PROB_BASE);
1855 free (bbs);
1858 basic_block bb_before_epilog = loop_preheader_edge (epilog)->src;
1859 tree niters_vector_mult_vf;
1860 /* If loop is peeled for non-zero constant times, now niters refers to
1861 orig_niters - prolog_peeling, it won't overflow even the orig_niters
1862 overflows. */
1863 niters_no_overflow |= (prolog_peeling > 0);
1864 vect_gen_vector_loop_niters (loop_vinfo, niters,
1865 niters_vector, niters_no_overflow);
1866 vect_gen_vector_loop_niters_mult_vf (loop_vinfo, *niters_vector,
1867 &niters_vector_mult_vf);
1868 /* Update IVs of original loop as if they were advanced by
1869 niters_vector_mult_vf steps. */
1870 gcc_checking_assert (vect_can_advance_ivs_p (loop_vinfo));
1871 edge update_e = skip_vector ? e : loop_preheader_edge (epilog);
1872 vect_update_ivs_after_vectorizer (loop_vinfo, niters_vector_mult_vf,
1873 update_e);
1875 if (skip_epilog)
1877 guard_cond = fold_build2 (EQ_EXPR, boolean_type_node,
1878 niters, niters_vector_mult_vf);
1879 guard_bb = single_exit (loop)->dest;
1880 guard_to = split_edge (single_exit (epilog));
1881 guard_e = slpeel_add_loop_guard (guard_bb, guard_cond, guard_to,
1882 skip_vector ? anchor : guard_bb,
1883 prob_epilog.invert (),
1884 irred_flag);
1885 slpeel_update_phi_nodes_for_guard2 (loop, epilog, guard_e,
1886 single_exit (epilog));
1887 /* Only need to handle basic block before epilog loop if it's not
1888 the guard_bb, which is the case when skip_vector is true. */
1889 if (guard_bb != bb_before_epilog)
1891 prob_epilog = prob_vector * prob_epilog + prob_vector.invert ();
1893 scale_bbs_frequencies (&bb_before_epilog, 1, prob_epilog);
1895 scale_loop_profile (epilog, prob_epilog, bound);
1897 else
1898 slpeel_update_phi_nodes_for_lcssa (epilog);
1900 bound = LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) ? vf - 1 : vf - 2;
1901 /* We share epilog loop with scalar version loop. */
1902 bound = MAX (bound, bound_scalar - 1);
1903 record_niter_bound (epilog, bound, false, true);
1905 delete_update_ssa ();
1906 adjust_vec_debug_stmts ();
1907 scev_reset ();
1909 adjust_vec.release ();
1910 free_original_copy_tables ();
1912 return epilog;
1915 /* Function vect_create_cond_for_niters_checks.
1917 Create a conditional expression that represents the run-time checks for
1918 loop's niter. The loop is guaranteed to to terminate if the run-time
1919 checks hold.
1921 Input:
1922 COND_EXPR - input conditional expression. New conditions will be chained
1923 with logical AND operation. If it is NULL, then the function
1924 is used to return the number of alias checks.
1925 LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
1926 to be checked.
1928 Output:
1929 COND_EXPR - conditional expression.
1931 The returned COND_EXPR is the conditional expression to be used in the
1932 if statement that controls which version of the loop gets executed at
1933 runtime. */
1935 static void
1936 vect_create_cond_for_niters_checks (loop_vec_info loop_vinfo, tree *cond_expr)
1938 tree part_cond_expr = LOOP_VINFO_NITERS_ASSUMPTIONS (loop_vinfo);
1940 if (*cond_expr)
1941 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1942 *cond_expr, part_cond_expr);
1943 else
1944 *cond_expr = part_cond_expr;
1947 /* Set *COND_EXPR to a tree that is true when both the original *COND_EXPR
1948 and PART_COND_EXPR are true. Treat a null *COND_EXPR as "true". */
1950 static void
1951 chain_cond_expr (tree *cond_expr, tree part_cond_expr)
1953 if (*cond_expr)
1954 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1955 *cond_expr, part_cond_expr);
1956 else
1957 *cond_expr = part_cond_expr;
1960 /* Function vect_create_cond_for_align_checks.
1962 Create a conditional expression that represents the alignment checks for
1963 all of data references (array element references) whose alignment must be
1964 checked at runtime.
1966 Input:
1967 COND_EXPR - input conditional expression. New conditions will be chained
1968 with logical AND operation.
1969 LOOP_VINFO - two fields of the loop information are used.
1970 LOOP_VINFO_PTR_MASK is the mask used to check the alignment.
1971 LOOP_VINFO_MAY_MISALIGN_STMTS contains the refs to be checked.
1973 Output:
1974 COND_EXPR_STMT_LIST - statements needed to construct the conditional
1975 expression.
1976 The returned value is the conditional expression to be used in the if
1977 statement that controls which version of the loop gets executed at runtime.
1979 The algorithm makes two assumptions:
1980 1) The number of bytes "n" in a vector is a power of 2.
1981 2) An address "a" is aligned if a%n is zero and that this
1982 test can be done as a&(n-1) == 0. For example, for 16
1983 byte vectors the test is a&0xf == 0. */
1985 static void
1986 vect_create_cond_for_align_checks (loop_vec_info loop_vinfo,
1987 tree *cond_expr,
1988 gimple_seq *cond_expr_stmt_list)
1990 vec<gimple *> may_misalign_stmts
1991 = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
1992 gimple *ref_stmt;
1993 int mask = LOOP_VINFO_PTR_MASK (loop_vinfo);
1994 tree mask_cst;
1995 unsigned int i;
1996 tree int_ptrsize_type;
1997 char tmp_name[20];
1998 tree or_tmp_name = NULL_TREE;
1999 tree and_tmp_name;
2000 gimple *and_stmt;
2001 tree ptrsize_zero;
2002 tree part_cond_expr;
2004 /* Check that mask is one less than a power of 2, i.e., mask is
2005 all zeros followed by all ones. */
2006 gcc_assert ((mask != 0) && ((mask & (mask+1)) == 0));
2008 int_ptrsize_type = signed_type_for (ptr_type_node);
2010 /* Create expression (mask & (dr_1 || ... || dr_n)) where dr_i is the address
2011 of the first vector of the i'th data reference. */
2013 FOR_EACH_VEC_ELT (may_misalign_stmts, i, ref_stmt)
2015 gimple_seq new_stmt_list = NULL;
2016 tree addr_base;
2017 tree addr_tmp_name;
2018 tree new_or_tmp_name;
2019 gimple *addr_stmt, *or_stmt;
2020 stmt_vec_info stmt_vinfo = vinfo_for_stmt (ref_stmt);
2021 tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
2022 bool negative = tree_int_cst_compare
2023 (DR_STEP (STMT_VINFO_DATA_REF (stmt_vinfo)), size_zero_node) < 0;
2024 tree offset = negative
2025 ? size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1) : size_zero_node;
2027 /* create: addr_tmp = (int)(address_of_first_vector) */
2028 addr_base =
2029 vect_create_addr_base_for_vector_ref (ref_stmt, &new_stmt_list,
2030 offset);
2031 if (new_stmt_list != NULL)
2032 gimple_seq_add_seq (cond_expr_stmt_list, new_stmt_list);
2034 sprintf (tmp_name, "addr2int%d", i);
2035 addr_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, tmp_name);
2036 addr_stmt = gimple_build_assign (addr_tmp_name, NOP_EXPR, addr_base);
2037 gimple_seq_add_stmt (cond_expr_stmt_list, addr_stmt);
2039 /* The addresses are OR together. */
2041 if (or_tmp_name != NULL_TREE)
2043 /* create: or_tmp = or_tmp | addr_tmp */
2044 sprintf (tmp_name, "orptrs%d", i);
2045 new_or_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, tmp_name);
2046 or_stmt = gimple_build_assign (new_or_tmp_name, BIT_IOR_EXPR,
2047 or_tmp_name, addr_tmp_name);
2048 gimple_seq_add_stmt (cond_expr_stmt_list, or_stmt);
2049 or_tmp_name = new_or_tmp_name;
2051 else
2052 or_tmp_name = addr_tmp_name;
2054 } /* end for i */
2056 mask_cst = build_int_cst (int_ptrsize_type, mask);
2058 /* create: and_tmp = or_tmp & mask */
2059 and_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, "andmask");
2061 and_stmt = gimple_build_assign (and_tmp_name, BIT_AND_EXPR,
2062 or_tmp_name, mask_cst);
2063 gimple_seq_add_stmt (cond_expr_stmt_list, and_stmt);
2065 /* Make and_tmp the left operand of the conditional test against zero.
2066 if and_tmp has a nonzero bit then some address is unaligned. */
2067 ptrsize_zero = build_int_cst (int_ptrsize_type, 0);
2068 part_cond_expr = fold_build2 (EQ_EXPR, boolean_type_node,
2069 and_tmp_name, ptrsize_zero);
2070 chain_cond_expr (cond_expr, part_cond_expr);
2073 /* If LOOP_VINFO_CHECK_UNEQUAL_ADDRS contains <A1, B1>, ..., <An, Bn>,
2074 create a tree representation of: (&A1 != &B1) && ... && (&An != &Bn).
2075 Set *COND_EXPR to a tree that is true when both the original *COND_EXPR
2076 and this new condition are true. Treat a null *COND_EXPR as "true". */
2078 static void
2079 vect_create_cond_for_unequal_addrs (loop_vec_info loop_vinfo, tree *cond_expr)
2081 vec<vec_object_pair> pairs = LOOP_VINFO_CHECK_UNEQUAL_ADDRS (loop_vinfo);
2082 unsigned int i;
2083 vec_object_pair *pair;
2084 FOR_EACH_VEC_ELT (pairs, i, pair)
2086 tree addr1 = build_fold_addr_expr (pair->first);
2087 tree addr2 = build_fold_addr_expr (pair->second);
2088 tree part_cond_expr = fold_build2 (NE_EXPR, boolean_type_node,
2089 addr1, addr2);
2090 chain_cond_expr (cond_expr, part_cond_expr);
2094 /* Function vect_create_cond_for_alias_checks.
2096 Create a conditional expression that represents the run-time checks for
2097 overlapping of address ranges represented by a list of data references
2098 relations passed as input.
2100 Input:
2101 COND_EXPR - input conditional expression. New conditions will be chained
2102 with logical AND operation. If it is NULL, then the function
2103 is used to return the number of alias checks.
2104 LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
2105 to be checked.
2107 Output:
2108 COND_EXPR - conditional expression.
2110 The returned COND_EXPR is the conditional expression to be used in the if
2111 statement that controls which version of the loop gets executed at runtime.
2114 void
2115 vect_create_cond_for_alias_checks (loop_vec_info loop_vinfo, tree * cond_expr)
2117 vec<dr_with_seg_len_pair_t> comp_alias_ddrs =
2118 LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo);
2120 if (comp_alias_ddrs.is_empty ())
2121 return;
2123 create_runtime_alias_checks (LOOP_VINFO_LOOP (loop_vinfo),
2124 &comp_alias_ddrs, cond_expr);
2125 if (dump_enabled_p ())
2126 dump_printf_loc (MSG_NOTE, vect_location,
2127 "created %u versioning for alias checks.\n",
2128 comp_alias_ddrs.length ());
2132 /* Function vect_loop_versioning.
2134 If the loop has data references that may or may not be aligned or/and
2135 has data reference relations whose independence was not proven then
2136 two versions of the loop need to be generated, one which is vectorized
2137 and one which isn't. A test is then generated to control which of the
2138 loops is executed. The test checks for the alignment of all of the
2139 data references that may or may not be aligned. An additional
2140 sequence of runtime tests is generated for each pairs of DDRs whose
2141 independence was not proven. The vectorized version of loop is
2142 executed only if both alias and alignment tests are passed.
2144 The test generated to check which version of loop is executed
2145 is modified to also check for profitability as indicated by the
2146 cost model threshold TH.
2148 The versioning precondition(s) are placed in *COND_EXPR and
2149 *COND_EXPR_STMT_LIST. */
2151 void
2152 vect_loop_versioning (loop_vec_info loop_vinfo,
2153 unsigned int th, bool check_profitability)
2155 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo), *nloop;
2156 struct loop *scalar_loop = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
2157 basic_block condition_bb;
2158 gphi_iterator gsi;
2159 gimple_stmt_iterator cond_exp_gsi;
2160 basic_block merge_bb;
2161 basic_block new_exit_bb;
2162 edge new_exit_e, e;
2163 gphi *orig_phi, *new_phi;
2164 tree cond_expr = NULL_TREE;
2165 gimple_seq cond_expr_stmt_list = NULL;
2166 tree arg;
2167 profile_probability prob = profile_probability::likely ();
2168 gimple_seq gimplify_stmt_list = NULL;
2169 tree scalar_loop_iters = LOOP_VINFO_NITERSM1 (loop_vinfo);
2170 bool version_align = LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo);
2171 bool version_alias = LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo);
2172 bool version_niter = LOOP_REQUIRES_VERSIONING_FOR_NITERS (loop_vinfo);
2174 if (check_profitability)
2175 cond_expr = fold_build2 (GE_EXPR, boolean_type_node, scalar_loop_iters,
2176 build_int_cst (TREE_TYPE (scalar_loop_iters),
2177 th - 1));
2179 if (version_niter)
2180 vect_create_cond_for_niters_checks (loop_vinfo, &cond_expr);
2182 if (cond_expr)
2183 cond_expr = force_gimple_operand_1 (cond_expr, &cond_expr_stmt_list,
2184 is_gimple_condexpr, NULL_TREE);
2186 if (version_align)
2187 vect_create_cond_for_align_checks (loop_vinfo, &cond_expr,
2188 &cond_expr_stmt_list);
2190 if (version_alias)
2192 vect_create_cond_for_unequal_addrs (loop_vinfo, &cond_expr);
2193 vect_create_cond_for_alias_checks (loop_vinfo, &cond_expr);
2196 cond_expr = force_gimple_operand_1 (cond_expr, &gimplify_stmt_list,
2197 is_gimple_condexpr, NULL_TREE);
2198 gimple_seq_add_seq (&cond_expr_stmt_list, gimplify_stmt_list);
2200 initialize_original_copy_tables ();
2201 if (scalar_loop)
2203 edge scalar_e;
2204 basic_block preheader, scalar_preheader;
2206 /* We don't want to scale SCALAR_LOOP's frequencies, we need to
2207 scale LOOP's frequencies instead. */
2208 nloop = loop_version (scalar_loop, cond_expr, &condition_bb,
2209 prob, prob.invert (), prob, prob.invert (), true);
2210 scale_loop_frequencies (loop, prob);
2211 /* CONDITION_BB was created above SCALAR_LOOP's preheader,
2212 while we need to move it above LOOP's preheader. */
2213 e = loop_preheader_edge (loop);
2214 scalar_e = loop_preheader_edge (scalar_loop);
2215 gcc_assert (empty_block_p (e->src)
2216 && single_pred_p (e->src));
2217 gcc_assert (empty_block_p (scalar_e->src)
2218 && single_pred_p (scalar_e->src));
2219 gcc_assert (single_pred_p (condition_bb));
2220 preheader = e->src;
2221 scalar_preheader = scalar_e->src;
2222 scalar_e = find_edge (condition_bb, scalar_preheader);
2223 e = single_pred_edge (preheader);
2224 redirect_edge_and_branch_force (single_pred_edge (condition_bb),
2225 scalar_preheader);
2226 redirect_edge_and_branch_force (scalar_e, preheader);
2227 redirect_edge_and_branch_force (e, condition_bb);
2228 set_immediate_dominator (CDI_DOMINATORS, condition_bb,
2229 single_pred (condition_bb));
2230 set_immediate_dominator (CDI_DOMINATORS, scalar_preheader,
2231 single_pred (scalar_preheader));
2232 set_immediate_dominator (CDI_DOMINATORS, preheader,
2233 condition_bb);
2235 else
2236 nloop = loop_version (loop, cond_expr, &condition_bb,
2237 prob, prob.invert (), prob, prob.invert (), true);
2239 if (version_niter)
2241 /* The versioned loop could be infinite, we need to clear existing
2242 niter information which is copied from the original loop. */
2243 gcc_assert (loop_constraint_set_p (loop, LOOP_C_FINITE));
2244 vect_free_loop_info_assumptions (nloop);
2245 /* And set constraint LOOP_C_INFINITE for niter analyzer. */
2246 loop_constraint_set (loop, LOOP_C_INFINITE);
2249 if (LOCATION_LOCUS (vect_location) != UNKNOWN_LOCATION
2250 && dump_enabled_p ())
2252 if (version_alias)
2253 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
2254 "loop versioned for vectorization because of "
2255 "possible aliasing\n");
2256 if (version_align)
2257 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
2258 "loop versioned for vectorization to enhance "
2259 "alignment\n");
2262 free_original_copy_tables ();
2264 /* Loop versioning violates an assumption we try to maintain during
2265 vectorization - that the loop exit block has a single predecessor.
2266 After versioning, the exit block of both loop versions is the same
2267 basic block (i.e. it has two predecessors). Just in order to simplify
2268 following transformations in the vectorizer, we fix this situation
2269 here by adding a new (empty) block on the exit-edge of the loop,
2270 with the proper loop-exit phis to maintain loop-closed-form.
2271 If loop versioning wasn't done from loop, but scalar_loop instead,
2272 merge_bb will have already just a single successor. */
2274 merge_bb = single_exit (loop)->dest;
2275 if (scalar_loop == NULL || EDGE_COUNT (merge_bb->preds) >= 2)
2277 gcc_assert (EDGE_COUNT (merge_bb->preds) >= 2);
2278 new_exit_bb = split_edge (single_exit (loop));
2279 new_exit_e = single_exit (loop);
2280 e = EDGE_SUCC (new_exit_bb, 0);
2282 for (gsi = gsi_start_phis (merge_bb); !gsi_end_p (gsi); gsi_next (&gsi))
2284 tree new_res;
2285 orig_phi = gsi.phi ();
2286 new_res = copy_ssa_name (PHI_RESULT (orig_phi));
2287 new_phi = create_phi_node (new_res, new_exit_bb);
2288 arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
2289 add_phi_arg (new_phi, arg, new_exit_e,
2290 gimple_phi_arg_location_from_edge (orig_phi, e));
2291 adjust_phi_and_debug_stmts (orig_phi, e, PHI_RESULT (new_phi));
2295 /* End loop-exit-fixes after versioning. */
2297 if (cond_expr_stmt_list)
2299 cond_exp_gsi = gsi_last_bb (condition_bb);
2300 gsi_insert_seq_before (&cond_exp_gsi, cond_expr_stmt_list,
2301 GSI_SAME_STMT);
2303 update_ssa (TODO_update_ssa);